
Comprehensive Robustness Evaluation of File
Systems with Model Checking

Jingcheng Yuan
School of Information Science

 Japan Advanced Institute of Science and Technology
Tokyo, Japan

jingcheng.yuan@jaist.ac.jp

Toshiaki Aoki
School of Information Science

 Japan Advanced Institute of Science and Technology
Ishikawa, Japan

toshiaki@jaist.ac.jp

Xiaoyun Guo
School of Information Science

Japan Advanced Institute of Science and Technology
Ishikawa, Japan

xiaoyun@jaist.ac.jp

Abstract—File systems are used to organize data on storage
devices. The file systems may crash due to external failures, such
as an unexpected power outage. Therefore, the robustness of the
file system is essential. Although some existing works evaluated the
robustness of file systems, they are not comprehensive enough and
cost many resources. In this work, we design a file system model
and verify properties related to the correctness of the file using the
SPIN model checker. The robustness of the file system has been
comprehensively evaluated in both single-thread and multi-thread
modes. There is a critical error in the file system. By analyzing
counterexamples given by model checking, we propose a
mechanism to prevent it. Based on the mechanism, the robustness
of the file system is effectively improved.

Keywords—file system, robustness, power outage, model
checking, SPIN, Promela

I. INTRODUCTION
File systems are widely used to organize data on storage

devices. A file system separates the data into pieces that we call
them files. The files make it easy to isolate and identify data.
Generally, the file system organizes these files in a tree structure.
The files are the leaf nodes in the tree, while the non-leaf nodes
indicate directories in the file system.

Usually, a file system works as a kernel module in the
operating system, as well, the operating system also organizes
its system files in it. If a severe error occurs in the file system,
massive data loss, even the operating system may crash. There
are some reports about the file system data loss. For example,
the 2009 “ext4 data loss” incident, where multiple users reported
that “pretty much any file written to by any application,”
becomes empty after a system crash [14], [23]. A very likely
reason for the file system error is an external failure, such as
unexpected power outage or data corruption in the storage
device.

Like the 2009 “ext4 data loss” incident, file operations were
interrupted by a power outage or a system crash. It is essential
to investigate the file systems’ robustness in the external failure
condition, which includes data corruption in the storage device
and interrupted file operations. Due to the help of Error
Correction Code (ECC) technology, most of the modern storage
devices can correct the data corruption or inform the data

corruption to the file system, which works on the storage device.
It allows the file system to detect the data error and prevent the
further inconsistent of other files. On the other hand, the
interruptions of operations, like the system crash or unexpected
power-outage, makes the data inconsistent directly. The file
system is challenging to detect such kind of inconsistent without
external tools like fsck. However, the file system check tools
usually need to scan all the storage, which may take tens of
minutes when booting up. Some file systems introduce a journal
feature to speed up the checking and repairing process. However,
the file system needs to write the metadata several times to
confirm a consistent state. This behavior does not only reduce
the performance of writing files but also consumes more storage
live especially for the NAND Flash.

Moreover, there are various types of file systems used in
different applications. These file systems implement different
data structures and algorithms. For example, the NTFS file
system and the ext serials file systems manage their files in an
index table. They are widely used in Windows or Linux systems.
Like the FAT/FAT-32 file system maintains a global block link
table to manage its files. This file system is widely used in
mobile applications because of easy to implement. However,
there are fewer present works discussed the file systems’
robustness from a comprehensive viewpoint. Some researches
like [3], [5], [6] proved the file system’s correctness but did not
involve the external failures. Some researches like [4], [6], [7]
discuss the file systems’ robustness, but they focused on
recovery tools. Generally, the recovery tool depends on the
individual file systems.

In this work, we tried to comprehensively investigate the file
system’s robustness in the condition of an unexpected power-
outage. To cover most of the various file systems, we analyzed
some mainstream file systems source code. According to how
the file systems map their file’s logical address to the storage’s
physical storage address, we can divide them into two types, the
link type, and the index type. We developed a link-type file
mapping model and an index-type model. Then we checked each
model in the single thread and multi-thread mode.

We used the model checking methodology to evaluate these
filesystem modes. Model checking is a formal verification
technique. Compare to the software testing or other verification
methodologies. It can reveal even the subtle errors by

99

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00025

exhaustively exploring all possible system states and examining
all possible scenarios. In this work, we use the SPIN model
checker to find out some corner-case errors. The SPIN is a tool
for evaluating the correctness of concurrent software models in
a rigorous and mostly automated fashion [18]. SPIN’s verifier
can detect errors, for example, accessing an array out of bounds,
a deadlock status, or user-defined assertion. When an error is
detected, SPIN reports the error trail, which is easy for analyzing
and debugging. Models to be verified in SPIN are described in
Promela (Process Meta Language), which supports the modeling
of asynchronous distributed algorithms [18]. The Promela also
supports nondeterministic selections in do-od and if-fi
statements. Comparison to other model checking tools, SPIN
allows us to use C codes in the Promela directly. Since most file
systems are designed in C codes, embedding C in Promela
makes us easy to create file system models.

Power outage failures are usually caused by external events
that are uncertain. The traditional software testing is challenging
to find out all potential failures which are caused by uncertain
conditions. Using the SPIN, we can develop an environment
model that exhaustively simulates the external conditions. The
file system is positive; it is driven by the user, which inputs the
file operations to the file system. To simulate and exhaust all the
possible inputs, we designed a tester model in SPIN. A correct
file system should hold several properties. We defined four
properties that show the file systems’ correctness. We separate
them into critical properties and non-critical ones. Violating the
critical properties may cause data corruption in the file system
while violating non-critical properties not. Usually, executing
the model checking once can only evaluate one property. In this
work, we use the embedded C code in the SPIN to design an on-
line checker and an off-line checker. Using these two checkers,
we can evaluate all properties in one execution.

Using the SPIN verifier, we detected some errors in our file
system models. We also provided a method to fix these errors
by analyzing the counterexamples’ trace generated by SPIN. We
used the SPIN to evaluate that there are no critical errors in the
fixed file systems. The result shows that these fixes can improve
the file systems’ robustness when the unexpected power outage
happened.

The first contribution of this work is to evaluate the file
systems’ robustness comprehensively. Our comprehensive
evaluation comes from the following three viewpoints. 1) We
evaluate the file systems work not only in the single-thread
mode but also in the multi-thread mode. 2) We evaluate the file
systems against multiple properties that cover various kinds of
robustness expected to them. 3) The file systems that we
evaluate cover most mainstream file systems.

The second contribution is that we successfully found
corner-case errors by model checking. The model checking
covers all the possible input and all the conditions of an
unexpected power-outage so that we can exhaustively evaluate
the robustness of the file systems in the external failures. We
also need to abstract the models so that the model checking can
be completed within an acceptable duration.

The third contribution is to improve the file systems’
robustness according to the corner-case errors. We confirmed
that the corner-case errors which were found in the abstracted

models happen in real file systems as well. Thus, we proposed a
mechanism which does not require to use external tools like fsck
nor additional operations like writing journals. We also verified
that no critical errors did not exist anymore in the improved file
systems.

In the following sections, first, we introduce some of the
existing works about the file system robustness in section II.
Next, in section III, we introduce the file system and present how
we abstract a model from the concrete file systems. Moreover,
we explain the fundamental methods of checking the file
systems’ model. In section IV, we show how to evaluate the file
system model. We present the counterexamples we detected in
both single-thread mode and multi-thread mode. As well, we
introduce the mechanism of the error fixing. Finally, we give a
summary of our contribution and the advantage of this work in
section V.

II. RELATED WORKS
There are some researches on file system robustness, such as

[3]-[8]. Some of them proved the correctness of the file system,
some of the works investigated the file system’s robustness, but
they focus on how to recover the file system after the external
failure. We think they are still not enough on the file systems’
robustness with the external failure in the case of concurrent
access.

Arkoudas, Zee, Kuncak & Rinard [3] present a correctness
proof for the file system implementation with standard data
structures and fix-sized storage. It uses the Athena theorem
prover and employs a constructive approach for verification.
Different from our work, this work only involves a typical case
in single-thread mode. It does not deal with the issue caused by
external failure or concurrency process.

Galloway, Luttgen, Muhlberg & Siminiceanu [5] use the
model checking method to verify the file system model, which
is abstracted for the Linux virtual file system source code. It
checks some safety and liveness properties of file system APIs
in the multi-thread case. However, the Linux virtual file system
is treated as a file system framework in the Linux kernel. The
Linux virtual file system does not involve the detail data
structure of concrete file systems on the storage device.
Different from our work, this work does not deal with data
consistency and external failure related errors.

Yang, Sar, Twohey, Carda & Engle [7] use a symbolic
execution for generating pathological test cases. Then it checks
if the file system can recover from the pathological data. Yang,
Twohey, Engler & Musuvathi [4] use model checking within the
systematic testing of some concrete file systems. The
verification system runs the Linux kernel, a file system test
driver, and a permutation checker. The checker verifies that a
file system can always recover by a recovery tool fsck. Gatla et
al. [8] use some benchmark data to verify the file system
recovery tool. It simulates an external failure happens in each
step of the recovery process, and then checks if the recovery tool
can recover again from the external failure.

The above three pieces of works investigated the file systems’
robustness in external failures and recovery. However, they
focus on the recovery process instead of the file system itself.

100

Different from these works, our work focus on the robustness of
file systems’ data structure. We want to find a mechanism that
can keep data consistency during external failure. Because
usually, the recovery tools are also stored in the file system and
may be damaged in external failures. Moreover, we want to use
the model checking to show the absence of errors in the robust
file systems.

III. MODELING FILE SYSTEMS

A. Introduction of file systems
A file system is a part of an operating system in the modem

computer system. It is used to organize the data on storage
devices in serval files. Files are stored in directories. The
directories have recursive structures, which can contain some
sub-directory. It means that the file system organizes files in a
tree structure. Files are the leaf nodes in the tree, while the non-
leaf nodes indicate directories in the file system. Each file or
directory has a unique identifier consisting of a string, which is
called file name or directory name. The string, which is called a
file path contains directories' names from the root directory to
the file. From a logical viewpoint, a file can be treated as an array
of logical blocks. The data in each file can be located by a pair
of the file path and the internal-offset. In the real storage device,
the file is stored in several physical blocks. Usually, these blocks
are not adjacent. The file system can be treated as a mapping
from the pair of the file path and logical block index to a physical
block address in the storage device. The mapping is dynamic,
When the user creates or appends data to a file, the file system
finds unused physical blocks, assigned the blocks to the file and
then update the file mapping to related the physical blocks to the
logical blocks.

The algorithm of the file mapping depends on a concrete file
system implementation. Among various file systems, there are
two significant algorithms, link-type file mapping, and index-
type file mapping. The link-type file mapping is used in FAT,
FAT32, and other file systems. The data blocks of a file are
represented by a chain of blocks. These data blocks are not
necessarily stored adjacent to one another on the storage device.
The file system maintains a global link table called a file
allocation table (FAT) to manage each file’s block-chain. The
table contains entries for each block. The FAT does not indicate
only the file block mapping, but also the blocks states such as
in-use or free. Each entry contains either the number of next
cluster in the file or else a marker indicating the end of the file
or unused storage space. The file entry in the directory records
the address of its first logical block. The file system can then
traverse the FAT, looking up the physical block address of each
logical block in the file [15].

Index-type block mapping is used in ext2, NTFS, and other
file systems. The data blocks of a file are treated as a resizable
block array. Each file maintains a local index table to manage
the physical blocks. In the index table, each entry points to a
physical block that the file owns. The order of the entries in the
index table also indicates the data blocks’ order of the file. In
order that we can efficiently use the space, the index table is
organized hierarchically in most of the concrete file systems. In
this case, some entries point to data blocks directly, and others
point to indirect index blocks. Moreover, the entries in the
indirect index blocks can also point to the double indirect index

block. The file system also needs to maintain a global block
bitmap, in which each bit indicates a block is in-use or free.

There are three necessary data structures to construct a file
system, superblock, dentry, and inode. Fig. 1 presents an outline
of the file system’s data structure. The superblock describes the
comm properties of a file system, such as its total size, mount
point, and a pointer to the root directory. Usually, it is stored at
the beginning of the file system, and there are several copies of
the superblock for backup. The dentry objects are stored in
directory files to describe the sub-directories or files which the
directory contains. The dentry structure contains a sub-directory
or file’s name, a link to its parent and siblings, and some other
information. It also carries a reference to its corresponding inode.
The inode data structure carries information specific to a file,
includes file size, file permissions, time information, and file
attributes. For the link-type file mapping model, the inode
contains the head of the block-chain. The concrete FAT file
systems omit the inode structure and store the related
information into the file’s dentry structure. For the index-type
file mapping model, the inode also contains the top level of the
file’s index table.

B. Approach to the modeling
In this work, we created a Promela model to check the file

systems. Promela (Process Meta Language) is a model language
that is used in the model checking tool SPIN. It supports the
modeling of asynchronous distributed algorithms as non-
deterministic automata [18].

The model consists of 4 sub-models, as shown in Fig. 2. The
file mapping model is what we need to check. The storage model
is used to simulate the storage device where the file system
stores its data. The tester model is used to generates input and
triggers the file system module work. We used an environmental
model to simulate the unexpected power outage. We describe
the detail of these sub-models in the remainder of this section.

However, to check the file system model, we still need to
solve some problems. First, a concrete file system is complex
and has a large scale. To check the full file system results in a

Fig. 1. Data structure of a file system.[9]

101

state explosion issue in the model checking. We need to abstract
it from the concrete file system. Second, the file system is a
passive module in the operating system. We need to generate
inputs to trigger the file system work. The inputs should be
exhaustive. Third, we need to define the correctness of the file
system and check these properties during the model checking.
In the following sections, we describe the detail of these items.

 File mapping model

A file system is a large scale data-intensive system.
Currently, a concrete file system can support gigabyte to
terabyte capacity. It means a file system contains several million
or billion blocks with 4KB size each. We can ignore the user
data in the model checking. Even there is 1% of system data
needs to be checked, we still need to travel a considerable state
space.

At first, we designed a scaled file system model which
contains only 128 blocks with 16 bytes each. We also designed
a tool to search the file system’s state space from the initial state.
Then we soon faced a state explosion issue. We cannot complete
the searching for an acceptable duration. Fig. 3 presents the
increase in state number vs. searching depth. The x-axis
indicates the searching depth, while the y-axis indicates the
checked state number. The solid line indicates the actual
checked state number where the dot line curve of the exponential
fitting of the checked state number. This result shows that the
state number increases faster than an index increase.

Regarding the reason for the state explosion, we consider it
is because that the directory has a recursive structure. We
checked the whole file system model, including the files and
directories which can contain some sub-directories in the file
system. When we expand a state, the quantity of its successor
states depends on the directories and files number in the current
state. For example, we create a sub-directory in each existing
directory; each operation results in a new successor. In each new
state, the directory number is one more than which in their parent
state, so their successors also increase one. When we repeat this
operation, the state number increases faster than Exp(n), where
n is the depth for searching.

As we discussed, a file system can be treated as a mapping
from the pair of the file path and block offset to a physical block
address. This mapping can be separated into two layers. The top
one is a mapping from the file path to file, while the lower one
is from the pair of the file and offset to a physical block address.

The lower layer, we call it file mapping is the primary feature of
file systems. Usually, the file path mapping layer is also built on
the file mapping layer. File systems store the directory
information in some internal files. In the robustness viewpoint,
the file mapping layer is more critical. In this work, we abstract
the file system as a file mapping. Then, we checked the
robustness of both link-type and index-type file mapping models.

We created both link and index types file mapping models
based on concrete file systems’ source codes. For the link-type
file mapping model, we refer to the source code of “FAT 16/32
File IO Library v2.6”[21]. Since our file system model has a
fixed scale, we omitted the superblock and hard-coded inherent
properties, such as total size, block size. We removed the
directory structures in the abstract model. We omitted the dentry
structure and designed four fixed inodes to describe max to 4
files. We also omitted file attributes and time information which
are not interested in the robustness investigation. Each inode
contains 2 bytes, 1 byte for the file length, and 1 byte for the start
block address. We used two blocks to store a total of 4 inodes.
In the concrete FAT file system, there are two mirrored FATs
for backup. We omitted one backup table and designed one FAT.
The FAT takes three blocks with a total of 12 entries to indicate
the remained 11 data blocks. Hence, the abstracted link-type file
mapping model has a total of 16 blocks with 4 bytes each. It can
contain max to 4 files with a total of 11 blocks of user data.

We designed four operations, CreateFile, DeleteFile,
WriteFile, and ReadFile, for each file system model. We
abstract the operations from the source code and convert them
to a state machine. Then we describe the state machine in the
Promela model. Moreover, we describe the state transitions and
nondeterministic selections in Promela language and described
the data structures and the states’ internal process in C code.

Fig. 4 presents the state machine of the CreateFile operation
in the link-type file mapping model. When entering the
operation, we check if the requested file has been created by
check the file’s inode. If the file does not exist, we start creating
a file. We search the FAT and try to find an empty block. If there
is an empty block found, we assigned the block to the file by
setting the start block address field in the file’s inode and mark
the block as in-use in the FAT. Then, we write back the updated
inode and FAT to the storage device. Finally, we update the
related reference file (describe it in section III-E) and issue a
FLUSH command (described in section IV-B) to close the file.
In each state, we check if the file system is reset by the

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

1 2 3 4 5 6 7

state number vs. searching depth

Fig. 3. State number for searching the file system model

File Mapping
Model

Storage Model

Tester Model

Environmental
Model

reset
operation

read / write

Fig. 2. Presents an overview of the models

102

environment model. If it is reset, we discard the current
operation and reset the file system.

For the index-type file mapping model, we refer to the ext2
source code from the Linux kernel. Similar to the link-type file
mapping model, we omitted the superblock and dentry structure.
We also designed four inodes, each of them takes one block,
contains 1 byte for the file length, and 3 bytes for the block index
table. The index file mapping model supports a 2-layer index
table. The 3rd entry in the inode points to an indirect index block,
which is dynamically assigned from the data blocks. We also
designed a bitmap block to indicate on block’s status, assigned
or free. Each bit in the block indicates one data block. The
abstracted index-type file mapping model also contains max to
4 files with a total of 11 data blocks. The data blocks are shared
with file data and indirect index tables.

The index-type file mapping model has the same operations
as the link-type model. These operations also have similar
behaviors except assigning and reclaiming blocks. When we
assign a block to a file in the CreateFile or WriteFile operations,
we calculate whether the block belongs to the direct index table
or the indirect index table by the block offset in the file. If the
block belongs to the direct index table, we find an empty data
block from the bitmap and set its entry in the index table in the
file’s inode. If the block belongs to the indirect index table, we
need to check if the indirect index block is assigned. If not, we
allocate an empty block for the indirect index block and set its

entry in the inode. Then we allocate another empty block for the
data block and set its entry in the indirect index block. When we
reclaim blocks in the DeleteFile operation, besides the data
blocks, we also need to reclaim the indirect index block if it
exists.

 Tester model

The file system works as a passive module in the operating
system on the computer. It responds to the request from client
applications or user operation. To check the file system model,
we should issue operations to the file system and let it execute.
In most file system testing tools, they designed several operation
sequences previously, which we call a test script. Then feeds
these scripts to the file system and check if the file system’s
response expected or not.

Such previously designed test scripts are not enough for this
work. It cannot exhaust the file system’s state space, and it is
difficult to find some corner-case error. The file system has its
internal state; each file operation transfers the file system from
a state to another. Even we invoke the same file operations in
different orders. It makes the file system transit to different
states. For example, there are two operations WriteFile(1) and
DeleteFile(2), which write data to file 1 and delete file 2,
respectively. In the user’s viewpoint, these two operations work
for two independent files and generate the same result regardless
of their order. However, inside the file system, WriteFile(1) may
allocate a new block for file 1, and DeleteFile(2) reclaims blocks
that are used for file 2. Invoking DeleteFile(2) and WriteFile(1)
in the different order makes the file system allocates different
blocks for file 1, which results in different file system’s states.
When an unexpected power outage happens during the two
operations, different orders may result in some different subtle
errors.

In this work, we searched the whole state space of the file
system by exhaust all possible file operations to find out corner-
case errors. In this work, we designed a tester model, which
generates all possible operations for each file system state. It
invokes these operations to the file system and lets the file
system transit to respective successor states. Then the tester
model generates and invokes all possible operations for each
successor state. Repeating these steps from the initial state, we
can travel the whole file system’s state space. In our tester model
implementation, we use Promela’s nondeterministic statements
do-od and if-fi to exhaust all possible operations. The tester
model also supports concurrently accessing by running multi
tester processes at the same time.

 Storage model

The storage model is used to store file system data like the
storage device in the actual system. Our storage model is treated
as a block device, which has 16 blocks with 4 bytes for each
block. The storage model supports block read and block write
operations. Considering the real storage device has a parity code
to hold the data integrity for each block, the read and write
operations in our storage model work atomically. This
abstraction can help to reduce the model scale. Since the
storage’s density and capabilities are fixed and hard-coded, we
omit the features for handshaking operations.

Fig. 4. State machine of CreateFile for the link-type file mapping model.

103

 Environment model

The environment model is used to simulate external failure
like an unexpected power outage. It issues reset signal
asynchronously to the file mapping model. With the help of the
SPIN model checker, it can exhaust all the state between two
asynchronous sub-models. It means that we can evaluate all the
conditions of when the power outage happens. All the other sub-
models enter a ready state after reset and send a ready signal to
the environment model. After getting the ready signal, the
environment model performs an off-line check to evaluate if the
file system holds all properties, and then let the file system start
again. We will introduce the off-line checking in the following
sections.

C. Properties of file systems
Since a file system is used to organize and store data,

keeping data correct is the most critical and essential request for
the file system. The data correctness means that when a user
reads data, the value must equal when it was written. Besides the
data correctness, the file system also needs to keep healthy
during operations. We defined four properties to indicate the file
system’s correctness. Three of them are for the file system’s data
consistency, and one of them is for the file data’s correctness. If
the file system does not hold one of the properties, we say there
is an error. If an error causes data corruption, we consider it as a
critical error. Otherwise, it is a non-critical error. TABLE I gives
a summary of the four properties of a file system.

We define some notations for our abstracted file systems.
The sort of Block is an abstract type that represents the physical
blocks of the storage system. We define File as a resizable of
Block where File=ArrayOf(Block). We also define FS as a
resizable of File to represent the abstract of file systems where
FS=ArrayOf(File).

 No dead block

This property is a consistent request for the block assignment
in the file system. The block which is marked allocated, it must
be assigned to some file. This property can be described in the
following formula.

block . the block is allocated file in FS block in file

If the file system does not hold this property, there is some dead
space in the file system that cannot be reclaimed. So it results in
that the available area in the file system becomes less and less.
Violating this property causes some blocks of waste. However,

it does not cause data loss. We can reclaim the dead blocks when
we detect them. Hence a “dead block” error is a non-critical error.

To check if a block is a “dead block”, we need to scan all the
files and check if the block is assigned. It is difficult to check
this property during file operations. So we designed an off-line
checking. We run the off-line checking before we mount the file
system. We will describe the off-line checking in the following
segment.

 No lost block

Contrary to the dead block, the lost block means a block
which is assigned to a file, but it is not allocated. It can be
described in the following formula.

 file in FS . block in file block is allocated

The file system may assign the lost block to another file again.
If the second file writes data to the block, the original data is
overwritten and results in data corruption. Hence, the “lost block”
error is critical. We detect this error both on-line and off-line.

 No double pointed block

In the file mapping model, one block can only be assigned to
one file. It can be described in the following formula.

 fi, fj in FS . fi ≠ fj Bi∩Bj=Ø

Where Bi, Bj are defined as sets of blocks in the block array of
file fi and fj. Some file systems support symbol links or hard links.
Since these features belong to the file path mapping layer, they
are out of range for this thesis. If one block is assigned to more
than one file, or assigned twice in the same file, the second file’s
data may overwrite the first file’s data in the same physical block.
Hence, violating this property may result in data corruption. The
“double-pointed” error is critical. We can only check this
property off-line because detecting the double-pointed blocks
need to scan all files. It is challenging to do on-line checking.

 The correctness of the file contents

The correctness of file contents is the necessary request for
a file system. Each data read from a file should be the same as
what it was written.

 file i b. i<sizeof(file) read(write(fs, file, i, b), file, i)=b

Where the function fs’=write(fs, f, i, b) is a write operation,
which writes a block b to the index i of the file f in the file system
fs, and it returns the new state of the file system fs’. The function
b=read(fs, file, i) is a read operation, which returns a block from

TABLE I. SUMMARY OF THE FILE SYSTEM PROPERTIES

Error mode Description Result Error level Recover How to check
File
system

Dead block Block is allocated but not
assigned to a file

Make valid capacity loss, no
data corruption

Non-
critical

Yes Off-line

Lost block A block is assigned to a file
but not allocated

Causes file data corruption
Causes block double pointed

Critical No On-line and
Off-line

Double pointer More than one pointer
points to a block

Causes data corruption
Causes data conflict

Critical No Off-line

File Contents error The data read from the file
does not equal we written

Data corruption Critical No On-line

104

the index i of the file f in the file system fs. Violating this
property results in a critical error. This property is checked on-
line in a designed subroutine. We designed reference files to
check the correctness of the file contents. A reference file is a
resizable array. For the facility of implementation, we use a fix-
sized array and a length field to describe the reference file. Each
valid concrete file has a corresponding reference file. The
reference file records the length of which the concrete file
should be. When we write data to the concrete file, we write the
same value to the same location in the corresponding reference
file. In the subroutine, we check if the concrete file has the same
length with its corresponding reference file. Then we compare
the two files’ contents one byte by one. If the checking
subroutine finds different content, it reports violating assertion
to the model checking.

 Checking properties

In the model checking, we use the assert statements to check
if the properties are held. This method allows us to check all
properties in a single execution of the verification. The
properties are checked on-line or off-line. The on-line checking
means we check the properties when the file system is mounted.
For example, when we read or write a file’s data block, we verify
if the block is allocated. Otherwise, a “lost block” error is
detected. The “lost block” property and file contents are checked
on-line.

The off-line checking is invoked in the environment model.
When a simulated power outage happens, the environment
model reset all other models, then invoke the off-line checking
before re-mount the file system. We designed an off-line
checking function to checked “lost block”, “dead block”, and
“doubled-pointed block”. In the off-line checking, we scan the
blocks twice. In the first scan, we check that if all blocks in each
file are allocated. If not, we detect a “lost block” error. Then we
mark these blocks as checked. If a block has already been
marked, we detect it as a “double-pointed” error. After this scan,
all allocated blocks should be marked. Then in the second scan,
we check that if all the allocated blocks are marked. If not, we
detect it as a “dead block” error.

Finally, we created both two types of file system models by
Promela in three files in a total of 1770 lines. The storage model,
which is shared with both file system models, is separated into
the file “storage.pml” with 105 lines. The link-type file mapping
model, which contains a copy of the environment model and the
test model, is described in the file “link.pml” in 744 lines. The
index-type file mapping model is described in the file
“index.pml” in 921 lines. Similar to the link-type one, it also
contains a copy of the environment and the tester models.
TABLE II gives a summary of Promela models.

IV. VERIFICATION
We verified both types of file system models. For each type

model, we verified it in both single-thread mode and multi-
thread mode. We run the verification by the SPIN using DFS
(depth-first searching) algorithm. For the space-efficient
consideration, we chose the BITSTATE hash to compress the
state. BITSTATE HASHING is a lossy compression algorithm,
but it has more space-efficient than a regular hash table.

At first, we allowed the environment model to send a reset
repeatedly and did not limit the reset times. This method causes
the verifier to reach the max searching depth soon. As a solution,
we limited the environment model sending reset at most twice.
Since the file system returns to a consistent state after it recovers
from the power outage, more resets do not cause new errors.
These efforts allow the model-checking to complete the

searching less than 3x108 depth.

A. Model checking for single-thread mode
First, we checked the file system models in the single-thread

mode. We confirmed that the model had no error in normal
execution without a power outage. After we imported an
unexpected power outage, we found some counterexamples. Fig.
5 shows one of the examples of the double-pointed error in the
link-type file mapping model.

In the typical case, when the tester calls the file system to
create a file (1:CreateFile(0)), the file system searches empty
blocks in the FAT (1.2:FindCluster()). When it finds an unused
block, the file system assigns the block to the file and update its
inode. Then the file system marks the block is allocated by
setting the block’s entry to a particular value of end-of-chain.
Finally, the file system writes back the file’s inode

TABLE II. SUMMARIZE OF THE FILE SYSTEM MODELS

File Dependency Contents Scale
(lines)

storage.pml non Storage model 105
link.pml storage.pml Link-type file mapping model,

Tester model,
Environment model,

744

Index.pml storage.pml Index type file mapping model,
Tester model,
Environment model,

921

Fig. 5. Counterexample of double pointed

105

(1.3:Write(inode)) and the FAT (1.4:Write(fat))to the storage.
The data between inodes and FAT should keep consistency.

In the error case, an unexpected power outage happened
between writing inode and FAT. After the file system recovered
from the power outage, the inode was updated, but the FAT not.
It means that the block was assigned in the file viewpoint.
However, the file system still considered the block as free. When
the user asked the file system to create another file, the file
system may assign the same block to it. So, the double-pointed
error happened. If both files wrote data to the block, either data
was damaged, and the data corruption happened.

Regarding the cause of the problem, we consider it is a data
consistency issue. Each file operation needs to write and update
some data which should keep consistency. Usually, these
consistent data are not stored adjacent. So we need to update all
these consistent data separated into several write commands.
These sequence of write commands may be interrupted by a
power outage or other external failures.

In our counterexample, create a file need to update the file’s
inode and the global FAT. However, file 0’s inode and the FAT
are separated. We invoke two write commands to update the
inode and the FAT, respectively. When the simulated power
outage happened between writing inode and FAT, the data
consistency is broken. The brokenness of the consistency makes
a conflict between the file and the file system about the assigned
block. It results in the double-pointed block error.

To keep the data consistent, we consider using the volatile
cache in the storage device. During the file operation, all the data
written to the storage is saved in the volatile cache first. When
all the consistent data are ready, the file system issues a FLUSH
command to let the storage device move all cached data to the
non-volatile media. Since the FLUSH command is invoked
inside the storage device, we can consider it as an atomic
invoking. In this case, if a power outage happened during the file
operation, all update data in the volatile cache is discarded. The
data in the non-volatile media can keep in a consistent state.

Following this idea, we implemented the volatile cache
feature in the storage model. For convenient implementation
considerations, we designed a cache which has the same
capacity of the storage device. After the storage model reset (or
power on), we load all data in the non-volatile media to the cache.
During runtime, all the data is written to and read from the cache.
If the file system issues a FLUSH command, we copy all data
from the cache to the non-volatile media. If any power outage
happened, the data in the cache is restored by the non-volatile
data. It means all the data written after the last FLASH command
is discarded. We checked both types of the file mapping models
using the new storage model in the SPIN; we cannot detect any

error in the single thread mode even power outage happened.
TABLE III presents the checking result using this mechanism.

B. Model checking for multi-thread mode
When we evaluate the file system model in the multi-thread

mode, we still found some critical errors. The above mechanism
does not affect the multi-thread mode. Fig. 6 presents a
counterexample of a lost block error. In this counterexample, we
have two threads, and we are invoking create file operation in
the thread 1 (1:CeateFile(0))and invoking delete file operation
in another thread (2:DeleteFile(1)). In the create operation, the
file system loads the FAT (1.1:Read(inode, fat)), finds a free
block (1.2:FindCluster()), updates the inode and FAT, writes
them back to the storage (1.3:Write(inode) and 1.4:Write(fat))
and issues FLUSH command (1.5:Flush()) to close the file. In
the delete operation, the file system reclaims all the blocks used

TABLE III. VERIFICATION RESULT WITH CACHE SOLUTION

Error mode Error level Link type Index type
Single thread Multi thread Single thread Multi thread

File system Dead block Non-critical No error Not Check No error Not Check
Lost block Critical No error Error No error Error
Double pointer Critical No error Error No error Error

File Error content Critical No error Error No error Error

Fig. 6. Counterexample for multi thread mode

106

by the file (2.2:RecycleCluster()), updates the FAT and inode,
writes them to the storage(2.3:Write(fat) and 2.4:Write(inode)),
and finally issues the FLUSH command (2.5:Flush()). In the
user’s viewpoint, these two operations are invoked concurrently.
However, because the storage does not support concurrent
operations, the file system needs to serialize the storage
commands and issues them alternately to the storage device.
When the DeleteFile operation issues the FLUSH command, it
let all the cache data store to the non-volatile media, including
the data updated by thread 1 (the inode of file 0 in this
counterexample). Because the storage’s cache does not
distinguish the data from different threads. This behavior makes
the thread 1’s data break (the inode has stored, but the fat has
not) if a power outage happens just after the FLUSH command
from the thread 2 (2.5:Flush()). Hence, to improve the file
system’s robustness for multi-thread access, it is necessary to
find a mechanism that does not depend on the storage cache.

According to the counterexamples, the error always happens
in the case of allocating a new block. When we allocate a new
block and assign it to a file, we need to update several entries in
the mapping table and the block allocation table. Usually, the
issue happens between storing the upper layer mapping table and
low layer mapping table, or between the mapping table and the
allocation table. In the link-type file mapping model, the upper
layer is the start block entry in the inode; the lower layer is the
block entries in the FAT. The block allocation table shares the
FAT with the mapping table. In the example, when the write
sequence is broken after updating the inode or before updating
the FAT by an external power outage or the FLUSH command
for other threads, the data consistency is broken, and then some
critical errors may happen.

C. Improvement of robustness
We found that it is difficult to avoid all the errors, but we can

avoid critical errors by adjusting the order of writing data in each
file operation. In the file system, the file block mapping is a
hierarchy structure. It is layered by the pointer order. In the link-
type file mapping model, the start block entry in the inode points
to the block-chain in the FAT and the entry in the block-chain
points to the data block. The top layer is the start block entry in
the inode, the second layer is a block-chain, and the lowest layer
is the data block. In the index-type file mapping model, the entry
of the index table in the inode points to an indirect index table,
the entry in the indirect index table points to a double indirect
index table, and so on until it points to a data block. The top layer
is the index table in the inode, then the indirect index tables and
the lowest layer is the data blocks.

According to the block and pointer dependency, we
proposed a mechanism to improve the file systems’ consistency
during the power outage. We suggest an updating order that is

writing a pointed-to block to disk before the entry that points to
it when allocating a new block, and that reinitializing or reusing
a pointed-to block to disk after removing the entry that points to
it when reclaiming a block for reusing. Following this rule, we
can ensure that the entries never point to an invalid or conflicted
block. This mechanism can help the file system to avoid all
critical errors; even the operations are broken by an unexpected
power outage.

For the practice of our models, we modified both types of
file mapping models as the following mechanism. For the link-
type file mapping model, the block allocation table shares the
FAT with the mapping table. In the create file operation, when
we assign a new block to a new file, first, we mark a free block
to allocated state in the FAT and write the FAT to the storage.
Secondly, we let the start block filed in the inode point to the
block, which is allocated and write the inode to the storage. In
the delete file operation, when we reclaim the blocks of a file,
first, we clear the start block field in the inode first and write it
to the storage. Then, clear the entry from the blockchain's head
to the tail in the FAT, and write the FAT to the storage.

For the index-type file mapping model, the block allocation
is stored in the bitmap. In the create file operation, first, we
allocate a data block by marking it as used in the bitmap.
Secondly, if a new indirect index block is necessary, we allocate
another block by marking it in the bitmap, then let the entry in
the indirect index block point to the data block allocated, and
write the indirect index block to the storage. Finally, let the entry
in the inode point to the indirect index block and write the inode
to the storage. In the delete file operation, first, we clear the
index table in the inode and write it to the storage. Then we clear
the indirect index table if it exists. Finally, we mark the related
blocks as free in the bitmap and write the bitmap to the storage.
In this case, it needs to take some additional memory to
remember the upper layer index table temporally.

We evaluated both file system models with the above
mechanism. First, we checked all of the four properties. We
detected the dead block error in both file system models. Since
the “dead block” error is a non-critical error, we disabled
aborting from the “dead block” error in the off-line checking and
verified the model again. The result did not show any errors.

Finally, we run the verifier four times to cover both types of
file mapping models not only in single-thread mode but also in
multi-thread mode. TABLE IV summarizes the verification
result for both types of file mapping models. The result shows
that we cannot detect the critical errors in our file system models.
According to that, we ensure that our mechanism can improve
the file systems’ robustness that preventing the file systems from
critical errors, even the operations are interrupted by an
unexpected power outage.

TABLE IV. VERIFICATION RESULT OF THE FILE SYSTEMS

Error mode Error level Link type Index type
Single thread Multi thread Single thread Multi thread

file system dead block non-critical no error repaired no error repaired
Lost block critical no error no error no error no error
double pointer critical no error no error no error no error

file error content critical no error no error no error no error

107

D. Evaluate the concrete file system
Following the counterexample trace, we find the same error

in the referenced source code of “Ultra-Embedded FAT IO
Library[21]”.

In the source code of the _create_file() function, we found
that write order issue (See Fig. 7). In this function, the file
system allocates a free cluster by calling the function
fatfs_allocate_free_space() (line 05). In this function, it only
updates the FAT table in the memory, instead write the FAT
table back to the storage. Then the file system saves the file entry,
which includes the start cluster into its parent directory in the
function of fatfs_add_file_entry() (line 11). Finally, the file
system writes back the FAT table to the storage in the function
of fatfs_fat_purge() (line 20). These operations violate the rule
that “write the pointed-to object before the object that points to
it”.

We did a power-outage simulation test of creating a file. We
call the _create_file() function to create a test file in the root
directory, we write about two sectors of data to the file and then
close the file. We recorded the write command sequence of these
operations according to the log of the storage simulator (See Fig.
8). We found that the file system issued four write commands to
the storage. We define these commands as W1, W2, W3, W4. The
1st write (W1, LBA 0x32, the location of the root dir) is used to
save the file entry to its parent directory (the root in this test).
The 2nd write (W2, LBA 0x08, the location of the FAT) is used
to update the FAT tab. Then the file system writes the user data
by the 3rd write command (W3, LBA 0x52, the location of the

file). Finally, it writes the file entry again to update the file
length by the 4th write command (W4, LBA 0x32).

In order to simulate the power-outage after each writing
command, we prepare a set of disk images. The original disk
image is called as img0. Then, we invoke the 1st write command
W1 to the img0 and get a new disk image img1. Then we invoke
the W2 on the img1 and get img2. And so on, we can get img3
and img4. These images img1, .., img4 present the disk status
when the power-outage happens after command W1, .., W4,
respectively. We run the fsck on these images to check if any
errors happened after power-outage.

As a result, we detected a lost block error on img1. It means
if a power-outage happens between the 1st and the 2nd write
command (we suppose that the write command is atomic and
cannot be broken by the power outage), a consistent critical error
happens in the file system. The consistent error happens because
the file entry in the root directory is stored, but the FAT table
not. The failure mode matches the counterexample in the model
checking.

According to the method which has been verified in the
above section, for the link-type file system, it is necessary to
store the block allocation information to the file allocation table
first, then update the file entry in the root dir. In this issue, we
added to line 11 (See Fig. 10) to make the file system write back
the FAT table before it stores the file entry.

We redo the above power-outage test on the fixed file system.
Fig. 9 shows the write command log of creating a file with the

W1: write lba=00000032, secs=1 // write root dir
W2: write lba=00000008, secs=1 // write FAT
W3: write lba=00000052, secs=2 // write file
W4: write lba=00000032, secs=1 // write root dir

Fig. 8 Write command log for the wrong order.

01: static FL_FILE* _create_file(const char *filename)
02: {
 ... Sanity check and initialize ...
 ... Open the parent directory ...
03: // Create the file space for the file (at least one clusters worth!)
04: file->startcluster = 0;
05: if (!fatfs_allocate_free_space(&_fs, 1, &file->startcluster, 1))
06: {
07: _free_file(file);
08: return NULL;
09: }
 ... file name processing...
10: // Add file to disk
11: if (!fatfs_add_file_entry(
12: &_fs, file->parentcluster, (char*)file->filename,
13: (char*)file->shortfilename, file->startcluster, 0, 0))
14: {
15: // Delete allocated space
16: fatfs_free_cluster_chain(&_fs, file->startcluster);
17: _free_file(file);
18: return NULL;
19: }
 ... set general attributes ...
20: fatfs_fat_purge(&_fs);
21: return file;
22: }

Fig. 7 The original source code of _create_file() in the Ultra-Embedded FAT IO

W1: write lba=00000008, secs=1 // write FAT
W2: write lba=00000032, secs=1 // write root dir
W3: write lba=00000052, secs=2 // write file
W4: write lba=00000032, secs=1 // write root dir

Fig. 9 Write command log for the correct order

108

fix. It shows writing the FAT table (W1, LBA 0x08) before
writing the file entry (W2, LBA 0x32). Because the FAT table is
not changed after line 11, the function fatfs_fat_purge() in line
22 does not write FAT again. In this case, we can only detect a
dead block error in the img1, and there is no data loss or other
critical error detected. This result matches the conclusion in the
above model checking.

V. EVALUATION
In this work, we designed two file system models from the

mainstream real file systems to comprehensively evaluate the
file systems’ robustness. With the help of the model checking
method on these models, we detected some critical errors when
the unexpected power outage happens on the file systems. And
then, we provided a mechanism to improved the file systems’
robustness. Finally, we verified the absence of critical errors on
the improved file systems. TABLE V presents the verification
time for each mode. It takes about 4.9 hours to run four
verifications on our desktop PC, with Intel Core i7-8700K CPU,
16GB memory, and Windows 10 64bit.

The first advantage is that our models cover most of the
mainstream file systems and exhaustive conditions like both
single-thread and multi-thread mode, and multiple properties.
We divided the mainstream file systems into link-type and
index-type according to their file mapping algorithm and
designed two models to cover these file systems. Comparing the
two kinds of file systems, TABLE III and TABLE IV show that
the link-type and the index-type file systems have the same
robustness. Regarding the implementation of these two models,
TABLE II shows that it costs 744 lines to implement the link-
type model, while to implement the index type in the same scale,
it needs 921 lines. It means that implementing the link type file
system is more comfortable than implementing the index type
one. However, the index-type file system is more efficient in the

multi-thread because each file manages the file mapping data in
local. These behaviors result that more mobile applications like
USB Memory use the link-type file system, and more desktop
applications like Windows or Linux use the index-type file
system.

Comparing the verification result, TABLE V shows that the
single-thread model has a smaller state space and more
comfortable to check than the multi-thread mode. The single-
thread model keeps data consistent easier than the multi-thread
model when the unexpected power outage happens. The volatile
cache improves the single-thread model’s robustness. However,
it has no help for the multi-thread model. The method of
appropriate write-command order improves the robustness for
both single-thread and multi-thread.

The second advantage of our model is that we can find
corner-case errors in the file systems within an acceptable
duration on the desktop PC. It is difficult to find the corner-case
errors caused by power outage without checking the whole file
systems’ states. We abstract the file mapping model from the file
system and scale down the model size. This method helps to
avoid the state explosion when we exhaust the model. In the file
system model, we also design the on-line checker and off-line
checker, which allow us to check all the file system properties
in one execution. The checkers helps to reduce the total
execution time for the comprehensive model checking.

The third advantage is that the model helps us to find a
mechanism that improves the file systems’ robustness. We recall
the corner-case errors in the real file system, and fixed these
errors and improved the file systems’ robustness by analyzing
the trace of the counterexamples. Finally, we verify that the
improved file systems hold all critical properties, even the
unexpected power outage happens. Moreover, the mechanism of
the improvement covers most of the mainstream file systems,

01: static FL_FILE* _create_file(const char *filename)
02: {

... Sanity check and initialize ...

... Open the parent directory ...
03: // Create the file space for the file (at least one clusters worth!)
04: file->startcluster = 0;
05: if (!fatfs_allocate_free_space(&_fs, 1, &file->startcluster, 1))
06: {
07: _free_file(file);
08: return NULL;
09: }
10: //<SPOR> save fat to fix spor issue
11: fatfs_fat_purge(&_fs);

... file name processing...
12: // Add file to disk
13: if (!fatfs_add_file_entry(
14: &_fs, file->parentcluster, (char*)file->filename,
15: (char*)file->shortfilename, file->startcluster, 0, 0))
16: {
17: // Delete allocated space
18: fatfs_free_cluster_chain(&_fs, file->startcluster);
19: _free_file(file);
20: return NULL;
21: }

... set general attributes ...
22: fatfs_fat_purge(&_fs);
23: return file;
24: }

Fig. 8 The fixed _create_file() in the Ultra-Embedded FAT IO

109

and it does not depend on external tools nor additional journal
operations.

However, our work is subjected to the following threats to
validity. 1) We defined four properties of file systems’
correctness by our experiment. In our experiment, we found that
if these four properties are held, the file system should be no
error on data integrity. These properties may not be sufficient
for evaluating the file system. To minimize the risk of missing
properties, we designed a reference file system, which can be
used to check the files’ data integrity. 2) There may be some
mistakes during the abstracting model from the real file system.
To minimize the risk, we performed a special designed test on
the real file systems to reproduce the counterexample in the
model checking. Then we verified the issues were fixed in the
real file systems by the solutions.

There is also a limitation to this work. Our model does not
present the directory part of the file systems, so it cannot detect
the errors in the directory data structures. Different file systems
implements manage the directory data structures in various
algorithms. Usually, the directory has a tree structure. To check
the directory mapping model requests too massive resources.
We will try to check the file system, including the directory
mapping model in the future works.

VI. SUMMARY
In this work, we comprehensively evaluated the file systems’

robustness in the presence of the unexpected power outage. We
designed models from both link type and index type file systems.
We also defined the properties of the file systems’ correctness
and verified the models by model checking. As a result, we
found a critical error that can be encountered in a real file system.
In the verification, we obtained a counterexample, which makes
it possible to find a root cause of the error and how it should be
fixed. According to this analysis of the error, we proposed a
mechanism to improve the file systems’ robustness.

We adopted the two-layer mapping in modeling file systems,
which allows us to abstract concrete systems and avoid the state
explosion in the model checking. We think that it could be useful
for designing a new file system such as a NAND FLASH file
system. We also found a mechanism to update a dynamic
mapping system so that it can prevent data inconsistency issues.
This mechanism could be useful for the other mapping based
storage systems such as the address mapping of SSD.

We would like to continue the investigation of the file
systems’ robustness, including the file path mapping, which is
out of scope at this moment. Taking it into account may cause
the state explosion, but proposing a method to mitigate it is our
future work.

REFERENCES

[1] G. J. Holzmann, The SPIN Model Checker Primer and Reference Manual,
Addison Wesley, 2004.

[2] C. Baier and J. Katoen. Principles of Model Checking, The MIT Press,
2008.

[3] K. Arkoudas, K. Zee, V. Kuncak, and M. C. Rinard. “On Verifying a File
System Implementation”, in International Conference on Formal
Engineering Methods, vol. 3308 of LNCS, p. 373-390, 2004.

[4] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. “Using model
checking to find serious file system errors”, in USENIX Symposium of
Operation System Design and Implementation, p. 273-288, 2004.

[5] A. Galloway, G. Luttgen, J. T. Muhlberg, and R. Siminiceanu, “Model-
Checking the Linux Virtual File System”, in Verification, Model
Checking and Abastract Interpretation, vol. 5403 of LNCS, p. 74-88,
2009.

[6] A. Galloway, J. T. Muhlberg, R. Siminiceanu, and G. Lutgen. “Model-
checking part of a Linux file system”, Tech. Report. YCS-2007-423, U.
of York, UK, 2007

[7] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. R. Engle. “Automatically
Generating Malicious Disks using Symbolic Execution”, in IEEE
Symposiumo on Security and Privacy, p. 243-257, 2006.

[8] O. R. Gatla, M. Hameed, M. Zheng, V. Dubeyko, A. Manzanares, F.
Blagojevic, C. Guyot, and R. Mateescu. “Towards Robust File System
Checkers”, in USENIX Conference of File and Sotrage Technologies, p.
105–121, 2018.

[9] D. P. Bovet and M. Cesati. Understanding the Linux Kernel, O’Reilly,
2002.

[10] E. M. Clarke, T. A. Henzinger, H. Veith and R. Bloem, Handbook of
Model Checking, Springer International Publishing AG, 2018.

[11] C. Cadar, P. Twohey, V. Ganesh, and D. Engler, “EXE: A System for
Automatically Generating Inputs of Death Using Symbolic Execution”,
in Conference on Computer and Communications Security, p. 322-335,
Oct. 2006.

[12] M. Kim, Y. Choi, Y. Kim, and H. Kim, “Formal Verification of a Flash
Memory Device Driver – an Experience Report”, in Spin Workshop,
LNCS 5156, p. 144-159, LA, USA, 2008.

[13] M. Kim and Y. Kim, “Concolic Testing of the Mult-sector Read
Operation for Flash Memory File System”, in Brazilian Symposium on
Formal Methods, LNCS 5902, p. 251-265, Gramado, Brazil, 2009

[14] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak and X.
Wang, “Specifying and Checking File System Crash-Consistency
Models”, in ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, p. 83-98, NY, USA,
2016

[15] “The Ext2 file system,” sourceforge.net, [Online]. Available:
http://e2fsprogs.sourceforge.net/ext2.html

[16] “File Allocation Table,” wikipedia.org, [Online]. Available:
https://en.wikipedia.org/wiki/File_Allocation_Table

[17] “File System,” wikipedia.org, [Online]. Available:
https://en.wikipedia.org/wiki/File_system

[18] “SPIN model checker,” wikipedia.org, [Online]. Available:
https://en.wikipedia.org/wiki/SPIN_model_checker

[19] “Database transaction,” wikipedia.org, [Online]. Available:
https://en.wikipedia.org/wiki/Database_transaction#Transactional_filesy
stems

[20] “Commit (data management),” wikipedia.org, [Online]. Available:
https://en.wikipedia.org/wiki/Commit_(data_management)

[21] “Ultra-Embedded FAT16/32 File IO Library,” ultra-embedded.com,
[Online]. Available: http://ultra-embedded.com/fat_filelib/

[22] “Dokan,” dokan-dev.github.io, [Online]. Available: https://dokan-
dev.github.io

[23] J. Corbet. “ext4 and data loss” lwn.net, [Online]. Available:
http://lwn.net/Articles/322823

TABLE V. SUMMARY OF THE VERIFICATION RESULT

Model Depth States Transitions Mem
 (GB)

Time
(hrs)

Link
type

single-th 763408 0.75x1010 1.71x1010 4.67 0.82
multi-th 2652768 1.20x1010 3.83x1010 4.73 1.81

Index
type

single-th 3449 0.56x1010 1.15x1010 4.64 0.60
multi-th 37686 1.10x1010 2.86x1010 4.65 1.66

110

