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Abstract 

 

Different sampling schemes were tested to estimate yield (kg/tree), fruit firmness (kg) and the 

refractometric index (ºBaumé) in a peach orchard. In contrast to simple random sampling 

(SRS), the use of auxiliary information (NDVI and apparent electrical conductivity, ECa) 

allowed sampling points to be stratified according to two or three classes (strata) within the 

plot. Sampling schemes were compared in terms of accuracy and efficiency. Stratification of 

samples improved efficiency compared to SRS. However, yield and quality parameters may 

require different sampling strategies. While yield was better estimated using stratified samples 

based on the ECa, fruit quality (firmness and ºBaumé) showed better results when stratifying 

by NDVI. 
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Introduction 

 

Sampling to estimate yield and fruit quality at harvest time is of great interest in fruit growing. 

However, reliable prediction of these parameters is not easy, especially when systematic 

sampling is usually replaced by a less accurate simple random sampling scheme to reduce time 

and cost. On other occasions, random sampling causes doubts to both growers and advisors 

about how many trees should be sampled and, above all, what specific trees should be sampled 

within a plot. Faced with this situation, there is a need to develop new and more precise methods 

with acceptable costs and guiding the farmer during field sampling. 

Simple random sampling (SRS) is a widely used design because it is relatively simple to 

implement by random selection of sampling points (trees) within the plot. However, SRS is 

inefficient when estimating parameters that show spatial autocorrelation within the plots 

(Webster and Lark, 2013). Taylor et al. (2005) showed that vineyards are spatially variable and 

that grape yield usually follows a well-defined and consistent spatial pattern over time. This 

same situation can be expected in fruit orchards and, for this reason, sampling methods that 

take into account expected places of occurrences would be preferable to optimally locate 

sampling points to obtain better yield estimates. 

On the other hand, fruit growers can hire service companies that provide crop vigour and/or soil 

apparent electrical conductivity (ECa) maps obtained with suitable sensors (proximal and 

remote sensing). Aerial images of the normalized difference vegetation index (NDVI) were 

used by Meyers and Vanden Heuvel (2014) to optimize sampling protocols in vineyard and 

reduce sample sizes. Applying suitable algorithms to NDVI images, specific samples can be 

established to conform the spatial distribution of NDVI within the plot (Meyers and Vanden 

Heuvel, 2014). As NDVI is related to vine vigour, the method is a way of distributing sampling 

points by covering the areas of different vigour to capture vineyard canopy variability within 

the plot. This same idea is behind the method proposed by Carrillo et al. (2016) to improve 
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yield estimates, also in viticulture. The authors concluded with the need to consider a two-step 

sampling method combining NDVI-based sampling with random vine sampling to apply each 

strategy to predict a specific component of the productive potential of the vineyard. Regarding 

the apparent electrical conductivity (ECa), there are several studies that address the use of ECa 

classified maps for site-specific management practices (Moral et al., 2010; Peralta and Costa, 

2013). The suitability of this same information for fruit-growing sampling is a pending issue. 

There are few studies on sampling in fruit orchards. To cite some of them, Monestiez et al. 

(1990) proposed using a geostatistical approach to assess spatial dependence between fruits to 

choose the most appropriate sampling designs inside the tree structure. Multilevel systematic 

sampling can also be an interesting option to estimate the number of fruits for yield forecasts 

(Wulfsohn et al., 2012), obtaining error coefficients of only 10%. More recently, sampling 

stratification using NDVI-based aerial images allowed different areas to be better delimited for 

sampling in nectarine orchards (Miranda et al., 2015), but without appreciable reductions in 

sample size compared to random sampling. 

It is known that SRS can produce local clusters of points and leave unrepresented areas within 

a plot (Webster and Lark, 2013). Alternatively, farmers can consider using NDVI images or 

ECa surveys to stratify samples assuming that yield and quality parameters in orchards often 

present spatial autocorrelation. The aim of this study is to investigate how we can use multi-

spectral airborne imagery or ECa survey maps as ancillary information to detect spatial 

variability to increase sampling efficiency. 

 

Study plot 

 

The research was conducted in a peach orchard (Prunus persica cv. ‘Platycarpa’) located at the 

IRTA Experimental Station (41°39´19’’N, 0°23´36’’E, ETRS89) in Gimenells (Lleida, Spain). 

The plot covered an area of 0.65 ha, and was planted in 2011 according to a 5 x 2.80 m pattern 

(Fig. 1). Soil was classified as Petrocalcic Calcixerept (Soil Survey Staff, 2014), and it was a 

well-drained soil without salinity problems. The presence of a petrocalcic horizon at a variable 

depth and high CaCO3 content were the main soil limiting factors. The climate was typical of 

semi-arid areas, with strong seasonal temperature variations (cold winters and hot summers) 

and an annual precipitation usually below 400 mm. Since 1946, the plot was cultivated with 

different crops and was modified at least four times in shape and size in order to adapt the 

parcelling of the farm. 

 

Figure 1 Study plot and Veris 3100 soil sensor for ECa surveying. 

 

 

Methodology 
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Sample size 

Three production and quality variables were sampled within the plot: yield (kg/tree), fruit 

firmness (kg) and the refractometric index (ºBaumé). To determine the sample size, an aerial 

multi-spectral image was taken on June 9th, 2015 and used as reference information. The image 

had a resolution of 0.25 m/pixel. Once the canopies were delimited (ESRI® ArcMapTM 10.0), 

a weighted average value of NDVI according to the area of the canopy was assigned to each 

tree. These individual values were then used as base data for determining the sample size 

through the application of the following formula: 

 

𝑛 =
𝜁𝛼/2

2 ×𝐶𝑉2

𝐸𝑅
2  (1) 

 

where n is the sample size, ζα/2 (1.96) the value of the standard normal variate (SNV) for a 95% 

confidence (α = 0.05), CV the Coefficient of Variation (in our case, 17.5%), and ER the relative 

error assumed (10%). The result was 12 sampling points that were randomly distributed within 

the plot (sampling scheme A). Additional schemes were tested in which new sampling points 

(twelve in each case) were first stratified according to two and three classes of NDVI (cluster 

analysis). NDVI classified maps were obtained by clustering the interpolated NDVI values 

(NDVI raster map). The same strategy (stratified sampling) was repeated using the information 

provided by a Veris 3100 soil sensor. This sensor measured the ECa at two soil depths: shallow 

(0-30 cm) and deep (0-90 cm). Both ECa values were interpolated, and ECa classes were 

established based on the cluster analysis of the two maps (shallow and deep) simultaneously. 

Finally, obtaining two and three classes (strata) was repeated by taking all three ancillary layers, 

NDVI, shallow ECa and deep ECa. In short, seven sampling schemes (including scheme A) 

were compared to each other based on a total number of 84 trees (7x12) within the plot (Fig. 

2). 

 

 
Figure 2 Sampling points corresponding to 7 different sampling schemes. 

 

Sample stratification using ancillary data. Implications in estimation 

In a SRS approach, the sample mean (𝑧) has proven to be an unbiased estimator of the 

population mean (𝜇), with a variance that can be calculated by  𝜎̂2(𝑧) = 𝑠2 𝑛⁄  (s, standard 

deviation of the sample). As our interest is to work with small samples, confidence limits for 

the mean can be formulated as 𝑧 ± 𝑡𝛼 2⁄ ×
𝑠

√𝑛
, where 𝑧 is the sample mean, 𝑠 √𝑛⁄  the standard 
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error of the mean, and 𝑡𝛼 2⁄  the Student’s t corresponding to n-1 degrees of freedom for a 95% 

confidence. 

As mentioned above, in order to sample more evenly we used other sampling schemes by 

stratifying the 12 sampling points according to two strata (6 points/stratum) or three strata (4 

points/stratum). The strata corresponded to the classes obtained after classification of the plot 

according to NDVI, ECa or both auxiliary data. Sampling points within each stratum were 

randomly distributed. 

Figure 3 shows five of the proposed sampling schemes, (i) SRS (scheme A), (ii) stratified 

sampling based on two classes of NDVI (scheme B1), (iii) stratified sampling based on three 

classes of NDVI (scheme B2), (iv) stratified sampling based on two classes of ECa (scheme 

C1), and (v) stratified sampling based on three classes of ECa (scheme C2). Schemas that use 

both layers of information (schemas D1 and D2) are not shown. 

 

 
Figure 3 Sampling schemes: (i) simple random sampling (SRS), (ii) stratified sampling by 

NDVI (two strata), (iii) stratified sampling by NDVI (three strata), (iv) stratified sampling by 

ECa (two strata), (v) stratified sampling by ECa (three strata). 

 

The different stratifications produced classes that were not equal in area, and so the mean (𝜇) 

was then estimated for K classes (strata) within the plot using a weighted average (Webster and 

Lark, 2013): 

 

𝑧 = ∑ 𝑤𝑘 × 𝑧𝑘
𝐾
𝑘=1  (2) 

 

where 𝑧𝑘 was the average of the kth class, and 𝑤𝑘 allowed the area of the kth class to be 

weighted: 

 

 𝑤𝑘 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘

𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑜𝑡 𝑎𝑟𝑒𝑎
 . (3) 
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As in SRS, confidence limits were obtained using the standard error of the mean, in this case, 

the square root of the estimated variance (Webster and Lark, 2013): 

 

𝑠2(𝑧) = ∑
𝑤𝑘

2×𝑠𝑘
2

𝑛𝑘

𝐾
𝑘=1   (4) 

 

where 𝑠𝑘
2 was the within-class variance of the kth stratum, and 𝑛𝑘 the sampling points within 

the stratum (6 or 4). 

 

Sampling efficiency 

Taking the 84 sampling points as a representative distribution of values for the whole plot, each 

sampling scheme was compared to that distribution in terms of accuracy and efficiency. The 

efficiency to estimate the mean (𝜇) was established as the inverse of the estimated variance of 

the sample mean. The comparison of any of the sampling schemes (𝑧) with respect to random 

sampling with 84 points (𝑧84) was carried out by calculating the relative efficiency (RE): 

 

𝑅𝐸 (𝑧 𝑧84⁄ ) =
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑧)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑧84)
=

𝑠2(𝑧84)

𝑠2(𝑧)
 . (5) 

 

The accuracy (%) of the mean estimation was assessed by the following expression: 

 
|(𝑧−𝑧84)|

𝑧84
× 100. (6) 

 

The proposed sampling schemes were based on a previous classification of the plot. A more 

accurate and efficient estimation of the mean was linked to the ability of the NDVI and/or ECa 

auxiliary layers to discriminate different average values between classes while the values within 

the classes were more or less homogeneous. A parameter that served to judge the goodness of 

these classifications was the relative variance (𝑟𝑉 = 𝑠𝑊
2 𝑠𝑇

2⁄ ), where 𝑠𝑊
2  was the pooled or 

average within-class variance, and 𝑠𝑇
2 was the total variance in the sample (Webster and Lark, 

2013). Used in the form of its complement 

 

1 − (𝑠𝑊
2 𝑠𝑇

2⁄ ) = 1 − 𝑟𝑉 (7) 

 

allowed values close to 1 to be obtained for those more effective sampling schemes. Values 

close to 0 or even negative corresponded to non-effective stratifications. 

 

Results 

 

Figure 4 shows the comparison between the different sampling schemes tested. For each of the 

variables (yield, fruit firmness and ºBaumé), confidence intervals (CI) for the population mean 

(𝜇) were obtained. In the same figure, the mean of each sample was compared to the average 

calculated for the 84 sampling points within the plot (mean 84). The proximity between these 

two values was taken as a measure of accuracy, while the amplitude of the CIs could be 

interpreted in terms of sampling efficiency (greater precision or efficiency was associated with 

narrower intervals around the sample mean). 
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Figure 4 Comparison between sampling schemes: A (SRS); B1 and B2 (NDVI stratified 

sampling, 2 and 3 classes, respectively); C1 and C2 (ECa stratified sampling, 2 and 3 classes, 

respectively); D1 and D2 (combined NDVI + ECa stratified sampling, 2 and 3 classes, 

respectively). 

 

The main results include (i) stratified sampling improved accuracy compared to SRS; (ii) 

stratified sampling was not always more efficient than SRS; and (iii) there was a greater 

disparity between methods in estimating fruit quality (ºBaumé). Table 1 shows the efficiency 

results of each sampling scheme. 

 

Discussion 

 

Sampling to estimate yield 

Compared to the other sampling schemes, SRS (scheme A) obtained the greatest inaccuracy in 

estimating the yield (almost 10%). However, this value could be considered as acceptable given 

the criterion adopted by other researchers (Carrillo et al., 2016). When stratifying the samples 

using the NDVI or the ECa, the sample means worked even better achieving very good accuracy 

values below 2% (Table 1). This was expected because of the possible spatial covariation 

between the NDVI (indicative of tree vigor) and yield, or between ECa (indicative of soil 

characteristics) and yield, as Martínez-Casasnovas et al. (2012) and Corwin and Lesch (2005) 

respectively refer. 

Although stratified sampling performed better in terms of accuracy, the expectation of a clear 

superiority of the method was not met when the efficacy of the classification is judged. In all 

cases, stratifications were shown to be ineffective (very low 1 − 𝑟𝑉 values). This result was 

more or less equivalent to the efficiencies obtained (RE) for the different sampling schemes. In 

this regard, no stratification was more efficient than SRS, although the latter was less accurate 

(Table 1). 
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Considering both the accuracy and the efficiency, our recommendation for the best yield 

estimation is to use the ECa map to stratify the sample into three classes (scheme C2). Using 

the NDVI (2 classes) is another possibility (scheme B1). However, the significant relationship 

between yield and ECa values (higher ECa within the plot was associated with lower yields) 

made it advisable to stratify on the basis of this information layer (data not shown). The 

influence of CaCO3 (with high presence in the soil and spatial variation) on the ECa signal and 

yield could explain this convenience. 

  

Table 1 Accuracy and efficiency parameters for the sampling schemes tested. 
Sampling 

scheme 
Mean (𝑧) Standard error CILower CIUpper 𝑅𝐸(𝑧 𝑧84⁄ ) × 100 Accuracy (%) 1 − 𝑟𝑉 

Yield (kg/tree) 

A 26.36 8.14 21.19 31.53 21.33 9.68 0.00 

B1 24.34 2.75 18.30 30.39 15.59 1.28 0.04 

B2 24.10 3.69 15.97 32.22 8.64 0.26 -0.10 

C1 23.59 3.77 15.29 31.88 8.29 1.86 -0.09 

C2 24.10 2.79 17.97 30.23 15.15 0.27 0.07 

D1 22.11 3.36 14.72 29.51 10.42 8.00 -0.08 

D2 24.18 2.88 17.84 30.52 14.18 0.59 0.08 

Fruit firmness (kg) 

A 4.10 1.06 3.43 4.77 12.98 5.01 0.00 

B1 4.31 0.22 3.83 4.80 24.83 0.01 0.13 

B2 4.28 0.17 3.92 4.64 44.44 0.82 0.28 

C1 4.27 0.36 3.48 5.05 9.49 1.08 -0.08 

C2 4.73 0.26 4.15 5.32 17.32 9.70 -0.19 

D1 4.41 0.33 3.69 5.14 11.07 2.32 0.19 

D2 4.29 0.29 3.65 4.93 14.15 0.56 0.12 

Refractometric index (ºBaumé) 

A 7.02 0.49 6.71 7.33 31.77 1.61 0.00 

B1 6.55 0.10 6.32 6.77 58.88 5.19 0.10 

B2 6.63 0.19 6.21 7.04 17.44 4.04 0.54 

C1 7.22 0.17 6.84 7.59 21.56 4.53 -0.09 

C2 6.91 0.10 6.69 7.13 60.69 0.08 0.21 

D1 6.79 0.32 6.08 7.50 6.05 1.61 -0.05 

D2 7.30 0.17 6.92 7.68 20.67 5.73 0.38 

A (Simple random sampling); B1 and B2 (NDVI stratified sampling, 2 and 3 classes); C1 and C2 (ECa stratified 

sampling, 2 and 3 classes); D1 and D2 (combined NDVI + ECa stratified sampling, 2 and 3 classes). RE (Relative 

Efficiency). 𝑟𝑉 (relative variance). 

 

Sampling to estimate quality parameters 

Sampling schemes worked differently when estimating quality parameters. Regarding fruit 

firmness (Table 1), scheme B2 was clearly better in both accuracy (<1%) and efficiency (RE 

above the other sampling schemes). A significant correlation between NDVI and firmness (the 

greater the NDVI, the greater the firmness) could explain this result. Likewise, stratifying 

sampling points based on the NDVI allowed spatial classification in fruit firmness to be more 

effective (1 − 𝑟𝑉 = 0.28). SRS in refractometric index estimation (ºBaumé) was very accurate 

and efficient, and was only surpassed by the C2 sampling scheme. However, NDVI correlated 

inversely and significantly with this quality parameter (not the ECa), and sampling points were 

optimally classified using three classes of NDVI. B2 sampling could again be the scheme to 

use given its accuracy (4%) and acceptable efficiency (Table 1). 

 

Conclusion 

 

The use of ancillary data such as NDVI or ECa allows improving yield and quality estimates 

by stratifying samples within the orchards in comparison to simple random sampling (SRS). 
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However, yield estimation may require a different information layer (ECa) than that used to 

stratify sampling to estimate quality parameters (NDVI). In any case, sampling schemes that 

stratify into three classes perform better in both accuracy and efficiency than sampling based 

on two classes or strata. The combined use of NDVI and ECa does not provide substantial 

advantages compared to the use of a single layer of information, especially when both layers 

are unrelated. 
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