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Background

As the global population is getting older, the study of health 
and aging has become increasingly important, particularly in 
planning current and future healthcare resources. People of 
65 years of age and older now represent an increasing pro-
portion of the population, particularly in Europe, Asia, and 
the USA [1–6]. Changing age demographics poses a dramatic 
shift towards an increased health burden of non-communi-
cable diseases and disability [7,8]. Therefore, a current pub-
lic health challenge is to identify health-related factors and 
to understand how to maintain a healthy life with increasing 
age. Sociodemographic factors, which include the employment 
status, household income, level of education, marital status, 
and social support are recognized major determinants of many 
health outcomes, including healthy aging [9,10].

Several analytical models have been proposed to evaluate 
healthy aging in relation to lifestyle characteristics, as well 
as biological, genetic and clinical factors, based on classi-
cal statistical hypothesis testing [11–13]. However, residual 
confounding and unexplained health risks are a common prob-
lem in almost all these hypothesis-derived models. Recently, 
the use of health informatics has received increasing atten-
tion as it allows for collection and analysis of large amounts of 
data and can extract data on patterns of risk that are free from 
the strict methodological assumptions of traditional statisti-
cal modeling methods [14,15]. In particular, machine learning 
offers a data-driven approach to allow for the analysis of pat-
terns of health-associated variables and can provide insight 
into data without forming an a priori defined hypothesis re-
garding the involved variables [16–19]. There are several ma-
chine learning algorithms that are used to analyze health data, 
including support vector machine, decision tree, random forest 
(RF), the linear model (LM), and more recently, deep learning 
(DL) [20]. Choosing a machine algorithm for a particular ana-
lytical problem is important, as these models have rarely been 
compared before in terms of their efficiency and accuracy.

The present study was part of the Ageing Trajectories of 
Health: Longitudinal Opportunities and Synergies (ATHLOS) 
project (http://athlosproject.eu/). The aims of this study were 
to evaluate the sociodemographic determinants of healthy 
aging using three machine learning methods, RF, DL, and LR, 
and to compare these methods in terms of their efficiency. 
The working dataset was the English Longitudinal Study of 
Ageing (ELSA), which includes six waves of longitudinal data 
from 6,209 adults, from between 2002–2012 [21,22]. A pre-
viously developed and validated health metric of aging was 
used as the outcome, which was developed based on char-
acteristics including physical function, activities of daily living 
(ADL), and instrumental activities of daily living (IADL) [21,23].

Material and Methods

This study was conducted according to the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) 
Statement [24].

Working dataset

The English Longitudinal Study of Ageing (ELSA) dataset was 
used to test the research hypothesis, which included six waves 
of longitudinal data from 6,209 adults [21]. Only subjects who 
had at least five waves of longitudinal data were used. The 
number of individuals included in the study analysis was 6,209. 
The health metric in the last wave of data collection for each 
subject was treated as the target health metric to be predicted.

The sociodemographic indicators used included; gender, 
men (n=2,638) and women (n=3,571); age group <65 years 
(n=1,585), 65–79 years (n=3,267), >80 years (n=1,357); quin-
tiles of household income; formal education (yes or no); mari-
tal status, (married, single, and other); smoking history (never 
smoked, former smoker, current smoker); alcohol consumption 
(non-drinker, drinking alcohol twice weekly or less, drinking 
a regular glass of wine glass or equivalent of 12% alcohol more 
than twice weekly); physical activity (inactive, moderately ac-
tive, and active); employment status (employed or unemployed); 
size of social network (number of relatives and close relation-
ships, small <5 people, moderate 5–9 people, large >9 people).

In addition, to sociodemographic data, a history of falls was 
also incorporated as a possible confounder. More informa-
tion on discretization of each characteristics can be found in 
a previous paper [21]. The health metric was developed using 
item response theory (IRT) using questionnaire data on indi-
vidual physical functionality, activities of daily living (ADL), 
and instrumental activities of daily living (IADL), as previously 
described [23]. The range of the metric was set to 0–100. 
Figure 1 shows the distribution of the health metric, strati-
fied according to each of the studied sociodemographic char-
acteristics. The increasing trend of the health metric over the 
increasing value of the sociodemographic characteristic, sug-
gests a positive relationship.

Feature engineering to develop the new predictors of the 
personal-fitted variable and the health trend variable

Feature engineering is the process of generating a new pre-
dictor that is higher order and more meaningful than existing 
ones [25]. The sociodemographic characteristics and health 
metrics from previous four waves of data were used to gener-
ate two new predictors by modeling the relationship between 
predictors, and also the trend of the health metric. The first 
type of new predictor was a personal-fitted variable, which 
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captured the relationship between the sociodemographic data 
and the health metric for each subject. An individual health 
metric prediction model was built using data from the previ-
ous waves, as shown in model 1. The variable was then gen-
erated as a prediction from the model on the current wave of 
data. A linear model (LM) was used to generate the new vari-
able (model 1).

health metric ~ gender + age group + quintile of household 
wealth + formal education + marital status + falls + smoking 
behavior + alcohol consumption + physical activity + employ-
ment + size of social network (model 1)

The notation of the linear model (model 1) is described as the 
regressing gender, age group, quintile of household wealth, 
formal education, marital status, fall, smoking behavior, alco-
hol consumption, physical activity, employment and size of so-
cial network on health metric.

The second type of new predictor was the health trend variable, 
which captured the trend of the health metric for an individual 
subject. A health metric prediction model was built by fitting 
the health metric with the time from the previous four waves 
of data, as shown in model 2. The variable was generated as 
a prediction of the model at the current time point. Another 
linear model was used to generate the variable (model 2).

health metric ~ time (model 2)

In total, there were 13 predictors, of which 11 were sociode-
mographic determinants, one personal-fitted variable, and 
one trend variable.
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Figure 1. �Global health metric distribution stratified by each value in each predictor. The boxplots show the distribution of the health 
metrics stratified by the unique value of the predictors. The difference in the distribution within the predictor suggests 
a relationship between the predictor and the health metric.
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Health metric prediction using random forest (RF), linear 
model (LM) and deep learning (DL) models

Random forest (RF), linear model (LM), and deep learning (DL) 
were applied to evaluate sociodemographic determinants of 
the health metric. RF is an ensemble learner of decision tree 
(DT), which identifies a predictor by majority data. RF was im-
plemented in this study by using the RF library of R [26]. Two 
RF parameters were ntree, the number of trees used to build 
a random forest model, and mtry, the number of predictors 
randomly picked at each branch of the tree. Both ntree and 
mtry were optimized in the training data by undertaking grid 
search (Figure 2). The optimal parameters (ntree=500, and 
mtry=15) were used in the final model.

LM is a statistical approach that builds a learning model by fit-
ting beta coefficients of the predictors on linear relationships 
between them and a target class. LM is a simple and fast ap-
proach to build a model. However, as its name suggests, this 
approach only performs well when the problem has a linear re-
lationship. The R statistical function, lm, of the R Stats Package 
was used to perform linear regression in this study [27].

DL is an established algorithm that mimics a biological neural 
network. Multiple cascading layers of neurons are connected 
and pass information from one layer to the next by transforming 
and extracting new predictors. DL has been shown to be supe-
rior to other algorithms in many applications [20]. This study 
implemented DL using keras library in R [28]. The structure of 
the DL model consisted of five layers (13 neurons with relu ac-
tivation function, 10% neurons dropout, 5 neurons with linear 

activation function, 5% neurons dropout, 1 output neuron). The 
parameters used to build the model were optimized using the 
Adam optimization algorithm using a batch size of 128 (de-
fault). The size of the validation set was 20% of the training set.

The performance assessment was undertaken using 10-fold 
cross-validation to robustly estimate the performance by using 
ten equal random subsets, or folds, of the whole dataset. One 
of the folds was used as a test set and the remainder were used 
as a training set. The process was repeated ten times until all 
folds were used as a test set, then the final result was reported.

Assessment of predictor performance

Understanding which predictors in the model are driving the 
performance and how they are doing so can help to adjust 
the model, so that the performance can be improved. The ef-
fect of each predictor was assessed by obtaining the stan-
dardized coefficient of the LM model by scaling each predic-
tor using the scale function of the base library in R, and the 
variable importance of RF was assessed using the importance 
function of the randomForest library in R [26]. The magnitude 
of the standardized coefficient of the LM model represented 
the effect size of a predictor on the health metric, while the 
sign represented the direction of the relationship. The vari-
able importance of RF assessed the effect of a predictor by re-
moving the predictor from every single tree in the forest and 
measuring how the accuracy changed. The effect was reported 
as the percentage increase in mean square error (%IncMSE), 
where more important predictors have higher%incMSE [26].
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Figure 2. �Parameters optimization by grid search. The left panel represents the mean squared error (MSE) change over different 
values of the number of trees used to build a random forest model (ntree). The right panel represents the MSE change for 
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Results

Sociodemographic factors and health metrics

The health metric varied from 65.95±13.56 in men to 
62.83±5.01 in women (p<0.001), 68.92±11.31 in people <65 
years, 65.75±12.79 in people between 65–75 years, and 
54.73±17.24 in people >79 years (p<0.001). The health met-
rics were 56.36±17.05, 61.41±15.22, 64.97±13.02, 66.84±11.98, 
and 69.60±9.89, respectively in the 1st to 5th quintiles of house-
hold wealth, (p<0.001); 66.24±13.06 in educated people, to 
59.05±16.37 in uneducated people (p<0.001); 66.68±12.65 in 
married people, 63.50±14.91 in single people, and 59.30±16.46 
in previously married people (p<0.001). The health metrics were 
65.40±14.10 in non-smokers, 63.72±14.56 in former smokers, 
and 62.23±15.13 in current smokers (p<0.001). The health met-
rics were 55.91±18.73 in non-alcohol drinkers, 66.18±11.93 in 
people who drank twice or less each week, and 68.86±9.56 in 
those who drank more than twice a week of a regular glass of 
wine or the equivalent of 12% alcohol (p<0.001). The health 
metrics were 72.21±5.52 in those who were employed and 
62.56 in the unemployed (p<0.001). The health metrics were 

40±17.34 in the non-active, 59.21±14.95 in the moderately ac-
tive, and 68±10.01 in the active population (p<0.001). The so-
cial health metrics were 62.41±15.53 for people with a small 
social network to 66.77±11.69 for people with a large social 
network (p<0.001). The health metrics were 65.70±13.68 for 
people without a history of falls and 59.84±15.79 with a his-
tory of falls (p<0.001).

Sociodemographics, personal-fitted, and health trend as 
health predictors

Before comparing different prediction models, validation that 
the newly extracted variables, personal-fitted, and health 
trend, added information to the model. The scatter plots pre-
sented in Figure 3A and 3B show the correlation between 
personal-fitted, health trend, and health metric, respectively. 
The health trend variable was more closely correlated (0.81) 
with the health metric than the personal-fitted variable (0.62). 
Figure 3C shows the square error (SE) of the model with so-
ciodemographic and extracted variables. Having more vari-
ables changed the performance in most cases, which also 
showed improvement in performance (more values in the 

100

75

50

25

0

0 25 50

Personal-fifted vs. health metric, R=0.62

Health metric Health metric
75 100

Pe
rso

na
l-fi

fte
d

2000

1500

1000

500

0

0 500 1000
All predictors Predictors

1500 2000

11
 pr

ed
ict

or
s

11 predictors All predictors

200

150

100

50

0

11 predictors
All predictors

Variable
SE

100

75

50

25

0

0 25 50

Personal-fifted vs. health metric, R=0.81

75 100

He
alt

h 
tre

nd

A

C

B

D

Figure 3. �Contribution of historical, personal-fitted, and health trend features. The scatter plots (A–C) illustrate the relationship 
between the personal-fitted predictor (A), health trend predictor (B), the prediction from 11 predictors (C), and the health 
metric. The boxplot (D) shows the squared errors (SE) from 11 predictors and all predictors.

1998
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Engchuan W. et al.: 
Health status using machine learning and ELSA

© Med Sci Monit, 2019; 25: 1994-2001
CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



upper part of the diagonal line) (Figure 3D). From the distribu-
tion of SEs, the model with the new variables was significantly 
lower than the model with only sociodemographic character-
istics (p<0.001) [19].

Comparison of the machine learning prediction methods

To determine whether one model was better than another, the 
mean square error (MSE) was calculated [29]. The higher the 
MSE the model had, the worse was the performance of the 
model. Also random prediction was done as a baseline. The 
random prediction was done by label permutation to main-
tain the health metric distribution. From 10-fold cross-valida-
tion, RF, LM and DL were much better than random prediction 
(Figure 4A, 4B). The best model was RF, with MSE of 51.11, 
while LM, DL and random prediction had a higher MSE of 52.07, 
59.08 and 418.40, respectively. Figure 4 shows the performance 
of each model by the distribution of their SEs. The SEs of RF 
were significantly lower when compared with the random 
predictions (P<0.001), and also significantly lower when com-
pared with DL (P=0.006), but were comparable with LM (P=0.7).

Predictor importance assessment

To understand the model, variable importance from RF and the 
standardized coefficient from LM were required. The health 
trend, physical activity, and personal-fitted variables were the 
main predictors of health metrics with%incMSE of 85.76%, 
63.40%, and 46.71%, respectively. Age, employment status, 
alcohol consumption, and household income were also the 
main characteristics that help determine the health metric 
with%incMSE of 20.40%, 20.10%, 16.94%, and 13.61%, respec-
tively. Table 1 shows all the%incMSE and the standardized co-
efficients of the predictors. The overall ranking of predictors 

by%incMSE and the standardized coefficient were aligned, ex-
cept for social network size characteristics which were less im-
portant than age, employment status, alcohol consumption, 
and household income.

The results of the predictor importance assessment confirmed 
the hypothesis that having health trend and personal-fitted 
variables would help improve the performance of the model. 
Also, the effects of most of the sociodemographic characteristics 
found in a previous study [21], were confirmed by these findings.

Discussion

This study aimed to build a predictive model to accurately 
estimate health status based on sociodemographic charac-
teristics in an aging population using data from the English 
Longitudinal Study of Ageing (ELSA), which included socio-
economic and sociodemographic characteristics and history 
of falls. Because the dataset analyzed was quite large, con-
sisting of more than 6,000 samples, this allowed the analysis 
of many potential predictive factors to obtain the best health 
metric prediction model. However, although the sample size 
was quite large, the number of time points was very limited. 
As a result, the model was unable to recognize the changes 
in health patterns over time, and also many time series data 
analytical approaches could not be applied.

This study included three machine learning methods, random 
forest (RF), deep learning (DL) and the linear model (LM), with 
calculation of the percentage increase in mean square error 
(%IncMSE) as a measure of the importance of a given predic-
tive variable, when the variable was removed from the model. 
An advantage of using RF was that it was transparent and the 
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importance of the variables could be assessed. DL has previ-
ously been reported to outperform state-of-the-art algorithms, 
but this was not the case for this dataset, which might have 
been due to the simplicity of its implementation, as the opti-
mization was performed as recommended by Keras [28]. The 
choice of optimizers is also very important, and there are dif-
ferent optimizers that may help to improve the networks, such 
as stochastic gradient descent (SGD), AdaGrad, and RMSProp, 
so further studies are needed to identify the best optimizer to 
adjust network structure and parameters [30]. A further rea-
son for the poor performance of DL might be due to the lim-
ited number of predictors used, as DL is a powerful learning 
method but that requires a significant amount of data [20]. 
A disadvantage of the use of DL is its complexity, which can 
make it difficult to interpret. LM and RF are more transparent 
and may be preferred. LM is commonly used in this field of 
study, and its performance is comparable to RF, while its stan-
dardized coefficient is more informative. The standardized co-
efficient not only can indicate how important the predictor is 
but also can indicate the direction of the relationship between 
the predictor and the outcome variable.

Adding newly extracted variables improved the performance of 
the model. Using health trend as a predictor helped to estimate 
the health metric for each subject, provided that the health met-
ric of the subject was constant. However, if the current health 
metric significantly deviated from the previously, predicting the 
health metric based only on the health trend variable would 
be difficult. Using a personal-fitted variable that captured the 

relationship between the changes of the sociodemographic and 
health metrics might also help to reduce the error rate in cases 
where the current health metric suddenly changed. However, 
the change in the current health metric needs to be the prod-
uct of a change in some of the sociodemographic characteris-
tics to be able to be captured by the personal-fitted variable. 
If there is a change in the health metric from anything other 
than factors in the captured sociodemographic characteristics, 
the health trend variable might be helpful.

However, in this study, because the number of time points was 
small, four time points for the training set were used, while at 
least 50 time points have been recommended for the autore-
gressive integrated moving average (ARIMA) statistical analy-
sis model to reliable recognize patterns [31]. As the results of 
this study showed, increasing the number of time points might 
have helped to reduce the error in this study. Therefore, in fu-
ture, a more efficient way to capture the sudden change in cur-
rent health metrics needs to be applied. Either more data points 
for each subject need to be collected so that a health trend can 
be recognized, or additional features that can better capture the 
changes in the health metric should be acquired.

Conclusions

This study investigated the application of machine learning 
algorithms to accurately predict a health metric related to 
health status using sociodemographic in an aging population. 

Predictors %incMSE Standardized coefficients 

Health trend (health metric estimated by 4 previous health metric) 85.76 8.13

Physical activity (active vs. moderate vs. inactive) 63.40 3.30

Personal-fitted variable (health metric estimated by 11 socio-demographics and 
fall history of previous 4 waves)

46.71 1.54

Age groups (<65 vs. 65–79 vs. >79) 20.40 -0.61

Employment (in work vs. not in work) 20.10 0.51

Alcohol consumption 16.94 0.74

Quantiles Household Wealth (Q1–Q5) 13.61 0.46

Social network size (<5 vs. 5–9 vs. >9 people) 7.16 1.22

Falls (have fall history vs. no fall history) 5.30 –0.60

Marital status (married vs. never married vs. others) 5.29 –0.03

Smoke (never vs. former smoker vs. current smoker) 4.54 –0.19

Sex (males vs. females) 4.35 0.32

Education (no qualification vs. some formal education) 2.86 0.05

Table 1. Summarized %incMSE and coefficients by predictors.
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Data from the English Longitudinal Study of Ageing (ELSA) were 
used and the study was part of the Ageing Trajectories of Health: 
Longitudinal Opportunities and Synergies (ATHLOS) project. 
Personal-fitted and health trend variables were incorporated in 
the model, which were shown to be beneficial. Three prediction 
methods, random forest (RF), deep learning (DL) and the linear 
model (LM), with the calculation of the percentage increase in 
mean square error (%IncMSE) were applied, and the best re-
sults were achieved and tested from RF. DL may be superior in 
other studies, but a significant amount of data and expertise 
are required. Different parameter optimization techniques can 
be applied and more predictors can be added to improve the 
current DL model. The recommended setting can be applied to 
other datasets in the ATHLOS project, in case those datasets 
have similar characteristics as the ELSA dataset. For the non-
similar datasets, the testing procedure used in this study can 
be performed to find the most suitable setting for the dataset.
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