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Abstract— Personal mobile devices are widespread and 

carried by their users most of the time over the day. Thanks to 

the integrated sensors they can report about visited places, 

movement types and speed of the users. However, efficient 

stopping event detection on public transport vehicles is still a 

challenge. These events, associated with the coordinates of real 

stations, can be useful to update public transit timetables 

according to real-time traffic. In field tests we evaluated the most 

commonly available suitable sensors’ precision and efficiency and 

developed our Stopping Event Detection Algorithm (SEDA), 

which utilizes only the accelerometer to find potential stopping 

times and the Wi-Fi sensor to validate or discard them by a novel 

localization method. Wi-Fi is used only 6.66% of the time of 

actual traveling on public vehicles. Our algorithm is shown to 

recognize properly 82.9-89.47% of public traffic stations while 

consuming daily only 13% the capacity of an average 

smartphone's battery. 

 

Keywords — Mobile sensing, event detection, crowdsensing, 

energy efficiency 

I. INTRODUCTION 

In bigger cities traffic can be unpredictable so most public 

transit lines that are influenced by traffic can bear shorter or 

longer delays. Also, some weather conditions like rainstorms 

or an extreme snowfall can hardly influence the traveling 

speed of public and private vehicles in the city. To the 

passengers it is even more important not to wait too long at the 

stops in case of extreme weather conditions. This creates a 

challenge that can be addressed with a system that monitors all 

the public transport vehicles and constantly updates their 

timetables and makes them available within an online service 

where the users can (geo-dependently) check the “real” arrival 

times at the current stop of any traffic line that operates there. 

This system can gather the data needed in different ways. 

The most obvious solution is the deployment of sensors along 

the traffic routes or on the vehicles. Their usage inheres capital 

expenditures at the beginning and physical deployment of 

each sensor. Besides buying and deploying the sensors there 

are also expenditures and challenges with enabling each 

sensor to communicate with a central server and maintenance 

costs are also applying. Although today it is not the cheapest 

and the most efficient method, its usage in public transport is 

well elaborated and also patented in the US [1]. 

A novel approach is the usage of sensors that are somehow 

attached to human body. They represent a variant of mobile 

sensor networks which rely on people’s smartphones as they 

utilize the sensors integrated in these devices. Smartphones are 

uncontrolled mobile sensors as their mobility is not restricted 

as of those sensors which are deployed on public vehicles. 

They move along with their owner and collect the information 

about speed, acceleration, connected cell towers, Wi-Fi 

hotspots in sight, etc. The way they provide information can 

be divided into two categories, participatory or opportunistic, 

whether the owner plays an active role in sensing or not. In 

participatory sensing the user helps the sensing process with 

manual intervention indicating when he/she gets on a public 

vehicle, name the traffic line, and the stop where it happened. 

At automated or opportunistic sensing the user plays a passive 

role in the process as the sensing tasks are carried out 

automatically by an application running in the background. 

Although participatory sensing can lead to more exact data, 

opportunistic sensing is more reliable because it lacks the 

human factor and can operate providing constant data feed. 

The organized form of mobile sensing is a promising way for 

real-time data harvesting with the help of a big group of 

moving sensing users and it is called crowdsensing. It does not 

need physical deployment so expenses are much lower than in 

ordinary sensor networks (it utilizes the crowd’s smartphone-

sensors). The sensing application collects and proceeds data to 

a server. The processing could be done either on the user side 

or at the server. If used in real-time applications, users of the 

crowd should have mobile Internet or Wi-Fi access. Sending 

big amount of data through cellular network causes higher 

expenses and energy consumption, so the larger part of 

processing should be done at the user side. 

The paramount challenge that compromises users to join 

crowdsensing is the battery life of smartphones which can be 

affected badly by all-day-long tasks which are utilizing several 

energy-hungry sensors. GPS is known to be one of the most 

energy-demanding smartphone sensors, but it used to be the 

primary source of location information. 

We address consumption reduction of user devices 

collaborating in public transport tracking crowdsensing tasks, 

with a complex energy efficient method. Stopping Event 

Detection Algorithm (SEDA) aims to differentiate between the 

states of traveling on public transit vehicles, which includes 

potential stopping event detection (SEDA 1) solely relying on 

raw accelerometer data, and evaluation of the findings, 

eliminating false positive stops altogether with localizing them 

(SEDA 2) so the sensed stopping times could be compared to 

those in the fix public schedule, so the crowdsensing 

application can update the timetable accordingly and help 

other passengers avoiding unnecessary waiting for late rides. 

Since the localization task is cumbersome in dense urban areas 

where public transport tracking mostly needed, we evaluated 

the accuracy of several well-known strategies and proposed a 

novel solution that is more trustworthy, which lacks 

fluctuations in precision and which shows lower consumption 

values than known methods. 

The targeted tasks are fundamental parts of public transit-

tracking, so the improvements achieved in their solution by 

our approach can be applied in all related scenarios. 
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The remainder of the paper is organized in the following way: 

state-of-the-art is discussed in Section II, our approach and 

solution to the problem is presented in Section III, Section IV 

summarizes results and efficiency values, while section V 

concludes the paper. 

II. RELATED WORK 

In mobile sensing applications energy consumption is not 

primarily important because of CO2 emission but to prolong 

battery life of the mobile devices. As most crowdsensing 

applications, event detection in public transit tracking also 

includes localization tasks to determine where the sensed data 

is originated from. Among the relatively high number of 

localization techniques only a few consider the energy 

consumption impact of their method. Event detection makes 

precise activity detection necessary which primarily relies on 

accelerometer readings and is often supported by additional 

sensors. 

Bulut and Demirbas in [2] give a method for mobile 

localization with varying accuracy levels depending on the 

devices’ type of movement, speed and distance to the points of 

interest where the most accurate location is needed. They 

distinguish idle, driving and walking modes. Based on these 

the system chooses the needed location accuracy and 

accordingly the needed sensors (GPS, Wi-Fi, cellular 

localization) and their sampling intervals. 

Thiagarajan et al. present an activity dependent localization 

technique aimed for public transport observing purposes [3]. 

To more precise sensor calibration it differentiates between 

sleeping, stationary, walking, traveling by car and traveling on 

public transport vehicle. The accelerometer query frequency 

rises for movement types in the same sequence they are listed 

above, and additional sensors are activated while walking (Wi-

Fi + cellular) and while traveling (GPS). They also do route 

identification where they use the least squares optimization 

algorithm which finds the closest fit among known bus lines 

for a sequence of sensed GPS samples. 

Wang et al. in [4] present also an activity dependent mobile 

sensing framework where the novelty is that sensors’ duty 

cycles (sampling frequencies) are determined heuristically 

from earlier observed data, so changes happen on the fly when 

the user changes his/her movement type. They also use GPS at 

some cases and microphone readings are involved to their 

system as well. 

Cardone et al. present McSense [5], a geo-social model driven 

crowdsourcing platform which improves task assignments by 

collecting information about its users. They are grouped by 

geographical regions, type, CPU and sensors of the phone they 

are using, usual paths they are moving by and their battery 

level is also considered before they receive a task to work on. 

Liu et al. in [6] deal with the task of maintaining the quality of 

information collected by the crowd. They determine the 

adequate number of sensed data packages that are enough for 

statistical processing in the concrete situation. They introduce 

fairness by minimizing the variance in energy consumption 

between the crowd’s users with the extended Gur Game. 

Efficient route identification for public traffic lines is 

investigated by Zhou et al. in [7]. They take into account only 

the cell-tower IDs seen during the trip and claim that absolute 

localization is unneeded for route discovery. They sequence-

match among received and earlier saved cell-tower ID 

sequences to determine the traffic route by a modified Smith-

Waterman algorithm. The energy cost of collecting cell-tower 

IDs is negligible because mobile phones always monitor the 

available cells around to choose the best signal-to-noise ratio. 

The rich work of this field solves several problems that a 

crowdsensing project could face: maintaining quality of 

sensed data, better task-assignments, traffic route 

identification, activity dependent localization, etc. Authors 

solve the task of distinguishing between traveling and other 

movement types but stopping event detection in public 

transportation is not addressed yet. We solve this unelaborated 

task together with efficient localization of the found stopping 

places without relying on GPS or cellular localization, but 

utilizing Wi-Fi scanner for very short periods of time during 

the sensing users’ public transit travel. 

III. STOPPING EVENT DETECTION 

Stopping event detection aims to differentiate between the 

accelerometer readings of a user on a moving and a resting 

public vehicle. At public transport tracking the most valuable 

information is the timestamp when a public vehicle stops at a 

station, because here the system can compare the sensed time 

with the fix timetable. After the potential stopping events are 

found, they have to be analyzed and localized to link each one 

of them to the physical place where the stopping event 

occurred. Our detection method requires the location 

information, because the place where the potential stopping 

event was sensed decides whether it was a real station or 

somewhere in between stations, e.g., at a traffic light. 

A sensing application was developed for data collection from 

all the possible sensors the Android API allows. Tests were 

carried out with different Android smartphone models, 

through a 3 month period of time including high- and low-

traffic hours, clear and cloudy weather on and near the 

Budapest tram line 4 and 6 which are the city’s public traffic 

arteries. During data collection, testers were manually 

indicating the public transport stops as the baseline for further 

comparisons. The aim with inner-city data collection was to 

develop and test our algorithms on real-life data. The accuracy 

of all the subtasks were evaluated continuously. 

SEDA consists of two parts: SEDA 1 finds potential stopping 

events from accelerometer readings, while SEDA 2 eliminates 

those stopping events - by using precise localization - which 

happened outside the real stops (stopping at traffic lights or 

due to unexpected traffic situations). 

 

A. Detecting potential stopping events 

This task is not straightforward, because when the tram stops, 

the traveling user is still moving the sensing device in some 

way, depending on where the phone is kept on his/her body 

and which position is the user in. 

Accelerometer is the primary source of information for 

activity detection, which shows us the momentary force that is 

affecting the smartphone along the three axes. Following the 

general approach we calculate the root of sum of squares of 
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the three values to find absolute acceleration which is 

regardless to the phone's orientation. Accelerometer readings 

do not describe the speed of movement. Though there are 

some attempts to estimate the possible moving speed [8] and 

path traveled from accelerometer readings, their accuracy 

decreases dramatically with time. 

Basic activity detection is well examined in the literature and 

we also implemented a simple algorithm that separates resting, 

walking and traveling modes on the fly according to the 

average acceleration levels and their dispersion. 

However, detecting the potential stopping event is more 

complicated. First of all, we noticed that different devices use 

different intervals for sending sensor data through the API. 

For easier and fair comparison of the results from different 

devices’ datasets we rescaled their readings to 200ms intervals 

as a first step for enabling correct sensed data processing. 

Our algorithm differentiates crowdsensing users who are 

standing or sitting during public transit travel. These two cases 

behave differently as there is higher noise level in 

accelerometer readings of standing users. It is possible to 

define threshold values that are applicable for both situations, 

but that would result in much more false positive stops (stops 

outside stations due to traffic lights or noisy accelerometer 

data)  sensed in SEDA 1 which would badly influence the 

overall consumption values of the SEDA 1 and 2. Standing 

and sitting are easily separable by known algorithms with an 

accelerometer, like the method described in [9] or by making 

the sensing application adaptive to the average noise level. 

 

SEDA 1 algorithm: 

1. Smooth out accelerometer readings by a 3-second long 

moving average. 

2. Give first approximation of stops with threshold values of 

0.1 m/s2 for sitting or 0.25 m/s2 for standing users. 

3. Apply our low-pass filter for eliminating glitches. 

4. Quantize filtered results of step 3, with thresholds 0.5 for 

sitting and 0.65 for standing users. Unity steps in the result 

denote the potential stopping times.  

 

The filter of step 3 was designed using the ‘fdatool’ toolbox 

for Matlab. The order of the FIR filter was set to 124 samples, 

with a cut-off frequency of 100 Hz. The filter’s order 

implicates the maximum length of a glitch which it eliminates. 

Figure 1 illustrates application of SEDA 1 on a 3-minute long 

dataset showing step-by-step results for better understanding. 

Result of the second step (marked red) shows that for three 

very short periods, the moving average of step 1 (blue line) 

goes below the threshold level when the tram was actually 

traveling, resulting in glitches. To eliminate them we apply 

our low-pass filter (step 3): the dashed green line’s unity steps 

(value changing from 0 to 1) denote the places of SEDA 1’s 

findings: the potential stopping times. As we look at the two 

small black circles in the lower part of the figure which 

indicate manually sensed stopping events, we can see that 

SEDA 1 found the stops exactly with negligible, few seconds 

slip in time. 

SEDA 1 algorithm can be evaluated by the proportion of false 

positive (junk sensed stops in situations like traffic jams) and 

false negative potential stops (stops that are missed by SEDA 

1 due to noisy accelerometer readings) to the number of real 

stops. While false positive stops are further evaluated and 

corrected by SEDA 2 (see below), false negative stops 

immediately result in losing a stop. Thus we determined 

threshold values rather to result more false positives and 

accordingly, less false negative stops. Accuracy values for 

both SEDA 1 and 2 are presented in section IV. 

 

B. Localization 

Stopping event detection needs accurate localization so the 

algorithm can decide which stopping events - sensed by the 

accelerometer - happened truly at a station, and which 

stopping events could be linked to traffic lights or other traffic 

situations. Our aim is to find only those stops which happened 

at the known stations.  

Device manufacturers and operating system developers 

already take this task seriously. While older Android versions 

offer only two different settings how to obtain location (GPS 

and Network (which means cellular + Wi-Fi) localization), the 

latest Android 4.4 (Kitkat) system offers three types: high 

 
Fig. 1.  A 3 minute accelerometer reading sample with the 4 steps of SEDA 1. The time of the two real stop events are depicted at the bottom with a circle. (device 

Nexus4, sitting sensing user) 
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accuracy (which means the combination of GPS, cellular, Wi-

Fi and other possibly helpful sensors in this task), “battery 

saving” mode (Wi-Fi + cellular) and “device only” which 

means the use of GPS only. The first two modes use Google 

location services to estimate location faster and more 

accurately while the third option excludes Google from the 

localization (location info determined by GPS is anonymous). 

Also for each installed application the user can decide whether 

it receives location information and if it does how accurate 

localization is available to it [10]. 

Most mobile operating systems are taking care of location 

sensing problems with high priority to make them more 

efficient and more accurate but these solutions are mostly 

supported on the latest devices, with the newest operating 

system versions installed. Older devices rarely get the updated 

operating systems. Therefore the needed sensors and accuracy 

classes for SEDA are still to be defined manually to achieve 

the lowest possible energy consumption across all versions of 

Android operating systems. 

Our primary goal was to solve this task in the simplest way 

possible (avoiding computing intensive tasks which lead to 

unnecessary energy consumption of the devices) with only 

low-power consumption sensors involved. First of all, we 

tested how the different known localization methods deal with 

this problem in dense urban areas of Budapest. 

We had high expectations for cellular localization because 

high buildings in the city result in a lot of users and 

accordingly high base station density. This is expected to lead 

to frequent handovers at traveling user devices, which could 

mean that knowing the position of the base station the sensing 

user is connected describes the user’s position with very good 

approximation. During field tests we collected all the cellular 

coordinates the devices sensed during the trip. Figure 2.a 

visualizes a particular dataset on the map, which shows that in 

case of a particular round trip with tram 6, network 

localization results followed the Grand Boulevard with good 

approximation. But, when we checked the numerical values 

and variance of localization accuracy by calculating the 

difference between real and cellular coordinates at each stop 

we found results depicted on Figure 2.b. One can notice that 

there are sometimes higher errors at some stops. These errors 

are due to that some parts of the trams’ path are straight 

enough that the mobile phone can stay connected to the base 

station that is near the previous stop or maybe the stop before 

that. Handovers occur when the mobile node leaves the 

coverage area of the previous base station, or the signal-to-

noise-ratio (SNR) of another base station is better than the 

previous’. But, if the next cells are crowded the handover 

algorithm can chose to stay connected to the previous base 

station. This happened several times in our tests, e.g., in 

Figure 2.b device Galaxy S2 had no handovers between 

“32esek” and “király” stops (the distance between the 

measured cellular location and the real location rises linearly). 

Summarizing all results of cellular localization we calculated 

an average error of 183.33 meters. Typical average values of 

per measurement accuracy varied from 93.47 to 272.85 

meters. On average this is not a bad result because tram stops 

are far away from each other from 350 up to almost 7-800 

meters, but there are some late handover scenarios when the 

error is too high. We concluded that this localization method 

could not be used alone.  

We visualized and calculated the accuracy levels of GPS 

localization of several tests in Figures 3.a and 3.b. After we 

summarized all the test results the average error of GPS 

localization was 163.19 meters. Average per measurement 

values varied from 21.74 to 646.01 meters depending on the 

type of smartphone / weather conditions. Comparing the 

results of cellular and GPS positioning we can conclude that 

GPS is on average only 12.34% more accurate while its 

consumption is around 2.5 times higher [2] than cellular 

localization’s. 

Neither GPS nor cellular localization gives us in every 

 
Fig. 2.a Accuracy of cellular localization (device: Nexus 4). 

 

 
Fig. 2.b Accuracy of cellular localization in meters on 3 different devices, 

two way trip of tram 6. 
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Fig. 3.a Accuracy of GPS localization (device: Nexus 4). 

 

 
Fig. 3.b Accuracy of GPS localization in meters on 3 different devices, two 

way trip of tram 6. 
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situation adequate results with accuracy levels that we can rely 

on exclusively without additional help from other sensors. Our 

initial expectations that GPS can be left out from our 

localization technique was shown to be true, because similarly 

accurate results come from cellular localization. Anyways, a 

new localization method should be found to filter out false 

values from SEDA 1. 

The idea of Wi-Fi localization relies on the fact that Wi-Fi 

hotspot coverage values goes up to 50-100 meters so sensing 

the same access points from two different tram stations is 

almost impossible. Here we came up with the idea of building 

a Wi-Fi database along the two traffic lines we were dealing 

with by saving the visible hotspots at every station according 

to several field test results carried out 1 month after one 

another. Possible problem could be that nobody from the 

collected hotspots’ owners is forced to keep their Wi-Fi 

network alive, so our Wi-Fi database should be updated 

periodically. Luckily, in dense urban areas that we are 

working with there are a bunch of hotspots at every step so our 

algorithm still be operational if some of them are lost. 

Wi-Fi based localization is very efficient because this sensor 

has to be turned on only when the stopping event detection 

algorithm detects a possible stopping place: in 4 seconds it 

finds the list of visible hotspots and it can go offline again. We 

present SEDA 2 method for filtering out false potential stops 

found by SEDA 1 and making sensed stops geo-dependent by 

exact and efficient localization. 

 

SEDA 2 algorithm: 

1. Build/update Wi-Fi database at traffic line’s stops. Check 

all neighboring stops for matching hotspots: delete them 

from both lists. 

2. For every potential stopping event: turn on Wi-Fi for 4 

seconds, collect visible hotspots. Match the found stops 

with the database and fill up the Wi-Fi matching matrix.  

3. Discard potential stops whose AP’s match more than one 

real stop’s AP’s. 

4. When more (consecutive) potential stops match the same 

real stops’ APs then choose the one with the most 

hotspots matching as the real stop. Discard the others. 

 

Rule number 4 means that we decide about the correctness of 

a potential stopping event just after we found a next potential 

stopping event with hotspots matching the next real stop’s 

hotspots in the database. This can cause a 1-2 minute delay in 

the decision, but the timestamp of the newly judged stop is 

still comparable with the fix timetable to predict arrival times 

for all the coming stations accordingly. 

Figure 4 depicts the Wi-Fi matching matrix between the 

hotspots sensed at potential stopping places and those at real 

stops earlier collected to the Wi-Fi database. Number of 

matching hotspots are marked by different colors (see label 

on the right side). The matching matrix describes how SEDA  

2 operates: potential stopping events of SEDA 1 (y-axis) are 

compared with real stops (x-axis) based on the number of 

matching Wi-Fi APs. Some examples for better 

understanding: The 7th real stops’ hotspots are sensed in four 

consecutive potential stops (11-14th), among them the 13th has 

the most matches with the real stop, which is marked by the 

darker color in the matrix-representation in the figure. 

The APs at 28-29th potential stops match the APs of the 18th 

and 19th real stops which means that both of the potential 

stops are discarded because in step 1 of SEDA 2 we 

eliminated the overlapping hotspots, so these ones have to be 

somewhere in between the two real traffic stations. 

An empty column on Figure 4, like the 33th, means that real 

stop no. 33 was missed by SEDA 1 (it is a false negative). 

IV. RESULTS AND EFFICIENCY 

The accuracy of SEDA 1 could be evaluated alone by 

calculating the proportion of false positive and false negative 

stopping events to the real ones. As discussed, threshold levels 

are set in SEDA 1 rather to find more false positive stops than 

false negatives, because the latter means that we have 

certainly lost a stop, but false positives could be filtered out 

without any stops getting lost during the sensing process. 

One can see that in a particular sensing case in Figure 5, where 

there were 38.74% more potential stopping events (false 

positives) than real stops, after executing SEDA 2, only 1 false 

positive stopping time left (at around 12.5 min on the x axis) 

which increases the final error rate with 1/18=5.56 %. 

Meanwhile the 3 false negatives (3 missed stations) cannot be 

filtered out (there are no stopping events at the missed 

timestamps that can be evaluated with Wi-Fi localization), and 

they add 3/18=16.67% to the final error rate. 

After processing all the datasets from different smartphones 

that were collected through 3 month of time in different traffic 

 
Fig. 4. Wi-Fi matching matrix. Dataset of 37 consecutive stops on a round-trip 

with tram 6. Device: Nexus 4, sitting sensing user. 

 
Fig. 5. : SEDA 1+2 algorithms from the initial accelerometer dataset to the 

found stopping events described by estimated stopping times below the 

dataset. Real stopping times marked for comparison. Device: Nexus4, sensing 

position: sitting. 
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and weather conditions at different times of the day we 

calculated the average accuracy levels seen in Table 1. 

In the Budapest case of tram line 6, the vehicle travels along 

its 19-stations path for 29 minutes, which means that in 

average traveling between two stops and the stopping time last 

together 91.6 seconds. The percentages from Table 1 (82.9-

89.47%) mean that we properly detect around 8 or 9 from 10 

stopping places.  

A user who is participating in public traffic-related 

crowdsensing using SEDA, sends a status update of the 

tram’s current position on average in every 91.6 sec / 

86.185% = 106.28 seconds of the trip. Talking about one 

lonely user, this is a great number of sensing sent 

automatically, without any interaction needed from the mobile 

crowdsensing user. 

Calculating with the average time of 91.6 seconds per each 

station (travelling and resting) and 4-seconds Wi-Fi operation 

per each potential stopping event, where the average number 

of potential stopping events is 52.635% (false positives of 

SEDA 1) higher of the real stops (assuming that half the 

sensing users are travelling in standing and half in sitting 

position) we get a utilization percentage of 1.52635 * 4sec / 

91.6sec = 6.66% for Wi-Fi scanning. 

Consumption values of mobile sensors are similar for different 

devices, showing a slight decrease in newer models due to 

further optimization. Earlier researches reported consumption 

values of 1.37 Watts for Wi-Fi scanning, 0.05 Watts for 

continuous accelerometer usage with maximal sampling 

frequency, and 0.32 Watts for continuous GPS usage [11]. 

Supposing that an average user is awake 17 hours a day and is 

in steady state at least 5 more hours (at his/her workplace), 

results a maximum of 12 hours of moving activity per day 

from which maximally 4 hours are spent on public vehicles (if 

talking about a big city). Applying SEDA 1 and 2 on this 

average daily scenario consumes 0.96168 Wh [Watt hours] 

which is equivalent to 13% of the capacity of an average 

smartphone battery (2000 mAh, 3.7V). This value is around 

3.54 times lower than other methods which use continuous 

GPS, because GPS lacks the property of instant availability 

when turning on. Wi-Fi scanning can properly detect near 

access points needed for SEDA 2 algorithm in the 4 second 

interval when it is turned on at potential stopping events 

determined by SEDA 1. Besides GPS’s much higher 

consumption we also showed in Section III. B that GPS-based 

localization is unsuitable for the task of stopping event 

detection in dense urban areas due to sudden changes of its 

accuracy levels. 

V. CONCLUSION 

We presented a solution for stopping event detection for 

public transport tracking use-cases. Our method relies on 

continuous accelerometer readings with 5Hz frequency, from 

which we detect possible stopping events (SEDA 1) and 4-

second periods of Wi-Fi scanning to verify if SEDA 1-

determined stops are correct and if so, to localize the public 

traffic station found (SEDA 2). 

With the idea of building Wi-Fi databases we achieved high 

efficiency, because we could rely solely the low-consumption 

accelerometer and periodic Wi-Fi scans. On a busy weekday 

with 12 hours of movement activity and 4 hours of public 

travel, SEDA algorithms consume only 13% of the capacity of 

a fully charged average smartphone battery, while detecting 

properly 82.9-89.47% of public transport stops the users 

traveled by. 

This method not just lacks the usage of the most widely used 

localization technique, one of the highest consumer sensors, 

GPS, but solves the rarely addressed task of stopping event 

detection during traveling on public vehicles with the least 

power-hungry sensor in smartphones, the accelerometer and 

periodic Wi-Fi scanning in 6.66% of actual traveling time on 

public transport. 

ACKNOWLEDGEMENT 

The publication was supported by the EITKIC_12-1-2012-

0001 project, which is supported by the Hungarian 

Government, managed by the National Development Agency, 

financed by the Research and Technology Innovation Fund 

and was performed in cooperation with the EIT ICT Labs 

Budapest Associate Partner Group (www.ictlabs.elte.hu). 

Károly Farkas has been partially supported by the Hungarian 

Academy of Sciences through the Bolyai János Research 

Fellowship. Ármin Petkovics has been partially supported by 

High Speed Networks Laboratory, Budapest University of 

Technology and Economics. 

REFERENCES 

[1] Kenneth J. Schmier, Paul Freda, "Public transit vehicle arrival information 

system," U.S. Patent No. 6 374 176 B1, Apr. 16, 2002 

[2] Bulut, M. F., and Demirbas, M.: „Energy Efficient Proximity Alert on Android,” 

Workshop on Pervasive Collaboration and Social Networking, PerCOM, 2013. 

[3] Thiagarajan, A., Biagioni, J., Gerlich, T., & Eriksson, J.: „Cooperative Transit 

Tracking using Smart-phones,” 8th ACM Conf. on Embedded Networked Sensor 

Systems, ACM, 2010, pp. 85-98. 

[4] Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., 

& Sadeh, N.: „A Framework of Energy Efficient Mobile Sensing for Automatic 

User State Recognition,” Proc. of the 7th Int. Conf. on Mobile Systems, 

Applications and Services, ACM, 2009, pp. 179-192. 

[5] Cardone, G., Foschini, L., Borcea, C., Bellavista, P., Corradi, A., Talasila, M., & 

Curtmola, R.: „Fostering ParticipAction in Smart Cities: a Geo-Social 

CrowdSensing Platform,” IEEE Commun. Mag., 51(6), June 2013. 

[6] Liu, C. H., Fan, J., Hui, P., Crowcroft, J., & Ding, G. (2013). QoI-Aware Energy-

Efficient Participatory Crowdsourcing. IEEE Sensors Jour., 13(10), 3742-3753. 

[7] Zhou, P., Zheng, Y., & Li, M.: „How long to wait?: Predicting bus arrival time 

with mobile phone based participatory sensing,” in Proc. of the 10th Int. Conf. on 

Mobile systems, applications, and services, MobiSys’12, ACM, 2012, pp. 379-392. 

[8] Yeoh, Wee-Soon, et al. "Ambulatory monitoring of human posture and walking 

speed using wearable accelerometer sensors." Engineering in Medicine and 

Biology Society, 2008, EMBS’08, 30th Annual Int. Conf. of the IEEE, 2008. 

[9] Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). “Activity recognition using 

cell phone accelerometers”, ACM SigKDD Explorations Newslett., 12(2), pp.74-82 

[10] Google Support, Manage Location for your device [blog], Available: 

https://support.google.com/nexus/answer/3467281 [Accessed: Dec 16 2013] 

[11] Kjaergaard, M. B. "Location-based services on mobile phones: minimizing power 

consumption." Pervasive Computing, IEEE 11.1, 2012, pp. 67-73. 

Table. 1. False positive and false negative possible stopping events in both 

traveling positions and the overall accuracy of SEDA algorithms  
 

Traveling   

position 

False 

positives 
SEDA 1. 

False 

negatives 
SEDA 1. 

Overall 

accuracy 
SEDA 1+2 

Average 

slip in sensed 
arrival times 

     

Sitting 44.74% 7.89% 89.47% 10.07 sec 

Standing 60.53% 12.2% 82,90% 15.64 sec 

Average 52.635% 10.045% 86.185% 12.855 sec 
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