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1 Introduction

A significant part of the most important results on the binary (and ternary)
Goldbach problems were reached by the so-called circle method, invented
about a hundred years ago by Hardy, Littlewood and Ramanujan. The same
applies for the analogue equation p1 − p2 = m which is often called the
Generalized Twin Prime Problem. We will use the method in the form of
Vinogradov’s trigonometric sums.

In the present work we will briefly discuss three approximations to the
binary Goldbach problem for which the detailed proofs will be published else-
where. We will begin with the estimate of the exceptional set in Goldbach’s
problem (see (1.11)) which we outline in Section 3. Another approximation,
initiated by Linnik is to write every even number as the sum of two primes
and a bounded number of powers of two. A joint result with I. Z. Ruzsa
[PR1] about a conditional treatment (based on GRH) of the problem ap-
peared in 2003. The unconditional treatment [PR2] is under press. This is
sketched in Section 4. Finally, a third application is an improvement of a
result of Brüdern, Kawada and Wooley [BKW]. This estimates the size of
the set of n’s for which 2Φ(n) has no Goldbach representation for an arbi-
trary fixed polynomial Φ ∈ Z[x] with a positive leading coefficient. This was
improved in a joint work with A. Perelli which is still under preparation. The
improvement is outlined in the special case of Φ(n) = n2 in Section 5.
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K 119528 and KKP 133819.
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In the following we will present the notation and the crucial common
ideas for these three approximations in Sections 1 and 2 while Sections 3–
5 are devoted to some of the special ideas for the three above mentioned
applications.

We note that due to the ineffective nature of the approximate formula
of Section 2 the results are ineffective in their present form. However, with
additional efforts one can obtain a somewhat weaker effective form of it. The
author plans to return later to these problems in a future work.

If we plan to investigate primes up to a large number X we introduce the
generating function

(1.1) S(α) =
∑

X1<p≤X

log pe(pα), e(α) = e2πiα, X1 = X1−ε, L = logX

where p, p′, pi denote always primes, and ε > 0 is an arbitrary, sufficiently
small fixed real number.

The Farey arcs will be introduced by the aid of the parameters P , Q
satisfying

(1.2) 2 ≤ P ≤
√
X ≤ Q = X/P < X.

According to this we define the major and minor arcs as

(1.3) M =
⋃
q≤P

⋃
a

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
, m =

[
1

Q
, 1 +

1

Q

]
−M.

If we would like to consider the equations

p+ p′ = m, p, p′ ∈ (X1, X], m ∈ [X/2, X],(1.4)

p− p′ = m, p, p′ ∈ (X1, X], m ∈ [X/4, X/2],(1.5)

let us denote the weighted numbers of their solutions by

(1.6) R(m) =
∑

p+p′=m
p,p′∈(X1,X]

log p · log p′, R′(m) =
∑

p−p′=m
p,p′∈(X1,X]

log p · log p′.

These can be expressed as the sum of the contribution of the major arcs and
the minor arcs as

R(m) = R1(m) +R2(m), R′(m) = R′1(m) +R′2(m),(1.7)
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R1(m) =

∫
M

S2(α)e(−mα)dα, R2(m) =

∫
M

S2(α)e(−mα)dα,(1.8)

R′1(m) =

∫
M

|S2(α)|e(−mα)dα, R′2(m) =

∫
M

|S2(α)|e(−mα)dα.(1.9)

In the traditional attack of both Hardy–Littlewood and Vinogradov one
chooses the parameter P in such a way that the contribution R1(m) (or analo-
gously that of R′1(m)) could be evaluated asymptotically. This value depends
on our knowledge about the distribution of primes up to X in arithmetic pro-
gressions (AP’s) modulo q ≤ P . This bound was (roughly) P = log2X before
Siegel’s theorem was proved (1935) and it increased to P = (logX)A with an
arbitrary large fixed A after it (Siegel’s theorem was used naturally as the
corollary now called Siegel–Walfisz theorem).

In addition to this Vinogradov succeeded to develop a new estimate for
S(α) on the minor arcs, which we quote here as [Vin].

Lemma 1. For α ∈ m we have the estimate

(1.10) S(α)�
(
X√
P

+X4/5

)
L4.

This was proved later in a simpler form by Vaughan [Vau1].
The above estimate and Siegel’s theorem made possible in 1937 for Vino-

gradov to show his celebrated three-primes theorem [Vin], that every suffi-
ciently large odd number can be written as the sum of three primes. His
result was extended for all odd numbers larger than 5 in 2013 by H. A. Helf-
gott [Hel]. Concerning the binary problem, Vinogradov’s method made it
possible to show that almost all even numbers are Goldbach, that is, can
be written as the sum of two primes. Namely, simultaneously and indepen-
dently Čudakov [Cud], Van der Corput [VdC] and Estermann [Est] showed
the same estimate for the exceptional set E(X):

(1.11) E(X) := #{n ≤ X, 2 | n, n 6= p+ p′} �A
X

(logX)A

for any A > 0.
This was the best result for 35 years when after an initial improvement of

Vaughan [Vau2] Montgomery and Vaughan [MV] reached the breakthrough
result

(1.12) E(X)� X1−c0
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with an unspecified small (but theoretically explicitly calculable) c0 > 0.
One of the crucial idea of them was to choose P much larger, P = Xc1 ,

with a small c1 such that one should have a valid asymptotic for the number
of primes in AP’s (arithmetic progressions) with the possible exception of one
modulus q1 and its multiples. This q1 is the possible exceptional modulus
of the possibly existing unique exceptional primitive character χ1 for which
the corresponding Dirichlet’s L-function has a simple exceptional (real) zero
%1 = 1 − δ1 (the so-called Siegel zero). Although the existence of such a
zero destroys the classical uniform distribution of primes in the AP’s whose
difference is divisible by q1 we can still describe the number of primes in these
progressions with the aid of a secondary term depending on q1 and δ1.

2 The approximate formulae

The main goal of our work is to describe a more general formula (proved
in [Pin1]) which enables us to work with a much higher level of P (P ≤
X4/9−ε). The cost of it is that the formula will be more complicated and it
will depend on several hypothetical “generalized exceptional zeros” instead
of one. However, their number can be bounded independently from X (the
zeros themselves might change with X growing). This bound will just depend
on the required preciseness of the formula (such a phenomenon does not occur
in case of the treatment of [MV]).

Afterwards we will mention some problems where these new approximate
formulae can lead to better results (usually along with other new ideas). We
will give a short overall description of the advantages of this new formula,
further in some cases we will give a brief indication how our formula helps in
the given problem. If we summarize briefly, we obtain on a significant part
of the unit interval (earlier a part of the minor arcs, which will belong after
increasing P to the major arcs) instead of a mere estimate on the crucial
integral a quite precise evaluation of it, which, however, depends on the
unknown generalized exceptional zeros. On the other hand the formulae also
show that if these zeros really exist, then their influence on the contribution
of the major arcs can not be neglected (by using more clever methods, for
example).

Similarly to the explicit formula for the number of primes up to a large
number X in AP’s our explicit formulae will depend on singularities of the
logarithmic derivatives of the primitive Dirichlet L-functions mod r ≤ P ,
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accordingly it will depend on the zeros of the L-functions. Another similarity
is that the main term will be provided by the pole of the zeta-function while
secondary terms will be provided by low zeros lying near to the line Re s = 1.
The effect of the other zeros can be estimated. Our goal will be to obtain
an estimate of type R1(m) > c0S(m)m or R′1(m) > c0S(m)m (with a small
absolute constant c0 > 0), at least apart from some exceptional values of the
variable m. (The singular series S(m) is defined in (2.4).)

We will choose two parameters H and U whose values will influence the
preciseness of the approximate formulae obtained for R1(m) and R′1(m), re-
spectively. It will turn out that if we allow for an error of size εS(m)X in
R1(m) and R′1(m) then we can choose H and U large constants depending
on ε (H ≥ H0(ε), U ≥ U0(ε)). This means they do not need to grow with
X →∞. We have to consider

(i) the generalized exceptional zeros %i (i = 1, 2, . . . ,M) belonging to
L-functions formed with primitive characters χi with conductors ri ≤ P ;

(ii) the pole %0 = 1 of the Riemann zeta function which we consider as a
primitive Dirichlet L-function belonging to χ0 modulo r0 = 1.

We will introduce the notation

(2.1) A(%) = 1 if % = %0 = 1, A(%) = −1 if % 6= 1,

and the exceptional singularities %i (i = 1, 2, . . . ,M) of the L′/L-functions
will be considered if and only if

(2.2) %i = 1− δi + iγi, δi ≤
H

L
, |γi| ≤ U.

Their set will be denoted by E(H,U).
A crucial result is that their number (counted with multiplicity) M + 1

satisfies by the so-called log-free density theorems

(2.3) M + 1 ≤ Ce2H for U ≤ X

with an absolute constant C > 0. (See e.g. Jutila [Jut].) This means that the
number of generalized exceptional zeros appearing in our formula will only
depend on ε, not on X.

As well known, the classical asymptotics for R1(m) and R′1(m) depend
on the singular series
(2.4)

S(m) = 2C0

∏
p|m
p>2

(
1 +

1

p− 2

)
, C0 =

∏
p>2

(
1− 1

(p− 1)2

)
= 0.66016 . . .

5



introduced by Hardy and Littlewood. We have to introduce for any pairs
of generalized exceptional primitive characters χi, χj mod ri, mod rj the
generalized singular series ([a, b] = l.c.m. [a, b])

(2.5) S(χi, χj,m) =
∞∑
q=1

[r1,r2]|q

c(χ1, χ2, q,m),

(2.6) c(χ1, χ2, q,m) =
1

ϕ2(q)
cχ1χ2χ0,q(−m)τ(χ1χ0,q)τ(χ2χ0,q),

where for a character χmod q

(2.7) cχ(m) =

q∑
h=1

χ(h)e

(
hm

q

)
, τ(χ) = cχ(1).

In case of the Generalized Twin Prime Problem (cf. (1.5) and (1.9)) we
have to use the similar quantities

S′(χ1, χ2,m) =
∞∑
q=1

[r1,r2]|q

c′(χ1, χ2, q,m),(2.8)

c′(χ1, χ2, q,m) =
1

ϕ2(q)
cχ1χ2χ0,q(−m)τ(χ1χ0,q)τ(χ2χ0,q).(2.9)

We note that in case of χ1 = χ2 = χ0 mod 1 we recover in both cases the
classical singular series S(m) of (2.4) which will appear in form of S(m)m
as the main term in our formulae. The analogue of m in the quantity for
R1(m) will be played in the weighted new formulae by

(2.10) I(%1, %2,m) :=
∑

m=k+`
X1<k,`≤X

k%
−1
1 `%

−1
2 =

Γ(%1)Γ(%2)

Γ(%1 + %2)
m%1+%2−1 +O(X1)

and

(2.11) I ′(%1, %2,m) :=
∑

m=k−`
x1<k,`≤X

k%
−1
1 `%

−1
2 =

Γ(%1)Γ(%2)

Γ(%1 + %2)
m%1+%2−1 +O(X1).
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We remark that the above terms arise as natural consequences of their
appearances in the explicit formulae for ψ(x, χ, q).

A crucial feature of our approximate formulae will be the fact that from
the bounded number of terms appearing in our formulae only those have a
non-negligible effect for which the quantities
(2.12)

U(χ1, χ2,m) = max

(
r21

(r1, r2)2
,

r22
(r1, r2)2

,
r1

(|m|, r1)
,

r2
(|m|, r2)

, cond χ1χ2

)
and in case of the Generalized Twin Prime Problem
(2.13)

U ′(χ1, χ2,m) = max

(
r21

(r1, r2)2
,

r22
(r1, r2)2

,
r1

(|m|, r1)
,

r2
(|m|, r2)

, cond χ1χ2

)
respectively, are bounded as a function of ε. This means that both r1 and r2
have to be “quasi-divisors” ofm and χ1 can differ from χ2 (or χ2, respectively)
just by a character of bounded conductor, or equivalently
(2.14)
ri | C(ε)m (i = 1, 2), cond χ1χ2 ≤ C(ε) (or cond χ1χ2 ≤ C(ε), resp.).

This completely new phenomenon expresses that we can specify the “sus-
picious” values of m for which we lose the classical asymptotics for the
contribution of the major arcs and they are just the “quasi-multiples” of
the conductors of the “bad” generalized exceptional characters. Even for
these “bad” values of m we have an explicit form of the appearing secondary
terms which will enable the estimation of their effects in many cases where
the earlier known methods have much more crude estimates. Finally the new
asymptotic formulae will be valid with an earlier hopelessly large choice of
the parameter P ,

(2.15) P ≤ X4/9−ε.

Although the explicit forms (2.5)–(2.9) for the generalized singular series
are quite complicated, their most important property is that

(2.16)
∣∣S(χ1, χ2,m)

∣∣ ≤ S(m),
∣∣S′(χ1, χ2,m)

∣∣ ≤ S(m),

that is, they can be estimated by the classical singular series. (Equality is
possible in non-trivial cases, too.) Similarly we have clearly

(2.17)
∣∣I(%1, %2,m)

∣∣ ≤ I(m) :=
∑

m=k+`
X1<k,`≤X1

1,
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and

(2.18)
∣∣I ′(%1, %2,m)

∣∣ ≤ I ′(m) :=
∑

m=k−`
X1<k,`≤X1

1.

If we denote more generally the set of generalized exceptional singularities
(2.2) for |γ| ≤

√
X, and denote the resulting set by

(2.19) E = E
(
H,
√
X
)

we can formulate our result about the approximate formula as

Theorem 1. Let ε > 0 be an arbitrary, sufficiently small fixed real number.
For every P0 ≤ X4/9−ε we can choose a P ∈ [P0X

−ε, P0] with the following
properties. We have for all m ≤ X the explicit formulas

(2.20)

R1(m) =
∑

(%i,χi)∈E

∑
(%j ,χj)∈E

A(%i)A(%j)S(χi, χj,m)I(%i, %j,m)

+Oε(S(m)Xe−cεH) +Oε(X
1−ε),

R′1(m) =
∑

(%i,χi)∈E

∑
(%j ,χj)∈E

A(%i)A(%j)S
′(χi, χj,m)I ′(%i, %j,m)(2.21)

+Oε(S(m)Xe−cεH) +Oε(X
1−ε).

Suppose additionally m ∈ [X/4, X/2] in case of (2.21). Then, replacing the
summation condition in (2.20)–(2.21) by

(2.22)
∑

(%i,χi)∈E
|γi|≤U0

∑
(%j ,χj)∈E
|γj |≤U0

[r1,r2]≤P, U(χ1,χ2,m)≤U0

(in case of (2.21) U(χ1, χ2,m) should be replaced by U ′(χ1, χ2,m) =
U(χ1, χ2,m)), we obtain (2.20)–(2.21) with an additional error term

O(S(m)X logU0/
√
U0).

Remark. In the formulae (2.20)–(2.21) multiple zeros are listed with their
multiplicity.

The proof of Theorem 1 can be found in [Pin1].
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3 The exceptional set in Goldbach’s problem

We now turn to applications. In most of the applications the new approxi-
mate formulae lead to a significant improvement. However, in order to obtain
a stronger improvement one needs further new ideas too. In case of the esti-
mation of the exceptional set E(X) in Goldbach’s problem (cf. (1.11)–(1.12))
the contribution of the minor arcs can be estimated in the same way as ear-
lier, by the theorem (1.10) of Vinogradov, using Parseval’s identity. That is,
we obtain in case of P ≤ X2/5 for the contribution R2(m) of the minor arcs
(see (1.8)) the estimate
(3.1)∑
m

R2
2(m) =

∫
m

|S4(α)|dα ≤ max
m
|S(α)|2

1∫
0

|S(α)|2dα� X2

P
L4XL =

X3L5

P
.

This means that, apart from an exceptional set E2(X), with

(3.2)
∣∣E2(X)

∣∣�ε
X1+3ε

P
,

we will have for m ∈ [x | 2, x], 2 | m

(3.3)
∣∣R2(m)

∣∣ < X1−ε

4
<
mS(m)

2Xε
.

Consequently, it is sufficient to concentrate on the contribution R1(m) of
the major arcs (see (1.8)).

If we have a Siegel zero, that is, a single simple real zero belonging to a
real primitive character mod r1 with r1 ≤ P , satisfying

(3.4) %1 = 1− δ1, δ1 ≤
c1

logX

(with a sufficiently small absolute constant c1) then an elaborated argument
along with the proof of an improved Deuring–Heilbronn phenomenon can
yield (see [Pin1])

(3.5) R1(m) > X1−ε/2 >
mS(m)

2Xε

for all m ∈ [X/2, X], which settles the problem by (3.2)–(3.3).
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Remark. The above inequality is stronger than the implicit lower estimate
XP−1/3 in (8.3) of [MV]. The improvement is due to the fact that our
treatment is ineffective since we make use of Siegel’s theorem in the proof of
the approximate formula in [Pin1].

If we have no Siegel zero in the sense of (3.4) then we can show with
another elaborated argument (see [Pin1], [Pin2]) that

(3.6) R1(m) > εmS(m)

holds apart from an exceptional set E1(X) of size

(3.7) E1(X) ≤ C ′(ε)X

P
,

with a suitably chosen large constant C ′(ε), depending only on ε.
In order to give some details we mention that we will choose in the ap-

proximate formula of Theorem 1

(3.8) H = C1(ε), U0 = C2(ε)

with a sufficiently large C1(ε) and afterwards with a sufficiently large C2(ε)
depending on ε and C1(ε).

The number of the generalized exceptional singularities, consequently the
number of terms in (2.20) and (2.21) will be just Oε(1) as mentioned in (2.3),
where multiple zeros are counted with their multiplicity, depending just on
ε and C1(ε). One such term has a non-negligible effect only for the “quasi-
multiples” m of ri and rj. Let us denote byR the set of the “bad” conductors
ri of the “bad” characters χi and denote by R′ an arbitrary subset of R. Let
us fix R′ and let

(3.9) R′ = l.c.m. [ri; ri ∈ R′].

Let us consider for a given large constant C(ε) depending on ε the set

(3.10) R′(C(ε), X) = {m ≤ X; ri | C(ε)m⇐⇒ ri ∈ R′}.

We first note that the total number of sets of type R′ ⊂ R is at most
2M+1, a quantity which is smaller than some function of ε and H = c1(ε)
(see (2.3) and (3.8)). This means that we can take an arbitrary fixed subset
R′ ⊂ R and it is sufficient to show that the number of exceptional n’s with
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n ∈ R′(c(ε), x) is at most C∗(ε)X
P

with some constant C∗(ε) depending only
on ε.

We can distinguish two cases.
Case 1. R′ ≥ P .
Case 2. R′ < P .
Case 1. We can discard all m values which belong to some set of type

R′(C(ε), X) for any R′ with R′ ≥ P since each of them contains at most
C(ε)X

P
numbers up to X.

Case 2. In this case we can discard all pairs in (2.20) or (2.21) containing
at least one χi with ri /∈ R′(C(ε), X). All discarded error terms will con-
tribute together in modulus at most ε if C1(ε) in (3.8) was first chosen large
enough and later C2(ε) in (3.8) was chosen large enough depending on ε and
C1(ε).

Consequently, in case of the absence of a Siegel zero in order to prove
R1(m) > εS(m)m it is sufficient to show for any R′ ⊂ R

(3.11)
∑
χi(ri)

(%i,χi)∈E
ri∈R′
%i 6=1

∑
χj(rj)

(%j ,χj)∈E
rj∈R′
or %j 6=1

cond χiχj<C(ε)

X−δ1−δ2 < 1− 2ε, δi = 1− βi.

Let us observe that all primitive generalized exceptional characters χi in the
above double summation can be substituted by the not necessarily primitive
characters χ′i = χiχ0,R′( mod R′), where R′ < P . Thus, extending the defi-
nition of the generalized exceptional characters in E to arbitrary characters
induced by them and denoting this set by E ′ we need to show (3.11) for all
characters mod R′ where R′ is an arbitrary integer with R′ ≤ P . Such a
result was proved in [Pin2] for P = X7/25 which we quote (using the earlier
notation as)

Theorem 2. For q ≤ X7/25 we have for X > X0(ε) in case of the absence
of a Siegel zero

(3.12)
∑

(χi,q,%i)∈E ′
cond χiχj
%i 6=1

∑
(χj ,q,%j)∈E ′
<C(ε)
or %j 6=1

X−δ1−δ2 < 1− 2ε.

Remark. As we see from the above arguments, it is sufficient to show (3.12)
for characters of the same modulus q. This represents a huge gain compared
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to previous treatments. The other huge gain is the condition cond χiχj <
C(ε).

Remark. (3.2) actually implies the same relation with the condition
cond χiχj < C(ε) which appears in the case of the Generalized Twin Prime
Problem.

Theorem 3. E(X) ≤ C̃(ε)X0.72+ε.

Remark.In the proof of Theorem 2 we can choose P ∈
(
X7/25+ε, X7/25+2ε

)
too, which yields the stronger

Theorem 3’. E(X) < X0.72 for X > X0, effective constant.

Remark. Due to the separate treatment of the case of the existence of
Siegel zeros in [Pin2], Theorems 3 and 3’ hold unconditionally. Theorem 3
and Theorem 3’ both improve the earlier best result E(X) � X0.879 of Lu
[Lu].

4 The Goldbach–Linnik problem

Linnik considered about 70 years ago the following approximation to the
binary Goldbach problem. Is it possible to give a fixed integer K such that
every sufficiently large even integer could be written as the sum of two primes
and K powers of two? If the Goldbach conjecture is true then K = 0 (or any
K > 0) suits for this purpose.

Linnik succeeded to answer the problem positively. In two papers he
proved the assertion, first [Lin1] under the Generalized Riemann Hypothesis
(GRH), later unconditionally [Lin2]. However, his constant K was very large
and unspecified. After a simplification of the proof by Gallagher [Gal2] the
first explicit bounds were given by Liu, Liu and Wang at the end of the last
century:

K = 54 000 [LLW2] (unconditionally) and
K = 770 [LLW1] (assuming GRH).
After several steps this was improved to
K = 1906 [Li1] (unconditionally) and
K = 160 [Wan] (assuming GRH).
Parallel to this, I obtained the results K = 12 (unconditionally) and

K = 10 (assuming GRH) improving several parts of the earlier arguments,
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including a new treatment of the exponential sum

(4.1) G(α) =
L∑
ν=1

e(2να), L = log2X −
√

log2X

where log2X means the logarithm of base 2. These results were announced
(without proofs) at an international meeting at Debrecen in 2000.

Somewhat later, in a joint work with I. Z. Ruzsa [PR1] and simultaneously
and independently by Heath-Brown and Puchta [HP] the result K = 7 was
obtained under the assumption of GRH. Unconditionally we announced K =
8 (in [PR1]) while in [HP] the bound K = 13 was proved. This was improved
little later to K = 12 by C. Elsholtz (unpublished). A proof of K = 12
appeared independently in a work of Z. Liu and G. Liu in 2011 [LL]. The
complete proof of K = 8 will appear in [PR2].

A new feature of the problem is that in contrast to the problem of the
exceptional set we have to distinguish two parts of the minor arcs with some
constant c1 ∈ (0, 1) to be chosen later

(4.2)
(i) E∗ =

{
α ∈ [0, 1]; |G(α)| ≥ c1L

}
,

(ii) C(E∗) = [0, 1] \ E .

The method of [PR1] (which is essentially best possible in the sense that
the estimates approximately reflect the truth) give for the Lebesgue measure
µ(E∗) of E∗

(4.3) µ(E∗)� N−3/5L−100 if c1 = 0.789401.

The method could prove similar results of type

(4.4) µ(E∗)� X−c3 if c1 = c4

with suitable pairs c3 and c4. The reason to choose c3 = 3/5 is that if we
choose P ∈ [X0.4, X0.41] then by our approximate formula we can still control
the integral

(4.5)

∫
M

S2(α)Gk(α)e(−mα)dα (k ≤ 8)

on the major arcs. On the other hand that part of the minor arcs which lie
within E∗ (see (i) of (4.2)) can be neglected since by Vinogradov’s estimate
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(1.10) and (4.3) we obtain

(4.6)

∫
E∗

∣∣S2(α)Gk(α)
∣∣dα ≤ µ(E∗)X8/5Lk+8 � XL−(92−k).

If the truth of the (GRH) is assumed then we can choose P quite near to√
X (P =

√
XL−8, for example) and we can still evaluate the contribution of

the major arcs. If we work unconditionally then the approximate formulae of
Theorem 1 enable us to choose P up to X4/9−ε. Since Vinogradov’s estimate
(1.10) does not improve if P grows over X2/5 we are contented to take

(4.7) P = [X0.4, X0.41].

(Increasing it up to X4/9−ε would result in a small gain in the procedure but
the gain is not enough to obtain K = 7.)

The crucial point which makes possible (in contrast to the estimate of
the exceptional set in Goldbach’s problem – see Section 3) an asymptotic
evaluation of (4.5) is that instead of R′1(m) in (1.9) we have to evaluate an
average of it for the set

(4.8) B(m,L) =
{
m− 2ν1 − · · · − 2νk , 1 ≤ νi ≤ L

}
.

We can now utilise the useful feature of the approximate formulae that they
tell us that “suspicious” values of m are those which are the “quasimultiples”
of the conductor of at least one generalized exceptional character ri (see
(2.14)). However, this can not hold for a positive proportion of the elements
of the set B(m,L) in (4.8). We can even fix ν1, . . . , νk−1 and it is sufficient
to let run νk.

Our crucial result from [PR2] is the following, which helps to eliminate
the effect of the bounded number of exceptional characters.

Lemma 2. Let m ≤ X be arbitrary, q be an odd squarefree number. Then
for any η > 0

(4.9)
∑
ν≤L
2ν<m
q|m−2ν

S(m− 2ν) ≤ ηL

if min(q,X) > C0(η).
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The proof of Lemma 2 is non-trivial since the values of the singular series
can oscillate between c5 and c6 log logX = c7 logL. However, an argument,
similar but somewhat more complicated than the proof of Romanov’s theo-
rem yields Lemma 2. (See Lemma 1 of [PR2].)

The treatment of the rest of the minor arcs (see (ii) of (4.2)) follows
closely the earlier ones (see [PR1] or [Gal2]) and this finally proves

Theorem 4 (J. Pintz – I. Z. Ruzsa). Every sufficiently large even integer
can be written as the sum of two primes and eight powers of 2.

5 Goldbach numbers in polynomial sequences

In this chapter we would like to investigate the problem whether the Goldbach
conjecture is true for almost all elements of thin sequences, for example, of
a polynomial sequence

(5.1) 2Φ(n) = p1 + p2,

where Φ(x) ∈ Z[x] is a polynomial of degree k with a positive leading coeffi-
cient. In the most simple case Φ(x) = x this is exactly the binary Goldbach
problem. In this case the mentioned result (1.11) of Čudakov, Estermann
and Van der Corput gives a positive answer.

On the other hand, for any polynomial of degree at least 2, even the
sharpest conditional result under GRH,

(5.2) E(X)�ε X
1/2+ε,

due to Hardy and Littlewood [HL] (the ε in the exponent was substituted by
a power of logX by Goldston [Gol]) gives directly an estimate, weaker than
the trivial one for the problem (5.1).

Consequently, new ideas were needed to show non-trivial estimates in the
case Φ(x) = xk for the size of the corresponding exceptional set (P denotes
the set of primes)

(5.3) Ek(N) =
{
n ≤ N ; 2nk 6= p1 + p2, pi ∈ P

}
, Ek(N) =

∣∣Ek(N)
∣∣.

Perelli [Per] gave the first estimate

(5.4) Ek(N)�k,A N/(logN)A for any A > 0,
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showing that almost all numbers of the form 2nk are Goldbach (i.e. can be
written as a sum of two primes). This represents a generalization of (1.11)
It was improved in 2000 to

(5.5) Ek(N)� N1−c/k

with a small unspecified absolute constant c > 0, by Brüdern, Kawada and
Wooley [BKW]. The stronger estimate (5.5) is a generalization of the theorem
(1.12) of Montgomery and Vaughan [MV].

In case of small values of k the estimate (5.5) gives just

(5.6) Ek(N)� N1−ck

with a small unspecified ck > 0, similarly to (1.5).
Our goal is to reach an improvement of (5.5). The application of the

approximate formula does not improve the dependence on k but it helps to
improve the value of c. This improvement is especially useful for small values
of k when the constant in (5.5)–(5.6) is very small and very hard to calculate
since it depends on the prime number theorem of Gallagher [Gal1]. Let us
concentrate for the case of k = 2, i.e., for the problem how frequently can

(5.7) 2n2 6= p1 + p2, pi ∈ P

happen. We obtained actually results for all values of k in a joint work with
A. Perelli, among which we state here the one for k = 2.

Theorem 5 (A. Perelli – J. Pintz). With the notation (5.3) we have

(5.8) E2(N)�ε N
4/5+ε for any ε > 0.

We will give a brief sketch of the proof which is somewhat similar to the
proof of Theorem 3.

We will use the notations of Section 1. Further, let the Farey arcs defined
by P (to be chosen later) and let

(5.9) X = N2, f(α) =
∑

1≤n≤N

e(2αn2).

For the minor arcs we can follow the ingenious treatment of Brüdern, Kawada
and Wooley but now for k = 2 we will use (instead of Vinogradov’s mean
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value theorem) the well-known simple estimate (let c be a generic positive
absolute constant, not necessarily the same at each occurrence)

(5.10)

1∫
0

|f(α)|4dα� N2Lc.

This yields by (1.10) similarly to the estimate following (9) of [BKW], with
the choice P ∈

[
X2/5, X2/5+ε

]
,

∑
m≤N

∣∣R2(2m
2)
∣∣ ≤ (sup

α∈m
|S(α)|

)1/2( 1∫
0

|S(α)|2dα
)3/4( 1∫

0

|f(α)|4dα
)1/4

(5.11)

� X2/5X3/4N1/2Lc = XN4/5Lc.

which means that

(5.12)
∣∣R2(2m

2)
∣∣ ≤ X1−ε

apart from an exceptional set E2,2 of size

(5.13)
∣∣E2,2(N)

∣∣�ε N
4/5+2ε.

The treatment of the major arcs (we can again suppose the absence of
Siegel zeros) is similar to that of Section 3 with adequate changes as follows.

Define R′ and R′ as in (3.9) and (3.10) with m replaced by m2. The new
dissection of the two cases we define with an additional parameter P ∗ < P
as follows:

Case 1. R′ ≥ P ∗.
Case 2. R′ < P ∗.
In Case 1 it is easy to see that the number of (exceptional) squares with

(5.14) R′ | C(ε)m2, m ≤ N

is at most

(5.15)
N

C ′(ε)
√
R′
�ε

N√
P ∗
.
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On the other hand choosing P ∗ = X7/25 and applying Theorem 2 we
obtain that in Case 2 we have (as we assumed the absence of Siegel zeros)

(5.16) R1(m
2) > εS(m2)X.

If Siegel zeros do exist then in Case 2 we can use that the work [Pin1]
actually implies without a further exceptional set the inequality (3.5) for all
integers m, consequently for all squares too, at least if the crucial parameter
P , in our case now P ∗ satisfies the stronger condition P ∗ < X16/39−ε (see
(11.39)–(11.40) of [Pin1]).

So we obtain for the size of the exceptional set with respect to major arcs

(5.17)
∣∣E2,1(N)

∣∣�ε
N√
P ∗

= N0.72.

From (5.13) and (5.17) we have

(5.18) E2(N) ≤
∣∣E2,1(N)

∣∣+
∣∣E2,2(N)

∣∣�ε N
4/5+ε

which proves Theorem 5.

Acknowledgement. Finally the author would like to thank the referee for
his/her very valuable suggestions.
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