
A general and efficient framework for improving
Balanced Failure Biasing

Shijian Mao
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai, China

shmaoshijian@gmail.com

Min Zhang*
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai, China

mzhang@sei.ecnu.edu.cn

Jia Yan
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai, China

51164500258@stu.ecnu.edu.cn

Yao Chen
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai, China

51184501098@stu.ecnu.edu.cn

Abstract—Balanced Failure Biasing (BFB) is a way to simulate
the probability of reaching a rare goal state in highly reliable
Markovian systems (HRMSs). BFB gives the same probability
to each ralely-arrived path of one state, therefore leading to
large expenditures on paths with little influence on results. We
propose a new framework using Stratified Sampling, which
is a general and efficient framework for improving BFB. We
introduce Stratified Sampling on BFB (SBFB), which divides
the original state space into many subspaces, and rearranges
the attention on each subspace. To make a further reduction
on average path length, we introduce Stratified Sampling on
Distance-based BFB (SBFB-D). According to experiments based
on case of Workstation Cluster and case of Distributed Database
System, SBFB has about 0.07% and 2.13% relative error on
these two cases respectively, while SBFB-D has about 0.07%
and 0.197%, comparing to standard BFB’s 11.1% and 11.1%.
Besides, SBFB spends about 12.30s and 28.65s on path simulation
respectively, while SBFB-D spends about 13.10s and 17.40s,
comparing to standard-BFB’s 26.44s and 36.78s.

Index Terms—Rare-event simulation , Stratified Sampling ,
Balanced Failure Biasing.

I. INTRODUCTION

Increasing demand for system’s reliability has created in-

creased interest in fault-tolerant systems. However, realistic

models of these fault-tolerant systems always have very large

state spaces and ralely arrive at failure rates to the fault state

, which leads to the demand of both time, space and accu-

racy. Numerical methods for evaluating these fault-tolerant

systems such as those implemented in the model checking

tool PRISM [1] proved to be computationally infeasible when

facing with large state space.

In that case, Monte Carlo simulation on Markov chains

would be a balance on time, space and accuracy, which sacri-

* The corresponding author.
Supported by the NSFC Project (No. 61672012).

fices only a little accuracy and saves both time and space. It

only requires the state transition conditions of the state space,

and is therefore largely independent of its state space size.

so we could deal with the highly reliable Markovian systems

(HRMSs), which formalized the low probability failure paths

as powers of some rarity parameter . With the HRMSs, we

can estimate many fault-tolerant system problems, such as the

mean time to failure, the unreliability, and some other demand

that involve rare events.

The importance sampling technique [2] could be used to

speed up standard simulation when it meets rare events for

the reason of little probability of failure paths. The main

idea behind importance sampling is to modify the sampling

distributions so that those little probability failure paths could

be sampled with higher probabilities, and thus gain a better

accuracy with the same sampling numbers.

Failure biasing (FB) is an importance sampling scheme

which was first proposed in [3], [4] for the simulation of the

unreliability. This technique has been then adapted in [5], [6]

for the simulation of steady-state unavailability, in [7] for mean

time to failure, and in [8] for other dependability measures.

Balanced Failure biasing (BFB) was proposed in [9], which

is a refined version of failure biasing. It meets the property

of Bounded Relative Error (BRE), which means the relative

error of an estimator remains bounded when the result need

estimating goes to zero.

Distance Based BFB have been proposed in [10] called

failure distance biasing, which uses the idea of single source

shortest path like Dijkstra algorithm. Unbalanced systems has

been extended in [11] by the same author, and were named

failure transition distance biasing (FTDB) and balanced failure

transition distance biasing (BFTDB).

High probability cycles (HPCs) would influence the per-

445

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00081

formance of BFB by large amounts of loops in the cycles

with high probability. So the implementable general biasing

scheme (IGBS) was proposed in [12] to mitigate the effects

of HPCs. Path-ZVA was proposed in [13], and they solved

the HPCs problem on distance based BFB, which is a huge

improvement.
In this paper, we focus on the Stratified Sampling

framework [14], [15], which can be used to reduce variance,

and we use it to improve many works on BFB. We divide the

state space into many subspaces firstly, by stepping into the

state space with k steps from initial states. With the k steps

we can achieve many new states, and these new states can be

seen as initial states of these subspaces. For these subspaces,

approximate result can be simulated by a few samples, for

instance, 5% of number of sampling you want to use in

all. Then we can know the probability from initial state to

subspaces’ initial state to goal state, and then rearranging

the number of sampling to each subspace according to its

importance. According to our experiments, this framework

can reduce the run time mainly because of its attention on

important subspaces and shorter path length of subspaces

with larger influence.

This Stratified Sampling framework is:

1) General, as it can be used on many different works what

are based on BFB, and variance of result can be reduced.

2) Efficient, as it could pay more attention on more influ-

ential subspaces to reduce variance, and shorter average

path length could save times of sampling. Further more,

parallel computing is also supported.

The remainder of this paper is as follows. After a formal

description of the Stratified Sampling framework in Section II,

we describe how to nest it on BFB algorithms in Section III.

Next, we would present an empirical evaluation of these

techniques in Section IV, and make final conclusions in

Section V.

II. PRELIMINARIES

The model is given in a Markov chain with a state space χ,

and we assume that the system starts at a unique initial state

s0 ∈ χ with a single goal state g ∈ χ. The complete transition

probability structure in the DTMC is given by pxz of jumping

from state x to state z, with x, z ∈ χ. And the probability

could be calculated through pxz = εrxz , where ε is the rarity

parameter like 0.01, and the product of two transitions could

be calculated as

pxy · pyz = εrxy · εryz = εrxy+ryz (1)

Let a path ω be a sequence ω(0), ω(1), ..., ω(nω) of states

in χ, with nω denoting the number of steps in the path. Let

Ω(x) be the set of path with ω(0) = x. For all x ∈ χ we

define the probability that the rare event occurs, starting in x,

as

π(x) �
∑

ω∈Ω(x)

P(w), where P(ω) �
nω∏
i=1

pω(i−1)ω(i) (2)

The basic idea of evaluating π is through a point estimate:

Draw N ∈ N sample pahs to obtain a sample set {ω1, ..., ωN}.
For drawing a sample path, we start at s0 and get successor

states using P until we reach g. Let 1Ω(ω) denote an indicator

function which equals 1 if ω in Ω and 0 otherwise. This allows

us to obtain an unbiased estimator of π, given by

π̂P =
1

N

N∑
k=1

1Ω(ωk) (3)

And approximate 95%-confidence interval for π can be ob-

tained using the Central Limit Theorem.

Importance sampling is a technique which can ensure sim-

ulating using different transition probabilities qxz . Let Q be

the probability measure on paths defined analogously to P but

for qxz . We compensate for overestimation by weighting each

outcome with the ratio of P and Q. Every time a transition

is sampled using the new probabilities, this weighting factor

needs to be fixed. Our new estimator then becomes

π̂Q =
1

N

N∑
k=1

LQ(ωk)·1Ω(ωk), with LQ(ω) =

nω∏
i=1

pω(i−1)ω(i)

qω(i−1)ω(i)

(4)

This estimator is unbiased for any new distribution by the

Radon-Nikodym Theorem. In the following, we will write π̂ =
π̂Q for brevity.

Thus, BFB uses the importance sampling, increases the

probability of failure paths with symbol PF , and decrease the

probability of these repair paths by PR .Beside, PC represents

the probability of transitions having Self-circulating . Then,

BFB increases the probability of failure paths as follows,

where I(pF) = 1 if pF > 0 otherwise 0:

qxy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ · I(pF
xy)∑

z:pFxz>0 I(pF
xz)

pCxy

(1− θ) · pF
xy∑

z:pFxz>0 pF
xz

, if x �= g (5)

Besides, if using the Zero Variance Approximation (ZVA)

approach as follows, the estimator would have zero variance

when v(z) could exactly equal to π(z):

qxz � pxzv(z)∑
x′∈χ pxx′v(x′)

, where v(z) is approximation for π(z)

(6)

Here we could use Distance-based techniques to estimate

the v(z) with a lower variance, sacrificing the space complex-

ity.

III. THE STRATIFIED SAMPLING ALGORITHM

In this section, we would describe two versions of the

simulation mathod : Stratified BFB (SBFB) and Stratified

distanced-based BFB(SBFB-D). In the following, we first give

a formal description of these two methods, and then their

implementations.

446

TABLE I
LIST OF SYMBOLS

χ State space of the Markov chain
s0,g Initial state and goal state respectively
P,pxy Original probability of the transition from state x to state y
Q,qxy New probability of the transition from state x to state y

ε The rarity parameter, which is used as ε-order of the
transition

rxy ε-order of the transition from state x to state y,i.e.,pxy =
Θ(εrxy)

ω A path, i.e., a sequence of states ω(0), ω(1), ..., ω(nω)
Ω(x) Set of all paths ω starting at ω(0) = x
π(x)

∑
ω∈Ω(x) P(ω) = P(Ω(x))

π̂P, π̂Q Verification result from P and Q respectively
θ Parameter of BFB to control balance between failure paths

and the rest.
v(x) Approximation of π(x) by Distance-based algorithm
k k steps forward from the initial state s0

Π(k) State set after k steps forward from state s0
πi True result of the subspace i
π̂i Verification result of the subspace i

p(πi) Probability to achieve subspace i from state s0
z1−α (1− α) quantity of the standard normal distribution
N Sampling number which would be allocated to simulating

the system
Ni Sampling number which would be allocated to simulating

the subspace i

A. Stratified Sampling on Standard BFB (SBFB)

Our method is to allocate a suitable number of sampling

for each subspace, and a more important subspace needs more

number of sampling. At the same time, lots of transition path

could be saved. So the most important is the way to split.

Here we use the idea of breadth-first search: step from the

initial state s0, step forward k steps, and gain the achieved

state set Π(k), with the formal definition as follows, where g

is the goal state,

Π(k) = {ω(k) : ω ∈ Ω(s0), w(k) �= g} (7)

And Π(k) would be symbolized as K− in the following

paper, with K+ = {x|x /∈ K−, ∀x ∈ χ}, and K∗ =
x|pxy > 0, ∀x ∈ ω(k), ∃y ∈ K+ is the boundary states be-

tween K+ and K−.

Besides, we define the simulation result of subspace i with

π̂i, i = 1, 2, ...m, and m is the size of subspaces. While the

Probability to each state in Π(k) is obviously to calculate,

which is formalized as p(πi). So the final result of simulation

would be

π̂ =
m∑
i=1

p(πi) · π̂i (8)

The 1 − α Confidence interval is as follows, where z1−α

is 1 − α quantity of the standard normal distribution, Ni is

the number of sampling allocated to this subspace, and σ̂2
i is

variance of the i-th sample.

(π̂−z(1−α)/2

√√√√
m∑
i=1

p(πi)2 · σ̂2
i

Ni
, π̂+z(1−α)/2

√√√√
m∑
i=1

p(πi)2 · σ̂2
i

Ni
)

(9)

However, allocating the number of each subspace is a hard

work. We here simulate each subspace by BFB with only a

few samples, such as 5% of all, and allocate the number by the

following approach [16], which can reach the smallest variance

for π̂:

Ni = N · (p(πi)σi∑m
k=1 p(πk)σk

) (10)

V ar(π̂) =
1

N
(

m∑
i=1

p(πi)σi)
2 (11)

The algorithm for SBFB is described in Algorithm 1. k
steps have been done in lines 2-9, for putting p(πi) into πi’s

subspace s′ where s′ could be seen as key of subspaces. From

lines 11-13 call BFB for the first time for each subspace for

obtaining σi, and lines 14-17 use σi to allocate the number

of sampling for BFB. Finally, line 18 merges all results from

subspaces, and receives the great result.

This SBFB algorithm has almost the same time and space

complexity with BFB, and the real time costs less than

standard BFB due to shorter path length.

Algorithm 1: SBFB

Input: Markov chain (χ,P), initial state s0, goal state

g, step number k, sampling number N ,

minimum error η, sampling percentage N%

Output: simulation result π̂
1 π[0] := {s0 : 1} ;

2 for i := 1 to k do
3 π[i] := ∅ and default value is 0 ;

4 foreach s ∈ {s|∀s ∈ π[i− 1], π[i− 1][s] > η} do
5 foreach s′ ∈ {s′|∀s′ ∈ χ, pss′ > 0} do
6 π[i][s′] := π[i][s′] + π[i− 1][s] ∗ pss′ ;

7 end
8 end
9 end

10 m := len(π(k)) ;

11 foreach si, p(πi) in π[k] do
12 π̂i, σi := BFB(χ,P, si, N ·N%/m) ;

13 end
14 foreach si, p(πi) in π[k] do
15 Ni := N · (1−N%) · p(πi)·σi∑m

k=1 p(πk)σk
;

16 π̂i, σi := BFB(χ,P, si, Ni) ;

17 end
18 π̂ :=

∑m
i=1 p(πi) · π̂i ;

19 return π̂

B. Stratified Sampling on Distance-based BFB (SBFB-D)

The Stratified Sampling algorithm for Distance-based BFB

has only a little difference. Distance-based BFB use distance

information to change the original transform probability into

more reasonable probability, and thus gain a better variance.

So there would be two ways to insert the stratified sampling

into this kind of BFB.

The first algorithm uses distance information to change

the transform probability first, and then uses this changed

probability to call SBFB algorithm.

447

The second is using Distance-based BFB on each of the

subspace, get the variance of each subspace, allocate numbers

of sampling to each subspace, and reuse the Distance-based

BFB on the new sampling number to get the final result.

According to analysis and experiments, the second one is a

little better. It has different transform probability on different

subspace instead of using the same one, and this may achieve

better variance with the sacrifice of a little time (changing

probability according to distance information costs less time

than path sampling).

The algorithm for SBFB-D of the second version is de-

scribed in Algorithm 2. Compared to Algorithm 1, what has

happened is only in line 12 and line 15, where line 12 saved

the changed probability Q for each subspace, and line 15 used

them again without another calculation.

Our Algorithm 2 needs k times of distance calculation time

but less time due to shorter path length. Besides, its real time

is also better than standard BFB.

Algorithm 2: SBFB-D

Input: Markov chain (χ,P), initial state s0, goal state

g, step number k, sampling number N ,

minimum error η, sampling percentage N%

Output: simulation result π̂
1 π[0] := {s0 : 1} ;

2 for i := 1 to k do
3 π[i] := ∅ and default value is 0 ;

4 foreach s ∈ {s|∀s ∈ π[i− 1], π[i− 1][s] > η} do
5 foreach s′ ∈ {s′|∀s′ ∈ χ, pss′ > 0} do
6 π[i][s′] := π[i][s′] + π[i− 1][s] ∗ pss′ ;

7 end
8 end
9 end

10 m := len(π(k)) ;

11 foreach si, p(πi) in π[k] do
12 Qi, π̂i, σi := Distance-based BFB(χ,P, si, N

%/m)
;

13 end
14 foreach si, p(πi) in π[k] do
15 Ni := N · (1−N%) · p(πi)·σi∑m

k=1 p(πk)σk
;

16 π̂i, σi := BFB(χ,Qi, si, Ni) ;

17 end
18 π̂ :=

∑m
i=1 p(πi) · π̂i ;

19 return π̂

C. Why it works

Our algorithms has three main advantages:

1) BRE property is met.

2) Lots of transitions in K− are saved.

3) Cares more on more important paths.

First, according to BFB’s property, BRE meets on BFB

because its performance will not go down with a smaller ε.
What we should do then is only to ensure ε’s uncorrelation

to the number of sampling and to ensure that the number of

Fig. 1. Example of the case study of Section IV-A

TABLE II
SIMULATION RESULTS WITH DIFFERENT ε IN EXPERIMENT 1

ε SBFB SBFB-D BFB

10−2 2.90 ·10−3±
0.06%

2.88 ·10−3±
0.07%

2.73 ·10−3±
10.4%

10−4 3.02 ·10−7±
0.07%

2.99 ·10−7±
0.07%

2.86 ·10−7±
11.4%

10−6 3.00·10−10±
0.07%

3.12·10−10±
0.07%

3.27·10−10±
10.9%

10−8 3.15·10−13±
0.07%

3.26·10−13±
0.07%

3.15·10−13±
11.1%

sampling is correlated to variance of subspaces. As the sample

allocating approach described in Section III-A, although σi is

correlated to ε, there would be the same relative values, and

thus Ni is uncorrelated to variance of subspaces. In that case,

BRE meets in SBFB and SBFB-D.

Second, most verification tasks would have many destroy

and repair transitions at the same time, so transitions go out

and back in K−.

Third, since we have justify the sampling number from each

state in K∗, our weighted mean of simulation result will need

less sampling number in all than the ordinary mean one.

IV. EXPERIMENTAL RESULTS

In this section, we have tried two experiments on Al-

gorithm 1, Algorithm 2 and standard BFB. As our results,

Algorithm 2 is better than Algorithm 1 when simulating

HRMSs while Algorithm 1 is better when high redundancy

exists. Besides, adding stratified sampling always gain a better

variance.

A. Workstation Cluster

This case is based on a cluster of workstations, and the sys-

tem comprises two sub-clusters with N workstations in each,

connected in a star topology. The switches connecting each

sub-cluster are joined by a central backbone. All components

can break down and there is a single repair unit to service all

components. We should verify that at least 3N/4 workstations

are operational and connected via switches and backbone.

First, we set N = 12, number of sampling = 10000,

confidence = 0.01, and ε = 10−2, 10−4, 10−6, 10−8. Results

are shown in Table II. The table shows the mean simulation

result and their variance, and both these two kinds of our

algorithm both have a much lower variance than standard BFB,

and they all meet the BRE property.

448

TABLE III
SIMULATION RESULTS OF DIFFERENT REDUNDANCY IN EXPERIMENT 1

REDUNDANCY SBFB SBFB-D

4 2.74 · 10−4 ± 0.67% 2.96 · 10−4 ± 0.61%
16 7.80 · 10−4 ± 0.78% 7.46 · 10−4 ± 1.25%
64 1.82 · 10−5 ± 1.06% 1.79 · 10−5 ± 8.97%
128 1.34 · 10−5 ± 1.94% 9.04 · 10−6 ± 11.23%

TABLE IV
TIME SPENDING AND AVERAGE PATH LENGTH IN EXPERIMENT 1

SBFB SBFB-D BFB
Average Path Length 4 4 5

Time Spending 12.30s 13.10s 26.44s

Second, ε = 1e−2 and N = 4, 16, 64, 128 is set to analyze

the influence of redundancy in Table III. Algorithm 1 is better

when large redundancy is set, and its performance is always

good.

Third, average path length and time spending is compared

between different algorithms in Tabel IV. Time spending

droped down for about 50% from standard BFB, mostly due

to the reduction of average path length.

B. Distributed Database System

In This example, this system consists of 2 processors, 4 disk

controllers and 6 disk clusters with 4 disk in each. As shown

in Fig 2, this system would be seem as failure when one of

these three states is met :

1) All of the processors are failed.

2) One of the groups of disk controllers are all failed.

3) One of the groups of disk clusters have more than one

failed disks.

Besides, when a disk or a disk controller or a processor is

failed, the repair program would repair it with rate 1. Here

we set the failure rates 1/6000 for disk and 1/2000 for both

controller and processor.

Fig. 2. Example of the case study of Section IV-B

TABLE V
SIMULATION RESULTS WITH DIFFERENT ε IN EXPERIMENT 2

ε SBFB SBFB-D BFB

10−2 5.92 ·10−3±
3.934%

5.87 ·10−3±
0.289%

5.48 ·10−3±
29.69%

10−4 4.95 ·10−5±
4.083%

4.96 ·10−5±
0.633%

5.03 ·10−5±
10.85%

10−8 4.42 ·10−7±
2.134%

4.41 ·10−7±
0.197%

5.07 ·10−7±
11.14%

TABLE VI
TIME SPENDING AND AVERAGE PATH LENGTH IN EXPERIMENT 2

SBFB SBFB-D BFB
Average Path Length 4.56 3.82 4.88

Time Spending 28.65s 17.40s 36.78s

We have tried number of sampling= 10000, confidence

= 0.01 on this experiment, and results are shown in Table V

and Table VI. As we can see, standard BFB have a better

variance when added stratified sampling, and SBFB-D have

a even better variance. It mainly dues to the failure path’s

better estimation on subspace’s variance. Besides, Table VI

also shows that SBFB-D can have a shorter average path

length.

V. CONCLUSIONS

We have introduced a rare event simulation framework that

is generally applicable to BFB and its variants. We have proved

its efficiency both on theory and experiments, and it shows

a great performance. From our experiments and some other

papers like [14], Distance-based BFB always does bad on high

component redundancy but has a good performance on other

systems. In our experiments, our SBFB algorithm has a better

performance than standard BFB, and SBFB-D has a better

performance than Distance-based BFB, too. Besides, the gap

between BFB and Distance-based BFB on HRMSs could be

largely improved by stratified sampling. In short, systems with

high component redundancy can use SBFB, and SBFB-D is

better when simulating other systems.

There are several directions for future work. The simulation

code has not been optimised for performance, so improving is

a future work. There are still many other variance reduction

techniques should be studied in more detail, and we could

compare the performance of our method to a wider range of

other IS techniques, e.g., the cross-entropy method.

REFERENCES

[1] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in International conference on computer
aided verification. Springer, 2011, pp. 585–591.

[2] J. Hammersley and D. Handscomb, “Monte carlo simulation,” in Monte
Carlo methods. Methuen & Co. Ltd. London, UK, 1964.

[3] E. E. Lewis and F. Böhm, “Monte carlo simulation of markov unre-
liability models,” Nuclear engineering and design, vol. 77, no. 1, pp.
49–62, 1984.

[4] T. Zhuguo and E. E. Lewis, “Component dependency models in markov
monte carlo simulation,” Reliability Engineering, vol. 13, no. 1, pp. 45–
61, 1985.

449

[5] A. E. Conway and A. Goyal, Monte Carlo simulation of computer
system availability/reliability models. IBM Thomas J. Watson Research
Division, 1986.

[6] A. Goyal, P. Heidelberger, and P. Shahabuddin, “Measure specific dy-
namic importance sampling for availability simulations,” in Proceedings
of the 19th conference on Winter simulation. ACM, 1987, pp. 351–357.

[7] P. Shahabuddin, V. F. Nicola, P. Heidelberger, A. Goyal, and P. W. Glynn,
“Variance reduction in mean time to failure simulations,” in Proceedings
of the 20th conference on Winter simulation. ACM, 1988, pp. 491–499.

[8] A. Goyal, P. Shahabuddin, P. Heidelberger, V. F. Nicola, and P. W.
Glynn, “A unified framework for simulating markovian models of highly
dependable systems,” IEEE Transactions on Computers, vol. 41, no. 1,
pp. 36–51, 1992.

[9] P. Shahabuddin, “Simulation and analysis of highly reliable systems,”
1990.

[10] J. A. Carrasco, “Failure distance-based simulation of repairable fault-
tolerant systems,” in Computer performance evaluation: modelling tech-
niques and tools: proceedings of the Fifth International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation,
Torino, Italy, 13-15 February 1991. Elsevier, 1992, pp. 351–365.

[11] ——, “Failure transition distance-based importance sampling schemes
for thesimulation of repairable fault-tolerant computer systems,” IEEE
Transactions on Reliability, vol. 55, no. 2, pp. 207–236, 2006.

[12] S. Juneja and P. Shahabuddin, “Fast simulation of markov chains with
small transition probabilities,” Management Science, vol. 47, no. 4, pp.
547–562, 2001.

[13] D. Reijsbergen, P.-T. D. Boer, W. Scheinhardt, and S. Juneja, “Path-zva:
General, efficient, and automated importance sampling for highly reli-
able markovian systems,” ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 28, no. 3, p. 22, 2018.

[14] D. E. Hocevar, M. R. Lightner, and T. N. Trick, “A study of variance
reduction techniques for estimating circuit yields,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 2,
no. 3, pp. 180–192, 1983.

[15] M. L. Stein, “An efficient method of sampling for statistical circuit
design,” IEEE transactions on computer-aided design of integrated
circuits and systems, vol. 5, no. 1, pp. 23–29, 1986.

[16] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of monte carlo
methods. John Wiley & Sons, 2013, vol. 706.

450

