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Abstract 9 

10 

The selection of a proper heat transfer fluid (HTF) is a key factor to increase the efficiency of 11 

concentrated solar power plants and therefore, to reduce their internal associated CAPEX 12 

(capital expenditures of developing and constructing a plant, excluding any grid-connection 13 

charges) and OPEX (operating expenditures from the first year of a project’s operation). This 14 

paper presents a comparative study of two commercial HTF which are widely used in different 15 

industries and CSP plants: thermal oil Therminol VP-1 and silicone fluid Syltherm 800. First, 16 

the authors theoretically studied the properties of both HTF based on the data given by the 17 

manufactures. Afterwards, the authors experimentally perform the comparison in a two-tank 18 

molten salt thermal energy storage pilot plant built at the University of Lleida (Spain). The 19 

study is focused on the plate heat exchanger of the facility during several charging processes 20 

with a counter flow arrangement. Results from both studies showed that, for the same working 21 

conditions, Therminol VP-1 is the best candidate for the above-mentioned purposes due to its 22 

higher heat transfer, lower thermal losses and lower power consumption associated to the HTF 23 

pump. However, it presents problems a low crystallization point, which should also be 24 

considered. 25 

 26 

Keywords: Heat transfer fluid; Therminol VP-1; Syltherm 800; Molten salts; Concentrated solar 27 

power plant; Plate heat exchanger 28 
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Nomenclature 30 

A Heat exchange area, m2 

b Mean channel spacing, m 

C Heat capacity, W/ºC 

Ch Constant of plate heat exchanger Nusselt correllation 

cp Specific heat, J/kg·ºC 

D Diameter, m 

E Energy released/absorbed, kWh 

G Mass channel velocity, kg/m2·s 

h Heat transfer coefficient or film coefficient, W/m2·K 

k Thermal conductivity, W/m·K 

Lc Packed length, m 

Lp Vertical distance between ports, m 

Lw Effective channel width, m 

ሶ݉  Mass flow rate, kg/s 

Ncp Number of channels per pass 

Np Number of passes 

Nt Number of plates 

Nu Nusselt non-dimensional number, - 

p Plate pitch 

Pr Prandtl non-dimensional number, - 

Q Heat transfer rate, W 

R Function dependent of the measured variables 

Re Reynolds non-dimensional number, - 

t Plate thickness, m 

T Temperature, ºC 

U Overall heat transfer coefficient, W/m2·K 

W Uncertainty in the final result 

w Uncertainty of independent variables 

x Independent measured variable  

 31 

Greek symbols 32 

∆ܶ  Temperature difference, ºC 

β Chevron angle, º 

ε Effectiveness, - 

ø Surface enlargement factor, - 
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μ Viscosity, N/s·m2 

η Efficiency, - 

 33 

Subscripts 34 

b Bulk heat exchanger 

cor Correlation 

e Equivalent 

eff Effective 

Exp Experimental 

HTF Heat transfer fluid 

in Inlet 

LMTD Log-mean temperature difference 

max maximum 

min minimum 

n Independent variables 

out Outlet 

p Projected 

PHEX Plate heat exchanger 

salts salts  

s Surface  

  35 
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between 0.3 MWh and 8 MWh) [5-7]. These studies showed the importance and helpfulness of 62 

developing pilot plant facilities within a scale range between the laboratory and real plants to 63 

achieve higher economy savings in real CSP plants. Hermann et al. [8] studied the technical and 64 

economic feasibility of a two-tank molten salt TES system linked to a parabolic trough CSP 65 

plant. They concluded that a storage system of 12 h at full load capacity reduced around 10 % 66 

the levelized electricity cost. Prieto et al. [9] experimentally evaluated the molten salts 67 

temperature distribution and the heat losses in the pilot plant facility presented in Cabeza et al. 68 

[6]. The results showed on one hand no temperature stratification in the storage tank, and on the 69 

other hand that the radial temperature distribution was mainly due to the insulation, the type of 70 

electrical resistance used for the molten salts temperature control, the orientation of the storage 71 

tanks, and the boundary conditions.  72 

 73 

Glatzmayer [4] presents some guidelines to increase ofthe efficiency of the system and therefore 74 

to make CSP electricity production more cost-effective. HeThe author states that the TES 75 

system efficiency may be improved by developing new HTF, new components, and new 76 

operational strategies. The HTF thermally connects the solar field, the storage system, and the 77 

power block. Regarding to this topic, Benoit et al. [10] reviewed the existing and potential HTF 78 

used in the CSP -receivers and determined the main requirements for a proper HTF. First, the 79 

HTF should be able to work in an extended working temperature range and with a high thermal 80 

stability to increase the temperature and therefore increasing the efficiency of the cycle. Hence, 81 

the cost of the solar field, which turns to be the main saving factor in a CSP plant, can be 82 

reduced. Second, the HTF should have good thermophysical properties to increase the heat 83 

transfer between the TES material and the power block driving fluid, and to bear the high 84 

pressure and temperature changes. And third, the HTF should be non-hazardous, should have a 85 

good chemical behaviour in terms of corrosion and compatibility with the piping material and 86 

HTFshould be cost-effective. Similar to Benoit et al. [10], Vignarooban et al. [11], and Gasia et 87 

al. [12] reviewed the different types of HTF which are suitable for CSP plants and high 88 

temperature applications (liquids, supercritical fluids, and gases), their thermal and physical 89 

properties, their cost, and the most typical piping and container materials for HTF. They showed 90 

that thermodynamic cycle efficiencies could achieve values in a range between 35% and 42% 91 

by using thermal oil, molten salts or water/steam as HTF. They also showed that new HTF, 92 

which need to be stable at 700 ºC, are required to achieve thermodynamic cycle efficiencies of 93 

50%. They proposed new molten salts, liquid metals, supercritical water, and carbon dioxide or 94 

pressurized gases and particles. Sau et al. [13] experimentally studied the behaviour of two 95 

different medium size plants (50 MWe), which used two different HTF: a binary mixture of 96 

NaNO3/KNO3 (64/36 mol%) and a ternary mixture of NaNO3/KNO3/LiNO3 (37/45/18 mol%). 97 

Moreover, they performed an economic analysis to compare it with the thermal performance 98 
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results. Results showed that in terms of operation, the lower melting temperature of the ternary 99 

mixture is desired, while in terms of economics, both mixtures have practically the same final 100 

cost per kWh.  101 

 102 

The efficiency of an indirect two-tank TES system may be improved by using a proper HTF. 103 

However, the fact of understanding the heat transfer process in the HTF-molten salt heat 104 

exchanger is also crucial in order to develop new operational strategies and therefore, to 105 

increase the performance of CPS plants. Nowadays, shell-and-tube heat exchangers are the most 106 

economic designs for CSP plants coupled with the two-tank molten salt TES system, but plate 107 

heat exchangers (PHEX) start to arise as candidates because they provide higher efficiencies 108 

and more flexibility than shell-and-tube heat exchangers despite the fact that they have lower 109 

mechanical resistance. The first study demonstrating the feasibility of a PHEX under real CSP 110 

plants working conditions was performed by Peiró et al [14], who analysed charging and 111 

discharging processes using molten salts and a commercial HTF. However, no experimental 112 

studies have been found in the literature focusing on the analysis of the influence of the HTF on 113 

the heat transfer in a PHEX for CSP plants. Hence, the objective of the present paper is to 114 

address this gap by studying two different commercial HTF widely used in the industry and 115 

CSP plant: the thermal oil Therminol VP-1 and the silicone fluid Syltherm 800. First, a 116 

theoretical study of both HTF is done by describing the impact of each thermophysical property 117 

in the different operational parameters of CSP plants. Second, an experimental study is 118 

performed by comparing the thermal performance of both HTF in a PHEX under different 119 

charging processes. To carry out the experimental study, the authors used the two-tank molten 120 

salt pilot plant constructed at the Universitat de Lleida [6]. 121 

 122 

2 Materials 123 

2.1. Heat transfer fluids  124 

 125 

Two HTF were considered for carrying out the experimentation: Therminol VP-1 [15] and 126 

Syltherm 800 [16]. Therminol VP-1 is a synthetic heat transfer oil which consists of a eutectic 127 

mixture of 73.5% diphenyl oxide (C12H10O) and 26.5% biphenyl (C12H10) while Syltherm 800 is 128 

a silicone fluid which is based on dimethyl polysiloxane (C2H6OSi)n. Figure 2 shows the 129 

molecular structure of the different organic compounds which are present in Therminol VP1 and 130 

Syltherm 800. 131 

 132 

Regarding the health hazard, Therminol VP-1 is classified as a harmful by inhalation product, 133 

dangerous for the environment, especially for the aquatic environment. For this reason, 134 
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Table 1. Thermophysical properties of molten salts [Dr. Cristina Prieto, Abengoa, personal 162 

communication, April 27th, 2016] 163 

Properties Values 

Composition NaNO3/ KNO3 (60/40 wt.%)  

Appearance White crystalline in solid and clear yellow in liquid 

Melting point  238-241 ºC 

Density ߩሺ݇݃ ݉ଷ⁄ ሻ ൌ 0.636  ܶሺܥሻ  2089.905   

Specific heat ܿሺ݇ܬ ݇݃  ⁄ܭ ሻ ൌ 1.723  10ିସ  ܶሺܥሻ  1.443  

Thermal conductivity ߣሺܹ ݉  ⁄ܭ ሻ ൌ 1.9  10ିସ  ܶሺܥሻ  0.443  

Kinematic viscosity 
߭ሺ݉ଶ ⁄ݏ ሻ ൌ െ6.557  10ିଵସ  ܶଷሺܥሻ  1.055  10ିଵ  ܶଶሺܥሻ െ

5.706  10ି଼  ܶሺܥሻ  1.112  10ିହ  

 164 

3. Experimental setup 165 

 166 

The experimental studies presented in this work were carried out at the high temperature pilot 167 

plant facility located at the University of Lleida (Spain). It is composed of four main parts: the 168 

heating system, the cooling system, the storage system, and the heat exchange system (Figure 169 

3). The heating system consists of a 24 kWe electrical heater. The cooling system consists of a 170 

20 kWth air-HTF heat exchanger. The storage system consists of two molten salts storage tanks 171 

of 0.57 m3 with the same aspect ratio than the storage tanks of real CSP plants. They contain 172 

1000 kg of molten salts, which are stored and recirculated through the molten salts loop during 173 

the charging and discharging processes. Finally, the heat exchange system consists of an 174 

ALFANOVA HP 76-38H PHEX [23]. Figure 4a shows an overview of the PHEX installed in 175 

the experimental facility. Moreover Figure 4b and Table 2 show its main geometric and design 176 

characteristics. A more detailed description of the experimental facility can be found in Cabeza 177 

et al. [6].  178 

 179 

With the aim of analysing the behaviour of the molten salts and the HTF during the charging 180 

process, all sensors used in the experimentation were connected to a data acquisition system and 181 

recorded at a time interval of 30 s to further be processed. The temperature of the molten salts 182 

and HTF at the inlet and outlet of the PHEX were measured with four Pt-100 resistance 183 

temperature detectors, which were located in well insulated tube sections at 83 mm from the 184 

four terminals of the PHEX. The HTF volumetric flow rate of was measured using a calibrated 185 

orifice plate with a differential pressure transmitter. Finally, the molten salts volume flow rate 186 

was calculated with a homemade device, which consists of a metallic tube that measures the 187 

molten salts level variation inside the hot tank during intervals of 5 minutes.  188 
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Table 2. Design characteristics and technical properties of the ALFANOVA HP 76-38H PHEX used in 202 

the present experimentation 203 

Characteristics 
Thermal 
Oil side 

Molten 
Salts side 

Characteristics 

Design pressure 20 bar 10 bar Number of plates, Nt 38 
Design temperature 400 ºC 400 ºC Effective channel width, Lw 191 mm 

Directions of the fluids Both Both 
Horizontal distance between 
centres of ports, Lh 

92 mm 

Length x Width x Height 208 x 191 x 618 mm 
Vertical distance between 
centres of ports, Lv 

519 mm 

Plate material 
Stainless steel alloy 

316L 
Vertical distance between 
ports, Lp 

473 mm 

Plate thickness, t 0.40 mm 
Compressed plate pack 
length, Lc 

208 mm 

Number of passes, Np 10 (both sides) Port diameter, Dp 46 mm 
Heat transfer area, APHEX 3.8 m2 Corrugation pitch, Pc n.a. 
  Chevron angle, β < 30 º 

n.a. – not available 204 

 205 

4. Methodology 206 

4.1.Experimental procedure 207 

 208 

The experimentation presented in this study consisted of several charging processes with two 209 

different HTF. However, before starting the charging process, a warming process was required 210 

to homogenize both the molten salts and the HTF at the initial temperature of charge, which 211 

were 293 ºC and 341 ºC, respectively. Once the homogenisation was achieved, the charging 212 

process started with an HTF mass flow rate of 0.08 kg/s, and a molten salts mass flow rate of 213 

0.12 kg/s. During this process, the molten salts were pumped from the cold storage tank to the 214 

hot storage tank passing through the PHEX in a counter-flow arrangement (Figure 5). The 215 

charging process was considered to be finished when the level of the molten salts in the cold 216 

tank reached 23-25 cm from the bottom of the tank, which is considered the minimum operation 217 

level of the pump.  218 

 219 
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4.2.1. Overall heat transfer coefficient (U) from the energy balance  245 

 246 

The nominal heat transfer rate in the PHEX (ܳுாሻ is defined as the average heat transfer 247 

between the heat transfer at both the molten salts and the HTF sides of the PHEX (Eq. 1). 248 

Theoretically, both heat transfer rates should present the same values, but small differences due 249 

to heat losses and numerical errors in the measurements were experimentally observed [14]. 250 

 251 

ܳுா ൌ
ܳ௦௧௦  ܳு்ி

2
 Eq. 1

 252 

The heat transfer absorbed by the molten salts (ܳ௦௧௦) and heat released by HTF (ܳு்ி) are 253 

derived from the following thermal balances (Eq. 2 and Eq. 3): 254 

 255 

ܳ௦௧௦ ൌ ሶ݉ ௦௧௦  ௦௧௦ܿ  ሺ ௦ܶ௧௦ೠ െ ௦ܶ௧௦) Eq. 2

ܳு்ி ൌ ሶ݉ ு்ி  ு்ிܿ  ሺ ு்ܶி െ ு்ܶிೠሻ  Eq. 3

 256 

Finally, the PHEX overall heat transfer coefficient from the energy balance (ܷா௫) is derived 257 

from Eq. 4:  258 

 259 

ܷா௫ ൌ
ܳுா

ுாܣ  ∆ ܶெ்
 Eq. 4

 260 

4.2.2. Overall heat transfer coefficient (U) from the convective heat transfer coefficients 261 

 262 

The convective heat transfer coefficients at both the HTF and the molten salts sides of the 263 

PHEX are obtained from Eq. 5. 264 

 265 

݄ ൌ
ݑܰ  ݇
ܦ

 Eq. 5

 266 

The Nusselt numbers for both fluids are obtained from Eq. 6 and Table 3. The Reynolds 267 

numbers (Eq. 7) is based on the mass channel velocity ܩ (Eq. 8) and the equivalent diameter ܦ 268 

(Eq. 9) of one plate channel of the PHEX: 269 

ݑܰ ൌ ܥ  ܴ݁  	ଵ/ଷݎܲ  ൬
ߤ
௦ߤ
൰
.ଵ

 Eq. 6 

ܴ݁ ൌ
ܦ  ܩ
ߤ

 Eq. 7 
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ܩ ൌ
ሶ݉

ܰ  ܾ  ௪ܮ
 Eq. 8 

ܦ ൌ
2ܾ
߶

 Eq. 9 

 270 

Table 3. Constants for a single-phase heat transfer calculation in chevron-PHEX [24] 271 

Chevron angle (β) Reynolds Number (Re) Ch n 

	30 º 
 10 0.718 0.349 

> 10 0.348 0.663 

 272 

The number of channels per pass of the PHEX ܰ is defined by Eq. 10, the main spacing 273 

channel ܾ is defined by Eq. 11, and the parameter surface enlargement factor ߶ is defined by 274 

Eq. 12: 275 

 276 

ܰ ൌ
௧ܰ െ 1
2 ܰ

 Eq. 10 

ܾ ൌ  െ  Eq. 11 ݐ

߶ ൌ
ܣ
ܣ

 Eq. 12 

 277 

where  is the plate pitch in (Eq. 13), ܣ is the effective area of one plate (Eq. 14), and ܣ is 278 

projected area of one plate (Eq. 15): 279 

 280 

 ൌ
ܮ
௧ܰ
 Eq. 13 

ܣ ൌ
ுாܣ

௧ܰ
 Eq. 14 

ܣ ൌ ܮ   ௪ Eq. 15ܮ
 281 

Finally, the PHEX overall heat transfer coefficient from the convective heat transfer coefficients 282 

( ܷ) is derived from Eq. 16:  283 

 284 

ܷ ൌ
1

1
݄ு்ி


ݐ

݇ுா


1
݄௦௧௦

 

 

Eq. 16 

 285 

 286 
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4.2.3. Efficiency and effectiveness of the heat exchange 287 

 288 

The efficiency of the heat exchange during the charging process is described as Eq. 17 shows, 289 

while its effectiveness is defined by Eq. 18:  290 

 291 

ߟ ൌ
ܳ௦௧௦
ܳு்ி

 Eq. 17 

 292 

ߝ ൌ
ܳுா
ܳ௫

 Eq. 18 

 293 

where ܳ௫ is the maximum possible heat exchange rate with a given inlet temperatures and it 294 

is defined by Eq. 19: 295 

ݔܽ݉ܳ ൌ ݊݅݉ܥ  ሺܶ݊݅ܨܶܪ െ  Eq. 19 (݊݅ݏݐ݈ܽݏܶ
 296 

where ܥ is the lowest value from heat capacities of the HTF and the molten salts. 297 

 298 

4.2.4. Uncertainty analysis 299 

 300 

This section aims to show the uncertainties of the different parameters and their impact in the 301 

results of the present study to determine their precision and general validity. As above-302 

explained, the evaluation of this study has been carried out at the PHEX. Therefore, the first 303 

step was to establish the uncertainties of the parameters which were measured during the 304 

experimentation and the uncertainties associated to the thermophysical properties of both the 305 

HTF and molten salts.  These uncertainties were obtained from the technical data sheets of the 306 

sensors used for their measurement and from the available literature, and their values are shown 307 

in Table 4. 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 
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Table 4. Uncertainties of the different parameters involved in the analyses of the present study  319 

Parameter Units Sensor 
Uncertainty 

[± %] 
HTF inlet temperature [ºC] Pt-100 1/5 Class B DIN 0.12 

HTF outlet temperature [ºC] Pt-100 1/5 Class B DIN 0.12 

Molten salts inlet temperature [ºC] Pt-100 1/5 Class B DIN 0.12 

Molten salts outlet temperature [ºC] Pt-100 1/5 Class B DIN 0.12 

HTF volume flow rate [l/h] Orifice plate 1.1 

Molten salts level [m] Homemade device 1 

HTF density  [kg/m3] [10] 3 

HTF specific heat  [kJ/kg ºC] [10] 3 

HTF dynamic viscosity   [Pa·s] [10] 3 

HTF thermal conductivity [W/m·ºC] [10] 3 

Molten salts density  [kg/m3] [27] 0.5 

Molten salts specific heat  [kJ/kg ºC] [27] 2.36 

Molten salts dynamic viscosity   [Pa·s] [27] 2.33 
Molten salts Thermal 

conductivity 
[W/m·ºC] [27] 4.36 

 320 

Once the uncertainties of these parameters were known, the next step was the estimation of the 321 

uncertainties of the calculated results, which were obtained as shown in Eq. 20 [28]: 322 

ோܹ ൌ ቈ൬
߲ܴ
ଵݔ߲

 ௫భ൰ݓ
ଶ

 ൬
߲ܴ
ଶݔ߲

 ௫మ൰ݓ
ଶ

 ⋯ ൬
߲ܴ
ݔ߲

 ௫൰ݓ
ଶ


ଵ/ଶ

 Eq. 20 

 

where W_R is the estimated uncertainty in the final result, R is a function which depends on the 323 

measured parameters, xn are the independent measured parameters, and wn are the uncertainties 324 

which are associated to the independent parameters. 325 

 326 

Table 5 shows the estimated uncertainties of the different parameters evaluated in the present 327 

study. Notice that the calculated uncertainties for all the parameters which are presented in this 328 

study are lower than 10%.  329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 
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Table 5. Estimated uncertainties of the parameters presented in the present study 338 

Variable HTF Equation 
Estimated 

uncertainty [± %] 

QHTF 
Therminol VP-1

Eq. 3 
3.34 

Syltherm 800 3.33 

Qsalts 
Therminol VP-1

Eq. 3 
2.65 

Syltherm 800 2.64 

QPHEX 
Therminol VP-1

Eq. 1 
2.14 

Syltherm 800 2.20 

hHTF 
Therminol VP-1

Eq. 5 

8.01 
Syltherm 800 8.28 

hsalts 
Therminol VP-1 9.07 

Syltherm 800 8.55 

Ucor 
Therminol VP-1

Eq. 16 
5.92 

Syltherm 800 6.25 

Uexp 
Therminol VP-1

Eq. 4 
4.38 

Syltherm 800 7.66 

 ߝ
Therminol VP-1

Eq. 18 
5.06 

Syltherm 800 4.78 

 ߟ
Therminol VP-1

Eq. 17 
5.79 

Syltherm 800 6.27 
 339 

5. Results and discussion 340 

5.1. Comparison of the thermophysical properties of both HTF 341 

 342 

The thermophysical properties of the two HTF studied in this work are compared in this section. 343 

Moreover, the impact of each property in the operation of a CSP plant is analysed. Table 6 344 

presents the empirical equations, based on the data given by the manufacturers, which are 345 

graphically represented in Figure 6 for a better comparison. It is observed that both HTF have 346 

thermal stabilities up to 400 ºC, which means that they are suitable for being used in parabolic 347 

through CSP plants. Regarding to the crystallization point, different values can be observed: 348 

while Syltherm 800 solidifies at -40 ºC, Therminol VP-1 does it at 12 ºC. Hence, the facilities 349 

where Therminol VP-1 is used should consider installing a tracing system in the piping system 350 

to avoid solidification problems in cold environments, and as a consequence, the OPEX would 351 

be higher. With reference to the density, Therminol VP-1 has higher values than Syltherm 800, 352 

which means that higher heat transfer rates can be obtained because the HTF is able to transport 353 

more mass per unit of volume. On the other hand, an HTF with higher density means that the 354 

fluid is heavier and therefore more pumping power is required. Hence, both the power required 355 

by HTF pump and the heat transfer rates are higher in facilities where Therminol VP-1 is used. 356 

However, the property which affects the most to operational parameters of the HTF pump and 357 
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to heat transfer performance is the viscosity. With higher values of viscosity, more pumping 358 

power is required by the HTF since the centrifugal pump performance is reduced. Furthermore, 359 

higher values of viscosity imply a lower HTF convective heat transfer coefficient and therefore 360 

lower heat transfer rates. As a consequence, for the same operational conditions CSP plants 361 

using Syltherm 800 will obtain lower heat transfer rates, and will require more power for 362 

pumping the HTF, especially at the start-up of the CSP plant and at overnight, two critical 363 

periods where the HTF temperature has a significant decrease. The HTF specific heat and 364 

thermal conductivity do not affect to the operational parameters of the HTF pump. However, 365 

both parameters affect directly proportional to the thermal power transferred or absorbed by 366 

HTF. Syltherm 800 has lower values of specific heat and thermal conductivity than Therminol 367 

VP-1 which negatively affect the heat absorption and heat losses during the charging and 368 

discharging processes of the CPS plant. Finally, vapour pressure is the last key property to take 369 

into account for a proper operation of CSP plants. Vapour pressure affects directly proportional 370 

to the working pressure of the CSP plant. Low working pressures allow using thin tube walls, 371 

which reduces the wall temperature gradient and therefore the induced mechanical stress. 372 

Moreover, if the vapour pressure is too high, gas bubbling may appear in low pressure areas, 373 

such as the inlet of HTF pumps, and may increase the problems of cavitation. Syltherm 800 has 374 

higher values of vapour pressure than Therminol VP-1, which means that the operation pressure 375 

of CSP plant needs to be higher to prevent the above-mentioned problems. 376 

 377 

As a conclusion, it can be stated that from the theoretical analysis of the thermophysical 378 

properties of both HTF, CSP plants using Therminol VP-1 will have a better performance than 379 

the ones using Syltherm 800 in terms of heat transfer rates and power consumption. 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 
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Table 6. Properties of Therminol VP-1 and Syltherm 800 based on the data given by the manufacturers 395 

Properties Therminol VP-1 Syltherm 800 

Composition Biphenyl and Diphenyl oxide Dimethyl polysiloxane 

Appearance Clear, sediment free liquid 
Clear yellow as supplied and 
darkened after extended use 

Thermal stability 400 ºC 400ºC 
Boiling point 257 ºC 203 ºC 
Flash point 110 - 124 ºC 35 - 160 ºC 
Fire point 127 ºC 193 ºC 
Autoignition point 621 ºC 385 ºC 
Crystallization point 12 ºC -40 ºC 

Density 
ሺ݇݃ߩ ݉ଷ⁄ ሻ ൌ െ2.835  10ି 
ܶଷሺܥሻ  1.235  10ିଷ 
ܶଶሺܥሻ  1.037  ܶሺܥሻ  1094  

ሺ݇݃ߩ ݉ଷ⁄ ሻ ൌ െ1.671  10ି 
ܶଷሺܥሻ  4.216  10ିସ 
ܶଶሺܥሻ െ 0.917  ܶሺܥሻ 		
953.17  

Kinematic viscosity 

߭ሺ݉ଶ ⁄ݏ ሻ ൌ െ9.565  10ିଵଽ 
ܶହሺܥሻ  1.417  10ିଵହ 
ܶସሺܥሻ െ 8.435  10ିଵଷ 
ܶଷሺܥሻ  2.574  10ିଵ 
ܶଶሺܥሻ െ 4.197  10ି଼  ܶሺܥሻ 
3.318  10ି  

߭ሺ݉ଶ ⁄ݏ ሻ ൌ െ2.106  10ିଵ଼ 
ܶହሺܥሻ  3.322  10ିଵହ 
ܶସሺܥሻ െ 2.125  10ିଵଶ 
ܶଷሺܥሻ  7.061  10ିଵ 
ܶଶሺܥሻ െ 1.274  10ି  ܶሺܥሻ 
1.095  10ିହ  

Specific heat 

ܬሺ݇ܿ ݇݃  ⁄ܭ ሻ ൌ 4.908  10ିଵଵ 
ܶସሺܥሻ െ 3.960  10ି଼ 
ܶଷሺܥሻ  1.107  10ିହ 
ܶଶሺܥሻ  1.439  10ିଷ  ܶሺܥሻ 
1.556  

ܬሺ݇ܿ ݇݃  ⁄ܭ ሻ ൌ 	1.706  10ିଷ 
ܶሺܥሻ  1.574   

Thermal 
conductivity 

ሺܹߣ ݉  ⁄ܭ ሻ ൌ െ1.687  10ି 
ܶଶሺܥሻ െ 8.885  10ିହ  ܶሺܥሻ 
0.138  

ሺܹߣ ݉  ⁄ܭ ሻ ൌ 	െ1.881  10ିସ 
ܶሺܥሻ  0.139  

Vapour pressure 

௩ܲሺ݇ܲܽሻ ൌ 7.394  10ିହ 
ܶଷሺܥሻ െ 3.527  10ିଶ 
ܶଶሺܥሻ  5.744  ܶሺܥሻ 
3.064  10ଶ  

௩ܲሺ݇ܲܽሻ ൌ 2.754  10ିହ 
ܶଷሺܥሻ െ 7.020  10ିସ  ܶଶሺܥሻ 
0.866  ܶሺܥሻ  75.37  

 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
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5.2.4. Overall and convective heat transfer coefficients  485 

 486 

Table 8 shows the overall heat transfer coefficients (U), obtained with the two methodologies 487 

explained in Section 4.2. In general, good agreement between the energy balance and 488 

correlation values for the overall heat transfer coefficient is observed in both processes, with a 489 

variation between the two methodologies of less than 3 %. This variation in the two proposed 490 

methodologies is within the range of uncertainty limit showed in Table 5 and therefore validates 491 

the experimental data obtained in the experimentation. Results from Table 8 show that the U-492 

value during the charging process which used Therminol VP-1 as HTF is 48 % higher than the 493 

U-value during the charging process which used Syltherm 800. Similarly, the convective heat 494 

transfer coefficient at the HTF side of the PHEX during the charging process which used 495 

Therminol VP-1 as HTF is 74 % higher than the convective heat transfer coefficient at the HTF 496 

side of the PHEX during the charging process which used Syltherm 800 as HTF. However, the 497 

convective heat transfer coefficient at the molten salts side of the PHEX during the charging 498 

process which used Therminol VP-1 as HTF is 9.5 % higher than the convective heat transfer 499 

coefficient at the molten salts side of the PHEX during the charging process which used 500 

Syltherm as HTF due to small differences in the flow rate of the molten salts. These results 501 

showed the influence of the HTF thermophysical properties on the heat transfer rates in terms of 502 

its U-value and heat transfer coefficient. Finally, Table 8 also presents de Reynolds number of 503 

both HTF during the evaluated processes. These values show that both charging processes were 504 

carried out under turbulent regime, since they are higher than transition to turbulence limit for 505 

PHEX fixed at 400 by Kakaç et al. [24]. 506 

 507 

 508 

Table 8. Summary of the U-values (two methodologies), and convective heat transfer coefficients 509 

(correlatiosn only) and Reynolds number during the charging process with a counter flow arrangement 510 

 Therminol VP-1 Syltherm 800 

UExp [W/m2·ºC] 583.53 390.22 

UCor [W/m2·ºC] 588.80 401.89 

hHTF [W/m2·ºC] 1024.44 588.39 

hsalts [W/m2·ºC] 1432.86 1308.15 

ReHTF [-] 1963.81 827.52 

 511 
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6. Conclusions  512 

 513 

In the present paper, the authors theoretically and experimentally compare two commercial HTF 514 

for industrial and CSP plants purposes: thermal oil Therminol VP-1 and silicone fluid Syltherm 515 

800. The theoretical study consisted of an analytical comparison of the thermophysical 516 

properties of both HTF. The experimental study consisted of analysing the behaviour of both 517 

HTF in a two-tank molten salt pilot plant facility at the University of Lleida (Spain) during a 518 

charging process with a counter flow arrangement. The objective was to validate the statements 519 

obtained in the theoretical study.  520 

 521 

From the theoretical study, the authors conclude that Therminol VP-1 is the best candidate for 522 

industrial and CSP purposes up to 400 ºC. For working temperatures below this value, 523 

Therminol VP-1 has lower viscosity and vapour pressure than Syltherm 800. Hence, the benefits 524 

turn to be lower electrical consumptions associated to the HTF pump, lower heat losses, and 525 

higher heat transfer rates. However, Therminol VP-1 presents a big disadvantage, which is that 526 

it presents its crystallization point at 12 ºC, which means that the OPEX of a CSP plant that uses 527 

this HTF will be higher because of the use of tracing systems in case of lower temperatures and 528 

presents higher toxicity for the user and for the environment. 529 

 530 

During the experimental study, the authors compared during a charging process the following 531 

parameters: temperatures profiles, heat transfer, overall heat transfer coefficients, convective 532 

heat transfer coefficients, effectiveness, and efficiencies. The experimental results showed that 533 

the process which used Therminol VP-1 as HTF had a better behaviour, validating the 534 

theoretical study. Results showed a difference of 37.4 % in the heat transfer rate and 48 % in the 535 

overall heat transfer coefficients. 536 
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