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Abstract

With the widespread diffusion of ubiquitous mobile computing and
internet of things (IoT), secured communication and chip authentication
become key requirements. Hardware-based security concepts generally
provide the best performance in terms of good security standard, low power
consumption, and large area density. In these concepts, the stochastic
properties of the device, such as the physical and geometrical variations of
the process, are harnessed to generate random bits and functions. This
is the basis for the true-random number generator (TRNG), where true
random numbers are generated by exploiting the physics and random-
ness of nanoscale devices. The same random variations can also be used
to implement physical unclonable function (PUF) for the authentication
of individual hardware chips. Emerging memory devices rely on unique
physical mechanisms for transport and switching, thus appear as the ideal
source of entropy for hardware TRNG and PUF. These novel memory con-
cepts include resistive switching memory (RRAM), phase change memory
(PCM) and spin-transfer torque magnetic memory (STT-MRAM) devices.
As these devices are increasingly adopted as memory and computing ele-
ments in several applications, exploiting their intrinsic stochastic variations
for TRNG and PUF becomes an attractive solution for low cost, high
performance security primitives.

This chapter provides an overview of TRNG and PUF adopting emerg-
ing memory devices as the fundamental entropy source. TRNG concepts
are classified by the microscopic stochastic variation that is adopted as
entropy source, namely, current noise, switching delay time, or switching
voltage. While most TRNG concepts rely on RRAM devices, we also
show novel concepts using STT-MRAM devices which take advantage
of the excellent endurance and speed of switching. The TRNG schemes
are discussed in terms of the simplicity of the design, e.g., the ability
to generate random bits without a probability tracking by adopting a
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differential circuit scheme. Finally, the status of PUF implementations
using RRAM and their array circuits are presented and discussed.

1 Introduction
Information security has been a topic of intense research since the mid 1970s,
when the main purpose was to guarantee the confidentiality and integrity of data
within mainframe computers [1]. In more recent times, as mobile computers,
internet of things (IoT) and cloud computing are becoming ubiquitous, there
is an ever-increasing need for secure communication among them [2]. Portable
devices such as smartphones and tablets can now enable financial transactions
and act as the primary authentication token for the user. Therefore, there is a
need for electronic chips to (1) securely authenticate and be authenticated by
other parties, (2) securely handle private/sensitive information, and (3) operate
in an untrusted environment where the adversary might have physical access
to the system [3]. These tasks must be implemented in mobile devices at the
level of integrated circuits (IC), featuring at the same time both low power
consumption and small area occupation. For application in large scale IoT [4]
and cyber-physical systems (CPS) [5], security methodologies must also feature
high speed, low cost and robustness to physical and side-channel attacks [6].

Hardware-intrinsic security primitives such as true random number generators
(TRNG) and physical unclonable functions (PUF) are gaining interest towards
low-cost and high-performance security tools [7]. On the one hand, TRNG
can conveniently and efficiently generate the random bitstreams required by
most of cryptographic and security applications [8, 9]. On the other hand,
PUF can securely store a secret key in the random characteristics of an IC, by
e.g. exploiting the random process fluctuations, and enabling fast and low-cost
authentication and secure key storage [3]. Nano-devices are currently considered
as the most promising approach for TRNG and PUF thanks to the small area,
the low power consumption, the scalability, the 3D integration, and the ability
to offer intrinsic stochastic phenomena via the inherent physical transport and
switching mechanisms. These properties are all extremely beneficial for portable
and IoT applications. Nanoelectronics can provide scalable device concepts via
either the well-established complementary metal oxide semiconductor (CMOS)
technology, or via alternative memory concepts based on resistive, phase change,
magnetic and ferroelectric materials [10], sometimes referred to as the ‘memristive’
concepts [11]. CMOS-based TRNG [8] and PUF [12] were first introduced thanks
to the strong integration capabilities and technological maturity. Nevertheless,
they soon demonstrated a limited entropy quality and the need for increased area
and power overhead to improve randomness [13]. On the other hand, memristive
devices are currently gaining increasing interest for hardware security thanks to
their intrinsic stochastic behavior that can be harnessed for high-performance
and low cost, low energy on chip entropy sources.

This chapter provides an overview of the current state-of-the art for both
TRNG and PUF implementations with resistive (memristive) switching devices.
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The focus is on the applications of emerging memory technologies such as
resistive switching memory (RRAM) and spin-transfer torque magnetic memory
(STT-MRAM), combining binary stochastic switching, good endurance and
scalable device area. The chapter is organized as follows: Section II describes
the general framework of hardware security primitives such as TRNG and strong
PUF. Section III is a short overview of the RRAM device, including the device
structure and the switching mechanisms. Sections IV to VIII presents the possible
approaches toward RRAM-based TRNG, based on the stochastic phenomena in
RRAM devices such as current noise (Sec. IV), switching time variability (Sec.
V) and switching voltage variability (Sec. VI). Sec. VII presents TRNG schemes
based on differential pairs of RRAM, while Sec. VIII illustrates STT-MRAM-
based TRNG concepts. Section IX reviews recently presented PUF concepts
based on the RRAM technology. Finally, Section X provides a summary and
an outlook for the research and development of hardware security using RRAM
devices.

2 Hardware Security Primitives

2.1 PRNG and TRNG
Security of internet-based data transmission usually requires the generation of
random keys [8, 9] via an on-chip random number generator (RNG). In the era
of IoT, the need for compact and reliable RNG circuits with high entropy and
high throughput has been considerably increased [14]. Other applications of
RNG include the emerging computing paradigms, such as stochastic [15, 16, 17]
and brain-inspired neuromorphic computing [18, 19], which inherently rely on
large streams of random analog/digital signals for their operation . Within this
scenario (Fig. 1), RNG circuits providing reliable random numbers with small
circuit area, low energy consumption, and high throughput become essential.

A classical method for generating random bits is the pseudo-random number
generator (PRNG) which can generate a random-looking bitstream according
to a deterministic algorithm initialized by a seed (e.g. interrupt events, kernel
calls, incoming TCP/IP request, etc.) [8, 20]. For example, a linear-feedback
shift register (LFSR) is a digital circuit that, after being initialized with a seed,
can generate a deterministic sequence of pseudo-random numbers [21]. However,
LFSR is a finite-state machine, hence its output will be periodic, namely non-
random over a sufficiently large time scale. Also, the seed might be manipulated
since it is derived from user activity, or the knowledge of internal state and
feedback tap structure of the LFSR might allow operation monitoring. These
limitations arise from the fact, already recognized by Von Neumann [22], that
random numbers cannot originate from a deterministic, arithmetical algorithm.
These are all critical issues that make the PRNG output exposed to crypto-
analysis [8, 23]. Due to the limited randomness and the high vulnerability, these
systems are generally unsuitable for integration in IoT devices [24].

The data protection against cyber-attacks can be improved with the true RNG
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(TRNG), where the output bitstream is obtained via an inherently stochastic
physical process [25]. It has been demonstrated that the high unpredictability of
hardware-based TRNG makes them more reliable with respect to software-based
PRNG systems [26, 27]. In recent years, various physical entropy sources were
proposed for TRNG, like the random telegraph noise (RTN) in dielectrics [28, 29]
, stochastic quantum processes [25], stochastic spintronic phenomena [30, 31]
and memristive transport and switching [32, 33, 34]. Several stochastic entropy
sources were identified in both CMOS technologies and emerging memristive
devices.

CMOS-based TRNGs were demonstrated by exploiting the noise in scaled
MOSFET [28], the metastability at turn-on of cross-coupled inverter pair (namely,
SRAM core) [8], or the increased noise of dual drain MOSFET driving a voltage-
controlled oscillator (VCO) [35]. All these concepts take advantage from the ma-
ture integration capability of CMOS logic chips. However, CMOS-type TRNGs
suffer from various drawbacks: for instance, a colored noise spectrum, e.g., due
to capture/emission events originating 1/f noise, results in a biased output
bitstream, requiring considerable post-processing and a consequent circuit over-
head. Noise in CMOS devices also critically depends on environmental/process
fluctuations, whose impact can be minimized only with entropy-tracking feed-
back loops [8], thus resulting in additional power consumption, circuit area and
added complexity. On the other hand, memristive concepts such as RRAM and
STT-MRAM enable ultra-small entropy source with high quality randomness,
which makes these technologies very promising for TRNG.

2.2 Strong and Weak PUF
Secret information transmission with classical mathematical cryptography has
relied on sufficiently hard-to-break algorithms (i.e. the “lock”) and secret keys
since its inception [36]. Typically, the secret key is stored in a nonvolatile
electrically erasable read-only memory (EEPROM) or a battery-backed static
random-access memory (SRAM) which results in a relatively large area occupa-
tion and power consumption. For low-power IoT devices, storing secret keys at
low energy consumption in a secure way is becoming an increasingly difficult task
[37], especially considering emerging attack techniques such as the side-channel
attacks [38]. This has led to an intense research interest for hardware-intrinsic
security primitives that do not require secret key storage in the digital memory.

In this scenario, the physical unclonable function (PUF) is a promising
solution. A PUF is a physical system that statistically maps an input challenge
to an output response through a secret key controlled by a stochastic property
of the chip, e.g. the silicon process variations or the intrinsic physical variability
of device parameters [3]. In general, PUF security is guaranteed by the extreme
difficulty of accessing the physical features of the hardware, and by the negligible
probability that two chips are manufactured with the same or similar set of
parameters. These properties make PUF an excellent scheme to uniquely identify
a component or a circuit, thus enabling hardware authentication and preventing
IC counterfeiting [12].
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Figure 1: Schematic representation of the current information security scenario
with some applications of hardware security primitives, comprising data cryptog-
raphy, hardware (HW) authentication and stochastic/neuromorphic computing.
The main building blocks are the random number generator (RNG) and the
physical unclonable function (PUF). The RNG can be implemented either as
a pseudo-random number generator (PRNG), such as the linear-feedback shift
register (LFSR) in the figure, or as a true-random number generator (TRNG),
which harnesses the stochasticity of physical phenomena (like the noise in the
current trace in the figure) to generate a random bitstream. A PUF systems
introduces a challenge (c) response (r) relation, where r = f (c) and f (·) is given
by the physical details defining that specific PUF instance. In the figure, a
typical SRAM-based PUF circuit is schematically shown. Adapted from [32].

5



A PUF system can be represented as a black box that for each input challenge
c returns an output response r = f (c), with f describing the unique internal
physical characteristics of the PUF (Fig. 1). The set of possible challenge-response
pairs (CRPs) defines a particular PUF instance.

Depending on the number of unique CRPs, there are two main categories
of PUFs: the weak PUF, which can only support a relatively small number
of challenges, and the strong PUF, with an extremely large set of CRPs [3].
More specifically, in a weak PUF the number of CRPs increases linearly or
polynomially with the number of basic cells, i.e., the building blocks forming the
PUF system [39], while the number of CRPs increases exponentially in a strong
PUF [12]. The weak PUF is often referred to as physical obfuscated key (POK),
since its primary task is the generation or storage of a cryptographic key [40, 41].
The most popular implementation of the PUF circuit is based on the digital
static random access memory (SRAM), and exploits the metastable states of
cross-couple inverters [42]. In each inverter pair, the response bit is determined
by which of the two nominally equal-sized inverters of the memory cell addressed
by the challenge reaches the tri-state point faster. Memory-based PUFs (POKs)
are relatively easy to design even with low area overhead. Such memory-based
systems are essentially weak PUFs since the set of CRP is limited by the available
memory capacity [43]. As a result, their CRP set can be completely explored
within polynomial time, compromising their use as identification tools. On the
other hand, given their large CRPs, strong PUFs are practically immune from
brute-force attacks [12] and are therefore suitable for low-cost authentication.

Although there is no general metric to certify a PUF system in terms of
security properties, the following characteristics can be considered as the best
figures of merit (FOM) for PUF [12]:

• Reliability : A PUF should always give the same response to a given
challenge over a wide range of operating conditions (voltage, temperature
etc.)

• Unpredictability : The PUF response to an arbitrary challenge should not
be predicted based on the CRPs of another PUF or from the previous
CRPs of the same PUF.

• Unclonability : The CRP mapping of a PUF cannot be physically or
mathematically cloned, even for the original manufacturer of the PUF.

• Physical Unbreakability : Any physical attempt to maliciously modify the
PUF should result in a malfunction or a permanent damage of the chip.

The practical evaluation of these FOMs for a specific PUF system is not straight-
forward in general, as discussed in Sec. IX. Although extremely promising for
low-cost chip authentication, the PUF should be strong enough against attacks
aiming at building a model for the PUF. This kind of attacks try to develop a
model of a PUF instance by looking at a subset of its input-output pairs. Among
these, the machine-learning attacks have been demonstrated to be particularly
successful [44, 45]. The careful co-design of the stochastic memory and the
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Figure 2: Schematic of a typical 1T1R structure comprising a RRAM cell
integrated on top of the drain of an integrated MOSFET (a). In this example,
the RRAM stack includes a Si-doped HfOx switching layer, a Ti top electrode
(TE) and a TiN bottom electrode (BE). The corresponding I-V characteristics
shows the definition of the set voltage Vset, the compliance current IC, the reset
voltage Vreset, and the stop voltage Vstop. Reprinted with permission from [34].
Copyright (2016) IEEE.

circuit-dependent function is therefore essential for developing strong PUFs for
hardware security.

3 RRAM Devices for Hardware Security
Among the emerging memory technologies, RRAM is one of the most promising
due to its non-volatile retention, fast switching, low power and CMOS com-
patibility [46, 47, 48, 49]. The RRAM integration in cross-point arrays, in the
back-end-of-line (BEOL), and adopting 3D structures allows for increased density
and easy of integration [50, 51, 52, 53]. Fig. 2a shows a bipolar RRAM device,
comprising a HfO2 switching layer sandwiched between a TiN bottom electrode
(BE) and Ti top electrode (TE). The Ti layer at the TE acts as an oxygen
exchange layer inducing the generation of oxygen vacancies in the oxide layer,
which thus become HfOx with x < 2 [34]. RRAM devices are usually integrated
in a one-transistor/one-resistor (1T1R) structure to enable the control of the
resistance level by limiting the current flowing in the select transistor during
the set transition. Fig. 2b shows the current voltage (I-V) characteristics of the
RRAM device, where the application of a positive voltage to the TE causes a
set transition from the high resistance state (HRS) to the low-resistance state
(LRS) in correspondence of the set voltage Vset. The application of a negative
voltage to the TE induces instead a reset transition from the LRS to the HRS in
correspondence of the reset voltage Vreset. The resistance window between the
LRS and the HRS is at least one order of magnitude, but can reach 5 orders of
magnitude by the adoption of high band gap dielectrics such as SiOx [54]. A

7



relatively small gate voltage is applied during the set transition to limit the com-
pliance current IC across the device, thus allowing to control the LRS resistance
according to R = VC/IC, where VC is a characteristics voltage generally lower
than 1 V [55]. The LRS resistance can be thus controlled by the parameter IC,
while the HRS resistance can be controlled by the maximum negative voltage
along the reset sweep, namely the stop voltage Vstop [54].

RRAM switching is caused by ionic migration induced by the voltage and
the local Joule heating [56]. Because of the atomistic nature of the switching
and local impact of microstructure, such as crystalline grain boundary and
orientation, the set and reset transitions are characterized by a significant
random variation [57]. The local conduction path does not only change during
set and reset operations, but is also prone to stochastic atomistic fluctuations
such as defect relaxation and diffusion which can cause a significant variation in
the read current after the programming pulse [58, 59]. RRAM variations thus
affect both the device-to-device consistency within a memory array [60], and the
cycle-to-cycle variations within the same device because of the several different
defect configurations. Variations can affect all RRAM parameters, including
the LRS and HRS resistance, the set voltage Vset and the reset voltage Vreset.
While stochastic variations are critical in hindering memory and computing
application of RRAM [60], they offer the physical source of entropy that is
needed for hardware security primitives.

Stochastic phenomena in RRAM devices can be exploited as entropy source
for TRNG. RRAM schemes for TRNG can be grouped in three classes according
to Fig. 3, where the sources of entropy are (a) stochastic noise, (b) stochastic
switching time, or (c) stochastic switching voltage [10].

4 TRNG based on Stochastic Noise
The fluctuation of a bistable defect within the RRAM conduction path in either
the LRS or HRS can lead to a relatively large fluctuation of the current between
two levels called random telegraph noise (RTN, see Fig. 3a) [61]. RTN induces a
random change in the read current between a low value I0 and a high value I1.
By sampling the current trace in Fig. 3a, one obtains a bimodal distribution of
currents in Fig. 3b which can be used to assign the random bits "0" and "1".

The current fluctuation in RTN can be ascribed to the modification of the
charge state of a bistable defect close to the conductive path, due to e.g. electron
trapping and detrapping combined by a structural relaxation of the defect. The
charge state affects the carrier concentration close to the defect, thus resulting
in a macroscopic change of the measured current [58]. As the filamentary
path diameter of the LRS becomes smaller, the impact of the individual defect
increases markedly, which is generally evidenced by the difference between the
two resistance values ∆R increasing with the square of the average resistance
(∆R ∼ R2) [61, 58]. This is similar to the RTN affecting the channel current in
a MOS transistor, resulting from a bistable fluctuation of the charge state of an
oxide defect. As the RTN amplitude can be quite significant, it can be exploited
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Fig. 3
(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Random telegraph noise current fluctuations (a) and corresponding
probabilistic distribution function (PDF) (b). In (c) the applied voltage pulse
and its corresponding current response evidencing the random delay time ∆t,
and PDF of ∆t (d) with an equally spaced time window to uniformly attribute
bit values 0 and 1. Measured I-V curves evidencing cycle-to-cycle variation
of Vset (e), and PDF of the resistance measured after a stochastic set (f),
where sub-distributions of the high resistance state and the low resistance state
are attributed to bits 0 and 1, respectively. Reprinted with permission from
Macmillan Publishers Ltd: Nature Electronics [10]. Copyright (2018).

Fig. 4

S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and D. Ielmini, “Statistical fluctuations in 
HfOx resistive-switching memory (RRAM): Part II – Random telegraph noise,” IEEE Trans. Electron Devices 
61, 2920-2927 (2014). DOI: 10.1109/TED.2014.2330202

(a) (b) (c)

Data Calculated

Figure 4: (a) Measured I-V characteristics for negative voltage showing RTN.
(b) Measured read current as a function of time for read voltage Vread = 50,
200 and 350 mV and (b) corresponding simulations. The RTN switching times
∆ tON and ∆ tOFF decrease with Vread. Reprinted with permission from [58].
Copyright (2014) IEEE.
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Figure 5: (a) Schematic representation of the TRNG block diagram, including
CRRAM, comparator and clock control circuit. (b) Comparator output, showing
binary random digital behavior. Reprinted with permission from [29]. Copyright
(2012) IEEE.

as an entropy source in RRAM devices.
To understand the impact of RTN on device behavior, Fig. 4a shows the

measured current voltage (I-V) characteristics for a RRAM device with HfOx
switching layer. The current trace was measured at negative voltage in the LRS
state and clearly evidences discrete transitions, typical of RTN. Data show that
RTN transition rate increases at higher Vread, which can be better understood
by constant-voltage measurements of current as a function of time in Fig. 4b.
Here, the average rate of switching between the two RTN states increases with
the read voltage for Vread = 50, 200 and 350 mV. Conversely, the average time
for which the current remains high (∆tON) and the time for which the current
remains low (∆tOFF) both decrease at increasing Vread. The same behavior can
be seen in the numerical simulations of Fig. 4c obtained with a finite-element
method (FEM) numerical model of RTN [58]. The voltage dependence of RTN
can be understood as the acceleration of RTN fluctuation kinetics due to the
voltage induced Joule heating. Similarly, RTN can be accelerated at high ambient
temperature [58]. Fig. 5 shows the architecture of a TRNG circuit exploiting
RTN in RRAM [29]. The TRNG is based on a contact-resistive random-access
memory (CRRAM), integrated on the drain contact of a MOS transistor with
a 1T1R structure. The 1T1R structure is biased with a voltage VR, thus any
RRAM fluctuation due to RTN results in a fluctuation of the voltage VD at
the transistor drain. The drain potential VD is compared to a reference voltage
Vref by an integrated comparator (Fig. 5a), leading to a binary random digital
output as shown in Fig. 5b. Sampling the digital output at increasing times with
a clock frequency fCK leads to a sequence of random bits provided fCK � fRTN,
where fRTN is the average rate of RTN fluctuations.

Although the scheme is very simple, the TRNG of Fig. 5 has few issues
related to both the physical concept and the circuit. The circuit has been
reported to have a relatively large area, namely 2400 F2 in 65 nm technology,
i.e. 10 µm2 [29]. Practical TRNG based on RTN phenomena are also affected
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by a difficult control of amplitude, rate and uniformity of the physical RTN. In
fact, an unbiased RNG with equal 50% probability of generating either a “0”
or a “1” is obtained only if the I1 and I1 sub-distributions in Fig. 3b have the
same area. Also, as previously described, RTN is affected by temperature and
voltage, leading to instabilities of the RTN entropy source. The amplitude of
the RTN should be large enough to be distinguishable by the comparator stage,
while the reference voltage Vref needs to be adjusted carefully depending on
the specific level of the resistance and its fluctuation. The non-uniformity of
the “0”/“1” balance in the output bitstream can be compensated by a digital
post-processing such as the von Neumann algorithm, however this comes to the
expense of an additional circuit area and power overhead.

Most recently, to compensate for the area occupation and other issues of the
TRNG circuit of Fig. 5, the current difference in the 1/f β noise of the RRAM
device was used as the entropy source [32]. The RRAM noise is associated
to multi-trap capture and emission events in defects (e.g. oxygen vacancies)
along the conductive filament (CF) in LRS and the localized conductive path
in HRS [59]. Fig. 6a shows the read current Iread measured for a RRAM in the
LRS with an average R = 10 kΩ, biased with a read voltage Vread = 10 mV.
Current fluctuations due to the 1/f noise result in an increasing relative standard
deviation σI/I, where I is the average value of Iread at any time t, while σI is
its standard deviation (Fig. 6b). The increasing value of σI/I with the time
is due to the increasing noise contributions at low frequency, which is typical
of 1/f behavior of noise. The simulation results by a numerical Monte Carlo
model of 1/f noise in Fig. 6c and d show similar behavior [59]. Fig. 6e shows
the measure and calculated power spectral density (PSD) SI, evidencing a clear
-1 slope, typical of the 1/f noise. The 1/f noise can be harvested for TRNG by
the circuit shown in Fig. 7 [32]. Here, the noisy current is sampled at subsequent
times t and t+∆t, then the two sampled currents are subtracted leading and
the difference ∆I is compared to 0. Finally, the random bit value is assigned to
0 or 1 depending on ∆I being positive or negative, respectively. With respect to
the RTN scheme of TRNG, the differential scheme allows both for a reduced
area of 0.256 µm2 (or 160 F2 in 40 nm technology) and a reduced bias in the
probability of extracting a “0” or a “1” bit. In fact, the differential current ∆I
(Fig. 7a) follows a Gaussian distribution, thus ensuring that “0” and “1” have
exactly the same probability of 50%. The circuit design (Fig. 7b) allows for
a precise current value extraction using a timing sense amplifier (TSA) and
a resistance-to-time converter (RTC) [62], while the parallel configuration of
multiple devices enables up to 32 Mbps operation, with a 0.04 nJ/bit energy
efficiency. Test results are finally reported by showing a minimum entropy higher
than 0.999 over a broad range of temperature (–40 < T[◦C] < 120) and with
different voltages (VDD = 0.1 V) (Fig. 7c). The high performance of the scheme
is further demonstrated by the P-value, i.e., a FOM for randomness of the
random bit stream, of 1000 groups of 1 Mb bitstream for the frequency NIST
800-22 test [63] (Fig. 7d).
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Fig. 6

S. Ambrogio, S. Balatti, V. McCaffrey, D. Wang, and D. Ielmini, “Noise-induced resistance broadening in resistive 
switching memory (RRAM) - Part I: Intrinsic cell behavior,” IEEE Trans. Electron Devices 62, 3805-3811 (2015). DOI: 
10.1109/TED.2015.2475598

Figure 6: (a) Measured read current as a function of time for a device in LRS
with R = 10 kΩ and (b) corresponding relative standard deviation σI/I. (c) and
(d) Calculated current versus time and corresponding relative stadnard deviation.
(e) PSD of experimental and calculated noise, showing a 1/f behavior. Results
from the analytical model of [59] are reported in (b), (c) and (e). Reprinted with
permission from [59]. Copyright (2015) IEEE.

Fig. 7

Z. Wei, Y. Katoh, S. Ogasahara, Y. Yoshimoto, K. Kawai, Y. Ikeda, K. Eriguchi, K.Ohmori, S. Yoneda, «True 
Random Number Generator using Current Difference based on a Fractional Stochastic Model in 40-nm 
Embedded ReRAM,» IEDM Tech. Dig. 107 (2016). DOI: 10.1109/IEDM.2016.7838349

(a) (b)

(c) (d)

Figure 7: (a) Conceptual representation of the entropy harvesting algorithm
for TRNG. (b) Block diagram of the parallel TRNG circuit, which allows for
a 32 Mbps random bitstream. (c) Minimum entropies are higher than 0.999
over broad range of operative temperature and voltages. (d) P-value of 1000
sequences of 1 Mb bitstreams for the frequency test. Reprinted with permission
from [32]. Copyright (2016) IEEE.
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5 TRNG based on Stochastic Time
A key limitation of noise as a source of entropy is the unpredictable amplitude
and frequency dependence. To better control the generation of random bit,
TRNG can rely on the stochastic properties of switching, namely time and
voltage.

Fig. 3c shows the basic concept for exploiting the variation of the stochastic
delay time (∆t) for the set transition. Assuming that a voltage V slightly
larger or comparable to Vset is applied to a RRAM device in the HRS, set
transition occurs after a certain delay time ∆t, where ∆t decreases as the applied
voltage is increased [56]. Most importantly, ∆t is subject to relatively large
variation from cycle to cycle, due to the ion migration being dependent on
the local microstructure and atomistic migration of ions [59]. The resulting
probabilistic distribution of ∆t is exponentially decreasing as shown in Fig. 3d.
The exponential distribution can be understood by the set transition being
described by thermally-driven process to overcome a given energy barrier EA [64].
As a result, the delay time ∆t follows a Poissonian distribution P(∆t) = 1/τ exp(-
∆t/τ), where τ is the characteristic time constant given by τ = τ0exp(EA/kT),
where τ0 is a constant, k is the Boltzmann constant and T is the local temperature
[65].

For every set pulse in Fig. 3d, a random bit equal to 0 or 1 can be assigned
based on the set transition taking place in even or odd time window controlled by
a given constant frequency fCLK. By repeating the set transition several times, a
random bitstream can be generated. By using this scheme, an improved random-
ness quality of the generated bitstream can be demonstrated, provided that ∆t
is sufficiently large compared to the selected time window TCK and sufficiently
small compared to the overall width tP of the applied pulse (TCLK < ∆t < tP)
[66]. Therefore, the inherent randomness in the stochastic switching time received
a big deal of interest as the fundamental entropy source for stochastic computing
[67], neuromorphic circuits [68] and TRNG [10, 66]. Note that the sensitivity for
switching is set by the window between HRS and LRS, thus providing a more
robust TRNG scheme compared to the poorly predictable resistance change of
RTN or 1/f noise.

Fig. 8 shows the measured distributions of ∆t for increasing voltages V = 2.6 V
(a), 3.2 V (b) and 3.6 V (c) [69]. The constant voltage was applied to the device
in the HRS state, while the delay time ∆t was measured at the onset of the set
transition. The device was then reset with a negative voltage pulse, to allow for
a repeated set transition [69]. The results confirm the exponential Poissonian
distribution of the delay time ∆t in Fig. 3d. Most importantly, the average ∆t
= τ in Fig. 8d decreases exponentially with the applied voltage, thus reflecting
the decrease of the effective energy barrier EA with the applied voltage [64, 56].
Data in Fig. 8d highlights that, although the single switching event is stochastic,
the overall distribution of switching times can be predicted and controlled by
the applied voltage [69, 68].

The stochastic delay time was adopted as the entropy source for TRNG by
the circuit shown in Fig. 9a [66]. The proposed TRNG consists of a volatile
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Figure 8: Distributions of switching time delay for applied voltage of 2.6 V
(a), 3.2 V (b), and 3.6 V (c), with their corresponding fitting with the Poisson
distribution. The only fitting parameter was τ = 15.3 ms, 1.2 ms and 0.029 ms
for figure (a), (b) and (c), respectively. (d) shows the voltage dependence of
τ . Reprinted with permission from [69]. Copyright (2008) American Chemical
Society.
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Fig. 9
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Figure 9: (a) Schematic representation of the TRNG circuit block diagram,
comprising a memristive device, a comparator, an AND gate, and a counter. (b)
Pulsed waveforms at each stage of the circuit, explaining the working principle
of the TRNG. Reprinted from [66]. Creative Commons (2017).
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RRAM device with Ag TE and Ag-doped SiO2 dielectric layer. In this type of
devices, the Ag migration from the TE results in the formation of an unstable
CF, which decays soon after the set transition with a retention time ranging
from few µs to few ms [70, 71, 72, 73]. The volatile behavior is due to the large
diffusivity of Ag combined with the mechanical compressive stress in the dieletric
layer [74] and the tendency to minimize the surface to volume ratio of the CF
[71]. In the TRNG circuit of Fig. 9a, the volatile RRAM device is connected
with a series resistance in a voltage divider configuration. The potential V2 of
the intermediate node of the voltage divider serves as the input of a voltage
comparator. The comparator output and a clock pulse serve as the input of an
AND gate, and a counter reads the AND output. A TRNG cycle is shown in
Fig. 9b: the application of a voltage pulse V1 (1) causes a set transition in the
RRAM device after a stochastic ∆t, which causes V2 to suddenly increase above
the reference Vref (2), thus making the comparator output go to a high logic level
V3 (3). Due to the stochastic ∆t, the V3 pulse has a random duration, which is
measured by the counter in units of the clock period TCLK. Note that the binary
bit (6) flips between 0 and 1 for the whole duration of the V3 pulse, eventually
resulting in a random bit. Note that a nonvolatile RRAM could be adopted in
this scheme as well, however a reset pulse would be needed to re-initiate the
device for a new cycle. The use of volatile RRAM in this case makes the TRNG
algorithm easier and more energy efficient, as no reset pulse is needed.

To match the time window TCLK < ∆t < tP, the pulse voltage V1 should
be carefully tuned, which usually requires complicated probability tracking
techniques [75]. Also, extracting entropy from the stochastic switching time can
be difficult due to its sensitivity on device parameters and process variations,
requiring a probability tracking of the applied voltage for every TRNG on the
same chip, or in separate chips [76].

6 TRNG based on Stochastic Voltage
A promising and more robust TRNG relies on the exploitation of the stochastic
switching voltage. Namely, instead of measuring the delay time ∆t for switching,
one can monitor the device for a given amount of time, where the switching
probability becomes the stochastic entropy source. This approach is schematically
depicted in Fig. 3e, where various current-voltage characteristics measured on
the same RRAM device demonstrate a distribution of set voltage Vset, due to
the cycle-to-cycle variation. The application of a voltage equal to the average
transition voltage <Vset> to the device in the HRS will then lead to a set
transition with 50% probability. As a result, the measured resistance of the
device after the applied voltage pulse then shows a bimodal distribution as
indicated in Fig. 3f, where the two sub-distributions correspond to LRS and
HRS. The random bitstream can thus be generated by associating the LRS
and HRS to bit values “0” and “1”, respectively [33]. A similar scheme can be
extended to stochastic computing, where an analogue value can be obtained as
the sequence of stochastic bimodal resistance values obtained from the same
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Figure 10: (a) Measured I-V characteristics for six cycles on the same 1T1R
structure, evidencing stochastic switching. (b) Sequence of applied pulses for
TRNG, with (c) the cumulative distribution of read resistance. Random set
process is highlighted in the three I-V curves (d), corresponding to states A, B
and C in (c). Reprinted with permission from [33]. Copyright (2015) IEEE.

device [68]. To illustrate the voltage-based TRNG concept, Fig. 10a shows the
measured I-V curves for the same RRAM device with 1T1R configuration for six
successive set/reset cycles [33]. The switching parameters, such as set and reset
voltages, and the HRS and LRS resistance values show a large variability from
cycle to cycle, which can be explained by considering the physics of the random
formation and disruption of the conductive filament [57]. Fig. 10b shows the
pulse sequence for characterizing the random set transition process, including:
1) a positive set pulse to deterministically initialize the device in LRS, 2) a
negative reset pulse with a stop voltage Vstop to induce transition to the HRS,
3) a positive set pulse with voltage VA close to <Vset> to stochastically induce
a set transition event, and 4) a read pulse to measure the resistance in the
final state. Fig. 10c shows the resulting resistance distribution for a random set
experiment with VA = 1.6 V. Data shows a bimodal distribution, corresponding
to LRS sub-distribution with R ≈ 12 kΩ and HRS sub-distribution above 100 kΩ.
The origin of the bimodal distribution is clarified in Fig. 10d, which shows three
characteristic I-V curves for various stochastic events, corresponding to state A,
B and C in Fig. 10c. Case A corresponds to a cycle where Vset was higher than
the applied VA, due to a relatively high HRS after the reset pulse. As a result,
no set process took place in this case, thus the resistance was found in the HRS
sub-distribution (Fig. 10b). Case C corresponds to Vset being smaller than VA,
thus resulting in a set transition with a compliance current IC = 50 µA controlled
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Figure 11: Measured resistance for 500 random set cycles with Vstop = –1.45 V
and VA = –1.6 V (a), correlation of R in cycle i+1 as a function of R in cycle
i (b) and (c) population of the four regions in (b). Reprinted with permission
from [33]. Copyright (2015) IEEE.

by the MOS transistor connected in series with the device. After the set event
the resistance falls within the LRS sub-distribution in Fig. 10b. Finally, the
intermediate case B corresponds to an applied VA close to Vset. In this case, the
device undergoes set transition, however cannot complete the transition within
the pulse time. This results in an intermediate resistance between LRS and HRS,
constituting the flat region of the bimodal distribution between HRS and LRS
sub-distributions in Fig. 10b. It has been shown that this flat region, i.e. the
occurrence of intermediate cases of type B, can be minimized by using a reduced
pulse width or a proper shape (e.g. a saw-tooth shape with abrupt drop after
reaching VA) [33]. A key requirement for the TRNG in Fig. 9 is the absence of
memory effects in the entropy harvesting process. To support this point, Fig.
11a shows the measured resistances during 500 successive random set cycles,
clearly evidencing a bimodal distribution [33]. The absence of memory effect is
further demonstrated in Fig. 11b, showing the correlation plot of R in cycle i + 1
as a function of the R in cycle i for all the cycles showed in Fig. 11a. We can
identify four different regions, corresponding to the cell being in the same state
(LRS or HRS) or different states in the two consecutive cycles. Fig. 11c shows
the histogram representation of the probability for the four regions, showing
comparable values around 25%. This demonstrates the lack of correlation across
two consecutive cycles, which is consistent with true randomness of the bit stream.
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Figure 12: Regeneration circuit (a), comprising the 1T1R RRAM device and
a CMOS inverter. (b) Vin–Vout characteristic of the inverter. Reprinted with
permission from [33]. Copyright (2015) IEEE.

To guarantee proper RNG operation, a positive-feedback regeneration of the
analogue output values might be required. Fig. 12a shows a compact regeneration
circuit [33], comprising a RRAM device in 1T1R structure as the first stage
and a CMOS inverter as the second stage. This scheme takes advantage of the
relatively large resistance window between LRS and HRS, thus allowing the use
of a small CMOS inverter instead of the larger analogue comparator, which is
instead typically required for recovering the small signal in RTN-based RNG [29].
Fig. 12b shows the Vin–Vout characteristics of the CMOS inverter, evidencing the
high gain in the transition region (with a threshold voltage VT = 0.4 V) which
allows for digital restoration. The impact of this regeneration circuit on the
random bit distribution is illustrated in Fig. 13, showing measured and simulated
bimodal resistance distributions (a), the simulated digital bimodal distribution
of the inverter output Vout (b) and the sequence of the output voltage Vout for
2x105 cycles (c).

To achieve a sufficient uniformity of the generated random bits, the applied
voltage should be finely tuned to match the exact value <Vset>. This requires
a preliminary probability tracking procedure [76], which results in a certain
overhead in terms of complexity, area and power consumption
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Figure 13: Measured and calculated distribution of the RRAM resistance (a),
simulated distribution of the inverter output voltage Vout (b) and measured Vout
for 2x105 cycles. Reprinted with permission from [33]. Copyright (2015) IEEE.
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Figure 14: (a) Parallel-reset differential scheme for TRNG and (b) sequence of
applied signals. Both P and Q start in HRS and are independently set, then reset
and finally read using a voltage-divider configuration. The analogue comparator
(CMP) digitally restores the output signal. Reprinted with permission from [34].
Copyright (2016) IEEE.

7 Differential TRNG Schemes
To overcome the need for a probability tracking in voltage-based TRNG, various
differential schemes have been recently developed [34, 75]. In these TRNGs,
either the competition between two RRAM devices [34] or the comparison
between consecutive cycles on the same device [75] yields high-quality entropy
without probability tracking, thus with a relatively simple circuit layout. A
typical differential scheme relies on the coupling of two RRAM devices in either
series or parallel configurations with the entropy source being the variability of
set or reset transitions [34]. Three different schemes were proposed, namely: (a)
parallel reset, (b) series reset and (c) parallel set, as detailed in the following [34].
Fig. 14a shows the parallel-reset TRNG circuit, comprising two RRAM cells,
referred to as P and Q, connected in parallel. The common BE is connected to
a comparator for the differential read. Fig. 14b shows the waveform applied to
the TE of devices P and Q, i.e. VP and VQ, respectively, and the voltage Vout
of the common BE node between P and Q. During a TRNG cycle, the applied
waveforms include three phases, namely, 1) a positive voltage is applied across
both P and Q in parallel, inducing set transition at both devices, 2) a negative
voltage is applied across P and Q in parallel, inducing reset transition in both
devices, 3) a differential read phase where +Vread and –Vread are applied at P
and Q with floating BE to test the voltage divider between P and Q. Depending
on the resistance values of P and Q, namely RP and RQ, respectively, the output
voltage is found to be positive or negative, thus dictating the value of the output
random bit. Given the relatively large variability of the HRS resistance [33, 57],
Vout varies stochastically from cycle to cycle, thus constituting the basis for
random bit generation. In this first approach, HRS resistance variation acts as
the entropy source. Note that the bit value probability is automatically set to
50% by the uniform cycle-to-cycle distributions of HRS resistance of P and Q, as
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Fig. 15

Figure 15: Cumulative distributions of resistance after set and after reset for
cell P and Q (a). (b) Distributions of the output voltage Vout and Vout2, before
and after the CMP, respectively. (c) Measured Vout and Vout2 for 1000 RNG
cycles with the corresponding PDFs (d). Reprinted with permission from [34].
Copyright (2016) IEEE.

the cycle-to-cycle variation in RRAM is comparable to the cell-to-cell variation
[77].

Fig. 15a shows the cumulative distributions of measured and calculated RP
and RQ, both after set and after reset. The read Vout distributions are shown
in Fig. 15b for experimental and calculated data, indicating a bimodal shape
with 50% transition probability. By reading the voltage Vout with an analogue
comparator (Fig. 14a), the bimodal distribution can be improved, as shown
by the distribution of the comparator output Vout2 in Fig. 15b. The bulky
comparator may be replaced by a CMOS inverter, thus reducing the on-chip
area occupation [33]. To demonstrate the cycle-by-cycle operation of the parallel-
reset scheme, Fig. 15c shows Vout and Vout2 for 1000 consecutive cycles, while
Fig. 15d shows their corresponding probability density function. The TRNG
does not require any probability tracking thanks cycle-to-cycle variability being
comparable to the cell-to-cell variability [77]. Fig. 16a shows an alternative
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Fig. 16

Figure 16: (a) Series reset differential scheme for TRNG and (b) sequence of
applied signals. From the HRS, the cells are independently set, then they undergo
a random reset, during which only one can switch, and finally they are read in
voltage-divider configuration. Reprinted with permission from [34]. Copyright
(2016) IEEE.

differential TRNG scheme, namely the serial reset configuration. This comprises
two RRAM devices connected in series with VP and VQ as supply voltages and
the intermediate node of potential Vout connected to an output comparator.
Fig. 16b shows the applied waveform of VP, VQ and Vout during a TRNG cycle,
consisting of 1) independent set of P and Q, 2) random reset of either P or Q,
3) differential read of Vout. For simplicity, we assumed VQ = –VP in the figure.
During the random reset event, a negative voltage VP – VQ < 0 is applied
to the two devices in series, while the common node is left floating. A total
applied voltage |VP – VQ| > 2 Vreset drops across the devices, thus inducing
reset transition in one of the two devices. In fact, once the transition begins in
one of the two cells, the voltage across it increases because of the voltage divider
effect, while the voltage drop across the other device decreases, thus preventing
the two devices to both undergo reset transition. This configuration thus realizes
a positive feedback, resulting in a self-accelerated reset event that takes place
randomly in one device only. Specifically, the reset transition takes place in the
device with the smallest Vreset. Because of the cycle-to-cycle variability of Vreset,
the probability for one device to reset is ideally 50% [57]. Fig. 17a shows the
cumulative distribution of RP and RQ after set and reset pulses in Fig. 16b [34].
After the random reset pulse, both P and Q show the same bimodal distribution
with transition point at 50% probability, thus demonstrating unbiased TRNG
with no need for probability tracking. To gain further insight on the random
reset process, Fig. 17b shows the correlation plot of RQ as a function of RP after
either set or reset. RP and RQ appear to be anti-correlated after the reset phase,
namely RP is high for low RQ and vice versa, which thus reveals a conditional
reset of one RRAM device only. Fig. 17c shows the distributions of experimental
and calculated Vout, indicating a bipolar mode with transition point at 50%
probability. Similar to other TRNG schemes, a digital regeneration can be
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Fig. 17

Figure 17: (a) Cumulative distributions of R after set and after reset for both
cells P and Q. (b) Correlation plot of RQ as a function of RP. (c) Cumulative
distributions of Vout and Vout2. (d) Measured Vout and Vout2 during RNG cycling
and (e) corresponding PDF. Reprinted with permission from [34]. Copyright
(2016) IEEE.

obtained by a comparator or a CMOS inverter. Fig. 17d shows the cycle-to-cycle
values of Vout and Vout2 during the application of the RNG pulse scheme of
Fig. 16b. Note that after each differential read phase, a final deterministic
reset pulse was applied to ensure equal HRS conditions in P and Q before the
application of the set pulse. Fig. 17e shows the corresponding distributions of
Vout and Vout2 for both data and calculations [34]. Fig. 18a shows the parallel
set scheme [34], where the two RRAM devices in parallel configuration are
connected to a common select transistor, with the drain terminal connected to
the input node of a comparator. Fig. 18b shows the applied waveform cycle,
including 1) an independent reset of P and Q, 2) a random set pulse of P and
Q, and 3) a differential read by the application of a voltage 2 Vread across the
two devices, while the transistor is biased in the off state. This TRNG scheme
is based on the one-transistor/two-resistor (1T2R) structure in Fig. 18a, where
the application of a positive voltage across the devices causes set transition to
take place randomly in one of the two devices first. As a result of the transition
to LRS and the voltage divider effect with the transistor, the voltage drops
across both devices, which prevents any set transition to take place in the second
RRAM device. In this TRNG scheme, the cycle-to-cycle variability of Vset plays
the role of entropy source. Fig. 19a shows the read resistance distributions for
P and Q, evidencing the expected bimodal shape with HRS/LRS transition at
50%. In order to verify that the random set happens stochastically in either one
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Fig. 18

Figure 18: (a) Parallel set differential scheme and (b) sequence of applied signals.
From the LRS, the cells are first independently reset, the subjected to parallel set,
and finally read with voltage-divider configuration. Reprinted with permission
from [34]. Copyright (2016) IEEE.

of the devices, Fig. 19b shows the correlation plot of RQ as a function of RP,
again indicating an anti-correlation where P is in HRS for Q in LRS, and vice
versa. Finally, Fig. 19c shows the cycle-to-cycle output values of Vout and Vout2,
while Fig. 19d shows their corresponding probability distributions.

Comparing these solutions for entropy harvesting, different performances
are apparent in terms of bimodal distribution of R and Vout. For instance,
the parallel-set TRNG (Fig. 19) shows improved results with respect to the
parallel-reset TRNG (Fig. 15). This can be understood considering the abrupt
set transition in the parallel set process as opposed to the more gradual reset
event in the parallel reset process. The abrupt set transition is explained by the
physical positive feedback where the first initiation of the filament causes an
increase of the local Joule heating, thus accelerating the further growth of the
filament [57]. This highlights the key role of the physics of the entropy-generating
process has in controlling the quality of the TRNG circuit.

A general drawback of the differential pair approach is the assumption that
cycle-to-cycle variation dominates over the cell-to-cell variation. In presence of a
large mismatch between the two cells in the differential pairs, e.g., where one
cell systematically displays a lower Vset than the other cell, the TRNG might
show deviations from the uniform behavior. Although this might be acceptable
for PUF applications, where the random unique key has to be generated only
once in the lifetime of the device, it might cause non-acceptable non-uniformities
in TRNG [34].

8 STT Magnetic Memory for TRNG
The presented TRNG schemes can be adopted for all stochastic memory devices,
e.g., the phase change memory (PCM) or the STT-MRAM. In particular, STT-
MRAM offers improved cycling endurance [78] and fast switching [79] which might
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Fig. 19

Figure 19: (a) Cumulative distributions of R after set and after reset for P and Q.
(b) Correlation plot of RQ as a function of RQ after set and reset. (c) Cumulative
distributions of Vout and Vout2 during RNG cycling, and (e) corresponding
measured Vout and Vout2 PDF. Reprinted with permission from [34]. Copyright
(2016) IEEE.

benefit the TRNG operation by providing an extended lifetime and throughput.
Fig. 20a shows a typical state-of-the-art STT-MRAM device, consisting of a
magneto-tunnel junction (MTJ) with perpendicular magnetic anisotropy (PMA)
[78]. The MTJ consists of a pinned layer (PL) and a free layer (FL), acting as
bottom electrode (BE) and top electrode (TE), respectively, and both made of
ferromagnetic CoFeB. Between the two electrodes, a dielectric layer made of
crystalline MgO serves as the tunneling barrier to induce the MTJ effect [80]. As
schematically shown in Fig. 20b, this memory device has two stable states, where
the magnetic polarization of the FL can be either parallel (P) or antiparallel
(AP) to the magnetization of the PL, resulting in low or high resistance of the
MTJ, respectively [78, 80]. Fig. 20c shows the measured current-voltage (I-V)
characteristics, while the corresponding resistance-voltage (R-V) characteristics
is shown in Fig. 20d. Set transition from AP to P, and reset transition from P
to AP, take place at the positive voltage Vset and at the negative voltage Vreset,
respectively.

As for the RRAM device, set and reset transitions in STT-MRAM are
affected by stochastic switching, thus introducing a randomness causing a voltage-
dependent bit error rate (BER) in memory applications [79]. The inherent
stochastic switching causes cycle-to-cycle variations of both Vset and Vreset
[81]. Although showing apparently similar variability, the physical origin of the
stochastic switching voltage is quite different in STT-MRAM and RRAM. In
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Figure 20: (a) Typical STT-MRAM device , consisting in a magnetic tunnel
junction (MTJ) stack. (b) Energy as a function of the FL magnetic polarization
direction with respect to the PL, showing P and AP states. (c) Measured
and calculated I-V and (d) R-V pulsed characteristics with 1 µs pulse width.
Reprinted with permission from [75]. Copyright (2018) IEEE.

fact, the statistical variations in STT-MRAM switching can be explained by the
thermally-assisted magnetization reversal [82], where the transition from AP
to P and vice versa are induced by a random thermal fluctuation within the
potential well of Fig. 20b, and a stochastic transition over the energy barrier
EA between the two states. As a result, for each applied positive or negative
voltage VA, there is a statistical distribution of set time tset or reset time treset,
respectively.

The stochastic switching in STT-MRAM has been used for various TRNG
concepts, either based on the time variation [31, 83] or the voltage variation
[76, 30]. In particular, in the work from Vodenicarevic et al. [83] the stochastic
switching time was exploited through an MTJ stack engineering. Namely, a
low-stability (i.e. characterized by a reduced magnetic stability) free-layer
was introduced instead of relatively high-stability nanomagnet used in memory
applications. This structure is referred to as superparamagnetic tunnel junction
[84] and shows spontaneous stochastic switching between the two stable states
due to low stability relative to thermal fluctuations.

However, all these schemes necessarily rely on a careful biasing configuration,
thus requiring a probability tracking approach to ensure the TRNG uniformity.
Probability tracking can be avoided by using differential concepts, however, the
differential pair approach is affected by the cell-to-cell mismatch within the
pair. To solve these issues, a novel differential concept was presented, where the
consequent switching cycles are compared in the same device, instead of two
coupled devices [75]. Fig. 21a shows the applied voltage and the device current
response over two consecutive set/reset cycles. In each cycle, a stochastic pulse
with positive V+ is applied, followed by a deterministic pulse with negative
V–. Both pulses have a pulse duration of 1 µs, although the concept can be
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Figure 21: (a) Measured rectangular voltage pulses and current response for
2 consecutive cycles n–1 and n, (b) PDF of the integrated current Qn and (c)
PDF of differential charge ∆Qn = Qn – Qn–1. The pulse sequence includes
positive and negative rectangular pulses for stochastic set and reset transitions,
respectively, as evidenced by the abrupt steps in the current response. The
random bit is assigned from the value of ∆Qn in (c). Reprinted with permission
from [75]. Copyright (2018) IEEE.

easily scaled to a shorter pulse-width thanks to the high speed of the switching
process in the STT-MRAM. The stochastic switching is evidenced in Fig. 21a,
where a shorter delay time tset is observed during cycle n–1 with respect to cycle
n. the TRNG relies on the comparison between the current responses between
two consecutive cycles of the same STT-MRAM device. Fig. 21b shows the
probability distribution of the integrated current Qn =

∫
idt while Fig. 21c

shows the corresponding difference ∆Qn = Qn − Qn−1. Given the highly
symmetric distribution of ∆Qn, the latter is chosen as the statistical variable for
random bit generation, where a random bit value 0 or 1 is assigned for ∆Qn < 0
or ∆Qn > 0, respectively [75].

Fig. 22a shows the same concept for TRNG applied to the case of a triangular
waveform. Both positive and negative triangular pulses are applied for stochastic
set and deterministic reset, respectively. In this case, the stochastic switching is
evidenced by the different set and reset voltage in cycles n–1 and n, resulting in
different current waveform during the two consecutive cycles. Fig. 22b shows
the distribution of the integrated current over a single cycle Qn =

∫
idt while

Fig. 21c shows the difference ∆Qn = Qn − Qn−1 over two consecutive cycles,
serving as the stochastic variable for bit generation. In the TRNG concepts
illustrated in Fig. 21 and Fig. 22, the entropy source is either the stochastic
distribution of switching time, or the stochastic distribution of switching voltage,
respectively [75].

Generally, TRNG concepts require further whitening algorithm, such as the
Von Neumann correction [76] or the XOR operation [83], to achieve a truly
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Figure 22: (a) Measured triangular voltage pulses and current response for 2
consecutive cycles n–1 and n, (b) PDF of the integrated current Qn and (c)
PDF of differential charge ∆Qn = Qn – Qn–1. The pulse sequence includes
positive and negative triangular pulses for stochastic set and reset transitions,
respectively, as evidenced by the abrupt steps in the current response. The
random bit is assigned from the value of ∆Qn in (c). Reprinted with permission
from [75]. Copyright (2018) IEEE.

unbiased bitstream. However, the scheme of Figs. 21 and 22 can pass the
standard test of the National Institute for Standards and Technology (NIST)
[63] without any post-processing, thus enabling a reduced energy and area
overhead of the TRNG circuit [75]. Fig. 23 reports the pass rate for the non-
overlapping template test in the NIST criteria as a function of pulse voltage
for rectangular and triangular pulses. The TRNG with rectangular pulse shows
an acceptable accuracy only in correspondence of a narrow window of voltage,
with a randomness degradation for both high and low voltages. On the other
hand, the TRNG with the triangular pulse shows high pass rate over the whole
test range, demonstrating a high voltage-independent randomness. These results
can be explained by considering the applied voltage (VA) dependence of the
switching parameters tset and Vset (or treset and Vreset) for rectangular and
triangular pulses [75]. Considering a rectangular pulse, the set time tset can be
written as [85]:

tset = τ0 exp (∆(1 − V

V0
)), (1)

where V0 and τ0 are constants, V is the applied voltage, and ∆ is the thermal
stability factor. Given the exponential dependence in Eq. 1, there is only a narrow
window of voltages where the switching time tset is comparable to the applied
pulse width (Fig. 21a). On the other hand, the set voltage under a triangular
pulse, where the applied voltage is ramped according to V (t) = 2VAt/tP , can
be estimated from the switching integrated probability reaching one, namely∫

1/tsetdt = 1, with tset defined by Eq. 1. Thus, the set voltage along a triangular
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Figure 23: Pass rate of the non-overlapping template NIST test as a function of
pulse voltage for rectangular and triangular pulses. The pass rate is referred to
a total of 148 tests. Rectangular pulses show an operation window around 0.6 V,
whereas triangular pulses show voltage-independent high randomness. Reprinted
with permission from [75]. Copyright (2018) IEEE.

pulse is given by [82, 64]:

Vset ≈ V0 ln
t0VA
V0tP

, (2)

suggesting a logarithmic dependence of Vset on the maximum applied voltage
VA. This explains the voltage-independent high entropy for the triangular pulse
scheme with respect to the rectangular pulse in Fig. 23. Owing to this different
dependence, the time-based scheme (rectangular pulse) might still require some
probability tracking to find the correct VA for optimal performance. In general,
differential reading schemes based on stochastic voltage look more promising
with respect to schemes based on stochastic time thanks to a lower sensitivity
to the external biasing. For example, the application of an external magnetic
field or change in temperature would only affect the switching threshold of the
triangular pulse scheme, but not its cycle-to-cycle variability, which acts as
the entropy source. On the other hand, for the rectangular pulse scheme, an
external bias would change the voltage window for maximum entropy, requiring
a re-tuning of the applied voltage.

9 PUF Implementations
The RRAM device variability sources discussed for TRNG can in principle be
adopted for PUF systems, thus enabling a small area, low power consumption,
and high PUF performance in terms of uniqueness and reliability. For instance,
the stochastic resistance variation in RRAM was proposed for a reconfigurable
PUF [86]. Fig. 24a shows the calculated lognormal distributions of RRAM
resistance for LRS and HRS. Fig. 24b is a sketch of a PUF circuit consisting of
an RRAM array where each cell represents a single bit and can be initialized in
either LRS or HRS. The challenge consists of the address of two n-bit data, while
the response is the bit-wise comparison of the RRAM resistance of the two data.
In this PUF concept, the stochastic switching allows for the reconfiguration of the
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Figure 24: (a) Simulated resistance distributions for LRS and HRS, following
normal and lognormal distributions, respectively. (b) Schematic illustration of a
PUF implementation exploiting RRAM resistance variability. Reprinted with
permission from [86]. Copyright (2014) IEEE.

PUF by reprogramming the RRAM array, in strike contrast with systems based
on fixed manufacturing variations. PUF reconfigurability significantly enhances
security protocols based on authentication [87], since it allows to overcome
the limitations due to device degradation or small CRP set. Fig. 25 shows
the characterization of the PUF against three of the performance parameters
in Sec. II, namely unpredictability, unclonability and reliability. First, the
unpredictability of the PUF response can be measured by studying the output
bit uniformity. Fig. 25 shows the characterization of the PUF against three of the
performance parameters in Sec. II, namely unpredictability, unclonability and
reliability. First, the unpredictability of the PUF response can be measured by
studying the output bit uniformity. Fig. 25a shows “1” bias distributions of 256-
bit responses, thus supporting a uniform output, also confirmed by the almost
equal probabilities of 3-bit responses in Fig. 25b. Second, the unclonability
requires that the physical (or mathematical) CRP mapping cannot be replicated,
which in turn requires a strong uniqueness of PUF to distinguish a specific chip
from another. This property can be assessed as the Hamming distance (HD)
between the responses of two different PUFs to the same challenge. It is also
referred to as the inter-chip HD (HDinter), which should be ideally 50%. Fig. 25c
shows the calculated HDinter for 100 PUF samples of 256 kb RRAM arrays,
demonstrating an ideal HDinter close to 50%. Finally, reliability refers to the
ability of a PUF of giving always the same response to a given challenge. To
evaluate the PUF reliability, the intra-chip HD (HDintra) can be calculated in
this case among different responses to the same challenge for the same PUF
under different conditions (such as temperature). The HDintra should be 0%
for an ideal PUF, and a large separation between HDinter and HDintra reduces
false identification rate [86]. HDintra might be affected by the dependence of
RRAM resistance on temperature and voltage. For instance, Fig. 25d shows the
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Figure 25: (a) Distribution of the uniformity measured by "1" bias of a PUF
implemented on a 256 kbit array. The relatively uniform output is demonstrated
by the uniform occurrence of the 3-bit responses (b). (c) Uniqueness measured
by HDinter distribution. (d) A resistance crossing event between two different
cells at increasing temperature, which causes a bit flipping and consequently a
reliability degradation. (e) Effect on HDintra distributions under different voltage
fluctuations. (f) HDintra distributions at different temperatures. Reprinted with
permission from [86]. Copyright (2014) IEEE.

resistance as a function of temperature for two RRAM cells with two different
activation energies [86]. Note the crossing between the two resistance values
at high temperature, thus resulting in a bit flip and a consequent reduction
of the reliability. Figs. 25e-f shows the impact of voltage and temperature on
reliability, described by the parameter HDintra. In general, PUF implementation
with RRAMs requires that the spatial (i.e., cell to cell) variability dominates over
temporal variability (i.e., noise) [86]. As a result, particular attention should be
paid on device retention properties to minimize possible aging effects that might
reduce the window between HDintra and HDinter. To develop a strong PUF, not
only the RRAM randomness and reliability, but also the circuit implementation
of the response function should be robust enough. Fig. 26a shows a possible
PUF implementation based on a crosspoint RRAM array [43]. Here, the entropy
source is provided by the large analogue resistance distribution of the RRAM.
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Figure 26: (a) Schematic illustration of the resistive crosspoint array, which
implements a strong PUF by exploiting the sneak paths. (b) Distributions of
cell current before and after the one-time programming, showing quite large
analogue distribution. Reprinted with permission from [43]. Copyright (2016)
IEEE.

The current sneak path is then exploited to go beyond the typical limitation of
memory-based PUF, which have a limited set of CRPs. Note that for memory
applications the sneak path effect is detrimental for cell read-out margin [88].
On the other hand, sneak path provides the unclonable function in this case,
enabling an exponential scaling of the CRP set, which is required for a strong
PUF. In the NxN crosspoint PUF of Fig. 26a, the challenge consists of a N-bit
vector applied to the N rows, where an input bit value of 1 corresponds to an
applied voltage equal to VDD, while the row is left floating for a bit value of 0.
The current from the N columns is then read and converted to an N-bit response
by a sense amplifier. Theoretically, the maximum number of CRPs is 2N, since
each row may be either floating or with an applied voltage. The actual number
of CRPs is reduced since 50% of the rows are required to be biased in order
to generate a comparable range of column currents for different challenges [43].
It is estimated that CRP set is around 5 x 1075 for an array of 256 x 256 bits.
RRAM devices in the array are initialized only at the beginning of the PUF
operation, resulting in large cell current variability thanks to the variation in
switching dynamics (Fig. 26b).

The performance of the crosspoint PUF in Fig. 26 is evaluated in terms of
the experimental HDinter and HDintra. In particular, the uniqueness is evaluated
by HDinter by comparing the responses across 28 PUF instances. Fig. 27a shows
HDinter distributions for 11 different challenges. The average HDinter ≈ 46.2%
is sufficiently close to the ideal 50%, thus demonstrating a good uniqueness.
In addition, a good PUF reliability requires a sufficient retention of the array
cell resistance state. To this purpose, the output currents (i.e. the responses)
were measured as a function of time for increasing temperature. Fig. 27b
reports the results of an annealing experiment for T = 120◦C as a function
of time, underlining the RRAM variation with time as already demonstrated
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Figure 27: (a) Distributions of HDinter of 12-bit responses for 11 different input
vectors. (b) Measured read current for 12 column as a function of time at
T = 120◦C. (c) HDintra of 12-bit responses to the same challenge as a function
of time for three different temperatures T = 100, 120 and 140 ◦C. Reprinted
with permission from [43]. Copyright (2016) IEEE.

for HfOx RRAM [89]. The results are summarized in Fig. 27c as HDintra for
increasing temperature T = 100, 120 and 140 ◦C, showing an increasing value
of HDintra, from 0% to 8%. Note that HDintra and HDinter distributions do not
overlap, as the minimum for HDinter is around 17% (see Fig. 27a), demonstrating
the feasibility of the crosspoint PUF concept as hardware security primitive.
Embedding resistive devices in security primitives allows for their hardware
reconfigurability, which opens new possibilities for secret keys management. A
key-based permission granting system requires eventual key erasure, after the
permissions have been revoked. This system allows for logic locking [90], which is
used against intellectual property (IP) theft and circuit counterfeiting. However,
proving that the digital key has been erased is a difficult task. More in general,
a security protocol with erasable PUF responses is desirable [44].

Recently, a provable key destruction scheme based on memristive devices was
demonstrated [91] with a 128x64 Ta/HfO2 crosspoint array, shown in Fig. 28a.
The unclonable fingerprint is derived by comparing the conductance value of
neighboring cell pairs in the array, after initializing all of them in the LRS.
The random bit identifying each pair is set to “1” if GLRS,left ≥GLRS,right, to “0”
otherwise. Owing to the intrinsic variability of LRS, a random pattern (i.e. the
fingerprint)is generated to identify uniquely the device, as shown in (Fig. 28b).
Fig. 29 shows the experimental demonstration of provable key destruction. Here,
an initial fingerprint (FPchip, Fig. 29a) is generated and securely stored in
a trusted database. Then, a random key (Kchip, Fig. 29b) is written in the
array, thus preventing the re-writing of FPchip without losing Kchip. Kchip is
also sent to the trusted party, so that it can be used for unlocking features
of the specific chip instance storing Kchip. When a key erasure is necessary,
the user simply reinitialises the array to the LRS, therefore destroying the key
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Figure 28: (a) Schematic of the crosspoint array enabling secure fingerprint
extraction only after provable key erasure, where the fingerprint is given by the
comparison of LRS conductance between two neighboring memristor cells. (b)
Typical 128x32 fingerprint that can be generated from a 128x64 memristor array.
Reprinted with permission from Macmillan Publishers Ltd: Nature Electronics
[91]. Copyright (2018).

Kchip and generating a new fingerprint (FP’chip, Fig. 29c), which constitutes
the demonstration of key erasure. The new fingerprint FP’chip is finally sent
to the trusted party for comparison with the previously stored FPchip. If the
HD between the two fingerprints is compatible with the expected distance
between fingerprints of the same chip, then the chip can be authenticated by
the trusted party. . In addition, the trusted party also gets confirmation that
Kchip has been erased, since it is required for generating a valid FP’chip. The
practical feasibility of the described concept is demonstrated in Fig. 29d, showing
that the distribution of HD for the same chip is clearly separated from the
distribution of HD for different chips. Fig. 29e shows the same distributions for
256-bit fingerprint, where the improved separation between the two distribution
supports the need for a large number of bits in the fingerprint.

10 Summary and Conclusions
The exponential increase of internet-based communication devices is raising the
demand for data/hardware security. A severe challenge is the limited area and
power for IoT devices, which spurs the research on low power, high performance
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Figure 29: (a) Initial fingerprint FPchip stored by the trusted party. (b) Digital
key Kchip written in the memristor array. (c) A second fingerprint FP’chip
generated by the same array, thus destroying the key. (d) HD distributions
of 128-bit fingerprints from same chip and different chips, showing sufficient
separation, hence demonstrating the feasibility of the scheme. (e) The same
comparison is given for 256-bit fingerprints. Reprinted with permission from
Macmillan Publishers Ltd: Nature Electronics [91]. Copyright (2018).
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hardware security blocks such as TRNG and PUF. While TRNGs are essential
for encryption adopted in data and transmission security, PUFs are becoming
the preferred solution for hardware authentication and verification.

The chapter provides an overview of TRNGs and PUFs based on emerging
resistive switching memory technology. We review the various schemes for using
a nanoscale device as entropy source, including stochastic noise, stochastic switch-
ing delay time and stochastic switching voltage. The various implementations
are discussed in terms of simplicity of the concept and the stability over various
operating condition, such as process, voltage and temperature. The effectiveness
of differential schemes for TRNGs, which do not require any probability tracking
to tune the operating voltage and/or time, is also discussed and emphasized.

While the status of memory-based security primitives is already encouraging,
there are still many challenges toward a practical implementation of these
concepts in IoT and other integrated systems. In particular, device optimization
needs to be focused on high-frequency operation (> 1 Gbit/s), low-energy per bit
(tens of fJ range), aggressive area scalability (1x nm node) and infinite endurance.
Most importantly, a CMOS-compatible technology is paramount for an easy
integration capability. The device should also engineered toward enhancing the
stochastic behavior, which is generally unwanted and intentionally suppressed in
memory applications. A differentiation of the device geometry, materials, and
operation algorithms toward optimized random performance might be needed
for TRNG and PUFs. From the circuital point-of-view, the research effort
should focus on design solutions which minimize the area, power and circuit
overhead. Clearly, this means that TRNG schemes which do not require any
post-processing algorithm or entropy tracking feedback should be preferred. In
general, a thorough device/circuit co-design methodology is extremely important
and should be carefully explored. Finally, a fascinating direction of research
is the hardware reconfigurability, where the same fundamental structure (e.g.
a cross-point memory array) is used for either memory, computing (e.g. as
a hardware primitive for stochastic/neuromorphic computing), or hardware-
security. This offers new possibilities for ultra-small/low-power IoT-devices,
which would be able to perform a wide range of tasks (e.g. pattern recognition
and classification, fast/low-power analog computation, authentication, etc.)
within a single hardware chip.
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