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Abstract—Within the research project LOBSTER, a system for 

analyzing the behavior of escaping groups of people in crisis 

situations within public buildings to support first responders is 

developed. The smartphone-based indoor localization of the 

escaping persons is performed by using positioning techniques 

like WLAN fingerprinting and dead reckoning realized with 

MEMS-IMU. Hereby, WLAN fingerprinting is analyzed 

especially in areas of few access points and the IMU-based dead 

reckoning is accomplished using step detection and heading 

estimation. The data of all sensors are fused in combination with 

building layouts using different Bayes filters. The behavior of the 

Bayes filters is investigated especially within indoor 

environments. The restrictions of the Kalman filter are shown as 

well as the advantages of a Particle filter using building plans. 

Keywords - Bayes filters, pedestrian navigation, smartphone 

sensors, first responder, MEMS-IMU 

I.  INTRODUCTION 

The focus of the project LOBSTER is the development of a 
localization and monitoring system which investigates the 
escape behavior of people in crisis situations within public 
buildings (e.g., hospitals, shopping centers, airports, 
universities, etc.). The information about the escape way and 
the activity of the affected persons is used to support first 
responders.  

The localization as well as the activity recognition 
(walking, standing) of the escaping persons is realized by the 
positioning technologies GNSS, WLAN and Inertial 
Measurement Units (IMU) of common smartphones. In case of 
distress, the determined positions are transmitted to the 
Location-Based Service (LBS) center, where the monitoring of 
the casualties and the coordination of the rescue units take 
place. In this center, these data are used in combination with 
building layouts and mathematical filter technologies (Particle 
filter and Kalman filter) to estimate the persons’ positions and 
their predicted escape ways. This information supports the first 
responders in establishing a significantly improved 
coordination and resource scheduling of the rescue teams. The 
first responders are equipped with a device which is used on 
the one hand for the communication with the LBS center to get 
all the necessary information about the casualties and on the 
other hand to perform a self-localization in case of a rescue 
operation, see Fig. 1. The positions of the first responders are 

simultaneously visualized on their mobile devices and in the 
LBS center to facilitate the central coordination of the rescue 
operation. 

 

Figure 1. The LBS center of the project LOBSTER monitors the casualties by 
evaluating their position and activity data and assists the first responders by 

transmitting the operation-essential data.  

First responders represent rescue forces from several units 
like fire fighters or rescue units and are equipped with specially 
tailored mobile devices. These mobile devices enable multi-
sensor positioning based on GNSS, WLAN and IMU 
measurement data. For the coordination concept within 
LOBSTER, a two-way communication with the LBS center is 
necessary. For the support of the first responders in action, the 
mobile device visualizes the track of the first responder and the 
escaping groups of people as overlay to maps and building 
layouts of the operation area.  

The localization of the casualties is based on common 
smartphones. The reason is that a representative amount of 
persons has to be tracked to draw conclusions on the escape 
behavior of people in public buildings. Statistics predict, that in 
three to five years more than 50 % of all people in Europe will 
own a smartphone, which may be representative for all persons 
involved in a specific scenario. Smartphones do comprise 
various sensors for position determination and communication. 
Within LOBSTER, a smartphone application is developed 
which observes measurement signals of position and 
communication sensors (GNSS and WLAN) as well as of the 
IMU without interrupting the ordinary use of the phone. In case 
of an emergency, the application uses the observations to 
perform an anonymous localization and sends the positioning 
information to the LBS center.  

Since the measurement data of all sensors are evaluated 
independently on the smartphone (GNSS single point 
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positioning, WLAN fingerprinting, IMU-based dead 
reckoning), an integration process is carried out in the LBS 
center to utilize the performance of a multi-sensor system. 

For this application, two different position filters, the 
Kalman filter and the Particle filter which are most common in 
the field of navigation, are implemented and investigated. Both 
filters belong to the family of Bayes filters which recursively 
estimate the posterior probability of the state space conditioned 
on the data collected so far. 

In case of the Kalman filter, the posterior probability is 
approximated by the first and second moments, i.e., mean and 
covariance. This filter approach is optimal for linear Gaussian 
systems. The Particle filter is a sample-based approach, where 
the posterior probability is represented by sets of samples. 

The advantage of this filter is that the samples (particles) 
can represent arbitrary probability densities. Compared to a 
general grid-based approach, this filter has the ability to focus 
the particles on regions in the state space with a high 
probability. Since the estimation within the Particle filter is 
based on samples, a building layout can be integrated by 
defining conditions to samples in non-probable areas. 
Consequently, additional information can be extracted and 
integrated within the filtering process. 

The focus of the paper is set on the smartphone-based 
indoor localization of the casualties using the WLAN and IMU 
data. Since it cannot be expected, that every public building is 
equipped with lots of WLAN access points, the key aspect are 
the investigations based on the availability of a few access 
points. Consequently, the paper is organized as follows: First, 
the independently performing positioning algorithms WLAN 
fingerprinting and IMU-based pedestrian dead reckoning are 
shown, starting with investigations of the measurement data, 
describing the implemented algorithms and analyzing the 
results. In addition, the building layouts used in the filtering 
process are explained. The estimated position, heading and step 
information together with the building layouts are then 
integrated within two different Bayes filters – the Kalman filter 
and the Particle filter. The performance of both filters is 
compared and analyzed using different positioning scenarios 
(reduction of the available WLAN access points).  

II. SMARTPHONES 

A. Application of smartphones within LOBSTER 

The smartphone is the latest step in the mobile phone 
evolution and first appeared in 2007. Nowadays, it is the most 
ubiquitous technical device present in the industrial world due 
to its properties mobility and connectivity.  

Today, about 75 % of people in Germany are using a 
mobile phone. In 2012, more than 50 % of owned mobile 
phones were smartphones. It is estimated, that by 2017 mainly 
smartphones will be sold as mobile phones [1]. Every third 
person overall owns a smartphone nowadays, with rising 
tendency. In 2012, more smartphones than mobile phones were 
sold in Germany [2]. 

Due to these facts, the distribution of smartphones among 
population is today more than 30 % and will rise up to 70 % in 

three to four years from now. This is and will be a 
representative group of people to extrapolate from people with 
smartphones to all people in general, especially for situations 
like the assistance of first responders. Although the smartphone 
distribution among different groups of age and income is 
diverse, it cannot be extrapolated linearly. 

B. Smartphone Sensors 

Since the appearance of the first smartphone six years ago, 
the evolution of the smartphone as a positioning sensor has 
made amazing progress. Sensors like GPS, WLAN transceiver, 
accelerometers and cameras were present from the very 
beginning. This emerged to sensor arrays including GPS, 
WLAN, accelerometers, magnetometers, gyroscopes, 
barometers, temperature sensors, proximity sensors and 
cameras. 

The smartphone sensors used for the work presented in this 
paper are the WLAN sensor and the IMU composed of 
accelerometers gyroscopes and magnetometers. These sensors 
are fabricated as Micro-Electrical-Mechanical-Systems 
(MEMS) today. MEMS describe an electronic technology as a 
development of the electrical integrated circuits which are 
present in electronics for over 50 years. Applying the MEMS 
technology, sensors can be produced in very small sizes. 
However, such sensors experience strong bias errors, 
temperature as well as turn-on variations. According to [3], 
inertial MEMS sensors are one of the most interesting 
developments in the last 30 years. 

The smartphone used within the work presented in this 
paper is the Samsung Galaxy Nexus. All of the following raw 
sensor data, measurements as well as training data were 
recorded with the built-in sensors of this roughly two year old 
smartphone exemplarily. Hereafter, first the sensor sampling 
followed by the raw data analysis of the smartphone sensors is 
presented. 

1) Sensor sampling 
Sensor sampling is obviously not the most important task 

for a mobile phone. Therefore, no continuous sensor sampling 
can be expected. However, it is possible to set an approximate 
sampling rate, but it will not be continuous and blunders in the 
sampling are present. Depending on the used smartphone, a 
sampling frequency of the inertial data of up to 100 Hz can be 
realized. In Fig. 2 the sampling data of one accelerometer axis 
is shown exemplarily. 

 

Figure 2. Accelerometer sensor sampling of a smartphone 
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2) WLAN 
In the following figures, raw WLAN measurements 

observed with a smartphone are shown. The data is acquired 
using a WLAN Router Linksys E2500 which is dual-band 
capable. The WLAN router is set up to work with 2.472 GHz 
as well as 5.240 GHz. The smartphone sampling rate for 
WLAN measurements was set to 1 Hz. 

The WLAN raw data in static conditions is shown in Fig. 3. 
The WLAN measurements of the smartphone are given as 
received signal strength (RSS) in dB referring to the signal of 
1 mW, often noted as dBm. A measurement noise of 1.2 dB for 
the 2.472 GHz and 0.6 dB for the 5.240 GHz frequency is 
visible in the static data. Especially some blunders in the 
2.472 GHz band are visible. Therefore, filtering of the raw RSS 
data is necessary for the WLAN positioning based on RSS 
measurements. 

 

Figure 3. Static RSS measurement of a smartphone 

The theoretical path loss according to [11] can be given by 

            
            

 

  
 , (1) 

where       
 is measured at       distance and received 

from the mean RSS over 10 minutes, see Fig. 3. The value   is 
defined according to [4] with   = 2 in free space, or 2 <   < 6 
for office buildings. In Fig. 4, the theoretical path loss in free 
space is compared to the actual WLAN measurements every 
meter on a defined (free space) proving track for 30 m. 

 

Figure 4. RSS measurement of a smartphone with varying distance 

A measurement noise of 2 to 3 dB compared to the 
theoretical path loss can be observed on the 30 m proving 
track. 

The raw accelerometer, gyroscope and magnetometer data 
are not explicitly shown in this paper. However, significant 
higher noise and sensor variations of the inertial smartphone 
sensors compared to low-cost consumer-grade inertial units, 
otherwise used in inertial navigation, are present. 

3) Sensor biases 
MEMS sensor errors can be distinguished - bias, scale 

factor, non-linearity, hysteresis and noise are present. However 
the bias error due to turn-on and temperature variations is the 
biggest error. 

Accelerometer bias errors can be estimated by 
accomplishing turn-over maneuvers, shown in Fig. 5. The bias 
error within this analysis is in the range of up to 0.4 m/s². 

 

Figure 5. Smartphone accelerometer bias error 

Gyroscope raw data is highly filtered and the mean value is 
nearly zero when the sensor is at rest. However, the 
investigations of the dynamic process show huge gyroscope 
bias errors up to 0.5 °/s. Integrated, this equates to a heading 
error of some 10 ° in one minute, if there is no fusion with 
absolute sensors. 

The sensor bias errors for the magnetometer data are not 
analyzed in detail because the biggest influence in magnetic 
measurements is the magnetic deviation, see [5]. Magnetic 
deviation is mainly dependent on the building infrastructure 
and cannot be estimated. Magnetic distortions are best avoided 
by performing a magnetometer and gyroscope sensor fusion, 
adjusted to the expected motion of the sensors. 

The experienced sensor biases of the used MEMS sensors 
are huge for inertial navigation purposes, which is caused by 
the small size architecture of the MEMS embedded in 
smartphones. Therefore, the strict sensor integration of the 
inertial measurements like proposed in [3] are not applicable 
with smartphone sensors and more rugged and simplified 
positioning algorithms are applied. 
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III. BUILDING MODEL FOR PARTICLE FILTERS 

As additional information for the position filters, building 
plans may be used as an analytic sensor. In this section, the 
creation of the floor plans used as input to the Particle filter is 
described and some background information presented. 

Buildings are three dimensional by their nature. If two 
dimensional floor plans are created to represent these 3D 
structures, some information is lost. Therefore, it is state of the 
art to use 3D models to represent buildings and extract 2D 
floor plans if necessary for specific applications. If enriched 
with non-structural information, these building models are 
called Building Information Models (BIM). There exist many 
commercial applications for architects and civil engineers to 
create BIMs. Unfortunately, those applications are complex, 
expensive, and use proprietary file formats by default. The 
Industry Foundation Classes (IFC) data model defined by the 
International Alliance for Interoperability (IAI, now 
buildingSMART) is an emerging standard supported by many 
of those applications. As its intent is to describe building and 
construction industry data, it is very complex too; its advantage 
is the open specification. 

A floor plan used as input to a Particle filter does not have 
to be very sophisticated: It must be possible to check if a 
person can traverse on a straight line from a point A to a point 
B on a given floor. This requirement can already be fulfilled by 
binary bitmaps using white pixels for allowed areas and black 
ones for denied areas. Thus, the tool should allow exporting 
this kind of bitmaps and providing the functionality to import 
existing floor plans to minimize the work needed. Additionally, 
it should save georeferencing information of the exported 
bitmaps facilitating the use in mixed indoor-outdoor scenarios 
with GNSS position information. 

The AIONAV IPS Editor was a perfect match as it has a 
light-weight BIM, imports DXF files, and allows saving floor 
plans with user-defined resolution as georeferenced bitmap 
(PNG file with accompanying world file). 

The basic idea of its BIM is to specify the area of a building 
accessible to humans. This area is defined by a set of simple 
polygons (the boundary of the polygon does not cross itself) 
which are connected at specific segments of their outline. Each 
area has a height attribute allowing the creation of a 3D surface 
modeling multiple floors of a building. To make it possible to 
create 2D floor plans, these areas are assigned to floors. To 
further structure the model, floors are sub-elements of 
buildings and buildings belong to a region. 

To determine the segment(s) of the outline of an area at 
which it is possible for a person to traverse to another area, 
connection elements are defined. A connection element 
consists of at least one pair of references to lines, one line of 
each involved area. The lines are segments of the outline of the 
areas and must be geometrically exactly equal. The connection 
element is placed as sub-element of the first common ancestor 
of the involved areas. I.e., a connection element connecting two 
areas on the same floor is a sub-element of this floor and would 
be sub-element of the region if the connected areas are part of 
different buildings. 

The hierarchical model is then saved as XML-file which 
allows straight forward parsing, see Tab. 1. The region element 
does not only contain building sub-elements but also a 
coordinateMapping element which encodes the georeferencing 
information. 

TABLE I. EXCERPT OF A BUILDING MODEL XML FILE 

<?xml version="1.0" encoding="UTF-8"?> 

<region xmlns="http://bauinformatik.tugraz.at/ips-bim-editable" id="1"> 

  <building id="0" label="Steyrergasse30"> 

    <floor id="0" label="EG"> 

      <area height="0.0" id="0"> 

        <line id="0"> 

          <point id="0" x="24" y="23"/> 

          <point id="1" x="24" y="20"/> 

        </line> 

        [...] 

      </area> 

      <area height="0.0" id="37"> 

        [...] 

        <line id="7"> 

          <point id="0" x="24" y="23"/> 

          <point id="1" x="24" y="20"/> 

        </line> 

        [...] 

      </area> 

      <connection> 

        <pair first="1.0.0.0.0" second="1.0.0.37.7" type="door"/> 

      </connection> 

    </floor> 

  </building> 

  <coordinateMapping>[...]</coordinateMapping> 

</region> 

 

Once the model is defined, each floor can be exported to a 

georeferenced bitmap. The resolution can be defined by the 

user as pixel per meter ratio. In Fig. 6, the floor plan exported 

as bitmap can be seen. Additionally, the test scenario, on which 

the analysis presented in this paper is conducted, is shown as a 

trajectory. 

 

 

Figure 6. Floor plan exported as binary bitmap with test track 
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IV. INDOOR POSITIONING WITH SMARTPHONES 

Compared to outdoor positioning, indoor positioning is 
very limited according to the presence and visibility of 
electrical signals. No ubiquitous system for indoor navigation 
exists. Possible technologies for indoor positioning could be 
methods based on Cell-ID, RFID, inertial navigation, image-
based navigation, WLAN, magnetic field, ultra-wide band 
positioning and many more. 

From these possibilities, the methods applied to 
smartphones today are based on WLAN, magnetic field, 
inertial navigation and visual navigation. Among the absolute 
position techniques available, WLAN has the most common, 
already existing infrastructure indoors. Within the project 
LOBSTER, for the indoor positioning, WLAN positioning and 
inertial navigation based on step detection and heading 
estimation have been investigated. 

A. WLAN positioning 

WLAN positioning provides absolute positioning based on 
measurements of received signal strength (RSS) from different 
WLAN access points. The main motivation behind WLAN 
positioning is to use existing infrastructure. Within the work of 
[14] and [15], WLAN positioning within an artificial 
environment, where access points were set up just for 
positioning purposes, is investigated. 

In WLAN positioning, proximity-based positioning, 
trilateration and fingerprinting are the possible methods for 
positioning. The accuracy of proximity-based positioning is 
directly correlated to the number of available access points and 
is therefore not applicable with a low number of access points. 
Trilateration is conducted with the measured signal strength. 
Since the signal strength is strongly influenced by the building 
structure, the whole building would have to be taken into 
account to gather useful results from trilateration with a few 
access points. Fingerprinting corresponds to matching a 
measurement set of RSS data to a predefined set of training 
data, called the fingerprinting database. For WLAN 
fingerprinting, neither time-synchronization of the access 
points is necessary nor their position has to be known. 

The mostly used improvement to a plain matching of the 
best reference point is called  -Nearest Neighbor (KNN) [4]. 
Here, the  -best fingerprinting reference points are used to 
calculate the estimated position of the measurement device, 
where  

 ̂    ∑            (2) 

is the most probable position of the measurement point. Best 
results can be achieved if      . 

When analyzing static and kinematic RSS measurements, 
blunders and measurement noise in the static case can be 
observed. The RSS noise rises when moving the measurement 
device. Due to the unstable measurement behavior of the 
smartphone WLAN sensor, RSS filtering is conducted with a 
simple Kalman filter based on the raw RSS measurement data 
with an empirically defined measurement noise. Additionally, 
the region-based reference point selection proposed in [12] is 
implemented. 

In the following, the WLAN-only positioning based on a 
KNN fingerprinting with     is shown. A comparison of 
WLAN processing with all visible access points (more than 15 
MAC addresses can be observed within the testing ground) on 
the test track and positioning just with the use of three access 
points is analyzed. In Fig. 7, the fingerprinting of the test track 
processed with all visible access points is shown. 

 

Figure 7. WLAN fingerprinting with all available access points 

In Fig. 8 the fingerprinting processed with just three distinct 
access points for the same track is visualized. 

 

Figure 8. WLAN fingerprinting with three distinct access points 

When comparing the two results of Fig. 7 and Fig. 8, it is 
obvious that the trajectory processed with all available access 
points is more accurate compared to the reference trajectory in 
Fig. 6. In both cases, the fingerprinting needs some seconds for 
the RSS Kalman filter to smooth the raw measurements and 
produce stable results. Afterwards, the trajectory processed 
with all available access points features at least room-level 
accuracy. Contrary to that, the trajectory processed with just 
three access points is not able to produce room level accuracy 
within the defined setup. 

B. Dead Reckoning 

Applying Pedestrian Dead Reckoning (PDR) algorithms on 
measurements of mobile devices, the sensor position relative to 
the user is a crucial factor. [9] proposes a tree classifier for 
identifying the actual position of the mobile device similar to 
activity recognition. For the PDR algorithm, the sensor position 
and orientation at the beginning has either to be fixed and 
known or to be initialized. Within this paper, a fixed sensor 
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position of the smartphone relative to the user is assumed. The 
smartphone is hand-held in walking direction during the 
presented measurements, which is the assumed position when a 
pedestrian is navigating with his smartphone. The PDR 
positioning is partitioned into a step detection and the 
estimation of the step heading. 

1) Step detection 
For step detection, multiple methods exist, see [8] for a 

comparison of step length estimators as well as [9] with a step 
frequency approach and [10] with an event detection. Simple 
step detection is more robust than step length or step duration 
estimation with hand held smartphone sensors, due to the given 
sensor noise and bias error behavior. 

In the following, the step detection with smartphone 
accelerometer measurements is presented in Fig. 9. A step 
event is created every time at the end of a detected step. A step 
is detected if an upward motion is followed by a downward 
motion for a defined timespan. An up- or downward motion is 
just considered if the total acceleration is above or beneath an 
empirically defined boarder. That is, why actions not similar to 
steps are not recognized. 

 

Figure 9. Step detection with accelerometer measurements 

The distance finally calculated out of the step event    is 
given by       , where   is an empirically defined 
constant for a specific user. With this fixed step length 
algorithm, a mean distance misclosure of 2 m for different 
walking speeds can be observed within a proving track of 
30 m. Although the step detection is adopted for a defined 
sensor position, the misclosure is caused by different walking 
speeds. 

2) Heading estimation 
For the estimation of a step heading, the magnetic 

orientation of the smartphone is filtered with the angular rate in 
local level up-direction. Therefore, the magnetic heading 
computation and a transformation of the measured angular 
rates have to be performed. Since the smartphone is hand-held 
in walking direction and assumed to be in a constant 
orientation, the difference between heading and yaw is 
neglected. 

In order to compute a magnetic orientation out of a three 
axes magnetometer, the leveling angles roll and pitch have to 
be known. The attitude angles roll   and pitch   are computed 

by leveling. A leveling is conducted with the measurements of 
the accelerometer in three axes   ,   , and    and is given in 

[7] by 

       (
   

√  
    

 
)    (3) 

       (
   

 

   
 )  (4) 

The magnetic yaw computed with the magnetometer in 
three axes and the known attitude angles roll and pitch is given 
in [7] by 

          (
                  

                                      
) (5) 

For gaining the angular rate of yaw in a local level frame, a 
transformation of the gyroscope measurements in three axes 

has to be applied. If the rotation matrix   
  is given with its 

rotations about roll, pitch and yaw by   
                 , 

the angular rate vector in up-direction referring to a local-level 
system is then given by 

     
  , (6) 

where   contains the gyroscope measures   ,    and    and 

   contains the time-derivations  ̇,  ̇ and  ̇ in the chosen local 
level frame. If just the angular rate of yaw is desired, the yaw 

angle is not needed for the creation of   
 . 

The computed relative  ̇  and absolute      can then be 

filtered to gain heading information based on the magnetometer 
heading and the angular rates in up-direction. Such a heading is 
more robust to magnetic disturbances, see Fig. 10. It is seen, 
that small variations in the magnetic field can be overcome 
through integrating and filtering the angular rate. 

 

Figure 10: Heading estimation with filtering of smartphone data 

The use of gyroscope-only data is another reasonable 
approach which was investigated. However, such an approach 
only works when either the device orientation is known or a 
calibration of the device orientation respectively to the user 
motion is applied. Such a device orientation can be determined 
out of heading information with absolute position solutions 
such as GNSS or WLAN positioning. However, neither GNSS 
nor state-of-the-art WLAN positioning provides a position 
accuracy which is accurate enough that the computation of an 
absolute heading is reasonable. 
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V. BAYES FILTER 

Within the project LOBSTER, two different filtering 
approaches belonging to the family of Bayes filters – the 
Kalman filter and the Particle filter - are investigated. The 
principle of Bayesian filtering is constituted by two models and 
enables the estimation of the state of a dynamic system [16], 
[19]. The system model describes the propagation of the state 
with time, while the measurement model is based on the 
functional dependency between the noisy measurements and 
the actual state. The evolution of the state (prediction step) is 
defined by  

                , ( ) 

with    and      representing the states at epoch   and    , 
and      being the process noise. The measurement model 

            , ( ) 

defining the relationship between the observations   , their 

corresponding covariance    and the state   , together with 

the transition model facilitates a recursive estimation of the 

actual state   . In case of the Bayesian approach, these two 

models are expressed in a probabilistic form. A posterior 

probability density function (PDF) of the state based on all 

available information is determined. 

Within the prediction stage, the prior PDF of the state at 

epoch   is determined via the Chapman-Kolmogorov equation 

    |        ∫     |           |            , (9) 

with the assumption that 

    |                 |      (10) 

is a Markov chain of first order. While the PDF of the state 

transition     |      can be expressed by the system model 

and the process noise, the PDF of the measurement update is 

dependent on the likelihood function     |    which is 

influenced by the measurement model and the measurement 

noise     

    |    
    |       |       

    |       
. (  ) 

In the update step, the posterior density of the state    is 

determined by combining the measurements    their 

measurement noise    and the prior density     |      by 

applying the Bayes’ rule. The Kalman filter and the Particle 

filter represent the Bayesian filter approach with some 

restrictions. An optimal solution in general cannot be 

determined analytically ([16], [18] and [19]).  

A. Kalman Filter 

The Kalman filter is a parameterized approach of the 
Bayesian filter where the probability distribution functions of 
the prediction and the update stage are represented by the first 
and second moments (mean and covariance) of the probability 
distributions [17]. The Kalman filter is the optimal filter for 
tracking applications, if the assumptions hold the system as 
well as the measurement equations are linear and their 
corresponding PDFs are Gaussian [5]. Consequently, the 
posterior probability     |      is Gaussian, if       |        

is Gaussian and      and    are drawn from Gaussian 
distributions of known parameters. The system and the 
measurement equation can be expressed as follows 

               (12) 
           (13) 

By replacing the process noise      and the measurement 
noise    by their covariances      and   , the moments of the 
parameterized form of the Bayes approach can be determined 
with the equations 14 to 18. The Kalman filter is split into three 
steps – the prediction, the update and the computation of the 
Kalman gain. The Kalman gain declares the impact of the 
actual measurements on the estimation of the actual state.  

Prediction step:  

 ̂ |         ̂   |     (14) 

  |                 |       
   (15) 

Update step: 

 ̂ |    ̂ |             ̂ |      (16) 

  |            |     (17) 

Computation Kalman gain: 

     |     
 (    |     

    )
  

  (18) 

Although the Kalman filter works best in a Gaussian 
environment and in case of linear system and measurement 
equations, the performance for indoor application is restricted, 
since the integration of building layouts causes a modification 
of the Gaussian distribution. 

B. Particle Filter 

In case of a Particle filter, the probability distributions 
defined within the Bayesian approach are represented by a set 
of particles randomly distributed over the state space and of 
corresponding weights [16]. The propagation of the particles is 
regulated by the state transition model. After propagating the 
particles (prediction step), the particles are weighted 
corresponding to the probability distribution of the 
measurement model and the actual measurements. According 
to these computed weights, the particles are newly-distributed. 
In the initialization step all particles are randomly distributed 
over the whole state space (e.g. over a whole building), after 
the resampling, the distribution of the particles represents the 
posterior distribution of the state   . The higher the number of 
particles, the more the posterior PDF approaches the functional 
description of the posterior PDF.  

The sequential importance sampling (SIS), where the 
particles are drawn from an importance weight, is the general 
framework for the implementation of the Particle filter. The 
particles are not drawn from the probability    |     , they are 
distributed according to the weight  

  
      

  (  |  
 )    

 |     

    
 |    

     
, (19) 

with  (  
 |      

    ) being the importance probability density 

function, [16] and [18]. The posterior filtered density function 
corresponds to  
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    |      ∑   
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If    approaches infinity, the approximated posterior 
converges to the true PDF. However, the problem of the SIS 
approach is the degeneration of the particles, since after a few 
iterations only some particles of high weights survive. For this 
case a resampling step has to be considered. Within the paper, 
the SIR (Sequential Importance Resampling) algorithm has 
been chosen to keep as many samples as possible with non-
zero weights [16], [17]. Beside the SIR algorithm, also other 
effective resampling approaches exist, see [18] and [20]. 

In principle, the implemented Particle filter is based on 
approaches of [17], [21], and [24]. For the integration of 
building layouts within the Particle filter, different algorithms 
have been tested, based on [21], [22], [23], and [25]. 

C. Setup 

The estimated local positions of the WLAN fingerprinting, 
the travelled distance out of the step detection and the 
estimated heading are used beside the building layout as input 
for the Bayes filters.  

In case of the Kalman filter the building layout is only used 
for the visualization. The algorithm itself is performed with a 
common pedestrian motion model for the prediction step, while 
all available measurement data and their corresponding 
covariances are used in the update step. The measurement 
vector has following structure 

                      .  (21) 

In contrast, the prediction step of the Particle filter uses the 
output of the PDR and the building layout to propagate the 
particle cloud in the best possible way. Involving the building 
layout in the prediction step enables an elimination of invalid 
particles before entering the update step. Another approach 
would be the integration of the map within the update step by 
computing an appropriate weight based on the map’s 
probability. However, this approach does not work that 
effective, which is also shown in [25]. For the computation of 
the importance weight, the WLAN positions are used.  

To compare the performance of both filters, two different 
measurement scenarios have been chosen. First, all available 
WLAN access points are applied to determine a trajectory. In a 
second scenario, the fingerprinting is performed with a 
fingerprinting data base with only three access points for the 
whole area.  

VI. RESULTS 

In the following, the filtering results of the two mentioned 
scenarios (all access points vs. three access points) are shown.  

A. Scenario 1 – all access points 

Fig. 11 shows the raw WLAN and PDR trajectories in 

comparison with the Kalman filtered solution. It is indicated 

that the Kalman filter process eliminates the drift of the PDR 

by combining the DR data with the WLAN positioning data. 

The last room on the left side of the floor can be entered 

correctly.  

 

Figure 11. Kalman filtered trajectory based on a WLAN trajectory with all 

available access points. 

The same can be observed in the Particle filtered trajectory 

in Fig. 12. However, the integration of the building layout 

affects the result with a marginal smoothing. The visualized 

grey trajectory corresponds to the weighted mean of the 

particles. Although the integration of the building layout 

works very well, in some figures an overlaying of the Particle 

filtered trajectory with the walls can be seen, since the 

resulting trajectory is derived by a weighted averaging of the 

particles.  

 
Figure 12. Particle filtered trajectory based on a WLAN trajectory with all 

available access points. 

By performing a fingerprinting with all available access 
points, nearly no differences can be observed in the Kalman 
filtered and Particle filtered trajectories.   

B. Scenario 2 – three access points 

In Scenario 2, the WLAN fingerprinting is based on three 
access points. Consequently, the determined WLAN trajectory 
shows a worse performance, see Fig. 13. By applying the 
Kalman filter, a smoothed trajectory is computed, but the 
trajectory goes through walls, where a room entering is 
impossible.  
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Figure 13. Kalman filtered trajectory based on a WLAN trajectory with three 
access point. 

Comparing the Kalman filtered result with the Particle filter 
trajectory in Fig. 14, a rigorous improvement can be detected.  

 

Figure 14. Particle filtered trajectory based on a WLAN trajectory with three 

access points. 

The trajectory does not leave the floor on the way to the last 
room on the left side of the floor, enters the room correctly and 
goes back on the right way, see also Fig 15.  

 

Figure 15. Particles moving along the walls. 

Just at the beginning of the trajectory, a large deviation can 
be seen. The reason for this discrepancy is the first WLAN 
position, which indicates a large difference to the real 
trajectory. However, the filter converges quickly to the true 
trajectory, which can be pointed out with Fig. 16 and Fig. 17.  

 

 

Figure 16. Initialization of the particles and applying the first WLAN 
measurements within the update step.  

In Fig. 16, the initialization of the particles over the whole 
building is shown. By using the first WLAN measurements in 
the resampling step, the particles surround the WLAN 
measurement. The change of the PDF in direction to the true 
trajectory is realized already after one more epoch (Fig. 17). 

 

 

Figure 17. Change of the PDF representation after the second epoch. Despite 
the bad measurement in the beginning, the filter converges very fast.  
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VII. CONCLUSION 

The investigations show, that the performance of the 
Particle filter is much better than the one of the Kalman filter in 
case of a bad WLAN trajectory. The integration of map 
information enables a correct passing of floors and entering of 
rooms. Applying the filters on accurate measurement data, 
leads nearly to the same results.  

Finally, it can be concluded, that the use of the Particle 
filter enables tracking also in environments with few WLAN 
access points. Since WLAN routers increase their coverage 
continuously, it is important to be able to consider WLAN 
positioning with fewer access points, as the access point 
density will most likely decrease. 
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