
Adaptation of Weights in a Neuron

Using an Integrated Filter

Karen Alicia Aguilar Cruz1, María Teresa Zagaceta Álvarez2,

José de Jesús Medel Juárez1

1 Instituto Politécnico Nacional, Centro de Investigación en Computación (CIC),

México D. F, Mexico

2 Instituto Politécnico Nacional,

Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME-A),

México D. F, Mexico

karen_ali320@hotmail.com, mtza79@yahoo.com.mx, jmedeljj@yahoo.com

Abstract. This paper presents a description of application of stochastic weights

in a neuron, problem solved through the adaptive estimation achieved with

dynamical combination between the identification and estimation; having an

adaptive structure that updates the estimated parameters into the integrated filter.

The weights are dynamically adjusted in the neuron based on stochastic gradient,

affecting the neuronal performance allowing that its response converges to the

reference signal. In addition, the error is applied in identification as an innovative

gain adjusting the neuron in its inputs and consequently its dendrites signals that

are applied into gradient filter adjusting the neuron weights in accordance with

the desired signal requirement. Such that the gradient estimation is built based on

the Black-box scheme with unknown internal weights. All simulations were

developed using Matlab® software.

Keywords: Estimation, stochastic systems, neural net, digital filter,

identification.

1 Introduction

An artificial neural net is a computational model that imitates the biological actions:

observing that the neurons adapt their gains using the learning process as it occurs in

the brain or neural sensor subsystems. Different effects depend on the output stimuli

(Nikola, 1996) (Medel, 2008). So, the artificial net considers the weights adaptation as

a requirement, in accordance with the reference signal and the stimuli of the inputs.

The neuron maintains an electrical potential interval from 35 × 10−3 to 65 ×
10−3volts; but when a neuron is fired, an electrical impulse is increased; this is an

electric energy generated by chemical effects, releasing an electrical potential from

90 × 10−3 to 110 × 10−3 volts. This impulse through the neuron is transmitted from

5 × 10−1 to 1 × 102 metres per second and is distributed on average in a 1 ×

139 Research in Computing Science 100 (2015)pp. 139–147; rec. 2015-06-19; acc. 2015-10-03

mailto:karen_ali320@hotmail.com
mailto:mtza79@yahoo.com.mx
mailto:jmedeljj@yahoo.com

10−3 second. In addition, the fast repetition rate corresponds on average to 10 × 10−3

seconds per firing. A computer, where signals travel on average at 2.0 × 108
𝑚

𝑠

(electrical speed energy in a wire is 0.7 faster than in air), may repeat an impulse each

10 × 10−9seconds. So, the computer device has in average two thousand times more

speed in signal transmission and a thousand times in the fire signal repetition with

respect to natural neuron action (Passion, 1998), because it uses the solid state instead

of chemical reactions. But, for example, the main advantage of the brain with respect

to other electronic devices is the possibility of "self-programming" with the changes of

external stimuli, known as “adaptability”. In other words, it can learn dynamically and

in variable conditions. Naturally, the brain neurons change their response to new

stimuli, having similar responses to similar events. The brain adaptability corresponds

to survival actions, while a device that just accomplishes a sequence of commands.

1.1 Neural Network Structure

The computational neural net structures are based on biological neural configurations.

The basic neural net is based in a neuron model, shown in Figure 1, consisting of

Multiple Inputs and a Single Output (MISO form).

Fig. 1. Neuron model.

Each input is modified by a weight, which multiplies the input values. A neuron

combines dendrite weight inputs and if the soma biological actions exceed a threshold,

then the nucleus (in a biological sense) activates a function and determines its output

answer. In a computational device, as shown in Figure 2, a behavioural additional

condition has the answer close to the real neuron actions (Rajen, 2006).

Fig. 2. Neuron device computational model.

𝑢1

𝑢2

𝑢𝑁

𝑦𝑗
𝑛

140

Karen Alicia Aguilar Cruz, María Teresa Zagaceta Álvarez, José de Jesús Medel Juárez

Research in Computing Science 100 (2015)

Meanwhile, understanding how an individual neuron operates, many researches

generate the way neurons organize themselves and the mechanisms used by neuron

arrays to adapt their behaviour to external bounded stimuli. There are a huge number

of experimental neural nets, and actually, laboratories and researchers continue building

new neural net configurations in order to develop intelligent and autonomous systems.

The common computational neural net used is named as a back-propagation network

and is characterized with a mathematical structure model that knows its behavioural

stability conditions (bounded inputs and bounded output, BIBO conditions).

Intuitively it is built taking a number of neurons and arrays them forming a layer. A

layer is formed having all inputs and nodes interconnected with others nodes, but not

both within the same node. A layer finishes with a node connected with a succeeding

layer or outputs giving the answer. The multiple layers are arrayed as an input layer,

multiple intermediate layers and an output layer is shown in Figure 3, where the

intermediate layers do not have inputs or outputs to the external world and are called

hidden layers (Marcek, 2004).

Back-propagation neural networks are usually fully connected to improve the

learning process. This means that each neuron is connected to every output from the

preceding layer.

Fig. 3. MISO Back-propagation Network with three layers.

The layers are described as: input, distributing signals from the external world;

hidden, categorizing the signals; and the output, collecting all features detected and

producing a response. However, the problem of the layers has many descriptions

considering the set of optimal weights.

1.2 Neural Network Operation

The output of each neuron is a function of its inputs and weights, with a layer as

described recursively in (1) (Huang, 2006).

 𝑊𝑗
𝑁 = 𝑤𝑗

𝑛𝑢𝑛 +𝑊𝑗
𝑁−1, (1)

where the basic function has the form 𝑊𝑗
𝑁−1 = ∑ 𝑤𝑗

𝑛𝑢𝑛
𝑁−1
𝑛=1 .

The output neural net answer is a convolution operation, shown in (2).

141

Adaptation of Weights in a Neuron Using an Integrated Filter

Research in Computing Science 100 (2015)

 𝑌𝑗
𝑁 = (𝐹 ∘ 𝑊)𝑗

𝑁. (2)

The 𝑊𝑗
𝑁 value is convoluted with a threshold value giving an approximate biological

neural net answer; but in a computational sense, it is active considering a 𝑡𝑗
𝑁 known as

an activation function. The activation function usually is the sigmoid function.

The output vector answer 𝑌𝑗
𝑁 is the neural net response, observing that the threshold

function corresponds to biological electrical potential of 90 × 10−3 to 110 ×
10−3 𝑣𝑜𝑙𝑡𝑠 needed in synopsis operations.

The biological or computational fire answers correspond to threshold conditions that

accomplish the excitation functions generating an answer giving many inputs.

Generally, the weights are selected intuitively in the first step; but with adaptive

considerations, they can be adjusted to seek the desired answer (García, 2008).

2 Net Adapting its Weights Using Stochastic Filtering

Adaptation in a neural net means adjusting its weights with a law action, seeking the

convergence to the output desired. The difference between the desired and actual

response is known as convergence error, defined as (3) and shown in figure 4.

 𝑒𝑗
𝑁 = �̂�𝑗

𝑁 − 𝑌𝑗
𝑁 . (3)

The filtering action could be a sliding mode, proportional gain in its weight and other

non-linear models that allow the neural net convers to the desired answer with respect

to the input set, but instead of it, in this paper we propose the identification technique

shown in figure 4, that adjusts the inputs, predicting how many gain is required to

minimize the inputs with respect to the desired reference signal.

Fig. 4. Neural weights adjustment using an identification action.

The adaptive back-propagation procedure is described in (4):

 𝑢𝑗
𝑛′ = 𝑢𝑛 − 𝐿𝑗

𝑛, (4)

142

Karen Alicia Aguilar Cruz, María Teresa Zagaceta Álvarez, José de Jesús Medel Juárez

Research in Computing Science 100 (2015)

where 𝐿𝑗
𝑛 corresponds to identification action considered by neural net designer.

Now, applying the concept considered above with respect to neural net, it adjusts its

weights using stochastic estimation giving a great advantage over traditional inference

weights assignation heuristically.

The neural net has adaptive weights based on an identification with its estimation,

associating the output filter information with the neuron answer (Huang, 2006),

building the control volume described as 𝑇𝑁 = {(𝑦𝑗
𝑛 , �̂�𝑗

𝑛)}
𝑛−1,𝑁̅̅ ̅̅ ̅

⊆ 𝑅2 where a variant

scheme has the form 𝐺𝑁: (𝑌𝑗
𝑁 × �̂�𝑗

𝑁) × 𝑇 → {((𝑦𝑗
𝑛 , �̂�𝑗

𝑛), 𝜏)}|
𝑛−1

𝑁

⊆ 𝑅3 (Margaliot,

2000), with dynamical adjusted moments (Gustafsson, 2001) in accordance with the

reference previously defined in a distribution sense.

The neuro-stochastic filter is based on the back-propagation algorithm, because its

weights have a dynamic actualization (Ali, 2003) (Amble, 1987) (Haykin, 1996) with

different levels for each interval iteration (Huang, 2006), using the error described

partially as 𝑒𝑗
𝑛 ∈ 𝑅 defined as 𝑒𝑗

𝑛 ≔ �̂�𝑗
𝑛 − 𝑦𝑗

𝑛 , considering that its distribution

function (Marcek, 2004) (García, 2008) is bounded and the statistical results have

stationary conditions. Filter is shown in Figure 5, using the estimation weights (Passino,

1998) (Medel, 2008).

Fig. 5. Neuro-stochastic Digital Filter Process.

The error (|𝑒𝑗
𝑖|) has an interval limit [0, 𝜀] and 𝜀 is described as a positive value with

inf{ |𝑒𝑗
𝑖| ∶ 𝑖, 𝑗 ∈ 𝑍+}

𝑛→∞
→ 𝛿𝑗

𝑛 (Morales, 2002).

Stochastic filter applied into neuron considers the concepts described in (Abraham,

1991) and (García, 2011), having the elements needed in its basic description: back

propagation neural net scheme, adaptive weights considering the estimation and

identification, convergence answer, the error as an innovation process 𝑒𝑗
𝑖 with its

bounded probability moments, in a metric sense, [19]. Activation function is the stage

where the answer filter is transformed into a natural answer approximating to minimal

convergence error region, and neuro-stochastic filter has a natural actualization

143

Adaptation of Weights in a Neuron Using an Integrated Filter

Research in Computing Science 100 (2015)

obtaining its weights dynamically based on second probability moment into the basic

estimation action (5) considering de gradient description.

 𝐽𝑛 =
1

𝑛2
[𝑒𝑗
𝑛2 + (𝑛 − 1)𝐽𝑛−1], ∈ 𝑅[0,1) 𝑛 ∈ 𝑍+. (5)

The functional error 𝐽𝑛 has an exponential convergence and stationary conditions if

the weights set into filter established a stationary reference lim
𝑛→∞

|𝐽𝑛| → 𝑚, considering

that 0 < {|𝑒𝑗
i|} < 1 and (6).

 𝐽𝑚𝑖𝑛 = inf
𝑚
{min 𝐽(𝑦𝑖−0

𝑗
, �̂�𝑗
𝑖)}

𝑛
. (6)

Considering the gradient estimation in accordance with the desired signal and filter

action, firstly, the filter process adjust the inputs, and these are applied into the gradient

estimation adjusting the weights and generating in the same time the adaptive process

guarantying the convergence rate (Rajen, 2006). Then, the weights

{𝑤𝑗
𝑖}
𝑖=1,𝑛̅̅̅̅̅,𝑗=1,𝑚̅̅ ̅̅ ̅,

, 𝑛,𝑚 ∈ 𝑍+ affect the neuron elements and consequently will give the

correct answer �̂�(𝑘) (Ash, 1970), with MISO (Multi Inputs Single Output) properties.

It means that (5) without concurrence has the form 𝐽𝑛 = 𝐄{𝑒𝑗
𝑛}
2
=, ∈ 𝑅[0,1) 𝑛 ∈ 𝑍+,

with 𝑒𝑗
𝑛 = 𝑦𝑗

𝑛 − �̂�𝑗
𝑛 𝑎𝑛𝑑 𝑦𝑗

𝑛 = 𝑊𝑦𝑗
𝑛−1 + 𝐵𝑢𝑗

𝑛′. Such that, the functional error with

symmetric conditions has the form with explicit output results as 𝐽𝑛 = 𝐄 {𝑊2𝑦𝑗
(𝑛−1)2 +

𝐵2𝑢𝑗
𝑛′2 + �̂�𝑗

𝑛2 − 2(𝑊𝑦𝑗
𝑛−1 + 𝐵𝑢𝑗

𝑛′)�̂�𝑗
𝑛}. The gradient of 𝐽𝑛, allows to have the neuron

weights �̂�𝑗
𝑛 = (𝑬{𝑦𝑗

𝑛−1�̂�𝑗
𝑛}) (𝑬 {𝑦𝑗

(𝑛−1)2})
−1

.

2.1 Weight Properties

The filter weights estimation uses the adaptive criterion, in order to adjust them

dynamically, considering the stochastic properties and bounding each of them using a

transition function maintaining the stability. The weights set {𝑤𝑗
𝑖}
𝑖=1,𝑛̅̅̅̅̅,𝑗=1,𝑚̅̅ ̅̅ ̅,

, 𝑛,𝑚 ∈

𝑍+ , in each layer accomplishes the condition ∑ 𝑤𝑗
𝑖𝑛

𝑖=1 ≤ 1, without losing the

Transition Function (TF) (García, 2008):

i. Each weight has a Dynamic Transition Function (DTF): 1) ln(Φ𝑗
𝑖) < ∞ ,

2)ln(Φ𝑗
𝑖) > 0, 3)ln(Φ𝑗

𝑖) 𝜏−1 < 1.

ii. The weight is described using the Transition Function (TF) in 𝑤𝑗
1−𝑖0 =

ln(Φ𝑗
𝑖) (ln(Φ𝑗

𝑖)(𝑖 − 𝑖0))
−1

.

iii. The velocity changes are limited inside the transition function ln(Φ𝑗
𝑖) ≤

ln(Φ𝑗
𝑖0)(𝑖 − 𝑖0)

𝑇 , ln(Φ𝑗
𝑖) ≤ ln(Φ𝑗

𝑖−1) (𝑖 − 1)𝑇.

The transition functions sum is bounded in each layer 0 ≤ |∑ Φ𝑗
𝑖𝑛

𝑖−1 | ≤ 1 . In

accordance with the value of Φ𝑗
𝑖0 , the weights are bounded accomplishing with 𝑤𝑗

1−𝑖0 ≤

lnΦ𝑗
𝑖0 .

144

Karen Alicia Aguilar Cruz, María Teresa Zagaceta Álvarez, José de Jesús Medel Juárez

Research in Computing Science 100 (2015)

The identifier described as 𝑥�̂� = 𝑤𝑗
i(𝑖 − 𝑖0) �̂�𝑖−1 + 𝐾𝑖�̂�

𝑖 considering from (i) to (iii),

where 𝐾𝑖 is the function gain and is a functional identification error, defined by the

second probability moment (5), �̂�𝑖 is the innovation process with {�̂�𝑖} ⊆

𝑁 (𝜇�̂�𝑖 , 𝜎�̂�𝑖
2 < ∞).

3 Results

The MISO stochastic filter considers the digital filter structure (Haykin, 1996) with the

transition matrix bounded in accordance with the functional error criterion (Ash, 1970).

The soft system (statistic in variance sense) considers the evolution times bounded and

the processor performance at 𝜏 intervals with an average evolution time of 4 × 10−3
sec ± 2 × 10−5sec. This section uses the first order difference discrete ARMA (1, 1)

model (7) representing a reference system.

 𝑥𝑖+1 = 𝑊𝑖𝑥
𝑖 + 𝜔𝑖. (7)

And the output described as (8):

 𝑦𝑖 = 𝐶𝑥𝑖 . (8)

where 𝑦𝑖 ∈ 𝑅,𝑊𝑖 ∈ 𝑅[0,1)
[𝑛×𝑛], 𝒙𝑖 , 𝝎𝑖𝜖𝑅[𝑛×1], 𝐶 = 𝐼 . 𝑥i is the internal states vector, 𝑊𝑖 is

the parameters matrix, {𝜔𝑖} ⊆ 𝑁(𝜇𝜔𝑖 , 𝜎𝜔𝑖
2 < ∞) is the vector noise into the system, yi

is the reference vector and �̂�𝑖 is the desired system signal. The filter process established

the stochastic weights adjusted in agreement to the functional error convergence. Figure

6 describes the reference signal and its identification without knowing the internal

matrix weights considering the estimation results �̂�j
n . Figure 7 shows both

overlapping densities considering the same time interval. Figure 8 shows the evolution

functional error described in (5).

Fig. 6. Neuro signal 𝑌𝑗
𝑛

and its identification �̂�𝑗
𝑛.

Fig. 7. Overlapping 𝑦𝑗
𝑛

and �̂�𝑗
𝑛 densities.

Fig. 8. Functional error (5).

The digital filter time evolution response was less than the reference process time

state change, proposed with a value of 5 × 10−2sec, and is delimited by the processor,

considered in (ŷ𝑗
𝑛). The convergence time is 862 × 10−4 sec, described in (Medel,

2008).

145

Adaptation of Weights in a Neuron Using an Integrated Filter

Research in Computing Science 100 (2015)

4 Conclusion

Neural net in identification sense, considered the adaptation process adjusting the

weights dynamically using the estimation condition. Nevertheless, in many cases, these

applications generate convergence problems because the gains increase the neural net

weights positive or negatively without converge to desired value. In the black-box

computational scheme the internal weights are known; but in real conditions it is

impossible and only has a desired or objective answer, adjusting in some sense to their

dynamically needing estimation process with smooth movements with respect to

functional and identification error (5). Therefore, an option considered to estimate these

in the new environmental circumstances, is based on gradient structure without losing

the stability with respect to a reference system and on the Hausdorff condition, where

the filter converge to the desired output system in distribution sense.

References

1. Abraham K.: Stochastic Expert Systems. Florida, CRC Press (1991)

2. Ali H.S.: Fundamentals of Adaptive Filters. John Wiley & Sons, New Jersey, USA (2003)

3. Amble T.: Logic Programming and Knowledge Engineering. Addison Wesley, USA (1987)

4. Ash R.: Real Analysis and Probability. Dover Publications, USA (1970)

5. García J.C., Medel J.J., Sánchez J.C.: Neural stochastic digital filtering: MIMO case.

Ingeniería e Investigación, 31: 184–192 (2011)

6. García J.C., Medel J.J., Guevara P.: Filtrado Digital Difuso en Tiempo Real. Computación

y Sistemas, 11: 390–401 (2008)

7. Gustafsson F.: Adaptive Filtering and Change Detection. John Wiley and Sons, England

(2001)

8. Haykin S.: Adaptive Filtering. Prentice Hall, USA (1996)

9. Huang G., Zhu K., Siew C.: Real-Time Learning Capability of Neural Networks. IEEE

Transactions on Neural Networks, 17: 863–878 (2006)

10. Mamdani E.: Applications of Stochastic Algorithms for Control of Simple Dynamic Plant.

Proc. IEEE, 121: 1585–1588 (1974)

11. Marcek D.: Statistical, Classical and Stochastic Neural Networks, Modeling Decisions for

Artificial Intelligence. Springer Verlag, pp. 41–48 (2004)

12. Langholz M.M.: New Approaches to Stochastic Modeling and Control Design and Analysis.

Singapore, World Scientific (2000)

13. Medel J.J., García J.C., Sánchez J.C.: Real-time Neuro-Stochastic Digital Filtering: Basic

Concepts. WSEAS Transactions on Systems and Control, 3: 654–663 (2008)

14. Medel J.J., García J.C., Guevara P.: Real-time Stochastic Digital Filters (RTFDF) Properties

for SISO Systems. Automatic Control and Computer Sciences, AVT, 42: 26–34 (2008)

15. Morales G.: Introducción a la Lógica Difusa. Cinvestav, Mexico (2002)

16. Nikola K.: Foundations of Neural Networks, Stochastic Systems, and Knowledge

Engineering. Hong Kong, The MIT Press (1996)

17. Passino K.M.: Stochastic Control. USA, Addison Wesley (1998)

18. Rajen B., Gopal M.: Neuro-Stochastic Decision Trees. International Journal of Neural

Filters, 16: 63–68 (2006)

19. Schneider M., Kandel A.: Stochastic expert systems tools. John Wiley & Sons, England

(1996)

146

Karen Alicia Aguilar Cruz, María Teresa Zagaceta Álvarez, José de Jesús Medel Juárez

Research in Computing Science 100 (2015)

20. Takagi T., Sugeno M.: Stochastic Identification of Systems and its Applications to

Modelling and control. IEEE Transactions and Systems, Man, and Cybernetics, 15: 116–

132 (1986)

21. Yamakawa F.: Stochastic Neurons and Stochastic Neural Networks. (1989)

147

Adaptation of Weights in a Neuron Using an Integrated Filter

Research in Computing Science 100 (2015)

