
Neural Field Convolutions by Repeated Differentiation
NTUMBA ELIE NSAMPI,MPI Informatik, Germany
ADARSH DJEACOUMAR,MPI Informatik, Germany
HANS-PETER SEIDEL,MPI Informatik, Germany
TOBIAS RITSCHEL, University College London, United Kingdom
THOMAS LEIMKÜHLER,MPI Informatik, Germany

×
g g -2

g -1 f 2 g * ff

Fig. 1. We introduce an algorithm to perform efficient continuous convolution of neural fields 𝑓 by piecewise polynomial kernels 𝑔. The key idea is to convolve
the sparse repeated derivative of the kernel (𝑔−𝑛) with the repeated antiderivative of the signal (𝑓 𝑛).

Neural fields are evolving towards a general-purpose continuous representa-
tion for visual computing. Yet, despite their numerous appealing properties,
they are hardly amenable to signal processing. As a remedy, we present
a method to perform general continuous convolutions with general con-
tinuous signals such as neural fields. Observing that piecewise polynomial
kernels reduce to a sparse set of Dirac deltas after repeated differentiation,
we leverage convolution identities and train a repeated integral field to
efficiently execute large-scale convolutions. We demonstrate our approach
on a variety of data modalities and spatially-varying kernels.

CCS Concepts: • Computing methodologies → Neural networks; Com-
puter graphics.

Additional Key Words and Phrases: Convolution, Geometry Processing,
Image Processing, Neural Fields, Signal Processing, Sparsity

ACM Reference Format:
Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel,
and Thomas Leimkühler. 2023. Neural Field Convolutions by Repeated Dif-
ferentiation. ACM Trans. Graph. 42, 6, Article 206 (December 2023), 11 pages.
https://doi.org/10.1145/3618340

Authors’ addresses: Ntumba Elie Nsampi, MPI Informatik, Germany, nnsampi@mpi-
inf.mpg.de; Adarsh Djeacoumar, MPI Informatik, Germany, adjeacou@mpi-inf.mpg.de;
Hans-Peter Seidel, MPI Informatik, Germany, hpseidel@mpi-sb.mpg.de; Tobias Ritschel,
University College London, United Kingdom, t.ritschel@ucl.ac.uk; Thomas Leimkühler,
MPI Informatik, Germany, thomas.leimkuehler@mpi-inf.mpg.de.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART206 $15.00
https://doi.org/10.1145/3618340

1 INTRODUCTION
Neural fields have recently emerged as a powerful way of represent-
ing signals and have witnessed widespread adoption in particular
for visual data [Tewari et al. 2022; Xie et al. 2022]. Also referred to
as implicit or coordinate-based neural representations, neural fields
typically use a multi-layer perceptron (MLP) to encode a mapping
from coordinates to values. This representation is universal and
allows to capture a multitude of modalities, such as mapping from
2D location to color for images [Stanley 2007], from 3D location to
the signed distance to a surface for geometry [Park et al. 2019], from
5D light field coordinates to emitted radiance of an entire scene
[Mildenhall et al. 2020], and many more.

The appealing properties of neural fields are three-fold: First, they
represent signals in a continuous way, which is a good fit for the
mostly continuous visual structure of our world. Second, they are
compact, since they encode complex signals into a relatively small
number of MLP weights [Dupont et al. 2021], while adapting well
to local signal complexities. Third, they are easy to optimize by
construction. Taking all of these properties together, it comes at no
surprise that neural fields are rapidly evolving towards a general-
purpose data representation [Dupont et al. 2022a]. However, to be
a true alternative to established specialized representations such
as pixel arrays, meshes, point clouds, etc., neural fields are still
lacking in a fundamental aspect: They are hardly amenable to signal
processing [Xu et al. 2022; Yang et al. 2021]. As a remedy, in this work,
we propose a general framework to apply a core signal processing
technique to neural fields: convolutions.
The versatility and expressivity of neural representations have

evolved significantly over the last couple of years, mostly due to
advances in architectures and training methodologies [Hertz et al.
2021; Müller et al. 2022; Sitzmann et al. 2020; Tancik et al. 2020].
However, at their core, neural fields only support point samples.
This is sufficient for point operations, such as the remapping of

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

https://doi.org/10.1145/3618340
https://doi.org/10.1145/3618340
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618340&domain=pdf&date_stamp=2023-12-05

206:2 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

input coordinates, e.g., for the purpose of deformations [Kopanas
et al. 2022; Park et al. 2021; Tretschk et al. 2021; Yuan et al. 2022],
or the remapping of output values [Vicini et al. 2022]. In contrast,
a convolution requires the continuous integration of values over
coordinates weighted by a continuous kernel.
Aggregation in neural fields can be approximated using either

discretization followed by cubature, or Monte Carlo sampling, re-
sulting in excessive memory requirements and noise, respectively.
Another solution is to consider a narrow parametric family of ker-
nels and train the field using supervision on filtered versions of the
signal [Barron et al. 2021]. Representation and learned convolution
operation can be explicitly disentangled using higher-order deriva-
tives [Xu et al. 2022], but this comes at the cost of only supporting
small spatially invariant kernels. AutoInt [Lindell et al. 2021] per-
forms analytic integration using automatic differentiation, but only
considers unweighted integrals. We advance the state of the art
by presenting a method to efficiently perform general, large-scale,
spatially-varying convolutions natively in neural fields.
In our approach, we consider neural fields to be convolved with

piecewise polynomial kernels, which reduce to a sparse set of Dirac
deltas after repeated differentiation [Heckbert 1986]. Combining
this insight with convolution identities on differentiation and inte-
gration, our approach requires only a small number of point samples
from a neural integral field to perform an exact continuous convo-
lution, independent of kernel size. This integral field needs to be
trained in a specific way, supervised via continuous higher-order
finite differences, corresponding to a minimal kernel of a certain
polynomial degree. Once trained, our neural fields are ready to be
convolved with any piecewise polynomial kernel of that degree.

We showcase the generality and versatility of our approach using
different modalities, such as images, videos, geometry, character
animations, and audio, all natively processed in a neural field repre-
sentation. Further, we demonstrate (spatially-varying) convolutions
with a variety of kernels, such as smoothing and edge detection of
different shapes and sizes. In summary, our contributions are:

• A principled and versatile framework for performing convo-
lutions in neural fields.

• Two novel enabling ingredients: An efficient method to train
a repeated integral field, and the optimization of continuous
kernels that are sparse after repeated differentiation.

• The evaluation of our framework on a range of modalities
and kernels.

2 RELATED WORK
The convolution of a signal, eventually in some higher dimension,
with a kernel is a central operation in modern signal processing
[Zhang 2022]. In this work, we consider a slightly generalized form
of convolution, where a kernel varies spatially across the signal. Re-
fer to Sec. 1 in the supplemental document for a tabulated overview
of the different solutions discussed next.

Discrete. For discrete signals and kernels (Cubature and SAT in
Fig. 2), most convolutions are based on cubature, i.e., a dense sum-
product operation across all dimensions. This, unfortunately, does
not scale to larger kernels or higher dimensions but allows spatially-
varying kernels. A common acceleration is the Fourier transform

Learn

Integrate

Sparse sum-prod

Sparsify

Parametrize

Stochastic sum-prod

Dense sum-prod

Di�erentiate

Discretize

Cubature SAT Monte CarloMIP-NeRF INSPOurs
f g* f g* f g* f g* f g* f g*

Result

Fig. 2. The landscape of convolution methods as combinations of different
operations applied to a signal and kernel (top), leading to a result (bottom).

[Brigham 1988], which also requires time and space to perform
and store the transformed signal. Most of all, it requires the ker-
nel to be spatially invariant. As a remedy, certain spatially-varying
convolutions can be realized using spatially-varying combinations
or transformations of stationary filters [Fournier and Fiume 1988;
Freeman et al. 1991; Mitchel et al. 2020]. For a large class of filters,
pyramidal schemes [Farbman et al. 2011; Williams 1983] can be a
solution, but require additional memory. The key idea is that in-
termediate pyramid values store a partial aggregate of the signal.
Techniques that store integrals without reducing the resolution are
called summed-area tables (SAT) or integral images [Crow 1984;
Viola and Jones 2001]. Notably, SATs and their variants allow effi-
cient spatially-varying convolution by considering differentiated
kernels [Heckbert 1986; Leimkühler et al. 2018; Simard et al. 1998].
This efficiency comes from the fact that the differentiated kernel is
sparse (“Sparsify” for SAT in Fig. 2) and the SAT only needs to be
evaluated at very few locations. Our approach will take this idea to
the continuous neural domain.

Continuous. Convolution becomes more challenging, if the sig-
nal, the kernel, or both are continuous. Monte Carlo methods, that
straightforwardly sample signal and kernel randomly and sum the
result (Monte Carlo in Fig. 2) can handle this case. These scale very
well to high dimensions, but at the expense of noise that only van-
ishes with many samples, even when specialized blue noise [Singh
et al. 2019] or low-discrepancy [Niederreiter 1992; Sobol 1967] sam-
plers are used. Similar to our approach, the use of derivatives has
been shown to be beneficial [Kettunen et al. 2015]. Practical un-
structured convolution [Hermosilla et al. 2018; Shocher et al. 2020;
Vasconcelos et al. 2023; Wang et al. 2018] does away with cubature
and evaluates the product of kernel and signal only at specific sparse
positions such as the points in a point cloud. Our approach does not
rely on random sampling but works directly on a continuous signal.

Neural. It has recently been proposed to replace discrete repre-
sentations with continuous neural networks, so-called neural fields
[Tewari et al. 2022; Xie et al. 2022]. These have applications in
geometry representation [Park et al. 2019], novel-view synthesis
[Mildenhall et al. 2020; Sitzmann et al. 2019], dynamic scene recon-
struction [Park et al. 2021; Tretschk et al. 2021; Yuan et al. 2022],
etc. Replacing a discrete grid with complex continuous functions

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

Neural Field Convolutions by Repeated Differentiation • 206:3

requires developing the same operations available to grids [Dupont
et al. 2022a], including convolutions, as we set out to do in this
work. Early work has been conducted to explore the manifold of all
natural neural fields [Du et al. 2021] and to build a generative model
of neural fields [Dupont et al. 2022b; Erkoç et al. 2023]. Specialized
network architectures allow the decomposition of signals into a
discrete set of frequency bands [Fathony et al. 2020; Lindell et al.
2022; Yang et al. 2022]. Further, limited forms of geometry process-
ing have been considered in this representation [Yang et al. 2021].
However, none of them is looking into general, efficient, large-scale,
and/or spatially-varying convolutions.
A very specific form of convolution occurs as anti-aliasing or

depth-of-field in image-based rendering. To account for these effects,
neural fields can be learned that are conditioned on the parameters
of the convolution kernel, such as its bandwidth [Barron et al. 2021,
2022; Isaac-Medina et al. 2023; Wang et al. 2022]. The network can
then be evaluated to directly produce the filtered result, i.e., signal
representation and convolution operation are intertwined. This Mip-
NeRF-style convolution is in principle applicable to other filters,
as long as they can be parametrized to become conditions to input
into the network (MIP-NeRF in Fig. 2). Unfortunately, this limits
the kernels that can be applied to a parametric family that needs
to be known in advance. Further, it significantly increases training
time, since kernel parameters act as additional input dimensions to
the network. We use inductive knowledge of integration and differ-
entiation to arrive at a more efficient formulation that generalizes
across kernels.

The key to efficient convolutions is a combination of sparsity, dif-
ferentiation, and integration. Fortunately, tools to perform integra-
tion and differentiation on neural fields are available. AutoInt [Lin-
dell et al. 2021] proposes to learn a neural network that, when
automatically differentiated, fits a signal. By evaluating the original
network without differentiation, the antiderivative can be evaluated
conveniently. Unfortunately, this approach does not scale well to the
higher-order antiderivatives needed for efficient convolutions, as
the size of the derivative graphs grows quickly. In contrast, our ap-
proach leverages higher-order finite differences to train a repeated
integral field, which scales with the number of integrations required.

Recently, Xu et al. [2022] have proposed a method with the same
aim as ours (INSP in Fig. 2). Given a trained neural field, they learn
to combine higher-order derivatives of the field to approximate a
convolution. Similar to a Taylor expansion, this requires high-order
derivatives to reason about larger neighborhoods and, unfortunately,
hence only allows for very small, spatially invariant kernels.

Finally, aggregation in neural fields in the form of range queries
has been studied by Sharp and Jacobson [2022]. Their approach al-
lows to retrieve a conservative estimate of the field’s extrema within
a query volume, which unfortunately does not provide enough in-
formation to perform accurate continuous convolutions.

3 BACKGROUND
We consider the convolution of arbitrary continuous signals 𝑓 ∈
R𝑑in → R𝑑out with arbitrary continuous kernels 𝑔 ∈ R𝑑 → R.
Both inputs and outputs of 𝑓 are low- to medium-dimensional. The
signal can be any continuous function, including but not limited to a

neural network. We assume the kernel has compact but potentially
large support. The kernel does not necessarily extend across all
input dimensions of 𝑓 , i.e., 𝑑 ≤ 𝑑in. To simplify our exposition,
without loss of generality, we assume that the first 𝑑 dimensions of
𝑓 correspond to the filter dimensions of 𝑔. Further, we allow 𝑔 to
vary for different locations in the input space. An example of this
setup is a space-time signal 𝑓 encoding an RGB (𝑑out = 3) video with
two spatial and a temporal dimension (𝑑in = 3), to be convolved
with a kernel 𝑔 that applies a foveated blur to each time slice of the
video (𝑑 = 2). In the following derivations, we assume a spatially
invariant kernel for ease of notation. Sec. 4.1.3 explains how our
method can be easily extended to the spatially-varying case.

Formally, we seek to carry out the continuous convolutions

(𝑓 ∗ 𝑔) (x) =
∫
R𝑑

𝑓 (x − 𝝉)𝑔(𝝉)d𝝉 . (1)

This integral operation does not have a closed-form solution for all
but the most constrained sets of signals and/or kernels. In partic-
ular, it is unclear how this continuous operation can be applied to
generic neural fields, which naturally only support point samples.
The typical solution for these integrals is numerical approxima-
tion: For low-dimensional integration domains, quadrature rules
are feasible, while the scalable gold standard in higher dimensions
is Monte Carlo integration. The latter proceeds by sampling the
integration domain and approximating the integral by a weighted
sum of integrand evaluations:

(𝑓 ∗ 𝑔) (x) = E𝝉 [𝑓 (x − 𝝉)𝑔(𝝉)] ≈ 1
𝑁

∑︁
𝝉∼𝑝

𝑓 (x − 𝝉)𝑔(𝝉)
𝑝 (𝝉) , (2)

where E is the expectation and 𝝉 are now random samples drawn
from the probability density function 𝑝 . Unfortunately, a high num-
ber𝑁 of samples is required for large kernels𝑔 and/or high-frequency
signals 𝑓 , rendering this approach inefficient.

In the following, we develop a method that performs continuous
convolutions in the form of Eq. 1, while only requiring a very low
number of network evaluations, independent of the kernel size.

4 METHOD
We efficiently convolve a continuous signal 𝑓 with a continuous
kernel 𝑔 by approximating 𝑔 with a piecewise polynomial function,
which becomes sparse after repeated differentiation. Our approach
requires the evaluation of the repeated integral of 𝑓 at a sparse set
of sample positions dictated by the differentiated kernel (Sec. 4.1),
leading to a substantial speed-up of the convolution operation. This
general approach has first been studied by Heckbert [1986] in the
context of discrete representations. Our method lifts the idea to the
continuous neural setting by optimizing for a sparse differential
representation of 𝑔 (Sec. 4.2), and obtaining the repeated continuous
integral of 𝑓 by supervising on a minimal kernel using higher-order
finite differences (Sec. 4.3). Once trained, any sparsity-optimized
convolution kernel can be applied to 𝑓 efficiently, without requiring
additional input parameters. Our method supports spatially-varying
convolutions in the form of continuously transformed kernels, lever-
aging the continuous nature of the representation. Fig. 3 gives an
overview of our approach.

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

206:4 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

Sparsity-optimized
PolynomialsConvolution Kernel Dirac Deltas

Repeated
Differentiation

Optimization Training with
Repeated Integration

Original Signal Neural Integral Field Neural Field Convolution

a) b) c)

Fig. 3. Overview of our approach. a) Given an arbitrary convolution kernel, we optimize for its piecewise polynomial approximation, which under repeated
differentiation yields a sparse set of Dirac deltas. b) Given an original signal, we train a neural field that captures the repeated integral of the signal. c)
The continuous convolution of the original signal and the convolution kernel is obtained by a discrete convolution of the sparse Dirac deltas from a) and
corresponding sparse samples of the neural integral field from b).

4.1 Convolution by Repeated Differentiation
Our approach requires two conceptual ingredients: First, the convo-
lution operation in Eq. 1 reduces to a discrete sum if 𝑔 consists
of only Dirac deltas (Sec. 4.1.1). Second, the right-hand side of
Eq. 1 can be transformed using repeated differentiation and in-
tegration (Sec. 4.1.2). Putting both ingredients together leads to an
efficient discrete formulation of the continuous convolution oper-
ation (Sec. 4.1.3) involving a repeated integral field and a sparse
differential kernel consisting of Dirac deltas [Heckbert 1986].

4.1.1 Dirac Kernels. As our first ingredient, consider a kernel 𝑔 that
is non-zero only at a small set of𝑚 locations inR𝑑 , i.e., 𝑔 is

𝑔(x) =
𝑚∑︁
𝑖=1

𝛿 (x − x(𝑖))𝑤 (𝑖) , (3)

a sum of Dirac deltas 𝛿 , where x(𝑖) ∈ R𝑑 denotes the location and
𝑤 (𝑖) ∈ R the magnitude1 of the 𝑖’th impulse. Then, by the sifting
property of Dirac deltas, Eq. 1 simplifies to

(𝑓 ∗ 𝑔) (x) =
𝑚∑︁
𝑖=1

𝑓 (x − x(𝑖))𝑤 (𝑖) , (4)

i.e., we have reduced the computation from a continuous integral
to a discrete sum – an efficient operation if𝑚 is small.

4.1.2 Convolutions with Differentiation and Integration. Our second
ingredient is the following identity:

𝑓 ∗ 𝑔 =

(∫
𝑓 dx𝑖

)
∗

(
𝜕

𝜕x𝑖
𝑔

)
,

i.e., in order to convolve 𝑓 with 𝑔 we might as well convolve the
antiderivative of 𝑓 with the corresponding derivative of 𝑔. Applying
this principle repeatedly yields [Heckbert 1986; Perlin 1984]

𝑓 ∗ 𝑔 =

(∫ 𝑛

. . .

∫ 𝑛

𝑓 dx𝑛1 . . . dx
𝑛
𝑑

)
︸ ︷︷ ︸

𝑓 𝑛

∗
(

𝜕𝑑𝑛

𝜕x𝑛1 . . . 𝜕x
𝑛
𝑑

𝑔

)
︸ ︷︷ ︸

𝑔−𝑛

. (5)

Here, we sequentially differentiate 𝑔 𝑛 times with respect to each of
its dimensions. We denote this multidimensional repeated derivative
as 𝑔−𝑛 . For equality in Eq. 5 to hold, this pattern is mirrored for 𝑓 ,
replacing differentiations with antiderivatives, where superscripts
𝑛 denote repeated integrations along the individual dimensions. We
1Technically, 𝛿 (0) = ∞. But since a Dirac delta integrates to one, in the context of
continuous convolutions, we refer to 𝑤 (𝑖) as “magnitudes” nevertheless.

denote the repeated multidimensional antiderivative of 𝑓 as 𝑓 𝑛 . We
refer to Heckbert [1986] for a proof of Eq. 5. Notice that input and
output dimensions of 𝑓 and 𝑔 do not change after integration and
differentiation.

4.1.3 Efficient Neural Field Convolutions. The central idea of our
approach is to combine both ingredients presented above for the
case of piecewise polynomial kernels 𝑔. Concretely, we observe
that piecewise polynomial functions turn into a sparse set of Dirac
deltas after repeated differentiation [Heckbert 1986] (Fig. 4), i.e., 𝑔−𝑛
reduces to the form of Eq. 3. This implies that Eq. 4 can be used to
perform a convolution with this kernel. Combining Eq. 4 and Eq. 5,
our final convolution operation reads

(𝑓 ∗ 𝑔) (x) =
𝑚∑︁
𝑖=1

𝑓 𝑛 (x − x(𝑖))𝑤 (𝑖) . (6)

Notice that this formulation requires only 𝑚 evaluations of the
repeated integral of 𝑓 at locations dictated by the Dirac deltas of
the differentiated kernel to yield the same result as the equivalent
continuous convolution in Eq. 1.
The number of integrations and differentiations 𝑛 directly de-

pends on the desired order of the kernel polynomials, as detailed
in Sec. 4.2. A disk-shaped kernel simulating thin-lens depth of field
in an image can be approximated well using a piecewise constant
function (corresponds to 𝑛 = 1), while a Gaussian might require a
piecewise quadratic approximation (corresponds to 𝑛 = 3) to yield
high-quality results with a low number of Dirac deltas.
Notice that our approach allows us to realize spatially-varying

convolutions as well: The evaluation of Eq. 6 is independent for
different evaluation locations x. Therefore, we can make the choice
of the convolution kernel 𝑔 a function of x itself. In Sec. 4.2.2 we
give details on how to obtain continuous parametric kernel families.
In summary, our method requires two components: (i) A piece-

wise polynomial kernel that results in a sparse set of Dirac deltas
after repeated differentiation, and (ii) an efficient way to obtain and
evaluate the repeated multidimensional integral of a continuous
signal. These are detailed in Sec. 4.2 and Sec. 4.3, respectively.

4.2 Sparse Differential Kernels
Our approach requires a kernel 𝑔 which, after repeated differentia-
tion, results in a sparse set of Dirac deltas with positions x(𝑖) and

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

Neural Field Convolutions by Repeated Differentiation • 206:5

Fig. 4. Repeated differentiation of a bilinear patch (𝑑 = 𝑛 = 2). After the first
differentiation, the patch exhibits linear variation only along the vertical
dimension. After subsequent differentiations, we obtain a constant patch,
two vertical lines, and, finally, four Dirac deltas.

magnitudes𝑤 (𝑖) :

𝑔−𝑛 (x) =
𝑚∑︁
𝑖=1

𝛿 (x − x(𝑖))𝑤 (𝑖) . (7)

This property is satisfied for piecewise polynomial kernels of degree
𝑛 − 1, which reduce to Dirac deltas positioned at the junctions be-
tween the segments after𝑛 differentiations per dimension [Heckbert
1986] (Fig. 4). Thus, given a kernel 𝑔, we seek to find its optimal
piecewise polynomial approximation 𝑔 adhering to a user-specified
budget of𝑚 Dirac deltas (Fig. 5).

Kernel 2nd Derivative

Fig. 5. Kernel representation in 1D for the case 𝑛 = 2, i.e., a piecewise linear
function. Top row : The original continuous kernel 𝑔 has a continuous second
derivative. Bottom row : We approximate 𝑔 with a piecewise linear function
𝑔, which reduces to a sparse set of Dirac deltas in its second derivative.

To parameterize 𝑔, we utilize the linear structure of Eq. 7 and the
linearity of differentiation: We consider the 𝑑-dimensional 𝑛-fold
repeated antiderivative of the Dirac delta function

𝛿𝑛 (x) =

∏𝑑
𝑖=1 x

𝑛−1
𝑖

(𝑛−1)𝑑 ! min𝑖 x𝑖 ≥ 0

0 else

which is referred to as the 𝑛’th-order ramp (Fig. 6). We now write
our polynomial kernel 𝑔 as a linear combination of shifted ramps:

𝑔(x) =
𝑚∑︁
𝑖=1

𝛿𝑛 (x − x(𝑖))𝑤 (𝑖) . (8)

Please note that Eq. 7 is the 𝑛’th derivative of Eq. 8 by construction.
Thus, we have established a parameterization of a𝐶𝑛−2-continuous
piecewise polynomial kernel 𝑔, from which we can directly read off
Dirac delta positions and magnitudes.
We now optimize the following objective:

min
x(𝑖) ,𝑤 (𝑖)

[
Ex∈R𝑑

[
∥𝑔(x) − 𝑔(x)∥22

]
+ 𝜆

����� 𝑚∑︁
𝑖=1

𝑤 (𝑖)
�����
]
. (9)

Fig. 6. 1D ramps of different orders (redrawn from Heckbert [1986]). Each
ramp is the antiderivative of its predecessor.

The first term encourages the solution to be close to the reference
kernel on the entire domain. The second term steers the optimization
to prefer solutions where the Dirac magnitudes sum to zero, which
effectively enforces the kernel to be compact.

4.2.1 Optimization. We initialize the ramp positions x(𝑖) on a reg-
ular grid and their magnitudes 𝑤 (𝑖) to zero. We use the Adam
[Kingma and Ba 2015] optimizer with standard parameters and set
𝜆 = 0.1 in all our experiments. In each iteration, we uniformly
sample the continuous kernel domain. We observe that when the
provided ramp budget𝑚 is too high, the magnitudes of individual
ramps will approach zero, further increasing sparsity. We capitalize
on this fact by monitoring ramp magnitudes in regular intervals.
If an absolute magnitude falls below a small threshold, we remove
the ramp from the mixture and continue optimizing. Separable ker-
nels can be obtained by optimizing the respective 1D filters and
combining them with an outer product. We provide timings of the
optimization for different kernels in Supplemental Sec. 3.
We note the strong connection to spline-based approximations

of functions [Ahlberg et al. 2016]. In the low-order regime under
the continuity requirements we operate on, we find that our practi-
cal stochastic gradient descent-based approach yields high-quality
results without the need for more elaborate techniques.

4.2.2 Kernel Transformations. Many applications of convolutions
require kernels of different sizes and shapes, in particular in the case
of spatially-varying convolutions. For example, foveated imagery or
the simulation of depth-of-field require continuous and fine-grained
control over the size of a blur kernel. Our approach supports on-the-
fly kernel transformations without the need to sample and optimize
entire parametric families of kernels by leveraging the continuous
nature of the kernel and the signal.
Concretely, to continuously shift and (anisotropically) scale an

optimized kernel 𝑔 using a matrix T, we simply apply T to the
Dirac delta positions, i.e., x(𝑖)T = Tx(𝑖) . The updated Dirac delta

magnitudes are given by𝑤 (𝑖)
T = 𝑤 (𝑖)

det(T)𝑛 . Thus, we need to run the
optimization for a kernel type only once in a canonical position
and size, and obtain continuously transformed kernel instances at
virtually no computational cost. Notice that, as a useful consequence,
our approach enables continuous scale-space analysis [Lindeberg
2013; Witkin 1987], as illustrated in supplemental.

4.3 Neural Repeated Integral Field
To compute Eq. 6, we need to evaluate 𝑓 𝑛 , the 𝑛-th antiderivative of
𝑓 as the second ingredient. We choose to implement 𝑓 𝑛 as a neural
field 𝑓 𝑛 . Ideally, it would hold that 𝑓 𝑛 = 𝑓 𝑛 . This might be difficult
to achieve without knowing an analytic form of the antiderivative.
We could try Monte Carlo-estimating the antiderivative from the

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

206:6 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

d) Eq. 11 (Ours)

b) Monte Carlo

c) Eq. 10

a) Signal

1
10

100
1000
Ref.

1
10

100
1000
Ref.

1
10

100
1000
Ref.

Fig. 7. (a): Given a signal 𝑓 , we are interested in finding its antiderivative 𝑓 1.
(b): A scalable way to obtain the antiderivative is Monte Carlo estimation
E𝝉≥0 [𝑓 (x − 𝝉)]. Increasing the number of samples (different colors) gets
us closer to the true solution (black). (c): Using the estimates from b) to
supervise the training of a network 𝑓 1 as per Eq. 10 requires many sam-
ples, while the regressed antiderivative remains blurry. (d): In contrast, our
approach only requires a convolution with a small kernel (Eq. 11) to yield
high-quality results, including sharp features, with only a low number of
Monte Carlo samples. For each method, a pink bar marks the region that
needs to be considered for estimating/training the antiderivative value at
location x0. The different graphs in b)-d) use different constants of integra-
tion for improved visualization.

signal, leading to a loss like

Ex∈𝑑in

[𝑓 𝑛 (x) − E𝝉≥0 [𝑓 (x − 𝝉)]
] . (10)

The inner expectation would sum over the entire half-domain 𝝉 ≥ 0,
leading to a high variance and a low-quality 𝑓 𝑛 . An example of this
is shown in Fig. 7, where the input is a 1D HDR signal (Fig. 7a).
To estimate the antiderivative at x0, we have to sample the entire
pink area in Fig. 7b, resulting in significant variance, even if the
sample count increases. When using these estimates to train 𝑓 𝑛 , this
variance leads to a low-quality, blurry regression (Fig. 7c), as no loss
function is known that properly captures the statistical properties
of Monte Carlo noise [Lehtinen et al. 2018].
For our purpose, convolution, what really needs to hold, is that

𝑓 𝑛 ∗ℎ−𝑛𝑛 = 𝑓 ∗ℎ𝑛 , for any piecewise polynomial kernel ℎ𝑛 of degree
𝑛 − 1. The resulting loss to achieve this is

Ex∈𝑑in

[𝑚∑︁
𝑖=1

𝑓 𝑛 (x − x(𝑖))𝑤 (𝑖) − E𝝉 ∈supp(ℎ𝑛) [𝑓 (x − 𝝉)ℎ𝑛 (𝝉)]

]
,

(11)

where x(𝑖) and𝑤 (𝑖) are the Dirac delta positions and magnitudes
of ℎ−𝑛𝑛 . The first term is due to Eq. 6 and the second term is a Monte
Carlo estimate of the convolved signal.

For efficient training and a high-quality antiderivative, it is crucial
for ℎ𝑛 to be very compact: First, the right part of Eq. 11 becomes

22

PS
N

R

Kernel Size (Relative to Ours)

Reference

SS
IM

20

18

16
14

1 2.5 4

.6

.7

.5

.8

Fig. 8. Antiderivative quality as a function of kernel size used in Eq. 11. We
measure and display quality by repeated automatic differentiation of the
learned antiderivatives. We see that our minimal kernel is optimal in terms
of quality. Smaller kernels lead to instabilities and larger ones to blur.

a tame interval, significantly reducing variance and thus enabling
training with a low number ofMonte Carlo samples (Fig. 7d). Second,
it prevents 𝑓 𝑛 from “cheating” by not learning the antiderivative
of the signal but the antiderivative of a convolved signal. However,
we cannot reduce the support of ℎ𝑛 arbitrarily, as the left part of
Eq. 11 tends to result in instabilities, as the distances between the
x(𝑖) shrink. Fig. 8 illustrates the inherent trade-off of this situation:
There exists a sweet spot for the kernel size, producing the highest-
quality antiderivatives. Smaller kernels lead to training instabilities,
larger kernels to blur.We refer to the optimal solution as theminimal
kernel.
While we could use any filter shape as minimal kernel ℎ𝑛 , we

choose the 𝑛-fold convolution of a box with itself (Fig. 9). This
has the advantage that the left part of the loss Eq. 11 becomes a
sum over only𝑚 = (𝑛 + 1)𝑑 elements that is efficient to compute,
corresponding to higher-order finite differences.

Fig. 9. Minimal piecewise polynomial kernels of different degrees (top row)
and their corresponding Dirac deltas (bottom row).

4.4 Implementation Details
All source code is accessible via https://neural-fields-conv.mpi-
inf.mpg.de. We have implemented our prototype within the PyTorch
[Paszke et al. 2017] environment. Our integral fields are realized us-
ing MLPs, where exact architectures vary slightly depending on the
modality to be represented, as detailed in Sec. 2 of the supplemental
document.
For training our repeated integral field, we again use the Adam

[Kingma and Ba 2015] optimizer with standard parameters. We
handle boundaries by mirror-padding the training signal. Consid-
ering a unit domain, we train with a size of 0.025 for the minimal
kernel ℎ𝑛 until convergence, followed by a fine-tuning on a ker-
nel of size 0.0125. Empirically, we found this size to produce the
highest-quality antiderivatives (Fig. 8). As the kernel size cannot
be further decreased, our repeated integral field 𝑓 𝑛 is a slightly

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

https://neural-fields-conv.mpi-inf.mpg.de
https://neural-fields-conv.mpi-inf.mpg.de

Neural Field Convolutions by Repeated Differentiation • 206:7

Table 1. Settings for all applications.

Input Kernel

Modality 𝑑in 𝑑out Format Shape SVa 𝑑 Order 𝑚 b

Images 2 3 Grid Gauss ✕ 2 Linear 169
2 3 Grid DoG ✕ 1 Linear 13
2 3 Grid Circle ✓ 2 Const. 141

Bilat. Images 3 3 Grid Gauss ✓ 3 Const. 343
Video 3 3 Grid Tent ✕ 1 Linear 3
Geometry 3 1 SDF Box ✓ 3 Const. 8
Animation 1 69 Paths Gauss ✕ 1 Linear 13
Audio 1 1 Wave Box ✕ 1 Const. 2
a Experiments with spatially-varying kernels.
b The number of Diracs automatically adapts to the kernel as described in Sec. 4.2.1.

low-pass filtered version of 𝑓 𝑛 , resulting in a lower limit of filter
sizes our convolutions can faithfully compute. Fortunately, these
small filters are highly amenable to efficient Monte Carlo estimation.
Thus, at test time, whenever a kernel size falls below the threshold,
we Monte-Carlo-estimate the convolution.

Convolution per Eq. 6 can be efficiently implemented as an aug-
mented neural field based on 𝑓 𝑛 , by prepending positional offsets
x(𝑖) and appending a linear layer containing𝑤 (𝑖) .

5 APPLICATIONS
To demonstrate the generality and efficiency of our approach, we
consider five signal modalities: images, videos, geometry, character
animations, and audio. An overview of settings for all modalities
is given in Tab. 1. References are computed using Monte Carlo
estimation as per Eq. 2 until convergence. Further, we consider the
following baselines:

INSP [Xu et al. 2022]. Similar to our approach, INSP relies on
higher-order derivatives but uses them in a point-wise fashion to
reason about local neighborhoods, reminiscent of a Taylor expan-
sion. This method has to be trained for each convolution kernel
separately, while our integral fields can be used with any kernel
of a fixed polynomial degree. We follow their original implementa-
tion and provide all second-order partial derivatives. We found that
providing more derivatives did not markedly improve their results.

BACON [Lindell et al. 2022] and PNF [Yang et al. 2022]. While
our method supports arbitrary filters at test time, both BACON
and PNF are limited to a discrete cascade of 𝑘 specific and fixed
intermediate network outputs with different frequency contents,
i.e., a set of pre-filtered versions of the signal. To compare ours to
BACON and PNF, we approximate the convolution with an arbitrary
filter as a linear combination of their intermediate outputs: Given
the reference result, we optimize for a set of weights that when
multiplied with corresponding intermediate outputs is closest to the
target. Notice that this procedure requires a reference, while ours
does not. For PNF, we observed that finer-scale intermediate outputs
are not zero-mean. We compensate for this by subtracting the mean
from all intermediate outputs and adding the sum of these means to

Table 2. Image quality comparison for Gaussian kernels.

𝜎 = 0.04 𝜎 = 0.05 𝜎 = 0.07

PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

INSP 27.2 0.305 0.774 25.8 0.398 0.713 23.9 0.535 0.622
BACON 35.2 0.079 0.946 33.6 0.091 0.935 30.6 0.139 0.904
PNF 34.5 0.072 0.938 33.9 0.086 0.935 32.0 0.132 0.922
Ours 28.6 0.076 0.934 31.0 0.042 0.963 34.1 0.032 0.98

the coarsest output. This way, finer levels only add higher-frequency
details to the solution, but no global color shifts.

σ=0.05 σ=0.1 σ=0.2 σ=0.5Input

Fig. 10. Gaussian 2D image blur of the input signal, with increasing band-
width. It can be seen how our approach works also for large kernels.

Large SmallDerivative of Gaussian Input Signal

Fig. 11. Derivative-of-Gaussian filtering 2D result. Note, that our approach
supports such non-convex filters, producing signed results.

5.1 Images
In this application, we consider (high dynamic range) RGB images
𝑓 ∈ R2 → R3 as signals.

Linear filtering. We show results for a Gaussian image filter in
Fig. 10 and a derivative-of-Gaussian filter in Fig. 11. More results can
be found in supplemental. Table 2 and Fig. 12 evaluate image quality
on a set of 50 images. Since no other method is able to produce
competitive results for large kernels, to facilitate an insightful anal-
ysis, we limit our numerical evaluation to the small-kernel regime.
We see that for very small kernels, BACON and PNF tend to pro-
duce higher-quality results, while we significantly outperform all
methods as the kernel size increases.

Non-linear filtering. Our approach can also be used for non-linear
filtering, such as bilateral filtering [Tomasi and Manduchi 1998]. We
implement this by optimizing for the repeated integral field of a
bilateral grid [Chen et al. 2007], which augments a 2D image with an

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

206:8 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

OursINSP ReferenceBACON PNF

Fig. 12. A qualitative comparison between INSP [Xu et al. 2022], BACON [Lindell et al. 2022], PNF [Yang et al. 2022], and our approach using a Gaussian
kernel. INSP approach does hardly perform any filtering, when the kernel is larger, such as our approach supports, but suffers from noise. BACON fairs better,
but shows ringing at high-contrast edges such as the house against the sky, while PNF also struggles to produce low-pass filtering results.

additional signal dimension, reducing filtering to a linear operation
in this extended space. We see in Fig. 13 that our approach is able
to faithfully produce edge-aware filtering results.

Spatially-varying filtering. is demonstrated in Fig. 1 and Fig. 14.
In these cases, the strength of a circular blur filter is determined by
a spatially-varying auxiliary signal in the form of a depth buffer.

Fig. 13. Non-linear (bilateral) filtering of an input image (left) by our method
(middle) and the reference (right).

Fig. 14. Depth-of-field applied to a synthetic image with a depth map.

5.2 Videos
Videos are fields 𝑓 ∈ R3 → R3, mapping 2D location and time to
RGB color. In Fig. 15, we apply smoothing with a tent filter along
the time dimension to create appealing non-linear motion blur. We
refer to our supplemental material for a more extensive evaluation.

Input signal Motion blurOurs Reference

Ti
m

e
Ti

m
e

Space

Space

Fig. 15. We apply our approach to a 3D space-time HDR field (video, seen
left) to filter along the time axis with a tent kernel. The resulting motion
blur (middle) compares favorably to the reference.

Table 3. Quality comparisons of filtered SDFs using 3D box kernels.
𝜎 = 0.05 𝜎 = 0.15

MSE Cham. IoU MSE Cham. IoU

INSP 292.50000 98.07 0.90 281.30000 350.50 0.73
Bacon 16.43540 480.08 0.66 26.68353 818.17 0.48
Ours 0.00109 8.25 0.99 0.00026 6.10 0.99

5.3 3D Geometry
Surfaces can be modeled using signed distance functions (SDFs)
𝑓 ∈ R3 → R. We apply 3D box filters with different side lengths 𝜎
to an SDF, resulting in a progressively smoothed surface. We again
compare our approach to INSP and BACON (no code is available to
apply PNF to the 3D case) in Fig. 16 and Table 3, where numerical
evaluations are averaged across the three 3D objects studied in INSP.
As metrics, we consider the mean squared error (MSE) of the SDF,
the intersection over union (IoU), as well as the Chamfer distance of
the reconstructed surface. We observe that we outperform INSP and
BACON across all kernel sizes and metrics. More qualitative results
can be found in supplemental. Additionally, Fig. 17 demonstrates a
spatially-varying SDF filtering result.

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

Neural Field Convolutions by Repeated Differentiation • 206:9

Fig. 16. Two geometric shapes represented by an SDF (left) are filtered with a box kernel (𝜎 = 0.05). While INSP, in the second column, suffers from noise, and
BACON, in the third column, cannot reproduce larger-scale filtering, our result is close to the MC reference.

High σ Low σ High σ Low σ

Fig. 17. Spatially-varying blur from two views computed using our method.

5.4 Animation
We consider the task of filtering a neural field representation of
a motion-capture sequence, which contains a significant amount
of noise. Our test sequence consists of 23 3D joint position paths
over time, resulting in a field 𝑓 ∈ R → R69. In Fig. 18 and the
supplemental, we show the result of applying a Gaussian filter to
the noisy animation data, resulting in smooth motion trajectories.

Raw Filtered

Fig. 18. A noisymotion-capture sequence (left) is filtered using our approach
to yield smooth motion trajectories (right).

5.5 Audio
Finally, we apply our framework to the task of filtering an audio
signal 𝑓 ∈ R→ R, available for listening in the supplemental.

6 ANALYSIS
Here, we analyze further individual aspects of our approach.

Repeated Integral Fields. We seek to gain more insights into our
learned integral fields. To this end, we consider the 2D image case

(Sec. 5.1) both for single and double integrals per dimension, as re-
quired for convolutions with piecewise constant and linear kernels,
respectively. In Tab. 4 we compare our antiderivatives against Au-
toInt [Lindell et al. 2021]. As the original implementation does not
support integration with respect to more than one variable, we re-
implemented this baseline using the functorch library for repeated
differentiation. We compute the mean squared error (MSE) between
the original signal and the obtained integral fields after repeated
automatic differentiation, averaged over three images. We do not
compare integrals directly, as their absolute values are dominated
by higher-order constants of integration. Further, we measure the
time required to train the fields, as well as the size of the network
during training in terms of the number of nodes. As there is no
straightforward procedure to count the number of nodes of the
repeated-derivative graphs, we use the official AutoInt implemen-
tation for this particular calculation and differentiate two and four
times with respect to one input variable, to get a good approximation
of the two cases studied. Corresponding graphs are visualized in
Fig. 19.

We see that our approach produces higher-quality antiderivatives
than AutoInt while taking significantly less time to train, in par-
ticular for higher-order integrals. Further, our network size during
training is independent of the integration order, while the com-
putational graphs of AutoInt grow quickly due to the symbolic
differentiation required.
We are further interested in how the quality of the learned anti-

derivative affects convolution quality. For this analysis, we consider
antiderivative MSE as above (lower is better), and convolution qual-
ity in terms of PSNR (higher is better). We find the two measures
highly correlated: Pearson’s R = -0.98.
In Sec. 3 of the supplemental document, we study the accuracy

of our optimized kernels.

Comparison to equal-effort MC. While we use converged Monte
Carlo estimates of convolutions (Eq. 2) as references in our exper-
iments, we are also interested in the quality of such an estimate
when reducing the number of samples to the number of Dirac deltas
we use in our method, providing an equal-effort comparison. In
Fig. 20 we show an illustration of this analysis. We observe that MC
suffers from extensive noise, while our solution is smooth.

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

206:10 • Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler

a) b) c)

Fig. 19. Comparison of different graph sizes. a) Our method retains a small graph independent of integration order. b) The AutoInt graph after two
differentiations (first Int. Op. in Tab. 4). c) The AutoInt graph after four differentiations (second Int. Op. in Tab. 4). Same colors represent same operations.

Table 4. Integral field evaluation.

Int. Op. Method MSE (×10−3) Time Graph Size∫∫ AutoInt 6.83 1.3h 339
Ours 6.48 1.1h 11∫ 2∫ 2 AutoInt 7.71 14.7h 15,407
Ours 7.28 1.2h 11

Monte Carlo Ours
2D 3D 2D 3D

Fig. 20. Ours vs. an equal-effort Monte Carlo estimate of a convolution.

7 DISCUSSION AND CONCLUSION
We have presented a novel approach to perform general, spatially-
varying convolutions in continuous signals. Capitalizing on the fact
that piecewise polynomial kernels become sparse after repeated
differentiation, we only require a small number of integral-network
evaluations to perform large-scale continuous convolutions.
Since our work is one of the first steps in this direction, there is

ample opportunity for future work. Currently, one of our biggest
limitations is that we need access to the entire signal to train our
repeated integral field. This prevents the treatment of signals that
are only partially observed through a differentiable forward map,
e.g., as prominently is the case for neural radiance fields [Mildenhall
et al. 2020].

Our integral fields are trained using generalized finite differences,
which we found to become unstable for small kernels (Sec. 4.4).
This naturally imposes an upper frequency limit on the learned
antiderivatives. Fortunately, this becomes noticeable only for small
kernels, in which case we resort to Monte Carlo sampling of the
convolution, which is efficient in this condition.
Our assumption is that kernels to be used for spatially-varying

filtering are (anisotropically) scaled versions of a reference kernel,
which, arguably, covers a broad range of applications. We do not
have a scalable solution for situations that violate this assumption –
except for special problems such as bilateral filtering. One solution
could be blending between the Dirac deltas of a set of pre-computed

reference kernels. Further, kernel transformations are limited to axis-
aligned operations. We envision that re-parameterizations leverag-
ing the continuous nature of the representation might be able to lift
this restriction.
In this work, we do not claim superiority over operating on a

grid, if enough space is available to represent the signal that way.
But if one needs to use a neural field, e.g. for extreme compression,
continuous queries, or other advantages (Sec. 1), an approach such as
ours is needed. We hope to inspire future work on signal processing
in continuous neural representations to help them reach their full
potential.

REFERENCES
J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. 2016. The Theory

of Splines and Their Applications. Vol. 38. Elsevier.
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for
Anti-Aliasing Neural Radiance Fields. ICCV (2021).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

E Oran Brigham. 1988. The fast Fourier transform and its applications. Prentice-Hall,
Inc.

Jiawen Chen, Sylvain Paris, and Frédo Durand. 2007. Real-time edge-aware image
processing with the bilateral grid. ACM Trans. Graph. 26, 3 (2007), 1–9.

Franklin C Crow. 1984. Summed-area tables for texture mapping. In SIGGRAPH. 207–
212.

Yilun Du, M. Katherine Collins, B. Joshua Tenenbaum, and Vincent Sitzmann. 2021.
Learning Signal-Agnostic Manifolds of Neural Fields. In NeurIPS.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet.
2021. Coin: Compression with implicit neural representations. In ICLR (Neural
Compression Workshop).

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. 2022a. From data to functa: Your data point is a function and you can
treat it like one, Vol. 162. PMLR, 5694–5725.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. 2022b. Generative Models as
Distributions of Functions, Vol. 151. PMLR, 2989–3015.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. 2023. Hyper-
diffusion: Generating implicit neural fields with weight-space diffusion. In ICCV.

Zeev Farbman, Raanan Fattal, and Dani Lischinski. 2011. Convolution pyramids. ACM
Trans. Graph. 30, 6 (2011), 1–8.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. 2020. Multiplicative
filter networks. In ICLR.

Alain Fournier and Eugene Fiume. 1988. Constant-time filtering with space-variant
kernels. ACM Trans. Graph. 22, 4 (1988), 229–238.

William T Freeman, Edward H Adelson, et al. 1991. The design and use of steerable
filters. IEEE TPAMI 13, 9 (1991), 891–906.

Paul S Heckbert. 1986. Filtering by repeated integration. ACM Trans. Graph. 20, 4
(1986), 315–321.

PedroHermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte carlo convolution for learning on non-uniformly sampled point clouds.
ACM Trans. Graph. 37, 6 (2018), 1–12.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2021.
Sape: Spatially-adaptive progressive encoding for neural optimization. NeurIPS 34
(2021), 8820–8832.

Brian K. S. Isaac-Medina, Chris G. Willcocks, and Toby P. Breckon. 2023. Exact-NeRF:
An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields.
CVPR (2023).

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Trans. Graph. 34, 4
(2015), 1–13.

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

Neural Field Convolutions by Repeated Differentiation • 206:11

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR.

Georgios Kopanas, Thomas Leimkühler, Gilles Rainer, Clément Jambon, and George
Drettakis. 2022. Neural Point Catacaustics for Novel-View Synthesis of Reflections.
ACM Trans. Graph. 41, 6 (2022), 1–15.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In ICML. 2965–2974.

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2018. Laplacian Kernel
Splatting for Efficient Depth-of-field and Motion Blur Synthesis or Reconstruction.
ACM Trans. Graph. 37, 4 (2018), 1–11.

Tony Lindeberg. 2013. Scale-space theory in computer vision. Vol. 256. Springer Science
& Business Media.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. 2021. Autoint: Automatic
integration for fast neural volume rendering. In CVPR. 14556–14565.

David B Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. Bacon:
Band-limited coordinate networks for multiscale scene representation. In CVPR.
16252–16262.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields
for view synthesis. In ECCV. 405–421.

ThomasW. Mitchel, Benedict Brown, David Koller, TimWeyrich, Szymon Rusinkiewicz,
and Michael Kazhdan. 2020. Efficient Spatially Adaptive Convolution and Correlation.
Technical Report 2006.13188. arXiv preprint.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4 (2022), 1–15.

Harald Niederreiter. 1992. Low-discrepancy point sets obtained by digital constructions
over finite fields. Czechoslovak Mathematical Journal 42, 1 (1992), 143–166.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In CVPR. 165–174.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable neural
radiance fields. In ICCV. 5865–5874.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in pytorch. (2017).

Kenneth Perlin. 1984. Personal communication with Paul Heckbert, mentioned in
Heckbert [1986].

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries
on General Neural Implicit Surfaces via Range Analysis. ACM Trans. Graph. 41, 4
(2022), 1–16.

Assaf Shocher, Ben Feinstein, Niv Haim, and Michal Irani. 2020. From discrete to
continuous convolution layers. arXiv preprint arXiv:2006.11120 (2020).

Patrice Simard, Léon Bottou, Patrick Haffner, and Yann LeCun. 1998. Boxlets: a fast
convolution algorithm for signal processing and neural networks. NeurIPS 11 (1998).

Gurprit Singh, Cengiz Öztireli, Abdalla GM Ahmed, David Coeurjolly, Kartic Subr,
Oliver Deussen, Victor Ostromoukhov, Ravi Ramamoorthi, and Wojciech Jarosz.
2019. Analysis of sample correlations for Monte Carlo rendering. In Comp. Graph.
Forum, Vol. 38. Wiley Online Library, 473–491.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit neural representations with periodic activation functions.
NeurIPS 33 (2020), 7462–7473.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Representa-
tion Networks: Continuous 3D-Structure-Aware Neural Scene Representations. In
NeurIPS.

Ilya Meerovich Sobol. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802.

Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel ab-
straction of development. Genetic programming and evolvable machines 8 (2007),
131–162.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and RenNg. 2020. Fourier
features let networks learn high frequency functions in low dimensional domains.
NeurIPS 33 (2020), 7537–7547.

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, W Yifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. 2022. Advances in neural rendering. Comp. Graph. Forum 41, 2 (2022), 703–735.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images.
In ICCV. 839–846.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lass-
ner, and Christian Theobalt. 2021. Non-rigid neural radiance fields: Reconstruction
and novel view synthesis of a dynamic scene from monocular video. In ICCV. 12959–
12970.

Cristina Vasconcelos, Kevin Swersky, Mark Matthews, Milad Hashemi, Cengiz Oztireli,
and Andrea Tagliasacchi. 2023. CUF: Continuous Upsampling Filters. In CVPR.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable signed distance
function rendering. ACM Trans. Graph. 41, 4 (2022), 1–18.

Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted cascade of
simple features. In CVPR, Vol. 1. I–I.

ShenlongWang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. 2018.
Deep parametric continuous convolutional neural networks. In CVPR. 2589–2597.

Yinhuai Wang, Shuzhou Yang, Yujie Hu, and Jian Zhang. 2022. NeRFocus: Neural
Radiance Field for 3D Synthetic Defocus. arXiv preprint arXiv:2203.05189 (2022).

Lance Williams. 1983. Pyramidal parametrics. In SIGGRAPH, Vol. 17. 1–11.
Andrew P Witkin. 1987. Scale-space filtering. In Readings in Computer Vision. 329–332.
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. Comp. Graph. Forum 41, 2 (2022),
641–676.

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. 2022. Signal
Processing for Implicit Neural Representations. In NeurIPS.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry
processing with neural fields. NeurIPS 34 (2021), 22483–22497.

Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas
Funkhouser, Bharath Hariharan, and Serge Belongie. 2022. Polynomial neural fields
for subband decomposition and manipulation. NeuRIPS 35 (2022), 4401–4415.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
NeRF-editing: geometry editing of neural radiance fields. In ICCV. 18353–18364.

Xian-Da Zhang. 2022. Modern signal processing. In Modern Signal Processing. De
Gruyter.

ACM Trans. Graph., Vol. 42, No. 6, Article 206. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 Convolution by Repeated Differentiation
	4.2 Sparse Differential Kernels
	4.3 Neural Repeated Integral Field
	4.4 Implementation Details

	5 Applications
	5.1 Images
	5.2 Videos
	5.3 3D Geometry
	5.4 Animation
	5.5 Audio

	6 Analysis
	7 Discussion and Conclusion
	References

