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Abstract—File systems are used to organize data on storage 
devices. The file systems may crash due to external failures, such 
as an unexpected power outage. Therefore, the robustness of the 
file system is essential. Although some existing works evaluated the 
robustness of file systems, they are not comprehensive enough and 
cost many resources. In this work, we design a file system model 
and verify properties related to the correctness of the file using the 
SPIN model checker. The robustness of the file system has been 
comprehensively evaluated in both single-thread and multi-thread 
modes. There is a critical error in the file system. By analyzing 
counterexamples given by model checking, we propose a 
mechanism to prevent it. Based on the mechanism, the robustness 
of the file system is effectively improved. 

Keywords—file system, robustness, power outage, model 
checking, SPIN, Promela 

 

I. INTRODUCTION 
File systems are widely used to organize data on storage 

devices. A file system separates the data into pieces that we call 
them files. The files make it easy to isolate and identify data. 
Generally, the file system organizes these files in a tree structure. 
The files are the leaf nodes in the tree, while the non-leaf nodes 
indicate directories in the file system. 

Usually, a file system works as a kernel module in the 
operating system, as well, the operating system also organizes 
its system files in it. If a severe error occurs in the file system, 
massive data loss, even the operating system may crash. There 
are some reports about the file system data loss. For example, 
the 2009 “ext4 data loss” incident, where multiple users reported 
that “pretty much any file written to by any application,” 
becomes empty after a system crash [14], [23]. A very likely 
reason for the file system error is an external failure, such as 
unexpected power outage or data corruption in the storage 
device.  

Like the 2009 “ext4 data loss” incident, file operations were 
interrupted by a power outage or a system crash. It is essential 
to investigate the file systems’ robustness in the external failure 
condition, which includes data corruption in the storage device 
and interrupted file operations. Due to the help of Error 
Correction Code (ECC) technology, most of the modern storage 
devices can correct the data corruption or inform the data 

corruption to the file system, which works on the storage device. 
It allows the file system to detect the data error and prevent the 
further inconsistent of other files. On the other hand, the 
interruptions of operations, like the system crash or unexpected 
power-outage, makes the data inconsistent directly. The file 
system is challenging to detect such kind of inconsistent without 
external tools like fsck. However, the file system check tools 
usually need to scan all the storage, which may take tens of 
minutes when booting up. Some file systems introduce a journal 
feature to speed up the checking and repairing process. However, 
the file system needs to write the metadata several times to 
confirm a consistent state. This behavior does not only reduce 
the performance of writing files but also consumes more storage 
live especially for the NAND Flash.  

Moreover, there are various types of file systems used in 
different applications. These file systems implement different 
data structures and algorithms. For example, the NTFS file 
system and the ext serials file systems manage their files in an 
index table. They are widely used in Windows or Linux systems. 
Like the FAT/FAT-32 file system maintains a global block link 
table to manage its files. This file system is widely used in 
mobile applications because of easy to implement. However, 
there are fewer present works discussed the file systems’ 
robustness from a comprehensive viewpoint. Some researches 
like [3], [5], [6] proved the file system’s correctness but did not 
involve the external failures. Some researches like [4], [6], [7] 
discuss the file systems’ robustness, but they focused on 
recovery tools. Generally, the recovery tool depends on the 
individual file systems. 

In this work, we tried to comprehensively investigate the file 
system’s robustness in the condition of an unexpected power- 
outage. To cover most of the various file systems, we analyzed 
some mainstream file systems source code. According to how 
the file systems map their file’s logical address to the storage’s 
physical storage address, we can divide them into two types, the 
link type, and the index type. We developed a link-type file 
mapping model and an index-type model. Then we checked each 
model in the single thread and multi-thread mode. 

We used the model checking methodology to evaluate these 
filesystem modes. Model checking is a formal verification 
technique. Compare to the software testing or other verification 
methodologies. It can reveal even the subtle errors by 
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exhaustively exploring all possible system states and examining 
all possible scenarios. In this work, we use the SPIN model 
checker to find out some corner-case errors. The SPIN is a tool 
for evaluating the correctness of concurrent software models in 
a rigorous and mostly automated fashion [18]. SPIN’s verifier 
can detect errors, for example, accessing an array out of bounds, 
a deadlock status, or user-defined assertion. When an error is 
detected, SPIN reports the error trail, which is easy for analyzing 
and debugging. Models to be verified in SPIN are described in 
Promela (Process Meta Language), which supports the modeling 
of asynchronous distributed algorithms [18]. The Promela also 
supports nondeterministic selections in do-od and if-fi 
statements. Comparison to other model checking tools, SPIN 
allows us to use C codes in the Promela directly. Since most file 
systems are designed in C codes, embedding C in Promela 
makes us easy to create file system models. 

Power outage failures are usually caused by external events 
that are uncertain. The traditional software testing is challenging 
to find out all potential failures which are caused by uncertain 
conditions. Using the SPIN, we can develop an environment 
model that exhaustively simulates the external conditions. The 
file system is positive; it is driven by the user, which inputs the 
file operations to the file system. To simulate and exhaust all the 
possible inputs, we designed a tester model in SPIN. A correct 
file system should hold several properties. We defined four 
properties that show the file systems’ correctness. We separate 
them into critical properties and non-critical ones. Violating the 
critical properties may cause data corruption in the file system 
while violating non-critical properties not. Usually, executing 
the model checking once can only evaluate one property. In this 
work, we use the embedded C code in the SPIN to design an on-
line checker and an off-line checker. Using these two checkers, 
we can evaluate all properties in one execution.  

Using the SPIN verifier, we detected some errors in our file 
system models. We also provided a method to fix these errors 
by analyzing the counterexamples’ trace generated by SPIN. We 
used the SPIN to evaluate that there are no critical errors in the 
fixed file systems. The result shows that these fixes can improve 
the file systems’ robustness when the unexpected power outage 
happened. 

The first contribution of this work is to evaluate the file 
systems’ robustness comprehensively. Our comprehensive 
evaluation comes from the following three viewpoints. 1) We 
evaluate the file systems work not only in the single-thread 
mode but also in the multi-thread mode. 2) We evaluate the file 
systems against multiple properties that cover various kinds of 
robustness expected to them. 3) The file systems that we 
evaluate cover most mainstream file systems. 

The second contribution is that we successfully found 
corner-case errors by model checking. The model checking 
covers all the possible input and all the conditions of an 
unexpected power-outage so that we can exhaustively evaluate 
the robustness of the file systems in the external failures. We 
also need to abstract the models so that the model checking can 
be completed within an acceptable duration. 

The third contribution is to improve the file systems’ 
robustness according to the corner-case errors. We confirmed 
that the corner-case errors which were found in the abstracted 

models happen in real file systems as well. Thus, we proposed a 
mechanism which does not require to use external tools like fsck 
nor additional operations like writing journals. We also verified 
that no critical errors did not exist anymore in the improved file 
systems. 

In the following sections, first, we introduce some of the 
existing works about the file system robustness in section II. 
Next, in section III, we introduce the file system and present how 
we abstract a model from the concrete file systems. Moreover, 
we explain the fundamental methods of checking the file 
systems’ model. In section IV, we show how to evaluate the file 
system model. We present the counterexamples we detected in 
both single-thread mode and multi-thread mode. As well, we 
introduce the mechanism of the error fixing. Finally, we give a 
summary of our contribution and the advantage of this work in 
section V. 

II. RELATED WORKS 
There are some researches on file system robustness, such as 

[3]-[8]. Some of them proved the correctness of the file system, 
some of the works investigated the file system’s robustness, but 
they focus on how to recover the file system after the external 
failure. We think they are still not enough on the file systems’ 
robustness with the external failure in the case of concurrent 
access. 

Arkoudas, Zee, Kuncak & Rinard [3] present a correctness 
proof for the file system implementation with standard data 
structures and fix-sized storage. It uses the Athena theorem 
prover and employs a constructive approach for verification. 
Different from our work, this work only involves a typical case 
in single-thread mode. It does not deal with the issue caused by 
external failure or concurrency process. 

Galloway, Luttgen, Muhlberg & Siminiceanu [5] use the 
model checking method to verify the file system model, which 
is abstracted for the Linux virtual file system source code. It 
checks some safety and liveness properties of file system APIs 
in the multi-thread case. However, the Linux virtual file system 
is treated as a file system framework in the Linux kernel. The 
Linux virtual file system does not involve the detail data 
structure of concrete file systems on the storage device. 
Different from our work, this work does not deal with data 
consistency and external failure related errors. 

Yang, Sar, Twohey, Carda & Engle [7] use a symbolic 
execution for generating pathological test cases. Then it checks 
if the file system can recover from the pathological data. Yang, 
Twohey, Engler & Musuvathi [4] use model checking within the 
systematic testing of some concrete file systems. The 
verification system runs the Linux kernel, a file system test 
driver, and a permutation checker. The checker verifies that a 
file system can always recover by a recovery tool fsck. Gatla et 
al. [8] use some benchmark data to verify the file system 
recovery tool. It simulates an external failure happens in each 
step of the recovery process, and then checks if the recovery tool 
can recover again from the external failure.  

The above three pieces of works investigated the file systems’ 
robustness in external failures and recovery. However, they 
focus on the recovery process instead of the file system itself. 
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Different from these works, our work focus on the robustness of 
file systems’ data structure. We want to find a mechanism that 
can keep data consistency during external failure. Because 
usually, the recovery tools are also stored in the file system and 
may be damaged in external failures. Moreover, we want to use 
the model checking to show the absence of errors in the robust 
file systems. 

III. MODELING FILE SYSTEMS 

A. Introduction of file systems 
A file system is a part of an operating system in the modem 

computer system. It is used to organize the data on storage 
devices in serval files. Files are stored in directories. The 
directories have recursive structures, which can contain some 
sub-directory. It means that the file system organizes files in a 
tree structure. Files are the leaf nodes in the tree, while the non-
leaf nodes indicate directories in the file system. Each file or 
directory has a unique identifier consisting of a string, which is 
called file name or directory name. The string, which is called a 
file path contains directories' names from the root directory to 
the file. From a logical viewpoint, a file can be treated as an array 
of logical blocks. The data in each file can be located by a pair 
of the file path and the internal-offset. In the real storage device, 
the file is stored in several physical blocks. Usually, these blocks 
are not adjacent. The file system can be treated as a mapping 
from the pair of the file path and logical block index to a physical 
block address in the storage device. The mapping is dynamic, 
When the user creates or appends data to a file, the file system 
finds unused physical blocks, assigned the blocks to the file and 
then update the file mapping to related the physical blocks to the 
logical blocks.  

The algorithm of the file mapping depends on a concrete file 
system implementation. Among various file systems, there are 
two significant algorithms, link-type file mapping, and index-
type file mapping. The link-type file mapping is used in FAT, 
FAT32, and other file systems. The data blocks of a file are 
represented by a chain of blocks. These data blocks are not 
necessarily stored adjacent to one another on the storage device. 
The file system maintains a global link table called a file 
allocation table (FAT) to manage each file’s block-chain. The 
table contains entries for each block. The FAT does not indicate 
only the file block mapping, but also the blocks states such as 
in-use or free. Each entry contains either the number of next 
cluster in the file or else a marker indicating the end of the file 
or unused storage space. The file entry in the directory records 
the address of its first logical block. The file system can then 
traverse the FAT, looking up the physical block address of each 
logical block in the file [15]. 

Index-type block mapping is used in ext2, NTFS, and other 
file systems. The data blocks of a file are treated as a resizable 
block array. Each file maintains a local index table to manage 
the physical blocks. In the index table, each entry points to a 
physical block that the file owns. The order of the entries in the 
index table also indicates the data blocks’ order of the file. In 
order that we can efficiently use the space, the index table is 
organized hierarchically in most of the concrete file systems. In 
this case, some entries point to data blocks directly, and others 
point to indirect index blocks. Moreover, the entries in the 
indirect index blocks can also point to the double indirect index 

block. The file system also needs to maintain a global block 
bitmap, in which each bit indicates a block is in-use or free. 

There are three necessary data structures to construct a file 
system, superblock, dentry, and inode. Fig. 1 presents an outline 
of the file system’s data structure. The superblock describes the 
comm properties of a file system, such as its total size, mount 
point, and a pointer to the root directory. Usually, it is stored at 
the beginning of the file system, and there are several copies of 
the superblock for backup. The dentry objects are stored in 
directory files to describe the sub-directories or files which the 
directory contains. The dentry structure contains a sub-directory 
or file’s name, a link to its parent and siblings, and some other 
information. It also carries a reference to its corresponding inode. 
The inode data structure carries information specific to a file, 
includes file size, file permissions, time information, and file 
attributes. For the link-type file mapping model, the inode 
contains the head of the block-chain. The concrete FAT file 
systems omit the inode structure and store the related 
information into the file’s dentry structure. For the index-type 
file mapping model, the inode also contains the top level of the 
file’s index table. 

B. Approach to the modeling 
In this work, we created a Promela model to check the file 

systems. Promela (Process Meta Language) is a model language 
that is used in the model checking tool SPIN. It supports the 
modeling of asynchronous distributed algorithms as non-
deterministic automata [18].  

The model consists of 4 sub-models, as shown in Fig. 2. The 
file mapping model is what we need to check. The storage model 
is used to simulate the storage device where the file system 
stores its data. The tester model is used to generates input and 
triggers the file system module work. We used an environmental 
model to simulate the unexpected power outage. We describe 
the detail of these sub-models in the remainder of this section.  

However, to check the file system model, we still need to 
solve some problems. First, a concrete file system is complex 
and has a large scale. To check the full file system results in a 

 

Fig. 1.  Data structure of a file system.[9] 
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state explosion issue in the model checking. We need to abstract 
it from the concrete file system. Second, the file system is a 
passive module in the operating system. We need to generate 
inputs to trigger the file system work. The inputs should be 
exhaustive. Third, we need to define the correctness of the file 
system and check these properties during the model checking. 
In the following sections, we describe the detail of these items.  

 File mapping model 

A file system is a large scale data-intensive system. 
Currently, a concrete file system can support gigabyte to 
terabyte capacity. It means a file system contains several million 
or billion blocks with 4KB size each. We can ignore the user 
data in the model checking. Even there is 1% of system data 
needs to be checked, we still need to travel a considerable state 
space. 

At first, we designed a scaled file system model which 
contains only 128 blocks with 16 bytes each. We also designed 
a tool to search the file system’s state space from the initial state. 
Then we soon faced a state explosion issue. We cannot complete 
the searching for an acceptable duration. Fig. 3 presents the 
increase in state number vs. searching depth. The x-axis 
indicates the searching depth, while the y-axis indicates the 
checked state number. The solid line indicates the actual 
checked state number where the dot line curve of the exponential 
fitting of the checked state number. This result shows that the 
state number increases faster than an index increase.  

Regarding the reason for the state explosion, we consider it 
is because that the directory has a recursive structure. We 
checked the whole file system model, including the files and 
directories which can contain some sub-directories in the file 
system. When we expand a state, the quantity of its successor 
states depends on the directories and files number in the current 
state. For example, we create a sub-directory in each existing 
directory; each operation results in a new successor. In each new 
state, the directory number is one more than which in their parent 
state, so their successors also increase one. When we repeat this 
operation, the state number increases faster than Exp(n), where 
n is the depth for searching. 

As we discussed, a file system can be treated as a mapping 
from the pair of the file path and block offset to a physical block 
address. This mapping can be separated into two layers. The top 
one is a mapping from the file path to file, while the lower one 
is from the pair of the file and offset to a physical block address. 

The lower layer, we call it file mapping is the primary feature of 
file systems. Usually, the file path mapping layer is also built on 
the file mapping layer. File systems store the directory 
information in some internal files. In the robustness viewpoint, 
the file mapping layer is more critical. In this work, we abstract 
the file system as a file mapping. Then, we checked the 
robustness of both link-type and index-type file mapping models. 

We created both link and index types file mapping models 
based on concrete file systems’ source codes. For the link-type 
file mapping model, we refer to the source code of “FAT 16/32 
File IO Library v2.6”[21]. Since our file system model has a 
fixed scale, we omitted the superblock and hard-coded inherent 
properties, such as total size, block size. We removed the 
directory structures in the abstract model. We omitted the dentry 
structure and designed four fixed inodes to describe max to 4 
files. We also omitted file attributes and time information which 
are not interested in the robustness investigation. Each inode 
contains 2 bytes, 1 byte for the file length, and 1 byte for the start 
block address. We used two blocks to store a total of 4 inodes. 
In the concrete FAT file system, there are two mirrored FATs 
for backup. We omitted one backup table and designed one FAT. 
The FAT takes three blocks with a total of 12 entries to indicate 
the remained 11 data blocks. Hence, the abstracted link-type file 
mapping model has a total of 16 blocks with 4 bytes each. It can 
contain max to 4 files with a total of 11 blocks of user data. 

We designed four operations, CreateFile, DeleteFile, 
WriteFile, and ReadFile, for each file system model. We 
abstract the operations from the source code and convert them 
to a state machine. Then we describe the state machine in the 
Promela model. Moreover, we describe the state transitions and 
nondeterministic selections in Promela language and described 
the data structures and the states’ internal process in C code.  

Fig. 4 presents the state machine of the CreateFile operation 
in the link-type file mapping model. When entering the 
operation, we check if the requested file has been created by 
check the file’s inode. If the file does not exist, we start creating 
a file. We search the FAT and try to find an empty block. If there 
is an empty block found, we assigned the block to the file by 
setting the start block address field in the file’s inode and mark 
the block as in-use in the FAT. Then, we write back the updated 
inode and FAT to the storage device. Finally, we update the 
related reference file (describe it in section III-E) and issue a 
FLUSH command (described in section IV-B) to close the file. 
In each state, we check if the file system is reset by the 
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environment model. If it is reset, we discard the current 
operation and reset the file system.  

For the index-type file mapping model, we refer to the ext2 
source code from the Linux kernel. Similar to the link-type file 
mapping model, we omitted the superblock and dentry structure. 
We also designed four inodes, each of them takes one block, 
contains 1 byte for the file length, and 3 bytes for the block index 
table. The index file mapping model supports a 2-layer index 
table. The 3rd entry in the inode points to an indirect index block, 
which is dynamically assigned from the data blocks. We also 
designed a bitmap block to indicate on block’s status, assigned 
or free. Each bit in the block indicates one data block. The 
abstracted index-type file mapping model also contains max to 
4 files with a total of 11 data blocks. The data blocks are shared 
with file data and indirect index tables. 

The index-type file mapping model has the same operations 
as the link-type model. These operations also have similar 
behaviors except assigning and reclaiming blocks. When we 
assign a block to a file in the CreateFile or WriteFile operations, 
we calculate whether the block belongs to the direct index table 
or the indirect index table by the block offset in the file. If the 
block belongs to the direct index table, we find an empty data 
block from the bitmap and set its entry in the index table in the 
file’s inode. If the block belongs to the indirect index table, we 
need to check if the indirect index block is assigned. If not, we 
allocate an empty block for the indirect index block and set its 

entry in the inode. Then we allocate another empty block for the 
data block and set its entry in the indirect index block. When we 
reclaim blocks in the DeleteFile operation, besides the data 
blocks, we also need to reclaim the indirect index block if it 
exists. 

 Tester model 

The file system works as a passive module in the operating 
system on the computer. It responds to the request from client 
applications or user operation. To check the file system model, 
we should issue operations to the file system and let it execute. 
In most file system testing tools, they designed several operation 
sequences previously, which we call a test script. Then feeds 
these scripts to the file system and check if the file system’s 
response expected or not.  

Such previously designed test scripts are not enough for this 
work. It cannot exhaust the file system’s state space, and it is 
difficult to find some corner-case error. The file system has its 
internal state; each file operation transfers the file system from 
a state to another. Even we invoke the same file operations in 
different orders. It makes the file system transit to different 
states. For example, there are two operations WriteFile(1) and 
DeleteFile(2), which write data to file 1 and delete file 2, 
respectively. In the user’s viewpoint, these two operations work 
for two independent files and generate the same result regardless 
of their order. However, inside the file system, WriteFile(1) may 
allocate a new block for file 1, and DeleteFile(2) reclaims blocks 
that are used for file 2. Invoking DeleteFile(2) and WriteFile(1) 
in the different order makes the file system allocates different 
blocks for file 1, which results in different file system’s states. 
When an unexpected power outage happens during the two 
operations, different orders may result in some different subtle 
errors. 

In this work, we searched the whole state space of the file 
system by exhaust all possible file operations to find out corner-
case errors. In this work, we designed a tester model, which 
generates all possible operations for each file system state. It 
invokes these operations to the file system and lets the file 
system transit to respective successor states. Then the tester 
model generates and invokes all possible operations for each 
successor state. Repeating these steps from the initial state, we 
can travel the whole file system’s state space. In our tester model 
implementation, we use Promela’s nondeterministic statements 
do-od and if-fi to exhaust all possible operations. The tester 
model also supports concurrently accessing by running multi 
tester processes at the same time. 

 Storage model 

The storage model is used to store file system data like the 
storage device in the actual system. Our storage model is treated 
as a block device, which has 16 blocks with 4 bytes for each 
block. The storage model supports block read and block write 
operations. Considering the real storage device has a parity code 
to hold the data integrity for each block, the read and write 
operations in our storage model work atomically. This 
abstraction can help to reduce the model scale. Since the 
storage’s density and capabilities are fixed and hard-coded, we 
omit the features for handshaking operations. 

Fig. 4. State machine of CreateFile for the link-type file mapping model. 
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 Environment model 

The environment model is used to simulate external failure 
like an unexpected power outage. It issues reset signal 
asynchronously to the file mapping model. With the help of the 
SPIN model checker, it can exhaust all the state between two 
asynchronous sub-models. It means that we can evaluate all the 
conditions of when the power outage happens. All the other sub-
models enter a ready state after reset and send a ready signal to 
the environment model. After getting the ready signal, the 
environment model performs an off-line check to evaluate if the 
file system holds all properties, and then let the file system start 
again. We will introduce the off-line checking in the following 
sections. 

C. Properties of file systems 
Since a file system is used to organize and store data, 

keeping data correct is the most critical and essential request for 
the file system. The data correctness means that when a user 
reads data, the value must equal when it was written. Besides the 
data correctness, the file system also needs to keep healthy 
during operations. We defined four properties to indicate the file 
system’s correctness. Three of them are for the file system’s data 
consistency, and one of them is for the file data’s correctness. If 
the file system does not hold one of the properties, we say there 
is an error. If an error causes data corruption, we consider it as a 
critical error. Otherwise, it is a non-critical error. TABLE I gives 
a summary of the four properties of a file system.  

We define some notations for our abstracted file systems. 
The sort of Block is an abstract type that represents the physical 
blocks of the storage system. We define File as a resizable of 
Block where File=ArrayOf(Block). We also define FS as a 
resizable of File to represent the abstract of file systems where 
FS=ArrayOf(File). 

 No dead block 

This property is a consistent request for the block assignment 
in the file system. The block which is marked allocated, it must 
be assigned to some file. This property can be described in the 
following formula. 

block . the block is allocated file in FS block in file 

If the file system does not hold this property, there is some dead 
space in the file system that cannot be reclaimed. So it results in 
that the available area in the file system becomes less and less. 
Violating this property causes some blocks of waste. However, 

it does not cause data loss. We can reclaim the dead blocks when 
we detect them. Hence a “dead block” error is a non-critical error.  

To check if a block is a “dead block”, we need to scan all the 
files and check if the block is assigned. It is difficult to check 
this property during file operations. So we designed an off-line 
checking. We run the off-line checking before we mount the file 
system. We will describe the off-line checking in the following 
segment. 

 No lost block 

Contrary to the dead block, the lost block means a block 
which is assigned to a file, but it is not allocated. It can be 
described in the following formula. 

 file in FS . block in file block is allocated  

The file system may assign the lost block to another file again. 
If the second file writes data to the block, the original data is 
overwritten and results in data corruption. Hence, the “lost block” 
error is critical. We detect this error both on-line and off-line. 

 No double pointed block 

In the file mapping model, one block can only be assigned to 
one file. It can be described in the following formula. 

 fi,  fj in FS . fi ≠ fj Bi∩Bj=Ø 

Where Bi, Bj are defined as sets of blocks in the block array of 
file fi and fj. Some file systems support symbol links or hard links. 
Since these features belong to the file path mapping layer, they 
are out of range for this thesis. If one block is assigned to more 
than one file, or assigned twice in the same file, the second file’s 
data may overwrite the first file’s data in the same physical block. 
Hence, violating this property may result in data corruption. The 
“double-pointed” error is critical. We can only check this 
property off-line because detecting the double-pointed blocks 
need to scan all files. It is challenging to do on-line checking. 

 The correctness of the file contents 

The correctness of file contents is the necessary request for 
a file system. Each data read from a file should be the same as 
what it was written.  

 file i b. i<sizeof(file)  read(write(fs, file, i, b), file, i)=b 

Where the function fs’=write(fs, f, i, b) is a write operation, 
which writes a block b to the index i of the file f in the file system 
fs, and it returns the new state of the file system fs’. The function 
b=read(fs, file, i) is a read operation, which returns a block from 

TABLE I.  SUMMARY OF THE FILE SYSTEM PROPERTIES 

Error mode Description Result Error level Recover How to check 
File 
system 

Dead block Block is allocated but not 
assigned to a file 

Make valid capacity loss, no 
data corruption 

Non-
critical 

Yes Off-line 

Lost block A block is assigned to a file 
but not allocated 

Causes file data corruption 
Causes block double pointed 

Critical No On-line and 
Off-line 

Double pointer More than one pointer 
points to a block 

Causes data corruption 
Causes data conflict 

Critical No Off-line 

File Contents error The data read from the file 
does not equal we written  

Data corruption Critical No On-line 
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the index i of the file f in the file system fs. Violating this 
property results in a critical error. This property is checked on-
line in a designed subroutine. We designed reference files to 
check the correctness of the file contents. A reference file is a 
resizable array. For the facility of implementation, we use a fix-
sized array and a length field to describe the reference file. Each 
valid concrete file has a corresponding reference file. The 
reference file records the length of which the concrete file 
should be. When we write data to the concrete file, we write the 
same value to the same location in the corresponding reference 
file. In the subroutine, we check if the concrete file has the same 
length with its corresponding reference file. Then we compare 
the two files’ contents one byte by one. If the checking 
subroutine finds different content, it reports violating assertion 
to the model checking. 

 Checking properties 

In the model checking, we use the assert statements to check 
if the properties are held. This method allows us to check all 
properties in a single execution of the verification. The 
properties are checked on-line or off-line. The on-line checking 
means we check the properties when the file system is mounted. 
For example, when we read or write a file’s data block, we verify 
if the block is allocated. Otherwise, a “lost block” error is 
detected. The “lost block” property and file contents are checked 
on-line. 

The off-line checking is invoked in the environment model. 
When a simulated power outage happens, the environment 
model reset all other models, then invoke the off-line checking 
before re-mount the file system. We designed an off-line 
checking function to checked “lost block”, “dead block”, and 
“doubled-pointed block”. In the off-line checking, we scan the 
blocks twice. In the first scan, we check that if all blocks in each 
file are allocated. If not, we detect a “lost block” error. Then we 
mark these blocks as checked. If a block has already been 
marked, we detect it as a “double-pointed” error. After this scan, 
all allocated blocks should be marked. Then in the second scan, 
we check that if all the allocated blocks are marked. If not, we 
detect it as a “dead block” error. 

Finally, we created both two types of file system models by 
Promela in three files in a total of 1770 lines. The storage model, 
which is shared with both file system models, is separated into 
the file “storage.pml” with 105 lines. The link-type file mapping 
model, which contains a copy of the environment model and the 
test model, is described in the file “link.pml” in 744 lines. The 
index-type file mapping model is described in the file 
“index.pml” in 921 lines. Similar to the link-type one, it also 
contains a copy of the environment and the tester models. 
TABLE II gives a summary of Promela models.  

IV. VERIFICATION 
We verified both types of file system models. For each type 

model, we verified it in both single-thread mode and multi-
thread mode. We run the verification by the SPIN using DFS 
(depth-first searching) algorithm. For the space-efficient 
consideration, we chose the BITSTATE hash to compress the 
state. BITSTATE HASHING is a lossy compression algorithm, 
but it has more space-efficient than a regular hash table. 

At first, we allowed the environment model to send a reset 
repeatedly and did not limit the reset times. This method causes 
the verifier to reach the max searching depth soon. As a solution, 
we limited the environment model sending reset at most twice. 
Since the file system returns to a consistent state after it recovers 
from the power outage, more resets do not cause new errors. 
These efforts allow the model-checking to complete the 

searching less than 3x108 depth.  

A. Model checking for single-thread mode 
First, we checked the file system models in the single-thread 

mode. We confirmed that the model had no error in normal 
execution without a power outage. After we imported an 
unexpected power outage, we found some counterexamples. Fig. 
5 shows one of the examples of the double-pointed error in the 
link-type file mapping model.  

In the typical case, when the tester calls the file system to 
create a file (1:CreateFile(0)), the file system searches empty 
blocks in the FAT (1.2:FindCluster()). When it finds an unused 
block, the file system assigns the block to the file and update its 
inode. Then the file system marks the block is allocated by 
setting the block’s entry to a particular value of end-of-chain. 
Finally, the file system writes back the file’s inode 

TABLE II.  SUMMARIZE OF THE FILE SYSTEM MODELS 

File Dependency Contents Scale 
(lines) 

storage.pml non Storage model 105  
link.pml storage.pml Link-type file mapping model, 

Tester model, 
Environment model, 

744  

Index.pml storage.pml Index type file mapping model, 
Tester model, 
Environment model, 

921  

 

Fig. 5. Counterexample of double pointed 
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(1.3:Write(inode)) and the FAT (1.4:Write(fat))to the storage. 
The data between inodes and FAT should keep consistency.  

In the error case, an unexpected power outage happened 
between writing inode and FAT. After the file system recovered 
from the power outage, the inode was updated, but the FAT not. 
It means that the block was assigned in the file viewpoint. 
However, the file system still considered the block as free. When 
the user asked the file system to create another file, the file 
system may assign the same block to it. So, the double-pointed 
error happened. If both files wrote data to the block, either data 
was damaged, and the data corruption happened.  

Regarding the cause of the problem, we consider it is a data 
consistency issue. Each file operation needs to write and update 
some data which should keep consistency. Usually, these 
consistent data are not stored adjacent. So we need to update all 
these consistent data separated into several write commands. 
These sequence of write commands may be interrupted by a 
power outage or other external failures.  

In our counterexample, create a file need to update the file’s 
inode and the global FAT. However, file 0’s inode and the FAT 
are separated. We invoke two write commands to update the 
inode and the FAT, respectively. When the simulated power 
outage happened between writing inode and FAT, the data 
consistency is broken. The brokenness of the consistency makes 
a conflict between the file and the file system about the assigned 
block. It results in the double-pointed block error. 

To keep the data consistent, we consider using the volatile 
cache in the storage device. During the file operation, all the data 
written to the storage is saved in the volatile cache first. When 
all the consistent data are ready, the file system issues a FLUSH 
command to let the storage device move all cached data to the 
non-volatile media. Since the FLUSH command is invoked 
inside the storage device, we can consider it as an atomic 
invoking. In this case, if a power outage happened during the file 
operation, all update data in the volatile cache is discarded. The 
data in the non-volatile media can keep in a consistent state. 

Following this idea, we implemented the volatile cache 
feature in the storage model. For convenient implementation 
considerations, we designed a cache which has the same 
capacity of the storage device. After the storage model reset (or 
power on), we load all data in the non-volatile media to the cache. 
During runtime, all the data is written to and read from the cache. 
If the file system issues a FLUSH command, we copy all data 
from the cache to the non-volatile media. If any power outage 
happened, the data in the cache is restored by the non-volatile 
data. It means all the data written after the last FLASH command 
is discarded. We checked both types of the file mapping models 
using the new storage model in the SPIN; we cannot detect any 

error in the single thread mode even power outage happened. 
TABLE III presents the checking result using this mechanism.  

B. Model checking for multi-thread mode 
When we evaluate the file system model in the multi-thread 

mode, we still found some critical errors. The above mechanism 
does not affect the multi-thread mode. Fig. 6 presents a 
counterexample of a lost block error. In this counterexample, we 
have two threads, and we are invoking create file operation in 
the thread 1 (1:CeateFile(0))and invoking delete file operation 
in another thread (2:DeleteFile(1)). In the create operation, the 
file system loads the FAT (1.1:Read(inode, fat)), finds a free 
block (1.2:FindCluster()), updates the inode and FAT, writes 
them back to the storage (1.3:Write(inode) and 1.4:Write(fat)) 
and issues FLUSH command (1.5:Flush()) to close the file. In 
the delete operation, the file system reclaims all the blocks used 

TABLE III.  VERIFICATION RESULT WITH CACHE SOLUTION 

Error mode Error level Link type Index type 
Single thread Multi thread Single thread Multi thread 

File system Dead block Non-critical No error Not Check No error Not Check 
Lost block Critical No error Error No error Error 
Double pointer Critical No error Error No error Error 

File Error content Critical No error Error No error Error 

Fig. 6. Counterexample for multi thread mode 
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by the file (2.2:RecycleCluster()), updates the FAT and inode, 
writes them to the storage(2.3:Write(fat) and 2.4:Write(inode)), 
and finally issues the FLUSH command (2.5:Flush()). In the 
user’s viewpoint, these two operations are invoked concurrently. 
However, because the storage does not support concurrent 
operations, the file system needs to serialize the storage 
commands and issues them alternately to the storage device. 
When the DeleteFile operation issues the FLUSH command, it 
let all the cache data store to the non-volatile media, including 
the data updated by thread 1 (the inode of file 0 in this 
counterexample). Because the storage’s cache does not 
distinguish the data from different threads. This behavior makes 
the thread 1’s data break (the inode has stored, but the fat has 
not) if a power outage happens just after the FLUSH command 
from the thread 2 (2.5:Flush()). Hence, to improve the file 
system’s robustness for multi-thread access, it is necessary to 
find a mechanism that does not depend on the storage cache.  

According to the counterexamples, the error always happens 
in the case of allocating a new block. When we allocate a new 
block and assign it to a file, we need to update several entries in 
the mapping table and the block allocation table. Usually, the 
issue happens between storing the upper layer mapping table and 
low layer mapping table, or between the mapping table and the 
allocation table. In the link-type file mapping model, the upper 
layer is the start block entry in the inode; the lower layer is the 
block entries in the FAT. The block allocation table shares the 
FAT with the mapping table. In the example, when the write 
sequence is broken after updating the inode or before updating 
the FAT by an external power outage or the FLUSH command 
for other threads, the data consistency is broken, and then some 
critical errors may happen. 

C. Improvement of robustness 
We found that it is difficult to avoid all the errors, but we can 

avoid critical errors by adjusting the order of writing data in each 
file operation. In the file system, the file block mapping is a 
hierarchy structure. It is layered by the pointer order. In the link-
type file mapping model, the start block entry in the inode points 
to the block-chain in the FAT and the entry in the block-chain 
points to the data block. The top layer is the start block entry in 
the inode, the second layer is a block-chain, and the lowest layer 
is the data block. In the index-type file mapping model, the entry 
of the index table in the inode points to an indirect index table, 
the entry in the indirect index table points to a double indirect 
index table, and so on until it points to a data block. The top layer 
is the index table in the inode, then the indirect index tables and 
the lowest layer is the data blocks. 

According to the block and pointer dependency, we 
proposed a mechanism to improve the file systems’ consistency 
during the power outage. We suggest an updating order that is 

writing a pointed-to block to disk before the entry that points to 
it when allocating a new block, and that reinitializing or reusing 
a pointed-to block to disk after removing the entry that points to 
it when reclaiming a block for reusing. Following this rule, we 
can ensure that the entries never point to an invalid or conflicted 
block. This mechanism can help the file system to avoid all 
critical errors; even the operations are broken by an unexpected 
power outage.  

For the practice of our models, we modified both types of 
file mapping models as the following mechanism. For the link-
type file mapping model, the block allocation table shares the 
FAT with the mapping table. In the create file operation, when 
we assign a new block to a new file, first, we mark a free block 
to allocated state in the FAT and write the FAT to the storage. 
Secondly, we let the start block filed in the inode point to the 
block, which is allocated and write the inode to the storage. In 
the delete file operation, when we reclaim the blocks of a file, 
first, we clear the start block field in the inode first and write it 
to the storage. Then, clear the entry from the blockchain's head 
to the tail in the FAT, and write the FAT to the storage. 

For the index-type file mapping model, the block allocation 
is stored in the bitmap. In the create file operation, first, we 
allocate a data block by marking it as used in the bitmap. 
Secondly, if a new indirect index block is necessary, we allocate 
another block by marking it in the bitmap, then let the entry in 
the indirect index block point to the data block allocated, and 
write the indirect index block to the storage. Finally, let the entry 
in the inode point to the indirect index block and write the inode 
to the storage. In the delete file operation, first, we clear the 
index table in the inode and write it to the storage. Then we clear 
the indirect index table if it exists. Finally, we mark the related 
blocks as free in the bitmap and write the bitmap to the storage. 
In this case, it needs to take some additional memory to 
remember the upper layer index table temporally. 

We evaluated both file system models with the above 
mechanism. First, we checked all of the four properties. We 
detected the dead block error in both file system models. Since 
the “dead block” error is a non-critical error, we disabled 
aborting from the “dead block” error in the off-line checking and 
verified the model again. The result did not show any errors. 

Finally, we run the verifier four times to cover both types of 
file mapping models not only in single-thread mode but also in 
multi-thread mode. TABLE IV summarizes the verification 
result for both types of file mapping models. The result shows 
that we cannot detect the critical errors in our file system models. 
According to that, we ensure that our mechanism can improve 
the file systems’ robustness that preventing the file systems from 
critical errors, even the operations are interrupted by an 
unexpected power outage. 

TABLE IV.  VERIFICATION RESULT OF THE FILE SYSTEMS 

Error mode Error level Link type Index type 
Single thread Multi thread Single thread Multi thread 

file system dead block non-critical no error repaired no error repaired 
Lost block critical no error no error no error no error 
double pointer critical no error no error no error no error 

file error content critical no error no error no error no error 
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D. Evaluate the concrete file system 
Following the counterexample trace, we find the same error 

in the referenced source code of “Ultra-Embedded FAT IO 
Library[21]”.  

In the source code of the _create_file() function, we found 
that write order issue (See Fig. 7). In this function, the file 
system allocates a free cluster by calling the function 
fatfs_allocate_free_space() (line 05). In this function, it only 
updates the FAT table in the memory, instead write the FAT 
table back to the storage. Then the file system saves the file entry, 
which includes the start cluster into its parent directory in the 
function of fatfs_add_file_entry() (line 11). Finally, the file 
system writes back the FAT table to the storage in the function 
of fatfs_fat_purge() (line 20). These operations violate the rule 
that “write the pointed-to object before the object that points to 
it”.  

We did a power-outage simulation test of creating a file. We 
call the _create_file() function to create a test file in the root 
directory, we write about two sectors of data to the file and then 
close the file. We recorded the write command sequence of these 
operations according to the log of the storage simulator (See Fig. 
8). We found that the file system issued four write commands to 
the storage. We define these commands as W1, W2, W3, W4. The 
1st write (W1, LBA 0x32, the location of the root dir) is used to 
save the file entry to its parent directory (the root in this test). 
The 2nd write (W2, LBA 0x08, the location of the FAT) is used 
to update the FAT tab. Then the file system writes the user data 
by the 3rd write command (W3, LBA 0x52, the location of the 

file). Finally, it writes the file entry again to update the file 
length by the 4th write command (W4, LBA 0x32).  

In order to simulate the power-outage after each writing 
command, we prepare a set of disk images. The original disk 
image is called as img0. Then, we invoke the 1st write command 
W1 to the img0 and get a new disk image img1. Then we invoke 
the W2 on the img1 and get img2. And so on, we can get img3 
and img4. These images img1, .., img4 present the disk status 
when the power-outage happens after command W1, .., W4, 
respectively. We run the fsck on these images to check if any 
errors happened after power-outage. 

As a result, we detected a lost block error on img1. It means 
if a power-outage happens between the 1st and the 2nd write 
command (we suppose that the write command is atomic and 
cannot be broken by the power outage), a consistent critical error 
happens in the file system. The consistent error happens because 
the file entry in the root directory is stored, but the FAT table 
not. The failure mode matches the counterexample in the model 
checking. 

According to the method which has been verified in the 
above section, for the link-type file system, it is necessary to 
store the block allocation information to the file allocation table 
first, then update the file entry in the root dir. In this issue, we 
added to line 11 (See Fig. 10) to make the file system write back 
the FAT table before it stores the file entry.  

We redo the above power-outage test on the fixed file system. 
Fig. 9 shows the write command log of creating a file with the 

W1: write lba=00000032, secs=1   // write root dir 
W2: write lba=00000008, secs=1   // write FAT 
W3: write lba=00000052, secs=2   // write file 
W4: write lba=00000032, secs=1   // write root dir 

Fig. 8 Write command log for the wrong order. 

01: static FL_FILE* _create_file(const char *filename) 
02: { 
        ... Sanity check and initialize ... 
        ... Open the parent directory ... 
03:   // Create the file space for the file (at least one clusters worth!) 
04:   file->startcluster = 0; 
05:   if (!fatfs_allocate_free_space(&_fs, 1, &file->startcluster, 1)) 
06:   { 
07:     _free_file(file); 
08:     return NULL; 
09:   } 
        ... file name processing... 
10:   // Add file to disk 
11:   if (!fatfs_add_file_entry( 
12:     &_fs, file->parentcluster, (char*)file->filename,  
13:     (char*)file->shortfilename, file->startcluster, 0, 0)) 
14:   { 
15:     // Delete allocated space 
16:     fatfs_free_cluster_chain(&_fs, file->startcluster); 
17:     _free_file(file); 
18:     return NULL; 
19:   } 
        ... set general attributes ... 
20:   fatfs_fat_purge(&_fs); 
21:   return file; 
22: } 

Fig. 7 The original source code of _create_file() in the Ultra-Embedded FAT IO 

W1: write lba=00000008, secs=1   // write FAT 
W2: write lba=00000032, secs=1   // write root dir 
W3: write lba=00000052, secs=2   // write file 
W4: write lba=00000032, secs=1   // write root dir 

Fig. 9 Write command log for the correct order 
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fix. It shows writing the FAT table (W1, LBA 0x08) before 
writing the file entry (W2, LBA 0x32). Because the FAT table is 
not changed after line 11, the function fatfs_fat_purge() in line 
22 does not write FAT again. In this case, we can only detect a 
dead block error in the img1, and there is no data loss or other 
critical error detected. This result matches the conclusion in the 
above model checking.  

V. EVALUATION 
In this work, we designed two file system models from the 

mainstream real file systems to comprehensively evaluate the 
file systems’ robustness. With the help of the model checking 
method on these models, we detected some critical errors when 
the unexpected power outage happens on the file systems. And 
then, we provided a mechanism to improved the file systems’ 
robustness. Finally, we verified the absence of critical errors on 
the improved file systems. TABLE V presents the verification 
time for each mode. It takes about 4.9 hours to run four 
verifications on our desktop PC, with Intel Core i7-8700K CPU, 
16GB memory, and Windows 10 64bit.  

The first advantage is that our models cover most of the 
mainstream file systems and exhaustive conditions like both 
single-thread and multi-thread mode, and multiple properties. 
We divided the mainstream file systems into link-type and 
index-type according to their file mapping algorithm and 
designed two models to cover these file systems. Comparing the 
two kinds of file systems, TABLE III and TABLE IV show that 
the link-type and the index-type file systems have the same 
robustness. Regarding the implementation of these two models, 
TABLE II shows that it costs 744 lines to implement the link-
type model, while to implement the index type in the same scale, 
it needs 921 lines. It means that implementing the link type file 
system is more comfortable than implementing the index type 
one. However, the index-type file system is more efficient in the 

multi-thread because each file manages the file mapping data in 
local. These behaviors result that more mobile applications like 
USB Memory use the link-type file system, and more desktop 
applications like Windows or Linux use the index-type file 
system. 

Comparing the verification result, TABLE V shows that the 
single-thread model has a smaller state space and more 
comfortable to check than the multi-thread mode. The single-
thread model keeps data consistent easier than the multi-thread 
model when the unexpected power outage happens. The volatile 
cache improves the single-thread model’s robustness. However, 
it has no help for the multi-thread model. The method of 
appropriate write-command order improves the robustness for 
both single-thread and multi-thread. 

The second advantage of our model is that we can find 
corner-case errors in the file systems within an acceptable 
duration on the desktop PC. It is difficult to find the corner-case 
errors caused by power outage without checking the whole file 
systems’ states. We abstract the file mapping model from the file 
system and scale down the model size. This method helps to 
avoid the state explosion when we exhaust the model. In the file 
system model, we also design the on-line checker and off-line 
checker, which allow us to check all the file system properties 
in one execution. The checkers helps to reduce the total 
execution time for the comprehensive model checking.  

The third advantage is that the model helps us to find a 
mechanism that improves the file systems’ robustness. We recall 
the corner-case errors in the real file system, and fixed these 
errors and improved the file systems’ robustness by analyzing 
the trace of the counterexamples. Finally, we verify that the 
improved file systems hold all critical properties, even the 
unexpected power outage happens. Moreover, the mechanism of 
the improvement covers most of the mainstream file systems, 

01: static FL_FILE* _create_file(const char *filename) 
02: { 

... Sanity check and initialize ... 

... Open the parent directory ... 
03:   // Create the file space for the file (at least one clusters worth!) 
04:   file->startcluster = 0; 
05:   if (!fatfs_allocate_free_space(&_fs, 1, &file->startcluster, 1)) 
06:   { 
07:     _free_file(file); 
08:     return NULL; 
09:   } 
10:   //<SPOR> save fat to fix spor issue 
11:   fatfs_fat_purge(&_fs); 

... file name processing... 
12:   // Add file to disk 
13:   if (!fatfs_add_file_entry( 
14:     &_fs, file->parentcluster, (char*)file->filename,  
15:     (char*)file->shortfilename, file->startcluster, 0, 0)) 
16:   { 
17:     // Delete allocated space 
18:     fatfs_free_cluster_chain(&_fs, file->startcluster); 
19:     _free_file(file); 
20:     return NULL; 
21:   } 

... set general attributes ... 
22:   fatfs_fat_purge(&_fs); 
23:   return file; 
24: } 

Fig. 8 The fixed _create_file() in the Ultra-Embedded FAT IO 

109



and it does not depend on external tools nor additional journal 
operations.  

However, our work is subjected to the following threats to 
validity. 1) We defined four properties of file systems’ 
correctness by our experiment. In our experiment, we found that 
if these four properties are held, the file system should be no 
error on data integrity. These properties may not be sufficient 
for evaluating the file system. To minimize the risk of missing 
properties, we designed a reference file system, which can be 
used to check the files’ data integrity. 2) There may be some 
mistakes during the abstracting model from the real file system. 
To minimize the risk, we performed a special designed test on 
the real file systems to reproduce the counterexample in the 
model checking. Then we verified the issues were fixed in the 
real file systems by the solutions. 

There is also a limitation to this work. Our model does not 
present the directory part of the file systems, so it cannot detect 
the errors in the directory data structures. Different file systems 
implements manage the directory data structures in various 
algorithms. Usually, the directory has a tree structure. To check 
the directory mapping model requests too massive resources. 
We will try to check the file system, including the directory 
mapping model in the future works. 

VI. SUMMARY 
In this work, we comprehensively evaluated the file systems’ 

robustness in the presence of the unexpected power outage. We 
designed models from both link type and index type file systems. 
We also defined the properties of the file systems’ correctness 
and verified the models by model checking. As a result, we 
found a critical error that can be encountered in a real file system. 
In the verification, we obtained a counterexample, which makes 
it possible to find a root cause of the error and how it should be 
fixed. According to this analysis of the error, we proposed a 
mechanism to improve the file systems’ robustness. 

We adopted the two-layer mapping in modeling file systems, 
which allows us to abstract concrete systems and avoid the state 
explosion in the model checking. We think that it could be useful 
for designing a new file system such as a NAND FLASH file 
system. We also found a mechanism to update a dynamic 
mapping system so that it can prevent data inconsistency issues. 
This mechanism could be useful for the other mapping based 
storage systems such as the address mapping of SSD. 

We would like to continue the investigation of the file 
systems’ robustness, including the file path mapping, which is 
out of scope at this moment. Taking it into account may cause 
the state explosion, but proposing a method to mitigate it is our 
future work. 
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TABLE V.  SUMMARY OF THE VERIFICATION RESULT 

Model Depth States Transitions Mem 
 (GB) 

Time 
(hrs) 

Link 
type 

single-th 763408 0.75x1010 1.71x1010 4.67 0.82 
multi-th 2652768 1.20x1010 3.83x1010 4.73 1.81 

Index 
type 

single-th 3449 0.56x1010 1.15x1010 4.64 0.60 
multi-th 37686 1.10x1010 2.86x1010 4.65 1.66 
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