
 1

Abstract— Personal mobile devices are widespread and

carried by their users most of the time over the day. Thanks to

the integrated sensors they can report about visited places,

movement types and speed of the users. However, efficient

stopping event detection on public transport vehicles is still a

challenge. These events, associated with the coordinates of real

stations, can be useful to update public transit timetables

according to real-time traffic. In field tests we evaluated the most

commonly available suitable sensors’ precision and efficiency and

developed our Stopping Event Detection Algorithm (SEDA),

which utilizes only the accelerometer to find potential stopping

times and the Wi-Fi sensor to validate or discard them by a novel

localization method. Wi-Fi is used only 6.66% of the time of

actual traveling on public vehicles. Our algorithm is shown to

recognize properly 82.9-89.47% of public traffic stations while

consuming daily only 13% the capacity of an average

smartphone's battery.

Keywords — Mobile sensing, event detection, crowdsensing,

energy efficiency

I. INTRODUCTION

In bigger cities traffic can be unpredictable so most public

transit lines that are influenced by traffic can bear shorter or

longer delays. Also, some weather conditions like rainstorms

or an extreme snowfall can hardly influence the traveling

speed of public and private vehicles in the city. To the

passengers it is even more important not to wait too long at the

stops in case of extreme weather conditions. This creates a

challenge that can be addressed with a system that monitors all

the public transport vehicles and constantly updates their

timetables and makes them available within an online service

where the users can (geo-dependently) check the “real” arrival

times at the current stop of any traffic line that operates there.

This system can gather the data needed in different ways.

The most obvious solution is the deployment of sensors along

the traffic routes or on the vehicles. Their usage inheres capital

expenditures at the beginning and physical deployment of

each sensor. Besides buying and deploying the sensors there

are also expenditures and challenges with enabling each

sensor to communicate with a central server and maintenance

costs are also applying. Although today it is not the cheapest

and the most efficient method, its usage in public transport is

well elaborated and also patented in the US [1].

A novel approach is the usage of sensors that are somehow

attached to human body. They represent a variant of mobile

sensor networks which rely on people’s smartphones as they

utilize the sensors integrated in these devices. Smartphones are

uncontrolled mobile sensors as their mobility is not restricted

as of those sensors which are deployed on public vehicles.

They move along with their owner and collect the information

about speed, acceleration, connected cell towers, Wi-Fi

hotspots in sight, etc. The way they provide information can

be divided into two categories, participatory or opportunistic,

whether the owner plays an active role in sensing or not. In

participatory sensing the user helps the sensing process with

manual intervention indicating when he/she gets on a public

vehicle, name the traffic line, and the stop where it happened.

At automated or opportunistic sensing the user plays a passive

role in the process as the sensing tasks are carried out

automatically by an application running in the background.

Although participatory sensing can lead to more exact data,

opportunistic sensing is more reliable because it lacks the

human factor and can operate providing constant data feed.

The organized form of mobile sensing is a promising way for

real-time data harvesting with the help of a big group of

moving sensing users and it is called crowdsensing. It does not

need physical deployment so expenses are much lower than in

ordinary sensor networks (it utilizes the crowd’s smartphone-

sensors). The sensing application collects and proceeds data to

a server. The processing could be done either on the user side

or at the server. If used in real-time applications, users of the

crowd should have mobile Internet or Wi-Fi access. Sending

big amount of data through cellular network causes higher

expenses and energy consumption, so the larger part of

processing should be done at the user side.

The paramount challenge that compromises users to join

crowdsensing is the battery life of smartphones which can be

affected badly by all-day-long tasks which are utilizing several

energy-hungry sensors. GPS is known to be one of the most

energy-demanding smartphone sensors, but it used to be the

primary source of location information.

We address consumption reduction of user devices

collaborating in public transport tracking crowdsensing tasks,

with a complex energy efficient method. Stopping Event

Detection Algorithm (SEDA) aims to differentiate between the

states of traveling on public transit vehicles, which includes

potential stopping event detection (SEDA 1) solely relying on

raw accelerometer data, and evaluation of the findings,

eliminating false positive stops altogether with localizing them

(SEDA 2) so the sensed stopping times could be compared to

those in the fix public schedule, so the crowdsensing

application can update the timetable accordingly and help

other passengers avoiding unnecessary waiting for late rides.

Since the localization task is cumbersome in dense urban areas

where public transport tracking mostly needed, we evaluated

the accuracy of several well-known strategies and proposed a

novel solution that is more trustworthy, which lacks

fluctuations in precision and which shows lower consumption

values than known methods.

The targeted tasks are fundamental parts of public transit-

tracking, so the improvements achieved in their solution by

our approach can be applied in all related scenarios.

Efficient Event Detection in Public Transport Tracking

Ármin Petkovics and Károly Farkas

Department of Networked Systems and Services, Budapest University of Technology and Economics, Hungary

petkovics@hit.bme.hu, farkask@hit.bme.hu

2014 International Conference on Telecommunications and Multimedia (TEMU)

978-1-4799-3200-9/14/$31.00 ©2014 IEEE 74

 2

The remainder of the paper is organized in the following way:

state-of-the-art is discussed in Section II, our approach and

solution to the problem is presented in Section III, Section IV

summarizes results and efficiency values, while section V

concludes the paper.

II. RELATED WORK

In mobile sensing applications energy consumption is not

primarily important because of CO2 emission but to prolong

battery life of the mobile devices. As most crowdsensing

applications, event detection in public transit tracking also

includes localization tasks to determine where the sensed data

is originated from. Among the relatively high number of

localization techniques only a few consider the energy

consumption impact of their method. Event detection makes

precise activity detection necessary which primarily relies on

accelerometer readings and is often supported by additional

sensors.

Bulut and Demirbas in [2] give a method for mobile

localization with varying accuracy levels depending on the

devices’ type of movement, speed and distance to the points of

interest where the most accurate location is needed. They

distinguish idle, driving and walking modes. Based on these

the system chooses the needed location accuracy and

accordingly the needed sensors (GPS, Wi-Fi, cellular

localization) and their sampling intervals.

Thiagarajan et al. present an activity dependent localization

technique aimed for public transport observing purposes [3].

To more precise sensor calibration it differentiates between

sleeping, stationary, walking, traveling by car and traveling on

public transport vehicle. The accelerometer query frequency

rises for movement types in the same sequence they are listed

above, and additional sensors are activated while walking (Wi-

Fi + cellular) and while traveling (GPS). They also do route

identification where they use the least squares optimization

algorithm which finds the closest fit among known bus lines

for a sequence of sensed GPS samples.

Wang et al. in [4] present also an activity dependent mobile

sensing framework where the novelty is that sensors’ duty

cycles (sampling frequencies) are determined heuristically

from earlier observed data, so changes happen on the fly when

the user changes his/her movement type. They also use GPS at

some cases and microphone readings are involved to their

system as well.

Cardone et al. present McSense [5], a geo-social model driven

crowdsourcing platform which improves task assignments by

collecting information about its users. They are grouped by

geographical regions, type, CPU and sensors of the phone they

are using, usual paths they are moving by and their battery

level is also considered before they receive a task to work on.

Liu et al. in [6] deal with the task of maintaining the quality of

information collected by the crowd. They determine the

adequate number of sensed data packages that are enough for

statistical processing in the concrete situation. They introduce

fairness by minimizing the variance in energy consumption

between the crowd’s users with the extended Gur Game.

Efficient route identification for public traffic lines is

investigated by Zhou et al. in [7]. They take into account only

the cell-tower IDs seen during the trip and claim that absolute

localization is unneeded for route discovery. They sequence-

match among received and earlier saved cell-tower ID

sequences to determine the traffic route by a modified Smith-

Waterman algorithm. The energy cost of collecting cell-tower

IDs is negligible because mobile phones always monitor the

available cells around to choose the best signal-to-noise ratio.

The rich work of this field solves several problems that a

crowdsensing project could face: maintaining quality of

sensed data, better task-assignments, traffic route

identification, activity dependent localization, etc. Authors

solve the task of distinguishing between traveling and other

movement types but stopping event detection in public

transportation is not addressed yet. We solve this unelaborated

task together with efficient localization of the found stopping

places without relying on GPS or cellular localization, but

utilizing Wi-Fi scanner for very short periods of time during

the sensing users’ public transit travel.

III. STOPPING EVENT DETECTION

Stopping event detection aims to differentiate between the

accelerometer readings of a user on a moving and a resting

public vehicle. At public transport tracking the most valuable

information is the timestamp when a public vehicle stops at a

station, because here the system can compare the sensed time

with the fix timetable. After the potential stopping events are

found, they have to be analyzed and localized to link each one

of them to the physical place where the stopping event

occurred. Our detection method requires the location

information, because the place where the potential stopping

event was sensed decides whether it was a real station or

somewhere in between stations, e.g., at a traffic light.

A sensing application was developed for data collection from

all the possible sensors the Android API allows. Tests were

carried out with different Android smartphone models,

through a 3 month period of time including high- and low-

traffic hours, clear and cloudy weather on and near the

Budapest tram line 4 and 6 which are the city’s public traffic

arteries. During data collection, testers were manually

indicating the public transport stops as the baseline for further

comparisons. The aim with inner-city data collection was to

develop and test our algorithms on real-life data. The accuracy

of all the subtasks were evaluated continuously.

SEDA consists of two parts: SEDA 1 finds potential stopping

events from accelerometer readings, while SEDA 2 eliminates

those stopping events - by using precise localization - which

happened outside the real stops (stopping at traffic lights or

due to unexpected traffic situations).

A. Detecting potential stopping events

This task is not straightforward, because when the tram stops,

the traveling user is still moving the sensing device in some

way, depending on where the phone is kept on his/her body

and which position is the user in.

Accelerometer is the primary source of information for

activity detection, which shows us the momentary force that is

affecting the smartphone along the three axes. Following the

general approach we calculate the root of sum of squares of

2014 International Conference on Telecommunications and Multimedia (TEMU)

75

 3

the three values to find absolute acceleration which is

regardless to the phone's orientation. Accelerometer readings

do not describe the speed of movement. Though there are

some attempts to estimate the possible moving speed [8] and

path traveled from accelerometer readings, their accuracy

decreases dramatically with time.

Basic activity detection is well examined in the literature and

we also implemented a simple algorithm that separates resting,

walking and traveling modes on the fly according to the

average acceleration levels and their dispersion.

However, detecting the potential stopping event is more

complicated. First of all, we noticed that different devices use

different intervals for sending sensor data through the API.

For easier and fair comparison of the results from different

devices’ datasets we rescaled their readings to 200ms intervals

as a first step for enabling correct sensed data processing.

Our algorithm differentiates crowdsensing users who are

standing or sitting during public transit travel. These two cases

behave differently as there is higher noise level in

accelerometer readings of standing users. It is possible to

define threshold values that are applicable for both situations,

but that would result in much more false positive stops (stops

outside stations due to traffic lights or noisy accelerometer

data) sensed in SEDA 1 which would badly influence the

overall consumption values of the SEDA 1 and 2. Standing

and sitting are easily separable by known algorithms with an

accelerometer, like the method described in [9] or by making

the sensing application adaptive to the average noise level.

SEDA 1 algorithm:

1. Smooth out accelerometer readings by a 3-second long

moving average.

2. Give first approximation of stops with threshold values of

0.1 m/s2 for sitting or 0.25 m/s2 for standing users.

3. Apply our low-pass filter for eliminating glitches.

4. Quantize filtered results of step 3, with thresholds 0.5 for

sitting and 0.65 for standing users. Unity steps in the result

denote the potential stopping times.

The filter of step 3 was designed using the ‘fdatool’ toolbox

for Matlab. The order of the FIR filter was set to 124 samples,

with a cut-off frequency of 100 Hz. The filter’s order

implicates the maximum length of a glitch which it eliminates.

Figure 1 illustrates application of SEDA 1 on a 3-minute long

dataset showing step-by-step results for better understanding.

Result of the second step (marked red) shows that for three

very short periods, the moving average of step 1 (blue line)

goes below the threshold level when the tram was actually

traveling, resulting in glitches. To eliminate them we apply

our low-pass filter (step 3): the dashed green line’s unity steps

(value changing from 0 to 1) denote the places of SEDA 1’s

findings: the potential stopping times. As we look at the two

small black circles in the lower part of the figure which

indicate manually sensed stopping events, we can see that

SEDA 1 found the stops exactly with negligible, few seconds

slip in time.

SEDA 1 algorithm can be evaluated by the proportion of false

positive (junk sensed stops in situations like traffic jams) and

false negative potential stops (stops that are missed by SEDA

1 due to noisy accelerometer readings) to the number of real

stops. While false positive stops are further evaluated and

corrected by SEDA 2 (see below), false negative stops

immediately result in losing a stop. Thus we determined

threshold values rather to result more false positives and

accordingly, less false negative stops. Accuracy values for

both SEDA 1 and 2 are presented in section IV.

B. Localization

Stopping event detection needs accurate localization so the

algorithm can decide which stopping events - sensed by the

accelerometer - happened truly at a station, and which

stopping events could be linked to traffic lights or other traffic

situations. Our aim is to find only those stops which happened

at the known stations.

Device manufacturers and operating system developers

already take this task seriously. While older Android versions

offer only two different settings how to obtain location (GPS

and Network (which means cellular + Wi-Fi) localization), the

latest Android 4.4 (Kitkat) system offers three types: high

Fig. 1. A 3 minute accelerometer reading sample with the 4 steps of SEDA 1. The time of the two real stop events are depicted at the bottom with a circle. (device

Nexus4, sitting sensing user)

2014 International Conference on Telecommunications and Multimedia (TEMU)

76

 4

accuracy (which means the combination of GPS, cellular, Wi-

Fi and other possibly helpful sensors in this task), “battery

saving” mode (Wi-Fi + cellular) and “device only” which

means the use of GPS only. The first two modes use Google

location services to estimate location faster and more

accurately while the third option excludes Google from the

localization (location info determined by GPS is anonymous).

Also for each installed application the user can decide whether

it receives location information and if it does how accurate

localization is available to it [10].

Most mobile operating systems are taking care of location

sensing problems with high priority to make them more

efficient and more accurate but these solutions are mostly

supported on the latest devices, with the newest operating

system versions installed. Older devices rarely get the updated

operating systems. Therefore the needed sensors and accuracy

classes for SEDA are still to be defined manually to achieve

the lowest possible energy consumption across all versions of

Android operating systems.

Our primary goal was to solve this task in the simplest way

possible (avoiding computing intensive tasks which lead to

unnecessary energy consumption of the devices) with only

low-power consumption sensors involved. First of all, we

tested how the different known localization methods deal with

this problem in dense urban areas of Budapest.

We had high expectations for cellular localization because

high buildings in the city result in a lot of users and

accordingly high base station density. This is expected to lead

to frequent handovers at traveling user devices, which could

mean that knowing the position of the base station the sensing

user is connected describes the user’s position with very good

approximation. During field tests we collected all the cellular

coordinates the devices sensed during the trip. Figure 2.a

visualizes a particular dataset on the map, which shows that in

case of a particular round trip with tram 6, network

localization results followed the Grand Boulevard with good

approximation. But, when we checked the numerical values

and variance of localization accuracy by calculating the

difference between real and cellular coordinates at each stop

we found results depicted on Figure 2.b. One can notice that

there are sometimes higher errors at some stops. These errors

are due to that some parts of the trams’ path are straight

enough that the mobile phone can stay connected to the base

station that is near the previous stop or maybe the stop before

that. Handovers occur when the mobile node leaves the

coverage area of the previous base station, or the signal-to-

noise-ratio (SNR) of another base station is better than the

previous’. But, if the next cells are crowded the handover

algorithm can chose to stay connected to the previous base

station. This happened several times in our tests, e.g., in

Figure 2.b device Galaxy S2 had no handovers between

“32esek” and “király” stops (the distance between the

measured cellular location and the real location rises linearly).

Summarizing all results of cellular localization we calculated

an average error of 183.33 meters. Typical average values of

per measurement accuracy varied from 93.47 to 272.85

meters. On average this is not a bad result because tram stops

are far away from each other from 350 up to almost 7-800

meters, but there are some late handover scenarios when the

error is too high. We concluded that this localization method

could not be used alone.

We visualized and calculated the accuracy levels of GPS

localization of several tests in Figures 3.a and 3.b. After we

summarized all the test results the average error of GPS

localization was 163.19 meters. Average per measurement

values varied from 21.74 to 646.01 meters depending on the

type of smartphone / weather conditions. Comparing the

results of cellular and GPS positioning we can conclude that

GPS is on average only 12.34% more accurate while its

consumption is around 2.5 times higher [2] than cellular

localization’s.

Neither GPS nor cellular localization gives us in every

Fig. 2.a Accuracy of cellular localization (device: Nexus 4).

Fig. 2.b Accuracy of cellular localization in meters on 3 different devices,

two way trip of tram 6.

0

200

400

600

800

1000

1200

1400

1600

1800

Nexus 4 Nexus S Galaxy S2

Fig. 3.a Accuracy of GPS localization (device: Nexus 4).

Fig. 3.b Accuracy of GPS localization in meters on 3 different devices, two

way trip of tram 6.

0

100

200

300

400

500

600

700

Nexus 4 Galaxy S2 Nexus S

2014 International Conference on Telecommunications and Multimedia (TEMU)

77

 5

situation adequate results with accuracy levels that we can rely

on exclusively without additional help from other sensors. Our

initial expectations that GPS can be left out from our

localization technique was shown to be true, because similarly

accurate results come from cellular localization. Anyways, a

new localization method should be found to filter out false

values from SEDA 1.

The idea of Wi-Fi localization relies on the fact that Wi-Fi

hotspot coverage values goes up to 50-100 meters so sensing

the same access points from two different tram stations is

almost impossible. Here we came up with the idea of building

a Wi-Fi database along the two traffic lines we were dealing

with by saving the visible hotspots at every station according

to several field test results carried out 1 month after one

another. Possible problem could be that nobody from the

collected hotspots’ owners is forced to keep their Wi-Fi

network alive, so our Wi-Fi database should be updated

periodically. Luckily, in dense urban areas that we are

working with there are a bunch of hotspots at every step so our

algorithm still be operational if some of them are lost.

Wi-Fi based localization is very efficient because this sensor

has to be turned on only when the stopping event detection

algorithm detects a possible stopping place: in 4 seconds it

finds the list of visible hotspots and it can go offline again. We

present SEDA 2 method for filtering out false potential stops

found by SEDA 1 and making sensed stops geo-dependent by

exact and efficient localization.

SEDA 2 algorithm:

1. Build/update Wi-Fi database at traffic line’s stops. Check

all neighboring stops for matching hotspots: delete them

from both lists.

2. For every potential stopping event: turn on Wi-Fi for 4

seconds, collect visible hotspots. Match the found stops

with the database and fill up the Wi-Fi matching matrix.

3. Discard potential stops whose AP’s match more than one

real stop’s AP’s.

4. When more (consecutive) potential stops match the same

real stops’ APs then choose the one with the most

hotspots matching as the real stop. Discard the others.

Rule number 4 means that we decide about the correctness of

a potential stopping event just after we found a next potential

stopping event with hotspots matching the next real stop’s

hotspots in the database. This can cause a 1-2 minute delay in

the decision, but the timestamp of the newly judged stop is

still comparable with the fix timetable to predict arrival times

for all the coming stations accordingly.

Figure 4 depicts the Wi-Fi matching matrix between the

hotspots sensed at potential stopping places and those at real

stops earlier collected to the Wi-Fi database. Number of

matching hotspots are marked by different colors (see label

on the right side). The matching matrix describes how SEDA

2 operates: potential stopping events of SEDA 1 (y-axis) are

compared with real stops (x-axis) based on the number of

matching Wi-Fi APs. Some examples for better

understanding: The 7th real stops’ hotspots are sensed in four

consecutive potential stops (11-14th), among them the 13th has

the most matches with the real stop, which is marked by the

darker color in the matrix-representation in the figure.

The APs at 28-29th potential stops match the APs of the 18th

and 19th real stops which means that both of the potential

stops are discarded because in step 1 of SEDA 2 we

eliminated the overlapping hotspots, so these ones have to be

somewhere in between the two real traffic stations.

An empty column on Figure 4, like the 33th, means that real

stop no. 33 was missed by SEDA 1 (it is a false negative).

IV. RESULTS AND EFFICIENCY

The accuracy of SEDA 1 could be evaluated alone by

calculating the proportion of false positive and false negative

stopping events to the real ones. As discussed, threshold levels

are set in SEDA 1 rather to find more false positive stops than

false negatives, because the latter means that we have

certainly lost a stop, but false positives could be filtered out

without any stops getting lost during the sensing process.

One can see that in a particular sensing case in Figure 5, where

there were 38.74% more potential stopping events (false

positives) than real stops, after executing SEDA 2, only 1 false

positive stopping time left (at around 12.5 min on the x axis)

which increases the final error rate with 1/18=5.56 %.

Meanwhile the 3 false negatives (3 missed stations) cannot be

filtered out (there are no stopping events at the missed

timestamps that can be evaluated with Wi-Fi localization), and

they add 3/18=16.67% to the final error rate.

After processing all the datasets from different smartphones

that were collected through 3 month of time in different traffic

Fig. 4. Wi-Fi matching matrix. Dataset of 37 consecutive stops on a round-trip

with tram 6. Device: Nexus 4, sitting sensing user.

Fig. 5. : SEDA 1+2 algorithms from the initial accelerometer dataset to the

found stopping events described by estimated stopping times below the

dataset. Real stopping times marked for comparison. Device: Nexus4, sensing

position: sitting.

2014 International Conference on Telecommunications and Multimedia (TEMU)

78

 6

and weather conditions at different times of the day we

calculated the average accuracy levels seen in Table 1.

In the Budapest case of tram line 6, the vehicle travels along

its 19-stations path for 29 minutes, which means that in

average traveling between two stops and the stopping time last

together 91.6 seconds. The percentages from Table 1 (82.9-

89.47%) mean that we properly detect around 8 or 9 from 10

stopping places.

A user who is participating in public traffic-related

crowdsensing using SEDA, sends a status update of the

tram’s current position on average in every 91.6 sec /

86.185% = 106.28 seconds of the trip. Talking about one

lonely user, this is a great number of sensing sent

automatically, without any interaction needed from the mobile

crowdsensing user.

Calculating with the average time of 91.6 seconds per each

station (travelling and resting) and 4-seconds Wi-Fi operation

per each potential stopping event, where the average number

of potential stopping events is 52.635% (false positives of

SEDA 1) higher of the real stops (assuming that half the

sensing users are travelling in standing and half in sitting

position) we get a utilization percentage of 1.52635 * 4sec /

91.6sec = 6.66% for Wi-Fi scanning.

Consumption values of mobile sensors are similar for different

devices, showing a slight decrease in newer models due to

further optimization. Earlier researches reported consumption

values of 1.37 Watts for Wi-Fi scanning, 0.05 Watts for

continuous accelerometer usage with maximal sampling

frequency, and 0.32 Watts for continuous GPS usage [11].

Supposing that an average user is awake 17 hours a day and is

in steady state at least 5 more hours (at his/her workplace),

results a maximum of 12 hours of moving activity per day

from which maximally 4 hours are spent on public vehicles (if

talking about a big city). Applying SEDA 1 and 2 on this

average daily scenario consumes 0.96168 Wh [Watt hours]

which is equivalent to 13% of the capacity of an average

smartphone battery (2000 mAh, 3.7V). This value is around

3.54 times lower than other methods which use continuous

GPS, because GPS lacks the property of instant availability

when turning on. Wi-Fi scanning can properly detect near

access points needed for SEDA 2 algorithm in the 4 second

interval when it is turned on at potential stopping events

determined by SEDA 1. Besides GPS’s much higher

consumption we also showed in Section III. B that GPS-based

localization is unsuitable for the task of stopping event

detection in dense urban areas due to sudden changes of its

accuracy levels.

V. CONCLUSION

We presented a solution for stopping event detection for

public transport tracking use-cases. Our method relies on

continuous accelerometer readings with 5Hz frequency, from

which we detect possible stopping events (SEDA 1) and 4-

second periods of Wi-Fi scanning to verify if SEDA 1-

determined stops are correct and if so, to localize the public

traffic station found (SEDA 2).

With the idea of building Wi-Fi databases we achieved high

efficiency, because we could rely solely the low-consumption

accelerometer and periodic Wi-Fi scans. On a busy weekday

with 12 hours of movement activity and 4 hours of public

travel, SEDA algorithms consume only 13% of the capacity of

a fully charged average smartphone battery, while detecting

properly 82.9-89.47% of public transport stops the users

traveled by.

This method not just lacks the usage of the most widely used

localization technique, one of the highest consumer sensors,

GPS, but solves the rarely addressed task of stopping event

detection during traveling on public vehicles with the least

power-hungry sensor in smartphones, the accelerometer and

periodic Wi-Fi scanning in 6.66% of actual traveling time on

public transport.

ACKNOWLEDGEMENT

The publication was supported by the EITKIC_12-1-2012-

0001 project, which is supported by the Hungarian

Government, managed by the National Development Agency,

financed by the Research and Technology Innovation Fund

and was performed in cooperation with the EIT ICT Labs

Budapest Associate Partner Group (www.ictlabs.elte.hu).

Károly Farkas has been partially supported by the Hungarian

Academy of Sciences through the Bolyai János Research

Fellowship. Ármin Petkovics has been partially supported by

High Speed Networks Laboratory, Budapest University of

Technology and Economics.

REFERENCES

[1] Kenneth J. Schmier, Paul Freda, "Public transit vehicle arrival information

system," U.S. Patent No. 6 374 176 B1, Apr. 16, 2002

[2] Bulut, M. F., and Demirbas, M.: „Energy Efficient Proximity Alert on Android,”

Workshop on Pervasive Collaboration and Social Networking, PerCOM, 2013.

[3] Thiagarajan, A., Biagioni, J., Gerlich, T., & Eriksson, J.: „Cooperative Transit

Tracking using Smart-phones,” 8th ACM Conf. on Embedded Networked Sensor

Systems, ACM, 2010, pp. 85-98.

[4] Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B.,

& Sadeh, N.: „A Framework of Energy Efficient Mobile Sensing for Automatic

User State Recognition,” Proc. of the 7th Int. Conf. on Mobile Systems,

Applications and Services, ACM, 2009, pp. 179-192.

[5] Cardone, G., Foschini, L., Borcea, C., Bellavista, P., Corradi, A., Talasila, M., &

Curtmola, R.: „Fostering ParticipAction in Smart Cities: a Geo-Social

CrowdSensing Platform,” IEEE Commun. Mag., 51(6), June 2013.

[6] Liu, C. H., Fan, J., Hui, P., Crowcroft, J., & Ding, G. (2013). QoI-Aware Energy-

Efficient Participatory Crowdsourcing. IEEE Sensors Jour., 13(10), 3742-3753.

[7] Zhou, P., Zheng, Y., & Li, M.: „How long to wait?: Predicting bus arrival time

with mobile phone based participatory sensing,” in Proc. of the 10th Int. Conf. on

Mobile systems, applications, and services, MobiSys’12, ACM, 2012, pp. 379-392.

[8] Yeoh, Wee-Soon, et al. "Ambulatory monitoring of human posture and walking

speed using wearable accelerometer sensors." Engineering in Medicine and

Biology Society, 2008, EMBS’08, 30th Annual Int. Conf. of the IEEE, 2008.

[9] Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). “Activity recognition using

cell phone accelerometers”, ACM SigKDD Explorations Newslett., 12(2), pp.74-82

[10] Google Support, Manage Location for your device [blog], Available:

https://support.google.com/nexus/answer/3467281 [Accessed: Dec 16 2013]

[11] Kjaergaard, M. B. "Location-based services on mobile phones: minimizing power

consumption." Pervasive Computing, IEEE 11.1, 2012, pp. 67-73.

Table. 1. False positive and false negative possible stopping events in both

traveling positions and the overall accuracy of SEDA algorithms

Traveling

position

False

positives
SEDA 1.

False

negatives
SEDA 1.

Overall

accuracy
SEDA 1+2

Average

slip in sensed
arrival times

Sitting 44.74% 7.89% 89.47% 10.07 sec

Standing 60.53% 12.2% 82,90% 15.64 sec

Average 52.635% 10.045% 86.185% 12.855 sec

2014 International Conference on Telecommunications and Multimedia (TEMU)

79

