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Preface

This volume contains the papers presented at the 19th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-19),
held during December 14–19, 2013, in Stellenbosch, South Africa.

Following the call for papers, LPAR-19 received a record number of 152 sub-
missions, materializing in 136 submissions with authors representing 31 different
countries. Each submission was reviewed by at least three of the 37 Program
Committee (PC) members. The PC was assisted by 174 additional reviewers and
decided to accept 44 regular papers and eight tool descriptions and experimental
papers. Once again the EasyChair system provided an indispensable platform
for all matters related to the reviewing process, production of these proceedings,
program and Web page generation, and registration of participants.

A record number of workshops were collocated with LPAR-19. The Interna-
tional Workshop on Algebraic Logic in Computer Science was organized by Clint
van Alten of the University of the Witwatersrand and Petr Cintula and Carles
Noguera of the Academy of Sciences of the Czech Republic. The 2nd Workshop
on Automata, Logic, Formal languages, and Algebra (ALFA 2013) was organized
by Volker Diekert, Manfred Kufleitner, and Michael Matthiesen of the Univer-
sity of Stuttgart. The 7th International Workshop on Analytic Proof Systems
(APS-7) was organized by Matthias Baaz and Christian Fermüller of the Vienna
University of Technology. The 10th International Workshop on the Implementa-
tion of Logics (IWIL-10) was organized by Stephan Schulz of the TU München,
Geoff Sutcliffe of the University of Miami, and Boris Konev of the University of
Liverpool. The First Workshop on Logics and Reasoning for Conceptual Models
was organized by Maria Keet of the University of KwaZulu-Natal, Diego Cal-
vanese of the Free University of Bolzano, and Szymon Klarman and Arina Britz
of the CSIR-Meraka Institute in Pretoria. We were fortunate in having Laura
Kovacs (Chalmers University of Technology) again as the LPAR-19 workshop
chair.

Another key person in the LPAR community is Geoff Sutcliffe. This year, in
his 5th LPAR organization, he teamed up with Bernd Fischer of the University
of Stellenbosch. We thank them for the excellent organization.

LPAR-19 is greatful for the generous support by Microsoft Research, IBM
South Africa, and VAS Tech.

October 2013 Ken Mcmillan
Aart Middeldorp
Andrei Voronkov
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Krishnendu Chatterjee IST Austria
Thierry Coquand University of Gothenburg, Sweden
Joerg Endrullis Vrije Universiteit Amsterdam, The Netherlands
Alberto Griggio FBK-ICT IRST, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
John Harrison Intel Corporation
Manuel Hermenegildo IMDEA Software Institute, Spain
Stefan Hetzl Vienna University of Technology, Austria
Nao Hirokawa Japan Advanced Institute of Science and

Technology
Martin Hofmann LMU Munich, Germany
Gerwin Klein NICTA and UNSW, Australia
Michael Kohlhase Jacobs University, Germany
Laura Kovacs Chalmers University of Technology, Sweden
Orna Kupferman Hebrew University, Israel
Temur Kutsia Johannes Kepler University Linz, Austria
Marta Kwiatkowska University of Oxford, UK
P. Madhusudan University of Illinois at Urbana-Champaign,

USA
Rupak Majumdar Max Planck Institute for Software Systems,

Germany
Ken Mcmillan Microsoft Research
Aart Middeldorp University of Innsbruck, Austria
Albert Oliveras Technical University of Catalonia, Spain
Axel Polleres Vienna University of Economics and Business,

Austria
Norbert Preining Japan Advanced Institute of Science and

Technology
Grigore Rosu University of Illinois at Urbana-Champaign,

USA
Philipp Ruemmer Uppsala University, Sweden
Natarajan Shankar SRI International



VIII Organization

Geoff Sutcliffe University of Miami, USA
Naoyuki Tamura Kobe University, Japan
Helmut Veith Vienna University of Technology, Austria
Andrei Voronkov University of Manchester, UK
Christoph Weidenbach Max Planck Institute for Informatics, Germany

Additional Reviewers

A. Zonouz, Saman
Ab́ıo, Ignasi
Adams, Michael
Almagor, Shaull
Aminof, Benjamin
Andronick, June
Aoto, Takahito
Aravantinos, Vincent
Armas Romero, Ana
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Gebler, Daniel
Gelfond, Michael
Gimenez, Stéphane
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Krishnendu Chatterjee, Vojtěch Forejt, and Dominik Wojtczak

Description Logics, Rules and Multi-context Systems . . . . . . . . . . . . . . . . . 243
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Abstract. The fragment of propositional logic known as Horn theories
plays a central role in automated reasoning. The problem of enumerating
the maximal models of a Horn theory (MaxMod) has been proved to be
computationally hard, unless P = NP. To the best of our knowledge, the
only algorithm available for it is the one based on a brute-force approach.
In this paper, we provide an algorithm for the problem of enumerating
the maximal subsets of facts that do not entail a distinguished atomic
proposition in a definite Horn theory (MaxNoEntail). We show that
MaxMod is polynomially reducible to MaxNoEntail (and vice versa),
making it possible to solve also the former problem using the proposed
algorithm. Addressing MaxMod via MaxNoEntail opens, inter alia,
the possibility of benefiting from the monotonicity of the notion of entail-
ment. (The notion of model does not enjoy such a property.) We also dis-
cuss an application of MaxNoEntail to expressiveness issues for modal
logics, which reveals the effectiveness of the proposed algorithm.

Keywords: Horn theory, entailment, satisfiability, enumeration prob-
lems, modal logics.
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2 L. Aceto et al.

1 Introduction

Propositional logic is the most basic tool in computer science and artificial in-
telligence. Despite its limited expressive power, it allows one to formalize several
interesting scenarios. In particular, the fragment of propositional logic known as
Horn theories [1] plays a central role in the search for efficient reasoning meth-
ods thanks to its good computational properties: the entailment problem can be
solved in linear time [2,3], while it is NP-complete for full propositional logic.
A Horn theory is a conjunction of clauses (that is, disjunctions of literals) such
that every clause has, at most, one positive literal.

Horn theories can be applied to a number of different fields, such as plan-
ning [4], case based reasoning [5], or diagnosis [6]. A common problem is that
of enumerating the models of a given theory with a particular property, e.g.,
maximality or minimality. As an example, the concepts of propositional circum-
scription and minimal/maximal diagnosis are related to this problem [7,8]. A
model of a Horn theory is a truth assignment for all its atomic propositions that
satisfies the theory. A model is maximal if extending its set of true propositions
has the effect of losing the property of being a model. The problem of enumerat-
ing the maximal models of a given Horn theory, called here MaxMod, has been
studied in [9]. Since the problem has, in general, an output whose dimension
(number of solutions returned) is exponential in the size of the input, one can
hope, at best, to have an output-polynomial algorithm, that is, an algorithm
whose complexity is polynomial in the size of both input and output. (A survey
on the relationship between the output complexity hierarchy and the classical
complexity hierarchy can be found in [10,11].) In [9], it has been proved that,
unless P=NP, no output-polynomial algorithm can be devised for MaxMod.
This discouraged further investigation in the search for efficient algorithms for
MaxMod. As a consequence, to the best of our knowledge, the only algorithm
available for it is the one based on a brute-force approach. It explores the space
of truth assignments over the set of atomic propositions searching for maximal
models. The trivial way to do so is in two steps: first, by identifying those as-
signments that are models, and then by checking them for maximality. Since the
number of assignments is the size of the powerset of the set of propositions, the
algorithm runs in exponential time.

In this paper, we establish a connection between MaxMod and the problem
of enumerating all maximal subsets of atomic propositions (facts) that do not
entail a distinguished proposition in a given definite Horn theory (a theory where
all clauses contain exactly one positive literal). The outcome of the latter prob-
lem, called here MaxNoEntail, can be intuitively interpreted as follows: all
maximal sets of facts that do not have atomic proposition X as a consequence.
We show that MaxMod and MaxNoEntail are polynomially equivalent; thus,
every algorithm for MaxNoEntail is also an algorithm for MaxMod. It is
worth noticing that the notion of entailment is monotone: if a set of facts entails
a proposition, also each of its extensions does. Consequently, in order to check
the maximality of a set F of facts that do not entail a given proposition X in
a definite Horn theory, it is enough to check that every extension obtained by
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adding a single new proposition to F does entail X . On the other hand, the
notion of model (and thus the notion of non-model) does not enjoy a similar
property and thus, in order to verify the maximality of a model M of a Horn
theory, it is necessary to verify that all the valuations extending M (i.e., the
valuations for which the set of true propositions is an extension of the set of
true propositions of M) are not models of the theory. Thanks to the mono-
tonicity of entailment, the brute-force algorithm for MaxNoEntail performs
better than the brute-force approach for MaxMod. Thus, reducing MaxMod
to MaxNoEntail immediately gives us a faster, yet trivial, solution to Max-
Mod. Furthermore, we present an alternative algorithm for MaxNoEntail that
performs better than the brute-force approach, as it minimizes the number of
candidate solutions that are tested before producing the next solution.

Another benefit resulting from approaching MaxMod via MaxNoEntail is
that the latter problem is closely related to expressiveness issues for modal logics
[12]. Indeed, such a relation between Horn theories and modal logics motivated
this study in the first place [13,14]. A major issue in modal logic is that of finding
out which modalities can be expressed in terms of others, in order to classify
all expressively different sub-logics with respect to, e.g., expressive power or
complexity of the satisfiability problem. A common approach to this problem
consists of two steps: first, identifying as many inter-definabilities as possible,
and then trying to prove completeness of such a set of inter-definabilities. The
second step has two possible outcomes: either one is able to prove completeness,
or the failure in proving it might suggest new inter-definabilities, giving rise
to a new, extended set of inter-definabilities to be checked for completeness.
In any case, the second step requires the identification of all maximal subsets
of modalities that, within the current set of known inter-definabilities, do not
express a specific modality. Since a set of inter-definabilities between modalities
can be thought of as a definite Horn theory (where atomic propositions play the
role of the modalities), identifying such maximal subsets of modalities amounts
to solving MaxNoEntail. We provide empirical evidence that the proposed
algorithm for MaxNoEntail is particularly efficient when applied to the study
of the expressive power of modal logics, as described above, allowing us to solve
instances that were intractable with the brute-force approach.

The paper is organized as follows. In Section 2, we give the preliminaries.
In Section 3, we prove that MaxMod and MaxNoEntail are polynomially
equivalent. We also present there the brute-force algorithm for MaxNoEntail,
that gives us a more efficient solution for MaxMod. In Section 4, we present
an alternative algorithm for MaxNoEntail and we prove its correctness. In
Section 5, we give evidence of the effectiveness of the proposed method when
applied to expressiveness issues for modal logics. Finally, in Section 6, we give
an assessment of the work and outline future research directions.

2 Preliminaries

Throughout the paper, P denotes a finite, non-empty set of atomic propositions.
A Boolean expression over P is a formula built using propositions from P and
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the classic Boolean operators of negation, conjunction, and disjunction. Every
Boolean expression can be transformed into an equivalent formula in conjunctive
normal form (CNF), where the outermost operator is the conjunction and each
conjunct is a disjunction of literals, that is, atomic propositions (positive literals)
or their negation (negative literals). A Horn theory (or Horn expression) over P is
a Boolean expression over P in CNF whose conjuncts have at most one positive
literal. Conjuncts of a Horn theory are referred to as clauses. It is common
practice to think of a Horn theory K as the set {δ1, . . . , δk} of its clauses. The
atomic propositions occurring negated in a clause are called antecedents of the
clause; the positive literal, if any, is called consequent of the clause. A clause
δi = ¬Ai

1 ∨ . . . ∨ ¬Ai
mi

∨ Ai of a Horn theory can be seen as the implication of
the consequent by the antecedents, written as Ai

1, . . . , A
i
mi

⇒ Ai. A clause with
exactly one literal is a fact. A clause ¬Ai

1∨. . .∨¬Ai
m1

with no positive literal can
be seen as Ai

1, . . . , A
i
mi

⇒ ⊥. Thus, it is useful to think of ⊥ as a distinguished
atomic proposition in P , whose truth value is 0 in each truth assignment (see
below for a formal definition of the notion of assignment). A theory in which
every clause contains exactly one positive literal is said to be definite. Given a
clause δ, we denote by antδ its set of antecedents, and by consδ the singleton
containing the consequent. Finally, by HTP (resp., DHTP), we denote the set
of all (resp., definite) Horn theories over the set of atomic propositions P .

An assignment M over P is defined as a function M : P → {0, 1}, assigning
a truth value to every proposition in P . An assignment M over P is a model of
a Horn theory K ∈ HTP , denoted by M |= K, if and only if it satisfies all the
clauses of K. A Horn theory is satisfiable if and only if there exists a model for it.
Moreover, we say that K entails a literal l, denoted |=K l, if and only if K∪{¬l}
is not satisfiable. Here, we are mainly interested in entailment of positive literals.
Given a Horn theory K ∈ HTP , a subset of P is also referred to as a fragment
(of P). Thus, a fragment is a set of positive literals. Given a fragment F of P ,
a positive literal X ∈ P , and a Horn theory K ∈ HTP , we say that F entails
X in K, denoted by F |=K X , if and only if K ∪ F ∪ {¬X} is unsatisfiable,
that is, every model M of K ∪ F is such that M(X) = 1. Given an assignment
M over P , we define the fragment induced by M , denoted by η(M), as the one
containing exactly the propositions that are true in M . On the other hand, given
a fragment F of P , the assignment induced by F , denoted by μ(F ), is obtained
by setting to 1 the propositions in F , and to 0 the ones in P \ F . It obviously
holds that F = η(μ(F )) and M = μ(η(M)), for each fragment F of P and for
each assignment M over P . The notion of entailment can now be extended from
fragments to assignments: M entails X in K, denoted by M |=K X , if and only
if η(M) |=K X . Similarly, the order over fragments induced by the set inclusion
operation ⊂ can be extended to assignments as follows: M ≺ M ′ if and only
if η(M) ⊂ η(M ′). Notice also that entailment is monotonic: if F |=K X (resp.,
M |=K X) holds for some fragment F (resp., model M), then F ′ |=K X (resp.,
M ′ |=K X) holds for every F ′ such that F ⊂ F ′ (resp., M ′ such that M ≺ M ′).

Given a Horn theory K, a model M of K is maximal if and only if M ′ 
|= K for
every assignment M ′ such that M ≺ M ′. A fragment F is X-incomplete in K if
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proc BruteForceMaxMod (P,K)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ← ∅
for each assignment M over P
do{
if M |= K

then S ← S ∪ {M}
for M ∈ S
do{
if ∃M ′ ∈ S s.t. M ≺ M ′

then S ← S \ {M}
return S

proc BruteForceMaxNoEntail (P,K, X)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ← ∅
for F ⊆ P
do⎧
⎪⎪⎨
⎪⎪⎩

if F �|=K X
then{
if ∀A ∈ P \ F it holds F ∪ {A} |=K X

then S ← S ∪ {F}
return S

Fig. 1. The brute-force algorithm for MaxMod (left-hand side), and the one, more
efficient, for MaxNoEntail (right-hand side)

and only if F 
|=K X , and it is maximally X-incomplete in K if and only if it is
X-incomplete in K and F ′ |=K X for every fragment F ′ such that F ⊂ F ′. We
will sometimes omit the specification of the Horn theory if it is clear from the
context. Clearly, the monotonicity of entailment implies the monotonicity of X-
incompleteness (if F is X-incomplete, then each of its subsets is X-incomplete,
as well). Therefore, the notion of maximal incompleteness can be rephrased in
the following equivalent way: F is maximally X-incomplete if and only if it is X-
incomplete and F ∪ {A} |=K X for each A ∈ P \ F . On the contrary, the notion
of model of a generic theory does not enjoy such a property. As an example,
consider the theory K, featuring the only clause A,B ⇒ C: the assignment M ,
which sets all the propositions to 0, is a model of K; the assignment M ′, which
extends the set of true propositions of M by setting A and B to 1, is not a model
of K; the assignment M ′′, which in turn extends the set of true propositions of
M ′ by setting also C to 1, is another model of K.

We are now ready to formally define the enumeration problems MaxMod
and MaxNoEntail, that are the aim of this study.

Definition 1. Given a set of atomic propositions P and a Horn theory K ∈
HTP , the problem MaxMod is defined as the problem of enumerating all and
only the assignments over P that are maximal models of K. Similarly, given a
set of atomic propositions P, a definite Horn theory K ∈ DHTP , and a distin-
guished atomic proposition X ∈ P, the problem MaxNoEntail is defined as the
problem of enumerating all and only the fragments F of P that are maximally
X-incomplete in K.

For the sake of completeness, before concluding the section we provide, in
Fig. 1, left-hand side, the pseudo-code of a trivial, brute-force algorithm for
MaxMod. It is clear that the algorithm described there is highly inefficient,
and obviously not output-polynomial (in [9] it is proven that, unless P=NP, no
output-polynomial algorithm exists for this problem): even if the set of solutions
is small, or even empty, the algorithm requires an exponential number of steps.
Moreover, the algorithm performs two iterations: the one on the space of the val-
uations over P , whose size is exponential in the one of the input, and the other on
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the space of the models of the Horn theory K, whose size is possibly exponential
in the one of the input, as well. In what follows, we first present a brute-force
algorithm for MaxNoEntail (see Fig. 1, right-hand side) that, thanks to the
monotonicity of entailment, avoids the second iteration step, thus having bet-
ter performance than the one for MaxMod. Then, we propose a more efficient
solution for MaxNoEntail. Since, as we will show, MaxMod is polynomially
reducible to MaxNoEntail, the proposed algorithms for MaxNoEntail apply
to MaxMod, too.

3 Solving MaxMod through MaxNoEntail

In this section, we provide a polynomial reduction from MaxMod to Max-
NoEntail, and the other way around. This allows us to employ the brute-force
algorithm for MaxNoEntail, depicted in Fig. 1 (right-hand side), to solve Max-
Mod, thus obtaining a more efficient, yet trivial, solution for it that benefits from
the monotonicity of entailment. A MaxMod instance is a pair 〈P ,K〉, where
P is a set of propositions and K ∈ HTP . A MaxNoEntail instance is a triple
〈P ,K, X〉, where P is a set of propositions, K ∈ DHTP , and X ∈ P . In what
follows, we define the functions τ and γ that are used to transform MaxMod
instances into MaxNoEntail ones, and vice versa.

Definition 2. τ : HTP → DHTP∪{X}, where X is a distinguished atomic
proposition not belonging to P, is defined as follows: for each Horn theory K ∈
HTP , τ(K) is the smallest theory such that: (i) for each clause δ ∈ K that con-
tains one positive literal, δ belongs to τ(K), and (ii) for each clause δ ∈ K of the
type antδ ⇒ ⊥ (i.e., δ does not contain positive literals), the clause antδ ⇒ X
belongs to τ(K). γ : DHTP × P → HTP is defined as follows: for each definite
Horn theory K ∈ DHTP and proposition X ∈ P, γ(K, X) = K ∪ {¬X}.

Our goal is to show that, for every MaxMod instance 〈P ,K〉, with X /∈ P ,
the set of solutions of MaxMod on 〈P ,K〉 coincides with the set of solutions
of MaxNoEntail on 〈P ∪ {X}, τ(K), X〉, and that, for every MaxNoEntail
instance 〈P ,K, X〉, the set of solutions of MaxNoEntail on 〈P ,K, X〉 coin-
cides with the set of solutions of MaxMod on 〈P , γ(K, X)〉. Let us give, first, a
technical lemma.

Lemma 1. Let K ∈ HTP and A ∈ P. The following results hold.

(a) Let F be a fragment of P that is maximally X-incomplete in K. Then, A ∈ F
if and only if F |=K A.

(b) Let M be a model of K. Then, M(A) = 1 if and only if M |=K A.

Proof. (a) Let F be a fragment of P that is maximally X-incomplete in K.
If A ∈ F , then F ∪ {¬A} is unsatisfiable, and therefore F |=K A follows by
the definition of entailment. To prove the converse implication, let us suppose,
for the sake of contradiction, that F |=K A and A /∈ F . By the definition of
entailment, it follows that K ∪ F ∪ {¬A} is unsatisfiable, that is, every model
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M of K ∪ F is such that M(A) = 1. Since F is X-incomplete, F 
|=K X holds,
which means that K ∪ F ∪ {¬X} is satisfiable. Now, consider a model M that
satisfies K ∪ F ∪ {¬X}. Clearly, it satisfies K ∪ F , as well. Thus, we have that
M(A) = 1. Then, K∪F ∪{A}∪{¬X} is satisfiable, which implies F ∪{A} 
|=K X ,
contradicting the assumption that F is maximally X-incomplete.

(b) Let M be a model of K. If M(A) = 1, then A ∈ η(M), which, in turn,
implies η(M) |=K A, and thus M |=K A. To prove the converse implication, let
us assume that M |=K A. By the definition of entailment, η(M) ∪ K ∪ {¬A} is
unsatisfiable. This means that each model of K ∪ η(M) is such that M(A) = 1.
Since M is a model of K (by our assumption) and M is a model of η(M) (by
the definition of η(M)), it follows that M(A) = 1, which was to be shown. 
�

Let us denote by M〈P,K〉 the set of solutions for MaxMod on the generic
instance 〈P ,K〉 and by I〈P,K,X〉 the set of solutions for MaxNoEntail on the
generic instance 〈P ,K, X〉. In the following two lemmas, we prove that MaxMod
is reducible to MaxNoEntail (Lemma 2) and vice versa (Lemma 3).

Lemma 2. Let 〈P ,K〉 be a generic instance of MaxMod, with X /∈ P. Then,
M〈P,K〉 = {μ(F ) | F ∈ I〈P∪{X},τ(K),X〉}.

Proof. We proceed in two steps: first, we show that μ(F ) ∈ M〈P,K〉, for each
F ∈ I〈P∪{X},τ(K),X〉; then, we prove that, for each model M ∈ M〈P,K〉, there
exists a fragment F ∈ I〈P∪{X},τ(K),X〉 such that μ(F ) = M .

To prove the former claim, let us assume F ∈ I〈P∪{X},τ(K),X〉, which means
that F is maximally X-incomplete in τ(K). We want to show that μ(F ) belongs
to M〈P,K〉, that is, μ(F ) is a maximal model for K.

– To prove that μ(F ) is a model of K, i.e., μ(F ) |= K, let δ be a clause of K.
We shall argue show that μ(F ) satisfies δ. We distinguish two cases.
• δ is of the form antδ ⇒ A, for some A ∈ P . If μ(F ) does not satisfy antδ,

then we are done. Assume that μ(F ) does satisfy antδ. We shall show
that μ(F )(A) = 1. Since μ(F ) satisfies antδ, we have that antδ ⊆ F .
This means that {δ} ∪ F ∪ {¬A} is unsatisfiable and thus F |=τ(K) A
holds, because δ is also a clause of τ(K), by construction. By Lemma
1(a), A ∈ F and therefore μ(F )(A) = 1, as claimed.

• δ is of the form antδ ⇒ ⊥. We claim that μ(F ) does not satisfy antδ.
To see this, let us assume, towards a contradiction, that μ(F ) satisfies
antδ. Then, antδ ⊆ F . By construction of τ(K), the clause antδ ⇒ X
belongs to τ(K). Now, we have that {δ}∪F ∪ {¬X} is unsatisfiable and
thus F |=τ(K) X holds, contradicting the X-incompleteness of F .

Since μ(F ) satisfies each clause of K, we have that μ(F ) |= K holds.
– To prove the maximality of μ(F ), let us assume, towards a contradiction,

that there exists a model M of K such that μ(F ) ≺ M . By the definition
of η(·), this implies F ⊂ η(M). We claim that η(M) is X-incomplete in
τ(K), thus obtaining a contradiction with the fact that F is maximally X-
incomplete. Indeed, since M is a model of K, it does not satisfy any of the
sets antδ, where δ ∈ K is of the form antδ ⇒ ⊥. Thus, η(M) 
⊆ antδ, for
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every δ ∈ τ(K) of the form antδ ⇒ X , which yields η(M) 
|=K X . This,
in turn, means that η(M) is X-incomplete in τ(K), which contradicts the
maximality of F .

To complete the proof, let us consider a model M ∈ M〈P,K〉, that is, M is
a maximal model of K. Our aim is to show that there exists a fragment F ∈
I〈P∪{X},τ(K),X〉 such that μ(F ) = M . We claim that η(M) ∈ I〈P∪{X},τ(K),X〉.
Since μ(η(M)) = M , the thesis follows from this claim. First, we prove that η(M)
is X-incomplete in τ(K), i.e., η(M) 
|=τ(K) X . To this end, let M ′ be the valuation
over P ∪ {X} obtained from M as follows: M ′(Y ) = M(Y ) for each Y ∈ P and
M ′(X) = 0. It is easy to see that M ′ is a model for τ(K) ∪ η(M) ∪ {¬X}.
Thus, τ(K) ∪ η(M) ∪ {¬X} is satisfiable, which implies η(M) 
|=τ(K) X . Now,
in order to prove that η(M) is maximally X-incomplete, we have to show that
η(M)∪{A} |=τ(K) X , for each A ∈ (P∪{X})\η(M). If A = X , the thesis trivially
follows from the definition of entailment. Otherwise, let us suppose, towards a
contradiction, that η(M)∪ {A} 
|=τ(K) X , for some A ∈ (P ∪ {X}) \ η(M), with
A 
= X . This means that τ(K) ∪ η(M) ∪ {A} ∪ {¬X} is satisfiable. Let M ′ be a
model for it. Since M ′ is a model of τ(K) and M ′(X) = 0, it is also a model of
K (by construction of τ(K), X syntactically replaces the symbol ⊥). Moreover,
it is easy to convince oneself that η(M ′) ⊇ η(M) ∪ {A}. Thus M ′ is a model
of K such that M ≺ M ′, contradicting the maximality of M . Hence η(M) is
maximally X-incomplete in τ(K), and the thesis follows. 
�

Lemma 3. Let 〈P ,K, X〉 be a generic instance of MaxNoEntail. Then,
I〈P,K,X〉 = {η(M) | M ∈ M〈P,γ(K,X)〉}.

Proof. We prove the statement in two steps: first, we show that η(M) ∈ I〈P,K,X〉,
for each M ∈M〈P,γ(K,X)〉; then, we show that, for each fragment F ∈ I〈P,K,X〉,
there exists a model M ∈M〈P,γ(K,X)〉 such that η(M) = F .

To prove the former claim, let us assume M ∈ M〈P,γ(K,X)〉, which means
that M is a maximal model of γ(K, X). As a preliminary step, we observe that,
by construction of γ(K, X), every model of γ(K, X) is also a model of K. We
want to show that η(M) belongs to I〈P,K,X〉, that is, η(M) is maximally X-
incomplete in K. First, we show that η(M) is X-incomplete in K, and then that
it is maximally X-incomplete in K. To show the X-incompleteness of η(M),
suppose, towards a contradiction, that η(M) |=K X . This means that M |=K X
and, by Lemma 1(b) and by the fact that M is also a model of K, it follows that
M(X) = 1, which implies that M is not a model of γ(K, X). This contradicts
the assumption that M ∈ M〈P,γ(K,X)〉. So, we have that η(M) is X-incomplete
in K. Now, suppose, towards a contradiction, that η(M) is not maximally X-
incomplete. Thus, η(M)∪{A} 
|=K X holds, for some A ∈ P \ η(M). This means
that K ∪ η(M) ∪ {A} ∪ {¬X} is satisfiable. Let M ′ be a model for it. Since M ′

satisfies K and {¬X}, it is also a model of γ(K, X). Moreover, it is easy to see
that η(M) ⊂ η(M ′). Thus, M ′ is a model of γ(K, X) such that M ≺ M ′, which
contradicts the maximality of M .

To complete the proof, let us consider a fragment F ∈ I〈P,K,X〉, that is, F
is maximally X-incomplete in K. Our goal is to show that there exists a model



On Enumerating Maximal Models of Horn Theories 9

M ∈ M〈P,γ(K,X)〉 such that η(M) = F . We claim that μ(F ) ∈ M〈P,γ(K,X)〉.
Since η(μ(F )) = F , the thesis follows from this claim. First, we show that μ(F )
is a model of γ(K, X). By construction, γ(K, X) = K∪{¬X}. By Lemma 1(a) and
by the assumption that F is maximally X-incomplete, it follows X /∈ F , which
means that μ(F )(X) = 0. Thus, μ(F ) satisfies {¬X}. Now, let us show that μ(F )
also satisfies K. Let δ be a generic clause in K. It is of the form A1, . . . , Am ⇒ A.
We distinguish two cases. If Ai /∈ F for some i ∈ {1, . . . ,m}, then μ(F )(Ai) = 0,
which means that δ is satisfied by μ(F ). Otherwise, {A1, . . . , Am} ⊆ F , which
means that F |=K A. Therefore, by Lemma 1(a), A ∈ F , which implies that
μ(F )(A) = 1. So, μ(F ) |= δ and, since δ was chosen arbitrarily, μ(F ) is a model
of K. Since we showed that it is also a model of {¬X}, we have that μ(F ) is a
model of γ(K, X). To prove the maximality of μ(F ), let us suppose, towards a
contradiction, that there exists a model M ′ of γ(K, X), such that μ(F ) ≺ M ′,
which means F ⊂ η(M ′). Since M ′ is a model of γ(X , X), it is both a model
of K and {¬X}. In particular, the latter implies M ′(X) = 0. By Lemma 1(b),
M ′ 
|=K X holds, which means η(M ′) 
|=K X . Thus, η(M ′) is a fragment that is
X-incomplete in K such that F ⊂ η(M ′). This contradicts the assumption that
F is maximally X-incomplete. Hence, μ(F ) is a maximal model of γ(K, X). 
�

The following theorem follows from Lemma 2, Lemma 3, and Definition 2.

Theorem 1. MaxMod and MaxNoEntail are polynomially equivalent.

Thanks to the above reduction, it is possible to use the brute-force algo-
rithm for MaxNoEntail, depicted in Fig. 1, right-hand side, to solve Max-
Mod. While it is still based on a brute-force approach, such an algorithm turns
out to be much more effective than the one described in Fig. 1, left-hand side.
Indeed, in searching for fragments that are maximally X-incomplete in the given
theory, one can easily verify the maximality of a candidate (i.e., an X-incomplete
fragment) by checking if adding exactly one element to it preserves its incom-
pleteness. This allows us to avoid a second pass on the set of potential results.

4 An Algorithm for MaxNoEntail

In this section we present an alternative algorithm for MaxNoEntail, called
AlgMaxNoEn (see Fig. 2). We prove that our algorithm is correct and, in the
next section, we give experimental evidence of its effectiveness when applied to
expressiveness issues for modal logics (see the discussion in Sections 1 and 5).

We begin by giving some definitions that will be useful in what follows. Since
only definite Horn theories occur in MaxNoEntail instances, throughout the
section we assume that all Horn theories are definite, unless otherwise specified.

Definition 3. Let K ∈ DHTP be a Horn theory, δ be a clause, and F be a
fragment of P, with A ∈ F . We say that: (i) A deactivates δ if A belongs to
antδ; (ii) A is (F, δ)-useful if A deactivates δ and no other proposition in F
does; (iii) A is (F,K)-useful if A is (F, δ′)-useful for some δ′ ∈ K; (iv) F is
K-useful if B is (F,K)-useful for every B ∈ F .
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proc AlgMaxNoEn (P,K, X)⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L ← ∅
P ← P \ {X}
N ← 〈∅,P〉
AlgMaxNoEnR(N ,L,P,K, X)
return L

proc compUtilityVec (K, F )⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂ ← F
for i = 1 to k{
u[i] ← null

for i = 1 to k⎧
⎨
⎩

let δi be the ith clause of K
if |F ∩ antδi | = 1

then u[i] ← F ∩ antδi
for i = 1 to k{
F̂ ← F̂ \ u[i]

if F̂ = ∅
then return true
else return false

proc AlgMaxNoEnR (N = 〈F,V 〉,L,P,K, X)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if compUtilityV ec(K, F ) = false
then return ‘non-maximally incomplete’

if (P \ (F ∪ V )) |=K X
then return ‘no solution’

if (P \ F ) �|=K X
then⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

if � ∃A ∈ F s.t. ((P \ F ) ∪ {A}) �|=K X
then{
L ← L ∪ {P \ F}
return ‘solution found’
else return ‘non-maximally incomplete’

// Here, F ∪ V is X-incomplete but F is not, thus V �= ∅
flagSol ← false
flagNoMax ← false
keep ← true
while V �= ∅ and keep⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let Y be an element of V
V ← V \ {Y }
F ′ ← F ∪ {Y }
N ′ ← 〈F ′, V 〉
AddChild(N ,N ′)
ret ← AlgMaxNoEnR(N ′,L,P,K, X)
if ret = ‘solution found’

then flagSol ← true
if ret = ‘non-maximally incomplete’

then flagNoMax ← true
if ret = ‘no solution’

then keep ← false
if flagSol

then return ‘solution found’
if flagNoMax

then return ‘non-maximally incomplete’
return ‘no solution’

Fig. 2. Pseudo-code for the algorithms AlgMaxNoEn (left-hand side, top), compUtili-
tyVec (left-hand side, bottom), and AlgMaxNoEnR (right-hand side)

Notice that, for a given clause δ and fragment F , there can be at most one
proposition in F that is (F, δ)-useful. More precisely, such a proposition exists
if and only if |F ∩ antδ| = 1. In what follows, we will simply say that F is useful
(in place of K-useful) when the theory is clear from the context. The important
property relating the notions of maximal X-incompleteness and usefulness is
stated by the following lemma.

Lemma 4. If a fragment F of P is maximally X-incomplete in K, then its
complement P \ F is useful.

Notice that the the converse does not necessarily hold. Indeed, if F is X-
incomplete and its complement is useful, then F is not necessarily maximally
X-incomplete. As an example, consider the theory K = {A,B ⇒ X,C ⇒ A}.
The fragment A is X-incomplete and its complement BC is useful, but A is not
maximally X-incomplete, as AC is X-incomplete, as well. Moreover, observe
that, if a fragment F is not useful, then any fragment F ′ such that F ⊂ F ′ is
not useful, either. This follows from the fact that if a proposition A ∈ F is not
(F,K)-useful, then it is not (F ′,K)-useful for any F ′ such that F ⊂ F ′.



On Enumerating Maximal Models of Horn Theories 11

Definition 4. Given a Horn theory K = {δ1, . . . , δk} and a fragment F , the
utility vector of F in K, usually denoted by u, is a vector of size k such that, for
each index i, u[i] is equal to {A} if A is (F, δi)-useful, and it is equal to null if
|F ∩ antδi | 
= 1.

Intuitively, the utility vector is the tool used to detect that a fragment is not
useful: F is useful if and only if all the propositions in F occur in u.

We are now ready to describe the proposed algorithm AlgMaxNoEn (Fig. 2).
The intuitive idea of the algorithm is to produce candidate solutions (i.e., frag-
ments) and verify whether they are actual solutions, that is, if they are maximally
X-incomplete fragments. Candidate solutions are produced by incrementally re-
moving propositions from the set P , which from now on we assume does not
contain X (as X cannot occur in any solution). Once a proposition is removed,
the status of the resulting fragment is checked: if it is maximally X-incomplete,
then it is added to the solution set; otherwise, either the computation continues
by refining the candidate solution through the removal of another proposition
or, if refining this candidate is considered not promising (according to criteria
that will be defined later on), the analysis of this candidate ends and we focus
on a new candidate.

The process is carried out in a recursive fashion, AlgMaxNoEnR being the re-
cursive function and AlgMaxNoEn being the wrapper function, which executes
the first call to AlgMaxNoEnR (see Fig. 2). The parameters of the recursion are
the fragment F , representing the propositions that have been already removed
(thus the candidate under analysis is its complement P \ F ), and the fragment
V , which is a (not necessarily strict) subset of P \F and represents the proposi-
tions that can still be removed to refine the current candidate. (The additional
parameters of AlgMaxNoEnR can be thought of as global variables, as they are
not involved in the recursion process: L collects the solutions, while P , K, and X
represent the instance given as input to AlgMaxNoEn.) Thus, a generic recursive
call on F and V analyses, as a candidate, the complement of F , which can be
possibly refined, in successive recursive calls, through the removal of (some of)
the propositions in V . In this way, the recursive function searches for solutions
contained in the whole set of sub-fragment of P \ F .

Given an instance 〈P ,K, X〉 of MaxNoEntail as input, the wrapper function
AlgMaxNoEn (Fig. 2, left-hand side, top) executes the first recursive call to
AlgMaxNoEnR on the recursive parameters F = ∅ and V = P . The function
AlgMaxNoEnR recursively builds a tree isomorphic to its own recursion tree.
Such a structure is actually useless for the purposes of the algorithm, but it
will be handy for the correctness analysis. In what follows, nodes of the above-
mentioned tree are identified by the pair 〈F, V 〉 of recursive parameters on which
the call is performed. Thus, there is a one-to-one correspondence between nodes
and calls to AlgMaxNoEnR. For the sake of simplicity, we will sometimes refer
to a call to AlgMaxNoEnR through its corresponding node, and vice versa. For
example, we will say that “a node N returns the exit-value r”, meaning that
the corresponding call returns r. A call to AlgMaxNoEnR may produce one of
three outcomes: ‘solution found’, ‘no solution’, or ‘non-maximally incomplete’.
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〈∅,{A,B,C, D}〉

〈A, {B,C,D}〉

〈AB, {C,D}〉

No Max

〈AC, {D}〉

Sol:BD

〈AD, ∅〉

No Max

〈B, {C,D}〉

Sol:ACD

〈C, {D}〉

No Sol

A

B
C D

B C

Fig. 3. Recursion tree of AlgMaxNoEn on K

Intuitively, the value ‘solution found’ is returned by a node when a solution has
been found in its own sub-tree (i.e., in the sub-tree rooted at it); if this is the
case, we also say that the node sees a solution. Otherwise, if a fragment that is
maximally X-incomplete in K has been analysed in its own sub-tree, the value
‘non-maximally incomplete’ is returned. The value ‘no solution’ is returned when
none of the two cases above applies.

As a first step, the algorithm checks if one of the base-case conditions is met.
Clearly, if a base-case condition is met inside a call, then that call corresponds
to a leaf of the recursion tree. Base-case conditions allow the algorithm to end
the analysis of a candidate, with no further refinements (and thus avoiding the
exploration of the set of its sub-fragments), because either the candidate itself is
a solution or its refinement is not promising. The refinement of a solution P\F by
removing propositions in V is not promising when the corresponding node 〈F, V 〉
does not see any solution. Clearly, this is the case when P \ (F ∪V ) |=K X : if the
weakest fragment P\(F ∪V ) of the set of sub-fragments of P\F entails X , then,
due to the monotonicity of entailment, all the fragments of the set do, meaning
that none of them is X-incomplete. Another case in which refining a candidate
is not promising is when the candidate F is X-incomplete but not maximally
X-incomplete: if F is not maximally X-incomplete, then all its sub-fragments
are not, either. We are interested in detecting such non-promising situations as
soon as possible, to reduce the number of candidates analysed by the algorithm.
To this end, we use the above-mentioned property that the complement of a
maximally X-incomplete fragment is useful (Lemma 4). This implies that, if a
fragment F is not useful, that is, some of its propositions do not occur in its
utility vector, then neither P \F nor any of its sub-fragments is a solution, and
thus the analysis of P \F ends with no further refinement. Thus, there are three
base-case conditions. (i) If compUtilityVec (see Fig. 2, left-hand side, bottom)
returns false, then F is not useful, and the function returns ‘non-maximally
incomplete’. (ii) If P \ (F ∪ V ) entails X , then refining P \ F cannot lead to a
solution, and the function returns ‘no solution’. (iii) If the complement of F is
X-incomplete, then it may be a solution. Its maximality is checked, exploiting
the monotonicity of entailment, and, depending on the result of this test, either it
is added to the solution set L and ‘solution found’ is returned, or ‘non-maximally
incomplete’ is returned.

If none of the above base-case conditions is met, the refinement of the candi-
date is performed (while loop in AlgMaxNoEnR, in Fig. 2). At each iteration, an
element Y of V is selected. Each iteration corresponds to an attempt to extend F
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with the new proposition Y and the new node 〈F ∪{Y }, V \{Y }〉 (corresponding
to the recursive call on F ∪{Y } and V \ {Y }) is created as a child of the current
one. Depending on the value returned from a recursive call, the local variables
flagSol , flagNoMax , and keep are suitably updated. Intuitively, FlagSol is true
if and only if the current node sees a solution. If the current node sees no solu-
tions, but at least one of the nodes in its own sub-tree returned ‘non-maximally
incomplete’, then flagNoMax is true. Finally, keep is set to false as soon as
a call returns ‘no solution’. In this last case, thanks to the monotonicity of the
entailment, we can exit the current loop, as no other solution can be produced
by refining the current candidate P \ F . The return value after the loop is then
returned depending on the values of flagSol and flagNoMax .

In Fig 3, we provide the recursion tree for the algorithm applied to the Horn
theory

K =

⎧⎪⎪⎨⎪⎪⎩
A,B ⇒ C
B ⇒ D
A,C ⇒ D
B,C ⇒ X

The figure shows that the algorithm is able to produce the only two solutions
without exploring the whole space of fragments (only 7 fragments are processed
out of 24 = 16 possible ones).

In what follows, let T be the tree rooted at the node 〈∅,P〉, as generated
by the first call to the recursive function AlgMaxNoEn. The following theorem
states that the proposed algorithm is sound and complete.

Theorem 2. Let 〈P ,K, X〉 be an instance of MaxNoEntail. Then, a fragment
is included in the set of solutions returned by the algorithm AlgMaxNoEn on input
〈P ,K, X〉 if and only if it is maximally X-incomplete in K.

Proof. The soundness of AlgMaxNoEn follows from the description of the algo-
rithm: a fragment is included in the set of solutions returned by AlgMaxNoEn
only if the test for its maximal X-incompleteness succeeds.

To prove the completeness of AlgMaxNoEn, let us consider a generic max-
imally X-incomplete fragment F . We show that a node N = 〈F , V 〉, where
F = P \F , is eventually created and processed, for some V ⊆ F . As F is indeed
a maximally X-incomplete fragment, the corresponding base-case condition ap-
plies, and F is added to the solution set. Let us consider the ordering over P
according to which the elements are selected inside the while loop of the al-
gorithm AlgMaxNoEnR (see Fig. 2). Let A be the first occurrence in P of an
element of F and let B1, . . . , Bs be the elements preceding A in P (according to
the above-mentioned ordering). We have to show that the child NA = 〈{A}, VA〉,
where VA = (P \ {A}) \ {Bi | 1 ≤ i ≤ s}, is eventually processed. Notice that
P \ (VA ∪ {A}) ⊆ F holds, as F ⊆ VA ∪ {A}. Thus, P \ (VA ∪ {A}) is X-
incomplete, as well (as F is and by monotonicity of the entailment). Suppose,
towards a contradiction, that NA is never processed. Then, one of its left siblings
NBi = 〈{Bi}, VBi〉, for some i ∈ {1, . . . , s}, where VBi = P\{Bj | 1 ≤ j ≤ i}, has
returned ‘no solution’. Since P \(VA∪{A}) is X-incomplete and VA∪{A} ⊆ VBi
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holds, there exists a path from NBi to a leaf corresponding to a candidate that
is X-incomplete. Such a leaf returns either ‘solution found’ or ‘non-maximally
incomplete’, and thus NBi does not return ‘no solution’, leading to contradic-
tion. As the same argument can be iterated for every other element of F , we can
conclude that NA is processed, and we are done. 
�

5 Applications and Experimental Results

The algorithm for MaxNoEntail given in Section 4 outperforms the brute-
force ones given in Fig. 1. Moreover, thanks to the reduction provided in Section
3, it can also be exploited to solve MaxMod. In this section, we show a further
application of AlgMaxNoEn as a tool to compare the expressive power of modal
logics (see Section 1).

Given a set of modalities, an inter-definability (among them) describes how
to define a modality in terms of others. An inter-definability can be thought of
as a clause of a definite Horn theory, where atomic propositions play the role of
the modalities (e.g., the fact that combining the modality �1 with the modality
�2 makes it possible to define the modality �3 can be expressed by the Horn
clause �1,�2 ⇒ �3). Consequently, a set of inter-definabilities is nothing but
a definite Horn theory. Now, a major issue in modal logic is to determine the
complete set of inter-definabilities among a set of modalities (it is necessary, for
example, in order to classify a family of modal logics with respect to their relative
expressive power). As already pointed out in Section 1, the task of identifying
the maximal subsets of modalities that, within a given set of inter-definabilities,
do not express a specific modality is crucial in that respect. Since a set of inter-
definabilities can be seen as a definite Horn theory, it easy to convince oneself
that the latter task amounts to solving MaxNoEntail. Actually, it was this
very problem that motivated us to carry out this study, in the search for a
better solution than the one based on the brute-force approach. While in modal
logics with few operators and inter-definabilities, the above-mentioned task can
be easily carried out by hand (as it has been done, e.g., in [14]), in modal logics
with many operators and several inter-definabilities, it may require a big and
error-prone effort. Even though most modal logics have a small set of modalities,
there are meaningful ones that feature tens of modalities (see, e.g., [15,16]). In
[13], the authors proposed, and used, a naïve, brute-force algorithm similar to
the ones presented in Fig. 1 to perform the aforementioned task. Even if this
approach was efficient enough for the particular modal logic studied in [13], it
turned out to be unsuitable to deal with logics with larger sets of modalities,
such as the one studied in [15], featuring more than 20 modalities. As shown by
our experimental results, the algorithm proposed here is efficient enough to deal
also with those logics.

We have carried out an experimental comparison of the efficiency of the algo-
rithm AlgMaxNoEn vis-a-vis those given in Fig. 1. We summarize the outcomes
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Fig. 4. Running times of the three algorithms on randomly-generated instances

of our experiments1 in Fig. 4. For each pair of values n and k, ranging, re-
spectively, between 12 and 30 and between �n/3� and n, the running times of
the three algorithms presented in this papers (i.e., BruteForceMaxMod, Brute-
ForceMaxNoEntail, and AlgMaxNoEn) are compared with respect to a set of
seven randomly-generated Horn theories K over P , where |P| = n and |K| = k
(to be precise, BruteForceMaxMod is run on randomly-generated instances of
the form 〈P ,K〉, while BruteForceMaxNoEntail and AlgMaxNoEn on instances
of the form 〈P ∪ {X}, τ(K), X〉, obtained from the instances used for testing
BruteForceMaxMod through the reduction described in Section 3). The chart in
Fig. 4 reports the average running times of the three algorithms for the different
values of n (size of P). In spite of a similar, exponential trend exhibited by the
three algorithms (notice that such a behaviour is unavoidable as the problems
can produce outputs whose size is, in general, exponential in the size of the in-
put), our tests show that the two algorithms based on a brute-force approach
become inefficient already for instances over set of propositions of size 15 and
20, respectively, and are thus unable to deal, for instance, with the logic studied
in [15]. On the other hand, AlgMaxNoEn can deal with all tested instances in
reasonable time.

6 Conclusions

In this paper we have studied the problem of enumerating the maximal models of
a Horn theory (MaxMod) and we established a connection between this problem
and the problem of enumerating the maximal subsets of facts that do not entail
a distinguished atomic proposition in a definite Horn theory (MaxNoEntail).
We first showed that the two problems are polynomially equivalent and then we
presented an algorithm for MaxNoEntail that performs better than the ones
1 All the experiments were executed on a PC system with an IntelR© CoreTMi3-

2120 CPU @ 3.30GHz × 4 and 7.7 GB of RAM, under Ubuntu Linux
12.04 (precise) 64-bit. On the web-page http://www.di.unisa.it/dottorandi/
dario.dellamonica/download/lpar13_code.zip it is possible to download the
source code in C++.

http://www.di.unisa.it/dottorandi/dario.dellamonica/download/lpar13_code.zip
http://www.di.unisa.it/dottorandi/dario.dellamonica/download/lpar13_code.zip
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based on a brute-force approach. As the problems can produce an output of
size, in general, exponential in the size of the input, it not possible to avoid the
exponential trend shown by the algorithms in Fig. 4. Moreover, in [9], it has been
proved that, unless P=NP, no output-polynomial algorithm can be devised for
MaxMod (and thus for MaxNoEntail), meaning that it is not even possible
to devise an algorithm that runs in polynomial time in terms of both the sizes of
input and output. Nevertheless, our approach is efficient enough to allow us to
deal with some expressiveness issues for modal logics that were intractable with
the brute-force approach, as shown by empirical evidence.

The proposed algorithm can be improved by conceiving suitable heuristics to
drive the construction of the candidate solution (e.g, heuristics for the choice of
the next atomic proposition to be removed from the fragment) and by suitably
reducing, on the fly, the Horn theory depending on the current candidate under
analysis. We plan to explore both such possibilities in future work. We also intend
to investigate the behaviour of the proposed algorithm on special instances of
MaxNoEntail, i.e., on Horn theories whose clauses have the same consequent.
Such a restriction makes the MaxNoEntail problem equivalent to the well-
known problem of finding the minimal hitting sets of a hyper-graph, for which
it is still an open question whether an output-polynomial algorithm exists.
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Abstract. A may-happen-in-parallel (MHP) analysis infers the sets of
pairs of program points that may execute in parallel along a program’s
execution. This is an essential piece of information to detect data races,
and also to infer more complex properties of concurrent programs, e.g.,
deadlock freeness, termination and resource consumption analyses can
greatly benefit from the MHP relations to increase their accuracy. Previ-
ous MHP analyses have assumed a worst case scenario by adopting a sim-
plistic (non-deterministic) task scheduler which can select any available
task. While the results of the analysis for a non-deterministic scheduler
are obviously sound, they can lead to an overly pessimistic result. We
present an MHP analysis for an asynchronous language with prioritized
tasks buffers. Priority-based scheduling is arguably the most common
scheduling strategy adopted in the implementation of concurrent lan-
guages. The challenge is to be able to take task priorities into account
at static analysis time in order to filter out unfeasible MHP pairs.

1 Introduction

In asynchronous programming, programmers divide computations into shorter
tasks which may create additional tasks to be executed asynchronously. Each
task is placed into a task-buffer which can execute in parallel with other task-
buffers. The use of a synchronization mechanism enables that the execution of
a task is synchronized with the completion of another task. Synchronization can
be performed via shared-memory [9] or via future variables [13,8]. Concurrent
interleavings in a buffer can occur if, while a task is awaiting for the completion of
another task, the processor is released such that another pending task can start
to execute. This programming model captures the essence of the concurrency
models in X10 [13], ABS [12], Erlang [1] and Scala [11], and it is the basis of
actor-like concurrency [2,11]. The most common strategy to schedule tasks is
undoubtedly priority-based scheduling. Each task has a priority level such that
when the active task executing in the buffer releases the processor, a highest
priority pending task is taken from its buffer and begins executing. Asynchronous
programming with prioritized tasks buffers has been used to model real-world
asynchronous software, e.g., Windows drivers, engines of modern web browsers,
Linux’s work queues, among others (see [9] and its references).

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 18–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The higher level of abstraction that asynchronous programming provides,
when compared to lower-level mechanisms like the use of multi-threading and
locks, allows writing software which is more reliable and more amenable to be
analyzed. In spite of this, proving error-freeness of these programs is still quite
challenging. The difficulties are mostly related to: (1) Tasks interleavings, typ-
ically a programmer decomposes a task t into subtasks t1, . . . , tn. Even if each
of the sub-tasks would execute serially, it can happen that a task k unrelated
to this computation interleaves its execution between ti and ti+1. If this task
k changes the shared-memory, it can interfere with the computation in several
ways, e.g., leading to non-termination, to an unbounded resource consumption,
and to deadlocks. (2) Buffers parallelism, tasks executing across several task-
buffers can run in parallel, this could lead to deadlocks and data races.

In this paper, we present a may-happen-in-parallel (MHP) analysis which iden-
tifies pairs of statements that can execute in parallel and in an interleaved way
(see [13,3]). MHP is a crucial analysis to later prove the properties mentioned
above. It directly allows ensuring absence of data races. Besides, MHP pairs al-
low us to greatly improve the accuracy of deadlock analysis [16,10] as it discards
unfeasible deadlocks when the instructions involved in a possible deadlock cycle
cannot happen in parallel. Also, it improves the accuracy of termination and cost
analysis [5] since it allows discarding unfeasible interleavings. For instance, con-
sider a loop like while (l!=null) {x=b.m(l.data); await x?; l=l.next;},
where x=b.m(e) posts an asynchronous task m(e) on buffer b, and the instruc-
tion await x? synchronizes with the completion of the asynchronous task by
means of the future variable x. If the asynchronous task is not completed (x is
not ready), the current task releases the processor and another task can take it.
This loop terminates provided no instruction that increases the length of the list
l interleaves or executes in parallel with the body of this loop.

Existing MHP analyses [13,3] assume a worst case scenario by adopting a
simplistic (non-deterministic) task scheduler which can select any available task.
While the results of the analysis for a non-deterministic scheduler are obviously
sound, they can lead to an overly pessimistic result and report false errors due
to unfeasible schedulings in the task order selection. For instance, consider two
buffers b1 and b2 and assume we are executing a task in b1 with the following
code “x=b1.m1(e1); y=b1.m2(e2); await x?; b2.m3(e3);”. If the priority of
the task executing m1 is smaller than that of m2, then it is ensured that task
m2 and m3 will not execute in parallel even if the synchronization via await is
on the completion of m1. This is because at the await instruction, when the
processor is released, m2 will be selected by the priority-based scheduler before
m1. A non-deterministic scheduler would give this spurious parallelism.

Our starting point is the MHP analysis for non-deterministic scheduling of
[3], which distinguishes a local phase in which one inspects the code of each task
locally, and ignores transitive calls, and a global phase in which the results of
the local analysis are composed to build a global MHP-graph which captures the
parallelism with transitive calls and among multiple task-buffers. The contribu-
tion of this paper is an MHP analysis for a priority-based scheduling which takes
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priorities into account both at the local and global levels of the analysis. As each
buffer has its own scheduler which is independent of other buffer’s schedulers,
priorities can be only applied to establish the order of execution among the tasks
executing on the same task-buffer (intra-buffer MHP pairs). Interestingly, even
by only using priorities at the intra-buffer level, we are also able to implicitly
eliminate unfeasible inter-buffer MHP pairs. We have implemented our analysis
in the MayPar system [4] and evaluated it on some challenging examples, includ-
ing some of the benchmarks used in [9]. The system can be used online through
a web interface where the benchmarks used are also available.

2 Language

We consider asynchronous programs with priority-levels and multiple tasks bu-
ffers. Tasks can be synchronized with the completion of other tasks (of the same
or of a different buffer) using futures. In this model, only highest-priority tasks
may be dispatched, and tasks from different task buffers execute in parallel. The
number of task buffers does not have to be known a priori and task buffers can
be dynamically created. We keep the concept of task-buffer disconnected from
physical entities, such as processes, threads, objects, processors, cores, etc. In [9],
particular mappings of task-buffers to such entities in real-world asynchronous
systems are described. Our model captures the essence of the concurrency and
distribution models used in X10 [13] and in actor-languages (including ABS [12],
Erlang [1] and Scala [11]). It also has many similarities with [9], the main differ-
ence being that the synchronization mechanism is by means of future variables
(instead of using the shared-memory for this purpose).

2.1 Syntax

Each program declares a sequence of global variables g0, . . . , gn and a sequence
of methods named m0, . . . ,mi (that may declare local variables) such that one
of the methods, named main, corresponds to the initial method which is never
posted or called and it is executing in a buffer with identifier 0. The grammar
below describes the syntax of our programs. Here, T are types, m procedure
names, e expressions, x can be global or local variables, buffer identifiers b are
local variables, f are future variables, and priority levels p are natural numbers.

M ::= T m(T̄ x̄){s; return e; }
s ::= s; s | x = e | if e then s else s | while e do s |

await f? | b = newBuffer | f = b.m(〈ē〉, p) | release

The notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
We use the special buffer identifier this to denote the current buffer. For the sake
of generality, the syntax of expressions is left free and also the set of types is not
specified. We assume that every method ends with a return instruction.

The concurrency model is as follows. Each buffer has a lock that is shared by
all tasks that belong to the buffer. Data synchronization is by means of future
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variables as follows. An await y? instruction is used to synchronize with the
result of executing task y=b.m(〈z̄〉, p) such that await y? is executed only when
the future variable y is available (and hence the task executing m is finished).
In the meantime, the buffer’s lock can be released and some highest priority
pending task on that buffer can take it. The instruction release can be used to
unconditionally release the processor so that other pending task can take it.
Therefore, our concurrency model is cooperative as processor release points are
explicit in the code, in contrast to a preemptive model in which a higher priority
task can interrupt the execution of a lower priority task at any point (see Sec. 7).
W.l.o.g, we assume that all methods in a program have different names.

2.2 Semantics

A program state St = 〈g, Buf〉 is a mapping g from the global variables to their
values along with all created buffers Buf. Buf is of the form buffer1 ‖ . . . ‖ buffern
denoting the parallel execution of the created task-buffers. Each buffer is a term
buffer(bid , lk,Q) where bid is the buffer identifier, lk is the identifier of the active
task that holds the buffer’s lock or ⊥ if the buffer’s lock is free, and Q is the
set of tasks in the buffer. Only one task can be active (running) in each buffer
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tid ,m, p, l, s) where tid
is a unique task identifier, m is the method name executing in the task, p is the
task priority level (the larger the number, the higher the priority), l is a mapping
from local (possibly future) variables to their values, and s is the sequence of
instructions to be executed or s = ε(v) if the task has terminated and the return
value v is available. Created buffers and tasks never disappear from the state.

The execution of a program starts from an initial state where we have an
initial buffer with identifier 0 executing task 0 of the form S0 = 〈g, buffer(0, 0,
{tsk(0,main, p, l, body(main))})〉. Here, g contains initial values for the global vari-
ables, l maps parameters to their initial values and local reference and future
variables to null (standard initialization), p is the priority given to main, and
body(m) refers to the sequence of instructions in the method m. The execu-
tion proceeds from S0 by selecting non-deterministically one of the buffers and
applying the semantic rules depicted in Fig. 1. We omit the treatment of the
sequential instructions as it is standard, and we also omit the global memory g
from the state as it is only modified by the sequential instructions.

Newbuffer: an active task tid in buffer bid creates a buffer bid ′ which is
introduced to the state with a free lock. Priority: Function highestP returns a
highest-priority task that is not finished, and it obtains its buffer’s lock. Async:
A method call creates a new task (the initial state is created by buildLocals)
with a fresh task identifier tid1 which is associated to the corresponding future
variable y in l′. We have assumed that bid 
= bid1, but the case bid = bid1 is
analogous, the new task tid1 is simply added to Q of bid . Await1: If the future
variable we are awaiting for points to a finished task, the await can be completed.
The finished task t1 is looked up in all buffers in the current state (denoted Buf).
Await2: Otherwise, the task yields the lock so that any other task of the same
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(newbuffer)

fresh(bid ′) , l′ = l[x→ bid ′], t = tsk(tid ,m, p, l, 〈x = newBuffer; s〉)
buffer(bid , tid , {t} ∪ Q) ‖ B �

buffer(bid , tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖ buffer(bid ′,⊥, {}) ‖ B

(priority)
highestP (Q) = tid , t = tsk(tid , , , , s) ∈ Q, s 	= ε(v)

buffer (bid ,⊥,Q) ‖ B � buffer(bid , tid ,Q) ‖ B

(async)

l(x) = bid1, fresh(tid1), l′ = l[y → tid1], l1 = buildLocals(z̄,m1)
buffer(bid, tid , {tsk(tid ,m, p, l, 〈y = x.m1(z, p1); s〉} ∪ Q) ‖ buffer(bid1, ,Q′) ‖ B �

buffer(bid, tid , {tsk(tid ,m, p, l′, s)} ∪ Q) ‖
buffer(bid1, , {tsk(tid1,m1, p1, l1, body(m1))} ∪ Q′) ‖ B

(await1)

l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 = ε(v)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B �

buffer (bid , tid , {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(await2)

l(y) = tid1, tsk(tid1, , , , s1) ∈ Buf, s1 	= ε(v)
buffer(bid , tid , {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B �

buffer(bid ,⊥, {tsk(tid ,m, p, l, 〈await y?; s〉)} ∪ Q) ‖ B

(release) buffer(bid , tid , {tsk(tid ,m, p, l, 〈release; s〉)} ∪ Q) ‖ B �

buffer(bid ,⊥, {tsk(tid ,m, p, l, s)} ∪ Q) ‖ B

(return)

v = l(x)

buffer(bid , tid , {tsk(tid ,m, p, l, 〈return x; 〉)} ∪ Q) ‖ B �

buffer(bid ,⊥, {tsk(tid ,m, p, l, ε(v))} ∪ Q) ‖ B

Fig. 1. Summarized Semantics for a Priority-based Scheduling Async Language

buffer can take it. Release: the current task frees the lock. Return: When return

is executed, the return value is stored in v so that it can be obtained by the future
variable that points to that task. Besides, the lock is released and will never be
taken again by that task. Consequently, that task is finished (marked by adding
the instruction ε(v)) but it does not disappear from the state as its return value
may be needed later on in an await.

Example 1. Figure 2 shows some simple methods which will illustrate different
aspects of our analysis. In particular, non-termination of certain tasks and data
races can occur if priorities are not properly assigned by the programmer, and
later considered by the analysis. Our analysis will take the assigned priorities
into account in order to gather the necessary MHP information to be able to
guarantee termination and absence of data races. Let us by now only show some
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1 // g1 global variable
2 // g2 global variable
3 void task(){
4 g2 = g2 + 1;
5 }
6 void f(){
7 while( g1 > 0 ){
8 g1 = g1 − 1;
9 g2 = g2 + 1;

10 release;
11 }
12 }

13 void m(){
14 while( g1 < 0 ){
15 g1 = g1 + 1;
16 release;
17 }
18 }
19 void h(){
20 while(g1 > 0){
21 g1 = g1 − 2;
22 release;
23 }
24 }

25 // main has priority 0
26 main(){
27 this.f(<>,10);
28 Fut x = this.m(<>,5);
29 await x?;
30 this.h(<>,10);
31 Buffer o=newbuffer;
32 o.task(<>,0);
33 ...
34 }

Fig. 2. Example for inter-buffer and intra-buffer may-happen-in-parallel relations

execution steps. The execution starts from a buffer 0 with a single task in which
we are executing the main method. Let us assume that such task has been given
the lowest priority 0. The global memory g is assumed to be properly initialized.
St0 ≡ 〈g, buffer(0, 0, {tsk(0,main, 0, l, body(main))})〉 async−−−→
St1 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, f, 10, ..)})〉

async−−−→
St2 ≡ 〈g, buffer(0, 0, {tsk(0, ..), tsk(1, ..), tsk(2,m, 5..)})〉 await−−−→
St3 ≡ 〈g, buffer(0,⊥, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉

priority−−−−−→
St4 ≡ 〈g, buffer(0, 1, {tsk(0, .., await), tsk(1, ..), tsk(2,m, 5..)})〉 −→∗

St5 ≡ 〈g′, buffer (0, 1, {tsk(0, .., await), tsk(1, .., return), tsk(2,m, 5..)})〉 return−−−−→
St6 ≡ 〈g′, buffer (0,⊥, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 priority−−−−−→
St7 ≡ 〈g′, buffer (0, 2, {tsk(0, .., await), tsk(1, .., ε(v)), tsk(2,m, 5..)})〉 −→∗

St8 ≡ 〈g′′, buffer(0, 0, {tsk(0, ..), tsk(1, .., ε(v)), tsk(2, .., ε(v)), tsk(3..)})〉
newbuf−−−−→

St9 ≡ 〈g′′, buffer(0, 0, {tsk(0..), tsk(1..), tsk(2..), tsk(3..)}), 〉buffer(1,⊥, {}) async−−−→
St10 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1,⊥, {task(4..)})

priority−−−−−→
St11 ≡ 〈g′′, buffer(0, 0, {tsk(0..), ..}), 〉buffer(1, 4, {task(4..)}) ...−→

At St1, we execute the instruction at Line 27 (L27 for short) that posts, in the
current buffer this, a new task (with identifier 1) that will execute method f with
priority 10. The next step St2 posts another task (with identifier 2) in the current
buffer with a lower priority (namely 5). At St3, an await instruction (L29) is used
to synchronize the execution with the completion of the task 2 spawned at L28.
As the task executing f has higher priority than the one executing m, it will be
selected for execution at St4. After returning from the execution of task 1 in St5,
the priority rule selects task 2 for execution in St6. An interesting aspect is
that after creating buffer 1 at St10, execution can non-deterministically choose
buffer 0 or 1 (in St11 buffer 1 has been selected).
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3 Definition of MHP

We first formally define the concrete property “MHP” that we want to approx-
imate using static analysis. In what follows, we assume that instructions are
labelled such that it is possible to obtain the corresponding program point iden-
tifiers. We also assume that program points are globally different. We use pm̊
to refer to the entry program point of method m, and pṁ to all program points
after its return instruction. The set of all program points of P is denoted by PP .
We write p ∈ m to indicate that program point p belongs to method m. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier
associated with its first instruction and pp(ε(v)) = pṁ.

Definition 1 (concrete MHP). Given a program P , its MHP is defined as
EP=∪{ES|S0 �∗ S} where for S=〈g, Buf〉, the set ES is ES = {(pp(s1), pp(s2)) |
buffer(bid1, ,Q1)∈Buf, buffer(bid2, ,Q2)∈Buf, t1 = tsk(tid1, , , , s1)∈Q1, t2 =
tsk(tid2, , , , s2)∈Q2, tid1 
= tid2}.

The above definition considers the union of the pairs obtained from all deriva-
tions from S0. This is because execution is non-deterministic in two dimensions:
(1) in the selection of the buffer that is chosen for execution, since the buffers
have access to the global memory different behaviours (and thus MHP pairs)
can be obtained depending on the execution order, and (2) when there is more
than one task with the highest priority, the selection is non-deterministic.

The MHP pairs can originate from direct or indirect task creation relation-
ships. For instance, the parallelism between the points of the tasks executing h

and task is indirect because they do not invoke one to the other directly, but
a third task main invokes both of them. However, the parallelism between the
points of the task main and those of task is direct because the first one invokes
directly the latter one. Def. 1 captures all these forms of parallelism.

Importantly, EP includes both intra-buffer and inter-buffer MHP pairs, each
of which are relevant for different kinds of applications, as we explain below.

Intra-buffer MHP Pairs. Intra-buffer relations in Def. 1 are pairs in which bid1 ≡
bid2. We always have that the first instructions of all tasks which are pending
in the buffer’s queue may-happen-in-parallel among them, and also with the
instruction of the task which is currently active (has the buffer’s lock). This
piece of information allows approximating the tasks interleavings that we may
have in a considered buffer. In particular, when the execution is at a processor
release point, we use the MHP pairs to see the instructions that may execute
if the processor is released. Information about task interleavings is essential to
infer termination and resource consumption in any concurrent setting (see [5]).

Example 2. Consider the execution trace in Ex. 1, we have the MHP pairs
(29,pf̊ ) and (29,pm̊) since when the active task 0 is executing the await (point

29) in St4, we have that tasks 1 and 2 are pending at their entry points. The
following execution steps give rise to many other MHP pairs. The most relevant
point to note is that in St8 when the execution is at L30 and onwards, the tasks
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(1) τp(y=this.m(x̄, p),M) = M [〈y,O, Z,R〉/〈�, O,Z, R〉] ∪ {〈y, t, m̌, p〉}
(2) τp(y=x.m(x̄, p),M) = M [〈y,O, Z,R〉/〈�, O,Z, R〉] ∪ {〈y, o, m̃, p〉}
(3) τp(release,M) = τp(release1; release2,M)
(4) τp(release1,M) = M [〈Y, t, m̌, p〉/〈Y,t, m̃, p〉] where p ≥ p

(5) τp(release2,M) = M [〈Y, t, m̃, p〉/〈Y,t, m̂, p〉] where p > p

(6) τp(await y?,M) = M
′[〈y,O, m̃,R〉/〈y,O, m̂,R〉]
where M ′ = τp(release1; release2,M)

(7) τp(return,M) = M [〈Y, t, m̌, R〉/〈Y, t, m̃, R〉]
(8) τp(b,M) = M otherwise

Fig. 3. Method-level MHP transfer function: τp : s× B �→ B

1 and 2 are guaranteed to be at their exit program points pḟ and pṁ. Thus,
we will not have any MHP pair between the instructions that update the global
variable g1 (L8 and L15 in tasks 1 and 2, resp.) and the release point at L22
of the task 3 executing h. This information is essential to prove the termination
of h, as the analysis needs to be sure that the loop counter cannot be modified
by instructions of other tasks that may execute in parallel with the body of this
loop. The information is also needed to obtain an upper bound on the number
of iterations of the loop and then infer the resource consumption of h.

Inter-buffer MHP Pairs. In addition to intra-buffer MHP relations, inter-buffer
MHP pairs happen when bid1 
= bid2. In this case, we obtain the instructions
that may execute in parallel in different buffers. This information is relevant
at least for two purposes: (1) to detect data-races in the access to the global
memory and (2) to detect deadlocks and livelocks when one buffer is awaiting
for the completion of one task running in another buffer, while such other task
is awaiting for the completion of the current task, and the execution of these
(synchronization) instructions happens in parallel (or simultaneously). If the
language allows blocking the execution of the buffer such that no other pending
task can take it, we have a deadlock, otherwise we have a livelock.

Example 3. Consider again the execution trace in Ex. 1, in St10 we have created
a new buffer 1 in which task 4 starts to execute at St11. We will have the inter-
buffer pair (21,4) as we can have L21 executing in buffer 0 and L4 executing
in buffer 1. Note that, if task had updated g1 instead of updating g2, we would
have had a data race. Data races can lead to different types of errors, and static
analyses that detect them are of utmost importance.

4 Method-Level Analysis with Priorities

In this section, we present the local phase of our MHP analysis which assigns
to each program point, of a given method, an abstract state that describes the
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status of the tasks that have been locally invoked so far. The status of a task
can be (1) pending, i.e., it is at the entry program point; (2) finished, i.e., it has
executed a return instruction already; or (3) active, i.e., it can be executing at
any program point (including the entry and the exit). The analysis uses MHP
atoms which are syntactic objects of the form 〈F,O, T,R〉 where

– F is either a valid future variable name or �. The value � indicates that the
task might not be associated with any future variable, either because there is
no need to synchronize with its result, or because the future has been reused
and thus the association lost (this does not happen in our example);

– O is the buffer name that can be t or o, which resp. indicate that the task
is executing on the same buffer or maybe on a different one;

– T can be m̌, m̃, or m̂ where m is a method name. It indicates that the
corresponding task is an instance of method m, and its status can be pending,
active, or finished resp.;

– P is a natural number indicating the priority of the corresponding task.

Intuitively, an MHP atom 〈F,O, T,R〉 is read as follows: task T might be exe-
cuting (in some status) on buffer O with priority P , and one can wait for it to
finish using future variable F . The set of all MHP atoms is denoted by A.

Example 4. The MHP atom 〈x, t, m̃, 5〉 indicates that there is an instance of
method m running in parallel, in the same buffer. This task is active (i.e., can
be at any program point), has priority 5, and is associated with the future x.

The MHP atom 〈�, o, ˆtask, 0〉 indicates that there is an instance of method task
running in parallel, maybe in a different buffer. This task is finished (i.e., has
executed return), has priority 0, and it is associated to any future variable.

An abstract state is a multiset of MHP atoms from A. The set of all multisets
over A is denoted by B. Given M ∈ B, we write (a, i) ∈ M to indicate that a
appears exactly i > 0 times in M . We omit i when it is 1. The local analysis
is applied on each method and, as a result, it assigns an abstract state from
B to each program point in the program. The analysis takes into account the
priority of the method being analyzed. Thus, since a method might be called with
different priorities p1, . . . , pn, the analysis should be repeated for each pi. For
the sake of simplifying the presentation, we assume that each method is always
called with the same priority. Handling several priorities is a context-sensitive
analysis problem that can be done by, e.g., cloning the corresponding code.

The analysis of a given method, with respect to priority p, abstractly executes
its code over abstract elements from B. This execution uses a transfer function
τp, depicted in Fig. 3, to rewrite abstract states. Given an instruction b and an
abstract state M ∈ B, τp(b,M) computes a new abstract state that results from
abstractly executing b in state M . Note that the subscript p in τp is the priority
of the method being analyzed. Let us explain the different cases of τp:

– (1) Posting a task on the same buffer adds a new MHP atom 〈y, t, m̌, p〉
to the abstract state. It indicates that an instance of m is pending, with
priority p, on the same buffer as the analyzed method, and is associated
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with future variable y. In addition, since y is assigned a new value, those
atoms in M that were associated with y should now be associated with �
in the new state. This is done by M [〈y,O, Z,R〉/〈�,O, Z,R〉] which replaces
each atom that matches 〈y,O, Z,R〉 in M by 〈�,O, Z,R〉;

– (2) It is similar to (1), the difference is that the new task might be posted on
a buffer different from that of the method being analyzed. Thus, its status
should be active since, unlike (1), it might start to execute immediately;

– (3)-(5) These cases highlight the use of priorities, and thus mark the main
differences wrt [3]. They state that when releasing the processor, only tasks
of equal or higher priorities are allowed to become active (simulated through
release1). Moreover, when taking the control back, any task with strictly
higher priority is guaranteed to have been finished (simulated through
release2). Importantly, the abstract element after release1 is associated to
the program point of the release instruction, and that after release2 is associ-
ated to the program point after the release instruction. These two auxiliary
instructions are introduced to simulate the implicit “loop” (in the semantics)
when the task is waiting at that point;

– (6) This instruction is similar to release, the only difference is that the status
of the tasks that are associated with future variable y become finished in the
following program point. Importantly, the abstract element after release1 is
associated to the program point of the await y?;

– (7) It changes the status of every pending task executing on the same buffer
to active, this is because the processor is released. Note that we do not
consider priorities in this case, since the task is finished.

In addition to using the transfer function for abstractly executing basic instruc-
tions, the analysis merges the results of paths (in conditions, loops, etc) using a
join operator. We refer to [3] for formal definitions of the basic abstract interpre-
tations operators. In what follows, we assume that the result of the local phase
is given by means of a mapping LP :PP �→B which maps each program point p
(including entry and exit points) to an abstract state L

P
(p) ∈ B.

Example 5. Applying the local analysis on main, results in the following abstract
states (initially the abstract state is ∅):

28:{〈�, t, f̌, 10〉}
29:{〈�, t, f̃, 10〉, 〈x, t, m̃, 5〉}
30:{〈�, t, f̂, 10〉, 〈x, t, m̂, 5〉}
31:{〈�, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈�, t, ȟ, 10〉}
32:{〈�, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈�, t, ȟ, 10〉}
33:{〈�, t, f̂, 10〉, 〈x, t, m̂, 5〉, 〈�, t, ȟ, 10〉, 〈�, o, ˜task, 0〉}

Note that in the abstract state at program point 30 we have both f andm finished,
this is because they have higher priority than main, and thus, while main is waiting
at program point 29 both f and m must have completed their execution before
main can proceed to the next instruction. If we ignore priorities, then we would
infer that f might be active at program point 30 (which is less precise).
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5 MHP Graph for Priority-Based Scheduling

In this section we will construct a MHP graph relating program points and
methods in the program, that will be used to extract precise information on
which program points might globally run in parallel. In order to build this graph,
we use the local information computed in Sec. 4 which already takes priorities
into account. In Sec. 5.2, we explain how to use the MHP graph to infer the
MHP pairs in the program. Finally, in Sec. 5.3 we compare the inference method
of MHP pairs using a priority-based scheduling with the technique introduced
in [3] for programs with a non-deterministic scheduling.

5.1 Construction of the MHP Graph with Priorities

The MHP graph has different types of nodes and different types of edges. There
are nodes that represent the status of methods (active, pending or finished) and
nodes that represent the program points. Outgoing edges from method nodes
are unweighted and unlabeled, they represent points of which at most one might
be executing. Outgoing edges from program point nodes are labeled, written →l

where the label l is a tuple (O,R) that contains a priority R and a buffer name
O. These edges represent tasks such that any of them might be running. Besides,
when two nodes are directly connected by i > 1 edges, we connect them with
a single edge superscripted with weight i, written as →i

l where l is the label as
before.

Definition 2 (MHP graph with priorities). Given a program P , and its
method-level MHP analysis result L

P
, the MHP graph of P is a directed graph

G
P
= 〈V,E〉 with a set of nodes V and a set of edges E = E1 ∪ E2 defined:

V = {m̃, m̂, m̌ | m ∈ PM} ∪ PP
E1 = {m̃→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂→ pṁ, m̌→ pm̊ | m ∈ PM}
E2 = {p→i

(O,R) x | p ∈ PP , (〈 , O, x,R〉, i) ∈ LP (p)}

Example 6. Fig. 4 depicts the relevant fragment of the MHP graph for our run-
ning example. The graph only shows selected program points, namely all points
of the main task and those points of the other tasks in which there is a release

instruction, or in which the global memory is updated. For each task, we have
three nodes which correspond to their possible status (except for h and task that
we have omitted status that do not have incoming edges). In order to avoid clut-
tering the graph, in edges from program points, the labels only show the priority.
The weight is omitted as it is always 1. The label corresponding to the buffer
name is depicted using different types of arrows: normal arrows correspond to
the buffer name o, while dashed arrows to t. From the pending (resp. finished)
nodes, we always have an edge to the task entry (resp. exit) point. From the
active nodes, we have edges to all program points in the corresponding method
body, meaning that only one of them can be executing. The key aspect of the
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Fig. 4. MHP graph with priorities of the example

MHP graph is how we integrate the information gathered by the local analysis
(with priorities) to build the edges from the program points: we can observe
that node 28 has an edge to pending f, and at the await (node 29) the edges
go to active f and m. After await, in nodes 30 and the next ones, the edges go
to finished tasks. The remaining tasks only have edges to their program points
since they do not make calls to other tasks.

5.2 Inference of Priority-Based MHP Pairs

The inference of MHP pairs is based on the notion of intra-buffer path in the
MHP graph. A path from p1 to p2 is called intra-buffer if the program points
p1 and p2 are reachable only through tasks in the same buffer. A simple way
to ensure the intra-buffer condition is by checking that the buffer labels are
always of type t (more accurate alternatives are discussed later). Intuitively, two
program points p1, p2 ∈ PP may run in parallel if one of the following conditions
hold:

1. there is a non-empty path in G
P
from p1 to p2 or vice-versa; or

2. there is a program point p3 ∈ PP , and non-empty intra-buffer paths from
p3 to p1 and from p3 to p2 that are either different in the first edge, or they
share the first edge but it has weight i > 1, and the minimum priority in
both paths is the same; or

3. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and
from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1, and at least one of the paths is not intra-buffer.

The first case corresponds to direct MHP scenarios in which, when a task is run-
ning at p1, there is another task running from which it is possible to transitively
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reach p2, or vice-versa. For instance (33,4) is a direct MHP resulting from the
direct call from main to task.

The second and third cases correspond to indirect MHP scenarios in which
a task is running at p3 and there are two other tasks p1 and p2 executing in
parallel and both are reachable from p3. However, the second condition takes
advantage of the priority information in intra-buffer paths to discard potential
MHP pairs: if the minimum priority of path pt1 ≡ p3 � p1 is lower than the
minimum priority of pt2 ≡ p3 � p2, then we are sure that the task containing
the program point p2 will be finished before the task containing p1 starts. For
instance, consider the two paths from 29 to 8 and from 29 to 16, which form
the potential MHP pair (8,16). They are both intra-buffer (executing on buffer
0) and the minimum priority is not the same (the one to 16 has lower priority).
Thus, (16,8) is not an MHP pair. The intuition is that the task with minimum
priority (m in this case) will be pending and will not start its execution until all
the tasks in the other path are finished. Similarly, we obtain that the potential
MHP pair (10,15) is not a real MHP pair. Knowing that (10,15) and (16,8)
are not MHP pairs is important because this allows us to prove termination of
both tasks executing m and f. This is an improvement over the standard MHP
analysis in [3], where they are considered as MHP pairs—see Sect. 5.3. On the
other hand, when a path involves tasks running in several buffers (condition 3),
priorities cannot be taken into account, as the buffers (and their task schedulers)
work independently. Observe that, in the second and third conditions, the first
edge can only be shared if it has weight i > 1 because it denotes that there might
be more than one instance of the same type of task running. For instance, if we
add the instruction o.task(<>,0) at L33 we will infer the pair (4,4), reporting a
potential data race in the access to g2.

Let us formalize the inference of the priority-based MHP pairs. We write
p1 � p2 ∈ G

P
to indicate that there is a path from p1 to p2 in G

P
such that the

sum of the edges weights is greater than or equal to 1, and p1 →i x� p2 ∈ G
P

to mark that the path starts with an edge to x with weight i. We will say that
a path p1 � p2 ∈ G

P
is intra-buffer if all the edges from program points to

methods have t labels. Similarly, we will say that p is the lowest priority of the
path p1 � p2 ∈ GP , written lowestP(p1 � p2 ) = p, if p is the smallest priority
of all those that appear in edges from program points to methods in the path.
We now define the priority-based MHP pairs as follows.

Definition 3. Given a program P , we let ẼP = D ∪ Iintra ∪ Iinter where

D = {(p1, p2) | p1, p2 ∈ PP , p1 � p2 ∈ GP )}
Iintra = {(p1, p2) | p1, p2, p3 ∈ PP , p3

i→ x1 � p1 ∈ GP , p3
j→ x2 � p2 ∈ GP ,

p3
i→ x1 � p1 is intra−buffer , lowestP (p3 i→ x1 � p1) = pr1,

p3
j→ x2 � p2 is intra−buffer , lowestP (p3 j→ x2 � p2) = pr2,

(x1 	= x2 ∨ (x1 = x2 ∧ i = j > 1)) ∧ pr1 = pr2}
Iinter = {(p1, p2) | p1, p2, p3 ∈ PP , p3

i→ x1 � p1 ∈ GP , p3
j→ x2 � p2 ∈ GP ,

p3
i→ x1 � p1 or p3

j→ x2 � p2 are not intra−buffer ,
x1 	= x2 ∨ (x1 = x2 ∧ i = j > 1)}
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An interesting point is that even if priorities can only be taken into account at an
intra-buffer level, due to the inter-buffer synchronization operations, they allow
discarding unfeasible MHP pairs at an inter-buffer level. For instance, we can see
that (4,9), which would report an spurious data race, is not an MHP pair. Note
that 4 and 9 execute in different buffers. Still, the priority-based local analysis
has allowed us to infer that after 29, task f will be finished and thus, it cannot
happen in parallel with the execution of task in buffer o. Thus, it is ensured that
there will not be a data-race in the access to g2 from the two different buffers.

The following theorem states the soundness of the analysis, namely, that ẼP
is an over-approximation of EP—the proof appears in the extended version of
this paper [6]. Let Enon−det

P be the MHP pairs obtained by [3].

Theorem 1 (soundness). EP ⊆ ẼP ⊆ Enon−det
P .

As we have discussed above, a sufficient condition for ensuring the intra-buffer
condition of paths is to take priorities into account when all edges are labelled
with the t buffer. However, if buffers can be uniquely identified at analysis time
(as in the language of [9]), we can be more accurate. In particular, instead of
using o to refer to any buffer, we would use the proper buffer name in the labels
of the edges. Then, the intra-buffer condition will be ensured by checking that
the buffer name along the considered paths is always the same.

In our language, buffers can be dynamically created, i.e., the number of buffers
is not fixed a priori and one could have even an unbounded number of buffers
(e.g., using newBuffer inside a loop). The standard way to handle this situation
in static analysis is by incorporating points-to information [17,15] which allows
us to over-approximate the buffers created. A well-known approximation is by
buffer creation site such that all buffers created at the same program point are
abstracted by a single abstract name. In this setting, we can take advantage of
the priorities (and apply case 2 in Def. 3) only if we are sure that an abstract
name is referring to a single concrete buffer. As the task scheduler of each buffer
works independently, we cannot use knowledge on the priorities to discard pairs
if the abstract buffer might correspond to several concrete buffers. The extension
of our framework to handle these cases is subject if future work.

5.3 Comparison with Non-priority MHP Graphs

The new MHP graphs with priority information (Sec. 5.1), and the conditions
to infer MHP pairs (Sec. 5.2), are extensions of the corresponding notions in [3].
The original MHP graphs were defined as in Def. 2 with the following differences:

– The edges in E2 do not contain the label (O,R) with the buffer name and
the priority, but only the weight.

– The method-level analysis L
P
(p) in [3] does not take priorities into account,

so after a release instruction, pending tasks are set to active. With the
method-level analysis in this paper (Sect. 4), tasks with a higher priority
in the same buffer are set to finished after a release instruction—case (4) in
Fig. 3. This generates less paths in the resulting MHP graph with priorities
and therefore less MHP pairs.
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– In [3], there is another type of nodes (future variable nodes) used to increase
the accuracy when the same future variable is re-used in several calls in
branching instructions. For the sake of simplicity we have not included future
nodes here as their treatment would be identical as in [3].

Regarding the conditions to infer MHP pairs, only two are considered in [3]:

1. there is a non-empty path in G
P
from p1 to p2 or vice-versa; or

2. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and
from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1.

The first case is the same as the first condition in Sect 5.2. The second case
corresponds to indirect MHP scenarios and is a generalization of conditions 2
and 3 in Sect 5.2 without considering priorities and intra-buffer paths. With
these conditions, we have that the release point 22 cannot happen in parallel
with the instructions that modify the value of the loop counter g1 (namely 8
and 15), because there is no direct or indirect path connecting them starting
from a program point. However, we have the indirect MHP pairs (10,15) and
(16,8), meaning respectively that at the release point of f the counter g1 can be
modified by an interleaved execution of m and that at the release point of m

the counter g1 can be modified by an interleaved execution of f. Such spurious
interleavings prevent us from proving termination of the tasks executing f and m

and, as we have seen in Sec. 5.2, they are eliminated with the new MHP graphs
with priorities and the new conditions for inferring MHP pairs.

6 Implementation in the MayPar System

We have implemented our analysis in a tool called MayPar [4], which takes
as input a program written in the ABS language [12] extended with priority
annotations. ABS is based on the concurrency model in Sec. 2 and uses the
concept of concurrent object to realize the concept of task-buffer, such that
object creation corresponds to buffer creation, and a method call o.m() posts
a task executing m on the queue of object o. Currently the annotations are
provided at the level of methods, instead of at the level of tasks. This is because
we lacked the syntax in the ABS language to include annotations in the calls, but
the adaptation to calls will be straightforward once we have the parser extended.

We have made our implementation and a series of examples available online
at http://costa.ls.fi.upm.es/costabs/mhp. After selecting an example, the
analysis options allow: the selection of the entry method, enabling the option to
consider priorities in the analysis, and several other options related to the format
for displaying the analysis results and the verbosity level. After the analysis,
MayPar yields in the output the MHP pairs in textual format and also optionally
a graphical representation of the MHP graph. Besides, MayPar can be used in
an interactive way which allows the user to select a line and the tool highlights
all program points that may happen in parallel with it.
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The examples on the MayPar site that include priority annotations are within
the folder priorities. It is also possible to upload new examples by writing them
in the text area. In order to evaluate our proposal, we have included a series of
small examples that contain challenging patterns for priority-based MHP analy-
sis (including our running example) and we have also encoded the examples in the
second experiment of [9] and adapted them to our language (namely we use await

on futures instead of assume on heap values). MayPar with priority-scheduling
can successfully analyze all of them. Although these examples are rather small
programs, this is not due to scalability limits of MayPar. It is rather because of
the modeling overhead required to set up actual programs for static analysis.

7 Conclusions and Related Work

May-happen-in-parallel relations are of utmost importance to guarantee the
sound behaviour of concurrent and parallel programs. They are a basic compo-
nent of other analyses that prove termination, resource consumption boundness,
data-race and deadlock freeness. As our main contribution, we have leveraged
an existing MHP analysis developed for a simplistic scenario in which any task
could be selected for execution in order to take task-priorities into account. In-
terestingly, have succeeded to take priorities into account both at the intra-buffer
level and, indirectly, also at an inter-buffer level.

To the best of our knowledge, there is no previous MHP analysis for a priority-
based scheduling. Our starting point is the MHP analysis for concurrent objects
in [3]. Concurrent objects are almost identical to our multi-buffer asynchronous
programs. The main difference is that, instead of buffers, the concurrency units
are the objects. The language in [3] is data-race free because it is not allowed
to access an object field from a different object. Our main novelty w.r.t. [3]
is the integration of the priority-based scheduler in the framework. Although
we have considered a cooperative concurrency model in which processor release
points are explicit in the program, it is straightforward to handle a preemptive
scheduling at the intra-buffer level like in [9], by simply adding a release point
after posting a new task. If the posted task has higher priority, the active task will
be suspended and the posted task will become active. Thus, our analysis works
directly for this model as well. As regards analyses for Java-like languages [14,7],
we have that a fundamental difference with our approach is that they do not
take thread-priorities into account nor consider any synchronization between the
threads as we do. To handle preemptive scheduling at the inter-buffer level, one
needs to assume processor release points at any instruction in the program, and
then the main ideas of our analysis would be applicable. However, we believe
that the loss of precision could be significant in this setting.
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Abstract. We introduce and investigate a number of fragments of propo-
sitional temporal logic LTL over the flow of time (Z, <). The fragments
are defined in terms of the available temporal operators and the struc-
ture of the clausal normal form of the temporal formulas. We determine
the computational complexity of the satisfiability problem for each of the
fragments, which ranges from NLogSpace to PTime, NP and PSpace.

1 Introduction

We consider the (PSpace-complete) propositional temporal logic LTL over the
flow of time (Z, <). Our aim is to investigate how the computational complexity
of the satisfiability problem for LTL-formulas depends on the form of their clausal
representation and the available temporal operators.

Sistla and Clarke [26] showed that satisfiability of LTL-formulas with all stan-
dard operators (‘next-time’, ‘always in the future’, ‘eventually’ and ‘until’) is
PSpace-complete; see also [18,19]. Ono and Nakamura [22] proved that for for-
mulas with only ‘always in the future’ and ‘eventually’ the satisfiability problem
becomes NP-complete. Since then a number of fragments of LTL of different
complexity have been identified. For example, Chen and Lin [10] observed that
the complexity does not change if we restrict attention to temporal Horn formu-
las. Demri and Schnoebelen [12] determined the complexity of fragments that
depend on three parameters: the available temporal operators, the number of
nested temporal operators, and the number of propositional variables in for-
mulas. Markey [21] analysed fragments defined by the allowed set of temporal
operators, their nesting and the use of negation. Dixon et al. [13] introduced a
XOR fragment of LTL and showed its tractability. Bauland et al. [7] systemati-
cally investigated the complexity of fragments given by both temporal operators
and Boolean connectives (using Post’s lattice of sets of Boolean functions).

In this paper, we classify temporal formulas according to their clausal normal
form. Recall [14] that any LTL-formula over (N, <) can be transformed into an
equisatisfiable formula in the so-called separated normal form that consists of

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 35–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. The complexity of clausal fragments of LTL

temporal operators �∗ ,�F ,�P , ©
F ,©P �∗ ,�F ,�P �∗

α LTL�,©
α LTL�

α LTL
∗�
α

bool PSpace (≤ [26]) NP (≤ [22]) NP

horn PSpace (≥ [10]) PTime [≤ Th. 3] PTime

krom NP [≤ Th. 1] NP [≥ Th. 5] NLogSpace

core NP [≥ Th. 2] NLogSpace [≤ Th. 4] NLogSpace

initial clauses (setting conditions at moment 0), step clauses (defining transi-
tions between consecutive states), and eventuality clauses (defining the states
that must be reached infinitely often). Our clausal normal form is a slight gen-
eralisation of the separated normal form. The main building blocks are positive
temporal literals λ given by the following grammar:

λ ::= ⊥ | p | ©
Fλ | ©

Pλ | �Fλ | �Pλ | �∗ λ, (1)

where p is a propositional variable, ©F and ©
P are the next- and previous-time

operators, and �F , �P , �∗ are the operators ‘always in the future,’ ‘always in the
past’ and ‘always.’ We say that a temporal formula ϕ is in clausal normal form if

ϕ ::= λ | ¬λ | �∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · ∨ λn+m) | ϕ1 ∧ϕ2. (2)

Conjunctions of positive and negative (¬λ) literals can be thought of as initial
clauses, while conjunctions of �∗ -formulas generalise both step and eventuality
clauses of the separated normal form. Similarly to [15] one can show that any
LTL-formula over (Z, <) is equisatisfiable to a formula in clausal normal form.

We consider twelve fragments of LTL that will be denoted by LTL�,
©

α , LTL�α
and LTL

∗�
α , for α ∈ {bool, horn, krom, core}. The superscript in the language name

indicates the temporal operators that can be used in its positive literals. Thus,
LTL�,

©
α uses all types of positive literals, LTL�α can only use the �-operators:

λ ::= ⊥ | p | �Fλ | �Pλ | �∗ λ,

and LTL
∗�
α only the �∗ -operator:

λ ::= ⊥ | p | �∗ λ.

The subscript α in the language name refers to the form of the clauses

¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · · ∨ λn+m (3)

(m,n ≥ 0) that can be used in the formulas ϕ:

– bool -clauses are arbitrary clauses of the form (3),
– horn-clauses have at most one positive literal (that is, m ≤ 1),
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– krom-clauses are binary (that is, n + m ≤ 2),
– core-clauses are binary with at most one positive literal (n+m ≤ 2, m ≤ 1).

The tight complexity bounds in Table 1 show how the complexity of the sat-
isfiability problem for LTL-formulas depends on the form of clauses and the
available temporal operators. The PSpace upper bound for LTL�,

©
bool is well-

known [18,26,24,25]; the matching lower bound can be obtained already for
LTL�,

©
horn without �F and �P by a standard encoding of deterministic Turing

machines with polynomial tape [10]. The NP upper bound for LTL�bool is also
well-known [22], and the PTime and NLogSpace lower bounds for LTL

∗�
horn and

LTL
∗�
core coincide with the complexity of the respective non-temporal languages.

The upper bounds for the LTL
∗�
α fragments can be obtained by embedding into

the the underlying propositional fragments; see the full paper [6] for details.
The main contributions of this paper are the remaining complexity results

in Table 1. The complexity of the LTL�α fragments matches the complexity of
the underlying non-temporal fragments except for the Krom case, where we can
use the clauses ¬p ∨ ¬�F q and q ∨ r to say that p → �Fr (if p then eventually
r), which allows one to encode 3-colourability and results in NP-hardness. It is
known that the addition of the operators©F and ©

P to the language with �F and
�P usually increases the complexity (note that the proofs of the lower bounds
for the LTL�,

©
α fragments require only �∗ and ©

F ). It is rather surprising that
this does not happen in the case of the Krom fragment, while the complexity of
the corresponding core fragment jumps from NLogSpace to NP.

We prove the upper bounds using two different techniques. The existence of
models for LTL�,

©
krom-formulas is checked in Section 3 by guessing a small number

of types and exponentially large distances between them (given in binary) and
then using unary automata (and the induced arithmetic progressions) to verify
correctness of the guess in polynomial time. In Section 4.1, we design a calculus
for LTL�core in which derivations can be thought of as paths in a graph over the
propositions labelled by moments of time. Thus, the existence of such derivations
is essentially the graph reachability problem and can be solved in NLogSpace.

2 The Clausal Normal Form for LTL

The propositional linear-time temporal logic LTL (see, e.g., [16,17] and references
therein) we consider in this paper is interpreted over the flow of time (Z, <).
LTL-formulas are built from propositional variables p0, p1, . . . , propositional con-
stants� and⊥, the Boolean connectives ∧, ∨,→ and ¬, and two binary temporal
operators S (‘since’) and U (‘until’), which are assumed to be ‘strict.’ So, the other
temporal operators mentioned in the introduction can be defined via S and U as
follows:

©
Fϕ = ⊥ U ϕ, �Fϕ = � U ϕ, �Fϕ = ¬�F¬ϕ, �∗ ϕ = �P�Fϕ,

©
Pϕ = ⊥ S ϕ, �Pϕ = � S ϕ, �Pϕ = ¬�P¬ϕ, �∗ ϕ = �P�Fϕ.
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A temporal interpretation, M, defines a truth-relation between moments of time
n ∈ Z and propositional variables pi. We write M, n |= pi to indicate that pi is
true at the moment n in the interpretation M. This truth-relation is extended
to all LTL-formulas as follows (the Booleans are interpreted as expected):

M, n |= ϕ U ψ iff there is k > n with M, k |= ψ and M,m |= ϕ, for n < m < k,

M, n |= ϕ S ψ iff there is k < n with M, k |= ψ and M,m |= ϕ, for k < m < n.

An LTL-formula ϕ is satisfiable if there is an interpretationM such thatM, 0 |= ϕ;
in this case we call M a model of ϕ. We denote the length of ϕ by |ϕ|.

Recall that LTL-formulas of the form (2) were said to be in clausal normal
form, and the class of such formulas was denoted by LTL�,

©
bool . The clauses (3)

will often be represented as λ1 ∧ · · · ∧λn → λn+1 ∨ · · · ∨λn+m (where the empty
disjunction is ⊥ and the empty conjunction is �).

Lemma 1 (clausal normal form). For every LTL-formula, one can construct
an equisatisfiable LTL�,

©
bool -formula. The construction requires logarithmic space.

The proof of this lemma is similar to the proof of [15, Theorem 3.3.1] and uses
fixed-point unfolding and renaming [15,23]. For example, we can replace every pos-
itive occurrence (that is, an occurrence in the scope of an even number of nega-
tions) of p U q in a given formula ϕ with a fresh propositional variable r and add
the conjuncts �∗ (r → ©

Fq ∨©
Fp), �∗ (r → ©

Fq ∨©
Fr) and �∗ (r → �Fq) to ϕ. The

result contains no positive occurrences of p U q and is equisatisfiable with ϕ: the
first two conjuncts are the fixed-point unfolding (pU q) → ©

F q∨
(
©

Fp∧©F (pU q)
)
,

while the last conjunct ensures that the fixed-point is eventually reached.
The next lemma allows us to consider an even more restricted classes of for-

mulas. In what follows, we do not distinguish between a set of formulas and the
conjunction of its members, and we write �∗ Φ for the conjunction

∧
χ∈Φ�∗ χ.

Lemma 2. Let L be one of LTL�,
©

α , LTL�α , LTL
∗�
α , for α ∈ {bool, horn, krom, core}.

For any L-formula ϕ, one can construct, in log-space, an equisatisfiable L-formula

Ψ ∧ �∗ Φ, (4)

where Ψ is a conjunction of propositional variables from Φ, and Φ is a conjunc-
tion of clauses of the form (3) containing only ©

F , �P , �F for LTL�,
©

α , only
�P , �F for LTL�α, and only �∗ for LTL

∗�
α , in which the temporal operators are not

nested.

Proof. First, we take a fresh variable p and replace all the conjuncts of the form
λ and ¬λ in ϕ by �∗ (¬p ∨ λ) and �∗ (¬p ∨ ¬λ), respectively; we set Ψ = p.
For an LTL�,

©
α or LTL�α-formula, we replace the temporal literals �∗ λ with

�F�Pλ. Then, for each ©
Pλ, we take a fresh variable, denoted ©

Pλ, replace
each occurrence of ©Pλ with ©

Pλ and add the conjuncts �∗ (©F
©

Pλ → λ) and
�∗ (λ → ©

F
©

Pλ) to the resulting formula. In a similar manner, we use fresh
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Fig. 1. The structure of a model in Lemma 3

propositional variables as abbreviations for nested temporal operators and obtain
the required equisatisfiable formula. Clearly, this can be done in logarithmic
space. ❑

We now characterise the structure of interpretations satisfying formulas ϕ∗ of
the form (4) in a way similar to other known descriptions of temporal models;
see, e.g., [16,17]. This characterisation will be used in the upper bound proofs
of Theorems 1 and 3. For each �Fp in Φ, we take a fresh propositional variable,
�Fp, and call it the surrogate of �Fp; likewise, for each �Pp in Φ we take its
surrogate �Pp. Let Φ be the result of replacing all the �-literals in Φ with their
surrogates. By a type for Φ we mean any set of literals that contains either p or
¬p (but not both), for each variable p in Φ (including the surrogates).

The proof of the following lemma is standard and can be found in [6]. The
reader may find useful Fig. 1 illustrating the conditions of the lemma.

Lemma 3 (structure of models). Let ϕ be an LTL�,
©

bool -formula of the form (4)
and K = |ϕ| + 4. Then ϕ is satisfiable iff there exist integers m0 < m1 < · · · <
mK and types Ψ0, Ψ1, . . . , ΨK for Φ such that :

(B0) mi+1 −mi < 2|Φ|, for 0 ≤ i < K;

(B1) there exists �0, 0 < �0 < K, such that Ψ ⊆ Ψ�0 ;

(B2) �Fp ∈ Ψi ⇒ p,�Fp ∈ Ψi+1 and �Fp ∈ Ψi+1\Ψi ⇒ p /∈ Ψi+1 (0 ≤ i < K),
�Pp ∈ Ψi ⇒ p,�Pp ∈ Ψi−1 and �Pp ∈ Ψi−1 \ Ψi ⇒ p /∈ Ψi−1 (0 < i ≤ K);

(B3) there exist �F < K and �P > 0 such that

– Ψ�F = ΨK and, for each ¬�Fp ∈ Ψ�F , there is j ≥ �F with ¬p ∈ Ψj,

– Ψ�P = Ψ0 and, for each ¬�Pp ∈ Ψ�P , there is j ≤ �P with ¬p ∈ Ψj ;

(B4) the following formulas are consistent, for 0 ≤ i < K:

ψi = Ψi ∧
mi+1−mi−1∧

k=1

©k
F Θi ∧ ©mi+1−mi

F Ψi+1 ∧ �∗ Φ,
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where ©k
F
Ψ is the result of attaching k operators ©

F to each literal in Ψ and

Θi =
{
p, �Fp | �Fp ∈ Ψi

}
∪
{
¬�Fp | ¬�Fp ∈ Ψi

}
∪{

p, �Pp | �Pp ∈ Ψi+1

}
∪
{
¬�Pp | ¬�Pp ∈ Ψi+1

}
.

The intuition behind this lemma is as follows (see Fig. 1). If ϕ is satisfiable,
then it has a model M that consists of the initial fragments of models Mi of
the formulas ψi: namely, the types of the moments mi, . . . ,mi+1 in M coincide
with the types of the moments 0, . . . , (mi+1 − mi) in Mi. By (B4), we have
M, 0 |= �∗ Φ. Then (B1) makes sure that M, 0 |= Ψ . Conditions (B2) and (B3)
guarantee that if �Fp ∈ Ψi then p ∈ Ψj for all types Ψj located to the right of Ψi

in Fig. 1 and, conversely, if �Fp /∈ Ψi then ¬p ∈ Ψj, for some Ψj to the right of
Ψi; and symmetrically for the �P -literals. It follows that M, 0 |= �∗ Φ.

3 Binary-Clause LTL and Arithmetic Progressions

In this section, we prove NP-completeness of the satisfiability problem for
LTL�,

©
krom and LTL�,

©
core. The key ingredient of the proof of the upper bound is

an encoding of condition (B4) for binary clauses by means of arithmetic pro-
gressions (via unary automata). The proof of the lower bound is by reduction of
the problem whether a given set of arithmetic progressions covers all the natural
numbers.

Let ϕ be an LTL�,
©

krom-formula of the form (4). By Lemma 3, to check sat-
isfiability of ϕ it suffices to guess K + 1 types for Φ and K natural numbers
ni = mi+1−mi, for 0 ≤ i < K, whose binary representation, by (B0), is polyno-
mial in |Φ|. Evidently, (B1)–(B3) can be checked in polynomial time. Our aim
now is to show that (B4) can also be verified in polynomial time, which will
give a nondeterministic polynomial-time algorithm for checking satisfiability of
LTL�,

©
krom-formulas.

Theorem 1. The satisfiability problem for LTL�,
©

krom-formulas is in NP.

Proof. In view of Lemma 2, we write © in place of ©F . We denote propositional
literals (p or ¬p) by L and temporal literals (p, ¬p, ©p or ¬©p) by D. We assume
that ©¬p is the same as ¬©p. We use ψ1 |= ψ2 as a shorthand for ‘M, 0 |= ψ2

whenever M, 0 |= ψ1, for any interpretation M.’ Thus, the problem is as follows:
given a set Φ of binary clauses of the form D1 ∨D2, types Ψ and Ψ ′ for Φ, a set
Θ of propositional literals and a number n > 0 (in binary), decide whether

Ψ ∧
∧n−1

k=1
©kΘ ∧ ©nΨ ′ ∧ �∗ Φ (5)

has a satisfying interpretation. For 0 ≤ k ≤ n, we set:

F k
Φ(Ψ) =

{
L′ | L ∧�∗ Φ |= ©kL′, for L ∈ Ψ

}
,

P k
Φ(Ψ

′) =
{
L | ©kL′ ∧ �∗ Φ |= L, for L′ ∈ Ψ ′

}
.
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Lemma 4. Formula (5) is satisfiable iff the following conditions hold :

(L1) F 0
Φ(Ψ) ⊆ Ψ , Fn

Φ (Ψ) ⊆ Ψ ′ and P 0
Φ(Ψ

′) ⊆ Ψ ′, Pn
Φ (Ψ

′) ⊆ Ψ ;
(L2) ¬L /∈ F k

Φ(Ψ) and ¬L /∈ Pn−k
Φ (Ψ ′), for all L ∈ Θ and 0 < k < n.

Proof. Clearly, if (5) is satisfiable then the above conditions hold. For the con-
verse direction, observe that if L′ ∈ F k

Φ(Ψ) then, since Φ is a set of binary clauses,
there is a sequence of ©-prefixed literals ©k0L0 � ©k1L1 � · · · � ©kmLm

such that k0 = 0, L0 ∈ Ψ , km = k, Lm = L′, each ki is between 0 and
n and the � relation is defined by taking ©kiLi � ©ki+1Li+1 just in one
of the three cases: ki+1 = ki and Li → Li+1 ∈ Φ or ki+1 = ki + 1 and
Li → ©Li+1 ∈ Φ or ki+1 = ki − 1 and ©Li → Li+1 ∈ Φ (we assume that,
for example, ¬q → ¬p ∈ Φ whenever Φ contains p → q). So, suppose condi-
tions (L1)–(L2) hold. We construct an interpretation satisfying (5). By (L1),
both Ψ ∧�∗ Φ and ©nΨ ′ ∧�∗ Φ are consistent. So, let MΨ and MΨ ′ be such that
MΨ , 0 |= Ψ∧�∗ Ψ and MΨ , n |= Ψ ′∧�∗ Ψ , respectively. Let M be an interpretation
that coincides with MΨ for all moments k ≤ 0 and with MΨ ′ for all k ≥ n; for
the remaining k, 0 < k < n, it is defined as follows. First, for each p ∈ Θ , we
make p true at k and, for each ¬p ∈ Θ, we make p false at k; such an assignment
exists due to (L2). Second, we extend the assignment by making L true at k
if L ∈ F k

Φ(Ψ) ∪ Pn−k
Φ (Ψ ′). Observe that we have {p,¬p} � F k

Φ(Ψ) ∪ Pn−k
Φ (Ψ ′):

for otherwise L ∧ �∗ Φ |= ©kp and ©n−kL′ ∧ �∗ Φ |= ¬p, for some L ∈ Ψ and
L′ ∈ Ψ ′, whence L ∧ �∗ Φ |= ©n¬L′, contrary to (L1). Also, by (L2), any as-
signment extension at this stage does not contradict the choices made due to Θ.
Finally, all propositional variables not covered in the previous two cases get their
values from MΨ (or MΨ ′). We note that the last choice does not depend on the
assignment that is fixed by taking account of the consequences of �∗ Φ with Ψ ,
Ψ ′ and Θ (because if the value of a variable depended on those sets of literals,
the respective literal would be among the logical consequences and would have
been fixed before). ❑

Thus, it suffices to show that conditions (L1) and (L2) can be checked in
polynomial time. First, we claim that there is a polynomial-time algorithm which,
given a set Φ of binary clauses of the form D1∨D2, constructs a set Φ∗ of binary
clauses that is ‘sound and complete’ in the following sense:

(S1) �∗ Φ∗ |= �∗ Φ;
(S2) if �∗ Φ |= �∗ (L → ©kLk) then either k = 0 and L → L0 ∈ Φ∗, or k ≥ 1 and

there are L0, L1, . . . , Lk−1 with L = L0 and Li → ©Li+1 ∈ Φ∗, for 0 ≤ i < k.

Intuitively, the set Φ∗ makes explicit the consequences of �∗ Φ and can be con-
structed in time (2|Φ|)2 (the number of temporal literals in Φ∗ is bounded by the
doubled length |Φ| of Φ as each of its literal can only be prefixed by ©). Indeed,
we start from Φ and, at each step, add D1 ∨D2 to Φ if it contains both D1 ∨D
and ¬D ∨ D2; we also add L1 ∨ L2 if Φ contains ©L1 ∨ ©L2 (and vice versa).
This procedure is sound since we only add consequences of �∗ Φ; completeness
follows from the completeness proof for temporal resolution [15, Section 6.3].
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Our next step is to encode Φ∗ by means of unary automata. Let L, L′ be
literals. Consider a nondeterministic finite automaton AL,L′ over {0} such that
the literals of Φ∗ are its states, with L being the initial state and L′ the only
accepting state, and

{
(L1, L2) | L1 → ©L2 ∈ Φ∗

}
is its transition relation.

By (S1) and (S2), for all k > 0, we have

AL,L′ accepts 0k iff �∗ Φ |= �∗ (L → ©kL′).

Then both F k
Φ(Ψ) and P k

Φ(Ψ
′) can be defined in terms of the language of AL,L′:

F k
Φ(Ψ) =

{
L′ | AL,L′ accepts 0k, for L ∈ Ψ

}
,

P k
Φ(Ψ

′) =
{
L | A¬L,¬L′ accepts 0k, for L′ ∈ Ψ ′

}
(recall that ©kL′ → L is equivalent to ¬L → ©k¬L′). Note that the numbers
n and k in conditions (L1) and (L2) are in general exponential in the length of
Φ and, therefore, the automata AL,L′ do not immediately provide a polynomial-
time procedure for checking these conditions: although it can be shown that
if (L2) does not hold then it fails for a polynomial number k, this is not the
case for (L1), which requires the accepting state to be reached in a fixed (expo-
nential) number of transitions. Instead, we use the Chrobak normal form [11] to
decompose the automata into a polynomial number of polynomial-sized arith-
metic progressions (which can have an exponential common period; cf. the proof
of Theorem 2). In what follows, given a and b, we denote by a + bN the set
{a + bm | m ∈ N} (the arithmetic progression with initial term a and common
difference b).

It is known that every N -state unary automaton A can be converted (in
polynomial time) into an equivalent automaton in Chrobak normal form (e.g.,
by using Martinez’s algorithm [28]), which has O(N2) states and gives rise to
M arithmetic progressions a1 + b1N, . . . , aM + bMN such that

(A1) M ≤ O(N2) and 0 ≤ ai, bi ≤ N , for 1 ≤ i ≤ M ;
(A2) A accepts 0k iff k ∈ ai + biN, for some 1 ≤ i ≤ M .

By construction, the number of arithmetic progressions is bounded by a quadratic
function in the length of Φ.

We are now in a position to give a polynomial-time algorithm for checking (L1)
and (L2), which requires solving Diophantine equations. In (L2), for example,
to verify that, for each p ∈ Θ, we have ¬p /∈ F k

Φ(Ψ), for all 0 < k < n, we take
the automata AL,¬p, for L ∈ Ψ , and transform them into the Chrobak normal
form to obtain arithmetic progressions ai + biN, for 1 ≤ i ≤ M . Then there is k,
0 < k < n, with ¬p ∈ F k

Φ(Ψ) iff one of the equations ai+ bim = k has an integer
solution, for some k, 0 < k < n. The latter can be verified by taking the integer
m = �−ai/bi� and checking whether either ai+ bim or ai+ bi(m+1) belongs to
the open interval (0, n), which can clearly be done in polynomial time.

This completes the proof of Theorem 1. ❑

The matching lower bound for LTL�,
©

core-formulas, even without �F/�P , can be
obtained using NP-hardness of deciding inequality of regular languages over a



The Complexity of Clausal Fragments of LTL 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
5 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 2. Positive numbers encoding assignments for 3 variables p1, p2, p3 (shaded)

unary alphabet [27]. In the proof of Theorem 2, we give a more direct reduction
of the NP-complete problem 3SAT and repeat the argument of [27, Theorem
6.1] to construct a small number of arithmetic progressions (each with a small
initial term and common difference) that give rise to models of exponential size.

Theorem 2. The satisfiability problem for LTL�,
©

core-formulas is NP-hard.

Proof. The proof is by reduction of 3SAT. Let f =
∧n

i=1 Ci be a 3CNF with vari-
ables p1, . . . , pm and clauses C1, . . . , Cn. By a propositional assignment for f we
understand a function σ : {p1, . . . , pm} → {0, 1}. We represent such assignments
by sets of positive natural numbers. More precisely, let P1, . . . , Pm be the first
m prime numbers; it is known that Pm does not exceed O(m2) [1]. A natural
number k > 0 is said to represent an assignment σ if k is equivalent to σ(pi)
modulo Pi, for all i, 1 ≤ i ≤ m. Clearly, not every natural number represents an
assignment since each element of

j + Pi · N, for 1 ≤ i ≤ m and 2 ≤ j < Pi, (6)

is equivalent to j modulo Pi with j ≥ 2. On the other hand, every natural
number that does not represent an assignment belongs to one of those arithmetic
progressions (see Fig. 2).

Let Ci be a clause in f , say, Ci = pi1 ∨ ¬pi2 ∨ pi3 . Consider

P 1
i1P

0
i2P

1
i3 + Pi1Pi2Pi3 · N. (7)

A natural number represents an assignment that makes Ci true iff it does not
belong to the progressions (6) and (7). In the same way we construct a progres-
sion of the form (7) for every clause in f . Thus, a natural number k > 0 does not
belong to the constructed progressions of the form (6) and (7) iff k represents a
satisfying assignment for f .

To complete the proof, we show that the defined progressions can be encoded
in LTL�,

©
core. Take a propositional variable d (it will be shared by all formulas

below). Given an arithmetic progression a + bN (with a ≥ 0 and b > 0), let

θa,b = u0 ∧
∧a

j=1
�∗ (uj−1 → ©

Fuj) ∧

�∗ (ua → v0) ∧
∧b

j=1
�∗ (vj−1 → ©

Fvj) ∧ �∗ (vb → v0) ∧ �∗ (v0 → d),

where u0, . . . , ua and v0, . . . , vb are fresh propositional variables. It is not hard to
see that, in every model of θa,b, if k belongs to a+bN, then d is true at moment k.
Thus, we take a conjunction ϕf of the θa,b for arithmetic progressions (6) and (7)
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−K K

−K K

Kϕ

minimal model of Σϕ

Fig. 3. The minimal model of Σϕ and Kϕ

together with p∧�∗ (©Fp → p)∧�∗ (p → d)∧�∗ (¬�∗ d), where p is a fresh variable
(the last formula makes both p and d true at all moments k ≤ 0). The size of
the LTL�,

©
core-formula ϕf is O(n · m6). It is readily checked that ϕf is satisfiable

iff f is satisfiable. ❑

4 Core and Horn Fragments without Next-Time

Let ϕ be an LTL�horn-formula. By applying Lemma 2, we can transform ϕ to the
form Ψ ∧�∗ Φ+ ∧�∗ Φ−, where Ψ is a set of propositional variables while Φ+ and
Φ− are sets of positive and negative clauses of the form

λ1 ∧ λ2 ∧ · · · ∧ λk−1 → λk and ¬λ1 ∨ ¬λ2 ∨ · · · ∨ ¬λk, (8)

respectively. Trivially, Ψ ∧ �∗ Φ+ is satisfiable. Since all clauses in Φ+ have at
most one positive literal and are constructed from variables possibly prefixed by
�F or �P , the formula Ψ ∧ �∗ Φ+ has a canonical model Kϕ defined by taking

Kϕ, n |= p iff M, n |= p, for every model M of Ψ ∧ �∗ Φ+, n ∈ Z

(indeed, Kϕ, 0 |= Ψ ∧ �∗ Φ+ follows from the observation that Kϕ, n |= �Fp iff
M, n |= �Fp, for every model M of Ψ ∧ �∗ Φ+; and similarly for �Pp). If we
consider the canonical model Kϕ in the context of Lemma 3 then, since the
language does not contain ©

F or ©P , we have mi+1 −mi = 1 for all i. Thus, Kϕ

can be thought of as a sequence of (�F − �P + 1)-many states, the first and last
of which repeat indefinitely. Let K = |ϕ|+ 4.

Obviously, ϕ is satisfiable iff there is no negative clause ¬λ1 ∨ · · · ∨¬λk in Φ−

such that all the λi are true in Kϕ at some moment n with |n| ≤ K. This condition
can be encoded by means of propositional Horn clauses in the following way. For
each variable p, we take 2K + 1 variables pn, |n| ≤ K, and, for each �Fp and
�Pp, we take 2K+1 variables, denoted (�Fp)n and (�Pp)n, |n| ≤ K, respectively.
Consider the following set Σϕ of propositional Horn clauses, |n| ≤ K:

(H0) p0, if p ∈ Ψ,

(H1) λn1 ∧ · · · ∧ λnk−1 → λnk , if (λ1 ∧ · · · ∧ λk−1 → λk) ∈ Φ+,

(H2) (�Fp)n → (�Fp)n+1 if n < K, (�Pp)n → (�Pp)n−1 if n > −K,

(H3) (�Fp)n → pn+1, (�Pp)n → pn−1,

(H4) (�Fp)n ∧ pn → (�Fp)n−1 if n > −K, (�Pp)n ∧ pn → (�Pp)n+1 if n < K,

(H5) (�Fp)K ↔ pK , (�Pp)−K ↔ p−K ,

(H6) (�Fp)−K ↔ p−K , (�Pp)K ↔ pK .
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Clearly, |Σϕ| ≤ O(|ϕ|2). It is readily seen that the minimal model of Σϕ cor-
responds to the canonical model Kϕ as shown in Fig. 3. As propositional Horn
satisfiability is PTime-complete, we obtain the following:

Theorem 3. The satisfiability problem for LTL�horn-formulas is in PTime.

4.1 Temporal Derivations for LTL�
core in NLogSpace

In LTL�core-formulas, all clauses are binary: k = 2 in (8). Satisfiability of propo-
sitional binary clauses is known to be NLogSpace-complete. However, in the
reduction ϕ �→ Σϕ above, the clauses (H4) are ternary. In this section we show
how to modify the reduction to ensure membership in NLogSpace. More pre-
cisely, we define two types of derivation from Ψ∧�∗ Φ+: a 0-derivation of (λ, n) will
mean that Kϕ, n |= λ, while a ∀-derivation of λ from λ′ that Kϕ, 0 |= �∗ λ′ → �∗ λ.
We then show that these derivations define Kϕ and that satisfiability of ϕ can
be checked by a nondeterministic algorithm in logarithmic space.

Denote by→∗ the transitive and reflexive closure of the relation→ over literals
given by the clauses of Φ+. We require the following derivation rules over the
pairs (λ, n), where λ is a positive temporal literal in ϕ and n ∈ Z:

(R1) (λ1, n) ⇒ (λ2, n), if λ1 →∗ λ2,

(R2) (�Fp, n) ⇒ (�Fp, n + 1), (�Pp, n) ⇒ (�Pp, n− 1),

(R3) (�Fp, n) ⇒ (p, n + 1), (�Pp, n) ⇒ (p, n− 1),

(R4) (�Fp, 0) ⇒ (�Fp,−1), (�Pp, 0) ⇒ (�Pp, 1), if p′ →∗ p for p′ ∈ Ψ,

(R5) (p, n) ⇒ (�Fp, n− 1), (p, n) ⇒ (�Pp, n + 1).

The rules in (R1)–(R4) mimic (H1)–(H4) above ((H4) at moment 0 only) and
reflect the semantics of LTL in the sense that whenever (λ, n) ⇒ (λ′, n′) and
Kϕ, n |= λ then Kϕ, n′ |= λ′. For example, consider (R4). It only applies if p
follows (by →∗) from the initial conditions in Ψ , in which case Kϕ, 0 |= p, and so
Kϕ, 0 |= �Fp implies Kϕ,−1 |= �Fp. The rules in (R5) are different: for instance,
we can only apply (p, n) ⇒ (�Fp, n− 1) if we know that p holds at all m ≥ n.

A sequence d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�), for � ≥ 0, is called a 0-derivation of
(λ�, n�) if λ0 ∈ Ψ , n0 = 0 and all applications of (R5) are safe in the following
sense: for any (p, ni) ⇒(R5) (�Fp, ni − 1), there is λj = �Fq, for some q and
0 ≤ j < i; similarly, for any (p, ni) ⇒(R5) (�Pp, ni + 1), there is λj = �Pq with
0 ≤ j < i. In this case we write Ψ ⇒0 (λ�, n�). For example, consider

ϕ = p ∧ �∗ (p → �Fq) ∧ �∗ (q → r) ∧ �∗ (p → r).

Evidently, Kϕ,−1 |= �Fr. The following sequence is a 0-derivation of (�Fr,−1)
because the application of (R5) is safe due to �Fq:

(p, 0) ⇒(R1) (�Fq, 0) ⇒(R3) (q, 1) ⇒(R1) (r, 1) ⇒(R5) (�Fr, 0) ⇒(R4) (�Fr,−1).

Intuitively, if we can derive (r, 1) using (�F q, 0), then we can also derive (r, n)
for any n ≥ 1, and so we must also have (�Fr, 0), which justifies the application
of (R5). This argument is formalised in the following lemma:
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Lemma 5 (monotonicity). Let d be a 0-derivation of (λ�, n�) with a suffix

s : (�Fq, ns) ⇒ (λs+1, ns+1) ⇒ · · · ⇒ (λ�, n�), (9)

where none of the λi contains �F . Then Ψ ⇒0 (λ�,m), for all m ≥ n�. Similarly,
if there is a suffix beginning with some �Pq then Ψ ⇒0 (λ�,m), for all m ≤ n�.
Moreover, these 0-derivations only contain the rules used in d and (R2).

Proof. We first remove all applications of (R4) in s. Let (λi, ni)⇒(R4) (λi+1, ni+1)
be the first one. By definition, ni = 0 and, since �Fq is the last �F in d, we have
ni+1 = 1 and λi = λi+1 = �P r, for some r. So we can begin swith (�F q, ns)⇒(R2)

(�Fq, ns+1) ⇒ (λs+1, ns+1+1) ⇒ · · · ⇒ (λi, ni+1) ⇒ (λi+2, ni+2); see Fig. 4
on the left-hand side. We repeatedly apply this operation to obtain a suffix s of
the form (9) that does not use (R4). We then replace s in d with (�Fq, ns) ⇒(R2)

· · · ⇒(R2) (�Fq, ns+k)⇒ (λs+1, ns+1+k) ⇒ · · · ⇒ (λ�, n�+k), where k = m−n�;
see Fig. 4 on the right-hand side. ❑

However, 0-derivations are not enough to obtain all literals that are true in
Kϕ. Indeed, consider the formula

ϕ = r ∧ �∗ (r → �Fq) ∧ �∗ (�Fq → q) ∧ �∗ (�P q → p).

Clearly, Kϕ, n |= p for all n ∈ Z, but neither (p, n) nor (�Pq, n) is 0-derivable.
On the other hand, for each n ∈ Z, there is a 0-derivation of (q, n): for example,

(r, 0) ⇒(R1) (�F q, 0) ⇒(R1) (q, 0) ⇒(R5) (�Fq,−1) ⇒(R1) (q,−1).

These 0-derivations correspond to Kϕ, 0 |= �∗ q, from which we can derive �∗ p by
means of the second type of derivations. A sequence d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�)
is called a ∀-derivation of λ� from λ0 if it uses only (R1)–(R3) and (R5), whose
applications are not necessarily safe. So we write Ψ ⇒∀ λ if there is a ∀-derivation
of λ from some q such that Ψ ⇒0 (q, n), for all n ∈ Z. In the example above,
(q, 0) ⇒(R5) (�P q, 1) ⇒(R1) (p, 1) is a ∀-derivation of p from q, whence Ψ ⇒∀ p.
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Lemma 6 (soundness). If Ψ ⇒0 (λ, n) then Kϕ, n |= λ. If Ψ ⇒∀ λ then
Kϕ, 0 |= �∗ λ.

Proof. By induction on the derivation length, using Lemma 5 for (R5). ❑

Lemma 7 (completeness). If Kϕ, n |= λ then either Ψ ⇒0 (λ, n) or Ψ ⇒∀ λ.

Proof. LetM be an interpretation such that, for all p andn ∈ Z, we haveM, n |= p
iff Ψ ⇒0 (p, n) or Ψ ⇒∀ p. It suffices to show that M, 0 |= Ψ ∧ �∗ Φ+. Indeed, if
we assume that there are p′ and n′ such that Kϕ, n′ |= p′ but neither Ψ ⇒0 (p′, n′)
nor Ψ ⇒∀ p′, we will obtain M, n′ |= ¬p′ contrary to our assumption (other types
of literals are considered analogously).

Thus, we have to show that M is a model of Ψ ∧�∗ Φ+. Suppose p ∈ Ψ . Then
trivially Ψ ⇒0 (p, 0), and so M, 0 |= p. Suppose λ1 → λ2 ∈ Φ+ and M, n |= λ1.
We consider three cases depending on the shape of λ1 and show that M, n |= λ2.

λ1 = p. If Ψ ⇒∀ p then, by (R1), Ψ ⇒∀ λ2. Otherwise, there is a 0-derivation
of (p, n), and so Ψ ⇒0 (λ1, n) ⇒(R1) (λ2, n).

λ1 = �Fp. Then M,m |= p for all m > n. Consider M, n+1 |= p. If Ψ ⇒∀ p then,
by (R5), (R1), Ψ ⇒∀ λ2. Otherwise, there is a 0-derivation d of (p, n + 1).
(F) If �F occurs in d then Ψ ⇒0 (p, n + 1) ⇒(R5) (�Fp, n) ⇒(R1) (λ2, n).
(P) If �P occurs in d then, by Lemma 5, Ψ ⇒0 (p,m) for each m ≤ n + 1.

Thus, Ψ ⇒0 (p,m) for all m ∈ Z, and so, by (R5) and (R1), Ψ ⇒∀ λ2.
(0) If d contains neither �F nor �P then n = −1 and λ →∗ p, for some

λ ∈ Ψ (by (R1)). As M, 1 |= p and we assumed Ψ 
⇒∀ p, there is a
0-derivation d′ of (p, 1), which must contain �F or �P . If d

′ contains �F

then Ψ ⇒0 (p, 1) ⇒(R5) (�Fp, 0) ⇒(R4) (�Fp,−1) ⇒(R1) (λ2, n). If �P

occurs in d′ then, by the argument in (P), Ψ ⇒∀ λ2.
λ1 = �Pp. The proof is symmetric.

In each of these cases, we have either Ψ ⇒0 (λ2, n) or Ψ ⇒∀ λ2. Observe that
Ψ ⇒0 (λ2, n) impliesM, n |= λ2. Indeed, this clearly holds for λ2 = p. If λ2 = �Fp
then, by repetitive applications of (R2) and an application of (R3), we obtain
Ψ ⇒0 (p,m), for all m > n, which means M, n |= �Fp. The case λ2 = �Pp is
symmetric. If Ψ ⇒∀ λ2 then, independently of whether λ2 is p′, �Fp′ or �Pp′, we
have Ψ ⇒∀ p′, so M,m |= p′ for all m ∈ Z, whence, M, n |= λ2. ❑

Next, in Lemmas 8 and 9, we provide efficient criteria for checking the condi-
tions Ψ ⇒0 (λ, n) and Ψ ⇒∀ λ by restricting the range of numbers that can be
used in 0-derivations (numbers in ∀-derivations can simply be ignored). Given a
0-derivation d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�), we define its reach as

r(d) = max{|ni| | 0 ≤ i ≤ �}.

We say that d right-stutters, if there are v < w such that λv = λw, nv < nw and
ni > 0, for all i, v ≤ i ≤ w (in particular, (R4) is not applied between v and
w). Symmetrically, d left-stutters if there are v < w such that λv = λw , nv > nw
and ni < 0, for all i, v ≤ i ≤ w.
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Fig. 5. Left-stuttering: nv and nw occur between −1 and −|ϕ| − 1 (shaded) and
the fragment of the derivation from nv to nw can be repeated any number of times
(including 0)

Lemma 8 (checking ⇒0). Ψ ⇒0 (λ, n) iff there exists a 0-derivation d of
(λ,m) such that r(d) ≤ 2|ϕ| and one of the following conditions holds :

(C1) m = n;
(C2) d contains �F and either m ≤ n or d left-stutters ;
(C3) d contains �P and either m ≥ n or d right-stutters.

Proof. (⇒) Let d : (λ0, n0) ⇒ · · · ⇒ (λ�, n�) be a 0-derivation of (λ, n). If
r(d) ≤ |ϕ| then d satisfies (C1). Otherwise, we take the first �-literal in d, say
λt = �Fq (the case of �Pq is symmetric). Clearly, |nt| ≤ 1. Let u > t be the
smallest index with |nu| > |ϕ|. Since adjacent ni and ni+1 differ by at most
1, the segment between (λt, nt) and (λu, nu) contains a repeating literal: more
precisely, there exist v < w between t and u such that λv = λw and

– either nv > nw and ni < 0, for v ≤ i ≤ w,
– or nv < nw and ni > 0, for v ≤ i ≤ w.

In the former case d left-stutters, and we perform the following operations on
the suffix s : (λw, nw) ⇒ · · · ⇒ (λ�, n�) of d. First, we eliminate all applications
of (R4) in s: each suffix (�Fq, 0) ⇒(R4) (�F q,−1) ⇒ (λs, ns) ⇒ · · · ⇒ (λ�, n�)
is replaced by (�Fq, 0) ⇒ (λs, ns + 1) ⇒ · · · ⇒ (λ�, n� + 1); and similarly for
�P . If each time we eliminate the last application of (R4) then the result is
clearly a 0-derivation. Second, we remove all duplicating literals: each suffix
(λs, ns) ⇒ · · · ⇒ (λs′ , ns′) ⇒ (λs′+1, ns′+1) ⇒ · · · ⇒ (λ�, n�) with λs = λs′ is
replaced by (λs, ns) ⇒ (λs′+1, ns′+1+k) ⇒ · · · ⇒ (λ�, n�+k), where k = ns−ns′ .
This will give us a left-stuttering 0-derivation d′ of (λ,m), for some m. Since there
are at most |ϕ| distinct literals in s, we have r(d′) ≤ 2|ϕ|, thus satisfying the
second option of (C2); see Fig. 5.

In the latter case d right-stutters, and we construct a 0-derivation d′ of (p, n′)
by cutting out the segment (λv+1, nv+1) ⇒ · · · ⇒ (λw, nw) from d and ‘shifting’
the tail using the construction above: eliminate applications of (R4) and then
decrease all numbers by nw − nv > 0. We then consider the obtained d′ as the
original d. As the length of the derivations decreases and n′ ≤ n, by applying
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this procedure sufficiently many times, we shall finally construct a 0-derivation
of reach ≤ 2|ϕ| and satisfying either (C1) or the first option of (C2).

(⇐) is left to the reader. ❑

In a similar way we can show how to efficiently check the condition Ψ ⇒∀ p:

Lemma 9 (checking ⇒∀). Ψ ⇒0 (λ, n) holds for all n ∈ Z iff there are 0-
derivations d of (λ,m) and d′ of (λ,m′) of reach at most 2|ϕ| such that one of
the following conditions holds :

(C′
1) d contains �F , d′ contains �P and m ≤ m′ + 1;

(C′
2) d contains �F and left-stutters ;

(C′
3) d contains �P and right-stutters.

Proof. (⇒) Take a 0-derivation of (q, 2|ϕ|+1). By Lemma 8, there is a derivation
d0 of (q, n0) with r(d0) ≤ 2|ϕ| satisfying either (C2) or (C3). If d0 left- or right-
stutters then we have (C′

2) or (C
′
3), respectively. Otherwise, d0 contains �F and

we can construct a finite sequence of 0-derivations d0, d1, d2, . . . , dk of reach at
most 2|ϕ|, where each di is a 0-derivation of (q, ni) containing �F , and such that
n0 > n1 > n2 > · · · > nk.

Suppose we have already constructed di. Since Ψ ⇒0 (q, n), for all n, we have
Ψ ⇒0 (q, ni − 1). By Lemma 8, there is a 0-derivation d of (q, ni+1), for some
ni+1, with one of (C1)–(C3). If (C2) and d left-stutters or (C3) and d right-
stutters then we obtain (C′

2) or (C
′
3), respectively. If (C2) and d contains�F with

ni+1 ≤ ni−1 then d becomes the next member di+1 in the sequence. If (C3) and d
contains�P with ni+1 ≥ ni−1 then di and d satisfy (C

′
1). Otherwise, we have (C1)

with ni+1 = ni − 1 (recall that ni > −2|ϕ|). Consider three cases. If d contains
�F then d becomes the next member di+1 in the sequence. If d contains �P then
di and d satisfy (C′

1). Otherwise, that is, if d contains neither �P nor �F , we must
have ni+1 = 0 and p →∗ q, for some p ∈ Ψ . Then we have ni = 1 and, as di
contains �F , we can append (q, 1) ⇒(R5) (�Fq, 0) ⇒(R4) (�Fq,−1) ⇒(R3) (q, 0)
to d to obtain the next member di+1 in the sequence.

(⇐) is left to the reader. ❑

We are now in a position to prove the main result of this section.

Theorem 4. The satisfiability problem for LTL�core-formulas is in NLogSpace.

Proof. An LTL�core-formula ϕ = Ψ ∧�∗ Φ+ ∧�∗ Φ− is unsatisfiable iff Φ− contains
a clause ¬λ1 ∨¬λ2 such that Kϕ, n |= λ1∧λ2, for some n with |n| ≤ K. For each
¬λ1 ∨ ¬λ2 in Φ−, our algorithm guesses such an n (in binary) and, for both λ1

and λ2, checks whether Ψ ⇒0 (λi, n) or Ψ ⇒∀ λi, which, by Lemmas 8 and 9,
requires only logarithmic space. ❑

The initial clauses of LTL�core-formulas ϕ are propositional variables. If we
slightly extend the language to allow for initial core-clauses (without �∗ ), then
the satisfiability problem becomes PTime-hard. This can be shown by reduction
of satisfiability of propositional Horn formulas with clauses of the form p, ¬p and



50 A. Artale et al.

p∧ q → r, which is known to be PTime-complete. Indeed, suppose f =
∧n

i=1 Ci

is such a formula. We define a temporal formula ϕf to be the conjunction of all
unary clauses of f with the following formulas, for each ternary clause Ci of the
form p ∧ q → r in f :

ci ∧ �∗ (p → �F ci) ∧ �∗ (q → �Pci) ∧ (�∗ ci → r),

where ci is a fresh variable. One can show that f is satisfiable iff ϕf is satisfiable.
We finish this section by an observation that if the language allows for non-

Horn clauses (e.g., p ∨ q) then the satisfiability problem becomes NP-hard:

Theorem 5. The satisfiability problem for LTL�krom-formulas is NP-hard.

Proof. By reduction of graph 3-colourability. Given a graph G = (V,E), consider
the following LTL�krom-formula ϕG with variables p0, . . . , p4 and vi, for vi ∈ V :

p0 ∧
∧

0≤i≤3
�∗ (pi → �Fpi+1) ∧

∧
vi∈V

�∗ (p0 → ¬�Fvi) ∧∧
vi∈V

�∗ (p4 → vi) ∧
∧

(vi,vj)∈E
�∗ (vi ∨ vj).

Intuitively, the first four conjuncts of this formula choose, for each vertex vi of
the graph, a moment of time 1 ≤ ni ≤ 3; the last conjunct makes sure that
ni 
= nj in case vi and vj are connected by an edge in G. It can be easily shown
that ϕG is satisfiable iff G is 3-colourable. ❑

5 Conclusion

We have investigated the computational complexity of the satisfiability problem
for the fragments of LTL over (Z, <) given by the form of the clauses—bool,
horn, krom and core—in the clausal normal form and the temporal operators
available for constructing temporal literals. Apart from LTL�,

©
bool , whose formulas

are equisatisfiable to formulas in the full LTL, only LTL�,
©

horn has PSpace-complete
satisfiability. For all other fragments, the complexity varies from NLogSpace

to PTime and NP.
The idea to consider sub-Boolean fragments of LTL comes from description

logic, where the DL-Lite family [9,3] of logics has been designed and investi-
gated with the aim of finding formalisms suitable for ontology-based data ac-
cess (OBDA). It transpired that, despite their low complexity, DL-Lite logics
were capable of representing basic conceptual data modelling constructs [8,2],
and gave rise to the W3C standard ontology language OWL 2 QL for OBDA.
One possible application of the results obtained in this paper lies in tempo-
ral conceptual modelling and temporal OBDA [5]. Temporal description logics
(and other many-dimensional logics) are notorious for their bad computational
properties [17,20]. We believe, however, that efficient practical reasoning can
be achieved by considering sub-Boolean temporal extensions of DL-Lite logics;
see [4] for first promising results.
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Abstract. We add updates to the query language PrQL , designed for
inspecting machine representations of proofs. PrQL natively supports
hiproofs that express proof structure using hierarchically nested labelled
trees, which we claim is a natural way of taming the complexity of huge
proofs. Query-driven updates allow us to change this structure, in par-
ticular, to transform proofs produced by interactive theorem provers into
forms that are easier for humans to understand, or that could be con-
sumed by other tools. In this paper we motivate and define basic up-
date operations, using an abstract denotational semantics of hiproofs
and queries. This extends our previous semantics for queries based on
syntactic tree representations. We define update operations that add and
remove sub-proofs or manipulate the hierarchy to group and ungroup
nodes. We show that these basic operations are well-behaved and hence
can form a sound core for a hierarchical transformation language. Our
study here is firmly in language design and semantics; implementation
strategies and study of sub-languages of our query language with good
complexity will come later.

1 Introduction

We are interested in ways to exploit machine representations of proofs con-
structed by interactive or automated theorem provers. These proof representa-
tions are produced so that they can be independently checked or imported into
other systems. We believe that they can be exploited beyond this. For example,
system inputs such as proof scripts are rarely given at the lowest level of detail,
even with interactive theorem provers. Therefore it can be useful for proof de-
velopers to understand how the system has found a proof: which inference rules
have been used, which axioms, which instantiations for existential variables, and
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so on. More complex questions are also interesting. For example, whether a proof
contains unnecessary detours or replicated sub-proofs.

To this end, we recently introduced PrQL [3], a proof query language which
treats a large formal proof as an object that can be examined in a systematic
way. We are currently developing practical prototypes to experiment with proof
queries, so far based on exporting from Isabelle [3] and HOL Light [21]. But
it is clear already that as well asking questions, we also want to be able to
transform proofs to alter their structure in various ways. This may be used to
aid understanding (human or machine), by hiding certain kinds of details. Or it
could be used for optimisation or adaptation, to change proofs to more efficient
forms, or for consumption by different systems such as proof commentary tools
or machine learning tools. This paper is a study of a rigorous foundation for
such transformations, introducing update extensions for PrQL.

To study the foundations of updates, we need to have the right data model for
hiproofs and define operations that preserve the hiproof structure. Some trans-
formations may also preserve theoremhood of proved statements. This is why we
design our own query and transformation language, rather than immediately en-
coding our concepts into a more general graph or tree model (such as XML) with
an existing query and transformation language (such as XQuery Update [10] or
XDuce [20]) that could make arbitrary dissections and rearrangement.

When it comes to implementing our query and update language, it is obviously
desirable to reuse existing systems which have looser semantics but optimised
implementations for query language fragments in good complexity classes. We
may consider for example, graph databases, other tools in the “NoSQL” family
or perhaps even SPARQL. We are conducting some early experiments in parallel
with the work described here.

Contributions and Paper Outline. This paper contributes towards generic foun-
dational aspects of theorem proving systems, in particular, the novel aspects of
querying and transforming the proof objects which can be recorded by proof
tools. Moreover, we contribute to the study of a structured representation for
these objects. Sect. 2 introduces the idea of proof transformations that we are
studying, with some informal examples and motivations. Sect. 3 recaps the tech-
nical background of hiproofs and PrQL. Sect. 4 introduces a revised denota-
tional semantics for hiproofs; this extends previous work, connecting the syn-
tactic strand of [2] with the previous denotational semantics of [14]. The new
extensions add explicit orderings among subtrees and the ability to model open,
i.e., incomplete, proofs. Sect. 5 gives a new denotational semantics to our query
language. This interpretation provides two advances: (1) the ability to return
locations in the hiproof where a query is satisfied, and (2) a close connection to
a graph model that we can use to encode hiproofs. Sect. 6 builds on top of this
to define our four kinds of update operations. We show that these operations
are well-behaved and preserve proofs in certain senses. Finally, we give a more
detailed comparison to related work in the concluding Sect. 7.
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2 Querying and Transforming Hierarchical Trees

We start from hiproofs [14,2], which provide an abstract, generic notion of proof
tree with hierarchical structure. Hiproofs are composed from atomic rules of
inference from an unspecified underlying logic, but additionally provide a notion
of hierarchy, by allowing labelling and nesting of subtrees inside boxes. This
succinct notion of structuring in a proof can be used, for example, for noting
where a lemma was applied, or where a particular tactic or external proof tool
produced a subtree. The hierarchical structure of hiproofs and its interaction
with the proof-tree is more complex than the straightforward tree structure, in
particular because hiproofs allow nesting of partially completed proofs.

Induction

Solver

∃y. y < 0 + 1 [∃y. y < k + 1 ] ∃y. y < k + 2

Y < k + 1 −→ Y < k + 2

StepBase

∀x : nat.∃y. y < x+ 1

Rule

Rewrite

(a)

Induction

Solver

StepBase

Rule

Rewrite

(b)

Apply IH

RewriteTrivial

Rule

ExIntro(-1)

(c)

Fig. 1. Different hiproof structures on the same underlying proof

The picture shown in Fig. 1(a) is an example hiproof, shown at a certain level
of abstraction. It corresponds with an ordinary (but upside-down) natural de-
duction style proof tree: the theorem being proved, ∀x.∃y.y < x+ 1 is shown at
the top, and then the proof outline shows how the proof is achieved by decom-
posing the goal theorem into pieces. The labelled boxes correspond to tactics
which have been applied to do this. Notice how the Induction box encapsulates
an incomplete proof; it has the dangling edge which is passed into the Solver box.
We suppose that boxes such as Base may contain further details, perhaps right
down to atomic inferences in the underlying system; the diagram only hints at
the full hiproof. Fig. 1(a) shows the statements being proved along edges. In a
visualisation tool (such as the web-based HipCam [21]) the goals may be shown
in pop-ups so as not to clutter the display, and boxes such as Base can be opened
and closed dynamically.
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Variations of hierarchy. Further right in Fig. 1 we see some alternative structur-
ing of this simple inductive proof. Fig. 1(b) shows the complete step case being
enclosed by the induction box; whereas Fig. 1(c) shows just the induction rule
itself being boxed. These pictures motivate our main kind of desirable trans-
formations: to alter and introduce hierarchical structure. For example, when an
inductive proof appears in the proof tree, we might like to give it the uniform
structure on the left so it can be easily picked apart. However, the proofs which
arise by a naive labelling of tactics in HOL Light without hiproof adaptation [21],
for example, have the form in Fig. 1(c).

Basic Transformations. Generally, the life cycle of data management is cap-
tured by functions to create, read, update, and delete. We already have mecha-
nisms to create proof objects: abstractly, via the syntax for hiproofs reviewed in
Sect. 3, and in practice by functions for exporting proof objects from systems
like Isabelle [3] and HOL Light [21]. To inspect proof objects, PrQL provides a
language of structured queries, reviewed further below. To manipulate existing
hiproofs, we need to add update and delete operations. But we want to do this
in a way that respects the proof structure, rather than as arbitrary edits to a
tree or graph. This motivates the following four types of operation.

Introduce hierarchy is used moving from Fig. 1(c) to Fig. 1(a): we introduce
a nested hiproof called Base for the two steps ExIntro and Trivial, which hides
the detail. We also push in the children of Rule into the Induction box.

Remove hierarchy is the opposite transformation. Visualisation tools perform
this reversibly under user control, but here we want to permanently trans-
form the underlying structure by pulling out individual pieces, such as when
moving from Fig 1(b) to Fig 1(a).

Remove subproof deletes part of a hiproof. This is a radical operation, and
will change what is being proved, popping out an unproved subgoal to the
top level. For example, if we remove the Solver tactic in Fig. 1(a), the proof
is left unfinished with the subgoal Y < k + 1 =⇒ Y < k + 2 remaining.

Complete subproof is the inverse operation, and grafts on a new subtree. This
can resolve a previously unproved subgoal, or generate new subgoals.

2.1 Finding Somewhere to Transform

First, to apply a transformation, we need to know where in a target hiproof it
should be applied. A natural way to find a transformation point is to search
for a node satisfying some properties: this is where queries enter the picture.
(Similarly, update languages that have been defined elsewhere for semistructured
data and graphs also use queries to position updates; see Sect. 7.)

We have already designed PrQL, a query language for hiproofs, so it is nat-
ural to reuse it. PrQL is a structured query language which combines property
queries (that look at local properties on nodes) with structuring operations (that
combine queries across connected nodes, decomposing the tree). These can be
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defined with recursion and logical connectives, giving a powerful language that
can encode search in queries. For example, the PrQL query

somewhere (atomic ExIntro then atomic Trivial)

is satisfied by the hiproof in Fig. 1(c). The atomic operator examines a label
on a bottom-most nested node. The then operator decomposes the target graph
across the proof tree sequence. Similarly, we can decompose sibling hiproofs
with beside and nested hiproofs with inside, building up patterns. Patterns
may contain match variables that get instantiated with names of rules or box
labels. Using recursion we can define operators like somewhere (finds a match
in any subtree) and nearby (finds a match in any subtree at the same nesting
depth). See Sect. 3.1 for more details of PrQL.

However, so far there is not yet a notion of where a query is satisfied; we do
not have a way to describe where ExIntro or Trivial rules were actually found.
To pick out specific nodes in a hiproof, we extend the query language to return
positions: a new type of match variable standing for a (sub)hiproof where a query
is satisfied. We add the new query term “at X” which matches X against the
“currently examined” node in the tree. So

somewhere inside Induction nearby (at X ∧ atomic Trivial)

returns locations X where Trivial appears immediately inside an Induction box.
Unlike labels for boxes and atomic rule names, nodes in our proof trees are

abstract: we do not need user-level syntax for writing their identities. So at can
only locate a position by properties; it cannot pick out a specific node concretely.
But the query language is precise enough that, for any specific node in the tree,
there is a query which picks out that node uniquely (see Prop. 1 in Sect. 5).

2.2 Updating Proofs

Now we have a way to specify transformation points, we can show how our up-
date operations are written. Several language design choices are possible. We
have followed an SQL-like paradigm, matching positions then using one-shot
operations which can update a large proof in-place, based on the selected posi-
tions. A more ambitious choice would be to design a hybrid query and update
language, with looping and branching to build up complex transformations. But
we first want to understand the update combinators that are common to both.

As a first example, to turn Fig. 1(c) into Fig. 1(b) we use a transformation
which adds a box around a given subtree, called box:

box X to Y Z as Induction where
(at X ∧ atomic Rule) then (seq Y beside seq Z)

(1)

where the recursive query seq X picks out a sequence ending at X :

seq X
def
= μQ. ∗ then Q ∨ (at X ∧ ¬(∗ then ∗))
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Besides adding boxes, we can remove them with unbox:

unbox X where at X ∧ inside Solver

which removes the Solver box around the result of an automatic tactic. Instead
we could rename it, simply writing: rename Solver as Auto.

So far, these operations have not changed what is proved in the hiproof. Other
updates change the underlying proof tree, but maintain its validity. For example,
maybe we are not interested in a particular subtree of a proof

deletetree X where inside Meson at X

then this removes the subtree generated by an automatic procedure, just leav-
ing the name of the procedure. In the hiproof structure, we do not forget that
something is unproved; the subtree leaves a dangling edge.

Dually, we can fill in a proof for such a dangling edge; this is a refinement
operation in the sense that it extends the proof:

refine X with s where at X ∧ unproved γ

Here, s is a literal term in the syntax for hiproofs, which proves the goal γ.
Finally, it can be useful to use a more general replacement transformation

which is defined using deletetree then refine. For example, to find useless
detours in a proof tree, we use the query:

useless X Y
def
= (at X ∧ goal G) then nearby (at Y ∧ goal G)

this identifies a path from X to Y where we hit the same goal G = γ. It might
even be a tactic which is worse than useless, in that it has transformed a goal γ
into several more goals to prove including γ again. Now the replace update

replace X by Y where (useless X Y )

removes this detour.

3 Syntactic Hiproofs and PrQL Queries

This section introduces previous material as background. We are as concise as
possible and refer the reader to previous papers for more details [14,2,3].

Hiproofs add structure to an underlying derivation system, a simple kind of
logical framework. A derivation system is given by a set G of goals (intuitively:
possibly provable sequents or judgements), ranged over by γ, and a set of atomic
inference rules ranged over by a. Atomic rules are composed to give hiproofs,
which have a functional reading: a hiproof maps a finite list of input goals g1 =
[γ1, . . . , γn] to a list of output subgoals g2 = [γ′1, . . . , γ

′
m].
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Informally, we draw hiproofs as inverted trees with a nested structure. For-
mally, a hiproof is given by two forests on the same set of nodes, as explained in
Sect. 4. Syntactically, a hiproof can be written as a term:

s ::= a | id atomic and identity
| [l ] s | s1 ; s2 labelling and sequencing
| 〈〉 | s1 ⊗ s2 empty and tensor (juxtaposition)

where l ∈ L, an arbitrary set of names and a ∈ A for some special subset
A ⊂ L. We think of labels as standing for names of tactics or proof rules, or
atomic steps; they have no semantic content. For example, the proofs in Fig. 1
are written syntactically as

([Induction]Rule ; Base ⊗ Step) ; [Solver]Rewrite (2)

[Induction]Rule ; Base ⊗ (Step ; [Solver]Rewrite) (3)

Rule ; (ExIntro ; Trivial) ⊗ (ApplyIH ; Rewrite) (4)

3.1 Structured Queries in PrQL

The definition of PrQL starts with matches built from wildcards and match
variables, constants (atoms, sets and predicates) and negation (to construct the
complement of a match). Let VarN be a set of schematic variables standing for
names, ranged over by N in general and A when we suggest an atomic rule name
or L a label name. Let VarG be a set of variables standing for lists of goals. The
name matches and goal matches are given by:

nm ::= a | l | • | ξ | N | ¬nm gm ::= γ | ψ | G | ¬gm

where ξ stands for a logic-dependent predicate on names, and ψ stands for a
logic-dependent predicate on goals used to check some structural property of
the goal term. For example we might have a predicate that checks whether a
goal γ is in the form of a horn clause, when φhorn(γ) holds. The special name •
is used to label unproved goals; the name ∗ = ¬• serves as a wildcard.

We use matches to build up queries, q, as below. The extension to PrQL to
locate vertices uses a set of match variables VarH , ranged over by X .

q ::= ∗ anything non-empty
| at X matches at node X
| atomic nm atomic rule match
| inside nm q q satisfied inside box with label matching nm
| q1 then q2 q1 and q2 satisfied by successive nodes
| q1 beside q2 q1 and q2 satisfied by adjacent nodes
| goal gm proved goal matches gm
| q1 ∧ q2 | q1 ∨ q2 | ¬q compound queries
| μQ.q recursive query
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Queries are built from schematic hiproof terms. They are posed against an im-
plicit hiproof subject, instantiating the match variables and testing goals. Com-
pound queries are built using logical connectives and recursion. This core lan-
guage allows many useful derived forms, like the search operator somewhere.
We can examine gaps in proofs too; to assert that the hiproof has γ as an un-
solved goal we write:

unproved γ
def
= goal γ ∧ atomic •

This works because we model ‘dangling’ edges as empty boxes labelled with •.

4 Denotational Hiproofs

A hiproof consists of two forests on the same set of nodes, with a distinguished
root, satisfying some conditions [14]. To relate to a derivation system (where
premises of inference rules have an ordering), we add a left-to-right ordering
among siblings. To relate to the syntax, we use a more general forest notion
first, then restrict to hiproofs. To model incomplete (partial) proofs, we add
nodes corresponding to unproved goals. Lastly, we extend labelling to attach to
each node the goal it validates, as shown on edges entering nodes in Fig. 1(a).

Given a forest F defined by a relation R on a set of vertices, we write
siblingsR(v, v

′) if v and v′ are children of the same R-parent. Given a vertex
v, we write isrootR(v) for the assertion that v is a root wrt R, i.e., ∀v′.v′ R
v =⇒ v = v′, and isleaf R(v) for the dual, i.e., ∀v′.v R v′ =⇒ v = v′.

Definition 1 (Ordered Hiforest). An ordered hiforest H = 〈V, L,≤i,→s,�〉
consists of a finite set of vertices V with a labelling function L : V → (L∪{•})×G
and three relations on V × V . The relations are an inclusion order ≤i (which
captures the nesting of vertices; >i is proper containment), a sequencing relation
→s (which captures the functional composition of nodes) and a child order �.
These are subject to the following conditions:

0. 〈V,≤i〉 and 〈V,→s〉 each form forests; ≤i and � are partial orders.
1. arrows target outer nodes: v→sw and v′ >i w =⇒ v′ >i v.
2. arrows emanate from inner nodes: v→sw and v′ ≤i v =⇒ v = v′.
3. inclusion & sequence are mutually exclusive: v ≤i w and v→s

∗w =⇒ v = w.
4. boxes have unique roots:

siblings≤i
(v, v′) ∧ isroot→s(v) ∧ isroot→s(v

′) =⇒ v = v′.
5. children or top-level roots are totally ordered:

siblings→s
(v, v′) ∨ (isroot>i(v) ∧ isroot>i(v

′)) =⇒ v � v′ ∨ v′ � v.
6. only leaves (wrt. sequencing and inclusion) may have • label:

L(v) = (•, γ) =⇒ leaf →s∪>i
(v).

Each node in a hiforest is given a name and a goal. The goal is the theorem
proved at that node. The unproved parts are the ‘dangling’ holes labelled by
•. An ordered hiforest proves a sequence of top-level goals, whereas a hiproof
proves just one.
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Definition 2 (Ordered Hiproof). An ordered hiproof is an ordered hiforest
which satisfies the additional constraint:

7. Top-level roots are unique: isroot→s∪>i(v) ∧ isroot→s∪>i(v
′) =⇒ v = v′.

We are mainly interested in valid hiproofs, which are those corresponding to
a proof in the underlying derivation system.

Definition 3 (Validity). A hiforest H is valid if it corresponds to a sequence
of (possibly incomplete) proof trees in the underlying derivation system; we write
H |= g1 −→ g2 if this holds and where g1 is the list of goals on the outermost
roots of H, and g2 is the list of unproved goals on the holes, as ordered by
extending � to the leaves of the tree.

A map between two hiforests is a map between the vertices and the labels
which preserves the orderings and the labelling. We say a hiforest H1 refines
to a hiforest H2, H1 " H2, if there is an inclusion from H1 to H2 which also
preserves the roots wrt >i.

We now define some operations on the two dimensions of hiforests which will
form the semantic foundations of our transformations. For brevity, definitions
are given informally here, and made precise in the appendix. Given two hiforests
H1 and H2 such that H1 |= g1 −→ g and H2 |= g −→ g2, we define a com-
position operation graft(H1, H2) that ‘grafts’ the roots of H2 into the dangling
goals of H1, such that graft(H1, H2) |= g1 −→ g2; it can be characterised at the
smallest hiforest H3 which refines H1, H1 " H3, for which there is a (necessarily
injective) map α : H2 −→ H3. This is an instance of a more general opera-
tion graft(H1, H2, v1, . . . , vm) which grafts the m roots of H2 into the specified
danglers v1, . . . , vm of H1, where H1 may contain more than m danglers.

Given a vertex v ∈ V in hiforest H , we define cover (v,H) as the hiproof
containing the set of vertices in H reachable from v by >i or →s, includ-
ing v itself. If H |= g1 −→ g2 then cover(v,H) |= γv −→ gv where
L(v) = (l, γv) and g2 = g′2

∧ gv
∧ g′′2 (with ∧ denoting list concatenation). The op-

eration chop(v,H) removes exactly these vertices, replacing them with a hole. So
chop(v,H) |= g1 −→ g3 where g3 is the list g′2

∧ [γv]
∧ g′′2 . Together, these oper-

ations are inverse to grafting, i.e. graft(chop(v,H), cover (v,H), v) = H (modulo
some technical restrictions). The final operations are box(l, H) and unbox(H)
which add and remove ‘boxes’ around the roots of H , where a box is a node
(labelled l) including all the other nodes (below that root). These are inverse as
well: unbox(box (l, H)) = H. These two operations preserve validity and input
and output goal lists.

5 Semantics for Queries

The query semantics we gave in [3] was based on querying syntax models di-
rectly. Since hiproofs are constructed syntactically, this is in a sense the most
direct approach. However, syntactic representations are not canonical, because
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a particular underlying tree structure can be denoted by many terms in the
syntax. E.g., the proof in Fig.1(c) can be expressed as in (4) or as

Rule ; (ExIntro ⊗ ApplyIH) ; (Trivial ⊗ Rewrite)

For the definition of boolean satisfaction of a query given in [3], this is not prob-
lematic as we can close under the syntactic equivalence given by the algebraic
structure of hiproofs. But to define updates it is more delicate, since we need a
firm notion of focus in the hiproof to anchor changes; e.g., example (1) does not
work with the syntactic form above. We could use normal forms for syntactic
terms, but the denotational model is more direct and also fits well with parallel
work on implementation using graph databases, building on [21].

The definition of query satisfaction in the denotational semantics uses a sub-
stitution to instantiate variables: σ : (VarN ⇀ L)# (VarG ⇀ G)# (VarH ⇀ V ),
where V is the set of vertices of the hiproof being queried. The base case for
query satisfaction is for names and goals, treated very similarly:

n |=σ n
′ iff n = n′

ξ |=σ n iff ξ(n)
N |=σ n iff σ(N) = n

(¬N) |=σ n iff ¬(N |=σ n)

γ |=σ γ
′ iff γ = γ′

ψ |=σ γ iff ψ(γ)
G |=σ γ iff σ(G) = γ

(¬G) |=σ γ iff ¬(G |=σ γ)

For a relation R and distinct a, b, we write a R1 b if a R b and there is no
intermediate c such that a R c and c R b.

Definition 4 (Query satisfaction). Let H be an ordered hiforest with vertices
V and q a query. Satisfaction of q for H at a vertex v ∈ V wrt a substitution σ
is defined as the least relation v |=σ q satisfying the following clauses:

v |=σ ∗ always
v |=σ at X iff σ(X) = v
v |=σ goal gm iff gm |=σ γ where L(v) = (l, γ) for some l
v |=σ inside nm q when nm |=σ l where (v) = (l, γ) for some γ

and ∀w.w ≤1
i v =⇒ w |=σ q

v |=σ q1 beside q2 when v |=σ q1 and ∃w.v �1 w with w |=σ q2
v |=σ q1 then q2 when v |=σ q1 and ∃w.v→1

sw with w |=σ q2
v |=σ q1 ∧ q2 when v |=σ q1 and v |=σ q2
v |=σ q1 ∨ q2 when v |=σ q1 or v |=σ q2
v |=σ ¬q when ¬(v |=σ q)
v |=σ μQ.q when v |=σ q[μQ.q/Q]

A query q is satisfied by a substitution σ on a hiforest H, written H |=σ q, if it is
satisfied on each outermost root vertex of H, i.e., ∀v.isroot→s∪>i(v) =⇒ v |=σ q.

Def. 4 works by navigating in a fixed hiproof h to find satisfying vertices v.
Because a vertex determines a sub-hiproof, this is equivalent to a structural
definition as given in [3], which works by decomposing the subject hiproof during
navigation, defining a relation s |=σ q. Note that in this model atomic is
defineable as an empty box: atomic nm = inside nm (¬∗).
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Definition 5 (Query interpretation). Let H be an ordered hiforest and q
a query. Then we define the interpretation of q in H as the set of satisfying
substitutions: [[q]]H = { σ | H |=σ q }.

Our language is expressive but queries can be expensive. In [3] we gave a
naive algorithm for [[q]] using unification to instantiate variables, which is expo-
nential in the number of match variables. Recursion and match variable unifi-
cation unavoidably affect the data complexity of our queries (see basic results
e.g., [12,18,1]). For large proofs, we would want a fragment that is more feasible
but captures most desirable examples. The following proposition is the denota-
tional counterpart of a similar proposition in [3].

Proposition 1. Given a hiproof H, one of its vertices v and a variable X, there
is a query Q(v,X) which locates v at X, i.e., [[Q(v,X)]]H = {σ} with σ(X) = v.

6 Transformations and Their Semantics

We now introduce the core update operations formally. Note that we do not
want to allow arbitrary “tree surgery” of the hiproof structure; we want update
operations to preserve semantic validity. Updates have the syntax:

u ::= box Xr to X1 . . . Xn as l add nested box around Xr . . . X1 . . .Xn

unbox X unfold nested box at X
rename X as l change label on box at X
refine X with s add a new sub-hiproof at X
deletetree X delete subtree at X
replace X by Y replace subtree at X by that at Y

The box operation is the most interesting. It introduces a nested box, whose
contents are nodes in the partial subtree with Xr as root and X1 . . .Xn as leaves.
This allows us to gather to an arbitrary depth, using a query to select either end
of the path; this is useful to package up repeated applications of rules. The other
update operations are straightforward to understand. An update is applied by
combining with a query to instantiate node variables in a hiproof, written as
update u q. This matches q to the root of the hiproof; a more common pattern
is to search the hiproof for matches, as seen in the examples in Sect. 2.2. This
is written and defined as u where q = update u (somewhere q).

6.1 Interpretation of Transformations

We can specify positions in a hiproof, but we still need to solve a well-known
problem with tree and graph updates. Suppose a query picks out several nodes
and a transformation changes the structure; then simultaneous updates may
overlap. The result may be ill-defined, or may depend on the execution order.
The semantics as given here is based on single-valued answers to queries; where
a query has several answers, there may be several update results, representing
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applying the operation to different positions in the tree. To have a global effect,
the update results may be merged if they do not conflict, or we may simply re-
peatedly apply a query and update. We are not yet investigating implementation
in detail, so making any such choices for PrQL could be premature; we prefer
to first pin down an accurate semantics. Later on, we plan to extend the lan-
guage to allow more efficient constructs, avoiding multiple passes and using type
systems to ensure safety; we will relate back to the present, intended semantics.

To interpret updates, we use the operations in Sect. 4 and extra definitions:

(i) A combinator to transform a subforest of H with a function f :

at(H, v, f) = graft(chop(H, v), f(cover (H, v)), v)

(ii) The box operator specialised to box only down to vertices v1, . . . , vn:

addbox (H, l, v1, . . . , vn) = graft( box (l, chopn(H, v1, . . . , vn)),
covern(H, v1, . . . , vn), v1, . . . , vn)

where chopn(H, v1, . . . , vn) and covern(H, v1, . . . , vn) are the obvious gen-
eralisations of chop and cover to n arguments.

(iii) To add or remove boxes at the subforest given by vr:

addboxat(H, vr , v1, . . . , vn) = at(H, vr, λH.addbox (H, l, v1, . . . , vn))

unboxat(H, vr) = at(H, vr, unbox)

(iv) To change the label of a vertex: let H = 〈V, L,≤i,→s,�〉, v ∈ V and l ∈ L,
then L′ is defined as L′(v′) = (l, γ) for v′ = v, where L(v) = (l′, γ) and
L′(v′) = L(v) otherwise. Then relabel(l, H, v) = 〈V, L′, <i,→s,�〉.

Definition 6 (Interpretation of transformations). Let H be a hiproof and
q[X1 . . . Xn] a query with match variables instantiated by σ. The meaning of an
update wrt σ is a partial function, defined when the RHS is defined:

[[box Xr to X1 . . .Xn as l]]σH = addboxat(H, l, σ(Xr), σ(X1), . . . , σ(Xn))

[[unbox X ]]σH = unboxat(H,σ(X))

[[rename X as l]]σH = relabel (H,σ(X), l)

[[refine X with s]]σH = graft(H, [[s]], σ(X))

[[deletetree X ]]σH = chop(H,σ(X))

[[replace X1 by X2]]
σ
H = graft(chop(H,σ(X1)), cover (H,σ(X2)), σ(X1))

[[update u q]]H = { [[u]]σH | σ ∈ [[q]]H and [[u]]σH is defined }
Def. 6 gives a non-deterministic semantics; the result may be empty (if opera-

tions are undefined) or there may be several results (for different instantiations).
We do not say anything here about how to combine several results into one,
as this may depend on the implementation; as hinted above, an implementa-
tion may encode our core operations using a more general update language. In
this setting, a better alternative would be to give criteria which guarantee a
deterministic result. For the same reason, we do not yet investigate complexity
results.
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7 Related Work and Conclusions

This paper introduced an update extension of PrQL, a query language for
hiproofs. We interpret queries and transformations using denotational seman-
tics of hiproofs, which are graph-like structures subject to well-formedness con-
straints. We showed that the basic operations are enough to capture desirable
transformations, and that they preserve well-formedness and the connection to
underlying proof trees.

Connections in Theorem Proving. As larger proof developments are being con-
structed, people are starting to explore ways to investigate them. Besides PrQL, a
query language has been proposed for OmDoc proofs [22]. The Proviola tool [23]
provides another means for proof understanding, by recording the output is-
sued by an interactive proof during its execution development; impressively, it
has been used to annotate source code of large proofs in both Coq (the Feit-
Thompson proof [17]) and HOL Light (Hales’s Flyspeck proof [24]). However,
Proviola sheds no light on a proof that proceeds in a single tactic execution
step. A hiproof-based tool would allow more dynamic exploration, by zooming
into proof objects to look at the fine detail — although the practical details of
managing such large proof objects will be challenging. Other researchers have
used proof as the subject for search and machine learning (e.g., [25,19]). Again
this work might be usefully adapted to proof trees.

Conversely, we hope that our work can be adapted to transforming proof
scripts. Rather than altering the extracted proof trees for HOL Light, we might
want to impose the structural changes on the input proofs themselves, where
possible. Work has been started on tools and foundations for proof refactoring
towards this [5,27,15], but it is challenging: it requires understanding the meaning
of input proof scripts, and how to transform them. By contrast, it is much easier
to manipulate recorded output proof structures.

Update Languages for Structured Data. There is a large body of work from the
last decade on query and update languages for general forms of structured data.
PrQL was inspired by, among others, UnQL [7] and Graph Logic [9]; the latter
was extended to Context Logic to consider updates [8] and the former extended
to a language of functional transformations [11], in the setting of XML Update.
The approach taken by the W3C to extend XQuery [10] has a more SQL-like
flavour, similar to our approach.

Transformations and Hierarchy. To study PrQL updates and extensions fur-
ther, fundamental results on tree queries [18], transformation operations [16]
and complexity [4] should be possible to adapt. However, without restricting our
language we are unlikely to improve on earlier complexity results [3], so instead
we want to focus on translation into an efficient underlying XML or graph-based
system. Having worked out the language design and semantics, we need to use
the right level of abstraction before translation, taking hierarchy as a native
construct. Hierarchical graphs have recently been studied in another setting, for
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structuring safety cases in a hierarchical way, providing a tool that performs
transformations like those studied here [13]. Related ideas for managing hierar-
chy in understanding provenance have recently been proposed [6].

Future and Ongoing Work. Several extensions to our update language are desir-
able; at the least, to add constructs for composing and iterating transformations.
Before pursuing that, we want to extend our practical experiments to transfor-
mations. Taking the implementation of hiproofs in HOL Light [21], we can output
them in a form suitable for a graph database system such as Neo4j [26], which
can store and process very large structures on disk. Some of our queries and
transformations can be captured in Neo4j’s query and update language Cipher,
although it remains to investigate how efficient the encoding is; alongside prac-
tical experiments, we need to give a further theoretical analysis.

Acknowledgements. The authors thank James Cheney and Domagoj Vrgoc
for helpful discussions.
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A Additional Technical Details

Definition 7 (Grafting). Let H = 〈V, L,≤i,→s,�〉 be a valid hiforest with
H |= g1 −→ g. Let v1, . . . , vn be distinct vertices in V , with L(vi) = (•, γi)
(and hence n ≤ length(g)). Let H ′ = 〈V ′, L′,≤′i ,→s

′,�′〉 be another hiforest
with H |= g′ −→ g2, so it has n overall roots {vr1 . . . vrn} ∈ V ′ ordered by �′
with L(vri) = (li, γi). Suppose (wlog) V ∩ V ′ = ∅.

Then we can define a new hiforest by

graft(H,H ′, v1, . . . , vn) = 〈V − {v1 . . . vn} ∪ V ′, L|V−{v1...vn} ∪ L′,≤′′i ,→s
′′,�′′〉

The relations ≤′′i , →s
′′ and �′ are defined by:

v ≤′′i w iff either

⎧⎪⎨⎪⎩
v ≤i w ∧ w 
∈ {v1 . . . vn}
v ≤′i vri ∧ vi ≤i w

v ≤′i w

v→s
′′w iff either

⎧⎪⎨⎪⎩
v→sw ∧ w 
∈ {v1 . . . vn}
v→svi ∧ vri→s

′w

v→s
′w

v �′′ w iff either

⎧⎪⎨⎪⎩
v � w ∧ w 
∈ {v1 . . . vn}
(v � vi ∧ vri = w) ∨ (v = vri ∧ vi �′ w)

v �′ w

If H has exactly n holes v1, . . . , vn (i.e., g = [ γ1, . . . , γn ] and L(vi) = (•, γi)),
then we write graft(H,H ′) as an abbreviation.

Definition 8 (Cover). Given a hiforest H = 〈V, L,≤i,→s,�〉 and vertex v ∈
V , we define the cover of v as all nodes below or inside v by V ′ = cover→s∪>i(v),
where the cover of a relation R is defined as coverR(x) = {y | xR∗ y}. and the
labellings and orderings restricted accordingly:

cover (H, v) = 〈V ′, L|V ′ ,≤i|V ′×V ′ ,→s|V ′×V ′ � |V ′×V ′ 〉.

When defining the chopping operation, we do not take out the node v, but
replace its label with • to make it a dangler:

Definition 9 (Chopping). Given a hiforest (or hiproof) H = 〈V, L,≤i,→s,�〉
and vertex v, then we define a new hiforest without nodes below or inside v by
setting V ′ = (V − cover→s∪>i(v)) ∪ {v} and

chop(H, v) = 〈V ′, L|V−cover→s∪>i
∪ {v �→ (•, γ) | L(v) = (l, γ)},

≤i|V ′×V ′ ,→s|V ′×V ′ ,� |V ′×V ′ 〉

We can generalise chop and cover to n arguments. Chopping n vertices re-
moves them sequentially from H , whereas the cover of n vertices is a hiforest
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γ1···γn
γ

a is an atomic inference

a � γ −→ [ γ1, . . . , γn ] id � γ −→ γ

s � γ −→ g

[l] s � γ −→ g

s1 � g1 −→ g s2 � g −→ g2
s1 ; s2 � g1 −→ g2

s1 � g1 −→ g′1 s2 � g2 −→ g′2
s1 ⊗ s2 � g1 ∧ g2 −→ g′1 ∧ g′2

Fig. 2. Validation of hiproof terms (the symbol ∧ stands for list append)

with n roots:

chop1(H, v1) = chop(H, v1)

chopn(H, v1, . . . , vn) = chopn−1(chop(H, v1), v2, . . . , vn)

cover 1(H, v1) = cover (H, v1)

covern(H, v1, . . . , vn) = cover (H, v1) ∪ covern−1(H, v2, . . . , vn)

To avoid notational difficulties when dealing with more than one root simulta-
neously, we define boxing and unboxing only for hiproofs. The definitions extend
easily to hiforests by boxing reach root of the forest separately (although that is
not needed in this paper). Note how the danglers in H are not included in the
box introduced with box (l, H).

Definition 10 (Boxing and Unboxing). Given a non-empty hiproof H =
〈V, L,≤i,→s,�〉 with overall root vr, i.e., isroot→s∪>i(vr), then the boxing of
H with a label l is defined as

box (l, H) = 〈V ∪ {∗}, L ∪ {∗ �→ (l, γ) | L(vr) = (l′, γ)},
≤i ∪ {(v, ∗) | v ∈ V, L(v) = (l, γ) ∧ l 
= •},→s,� ∪{(∗, ∗)}〉

The unboxing removes such a box (if it exists): let H = 〈V, L,≤i,→s,�〉, then
we define

V ′ =

{
V − {r} isroot→s∪>i(r), L(v) = (l, γ) ∧ l 
= •
V otherwise

Then:
unbox(H) = 〈V ′, L|V ′ ,≤i|V ′ ,→s,� |V ′〉

By careful inspection of the operation definitions we can show that the re-
sulting hiforests indeed satisfy the conditions of Def. 1 and preserve semantic
validity as stated earlier.

Proposition 2 (Operations and validity). The semantic operations preserve
the hiforest conditions and moreover, preserve semantic validity of hiproofs with
the expected input-output goals.

The final part of justifying our definitions is to show that the interpretation
of updates is well-defined, when query results are given and refinement has the



70 D. Aspinall, E. Denney, and C. Lüth

right shape. Specifically, refine X with s requires that when σ(X) = v and the
subtree at v has validity chop(H, v) |= g1 −→ g2, then the term given denotes
a hiforest with the same input-output shape.

For this we need to show that syntactic hiproof terms denote valid tree struc-
tures. This is shown together with the definition of [[s]]. Validity for syntactic
hiproof terms is written as s $ g1 −→ g2, meaning that the hiproof s takes a
list of input (proven) goals g1 to produce a list of output (unproved) goals g2,
and is defined by the rules in Fig. 2.

Definition 11 (Interpretation of hiproof terms). The definition of [[s]] is by
induction on the syntactic validity s $ g1 −→ g2, defining [[s]] and establishing
at the same time that [[s]] |= g1 −→ g2. The cases are:

– a $ γ −→ [ γ1, . . . , γn ]. Then [[a]] is the n + 1 point hiforest with nodes

a, x1, . . . , xn. We set a→sxi, L(a) = (a, γ) and each xi is a “dangler”, so
L(xi) = (•, [γi]).

– id $ γ −→ γ. Then [[id]] is the hiforest with one “dangler” node ∗, where

L(∗) = (•, [γ]).
– [l] s $ γ −→ g2. Then [[[l] s]] = box (l, [[s]]) since [[s]] has a unique top-level

root.
– s1 ; s2 $ g1 −→ g2. Then [[s1 ; s2]] = graft([[s1]], [[s2]]). The premises of the

validity rule and the induction hypothesis ensure that the grafting operation
is well-defined.

– s1 ⊗ s2 $ g1
∧ g2 −→ g′1

∧ g′2. Then [[s1 ⊗ s2]] is the hiforest formed by dis-

joint union of [[s1]] and [[s2]], with the ordering relation � extended on the
roots and dangling nodes.

– 〈〉 $ [ ] −→ [ ] . [[〈〉]] is the empty hiforest.

Note that denotational hiproofs are unique only up to the choice of node set V ;
two hiproofs which have the same structure and labelling but differ only on V
are isomorphic [14]. The definitions above work with particular hiproofs, but it
can be verified that the choice of node names (but not labels!) is unimportant.
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Abstract. Graph data models have recently become popular owing to
their applications, e.g., in social networks, semantic web. Typical navi-
gational query languages over graph databases — such as Conjunctive
Regular Path Queries (CRPQs) — cannot express relevant properties
of the interaction between the underlying data and the topology. Two
languages have been recently proposed to overcome this problem: walk
logic (WL) and regular expressions with memory (REM). In this paper,
we begin by investigating fundamental properties of WL and REM, i.e.,
complexity of evaluation problems and expressive power. We first show
that the data complexity of WL is nonelementary, which rules out its
practicality. On the other hand, while REM has low data complexity,
we point out that many natural data/topology properties of graphs ex-
pressible in WL cannot be expressed in REM. To this end, we propose
register logic, an extension of REM, which we show to be able to express
many natural graph properties expressible in WL, while at the same
time preserving the elementariness of data complexity of REMs. It is
also incomparable in expressive power against WL.

1 Introduction

Graph databases have recently gained renewed interest due to applications, such
as the semantic web, social network analysis, crime detection networks, soft-
ware bug detection, biological networks, and others (e.g., see [1] for a survey).
Despite the importance of querying graph databases, no general agreement has
been reached to date about the kind of features a practical query language for
graph databases should support and about what can be considered a reasonable
computational cost of query evaluation for the aforementioned applications.

Typical navigational query languages for graph databases — including the
conjunctive regular path queries [6] and its many extensions [4] — suffer from a
common drawback: they are well-suited for expressing relevant properties about
the underlying topology of a graph database, but not about how it interacts
with the data. This drawback is shared by common specification languages for
verification [5] (e.g. CTL∗), which are evaluated over a similar graph data model
(a.k.a. transition systems). Examples of important queries that combine graph
data and topology, but cannot be expressed in usual navigational languages for
graph databases, include the following [7,11]: (Q1) Find pairs of people in a
social network connected by professional links restricted to people of the same
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age. (Q2) Find pairs of cities x and y in a transportation system, such that y
can be reached from x using only services operated by the same company. In each
one of these queries, the connectivity between two nodes (i.e., the topology) is
constrained by the data (from an infinite domain, e.g., N), in the sense that we
only consider paths in which all intermediate nodes satisfy a certain condition
(e.g. they are people of the same age).

Two languages, walk logic and regular expressions with memory, have recently
been proposed to overcome this problem. These languages aim at different goals:

(a) Walk logic (WL) was proposed by Hellings et al. [7] as a unifying
framework for understanding the expressive power of path queries over graph
databases. Its strength is on the expressiveness side. The underlying data model
of WL is that of (node or edge)-labeled directed graphs. In this context, WL can
be seen as a natural extension of FO with path quantification, plus the ability to
check whether positions p and p′ in paths π and π′, respectively, have the same
data values. In their paper, they assume the restriction that each node carries a
distinct data value. However, as we shall see, this makes no difference in terms
of the results that we can obtain.

(b) Regular expressions with memory (REMs) were proposed by Libkin and
Vrgoč [9] as a formalism for comparing data values along a single path, while
retaining a reasonable complexity for query evaluation. The strength of this
language is on the side of efficiency. The data model of the class of REMs is that
of edge-labeled directed graphs, in which each node is assigned a data value from
an infinite domain. REMs define pairs of nodes in the graph database that are
linked by a path satisfying a given condition c. Each such condition c is defined
in a formalism inspired by the class of register automata [8], allowing some data
values to be stored in the registers and then compared against other data values.
The evaluation problem for REMs is Pspace-complete (same than for FO over
relational databases), and can be solved in polynomial time in data complexity
[9], i.e., assuming queries to be fixed.1 This shows that the language is, in fact,
well-behaved in terms of the complexity of query evaluation.

The aim of this paper is to investigate the expressiveness and complexity
of query evaluation for WL and the class of REMs with the hope of finding a
navigational query language for data graphs that strikes a good balance between
these two important aspects of query languages.

Contributions. We start by considering WL, which is known to be a powerful
formalism in terms of expressiveness. Little is known about the cost of query eval-
uation for this language, save for the decidability of the evaluation problem and
NP-hardness of its data complexity. Our first main contribution is to pinpoint
the exact complexity of the evaluation problem for WL (and thus answering an
open problem from [7]): we prove that it is non-elementary, and that this holds
even in data complexity, which rules out the practicality of the language.

1 Recall that data complexity is a reasonable measure of complexity in the database
scenario [15], since queries are often much smaller than the underlying data.



Expressive Path Queries on Graphs with Data 73

We thus move to the class of REMs, which suffers from the opposite drawback:
Although the complexity of evaluation for queries in this class is reasonable, the
expressiveness of the language is too rudimentary for expressing some important
path properties due to its inability to (i) compare data values in different paths
and (ii) express branching properties of the graph database. An example of an
interesting query that is not expressible as an REM is the following: (Q) Find
pairs of nodes x and y, such that there is a node z and a path π from x to y in
which each node is connected to z. Notice that this is the query that lies at the
basis of the queries (Q1) and (Q2) we presented before.

Our second contribution then is to identify a natural extension of this lan-
guage, called register logic (RL), that closes REMs under Boolean combinations
and existential quantification over nodes, paths and register assignments. The
latter allows the logic to express comparisons of data values appearing in differ-
ent paths, as well as branching properties of the data. This logic is incomparable
in expressive power to WL. Besides, many natural queries relating data and
topology in data graphs can be expressed in RL including: the query (Q), hamil-
tonicity, the existence of an Eulerian trail, bipartiteness, and complete graphs
with an even number of nodes. We then study the complexity of the problem of
query evaluation for RL, and show that it can be solved in elementary time (in
particular, that it is Expspace-complete). This is in contrast to WL, for which
even the data complexity is non-elementary. With respect to data complexity,
we prove that RL is Pspace-complete. We then identify a slight extension of its
existential-positive fragment, which is tractable (NLogspace) in data complex-
ity and can express many queries of interest (including the query (Q)). The idea
behind this extension is that atomic REMs can be enriched with an existential
branching operator – in the style of the class of nested regular expressions [3] –
that increases expressiveness without affecting the cost of evaluation.

Organization of the Paper. Section 2 defines our data model. In Section 3,
we briefly recall the definition of walk logic and some basic results from [7]. In
Section 4, we prove that the data complexity of WL is nonelementary. Section
5 contains our results concerning register logic. We conclude in Section 6 with
future work.

2 The Data Model

We start with a definition of our data model: data graphs.

Definition 1 (Data graph). Let Σ be a finite alphabet. A data graph G over
Σ is a tuple (V,E, κ), where V is the finite set of nodes, E ⊆ V × Σ × V is
the set of directed edges labeled in Σ (that is, each triple (v, a, v′) ∈ E is to be
understood as an edge from v to v′ in G labeled a), and κ : V → D is a function
that assigns a data value in D to each node in V .

This is the data model adopted by Libkin and Vrgoč [9] in their definition of
REMs. In the case of WL [7], the authors adopted graph databases as their data
model, i.e., data graphs G = (V,E, κ) such that κ is injective (i.e. each node
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carries a different data value). We shall adopt the general model of [9] since
none of our complexity results are affected by the data model: upper bounds
hold for data graphs, while all lower bounds are proved in the more restrictive
setting of graph databases.

There is also the issue of node-labeled vs edge-labeled data graphs. Our data
model is edge-labeled, but the original one for WL is node-labeled [7]. We have
chosen to use the former because it is the standard in the literature [2]. Again,
this choice is inessential, since all the complexity results we present in the pa-
per continue being true if the logics are interpreted over node-labeled graph
databases or data graphs (applying the expected modifications to the syntax).

Finally, in several of our examples we use logical formulas to express properties
of undirected graphs. In each such case we assume that an undirected graph H
is represented as a graph database G = (V,E, κ) over unary alphabet Σ = {a},
where V is the set of nodes of H and E is a symmetric relation (i.e. (v, a, v′) ∈ E
iff (v′, a, v) ∈ E).

3 Walk Logic

WL is an elegant and powerful formalism for defining properties of paths in
graph databases, that was originally proposed in [7] as a yardstick for measuring
the expressiveness of different path logics.

The syntax of WL is defined with respect to countably infinite sets Π of path
variables (that we denote π, π1, π2, . . . ) and T (π), for each π ∈ Π , of position
variables of sort π. We assume that position variables of different sort are differ-
ent. We denote position variables by t, t1, t2, . . . , and we write tπ when we need
to reinforce that position variable t is of sort π.

Definition 2 (Walk logic (WL)). The set of formulas of WL over finite al-
phabet Σ is defined by the following grammar, where (i) a ∈ Σ, (ii) t, t1, t2
are position variables of any sort, (iii) π is a path variable, and (iv) tπ1 , tπ2 are
position variables of the same sort π:

φ, φ′ := Ea(t
π
1 , tπ2 ) | tπ1 < tπ2 | t1 ∼ t2 | ¬φ | φ ∨ φ′ | ∃tφ | ∃πφ

As usual, WL formulas without free variables are called Boolean.

To define the semantics of WL we need to introduce some terminology. A path
(a.k.a. walk in [7]) in the data graph G = (V,E, κ) is a finite, nonempty sequence
ρ = v1a1v2 · · · vn−1an−1vn, such that (vi, ai, vi+1) ∈ E for each 1 ≤ i < n. The
set of positions of ρ is {1, . . . , n}, and vi is the node in position i of ρ, for
1 ≤ i ≤ n. The intuition behind the semantics of WL formulas is as follows.
Each path variable π is interpreted as a path ρ = v1a1v2 · · · vn−1an−1vn in the
data graph G, while each position variable t of sort π is interpreted as a position
1 ≤ i ≤ n in ρ (that is, position variables of sort π are interpreted as positions
in the path that interprets π). The atomic formula Ea(t

π
1 , tπ2 ) is true iff π is

interpreted as path ρ = v1a1v2 · · · vn−1an−1vn, the position p2 that interprets t2



Expressive Path Queries on Graphs with Data 75

in ρ is the successor of the position p1 that interprets t1 (i.e. p2 = p1 + 1), and
node in position p1 is linked in ρ by an a-labeled edge to node in position p2 (that
is, ap1 = a). In the same way, tπ1 < tπ2 holds iff in the path ρ that interprets π the
position that interprets t1 is smaller than the one that interprets t2. Furthermore,
t1 ∼ t2 is the case iff the data value carried by the node in the position assigned
to t1 is the same than the data value carried by the node in the position assigned
to t2 (possibly in different paths). We formalize the semantics of WL below.

Let G = (V,E, κ) be a data graph and φ a WL formula. Assume that Sφ is
the set that consists of (i) all position variables tπ and path variables π such
that tπ is a free variable of φ, and (ii) all path variables π such that π is a free
variable of φ. Intuitively, Sφ defines the set of (both path and position) variables
that are relevant to define the semantics of φ over G. An assignment α for φ over
G is a mapping that associates a path ρ = v1a1v2 · · · vn−1an−1vn in G with each
path variable π ∈ Sφ, and a position 1 ≤ i ≤ n with each position variable of the
form tπ in Sφ (notice that this is well-defined since π ∈ Sφ every time a position
variable of the form tπ is in Sφ). As usual, we denote by α[t → i] and α[π → ρ]
the assignments that are equal to α except that t is now assigned position i and
π the path ρ, respectively.

We say that G satisfies φ under α, denoted (G,α) |= φ, if one of the following
holds (we omit Boolean combinations which are standard):

– φ = Ea(t
π
1 , tπ2 ), the path α(π) is v1a1v2 · · · vn−1an−1vn, and it is the case

that α(tπ2 ) = α(tπ1 ) + 1 and a = aα(tπ1 ).
– φ = tπ1 < tπ2 and α(tπ1 ) < α(tπ2 ).
– φ = (t1 ∼ t2), t1 is of sort π1, t2 is of sort π2, and κ(v1) = κ(v2), where vi is

the node in position α(ti) of α(πi), for i = 1, 2.
– φ = ∃tπψ and there is a position i in α(π) such that (G,α[tπ → i]) |= ψ.
– φ = ∃πψ and there is a path ρ in G such that (G,α[π → ρ]) |= ψ.

Example 1. A simple example from [7] that shows that WL expresses
NP-complete properties is the following query that checks if a graph has a Hamil-
tonian path:

∃π
(
∀tπ1∀tπ2 (tπ1 
= tπ2 → tπ1 
∼ tπ2 ) ∧ ∀π′∀tπ′

1 ∃tπ2 (tπ
′

1 ∼ tπ2 )
)
.

In fact, this query expresses that there is a path π that does not repeat nodes
(because π satisfies ∀tπ1∀tπ2 (tπ1 
= tπ2 → tπ1 
∼ tπ2 )), and every node belongs to such
path (because π satisfies ∀π′∀tπ′

1 ∃tπ2 (tπ
′

1 ∼ tπ2 ), and, thus, every node that occurs
in some path π′ in the graph database also occurs in π). �

4 WL Evaluation Is Non-elementary in Data Complexity

In this section we pinpoint the precise complexity of query evaluation for WL.
It was proven in [7] that this problem is decidable. Although the precise com-
plexity of this problem was left open in [7], one can prove that this is, in fact, a
non-elementary problem by an easy translation from the satisfiability problem
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for FO formulas – which is known to be non-elementary [13,14]. In databases,
however, one is often interested in a different measure of complexity – called
data complexity [15] – that assumes the formula φ to be fixed. This is a reason-
able assumption since databases are usually much bigger than formulas. Often
in the setting of data complexity the cost of evaluating queries is much smaller
than in the general setting in which formulas are part of the input. The main
result of this section is that the data complexity of evaluating WL formulas is
nonelementary even over graph databases, which rules out its practicality.

Theorem 1. The evaluation problem for WL is non-elementary in data com-
plexity. In particular, for each k ∈ Z>0, there is a finite alphabet Σ and a Boolean
formula φ over Σ, such that the problem Eval(WL,φ) of evaluating the WL for-
mula φ is k-Expspace-hard. In addition, the latter holds even if the input is
restricted to the class of graph databases.

Proof (Sketch): We start by sketching the case k = 1 here, which provides
insightful technical details about the nature of the proof. There is a Turing
machine M such that the following problem is ExpSpace-hard: given a word
w of size n, is there an accepting run of M over w using at most 2cn cells? We
prove that there is a formula φ ∈ WL of size polynomial in the size of M such
that for all words w of size n, we can compute a graph Gw such that

Gw � φ iff there is an accepting run of M over w using ≤ 2cn cells. (1)

The formula φ is of the form ∃πψ(π), where ψ is a formula that does not contain
any quantification over path variables. Given a word w of size n, the label of the
path π in the graph Gw will encode an accepting run of M over the word w in
the following way. Suppose that in a configuration C, the content of the tape is
the word a1 . . . a2cn , the head is scanning cell number j0 and the state is q0. The
configuration C is encoded by the word eC defined by

c(0)($, a0) . . . c(j0 − 1)($, aj0−1)c(j0)(q0, aj0)c(j0 + 1)($, aj0+1) . . . c(2
n)($, a2cn),

where c(j) is the binary representation of the number j. The pair c(j)(qj , aj)
(where qj = q0 if j = j0 and qj = $ otherwise) is the description of cell number
j in C. A run C0C1 . . . is encoded as the word eC0eC1 . . . .

We think of a path π encoding a run as consisting of two parts: the first part
contains the encoding eC0 of the initial configuration and is a path through a
subgraph Iw of Gw, while the second part contains the encoding eC1eC2 . . . and
is a path through the subgraph Hw of Gw. If Q is the set of states of M and Γ
is the alphabet, we define Hw as the following graph

x y

0

1

0

1

. . .

0

1

z

d1

d2

dl

. . .
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where {dj : 1 ≤ j ≤ l} = (Q ∪ {$})× Γ and the number of nodes with outgoing
edges with labels 0 and 1 is equal to cn. The label of a path π′ from the “left-
most” node x to the “right-most” node z with only once occurrence of x is
exactly the description of a cell in a configuration: it is the binary encoding of
a number ≤ 2cn followed by a pair of the form (q′, a). We can define a formula
φC ∈ WL such that for all paths π starting in x and ending in z,

Hw � φC(π) iff the label of π is the encoding of a configuration.

We do not give details; φC has to express that the first number encoded in binary
is 0, that the last number is 2cn and that the encoding of the description of cell
number j is followed by the description of cell number j + 1. Using the formula
φC , we can define a formula φ1 such that for all paths π,

Hw � φ1(π) iff the label of π is the encoding of an accepting run.

The formula φ1 has to ensure that if eCeC′ occurs in the label of π, then C and
C′ are consecutive configurations according to M . Moreover, φ1 has to express
that eventually we reach the final state. In order to express φC and φ1, we
use the ability of WL to check whether two positions correspond to the same
node. For example, in order to define φ1, since we need to compare consecutive
configurations eC and eC′ , we need to be able to compare the content of a cell in
configuration C and the content of that same cell in C′. In particular, we want
to be able to express whether two subpaths π′0 and π′1 of π starting in x and
ending in y correspond to the binary encoding of the same number. Since the
length of such subpaths depends on n, we cannot check node by node whether

the two subpaths are equal. However, it is sufficient to check that if t
π′
0

0 and t
π′
1

1

corresponds to the same node (t
π′
0

0 ∼ t
π′
1

1 ), then their successors also correpond

to the same node (t
π′
0

0 + 1 ∼ t
π′
1

1 + 1). Similarly, in the formula φC , we use
the operator ∼ in order to express that two subpaths correspond to the binary
encodings of numbers that are successors of each other.

Similarly to the way we define the graph Hw, we can introduce a graph Iw
and a formula φ0(π) such that

Iw � φ0(π) iff the label of π is the encoding eC0 ,

where C0 is the initial configuration of the run of M over w. By adding an
“adequate edge” from Iw to Hw, we construct a graph Gw such that for all
paths π, Gw � φ0(π) ∧ φ1(π) iff the label of π is the encoding of an accepting
run over w. Hence, the formula φ := ∃π(φ0(π) ∧ φ1(π)) satisfies (1).

For the case where k > 1, the problem to adapt the above proof is that
we have to consider runs using a number of cells that is bound by a tower of
exponentials of height k. If k > 1, the binary representation of such a bound is
not polynomial. The trick is to represent such exponential towers by k-counters.
A 1-counter is the binary representation of a number. If k > 1, a k-counter
c is a word σ0l0 . . . σj0 lj0 , where lj is a (k − 1)-counter and σj ∈ {0, 1}. The
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counter c represents the number r(c) =
∑j0

j=0 σjr(σj). In particular, a tower of
exponentials of height k is represented by a k-counter of polynomial size.

We can show that there are a graph Fk and a formula χk(π) such that the
label of π is a k-counter iff Fk � χk(π). Using Fk and χk, we can then adapt the
above proof to the cases where k > 1. �

As a corollary to the proof of Theorem 1, we obtain that data complexity is
non-elementary even for simple WL formulas that talk about a single path in a
graph database.

Corollary 1. The evaluation problem for WL over graph databases is non-
elementary in data complexity, even if restricted to Boolean WL formulas of
the form ∃πψ, where ψ uses no path quantification and contains no position
variable of sort different that π.

5 Register Logic

We saw in the previous section that WL is impractical due to its very high data
complexity. In this section, we start by recalling the notion of regular expres-
sions with memory (REM) and their basic results from [9]. The problem with
this logic though is its limitation in expressive power. For instance, the query
(Q) from the introduction cannot be expressed in REM. We then introduce an
extension of REM, called regular logic (RL), that remedies this limitation in
expressive power (in fact, it can express many natural examples of queries ex-
pressible in WL, e.g., those given in [7]) while retaining elementary complexity
of query evaluation. Finally, we study which fragments of RL are well-behaved
for database applications.

5.1 Regular Expressions with Memory

REMs define pairs of nodes in data graphs that are linked by a path that satisfies
a constraint in the way in which the topology interacts with the underlying data.
REMs allow to specify when data values are remembered and used. Data values
are stored in k registers r1, . . . , rk. At any point we can compare a data value
with one previously stored in the registers. As an example, consider the REM
↓ r.a+[r=]. It can be read as follows: Store the current data value in register r,
and then check that after reading a word in a+ we see the same data value again
(condition [r=]). We formally define REM next.

Let r1, . . . , rk be registers. The set of conditions c over {r1, . . . , rk} is recur-
sively defined as: c := r=i | c ∧ c | ¬c, for 1 ≤ i ≤ k. Assume that D⊥ is the
extension of the set D of data values with a new symbol ⊥. Satisfaction of con-
ditions is defined with respect to a value d ∈ D (the data value that is currently
being scanned) and a tuple τ = (d1, . . . , dk) ∈ Dk

⊥ (the data values stored in the
registers, assuming that di = ⊥ represents the fact that register ri has no value
assigned) as follows (Boolean combinations omitted): (d, τ) |= r=i iff d = di.
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Definition 3 (REMs). The class of REMs over Σ and {r1, . . . , rk} is defined
by the grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ r̄.e

where a ranges over symbols in Σ, c over conditions over {r1, . . . , rk}, and r̄
over tuples of elements in {r1, . . . , rk}.

That is, REM extends the class of regular expressions e – which is a popular
mechanism for specifying topological properties of paths in graph databases (see,
e.g., [16,2]) – with expressions of the form e[c], for c a condition, and ↓ r̄.e, for r̄
a tuple of registers – that define how such topology interacts with the data.

Semantics: To define the evaluation e(G) of an REM e over a data graph G =
(V,E, κ), we use a relation �e�G that consists of tuples of the form (u, λ, ρ, v, λ′),
for u, v nodes in V , ρ a path in G from u to v, and λ, λ′ two k-tuples over D⊥. The
intuition is the following: the tuple (u, λ, ρ, v, λ′) belongs to �e�G if and only if
the data and topology of ρ can be parsed according to e, with λ being the initial
assignment of the registers, in such a way that the final assignment is λ′. We
then define e(G) as the pairs (u, v) of nodes in G such that (u,⊥k, ρ, v, λ) ∈ �e�G,
for some path ρ in G from u to v and k-tuple λ over D⊥.

We inductively define relation �e�G below. We assume that λr̄=d, for d ∈ D,
is the tuple obtained from λ by setting all registers in r̄ to be d. Also, if ρ1 =
v1a1v2 · · · vk−1ak−1vk and ρ2 = vkakvk+1 · · · vn−1an−1vn are paths, then ρ1ρ2 is
the path v1a1v2 · · · vk−1ak−1vkakvk+1 · · · vn−1an−1vn. Then:

– �ε�G = {(u, λ, ρ, u, λ) | u ∈ V, ρ = u, λ ∈ Dk
⊥}.

– �a�G = {(u, λ, ρ, v, λ) | ρ = uav, λ ∈ Dk
⊥}.

– �e1 ∪ e2�G = �e1�G ∪ �e2�G.
– �e1 ·e2�G = �e1�G◦�e2�G, where �e1�G◦�e2�G is the set of tuples (u, λ, ρ, v, λ′)

such that (u, λ, ρ1, w, λ′′) ∈ �e1�G and (w, λ′′, ρ2, v, λ
′) ∈ �e2�G, for some

w ∈ V , k-tuple λ′′ over D⊥, and paths ρ1, ρ2 such that ρ = ρ1ρ2.
– �e+�G = �e�G ∪ (�e�G ◦ �e�G) ∪ (�e�G ◦ �e�G ◦ �e�G) . . .
– �e[c]�G = {(u, λ, ρ, v, λ′) ∈ �e�G | (κ(v), λ′) |= c}.
– �↓ r̄.e�G = {(u, λ, ρ, v, λ′) | (u, λr̄=κ(u), ρ, v, λ

′) ∈ �e�G}.
For each REM e, we will use the shorthand notation e∗ to denote ε ∪ e+.

Example 2. The REM Σ∗ · (↓ r.Σ+[r=]) · Σ∗ defines the pairs of nodes that
are linked by a path in which two nodes have the same data value. The REM
↓r.(a[¬r=])+ defines the pairs of nodes that are linked by a path ρ with label in
a+, such that the data value of the first node in the path is different from the
data value of all other nodes in ρ. �

The problem Eval(REM) is, given a data graph G = (V,E, κ), a pair (v1, v2)
of nodes in V , and an REM e, is (v1, v2) ∈ e(G)? The data complexity of the
problem refers again to the case when φ is considered to be fixed. REMs are
tractable in data complexity and have no worst combined complexity than FO
over relational databases:
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Proposition 1 ([9]). Eval(REM) is Pspace-complete, and in Nlogspace in
data complexity.

5.2 Register Logic

REM is well-behaved in terms of the complexity of evaluation, but its expressive
power is rather rudimentary for expressing several data/topology properties of
interest in data graphs. As an example, the query (Q) from the introduction
– which can be easily expressed in WL – cannot be expressed as an REM (we
actually prove a stronger result later). The main shortcomings of REM in terms
of its expressive power are its inability to (i) compare data values in different
paths and (ii) express branching properties of the data.

In this section, we propose register logic (RL) as a natural extension of REM
that makes up for this lack of expressiveness. We borrow ideas from the logic
CRPQ¬, presented in [4], that closes the class of regular path queries [6] under
Boolean combinations and existential node and path quantification. In the case
of RL we start with REMs and close them not only under Boolean combinations
and node and path quantification – which allow to express arbitrary patterns
over the data – but also under register assignment quantification – which permits
to compare data values in different paths. We also prove that the complexity of
the evaluation problem for RL is elementary (Expspace), and, thus, that in this
regard RL is in stark contrast with WL.

To define RL we assume the existence of countably infinite sets of node, path
and register assignment variables. Node variables are denoted x, y, z, . . . , path
variables are denoted π, π′, π1, π2, . . . , and register assignment variables are de-
noted ν, ν1, ν2, . . .

Definition 4 (Register logic (RL)). We define the class of RL formulas φ
over alphabet Σ and {r1, . . . , rk} using the following grammar:

atom := x = y | π = π′ | ν = ν′ | ν = ⊥̄ | (x, π, y) | e(π, ν1, ν2)

φ := atom | ¬φ | φ ∨ φ | ∃xφ | ∃πφ | ∃νφ

Here x, y are node variables, π, π′ are path variables, ν, ν′ are register assignment
variables, and e is an REM over Σ and {r1, . . . , rk}.

Intuitively, ν = ⊥̄ holds iff ν is the empty register assignment, (x, π, y) checks
that π is a path from x to y, and e(π, ν, ν′) checks that π can be parsed according
to e starting from register assignment ν and finishing in register assignment ν′.
The quantifier ∃ν is to be read “there exists an assignment of data values in the
data graph to the registers”.

Let G = (V,E, κ) be a data graph over Σ and φ a RL formula over Σ and
{r1 . . . , rk}. Assume that D is the set of data values that are mentioned in G,
i.e., D = {κ(v) | v ∈ V }. An assignment α for φ over G is a mapping that assigns
(i) a node in V to each free node variable x in φ, (ii) a path ρ in G to each free
path variable π in φ, and (iii) a tuple λ in (D∪{⊥})k to each register variable ν
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that appears free in φ. That is, for safety reasons we assume that α(ν) can only
contain data values that appear in the underlying data graph. This represents
no restriction for the expressiveness of the logic.

We inductively define (G,α) |= φ, for G a data graph, φ a RL formula, and
α an assignment for φ over G, as follows (we omit equality atoms and Boolean
combinations since they are standard):

– (G,α) |= ν = ⊥̄ iff α(ν) = ⊥k.
– (G,α) |= (x, π, y) iff α(π) is a path from α(x) to α(y) in G.
– (G,α) |= e(π, ν, ν′) iff (u, α(ν), α(π), v, α(ν′)) ∈ �e�G, assuming α(π) goes

from node u to v.
– (G,α) |= ∃xφ iff there is node v ∈ V such that (G,α[x → v]) |= φ.
– (G,α) |= ∃πφ iff there is path ρ in G such that (G,α[π → ρ]) |= φ.
– (G,α) |= ∃νφ iff there is tuple λ in (D∪{⊥})k such that (G,α[ν → λ]) |= φ.

Thus, each REM e is expressible in RL using the formula:

∃π∃ν∃ν′ ( ν = ⊥̄ ∧ e(π, ν, ν′) ).

Example 3. Recall query (Q) from the introduction: Find pairs of nodes x and
y in a graph database, such that there is a node z and a path π from x to y
in which each node is connected to z. This query can be expressed in RL over
Σ = {a} and a single register r as follows:

∃π
(
(x, π, y) ∧ ∃z∀ν(e1(π, ν, ν) → ∃z′∃π′((z′, π′, z) ∧ e2(π

′, ν, ν)))
)
,

where e1 := a∗[r=] · a∗ is the REM that checks whether the node (i.e. data)
stored in register r appears in a path, and e2 := ε[r=] · a∗ is the REM that
checks if the first node of a path is the one that is stored in register r.

In fact, this formula defines the pairs of nodes x and y such that there exists
a path π that goes from x to y and a node z for which the following holds: for
every register value ν (i.e., for every node ν) such that e1(π, ν, ν) (i.e. node ν
is in π), it is the case that there is a path π′ from some node z′ to z such that
e2(π

′, ν, ν) (i.e., z′ = ν and π′ connects ν to z). Notice that this uses the fact
that the underlying data model is that of graph databases, in which each node
is uniquely identified by its data value. �

Complexity of Evaluation for RL: The evaluation problem for RL, denoted
Eval(RL), is as follows: Given a data graph G, a RL formula φ, and an assign-
ment α for φ over G, is it the case that (G,α) |= φ? As before, we denote by
Eval(RL,φ) the evaluation problem for the fixed RL formula φ.

We show next that, unlike WL, register logic RL can be evaluated in elemen-
tary time, and, actually, with only one exponential jump over the complexity of
evaluation of REMs:

Theorem 2. Eval(RL) is Expspace-complete. The lower bound holds even if
the input is restricted to graph databases.
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Proof (Idea): For the upper bound, we adapt for RL the proof that CRPQ¬

formulas can be evaluated in Pspace [4]. This requires some care in the way
in which register values and atomic REM formulas are handled. The extra ex-
ponential blow up is produced by the fact that checking whether a path ρ in a
data graph G does not satisfy an REM e (i.e. whether it is not the case that
(u, ⊥̄, ρ, v, λ) ∈ �e�G, for some register assignment λ, assuming that ρ goes from
u to v) requires exponential space. The lower bound is obtained by a reduction
from the acceptance problem for a Turing machine that works in Expspace. �

The increase in expressiveness of RL over REM has an important cost in data
complexity, which becomes intractable:

Theorem 3. Eval(RL) is in Pspace in data complexity. Furthermore, there
is a finite alphabet Σ and a RL formula φ over Σ and a single register r, such
that Eval(RL,φ) is Pspace-hard. In addition, the latter holds even if the input
is restricted to graph databases.

In the next section we introduce an interesting language, based on a restriction
of RL, that is tractable in data complexity, and thus better suited for database
applications. This language is a proper extension of REM. But before, we make
some important remarks about the expresive power of RL.

Expressive Power of RL: We now look at the expressive power of the logic
RL. It was proven in [7] that CRPQ is not subsumed in WL. Since RL subsumes
CRPQ¬, it follows that RL is not subsumed in WL. On the other hand, WL
is also not subsumed in RL due to Theorem 1, Theorem 2, and the standard
time/space hierarchy theorem from complexity theory. Therefore, we have the
following proposition:

Proposition 2. The expressive powers of WL and RL are incomparable.

On the other hand, we shall argue now that many natural queries about the inter-
action between data and topology are also expressible in RL. The aforementioned
query (Q) is one such example. We shall now mention other examples: hamil-
tonicity (H), the existence of Eulerian trail (E), bipartiteness (B), and complete
graphs with even number of nodes (C2). The first two are expressible in WL,
while (B) and (C2) are not known to be expressible in WL. We conjecture that
they are not.

We now show how to express in RL the existence of a hamiltonian path in a
graph; the query (E) can be expressed in the same way but with two registers (to
remember edges, i.e., consisting of two nodes). This is done with the following
formula over Σ = {a} and a single register r:

∃π
(
∀λ∀λ′¬e1(π, λ, λ′) ∧ ∀λ(λ 
= ⊥ → e2(π, λ, λ))

)
,

where e1 := a∗ · (↓r.a+[r=]) · a∗ is the REM that checks whether in a path some
node is repeated (i.e., that it is not a simple path), and e2 := a∗[r=]a∗ is the
REM that checks that the node stored in register r appears in a path. In fact,
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this query expresses that there is a path π that it is simple (as expressed by the
formula ∀λ∀λ′¬e1(π, λ, λ′)), and every node of the graph database is mentioned
in π (as expressed by the formula ∀λ(λ 
= ⊥ → e2(π, λ, λ))).

We now show how to express in RL the property bipartiteness from graph
theory. An undirected G = (V,E) is bipartite if its set of nodes can be partitioned
into two sets S1 and S2 such that, for each edge (v, w) ∈ E, either (i) v ∈ S1

and w ∈ S2, or (ii) v ∈ S2 and w ∈ S2. It is well-known that a graph database is
bipartite iff it does not have cycles of odd length. The latter is expressible in RL
since the existence of an odd-length cycle can be expressed as ∃π∃λ∃λ′e(π, λ, λ′),
where e =↓r.a(aa)∗[r=].

We now show how to express in RL that a graph database is a complete
graph with an even number of nodes. To this end, it is sufficient and necessary
to express the existence of a hamiltonian path π with an odd number of edges
in the graph. But this is a simple modification of our formula for expressing
hamiltonicity: we add the check that π has an odd number of edges by adding
the conjunct e(π, ν, ν′), where e = a∪a(aa)+, and close the entire formula under
existential quantification of ν and ν′.

5.3 Tractability in Data Complexity

Let RL+ be the positive fragment of RL (i.e. the logic obtained from RL by
forbidding negation and adding conjunctions). It is easy to prove that the data
complexity of the evaluation problem for RL+ is tractable (NLogspace). This
fragment contains the class of conjunctive REMs, that has been previously iden-
tified as tractable in data complexity [9]. However, the expressive power of RL+

is limited as the following proposition shows.

Proposition 3. The query (Q) from the introduction is not expressible in RL+.

On the other hand, increasing the expressive power of RL+ with some simple
forms of negation leads to intractability of query evaluation in data complexity:

Proposition 4. There is a finite alphabet Σ and REMs e1, e2, e3, e4 over Σ and
a single register r, such that Eval(RL,φ) is Pspace-complete, where φ is either
∃π∃λ¬(e1(π,⊥, λ) ∨ e2(π,⊥,⊥)) or ∃π∀λ¬(e3(π,⊥, λ) ∨ e4(π,⊥,⊥)).

In the case of basic navigational languages for graph databases, it is possible
to increase the expressive power – without affecting the cost of evaluation –
by extending formulas with a branching operator (in the style of the class of
nested regular expressions [3]). The same idea can be applied in our scenario,
by extending atomic REM formulas in RL+ with such branching operator. The
resulting language is more expressive than RL+ (in particular, this extension
can express query (Q)), yet remains tractable in data complexity. We formalize
this idea below.

The class of nested REMs (NREM) extends REM with a nesting operator 〈·〉
defined as follows: If e is an NREM then 〈e〉 is also an NREM. Intuitively, the
formula 〈e〉 filters those nodes in a data graph that are the origin of a path that



84 P. Barcel, G. Fontaine, and A.W. Lin

can be parsed according to e. Formally, if e is an NREM over k registers and G
is a data graph, then �〈e〉�G consists of all tuples of the form (u, λ, ρ = u, u, λ)
such that (u, λ, ρ′, v, λ′) ∈ �e�G, for some node v in G, path ρ′ in G, and k-tuple
λ′ over D⊥.

Let NRL+ be the logic that is obtained from RL+ by allowing atomic formulas
of the form e(π, ν, ν′), for e an NREM. Given a data graph G and an assignment
α for π, ν and ν′ over G, we write as before (G,α) |= e(π, ν, ν′) if and only if α(π)
goes from u to v and (u, α(ν), α(π), v, α(ν′)) ∈ �e�G. The semantics of NRL+

is thus obtained from the semantics of these atomic formulas in the expected
way. The following example shows that query (Q) is expressible in NRL+, and,
therefore, that NRL+ increases the expressiveness of RL+.

Example 4. Over graph databases, the query (Q) from the introduction is ex-
pressible in NRL+ using the following formula over Σ = {a} and register r:

φ = ∃π∃ν
(
(x, π, y) ∧ e(π, ν, ν)

)
,

where e := (〈e1〉·a)∗〈e1〉, for e1 = a∗[r=]. Intuitively, e1 checks in a path whether
its last node is precisely the node stored in register r, and thus e checks whether
every node in a path can reach the node stored in register r. Therefore, the
formula φ defines the set of pairs (x, y) of nodes, such that there is a path π that
goes from x to y and a register value ν (i.e., a node ν) that satisfy that every
node in π is connected to ν. �

The extra expressive power of NRL+ over RL+ does not affect the data com-
plexity of query evaluation:

Theorem 4. Evaluation of NRL+ formulas can be solved in NLogspace in
data complexity.

From the proof of Theorem 4 it also follows that NRL+ formulas can be
evaluated in Pspace in combined complexity.

6 Conclusions and Future Work

We have proven that the data complexity of walk logic is nonelementary, which
rules out the practicality of the logic. We have proposed register logic, which is an
extension of regular expressions with memory. Our results in this paper suggest
that register logic is capable of expressing natural queries about interactions
between data and topology in data graphs, while still preserving the elementary
data complexity of query evaluation (Pspace). Finally, we showed how to make
register logic more tractable in data complexity (NLogspace) through the logic
NRL+, while at the same time preserving some level of expressiveness of RL.

We leave open several problems for future work. One interesting question is to
study the expressive power of extensions of walk logic, in comparison to RL and
ECRPQ¬ from [4]. For example, we can consider extensions with regularity tests
(i.e. an atomic formula testing whether a path belongs to a regular language).
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Even in this simple case, the expressive power of the resulting logic, compared
to RL and ECRPQ¬, is already not obvious. Secondly, we do not know whether
NRL+ is strictly more expressive than RL. Finally, we will also mention that
expressibility of bipartiteness in WL is still open (an open question from [7]).
We also leave open whether the query that a graph database is a complete graph
with an even number of nodes is expressible in WL.
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Abstract. We consider the problem of automatically disproving invalid conjec-
tures over data structures such as lists and arrays over integers, in the presence
of additional hypotheses over these data structures. We investigate a simple ap-
proach based on refutational theorem proving. We assume that the data structure
axioms are satisfiable and provide a template language for additional hypotheses
such that satisfiability is preserved. Then disproving is done by proving that the
negated conjecture follows. By means of examples we demonstrate that our tem-
plate language is reasonably expressive and that our approach works well with
current theorem provers (Z3, SPASS+T and Beagle).

1 Introduction

We consider the problem of automatically disproving invalid conjectures over data
structures such as lists and arrays over integers, in the presence of additional hypotheses
over these data structures. Such invalid conjectures come up frequently in applications
of automated reasoning to software verification and the analysis of data-rich state-based
systems, for example. More formally, the disproving problem is to show that AX∪HYP
does not entail a sentence CON, where AX are list and/or array axioms and CON is the
conjecture in question. The obvious approach to disproving is to show satisfiability of
AX∪HYP∪ {¬CON} by means of a (complete) theorem prover. Unfortunately, current
theorem proving technology is of limited usefulness for that: finite model finders cannot
be used because the list axioms do not admit finite models, SMT-solvers are typically
incomplete on quantified formulas and face the same problem, and theorem provers
based on saturation often do not terminate on satisfiable input (let alone completeness
issues in presence of arithmetic background theories).

We propose a different, conceptually simple approach based on refutational theorem
proving. It consists in assuming that AX is satisfiable and providing templates for HYP
that are guaranteed to preserve satisfiability of AX∪HYP. Then disproving is attempted
simply by proving that AX ∪ HYP entails ¬CON, i.e., that AX ∪ HYP ∪ {CON} is
unsatisfiable.

The main point of this paper is to demonstrate the practical feasibility of our ap-
proach. By means of examples, we demonstrate that our template language covers use-
ful cases. We also report on our experiences disproving sample conjectures using cur-
rent theorem provers (Z3 [11], SPASS+T [18] and Beagle [3]), and we compare their
performance.
� NICTA is funded by the Australian Government as represented by the Department of Broad-
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Related Work. Kapur and Zarba [8] show by way of reductions to sub-theories how
to decide the satisfiability of conjunctions of ground literals wrt. various theories, in-
cluding arrays and lists. Armando, Bonacina, Ranise and Schulz [2] use the superpo-
sition calculus as a decision procedure, again for conjunctions of ground literals wrt.
these (and other) theories. In a similar way, Lynch and Morawska [9] aim at superpo-
sition as decision procedure based on finite saturation. Ihlemann, Jacobs and Sofronie-
Stokkermans [7] develop decidability results for the theory of arrays and others using
the framework of local theory extensions. DeMoura and Bjoerner [12] give decidabil-
ity results for a theory extending the basic theory of arrays. McPeak and Necula [10]
provide decision procedures for pointer data structures. Bradley, Manna and Sipma [4]
give a decidability result for an expressive fragment of the theory of arrays, the array
property fragment. Certain desirable formulas are not included in this fragment, for ex-
ample totality axioms for functions or an injectivity predicate for arrays (see distinct in
Section 4). Ghilardi, Nicolini, Ranise and Zucchelli [6] provide a decision procedure
for an extension of the array theory and demonstrate how decision procedures may be
derived for extensions to this theory, many of which lie outside the array property frag-
ment. This relies on the existence of a “standard model” for the theory and extension,
whose existence must be demonstrated a priori.
In contrast to these works, we do not provide decision procedures for specific fragments.
This is intentionally so, in order to support disproving tasks in the presence of liberally
formulated additional axioms (the set HYP above). Although we employ superposition-
based provers in our experiments (like some of the approaches above), our approach
does not hinge on finite saturation. Claessen and Lillieström [5] present a method for
showing that a set of formulas does not admit finite models. It does not answer the
question whether infinite models exists, and this way our work is complementary to
theirs. Suter, Köksal and Kuncak [17] have developed a semi-decision procedure for
checking satisfiability of correctness properties of recursive functional programs on al-
gebraic data types. It overlaps with out method on lists (Section 3) by imposing similar
syntactic restrictions. Their method works differently, by partial unrolling of function
definitions into quantifier-free logic instead of theorem proving on (quantified) formu-
las. In [15], Rümmer and Shah use a program logic for Java to prove the incorrectness of
programs. It utilizes a sequent calculus for unfolding lists and reasoning with arithmetic
constraints, and this way is somewhat more spcialised than our approach.

Preliminaries. We work in the context of many-sorted logic with first-order signatures
comprised of sorts and operator symbols (i.e., function symbols and predicate symbols)
of given arities over these sorts. In this paper we focus on theorem proving modulo the
fixed background theory of (linear) integer arithmetic. Our signatures Σ are comprised
of sort symbols s1, . . . , sn where sn = Z, the integer sort. Let sorts(Σ) = {s1, . . . , sn}.
We assume Σ contains an equality symbol ≈si for each sort si. We usually drop the sort
annotion from ≈si . We also assume infinite supplies of variables of each sort. When x is
a variable and s is a sort we write xs to make clear that the sort of x is s.

We use the notions commonly used in automated theorem proving in a standard way.
The (well-sorted Σ-) terms, atoms, and formulas are defined as usual. Let x1, . . . , xn be
pairwise different variables of corresponding sorts s1, . . . , sn. We write F[x1, . . . , xn] to
indicate that the formula F has free variables at most x1, . . . , xn, and we say that F has
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the arity s1 × · · ·× sn. We write F[t1, . . . , tn] for the formula obtained from F[x1, . . . , xn]
by replacing every free occurrence of xi in F by ti, for all 1 ≤ i ≤ n.

Our logical language is essentially the same as the TPTP-language TFA (“Typed
Formulas with Arithmetic”) and we adopt the semantics given for it in [16]. In brief, a
(Σ-)interpretation I consists of a (Σ-)domain D = Ds1 � . . . � Dsn with disjoint, non-
empty sub-domains for each sort, and an arity-respecting mapping of function symbols
to functions and predicate symbols to relations (representing the tuples of which the
predicate holds true). We work with E-interpretations only. That is, I(≈si) = {(d, d) |
d ∈ Dsi }, where I(op) is the interpretation of the operator op. Furthermore, we consider
only interpretations that extend arithmetic, that is, (i) the domain DZ of the integer sort
Z is the set of all integer numbers and, (ii) the numeric operators such as >, ≥, +, −
and · are interpreted as expected. The usual notions of satisfaction, validity, model etc.
apply in the standard way. In particular, when N is a set of sentences we write I |= N to
indicate that I is a model of (all elements of) N, and we say that N entails a formula F,
written as N |= F iff every model of N is a model of F.

2 Approach

Our approach consists in starting with a signature Σ and a set of Σ-sentences Ax that
is known to be satisfiable. Our main interest is in lists and arrays, and so Ax will be
corresponding axioms, see below. Then we stepwise expand Σ and Ax with new user-
defined operators and additional definitions for these.

More formally, for two signatures Σ and Σ′ over the same sorts we use set operators
to relate the sets of their operators in the obvious way. For instance, we write Σ′ =
Σ ∪ {op} to indicate that Σ′ is obtained from Σ by adding the operator op. We consider
sequences (Ax,Defop1

, . . . ,Defopn
) such that Defopi

is a set of Σi-sentences (“Definition
for opi”) of a certain form explained below, where Σ0 = Σ, opi � Σi−1 and Σi = Σi−1 ∪
{opi} for all 1 ≤ i ≤ n. We call any such sequence an extension of Ax.

Definition 2.1 (Admissible Definition). Let Σ be a signature, D a Σ-domain, and op �
Σ an operator with an arity over sorts(Σ). We say that a set of (Σ ∪ {op})-sentences N is
an admissible definition of op (wrt. Σ and D) iff every Σ-interpretation I with domain
D can be expanded to a (Σ ∪ {op})-interpretation I′ with domain D such that I′ |= N.

That is, I′ differs from I only by adding an interpretation for op which satisfies N. We
indicate this by writing I′ = I ∪ I(op).

Proposition 2.2. Let (Ax,Defop1
, . . . ,Defopn

) be an extension of Ax. Suppose there is
a Σ0-model I |= Ax with domain D. If Defopi

is an admissible definition of opi wrt.
Σi−1 and D, for all 1 ≤ i ≤ n, then there is a Σn-interpretation I′ such that I′ |=
Ax ∪⋃1≤i≤n Defopi

.

Proof. By induction over the length n of extensions, using the given model I in the
induction start and using admissibility in the induction step. 
�

As said, in this paper we are mainly interested in disproving conjectures. With the
current terminology, the problem is to show that N = Ax∪⋃1≤i≤n Defopi

does not entail
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a given Σn-sentence Con, the conjecture in question. Assuming admissible definitions,
Proposition 2.2 gives us I′ |= N, for some Σn-interpretation I′. Now, suppose we are
able to prove (by a theorem prover) the entailment N |= ¬Con. It follows I′ |= ¬Con,
and so I′ �|= Con. By definition, then N �|= Con, and so the conjecture is disproven.

Our intended application context is that of dynamically evolving systems. By this
we mean computations that start in a (typically partially) specified initial state, modify
some data until a final state is reached, and then the resulting (partially specified) final
state is queried as to whether a property P holds in it. This leads to universally quantified
implications Con in which the premise encodes both the initial state and computation,
while the conclusion encodes property P.

A trivial example of this situation is the formula Con = ∀ lLIST l′LIST . l � nil ∧ l′ ≈
tail(l) ⇒ l′ � nil. Here, l � nil is meant to represent the initial state; l′ ≈ tail(l) the
computation; and P = l′ � nil. Where AxLIST are the list axioms of Section 3 below,
we wish to show AxLIST �|= Con. With the approach indicated above, we have to prove
AxLIST |= ∃ lLIST l′LIST . l � nil ∧ l′ ≈ tail(l) instead, which is a theorem proving task.

3 Lists

We consider lists over integers. To this end let the signature ΣLIST consist of sorts LIST
and Z and the operators nil : LIST, cons : Z × LIST �→ LIST, head : LIST �→ Z,
tail : LIST �→ LIST. The list axioms AXLIST are the following formulas, each implicitly
universally quantified, where k is Z-sorted and l is LIST-sorted:

head(cons(k, l)) ≈ k cons(k, l) � nil

tail(cons(k, l)) ≈ l cons(head(l), tail(l)) ≈ l ∨ l ≈ nil

Structurally identical axioms have been mentioned in [13]. The satisfiability of the
list axioms is well known. It can also be determined automatically. For example,
the theorem prover Beagle [3] in a complete setting and after adding the axioms
∃ dZ . head(nil) ≈ d and tail(nil) ≈ nil, terminates on AXLIST in a saturated state. Be-
cause the axioms satisfy a certain sufficient completeness requirement, this provides
a proof of satisfiability. In particular, the list axioms are satisfied in the interpretation
ILIST with the domain DLIST = LIST, the finite length lists (over integers), which we
assume to be freely generated by the constructors nil and cons(·, ·), and the obvious
interpretation for the ΣLIST-operators.

We now turn to the templates for definitions.

Relations. Let Σ+ be an expansion of ΣLIST and P � Σ+ a predicate symbol with arity
Z × LIST. Let DefP a formula of the form

∀ kZ lLIST . P(k, l)⇔
l ≈ nil ∧ B[k] (P1)

∨ ∃ hZ tLIST . l ≈ cons(h, t) ∧ C[k, h, t] (P2)

∨ ∃ hZ tLIST . l ≈ cons(h, t) ∧ D[k, h, t] ∧ P(k, t) (P3)

where B is a Σ+-formula of arity Z, and C and D are Σ+-formulas of arity Z×Z× LIST.
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Lemma 3.1. Let D be a Σ+-domain with DLIST = LIST. Then DefP is an admissible
definition of P wrt. Σ+ and D.

Proof. Briefly, the proof proceeds by constructing a canonical (minimal) model of the
⇐-direction of DefP, which is also always a model of the ⇒-direction. From a logic-
programming angle, the user could as well give only the⇐-direction of DefP, then the
system can add the completion (⇒-direction) for disproving purposes.

We assume Interpretations include a valuation component for variables. We write
I[x �→d] to indicate an update for the variable x to the domain element d.

Let I be a Σ+-interpretation with domain D. We have to show that I can be expanded
to a (Σ+ ∪ {P})-interpretation I′ = I ∪ I(P), such that I′ |= DefP.

The definition of I(P) utilizes transfinite induction, and we need several orderings
for that. Let �Z be a (any) well-ordering on the integers and � its extension to the
quasi-lexicographic ordering on LIST.1 Because �Z is well-founded and total, � is
well-founded and total, too (this is well-known). Let � denote the strict subset of �.

Next, we define an ordering �P on pairs over integers and finite lists over integers as
(k1, l1) �P (k2, l2) iff l1 � l2 or else l1 = l2 and k1 �Z k2. Notice that �P is also total
and well-founded. Let �P denote the strict subset of �P.

Let (k, l) ∈ Z × LIST be chosen arbitrarily. We need to decide whether to include
(k, l) in I′(P) or not, that is, whether to make I′(P)(k, l) true or false, respectively. We
do this by evaluating the body of DefP, which resorts to evaluating smaller elements
only.

More formally, for a given pair (k, l) we define subsets εP(k, l) and I(P)(k,l) of Z ×
DLIST. Assume that εP(k′, l′) has already been defined for all (k′, l′) ∈ Z × DLIST with
(k, l) �P (k′, l′). Where I(P)(k,l) =

⋃
(k,l)�P(k′ ,l′) εP(k′, l′) define

εP(k, l) = {(k, l)} if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l = nil and I[k �→k] |= B[k] or

l = cons(h, t) and I[k �→k,h�→h,t �→t] |= C[k, h, t],

for some h ∈ Z and t ∈ DLIST or

l = cons(h, t), I[k �→k,h�→h,t �→t] |= D[k, h, t] and

(I ∪ I(P)(k,l))[k �→k,t �→t] |= P(k, t),

for some h ∈ Z and t ∈ DLIST

In all other cases define εP(k, l) = ∅. Finally define I(P) =
⋃

(k,l) εP(k, l).
Notice that the conditions in the definition of εP(k, l) are all well-defined. In partic-

ular, we have (k, l) �P (k, t) in the last case. With the definition of I(P) it is straight-
forward to show (I ∪ I(P)) |= DefP (assume a �P-minimal pair (k, l) under which DefP

evaluates to false in I ∪ I(P) and lead this to a contradiction). 
�
Example. Let inRange : Z × LIST be a predicate symbol. Consider the extension of
AxLIST with the following (admissible) definition for P (the free variables are universally
quantified with the obvious sorts).

inRange(n, l)⇔ l ≈ nil ∨ ∃ hZ tLIST . (l ≈ cons(h, t) ∧ 0 ≤ h ∧ h < n ∧ inRange(n, t))

1 A quasi-lexicographic ordering, or shortlex ordering, compares firstly lists by their length, so
that nil comes first, and then compares lists of the same length lexicographically.
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This example comes from a case study with the first-order logic model checker from [1].
The inRange predicate is used there to specify lists of “ordered items” handled in a
purchase order process, which must all be in a range 0..N − 1, for some N ≥ 0. The
other examples in this paper are contrived.

The following table lists some sample problems together with the runtimes (in sec-
onds) needed to disprove them with the provers mentioned.2

Problem Beagle Spass+T Z3
inRange(4, cons(1, cons(5, cons(2, nil)))) 6.2 0.3 0.2
n > 4⇒ inRange(n, cons(1, cons(5, cons(2, nil)))) 7.2 0.3 0.2
inRange(n, tail(l))⇒ inRange(n, l) 3.9 0.3 0.2
∃ nZ lLIST . l � nil ∧ inRange(n, l) ∧ n − head(l) < 1 2.7 0.3 0.2
inRange(n, l)⇒ inRange(n − 1, l) 8.2 0.3 >60
l � nil ∧ inRange(n, l)⇒ n − head(l) > 2 2.8 0.3 0.2
n > 0 ∧ inRange(n, l) ∧ l′ = cons(n − 2, l)⇒ inRange(n, l′) 4.5 5.2 0.2

We remark that none of these problems are solvable by using any of the provers to
directly establish consistency of the axioms, definitions and the conjecture. Even if
only the⇐-direction is used, Z3 and Spass+T do not terminate. Because the universally
quantified variables in the conjectures lead to Skolem constants, the resulting clause set
is no longer sufficiently complete (see [3]), and a finite saturation obtained by Beagle
does not allow one to conclude satisfiability.

Functions. Let Σ+ ⊇ ΣLIST be a signature, s ∈ sorts(Σ) and f � Σ+ a function symbol
with arity Z×LIST �→ s. Let Def f be a set of (implicitly) universally quantified formulas
of the form below, where k and h are Z-sorted and t is LIST-sorted:

f (k, nil) ≈ b[k]⇐ B[k] (f0)

f (k, cons(h, t)) ≈ c1[k, h, t, f (k, t)]⇐ C1[k, h, t, f (k, t)] (f1)

...

f (k, cons(h, t)) ≈ cn[k, h, t, f (k, t)]⇐ Cn[k, h, t, f (k, t)] (fn)

where B is a Σ+-formula of arity Z, each Ci is a Σ+-formula of arity Z×Z× LIST× s, b
is a Σ+-term of arity Z �→ s, and each ci is a Σ+-term with arity Z × Z × LIST × s �→ s.

Lemma 3.2. Let D be a Σ+-domain with DLIST = LIST. If for all 1 ≤ i < j ≤ n the
formula

∀ kZ hZ tLIST xs .Ci[k, h, t, x] ∧ C j[k, h, t, x]⇒ ci[k, h, t, x] ≈ c j[k, h, t, x]

is valid in all Σ+-interpretations with domain D then Def f is an admissible definition
of f wrt. Σ+ and D.

2 Here and below, Beagle has been run with “cautious simplification on” and “ordinary vari-
ables on”; Z3, version 4.3.1 with the options ”pull-nested-quantifiers”, “mbqi” and “macro-
finder” on; SPASS+T used Yices as a theory solver. All timings obtained on reason-
able recent computer hardware. The input problems are available on the Beagle website
http://users.cecs.anu.edu.au/˜baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/
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Proof. The proof of Lemma 3.2 uses the same model construction technique as the
proof of Lemma 3.1. Totality is obtained by interpreting f on an argument tuple such
that none of the conditions f0 to fn holds true by an arbitrary domain element. The
condition in the lemma statement enforces right-uniqueness (functionality). 
�
The condition in the statement of Lemma 3.2 is needed to make sure that all cases (fi)
and (f j) for i � j are consistent. For example, for f(cons(h, t)) ≈ 1 ⇐ h ≈ 1 and
f(cons(h, t)) ≈ a ⇐ h ≈ 1 + a this is not the case. Indeed, ∀ hZ . h ≈ 1 ∧ h ≈ 1 + a ⇒
1 ≈ a is not valid. Notice that establishing the condition is a theorem proving task,
which fits well with our method. In the examples below it is trivial.

Example. Let length : LIST �→ Z, count : Z × LIST �→ Z, append : LIST × LIST �→
LIST and in : Z×LIST be operators. Consider the extension of AxLIST with the following
(admissible) definitions, in the given order.

length(nil) ≈ 0 append(nil, l) ≈ l

length(cons(h, t) ≈ 1 + length(t) append(cons(h, t), l) ≈ cons(h, append(t, l))

count(k, nil) ≈ 0

count(k, cons(h, t)) ≈ count(k, t)⇐ k � h in(k, l)⇔ count(k, l) > 0

count(k, cons(h, t)) ≈ count(k, t) + 1⇐ k ≈ h

Here are some sample conjectures together with the times for disproving them.3

Problem Beagle Spass+T Z3
length(l1) ≈ length(l2)⇒ l1 ≈ l2 4.3 9.0 0.2
n ≥ 3 ∧ length(l) ≥ 4⇒ inRange(n, l) 5.4 1.1 0.2
count(n, l) ≈ count(n, cons(1, l)) 2.5 0.3 >60
count(n, l) ≥ length(l) 2.7 0.3 >60
l1 � l2 ⇒ count(n, l1) � count(n, l2) 2.4 0.8 >60
length(append(l1, l2)) ≈ length(l1) 2.1 0.3 0.2
length(l1) > 1 ∧ length(l2) > 1⇒ length(append(k, l)) > 4 37 >60 >60
in(n1, l1) ∧ ¬in(n2, l2) ∧ l3 ≈ append(l1, cons(n2, l2))⇒

count(n, l3) ≈ count(n, l1)
>60 (6.2) 9.1 >60

4 Arrays

The signature ΣARRAY consist of sorts ARRAY and Z and the operators read : ARRAY×
Z �→ Z, write : ARRAY × Z × Z �→ ARRAY, and init : Z �→ ARRAY. The array axioms
AXARRAY follow:

read(write(a, i, x), i) ≈ x read(a, i) ≈ read(b, i)⇒ a ≈ b

read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j read(init(x), i) ≈ x

With the axiom read(init(x), i) ≈ x, a term init(t) represents an array that is initialized
everywhere with t. As with the list axioms, the satisfiability of the array axioms can be
established automatically with the Beagle prover by means of a finite saturation.

3 The time of 6.2 seconds for the last problem is with “ordinary variables off”.
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Relations. Let Σ+ ⊇ ΣARRAY be a signature and P � Σ+ a new predicate symbol with
arity Z × ARRAY. Let DefP be a formula of the form ∀ kZ xARRAY . P(k, x) ⇔ C[k, x],
where C is a Σ+-formula with arity Z × ARRAY.

This is a simpler definition than that for LIST, as it does not admit recursion with
the new operator P. Of course, this is balanced by the strength of the read operator for
arrays. Using it we can easily define useful predicates without recursion. For example
the sorted predicate defines arrays in which the first N elements are sorted in increasing
order: sorted(a, n)⇔ (0 ≤ i ∧ i < j ∧ j < n)⇒ read(a, i) ≤ read(a, j).

Lemma 4.1. DefP is an admissible definition of P wrt. Σ+ and D.

Proof. This must be so, since for any Σ+-interpretation I over D and any x, k, I provides
an evaluation of φ[k, x] and so the obvious interpretation I(P) for Σ+ ∪ {P} can be
defined. 
�

Functions. Let Σ+ ⊇ ΣARRAY be a signature, s ∈ sorts(Σ) and f � Σ+ a function symbol
with arity Z × ARRAY �→ s. Let Def f be a set of (implicitly) universally quantified
formulas of the form below, where k is Z-sorted, a is ARRAY-sorted and y is s-sorted:

f (a, k) ≈ y⇐ C1[a, k, y] (f1)

...

f (a, k) ≈ y⇐ Cn[a, k, y] (fn)

where each Ci is a Σ+-formula of arity ARRAY × Z × s. Note the differences between
the LIST version and this definition. Here we do not allow recursion- each Ci is strictly
over the signature Σ+ and, instead of a term ci we have a universally quantified variable
y as the evaluation of f . While some functions on arrays are difficult or impossible
to express in this way (for example, the sum of the first N elements of an array), many
other interesting functions fit this framework. Consider the function rev : ARRAY×Z �→
ARRAY that returns a copy of an array with the order of the first N elements reversed:

rev(a, n) ≈ b⇐ ∀ iZ . 0 ≤ i ∧ i < n ∧ read(b, i) ≈ read(a, n − (i + 1))

∨ ((0 > i ∨ i ≥ n) ∧ read(b, i) ≈ read(a, i))

Lemma 4.2. Let D be a Σ+-domain. If, for all 1 ≤ i ≤ j ≤ n the formula

Ci[a, k, y1] ∧ C j[a, k, y2]⇒ y1 ≈ y2

is valid in all Σ+-interpretations with domain D, then Def f is an admissible definition
of f wrt. Σ+ and D.

Proof. Assume that the above condition is met and that I is a Σ+ interpretation over
D. For this particular I( f ), let f be a function which maps a tuple of domain elements
x to a domain element y of the correct sort such that I |= Ci[x, y] for some i or to
some arbitrary d ∈ D of the correct sort if no such i and y exist. Since each Ci is a Σ+

formula, it has an evaluation in I and by assumption any satisfying y is unique up to
sort equivalence. Where an arbitrary element is selected no contradiction arises since
I( f ) �|= f (x) = d ⇒ C[x, d]. Thus, Def f is an admissible definition for f . 
�
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Examples. Let the operators inRange : ARRAY × Z × Z, max, distinct be defined as
follows (sorted and rev are as defined previously):

inRange(a, r, n)⇔ distinct(a, n)⇔
∀ i . (n ≥ i ∧ i ≥ 0) ∀ i, j . (n > i ∧ n > j ∧ j ≥ 0 ∧ i ≥ 0)

⇒ (r ≥ read(a, i) ∧ read(a, i) ≥ 0) ⇒ read(a, i) ≈ read(a, j)⇒ i ≈ j)

max(a, n) ≈ w⇐ ∀ i . (n > i ∧ i ≥ 0)⇒ w ≥ read(a, i)) ∧ (∃ i . n > i ∧ i ≥ 0 ∧ read(a, i) ≈ w)

Here are some sample conjectures together with the times for disproving them. 4

Note that u indicates termination with a status “unknown”.

Problem Beagle Spass+T Z3
n ≥ 0⇒ inRange(a,max(a, n), n) 1.40 0.16 u
distinct(init(n), i) 0.98 0.15 u
read(rev(a, n + 1), 0) = read(a, n)) >60 >60(0.27) >60
distinct(a, n)⇒ distinct(rev(a, n)) >60 0.11 0.36
∃ nZ .¬sorted(rev(init(n),m),m) >60 0.16 u
sorted(a, n) ∧ n > 0⇒ distinct(a, n) 2.40 0.17 0.01

In addition, SPASS+T, Beagle and Z3 were used to prove the functionality condition
in Lemma 4.2 for the max and rev operators. All provers verified the condition for max
but only SPASS+T and Z3 verified that for rev.

5 Conclusions

The aim of this work is to provide a reasonably expressive language (in practical terms)
that allows one to specify properties of data structures under consideration, like lists
and arrays, and that supports disproving by existing theorem provers. The main idea
is to capitalize on the strengths of these systems in theorem proving and use these for
solving (appropriately phrased )disproving problems, instead of relying on their model-
building capabilities. The latter, direct approach does not work well in the context of
(integer) background theories: both saturation based and SMT methods are inherently
incomplete, and so non-provability does not entail non-validity. See [3] for further de-
tails under which complete theorem proving is possible.

We gave some example problems and tested them with the theorem provers
SPASS+T, Beagle and Z3. These examples are all non-solvable with the direct ap-
proach and solvable with our approach. All of them could be solved, and in short time.
In general, the first-order solvers Beagle and SPASS+T worked most reliably, possibly
thanks to handling quantified formulas natively instead of relying solely on instantia-
tion heuristics. On the other hand, it is easy to find examples where our method does
not work. A simple example is the conjecture ∃ nZ lLIST . length(cons(n, l)) ≈ 0. (The
direct approach does not work either, e.g., Beagle does not find a finite saturation.)

4 SPASS+T used Yices as a theory solver. The time of 0.27s in the third problem is obtained by
excluding the inRange definition.
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Abstract. State-of-the-art algorithms for industrial instances of MaxSAT prob-
lem rely on iterative calls to a SAT solver. Preprocessing is crucial for the acceler-
ation of SAT solving, and the key preprocessing techniques rely on the application
of resolution and subsumption elimination. Additionally, satisfiability-preserving
clause elimination procedures are often used. Since MaxSAT computation typi-
cally involves a large number of SAT calls, we are interested in whether an input
instance to a MaxSAT problem can be preprocessed up-front, i.e. prior to run-
ning the MaxSAT solver, rather than (or, in addition to) during each iterative SAT
solver call. The key requirement in this setting is that the preprocessing has to
be sound, i.e. so that the solution can be reconstructed correctly and efficiently
after the execution of a MaxSAT algorithm on the preprocessed instance. While,
as we demonstrate in this paper, certain clause elimination procedures are sound
for MaxSAT, it is well-known that this is not the case for resolution and sub-
sumption elimination. In this paper we show how to adapt these preprocessing
techniques to MaxSAT. To achieve this we recast the MaxSAT problem in a re-
cently introduced labelled-CNF framework, and show that within the framework
the preprocessing techniques can be applied soundly. Furthermore, we show that
MaxSAT algorithms restated in the framework have a natural implementation on
top of an incremental SAT solver. We evaluate the prototype implementation of
a MaxSAT algorithm WMSU1 in this setting, demonstrate the effectiveness of
preprocessing, and show overall improvement with respect to non-incremental
versions of the algorithm on some classes of problems.

1 Introduction

Maximum Satisfiability (MaxSAT) and its generalization to the case of Satisfiability
Modulo Theories (MaxSMT) find a growing number of practical applications [17,19].
For problem instances originating from practical applications, state of the art MaxSAT
algorithms rely on iterative calls to a SAT oracle. Moreover, and for a growing number
of iterative algorithms, the calls to the SAT oracle are guided by iteratively computed
unsatisfiable cores (e.g. [19]).

In practical SAT solving, formula preprocessing has been extensively studied and is
now widely accepted to be an often effective, if not crucial, technique. In contrast, for-
mula preprocessing is not used in practical MaxSAT solving. Indeed, it is well-known
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that resolution and subsumption elimination, which form the core of many effective
preprocessors, are unsound for MaxSAT solving [17]. This has been addressed by the
development of a resolution calculus specific to MaxSAT [7]. Nevertheless, for practical
instances of MaxSAT, dedicated MaxSAT resolution is ineffective.

The application of SAT preprocessing to problems where a SAT oracle is used a num-
ber of times has been the subject of recent interest [2]. For iterative MaxSAT solving,
SAT preprocessing can be used internally to the SAT solver. However, we are interested
in the question of whether an input instance of a MaxSAT problem can be preprocessed
up-front, i.e. prior to running the MaxSAT solver, rather than (or, in addition to) during
each iterative SAT solver call. The key requirement in this setting is that the prepro-
cessing has to be sound, i.e. so that the solution can be reconstructed correctly and
efficiently after the execution of a MaxSAT algorithm on the preprocessed instance.

In this paper we make the following contributions. First, we establish that certain
class of clause elimination procedures, and in particular monotone clause elimination
procedures such as blocked clause elimination [14], are sound for MaxSAT. Second, we
use a recently proposed labelled-CNF framework [3,2] to re-formulate MaxSAT and its
generalizations, and show that within the framework the resolution and subsumption-
elimination based preprocessing techniques can be applied soundly. This result comple-
ments a similar result with respect to the MUS computation problem presented in [2].
An interesting related result is that MaxSAT algorithms formulated in the labelled-CNF
framework can naturally implemented on top of an incremental SAT solver (cf. [10]).
We evaluate a prototype implementation of a MaxSAT algorithm WMSU1 [11,1,18] in
this setting, demonstrate the effectiveness of preprocessing, and show overall improve-
ment with respect to non-incremental versions of this algorithm on weighted partial
MaxSAT instances.

2 Preliminaries

We assume the familiarity with propositional logic, its clausal fragment, SAT solving
in general, and the assumption-based incremental SAT solving cf. [10]. We focus on
formulas in CNF (formulas, from hence on), which we treat as (finite) (multi-)sets of
clauses. When it is convenient we treat clauses as sets of literals, and hence we assume
that clauses do not contain duplicate literals. Given a formula F we denote the set of
variables that occur in F by Var(F ), and the set of variables that occur in a clause C ∈
F by Var(C). An assignment τ for F is a map τ : Var(F ) → {0, 1}. Assignments
are extended to formulas according to the semantics of classical propositional logic. If
τ(F ) = 1, then τ is a model of F . If a formula F has (resp. does not have) a model,
then F is satisfiable (resp. unsatisfiable). By SAT (resp. UNSAT) we denote the set of
all satisfiable (resp. unsatisfiable) CNF formulas.

MUSes, MSSes, and MCSes. Let F be an unsatisfiable CNF formula. A formula
M ⊆ F is a minimal unsatisfiable subformula (MUS) of F if (i) M ∈ UNSAT, and
(ii) ∀C ∈ M , M \{C} ∈ SAT. The set of MUSes of F is denoted by MUS(F ). Dually,
a formula S ⊆ F is a maximal satisfiable subformula (MSS) of F if (i) S ∈ SAT,
and (ii) ∀C ∈ F \ S, S ∪ {C} ∈ UNSAT. The set of MSSes of F is denoted by



98 A. Belov, A. Morgado, and J. Marques-Silva

MSS(F ). Finally, a formula R ⊆ F is a minimal correction subset (MCS), or, co-MSS
of F , if F \ R ∈ MSS(F ), or, explicitly, if (i) F \ R ∈ SAT, and (ii) ∀C ∈ R,
(F \ R) ∪ {C} ∈ UNSAT. Again, the set of MCSes of F is denoted by MCS(F ).
The MUSes, MSSes and MCSes of a given unsatisfiable formula F are connected via
so-called hitting sets duality theorem, first proved in [20]. The theorem states that M
is an MUS of F if and only if M is an irreducible hitting set1 of the set MCS(F ), and
vice versa: R ∈ MCS(F ) iff R is an irreducible hitting set of MUS(F ).

Maximum Satisfiability. A weighted clause is a pair (C,w), where C is a clause, and
w ∈ N+ ∪ {�} is the cost of falsifying C. The special value � signifies that C must
be satisfied, and (C,�) is then called a hard clause, while (C,w) for w ∈ N+ is called
a soft clause. A weighted CNF (WCNF) is a set of weighted clauses, F = FH ∪ FS ,
where FH is the set of hard clauses, and FS is the set of soft clauses. The satisfiability,
and the related concepts, are defined for weighted CNFs by disregarding the weights.
For a given WCNF F = FH∪FS , a MaxSAT model for F is an assignment τ for F that
satisfies FH . A cost of a MaxSAT model τ , cost(τ), is the sum of the weights of the soft
clauses falsified by τ . For the rest of this paper, we assume that (i) FH ∈ SAT, i.e. F
has at least one MaxSAT model, and (ii) F ∈ UNSAT, i.e. cost(τ) > 0. (Weighted)
(Partial) MaxSAT is a problem of finding a MaxSAT model of the minimum cost for a
given WCNF formula F = FH ∪FS . The word “weighted” is used when there are soft
clauses with weight > 1, while the word “partial” is used when FH 
= ∅.

A straightforward, but nevertheless important, observation is that solving a weighted
partial MaxSAT problem for WCNF F is equivalent to finding a minimum-cost MCS
Rmin of F , or, alternatively, a minimum-cost hitting set of MUS(F )2. The MaxSAT
solution is then a model for the corresponding MSS of F , i.e. F \Rmin.

SAT Preprocessing. Given a CNF formula F , the goal of preprocessing for SAT solv-
ing is to compute a formula F ′ that is equisatisfiable with F , and that might be easier to
solve. The computation of F ′ and a model of F from a model of F ′ in case F ′ ∈ SAT,
is expected to be fast enough to make it worthwhile for the overall SAT solving. Many
SAT preprocessing techniques rely on a combination of resolution-based preprocessing
and clause-elimination procedures. Resolution-based preprocessing relies on the appli-
cation of the resolution rule to modify the clauses of the input formula and/or to reduce
the total size of the formula. Clause-elimination procedures, on the other hand, do not
change the clauses of the input formula, but rather remove some of its clauses, pro-
ducing a subformula the input formula. SAT preprocessing techniques can be described
as non-deterministic procedures that apply atomic preprocessing steps to the, initially
input, formula until a fixpoint, or until resource limits are exceeded.

One of the most successful and widely used SAT preprocessors is the SatElite pre-
processor presented in [8]. The techniques employed by SatElite are: bounded variable

1 For a given collection S of arbitrary sets, a setH is called a hitting set of S if for all S ∈ S ,
H ∩ S 	= ∅. A hitting set H is irreducible, if no H ′ ⊂ H is a hitting set of S . Irreducible
hitting sets are also known as hypergraph transversals.

2 For a set of weighted clauses, its cost is the sum of their weights, or � if any of them is hard.
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elimination (BVE), subsumption elimination, self-subsuming resolution (SSR), and, of
course, unit propagation (UP). An additional practically relevant preprocessing tech-
nique is blocked clause elimination (BCE) [14]. We describe these techniques below, as
these will be discussed in this paper in the context of MaxSAT.

Bounded variable elimination (BVE) [8] is a resolution-based preprocessing tech-
nique, rooted in the original Davis-Putnam algorithm for SAT. Recall that for two
clauses C1 = (x∨A) and C2 = (¬x∨B) the resolvent C1⊗xC2 is the clause (A∨B).
For two sets Fx and F¬x of clauses that all contain the literal x and ¬x, resp., define
Fx⊗xF¬x = {C1⊗xC2 | C1 ∈ Fx, C2 ∈ F¬x, and C1⊗xC2 is not a tautology}. The
formula ve(F, x) = F \(Fx∪F¬x)∪(Fx⊗xF¬x) is equisatisfiable with F , however, in
general, might be quadratic in the size of F . Thus the atomic operation of bounded vari-
able elimination is defined as bve(F, x) = if (|ve(F, x)| < |F |) then ve(F, x) else F .
A formula BVE(F ) is obtained by applying bve(F, x) to all variables in F 3.

Subsumption elimination (SE) is an example of a clause elimination technique. A
clause C1 subsumes a clause C2, if C1 ⊂ C2. For C1, C2 ∈ F , define sub(F,C1, C2) =
if (C1 ⊂ C2) then F \ {C2} else F . The formula SUB(F ) is then obtained by apply-
ing sub(F,C1, C2) to all clauses of F .

Notice that unit propagation (UP) of a unit clause (l) ∈ F is just an application of
sub(F, (l), C) until fixpoint (to remove satisfied clauses), followed by bve(F, var(l))
(to remove the clause (l) and the literal ¬l from the remaining clauses), and so we will
not discuss UP explicitly.

Self-Subsuming resolution (SSR) uses resolution and subsumption elimination. Given
two clauses C1 = (l ∨ A) and C2 = (¬l ∨ B) in F , such that A ⊂ B, we have
C1 ⊗l C2 = B ⊂ C2, and so C2 can be replaced with B, or, in other words, ¬l is
removed from C2. Hence, the atomic step of SSR, ssr(F,C1, C2), results in the formula
F \ {C2} ∪ {B} if C1, C2 are as above, and F , otherwise.

An atomic step of blocked clause elimination (BCE) consists of removing one
blocked clause — a clause C ∈ F is blocked in F [15], if for some literal l ∈ C,
every resolvent of C with C ′ ∈ F on l is tautological. A formula BCE(F ) is obtained
by applying bce(F,C) = if (C blocked in F ) then F \ {C} else F to all clauses of
F . Notice, that a clause with a pure literal is blocked (vacuously), and so pure literal
elimination is a special case of BCE. BCE possesses an important property called mono-
tonicity: for any F ′ ⊆ F , BCE(F ′) ⊆ BCE(F ). This holds because if C is blocked
w.r.t. to F , it will be also blocked w.r.t to any subset of F . Notice that subsumption
elimination is not monotone.

3 SAT Preprocessing and MaxSAT

Let F ′ denote the result of the application of one or more of the SAT preprocessing
techniques, such as those discussed in the previous section, to a CNF formula F . The
question that we would like to address in this paper is whether it is possible to solve a
MaxSAT problem for F ′, instead of F , in such a way that from any MaxSAT solution
of F ′, a MaxSAT solution of F can be reconstructed feasibly. In a more general setting,

3 Specific implementations often impose additional restrictions on BVE.
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F might be a WCNF formula, and F ′ is the set of weighted clauses obtained by pre-
processing the clauses of F , and perhaps, adjusting their weights in some manner. The
preprocessing techniques for which the answer to this question is “yes” will be refereed
to as sound for MaxSAT. To be specific:

Definition 1. A preprocessing technique P is sound for MaxSAT if there exist a poly-
time computable function αP such that for any WCNF formula F and any MaxSAT
solution τ of P(F ), αP(τ) is a MaxSAT solution of F .

This line of research is motivated by the fact that most of the efficient algorithms for
industrial MaxSAT problems are based on iterative invocations of a SAT solver. Thus,
if F ′ is indeed easier to solve than F by a SAT solver, it might be the case that it is
also easier to solve by a SAT-based MaxSAT solver. To illustrate that the question is not
trivial, consider the following example.

Example 1. In the plain MaxSAT setting, let F = {C1, . . . , C6}, with C1 = (p),
C2 = (¬p), C3 = (p ∨ q), C4 = (p ∨ ¬q), C5 = (r), and C6 = (¬r). The clauses
C3 and C4 are subsumed by C1, and so SUB(F ) = {C1, C2, C5, C6}. SUB(F ) has
MaxSAT solutions in which p is assigned to 0, e.g. {〈p, 0〉, 〈r, 0〉}, while F does not.
Furthermore, BVE(F ) = {∅} — a formula with 8 MaxSAT solutions (w.r.t. to the
variables of F ) with cost 1. F , on the other hand, has 4 MaxSAT solutions with cost 2.

Thus, even a seemingly benign subsumption elimination already causes problems for
MaxSAT. While we do not prove that the technique is not sound for MaxSAT, a strong
indication that this might be the case is that SUB might remove clauses that are included
in one or more of the MUSes of the input formula F (c.f. Example 1), and thus lose
the information required to compute the MaxSAT solution of F . The problems with
the application of the resolution rule in the context of MaxSAT has been pointed out
already in [17], and where the motivation for the introduction of the so-called MaxSAT
resolution rule [7] and a complete proof procedure for MaxSAT based on it. However,
MaxSAT resolution does not lead to effective preprocessing techniques for industrial
MaxSAT since it often introduces a large number of auxiliary “compensation” clauses.
Once again, we do not claim that resolution is unsound for MaxSAT, but it is likely to
be the case, since for example ve ran to completion on any unsatisfiable formula will
always produce a formula {∅}.

In this paper we propose an alternative solution, which will be discussed shortly. But
first, we observe that monotone clause elimination procedures are sound for MaxSAT.

3.1 Monotone Clause Elimination Procedures

Recall that given a CNF formula F , an application of clause elimination procedure E
produces a formulaE(F ) ⊆ F equisatisfiable with F . Monotonicity implies that for any
F ′ ⊆ F , E(F ′) ⊆ E(F ). Some examples of monotone clause elimination procedures
include BCE (and as a special case, pure literal elimination), and also covered clause
elimination introduced in [12].

It was observed already in [16] that if a clause C ∈ F is blocked in F , then none of
the MUSes of F can include C. Thus, MUS(BCE(F )) = MUS(F ), and therefore, by
the hitting-sets duality, MCS(BCE(F )) = MCS(F ). In particular, any minimum-cost
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MCS of BCE(F ) is also a minimum-cost MCS of F . Thus, the cost of any MaxSAT
solution τ of BCE(F ) is exactly the same as of any MaxSAT solution of F , and more-
over, there exist a MaxSAT solution of F that falsifies the exact same set of clauses as
τ in BCE(F ). The only question is whether a solution of F can be feasibly constructed
from τ . A linear time procedure for reconstruction of satisfying assignments after BCE
has been described in [13] (Prop. 3). We show that the same procedure can be applied
to reconstruct the solutions in the context of MaxSAT. We generalize the discussion to
include some of the clause elimination procedures beside BCE.

Definition 2. A clause elimination procedure E is MUS-preserving if MUS(E(F )) =
MUS(F ).

Theorem 1. Any MUS-preserving clause elimination procedure is sound for MaxSAT.

Proof. Let E be an MUS-preserving clause elimination procedure, and let αE be a feasi-
bly computable function that for any CNF formula G maps a model of E(G) to a model
of G when E(G) is satisfiable. Let F be a WCNF formula, and let τ be a MaxSAT so-
lution of the formula E(F ). Let E(F ) = R # S4, where R (resp. S) is the set of clauses
falsified (resp. satisfied) by τ , i.e. R is a minimum-cost MCS of E(F ), and S is the cor-
responding MSS of E(F ). Since E is MUS-preserving, MUS(E(F )) = MUS(F ), and,
by hitting-sets duality,MCS(E(F )) = MCS(F ), and so R is also a minimum-cost MCS
of F . To show that τ ′ = αE(τ) satisfies S′ = F \R, we observe that since F = R#S′,
E(F ) = E(R # S′) = R # E(S′), because R ⊂ E(F ). Hence S = E(S′), and therefore
given any model τ of S, αE(τ) is a model of S′. 
�

Proposition 1. Any monotone clause elimination procedure is MUS-preserving5.

Corollary 1. Any monotone clause elimination procedure is sound for MaxSAT.

3.2 Resolution-Based and Subsumption Elimination Based Techniques

To enable sound preprocessing for MaxSAT using resolution-based and subsumption
elimination based preprocessing techniques, we propose to recast the MaxSAT prob-
lem in the framework of so-called labelled CNF (LCNF) formulas. The framework was
introduced in [3], and was already used to enable sound preprocessing for MUS ex-
traction in [2]. We briefly review the framework here, and refer the reader to [3,2] for
details.

Labelled CNFs. Assume a countable set of labels Lbls. A labelled clause (L-clause)
is a tuple 〈C,L〉, where C is a clause, and L is a finite (possibly empty) subset of
Lbls. We denote the label-sets by superscripts, i.e. CL is the labelled clause 〈C,L〉. A
labelled CNF (LCNF) formula is a finite set of labelled clauses. For an LCNF formula
Φ 6, let Cls(Φ) =

⋃
CL∈Φ{C} be the clause-set of Φ, and Lbls(Φ) =

⋃
CL∈Φ L be the

4 The symbol � refers to a disjoint union.
5 All missing proofs are included in the extended version of this paper [4].
6 We use capital Greek letters to distinguish LCNFs from CNFs.
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label-set of Φ. LCNF satisfiability is defined in terms of the satisfiability of the clause-
sets of an LCNF formula: Φ is satisfiable if and only if Cls(Φ) is satisfiable. We will
re-use the notation SAT (resp. UNSAT) for the set of satisfiable (resp. unsatisfiable)
LCNF formulas7. However, the semantics of minimal unsatisfiability and maximal and
maximum satisfiability of labelled CNFs are defined in terms of their label-sets via the
concept of the induced subformula.

Definition 3 (Induced subformula). Let Φ be an LCNF formula, and let M ⊆ Lbls(Φ).
The subformula of Φ induced by M is the LCNF formula Φ|M = {CL ∈ Φ | L ⊆ M}.

In other words, Φ|M consists of those labelled clauses of Φ whose label-sets are in-
cluded in M , and so Lbls(Φ|M ) ⊆ M , and Cls(Φ|M ) ⊆ Cls(Φ). Alternatively, any
clause that has at least one label outside of M is removed from Φ. Thus, it is convenient
to talk about the removal of a label from Φ. Let l ∈ Lbls(Φ) be any label. The LCNF
formula Φ|M\{l} is said to be obtained by the removal of label l from Φ.

To the readers familiar with the assumption-based incremental SAT (c.f. [10]), it
might be helpful to think of labels as selector variables attached to clauses of a CNF
formula, taking into account the possibility of having multiple, or none at all, selectors
for each clause8. Then an induced subformula Φ|M is obtained by “turning-on” the
selectors in M , and “turning-off” the selectors outside of M . An operation of removal
of a label l from Φ can be seen as an operation of “turning-off” the selector l.

The concept of induced subformulas allows to adopt all notions related to satisfi-
ability of subsets of CNF formulas to LCNF setting. For example, given an unsatis-
fiable LCNF Φ, an unsatisfiable core of Φ is any set of labels C ⊆ Lbls(Φ) such
that Φ|C ∈ UNSAT. Note that the selectors that appear in the final conflict clause in
the context of assumption-based incremental SAT constitute such a core. Furthermore,
given an unsatisfiable LCNF Φ, a set of labels M ⊆ Lbls(Φ) is an MUS of Φ, if (i)
Φ|M ∈ UNSAT, and (ii) ∀l ∈ M,Φ|M\{l} ∈ SAT. As with CNFs, the set of all MUSes
of LCNF Φ is denoted by MUS(Φ). MSSes and MCSes of LCNF formulas can be de-
fined in the similar manner. Specifically, for an unsatisfiable LCNF formula Φ, a set
of labels R ⊆ Lbls(Φ) is an MCS of Φ, if (i) Φ|Lbls(Φ)\R ∈ SAT, and (ii) ∀l ∈ R,
Φ|(Lbls(Φ)\R)∪{l} ∈ UNSAT. The set of all MCSes of Φ is denoted by MCS(Φ). It
was shown in [3] that the hitting-sets duality holds for LCNFs, i.e. for any LCNF Φ,
M ⊆ Lbls(Φ) is an MUS of Φ if and only if M is an irreducible hitting set of MCS(Φ),
and vice versa.

Example 2. Let Φ = {(¬p)∅, (r)∅, (p ∨ q){1}, (p ∨ ¬q){1,2}, (p){2}, (¬r){3}}. The
label-set of a clause is given in the superscript, i.e. Lbls = N+ and Lbls(Φ) = {1, 2, 3}.
The subformula induced by the set S = {1} is Φ|S = {(¬p)∅, (r)∅, (p ∨ q){1}}. S is
an MSS of Φ, as Φ|S ∈ SAT and both formulas Φ|{1,2} and Φ|{1,3} are unsatisfiable.
R = {2, 3} is the corresponding MCS of Φ.

To clarify the connection between LCNF and CNF formulas further, consider a
CNF formula F = {C1, . . . , Cn}. The LCNF formula ΦF associated with F is con-

7 To avoid overly optimistic complexity results, we will tacitly assume that the sizes of label-sets
of the clauses in LCNFs are polynomial in the number of the clauses

8 Furthermore, notice that clauses with multiple selectors show up exactly when resolution-
based preprocessing is applied in the context of incremental SAT.
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structed by labelling each clause Ci ∈ F with a unique, singleton labelset {i}, i.e.

ΦF = {C{i}
i | Ci ∈ F}. Then, a removal of a label i from ΦF corresponds to a removal

of a clause Ci from F , and so every MUS (resp. MSS/MCS) of ΦF corresponds to an
MUS (resp. MSS/MCS) of F and vice versa.

The resolution rule for labelled clauses is defined as follows [2]: for two labelled
clauses (x ∨ A)L1 and (¬x ∨ B)L2 , the resolvent CL1

1 ⊗x CL2
2 is the labelled clause

(A ∨ B)L1∪L2 . The definition is extended to two sets of labelled clauses Φx and Φ¬x
that contain the literal x and ¬x resp., as with CNFs. Finally, a labelled clause CL1

1 is
said to subsume CL2

2 , in symbols CL1
1 ⊂ CL2

2 , if C1 ⊂ C2 and L1 ⊆ L2. Again, the
two definitions become immediate if one thinks of labels as selector variables in the
context of incremental SAT.

Resolution and Subsumption Based Preprocessing for LCNFs. Resolution and sub-
sumption based SAT preprocessing techniques discussed in Section 2 can be applied to
LCNFs [2], so long as the resolution rule and the definition of subsumption is taken
to be as above. Specifically, define ve(Φ, x) = Φ \ (Φx ∪ Φ¬x) ∪ (Φx ⊗x Φ¬x).
Then, an atomic operation of bounded variable elimination for LCNF Φ is defined as
bve(Φ, x) = if (|ve(Φ, x)| < |Φ|) then ve(Φ, x) else Φ. The size of Φ is just the num-
ber of labelled clauses in it. A formula BVE(Φ) is obtained by applying bve(Φ, x) to all
variables in Φ. Similarly, for CL1

1 , CL2
2 ∈ F , define sub(Φ,CL1

1 , CL2
2 ) = if (CL1

1 ⊂
CL2

2 ) then Φ \ {CL2
2 } else Φ. The formula SUB(Φ) is then obtained by applying

sub(Φ,CL1
1 , CL2

2 ) to all clauses of Φ. Finally, given two labelled clauses CL1
1 = (l ∨

A)L1 and CL2
2 = (¬l ∨B)L2 in Φ, such that A ⊂ B and L1 ⊆ L2, the atomic step of

self-subsuming resolution, ssr(Φ,CL1
1 , CL2

2 ), results in the formula Φ\{CL2
2 }∪{BL2}.

Notice that the operations bve and ssr do not affect the set of labels of the LCNF for-
mula, however it might be the case that sub removes some labels from it.

The soundness of the resolution and subsumption based preprocessing for LC-
NFs with respect to the computation of MUSes has been established in [2] (Theo-
rem 1, Prop. 6 and 7). Specifically, given an LCNF Φ, MUS(bve(Φ, x)) ⊆ MUS(Φ),
MUS(sub(Φ,CL1

1 , CL2
2 )) ⊆ MUS(Φ), and MUS(ssr(Φ,CL1

1 , CL2
2 )) ⊆ MUS(Φ). In

this paper we establish stronger statements that, by the hitting-sets duality for LCNFs
[3], also imply that the set inclusions ⊆ between the sets MUS(◦) are set equalities.

Proposition 2. For any LCNF formula Φ and variable x, MCS(bve(Φ, x)) = MCS(Φ).

Proposition 3. For any LCNF formula Φ, and any two clauses CL1
1 , CL2

2 ∈ Φ,
MCS(sub(Φ,CL1

1 , CL2
2 )) = MCS(Φ).

Proposition 4. For any LCNF formula Φ, and any two clauses CL1
1 , CL2

2 ∈ Φ,
MCS(ssr(Φ,CL1

1 , CL2
2 )) = MCS(Φ).

To summarize, the three SAT preprocessing techniques discussed in this section,
namely bounded variable elimination, subsumption elimination and self-subsuming
resolution, preserve MCSes of LCNF formulas. Given that the MaxSAT problem for
weighted CNFs can be cast as a problem of finding a minimum-cost MCS (cf. Sec-
tion 2), we now define the MaxSAT problem for weighted LCNFs, and draw a connec-
tion between the two problems.
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Maximum Satisfiability for LCNFs. Recall that the maximum satisfiability problem
for a given weighted CNF formula F = FH ∪ FS can be seen as a problem of finding
a minimum-cost set of soft clauses Rmin whose removal from F makes F satisfiable,
i.e. a minimum-cost MCS of F . In LCNF framework we do not remove clause directly,
but rather via labels associated with them. Thus, a clause labelled with an empty set of
labels cannot be removed from an LCNF formula, and can play a role of a hard clause
in a WCNF formula. By associating the weights to labels of LCNF formula, we can
arrive at a concept of a minimum-cost set of labels, and from here at the idea of the
maximum satisfiability problem for LCNF formulas.

Thus, we now have weighted labels (l, w), with l ∈ Lbls, and w ∈ N+ (note that
there’s no need for the special weight�). A cost of a set L of weighted labels is the sum
of their weights. A weighted LCNF formula is a set of clauses labelled with weighted
labels. It is more convenient to define a MaxSAT solution for weighted LCNFs in terms
of minimum-cost MCSes, rather that in terms of MaxSAT models. This is due to the
fact that given an arbitrary assignment τ that satisfies all clauses labelled with ∅, the
definition of a “set of labels falsified by τ” is not immediate, since in principle a clause
might be labelled with more than one label, and, from the MaxSAT point of view, we
do not want to remove more labels than necessary.

Definition 4 (MaxSAT solution for weighted LCNF). Let Φ be a weighted LCNF
formula with Φ|∅ ∈ SAT. An assignment τ is a MaxSAT solution of Φ if τ is a model
of the formula Φ|Lbls(Φ)\Rmin

for some minimum-cost MCS Rmin of Φ. The cost of τ is
the cost of Rmin.

In other words, a MaxSAT solution τ for a weighted LCNF maximizes the cost of a
set S ⊆ Lbls(Φ), subject to τ satisfying Φ|S , and the cost of τ is the cost of the set
R = Lbls(Φ) \ S.

Let F = FH ∪ FS be a weighted CNF formula. The weighted LCNF formula
ΦF associated with F is constructed similary to the case of plain CNFs: assuming
that FS = {C1, . . . , Cn}, we will use {1, . . . , n} to label the soft clauses, so that a
clause Ci gets a unique, singleton labelset {i}, hard clauses will be labelled with ∅,
and the weight of a label i will be set to be the weight of the soft clause Ci. Formally,
Lbls(Φ) = {1, . . . , |FS |} ⊂ N+, ΦF = (∪C∈FH{C∅}) ∪ (∪Ci∈FS{C{i}

i }, and ∀i ∈
Lbls(Φ), w(i) = w(Ci).

Let ΦF be the weighted LCNF formula associated a weighted CNF F . Clearly, ev-
ery MaxSAT solution of ΦF is a MaxSAT solution of F , and vice versa. In the previous
subsection we showed that the resolution and the subsumption elimination based pre-
processing techniques preserve the MCSes of ΦF . We will show shortly that this leads
to the conclusion that the techniques can be applied soundly to ΦF , and so, assuming the
availability of a method for solving MaxSAT problem for ΦF (Section 4), this allows to
use preprocessing, albeit indirectly, for solving MaxSAT problem for F .

Preprocessing and MaxSAT for LCNFs

Theorem 2. For weighted LCNF formulas, the atomic operations of bounded variable
elimination (bve), subsumption elimination (sub), and self-subsuming resolution (ssr)
sound for MaxSAT.
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Proof. Let Φ be a weighted LCNF formula. Assume that for some variable x, Φ′ =
bve(Φ, x), and let τ ′ be a MaxSAT solution of Φ′. Thus, for some minimum-cost MCS
Rmin of Φ′, τ ′ is a model of Φ′|Lbls(Φ′)\Rmin

. By Proposition 2, Rmin is a minimum-
cost MCS of Φ. If x was eliminated, τ ′ can be transformed in linear time to a model τ
of Φ|Lbls(Φ)\Rmin

by assigning the truth-value to x (cf. [13]). We conclude that bve is
sound for LCNF MaxSAT.

For sub and ssr no reconstruction is required, since the techniques preserve equiva-
lence. The claim of the theorem follows directly from Propositions 3 and 4. 
�

To conclude this section, lets us summarize the SAT preprocessing “pipeline” for solv-
ing the MaxSAT problem for weighted CNFs. Given a WCNF formula F , first apply
any MUS-preserving (and so, monotone) clause-elimination technique, such as BCE,
to obtain the formula F ′. Then, construct an LCNF formula Φ|F ′ associated with F ′,
and apply BVE, subsumption elimination and SSR, possibly in an interleaved manner,
to Φ|F ′ to obtain Φ′. Solve the MaxSAT problem for Φ′, and reconstruct the solution to
the MaxSAT problem of the original formula F — Theorems 1 and 2 show that it can
be done feasibly. The only missing piece is how to solve MaxSAT problem for LCNF
formulas — this is the subject of the next section.

We have to point out that the resolution and the subsumption elimination prepro-
cessing techniques in the LCNF framework are not without their limitations. For BVE
the label-sets of clauses grow, which may have a negative impact on the performance
of SAT solvers if LCNF algorithms are implemented incrementally. Also, two clauses
CL1 and CL2 are treated as two different clauses if L1 
= L2, while without labels they
would be collapsed into one, and thus more variables might be eliminated. Neverthe-
less, when many hard (i.e. labelled with ∅) clauses are present, this negative effect is
dampened. For subsumption elimination the rule L1 ⊆ L2 is quite restrictive. In par-
ticular, it blocks subsumption completely in the plain MaxSAT setting (though, as we
already saw, unrestricted subsumption is dangerous for MaxSAT). However, in partial
MaxSAT setting it does enable the removal of any clause (hard or soft) subsumed by a
hard clause. In Section 5, we demonstrate that the techniques do lead to performance
improvements in practice.

4 Solving MaxSAT Problem for LCNFs

In this section we propose two methods for solving MaxSAT problem for weighted
LCNFs. Both methods rely on the connection between the labels in LCNFs and the
selector variables.

4.1 Reduction to Weighted Partial MaxSAT

The idea of this method is to encode a given weighted LCNF formula Φ as an WCNF
formula FΦ, mapping the labels of Φ to soft clauses in such a way that a removal of
soft clause from FΦ would emulate the operation of a removal of a corresponding label
from Φ. This is done in the following way: for each li ∈ Lbls(Φ), create a new variable
ai. Then, for each labelled clause CL create a hard clause C ∨

∨
li∈L(¬ai). Finally, for
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each li ∈ Lbls(Φ), create a soft clause (ai) with a weight equal to the weight of the
label li.

Example 3. Let Φ = {(¬p)∅, (r)∅, (p ∨ q){1}, (p ∨ ¬q){1,2}, (p){2}, (¬r){3}}, and as-
sume that the weights of all labels are 1. Then, FΦ = {(¬p,�), (r,�), (¬a1 ∨ p ∨
q,�), (¬a1 ∨¬a2 ∨ p∨ ¬q,�), (¬a2 ∨ p,�), (¬a3 ∨¬r,�), (a1, 1), (a2, 1), (a3, 1)}.
Then, removal of (a2, 1) from the FΦ leaves ¬a2 pure, and so is equivalent to the re-
moval of all hard clauses clauses that contain a2, which in turn is equivalent to the
removal of the label 2 from Φ.

It is then not difficult to see that any MaxSAT solution of FΦ is a MaxSAT solu-
tion of Φ, and vice versa. The advantage of the indirect method is that any off-the-shelf
MaxSAT solver can be turned into a MaxSAT solver for LCNFs. However, it also cre-
ates a level of indirection between the selector variables and the clauses they are used
in. In our preliminary experiments the indirect method did not perform well.

4.2 Direct Computation

Core-guided MaxSAT algorithms are among the strongest algorithms for industrially-
relevant MaxSAT problems. These algorithms iteratively invoke a SAT solver, and for
each unsatisfiable outcome, relax the clauses that appear in the unsatisfiable core re-
turned by the SAT solver. A clause Ci is relaxed by adding a literal ri to Ci for a fresh
relaxation variable ri. Subsequently, a cardinality or a pseudo-Boolean constraint over
the relaxation variables ri is added to the set of the hard clauses of the formula. The
exact mechanism is algorithm-dependent — we refer the reader to the recent survey of
core-guided MaxSAT algorithms in [19].

The key idea that enables to adapt core-guided MaxSAT algorithms to the LCNF
setting is that the “first-class citizen” in the context of LCNF is not a clause, but rather a
label. In particular, the unsatisfiable core returned by a SAT solver has to be expressed
in terms of the labels of the clauses that appear in the core. Furthermore, in the LCNF
setting, it is the labels that get relaxed, and not the clauses directly. That is, when a
label li is relaxed due to the fact that it appeared in an unsatisfiable core, the relaxation
variable ri is added to all clauses whose labelsets include li.

To illustrate the idea consider the pseudocode of a core-guided algorithm for solving
partial MaxSAT problem due to Fu and Malik [11], presented in Figure 1. And, contrast
it with the (unweighted) LCNF-based version of the algorithm, presented in Figure 2.
The original algorithm invokes a SAT solver on the, initially input, formula F until
the formula is satisfiable. For each unsatisfiable outcome, the soft clauses that appear
in the unsatisfiable core Core (assumed to be returned by the SAT solver) are relaxed
(lines 5-7), and the CNF representation of the equals1 constraint on the sum of relax-
ation variables is added to the set of the hard clauses of F . The LCNF version of the
algorithm proceeds similarly. The only two differences are as follows. When the LCNF
formula Φ is unsatisfiable, the unsatisfiable core has to be expressed in terms of the la-
bels, rather than clauses. That is, the algorithm expects to receive a set Lcore ⊆ Lbls(Φ)
such that Φ|Lcore ∈ UNSAT. Some of the possible ways to obtain such a set of core la-
bels are described shortly. The second difference is that a fresh relaxation variable ri is



SAT-Based Preprocessing for MaxSAT 107

Input : F = FH ∪ FS — a partial
MaxSAT formula

Output: τ — a MaxSAT solution for F

1 while true do
2 (st, τ, Core) = SAT(F )
3 if st = true then return τ
4 R← ∅

// relax soft clauses in Core

5 foreach Ci ∈ Core ∩ FS do
6 R← R ∪ {ri}
7 replace Ci with (ri ∨ Ci)

8 FH ← FH ∪ CNF(
∑

ri∈R ri = 1)

Fig. 1. Fu and Malik algorithm for partial
MaxSAT [11]

Input : Φ— an unweighted LCNF
formula

Output: τ — a MaxSAT solution for Φ

1 while true do
2 (st, τ, Lcore) = SAT(Φ)
3 if st = true then return τ
4 R← ∅

// relax labels in Lcore

5 foreach li ∈ Lcore do
6 R← R ∪ {ri}
7 foreach CL ∈ Φ s.t. li ∈ L do
8 replace CL with (ri ∨C)L

9 Φ← Φ ∪ CNF(
∑

ri∈R ri = 1)
∅

Fig. 2. (Unweighted) LCNF version of Fu and
Malik algorithm

associated with each core label li, rather than with each clause as in the original algo-
rithm. Each core label li is relaxed by replacing each clause CL such that li ∈ L with
(ri ∨ C)L (lines 7-8). Note that in principle CL may include more than one core label,
and so may receive more than relaxation variable in each iteration of the algorithm. The
nested loop on lines 5-8 of the algorithm can be replaced by a single loop iterating over
all clauses CL such that L ∩ Lcore 
= ∅. Finally, the clauses of the CNF representation
of the equals1 constraint are labelled with ∅, and added to Φ.

One of the possible ways to obtain the set of core labels is to use a standard core-
producing SAT solver. One can use either a proof-tracing SAT solver, such as PicoSAT
[5], that extracts the core from the trace, or an assumption-based SAT solver, that ex-
tracts the core from the final conflict clause. Then, to check the satisfiability of Φ,
the clause-set Cls(Φ) of Φ is passed to a SAT solver, and given an unsatisfiable core
Core ⊆ Cls(Φ), the set of core labels is obtained by taking a union of the labels of
clauses that appear in Core. Regardless of the type of the SAT solver, the solver is
invoked in non-incremental fashion, i.e. on each iteration of the main loop a new in-
stance of a SAT solver is created, and the clauses Cls(Φ) are passed to it. It is worth
to point out that the majority of SAT-based MaxSAT solvers use SAT solvers in such
non-incremental fashion. Also, it is commonly accepted that proof-tracing SAT solvers
are superior to the assumption-based in the MaxSAT setting, since a large number of
assumption literals tend to slow down SAT solving, while, at the same time, the incre-
mental features of assumption-based solvers are not used.

An alternative to the non-incremental use of SAT solvers in our setting is to take
advantage of the incremental features of the assumption-based SAT solvers. While
we already explained that labels in LCNFs can be seen naturally as selectors in the
assumption-based incremental SAT, the tricky issue is to emulate the operation of re-
laxing a clause, i.e. adding one or more relaxation variables to it. The only option in
the incremental SAT setting is to “remove” the original clause by adding a unit clause
(¬s) to the SAT solver for some selector literal ¬s, and add a relaxed version of the
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clause instead. The key observation here is that since the labels are already represented
by selector variables, we can use these selector variables to both to remove clauses and
to keep track of the core labels. For this, each label li ∈ Lbls(Φ) is associated with a
sequence of selector variables a0

i , a
1
i , a

2
i , . . . . At the beginning, just like in the reduction

described in Section 4.1, for each CL we load a clause C′ = C ∨
∨

li∈L(¬a0
i ) into the

SAT solver, and solve under assumptions {a0
1, a

0
2, . . . }. The selectors that appear in the

final conflict clause of the SAT solver will map to the set of the core labels Lcore. As-
sume now that a label lc ∈ L is a core label, i.e. the selector a0

c was in the final conflict
clause. And, for simplicity, assume that lc is the only core label in L. Now, to emulate
the relaxation of the clause C′, we first add a unit clause (¬a0

c) to the SAT solver to
“remove” C′, and then add a clause C′′ = (C′ \ {¬a0

c}) ∪ {r,¬a1
c}, where r is the

relaxation variable associated with lc in this iteration, and a1
c is a “new version” of a

selector variable for lc. If on some iteration a1
c appears in the final conflict clause, we

will know that lc is a core label that needs to be relaxed, add (¬a1
c) to the SAT solver,

and create yet another version a2
c of a selector variable for the label lc. For MaxSAT

algorithms that relax each clause at most once (e.g. WMSU3 and BCD2, cf. [19]), we
only need two versions of selectors for each label.

Note that since, as explained in Section 3, MaxSAT problem for WCNF F can be
recast as a MaxSAT problem for the associated LCNF ΦF , the incremental-SAT based
MaxSAT algorithms for LCNFs can be seen as incremental-SAT based MaxSAT al-
gorithm for WCNFs — to our knowledge such algorithms have not been previously
described in the literature. The main advantage of using the SAT solver incrementally,
beside the saving from re-loading the whole formula in each iteration of a MaxSAT
algorithm, is in the possible reuse of the learned clauses between the iterations. While
many of the clauses learned from the soft clauses will not be reused (since they would
also need to be relaxed, otherwise), the clauses learned from the hard clauses will. In our
experiments (see next section) we did observe gains from incrementality on instances
of weighted partial MaxSAT problem.

5 Experimental Evaluation

To evaluate the ideas discussed in this paper empirically, we implemented an LCNF-
based version of the MaxSAT algorithm WMSU1 [11,1,18], which is an extension of Fu
and Malik’s algorithm discussed in Section 4.2 to the weighted partial MaxSAT case.
Note that none of the important optimizations discussed in [18] were employed. The
algorithm was implemented in both the non-incremental and the incremental settings,
and was evaluated on the set of industrial benchmarks from the MaxSAT Evaluation
20139, a total of 1079 instances. The experiments were performed on an HPC cluster,
with quad-core Intel Xeon E5450 3 GHz nodes with 32 GB of memory. All tools were
run with a timeout of 1800 seconds and a memory limit of 4 GB per input instance.

In the experiments PicoSAT [5] and Lingeling [6] were used as the underlying SAT
solvers. For (pure) MaxSAT benchmarks, we used PicoSAT (v. 935), while for partial
and weighted partial MaxSAT instances we used PicoSAT (v. 954) — the difference

9 http://maxsat.ia.udl.cat/

http://maxsat.ia.udl.cat/
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between versions is due to better performance in the preliminary experiments. Both
incremental (P) and non-incremental proof-tracing (P NI) settings for PicoSAT were
tested. For Lingeling (v. ala) the incremental mode (L) was tested.

For the preprocessing, we implemented our own version of Blocked Clause Elimi-
nation (BCE), while for Resolution and Subsumption (RS) both SatElite [8] and Lin-
geling [6] as a preprocessor were used. We have included in the experiments WMSU1
algorithm from MSUnCore [18] in order to establish a reasonable baseline.

Figure 3 shows the results for different classes of industrial MaxSAT instances, while
Table 1 complements it by showing the number of solved instances by each configura-
tion/solver, and the average CPU time taken on the solved instances. From the figure
and the table, the following conclusions can be drawn. First, we note that the resolution
and subsumption elimination based preprocessing (RS) is, in general, quite effective.
In fact, for each of the solvers, within the same solver, the configuration that outper-
forms all others is RS, except for plain MaxSAT instances with PicoSAT. Also L+RS
solves the highest number of instances overall, as revealed in Figure 3 (d). Regard-
ing the blocked clause elimination (BCE), the technique is effective for plain MaxSAT
instances, however not for other classes of instances. Notice that the combination of
BCE+RS never improves over the best of the techniques considered separately, being
only equal with Lingeling for (pure) MaxSAT instances.
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Table 1. Table of solved instances and average CPU times

All MaxSAT Partial MaxSAT Weighted Partial MaxSAT
#Sol. A.CPU #Sol. A.CPU #Sol. A.CPU #Sol. A.CPU

Instances 1079 55 627 397
P NI 524 144.29 37 172.76 254 152.04 233 131.32
P NI+BCE 516 115.84 41 237.58 241 105.02 234 105.65
P NI+BCE+RS 522 103.08 35 177.37 240 120.70 247 75.42
P NI+RS 556 124.48 37 246.68 265 154.84 254 75.00
P 523 91.81 37 236.26 237 132.83 249 31.31
P+BCE 513 57.70 38 180.22 227 70.08 248 27.60
P+BCE+RS 517 67.61 37 209.48 221 85.36 259 32.19
P+RS 545 93.71 34 151.77 238 146.93 273 40.08
L 580 55.93 36 101.92 270 75.45 274 30.64
L+BCE 584 60.84 37 67.88 271 95.89 276 25.49
L+BCE+RS 584 48.03 38 96.02 271 73.90 275 15.90
L+RS 603 65.26 38 161.71 276 91.15 289 27.85
WMSU1 512 157.68 39 165.64 241 149.01 232 165.35

Somewhat surprisingly, our results suggest that, in contrast with standard practice
(i.e. most MaxSAT solvers are based on non-incremental SAT), the incremental SAT
solving can be effective for some classes of MaxSAT instances. Namely for Weighted
Partial MaxSAT instances, where for example PicoSAT incremental (P) solves 16 more
instances than PicoSAT non-incremental (P NI) with a much lower average CPU time
on the solved instances.

Finally, comparing the underlying SAT solvers used, it can be seen that in our exper-
iments Lingeling performs significantly better than PicoSAT, which, as our additional
experiments suggest, is in turn is much better SAT solver than Minisat [9], for MaxSAT
problems.

6 Conclusion

In this paper we investigate the issue of sound application of SAT preprocessing tech-
niques for solving the MaxSAT problem. To our knowledge, this is the first work that
addresses this question directly. We showed that monotone clause elimination proce-
dures, such as BCE, can be applied soundly on the input formula. We also showed that
the resolution and subsumption elimination based techniques can be applied, although
indirectly, through the labelled-CNF framework. Our experimental results suggest that
BCE can be effective on (plain) MaxSAT problems, and that the LCNF-based resolu-
tion and subsumption elimination leads to performance boost in partial and weighted
partial MaxSAT setting. Additionally, we touched on an issue of the incremental use
of assumption-based SAT solvers in the MaxSAT setting, and showed encouraging re-
sults on weighted partial MaxSAT problems. In the future work we intend to investigate
issues related to the sound application of additional SAT preprocessing techniques.
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Abstract. Many research works had been done in order to define a semantics
for logic programs. The well know is the stable model semantics which selects
for each program one of its canonical models. The stable models of a logic pro-
gram are in a certain sens the minimal Herbrand models of its reduct programs.
On the other hand, the notion of symmetry elimination had been widely studied
in constraint programming and shown to be useful to increase the efficiency of
the associated solvers. However symmetry in non monotonic reasoning still not
well studied in general. For instance Answer Set Programming (ASP) is a very
known framework but only few recent works on symmetry breaking are known in
this domain. Ignoring symmetry breaking in the answer set systems could make
them doing redundant work and lose on their efficiency. Here we study the notion
of local and global symmetry in the framework of answer set programming. We
show how local symmetries of a logic program can be detected dynamically by
means of the automorphisms of its graph representation. We also give some prop-
erties that allow to eliminate theses symmetries in SAT-based answer set solvers
and show how to integrate this symmetry elimination in these methods in order
to enhance their efficiency.

Keywords: symmetry, logic programming, stable model semantics, answer set
programming, non-monotonic reasoning.

1 Introduction

The work we propose here to investigate the notion of symmetry in Answer Set Pro-
gramming (ASP). The (ASP) framework can be considered as a sub-framework of
the default logic [37]. One of the main questions in ASP, is to define a semantics to
logic programs. A logic program π is a set of first order (formulas) rules of the form
r : concl(r) ← prem(r), where prem(r) is the set of premises of the rule given
as a conjunction of literals that could contain negations and negations as failure. The
right part concl(r) is the conclusion of the rule r which is generally, a single atom,
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or in some cases a disjunction of atoms for logic programs with disjunctions. Some
researchers considered prem(r) as the body of the rule r and concl(r) as its head
(r : head(r) ← body(r)). Each logic program π is translated into its equivalent ground
logic program ground(π) by replacing each rule containing variables by all its ground
instances, so that each literal in ground(π) is ground. This technique is used to elimi-
nate the variables even when the program contains function symbols and its Herbrand
universe is infinite. Among the influential semantics that had been given for these logic
programs with negation and negation as failure are the completion semantics [15] and
the stable model or the answer set semantics [25]. It is well know that each answer set
for a logic program is a model of its completion, but the converse, is in general not true.
Fages in his paper [21] showed that both semantics are equivalent for free loops logic
programs that are called tight programs. A generalization of Fage’s results to logic pro-
grams with eventual nested expressions in the bodies of their rules was given in [20].
On the other hand Fangzhen Lin and Yutin Zhao proposed in [31] to add what they
called loop formulas to the completion of a logic program and showed that the set of
models of the extended completion is identical to the program’s answer sets even when
the program is not tight.

On the other hand, symmetry is by definition a multidisciplinary concept. It ap-
pears in many fields ranging from mathematics to Artificial Intelligence, chemistry and
physics. It reveals different forms and uses, even inside the same field. In general, it
returns to a transformation, which leaves invariant (does not modify its fundamental
structure and/or its properties) an object (a figure, a molecule, a physical system, a for-
mula or a constraints network...). For instance, rotating a chessboard up to 180 degrees
gives a board that is indistinguishable from the original one. Symmetry is a fundamental
property that can be used to study these various objects, to finely analyze these complex
systems or to reduce the computational complexity when dealing with combinatorial
problems.

As far as we know, the principle of symmetry has been first introduced by Krish-
namurthy [29] to improve resolution in propositional logic. Symmetries for Boolean
constraints are studied in depth in [5,6]. The authors showed how to detect them and
proved that their exploitation is a real improvement for several automated deduction
algorithms efficiency. Since that, many research works on symmetry appeared. For in-
stance, the static approach used by James Crawford et al. in [16] for propositional logic
theories consists in adding constraints expressing global symmetry of the problem. This
technique has been improved in [1] and extended to 0-1 Integer Logic Programming in
[2]. The notion of interchangeability in Constraint Satisfaction Problems (CSPs) is in-
troduced in [22] and find a good exploitation in [27], and symmetry for CSPs is studied
earlier in [36,4].

Within the framework of the Artificial Intelligence, an important paradigm is to take
into account incomplete information (uncertain information, revisable information...).
Contrary to the mode of reasoning formalized by a conventional or a classical logic, a
result deducible from information (from a knowledge, or from beliefs) is not true but
only probable in the sense that it can be invalidated further, and can be revised when
adding new information.
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To manage the problem of exceptions, several logical approaches in Artificial In-
telligence had been introduced. Many non-monotonic formalisms were presented since
about thirty years. But, the notion of symmetry within this framework was not well stud-
ied. The principle of symmetry had been extended recently in [8,9,11] to non-monotonic
reasoning. Symmetry had been defined and studied for three known non-monotonic
logics: the preferential logic [13,14,12,28], the X-logic [38] and the default logic [38].
More recently, global symmetry had been studied for the Answer Set Programming
framework [18,19]. In the same spirit as what it is done in [16,1,2] for the satisfiability
problem, the authors of [18,19] showed how to break the global symmetry statically in a
pre-processing phase for the ASP system Clasp[24]. They did that by adding symmetry
breaking predicates to the considered logic program. They showed that global symme-
try elimination in Clasp improves dramatically its efficiency on several problems. In
this work, we investigate dynamic local symmetry detection and elimination and static
global symmetry exploitation in SAT-based answer set programming systems. Local
symmetry is the symmetry that we can discover at each node of the search tree during
search. Global symmetry is the particular local symmetry corresponding to the root of
the search tree (the symmetry of the initial problem). Almost all of the known works on
symmetry are on global symmetry. Only few works on local symmetry [5,6,7,10] are
known in the literature. Local symmetry breaking remains a big challenge. As far as we
know, local symmetry is not studied yet in ASP.

The rest of the paper is structured as follows: in Section 2, we give some neces-
sary background on answer set programming and permutations. We study the notion of
symmetry for answer set programming in Section 3. In Section 4 we show how local
symmetry can be detected by means of graph automorphism. We show how both global
and local symmetry can be eliminated in Section 5. Section 6 shows how local sym-
metry elimination is implemented in a SAT-based answer set programming Method.
Section 7 investigates the first implementation and experiments. We give a conclusion
in Section 8.

2 Background

We summarize in this section some background on both the answer set programming
framework and permutation theory.

2.1 Answer Set Programming

A ground general logic program π is a set of rules of the form r : L0 ← L1, L2, . . . , Lm,
notLm+1, . . . , notLn, (0 ≤ m < n) where Li (0 ≤ i ≤ n) are atoms, and not is the
symbol expressing negation as failure. The positive body of r is denoted by body+(r) =
{L1, L2, . . . , Lm}, and the negative body by body−(r) = {Lm+1, . . . , Ln}. The word
general expresses the fact that the rules are more general than Horn clauses, since
they contain negations as failure. The sub-rule r+ : L0 ← L1, L2, . . . , Lm expresses
the positive projection of the rule r. Intuitively the rule r means ”If we can prove
all of {L1, L2, . . . , Lm} and we can not prove all of {Lm+1, . . . , Ln}, then we de-
duce L0“. Given a set of atoms A, we say that a rule r is applicable (active) in A if
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body+(r) ⊆ A and body−(r) ∩ A = ∅. The reduct of the program π with respect to
a given set A of atoms is the positive program πA where we delete each rule con-
taining an expression notLi in its negative body such that Li ∈ A and where we
delete the other expressions notLi in the bodies of the other rules. More precisely,
πA = {r+/r ∈ π, body−(r) ∩ A = ∅}. The most known semantics for general logic
programs is the one of stable models defined in [25] which could be seen as an improve-
ment of the negation as failure of Prolog. A set of atoms A is a stable model (an answer
set) of π if and only if A is identical to the minimal Herbrand model of πA which is
called its canonical model (denoted by CM(πA)). That is, if only if A = CM(πA).
The stable model semantics is based on the closed world assumption, an atom that is
not in the stable model A is considered to be false.

An extended logic program is a set of rules as the ones given for general programs
which could contain classical negation. The atoms Li could appear in both positive and
negative parity. In other words, the atoms Li become literals. A logic program is said to
be disjunctive when at least one of its rules contains a disjunction of literals in its head
part. In the sequel, we will use indifferently the words stable model and answer set to
designate a stable model of a general logic program.

2.2 Permutations

Let Ω = {1, 2, . . . , N} for some integer N , where each integer might represent a propo-
sitional variable or an atom. A permutation of Ω is a bijective mapping σ from Ω to
Ω that is usually represented as a product of cycles of permutations. We denote by
Perm(Ω) the set of all permutations of Ω and ◦ the composition of the permutation
of Perm(Ω). The pair (Perm(Ω), ◦) forms the permutation group of Ω. That is, ◦ is
closed and associative, the inverse of a permutation is a permutation and the identity
permutation is a neutral element. A pair (T, ◦) forms a sub-group of (S, ◦) iff T is a
subset of S and forms a group under the operation ◦.

The orbit ωPerm(Ω) of an element ω of Ω on which the group Perm(Ω) acts is
ωPerm(Ω)={ωσ : ωσ = σ(ω), σ ∈ Perm(Ω)}.

A generating set of the group Perm(Ω) is a subset Gen of Perm(Ω) such that each
element of Perm(Ω) can be written as a composition of elements of Gen. We write
Perm(Ω)=< Gen >. An element of Gen is called a generator. The orbit of ω ∈ Ω
can be computed by using only the set of generators Gen.

3 Symmetry in Logic Programs

Since Krishnamurthy’s [29] symmetry definition and the one given in [5,6] in proposi-
tional logic, several other definitions are given in the CP community.

We will define in the following both semantic and syntactic symmetries in answer set
programming and show their relationship. In the sequel π could be the logic program or
its completion [15] Comp(π), the symmetry definitions and properties remain valuable.
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Definition 1. (semantic symmetry of the logic program) Let π be a logic program and
Lπ its complete 1 set of literals. A semantic symmetry of π is a permutation σ defined
on Lπ such that π and σ(π) have the same answer sets.

Definition 2. (semantic symmetry of the completion) Let Comp(π) be the Clark com-
pletion of a logic program π and LComp(π) its complete 2 set of literals. A semantic
symmetry of Comp(π) is a permutation σ defined on LComp(π) such that Comp(π)
and σ(Comp(π)) have the same answer sets.

In other words a semantic symmetry is a literal permutation that conserves the set of
answer sets of the logic program π. We adapt in the following the definition of syntactic
symmetry given in [5,6] for satisfiability to logic programs.

Definition 3. (syntactic symmetry of the logic program) Let π be a logic program and
Lπ its complete set of literals. A syntactic symmetry of π is a permutation σ defined on
Lπ such that the following conditions hold:

1. ∀� ∈ Lπ, σ(¬�) = ¬σ(�),
2. ∀� ∈ Lπ, σ(not�) = not{σ(�)},
3. σ(π) = π

Definition 4. (syntactic symmetry of the completion) Let Comp(π) be a logic program
and LComp(π) its complete set of literals. A syntactic symmetry of Comp(π) is a per-
mutation σ defined on LComp(π) such that the following conditions hold:

1. ∀� ∈ Lπ, σ(¬�) = ¬σ(�),
2. σ(Comp(π)) = Comp(π)

In other words, a syntactical symmetry of a logic program or its completion is a literal
permutation that leaves the logic program or the completion invariant. If we denote by
Perm(Lπ) the group of permutations of Lπ and by Sym(Lπ) ⊂ Perm(Lπ) the subset
of permutations of Lπ that are the syntactic symmetries of π, then Sym(Lπ) is trivially
a sub-group of Perm(Lπ).

Theorem 1. Each syntactical symmetry of a logic program π is a semantic symmetry
of π.

Proof. It is trivial to see that a syntactic symmetry of a logic program π is always a
semantic symmetry of π. Indeed, if σ is a syntactic symmetry of π, then σ(π) = π, thus
it results that π and σ(π) have the same set of answer sets.

In a similar way, we can prove the following theorem :

Theorem 2. Each syntactical symmetry of the completion Comp(π) is a semantic sym-
metry of Comp(π).

1 The set of literals containing each literal of π and its negation as failure.
2 The set of literals containing each literal of Comp(π) and its negation.
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Example 1. consider the logic program π = {d ←; c ←; b ← c, nota; a ← d, notb}
and the permutation σ=(a, b)(c, d)(nota, notb) defined on the complete set Lπ of liter-
als occurring in π. We can see that σ is a syntactic symmetry of π (σ(π)=π).

Remark 1. The converse of each of the previous theorems is not true. That is, it is not
true that a semantic symmetry is always a syntactical symmetry.

Now, we give an important property which establishes a relationship between the
symmetries of a logic program and its completion.

Proposition 1. Each syntactical symmetry of a logic program π is a semantic symmetry
of its completion Comp(π).

Proof. Let σ be a syntactical symmetry of the program π and I a model of Comp(π)
which is an answer set of π. We have to prove that σ(I) is also a model of Comp(π)
which is an answer set of π. The permutation σ is a syntactical symmetry of π, thus
by Theorem 1 we deduce that σ is also a semantic symmetry of π. It results that σ(I)
is also an answer set of π. Since each model of a logic program π is also a model of
its Clark completion, it follows that σ(I) is a model of Comp(π) which is in fact an
answer set of π.

Remark 2. The previous proposition allows to use the syntactical symmetries of a logic
program π in its Clark completion Comp(π) in order to detect symmetrical answer sets
of π. This gives an important alternative for symmetry detection in SAT-based ASP sys-
tems that use the the Clark completion. Indeed, we can just calculate the symmetries of
the logic program π instead of calculating those of its completion. This could accelerate
the symmetry detection as the size of the program π is generally substantially smaller
than the size of its completion.

In the sequel we give some symmetry properties only in the case of logic programs
π, but the considered properties are also valid in the case of the completion Comp(π).

Definition 5. Two literals � and �′ of a logic π are symmetrical if there exists a symme-
try σ of π such that σ(�) = �′.

Definition 6. Let π be a logic program, the orbit of a literal � ∈ Lπ on which the group
of symmetries Sym(Lπ) acts is �Sym(Lπ)={σ(�) : σ ∈ Sym(Lπ)}

Remark 3. All the literals in the orbit of a literal � are symmetrical two by two.

Example 2. In Example 1, the orbit of the literal a is aSym(Lπ)= {a, b}, the orbit
of the literal c is cSym(Lπ)= {c, d} and the one of the literal nota is notaSym(Lπ)=
{nota, notb} All the literals of a same orbit are all symmetrical.

If I is an answer set of π and σ a syntactic symmetry, we can get another answer
set of π by applying σ on the literals which appear in I. Formally we get the following
property.

Proposition 2. I is an answer set of π iff σ(I) is an answer set of π .



118 B. Benhamou

Proof. Suppose that I is an answer set of π, then I is a minimal Herbrand model of the
reduct πI . It follows that σ(I) is a minimal model of σ(π)σ(I). We can then deduce that
σ(I) is a minimal model of πσ(I) since π is invariant under σ. We conclude that σ(I) is
an answer set of π. The converse can be shown by considering the converse permutation
of σ.

For instance, in Example 1 there are two symmetrical answer sets for the logic pro-
gram π. The fist one is I = {d, c, a} and the second is σ(I) = {d, c, b}. These are what
we call symmetrical answer sets of π. A symmetry σ transforms each answer set into
an answer set and each no-good (not an answer set) into a no-good.

Theorem 3. Let � and �′ be two literals of π that are in the same orbit with respect to the
symmetry group Sym(Lπ), then � participates in an answer set of π iff �′ participates
in an answer set of π.

Proof. If � is in the same orbit as �′ then it is symmetrical with �′ in π. Thus, there exists
a symmetry σ of π such that σ(�) = �′. If I is an answer set of π then σ(I) is also an
answer set of σ(π) = π, besides if � ∈ I then �′ ∈ σ(I) which is also an answer set of
π. For the converse, consider � = σ−1(�′), and make a similar proof.

Corollary 1. Let � be a literal of π, if � does not participate in any answer set of π,
then each literal �′ ∈ orbit� = �Sym(Lπ) does not participate in any answer set of π.

Proof. The proof is a direct consequence of Theorem 3

Corollary 1 expresses an important property that we will use to break local symmetry
at each node of the search tree of a SAT-based answer set procedure. That is, if a no-
good is detected after assigning the value True to the current literal �, then we compute
the orbit of � and assign the value false to each literal in it, since by symmetry the value
true will not lead to any answer set of the logic program.

For instance, consider the program of Example 1, and the partial interpretation I =
{a, b, c} where c is the current literal under assignation. It is trivial that I is not a stable
model of the program. By corollary 1, we can deduce that the set I ′ = {a, b, d} is not a
stable model of the program too. Indeed, I ′ is obtained by replacing the current literal c
in I by its symmetrical literal d. I is a no-good and by symmetry (without duplication
of effort) we infer that I ′ is a no-good.

4 Symmetry Detection

The most known technique to detect syntactic symmetries for CNF formulas in satis-
fiability is the one consisting in reducing the considered formula into a graph [16,3,2]
whose the automorphism group is identical to the symmetry group of the original for-
mula. We adapt the same approach here to detect the syntactic symmetries of the com-
pletion of a program π. That is, we represent the CNF formula corresponding to the
completion (Compl(π)) of the logic program π by a graph Gπ that we use to compute
the symmetry group of π by means of its automorphism group. When this graph is built,
we use a graph automorphism tool like Saucy [3], Nauty [32], AUTOM [35] or the one
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described in [33] to compute its automorphism group which gives the symmetry group
of Comp(π). Following the technique used in [16,3,2] to represent CNF formulas, we
summarize bellow the construction of the graph which represent the completion of the
logic program π. Here we focus on the case of general logic programs, but the technique
could be generalized to other classes of logic programs like extended logic programs
or disjunctive logic programs. Given the completion of a general logic program π, the
associated colored graph Gπ(V,E) of its completion is defined as follows:

– Each positive literal �i of Compl(π) is represented by a vertex �i ∈ V of the color
1 in Gπ . The negative literal not�i associated with �i is represented by a vertex
not�i of color 1 in Gπ. These two literal vertices are connected by an edge of E in
the graph Gπ.

– Each clause ci of Compl(π) is represented by a vertex ci ∈ V (a clause vertex) of
color 2 in Gπ. An edge connects this vertex ci to each vertex representing one of
its literals.

This technique could be extended to extended and disjunctive logic programs in a
natural way.

This is different from the approach which uses a body-atom graph [18]. Since our
study is oriented to SAT-based ASP using the completion, we do not need to manage an
oriented body-atom graph.

An important property of the graph Gπ is that it preserves the syntactic group of
symmetries of Compl(π). That is, the syntactic symmetry group of the logic program
Compl(π) is identical to the automorphism group of its graph representation Gπ , thus
we could use a graph automorphism system like Saucy on Gπ to detect the syntac-
tic symmetry group of Comp(π). The graph automorphism system returns a set of
generators Gen of the symmetry group from which we can deduce each symmetry of
Compl(π).

5 Symmetry Elimination

There are two ways to break symmetry. The first one is to deal with the global symmetry
which is present in the formulation of the given problem. Global symmetry can be elim-
inated in a static way in a pre-processing phase of an answer set solver by just adding
the symmetry predicates. For instance, a method for global symmetry elimination is
introduced in [18] for the Clasp ASP system [24]. The second way is the elimination
of local symmetry that could appear in the sub-problems corresponding to the different
nodes of the search tree of an answer set solver. Global symmetry can be considered as
the local symmetry corresponding to the root of the search tree.

Local symmetries have to be detected and eliminated dynamically at some decision
node of the search tree. Dynamic symmetry detection in satisfiability had been studied
in [5,6] where a local syntactic symmetry search method had been given. However, this
method is not complete, it detects only one symmetry σ at each node of the search
tree when failing in the assignment of the current literal �. As an alternative to this
incomplete symmetry search method, a complete method which uses the tool Saucy [3]
had been introduced in [10] to detect and break all the syntactic local symmetries of a
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constraint satisfaction problem (CSP) [34] during search and local symmetry had been
detected and eliminated dynamically in a SAT solver [7].

Consider the completion Compl(π) of a logic program π, and a partial assignment
I of a SAT-based answer set solver applied to Compl(π). Suppose that � is the current
literal under assignment. The assignment I simplifies Compl(π) into a sub-completion
Compl(π)I which defines a state in the search space corresponding to the current node
nI of the search tree. The main idea is to maintain dynamically the graph GπI of the
sub-completion Compl(π)I corresponding to the current node nI , then color the graph
GπI as shown in the previous section and compute its automorphism group Aut(πI).
The sub-completion Compl(π)I can be viewed as the remaining sub-problem corre-
sponding to the unsolved part. By applying an automorphism tool on this colored graph
we can get the generator set Gen of the symmetry sub-group existing between literals
from which we can compute the orbit of the current literal � that we will use to make
the symmetry cut.

After this, we use Corollary 1 to break dynamically the local symmetry and then
prune search spaces of tree search answer set methods. Indeed, if the assignment of the
current literal � defined at a given node nI of the search tree is shown to be a failure,
then by symmetry, the assignment of each literal in the orbit of � will result in a failure
too. Therefore, the negated literal of each literal in the orbit of � has to be assigned
in the partial assignment I . Thus, we prune in the search tree, the sub-space which
corresponds to the assignment of the literals of the orbit of �. That is what we call the
local symmetry cut.

6 Local Symmetry Exploitation in SAT-Based ASP Solvers

The solver ASSAT [31] has some drawbacks: it can compute only one answer set and
the formula could blow-up in space. Taking into account these disadvantages of AS-
SAT and the fact that each answer set of a program π is a model of its completion
Compl(π), Guinchiglia et al. in [26] do not use SAT solvers as black boxes, but imple-
mented a method which is based on the DLL [17] procedure and where they include a
function which checks if a generated model is an answer set or not. This method had
been implemented in the Cmodels-2 system [30] and has the following advantages:
it performs the search on Compl(π) without introducing any extra variable except
those used by the clause transformation of Compl(π), deals with tight and not tight
programs, and works in a polynomial space. Global symmetry breaking do not need
any extra-implementation, a SAT-based answer set solver is used as a black box on
the completion of the logic program and the generated symmetry breaking predicates.
More recently the ASP solvers like the conflict-driven Clasp solver [24] include some
materials of modern SAT solvers such as: conflict analysis via the First UIP scheme,
no-good recording and deletion, backjumping, restarts, conflict-driven decision heuris-
tics, unit propagation via watched literals, equivalence reasoning and resolution-based
pre-processing [23] have shown dramatic improvements in their efficiency and compete
with the best SAT solvers.

We give in the following a DLL-based answer set method in which we implement dy-
namic local symmetry breaking. We used as a baseline method the DLL-based answer
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set procedure given in [26] to show the implementation of local symmetry eliminations
(local symmetry cuts).

If I is an inconsistent partial interpretation in which the assignment of the value
true to the current literal � is shown to be a no-good, then, all the literals in the orbit
of � computed by using the group Sym(πI) returned by the graph automorphism tool
are symmetrical to �. Thus, we assign the value false to each literal in �Sym(Lπ) since
the value true is shown to be contradictory, and then we prune the sub-space which
corresponds to the value true assignments. The other case of local symmetry cut happen
when the assignment I is shown to be a model of Compl(π), but is not an answer set
of π. In this case, the algorithm makes a backtracking on the last decision literal � in I ,
then according to corollary 1 assigns the value false to each literal in the orbit �Sym(Lπ)

since the value true does not lead to an answer set of π. If Γ = Compl(π), then the
resulting procedure called DLLAnswerSet, is given in Figure 1.

Procedure DLLAnswerSet(Γ, I);
begin

if Γ = ∅ then return AnswerSetCheck(I, π)
else return False

else if Γ contains the empty clause, then return False
else

if there exists a mono-literal or a monotone literal � then
return DLLAnswerSet(Γ�, I ∪ {�})

begin
Choose an unsigned literal � of Γ
Gen=AutomorphismTool(ΓI );
�Sym(LπI

)=orbit(�,Gen)={�1, �2, ..., �n};
return DLLAnswerSet(Γ�, I ∪ {�}) or
DLLAnswerSet(Γ¬�∧¬�1∧¬�2∧...∧¬�n ,

I ∪ {¬�,¬�1, . . . ,¬�n})
end

end

Fig. 1. The DLL-based answer set procedure with local symmetry elimination

The function AutomorphismTool(πI) is a call to the automorphism tool which return
the set of generators in the variable GEN . The function orbit(�,Gen) is elementary, it
computes the orbit (the symmetrical literals) of the literal � from the set of generators
Gen returned by AutomorphismTool(πI). The set Γ� is the set of clauses obtained from
Γ by removing the clauses to which � belongs, and by removing ¬� from the other
clauses of Γ .

The function AnswerSetCheck(I, π) is also elementary:

– it computes the set A = I ∩ {head(r) : r ∈ π} of positive literals (atoms) in I and
returns True if A is an answer set or π, and

– return False, otherwise.
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7 Experiments

Now we shall investigate the performances of our search techniques by experimental
analysis. We choose for this first implementation the graph coloring problem to show
the local symmetry behavior on answer sets search vs the global symmetry. Graph col-
oring problem is expressed naturally as a set of rules of a general problem. For more
details, the reader can refer to the Lparse user’s manual given on line on the Cmodels
site (http://www.cs.utexas.edu/ tag/cmodels/). Here, we tested and compared on some
random graph coloring instances two methods:

1. Global-sym: search with global symmetry breaking. This method uses in a pre-
processing phase the program SHATTER [1,2] that detects and eliminates the global
symmetries of the considered instance by adding to it symmetry breaking clauses,
then apply the SAT based answer set solver defined in [26] to the resulting instance.
The CPU time of Global-sym includes the time that SHATTER spends to compute
the global symmetry. A disadvantage of this method is that it could significantly in-
crease the size of the considered instance. Its advantage is that its implementation
requires no modification of the solver.

2. Local-sym: search with local symmetry breaking. This method implements in the
SAT based answer set solver defined in [26] the dynamic local symmetry detection
and elimination strategy described in this work. The resulting method is depicted in
figure 1 (the DLLAnswerSet procedure). The CPU time of Local-sym includes local
symmetry search time. A disadvantage of this method is that it could significantly
increase the time of execution in the case of instances which contain few local
symmetries. Its advantage is that its application does not require any increase in the
size of the instance, changing the solver is simple and it detects more symmetries.

The common baseline answer set search method for both previous methods is the one
given in [26]. The complexity indicators are the number of nodes of the search tree
and the CPU time. Both the time needed for computing local symmetry and global
symmetry are added to the total CPU time of search. The source codes are written in C
and compiled on a Pentium 4, 2.8 GHZ and 1 Gb of RAM.

7.1 The Results on the Graph Coloring Instances

Random graph coloring problems are generated with respect to the following param-
eters: (1) n : the number of vertices, (2) Colors: the number of colors and (3) d: the
density which is a number between 0 and 1 expressed by the ratio : the number of con-
straints (the number of edges in the graph) to the number of all possible constraints
(the number of possible edges in the graph). For each test corresponding to some fixed
values of the parameters n, Colors and d, a sample of 100 instances are randomly
generated and the measures (CPU time, nodes) are taken on the average.

We reported in Figure 2 the practical results of the methods: Global-sym, and Local-
sym, on the random graph coloring problem where the number of variables is n = 30
and where the density is (d = 0.5). The curves give the number of nodes respectively
the CPU time with respect to the number of colors for each search method.
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Fig. 2. Node and Time curves of the two symmetry methods on random graph coloring where
n = 30 and d = 0.5

We can see on the node curves (the curves on the left of the figure) that Local-sym
detects and eliminates more symmetries than the Global-sym method and Global-sym
is not stable for graph coloring. From the CPU time curves (the curves on the right
of the figure), we can see that Local-sym is in average faster than Global-sym even
that Saucy is run at each contradictory decision node. Local symmetry elimination is
profitable for solving random graph coloring instances and outperforms dramatically
global symmetry breaking on these problems.

These are just our first results, our implementation and experiments are still in
progress, we need to experiment much more and greater size instances than the ones
presented here in order to further confirm the advantage of local symmetry breaking.

8 Conclusion

We studied in this work the notions of global and local symmetry for logic programs
in the answer set programing framework . We showed how a logic program or its com-
pletion is represented by a colored graph that can be used to compute symmetries. The
syntactic symmetry group of the completion is identical to the automorphism group of
the corresponding graph. Graph automorphism tools like SAUCY can be naturally used
on the obtained graph to detect the syntactic symmetries. Global symmetry is elimi-
nated statically by adding in pre-processing phase the well known lex order symmetry
breaking predicates to the program completion and applying as a black box a SAT-
based answer set solver on this resulting encoding. We showed how local symmetry
can be detected and eliminated dynamically during search. That is, the symmetries of
each sub-problem defined at a given contradictory decision node of the search tree and
which is derived from the initial problem by considering the partial assignment cor-
responding to that node. We showed that graph automorphism tools can be adapted to
compute this local symmetry by maintaining dynamically the graph of the sub- program
or the sub-completion defined at each node of the search tree. We proved some prop-
erties that allow us to make symmetry cuts that prune the search tree of a SAT-based
answer set method. Finally, we showed how to implement these local symmetry cuts in
a DLL-based answer set method.
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The proposed local symmetry detection method is implemented and exploited in the
tree search method DLLAnswerSet to improve its efficiency. The first experimental
results confirmed that local symmetry breaking is profitable for answer set solving and
improves global symmetry breaking on the considered problems.

As a future work, we are looking to experiment other problems and combine both
the global symmetry and local symmetry eliminations in a DLL-based answer set solver
and compare the performances of the obtained methods to existing methods.

Another alternative of symmetry detection that we want to do in the future is to
detect symmetries of the logic program by means of a body-atom graph, instead of
those of its completion, then use Proposition 1 to make cuts in the search tree of the
considered ASP solver. This could accelerated the symmetry detection then get a fastest
solver.

We studied the notion of symmetry for the general logic programs, but the study
could naturally be generalized for extended logic programs, disjunctive logic programs
or other extensions. This is another important point that we are looking to investigate in
future.
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Abstract. First-order modal logics (FMLs) can be modeled as natural
fragments of classical higher-order logic (HOL). The FMLtoHOL tool ex-
ploits this fact and it enables the application of off-the-shelf HOL provers
and model finders for reasoning within FMLs. The tool bridges between
the qmf-syntax for FML and the TPTP thf0-syntax for HOL. It currently
supports logics K, K4, D, D4, T, S4, and S5 with respect to constant,
varying and cumulative domain semantics. The approach is evaluated in
combination with a meta-prover for HOL, which sequentially schedules
various HOL reasoners. The resulting system is very competitive.

1 Introduction

First-order modal logics (FMLs) [7] have many applications and these applica-
tions motivate the use of automated theorem proving systems for FMLs. Until
recently no (correct) ATP systems for FMLs were available.1 However, good
progress has been made in the last two years, and novel provers have recently
been implemented and compared [1]. Among these systems is also an approach
based on classical higher-order logic (HOL) [3,2]. This HOL approach, which is
further improved and evaluated here, is the focus of this paper. The particular
contributions include:

(A) The FMLtoHOL tool is presented, which converts problems in FML, for-
mulated in qmf-syntax [13] (which extends the TPTP fol-syntax [15] with opera-
tors #box and #dia), into HOL problems in thf0-syntax [16].2 FMLtoHOL imple-
ments a semantic embedding of constant domain FMLs in HOL [3]. The tool has
been extended to also support varying and cumulative domains. FMLtoHOL turns
any thf0-compliant HOL ATP system into a flexible ATP system for FMLs.
At present FMLtoHOL supports modal logics from L := {K,K4,D,D4,T,S4,S5}.
However, its extension to further normal FMLs is straightforward.

(B) The FMLtoHOL tool is exemplarily applied in combination with a meta-
prover for HOL, called HOL-P in the remainder. This meta-prover exploits the

� Supported by the German Research Foundation (grants BE2501/9-1 & KR858/9-1).
1 A pioneering prover is GQML [17]. However, GQML has been excluded in recent
experiments (in [1] or here) since it returned incorrect results for several formulae.

2 thf stands for typed higher-order form and it refers to family of syntax formats for
higher-order logic. So far only the fully developed thf0 format, for simply typed
lambda calculus, is in practical use.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 127–136, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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SystemOnTPTP infrastructure [15] and sequentially schedules the HOL rea-
soners LEO-II [4], Satallax [6], Isabelle [10], agsyHOL [9] and Nitpick [5]. HOL-
P is evaluated with respect to 580 benchmark problems in the QMLTP li-
brary [13]. As a side contribution a complete translation of the QMLTP li-
brary (for all logics in L, all different domain conditions, and both options as
explained in (C)) into HOL (resp. thf0) is achieved, resulting in 7 × 3 × 2 ×
580 = 24360 problems. The 3480 problems for logic S4 can be download from
http://christoph-benzmueller.de/papers/THF-S4-ALL.zip; others can be
requested by EMail.

(C) There are different options in the HOL approach for the modeling of
logics in L. One is to state the conditions on the accessibility relation R associ-
ated with � ‘semantically’, e.g, ∀x∃yRxy expresses that R is serial. Exploiting
quantification over booleans (∀p) (cf. [3]) the corresponding ‘syntactical’ axiom
∀pp(�p ⇒ �p) may instead be postulated. FMLtoHOL so far only supports the
‘semantical’ approach. A first evaluation of both options is provided in this pa-
per. To enable this the semantical example problems have been converted into
their syntactical counterparts by hand.

The structure of the paper is as follows: §2 outlines FML. §3 and §4 describe
the theory and implementation of FMLtoHOL. §5 introduces prover HOL-P. Ex-
periments are presented in §6, and §7 concludes the paper.

2 First-Order Modal Logic

The syntax of FML adopted in this paper is: F,G ::= P (t1, . . . , tn) | ¬F | F ∧G |
F ∨ G | F ⇒ G | �F | �F | ∀xF | ∃xF . The symbols P are n-ary (n ≥ 0)
relation constants which are applied to terms t1, . . . , tn. The ti (0 ≤ i ≤ n) are
ordinary first-order terms and they may contain function and constant symbols.
The usual precedence rules for logical constants are assumed. The formula E1
:= (�∃xPfx ∧ �∀y(�Py ⇒ Qy)) ⇒ �∃zQz is used as a running example.

Regarding semantics, a Kripke style semantics for FML is adopted [7]. In
particular, it is assumed that constants and terms are denoting and rigid, i.e. they
always pick an object and this pick is the same object in all worlds. Regarding the
universe of discourse constant domain, varying domain and cumulative domain
semantics are considered. With respect to these base choices the normal modal
logics K, K4, K5, B, D, D4, T, S4, and S5 are studied.

3 Theory of FMLtoHOL

FMLtoHOL exploits the fact that Kripke structures can be elegantly embedded
in HOL [3]: FML propositions F are associated with HOL terms Fρ of pred-
icate type ρ := ι � o. Type o denotes the set of truth values and type ι is
associated with the domain of possible worlds. Thus, the application (Fρwι)
corresponds to the evaluation of FML proposition F in world w. Consequently,
validity is formalized as vldρ�o = λFρ∀wιFw. Classical connectives like ¬ and
∨ are simply lifted to type ρ as follows: ¬ρ�ρ = λFρλwι¬Fw and ∨ρ�ρ�ρ =

http://christoph-benzmueller.de/papers/THF-S4-ALL.zip


HOL Based First-Order Modal Logic Provers 129

λFρλGρλwι(Fw∨Gw). � is modeled as �ρ�ρ = λFρλwι∀vι(¬Rwv∨Fv), where
constant symbol Rι�ρ denotes the accessibility relation of the �-operator, which
remains unconstrained in logic K. Further logical connectives are defined as
usual: ∧ = λFρλGρ¬(¬F ∨ ¬G), ⇒ = λFρλGρ(¬F ∨G), � = λFρ¬�¬F .

For individuals a further base type μ is reserved in HOL. Universal quan-
tification ∀xF is introduced as syntactic sugar for ΠλxF , where constant Π
is defined as follows: Π(μ�ρ)�ρ = λHμ�ρλwι∀xμHxw. For existential quantifi-
cation, Σ = λHμ�ρ¬Πλxι¬Hx is introduced. ∃xF is then syntactic sugar for
ΣλxF . n-ary relation symbols P, n-ary function symbols f and individual con-
stants c in FML obtain types μ1 � . . . � μn � ρ, μ1 � . . . � μn � μn+1 (both
with μi = μ for 0 ≤ i ≤ n + 1) and μ, respectively.

Moreover, universal quantification over propositional variables is added. Sim-
ilar to above this can be done by introducing a constant Πp. Πp and Π are
similar and only differ wrt the argument type: Πp

(ρ�ρ)�ρ = λHρ�ρλwι∀pρHpw.

Again, ∀ppF is introduced as syntactic sugar for ΠpλpF , etc.
For any FML formula F holds: F is a valid in modal logic K for constant

domain semantics if and only if vld Fρ is valid in HOL for Henkin semantics.
This correspondence provides the foundation for proof automation of FMLs with
HOL-ATP systems. The correspondence is shown in [3].

To extend the above result for logic K to modal logics K4, K5, B, D, D4, T,
S4, S5 etc., one may choose between a ‘syntactical’ and a ‘semantical’ approach:
(Semantical) Axioms such as ∀xRxx or ∀x∀y∀z(Rxy∧Ryz ⇒ Rxz) are postu-
lated to ensure that accessibility relation R obeys certain restrictions, here reflex-
ivity and transitivity. (Syntactical) Propositional quantification is exploited to
postulate corresponding axioms such as ∀pp(�p ⇒ p) or ∀pp(�p ⇒ ��p). These
axioms characterize R as reflexive and transitive. Similar axioms exist for other
FMLs. Respective correspondences between semantical properties of R and re-
spective syntactical axioms are well known.

Arbitrary normal modal logics extending K can be axiomatized this way.
There are cases where only the semantical approach is applicable. For example,
irreflexivity of accessibility relation R cannot be axiomatized in the syntactic
approach. However, it can trivially be modeled in the semantic approach. In
other cases the syntactical approach appears more suitable. Examples are non-
Stahlquist formulas like the Löb axiom or the McKinsey formula, for which there
are no corresponding first-order semantical conditions on R. Note, however, that
the HOL approach is not restricted to first-order conditions on R.

The above approach realizes constant domain semantics. For varying domain
semantics it is modified: (1) Π is defined as Π = λHμ�ρλwι∀xμ(exInWxw ⇒
Hxw), where relation exInWμ�ι�o (for ‘exists in world’) relates individuals with
worlds. (2) The non-emptiness axiom ∀wι∃xμexInWxw for these individual do-
mains is added. (3) For each individual constant symbol c an axiom ∀wιexInWcw
is postulated; these axioms enforce the designation of c in the individual domain
of each world w. Analogous designation axioms are added for function symbols.
For cumulative domains the axiom ∀xμ∀vι∀wι(exInWxv ∧ Rvw ⇒ exInWxw)
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is additionally postulated. It states that the individual domains are increasing
along accessibility relation R.

4 Implementation and Functionality of FMLtoHOL

FMLtoHOL is implemented as part of the TPTP2X tool [15], and it is included in
the QMLTP—v1.1 package.3 It is written in Prolog and it can be easily modified
and extended.

The tool is invoked as

./tptp2X -f thf:<logic>:<domain> <qmf-file>

where <logic> ∈ {k,k4,d,d4,t,s4,s5} and <domain> ∈ {const, vary, cumul}.
Assume that file E1.qmf contains example problem E1 in qmf-syntax:

qmf(con,conjecture,

( ((#dia: ? [X] : p(f(X))) & (#box: ! [Y]: ((#dia: p(Y)) => q(Y))))

=> #dia: ? [Z] : q(Z) )).

The command ‘./tptp2X -f thf:d:const E1.qmf’ generates a corresponding
HOL problem file E1.thf in thf0-syntax4 [16] for constant domain logic D:

%----Include axioms for modal logic D under constant domains

include(’Axioms/LCL013^0.ax.const’).

include(’Axioms/LCL013^2.ax’).

%---------------------------------------------------------------------

thf(q_type,type,( q: mu > $i > $o )).

thf(p_type,type,( p: mu > $i > $o )).

thf(f_type,type,(f: mu > mu )).

thf(con,conjecture, ( mvalid @

( mimplies @

( mand @

( mdia_d @ ( mexists_ind @ ^ [X: mu] : ( p @ ( f @ X ) ) ) ) @

( mbox_d @ ( mforall_ind @ ^ [Y: mu] :

( mimplies @ ( mdia_d @ ( p @ Y ) ) @ ( q @ Y ) ) ) ) ) @

( mdia_d @ ( mexists_ind @ ^ [Z: mu] : ( q @ Z ) ) ) ) )).

mimplies, mand, mbox d, etc. should be read as ‘modal-implies’, ‘modal-and’,
‘modal-box-d’, respectively. The included axiom files contain the definitions of
these connectives as outlined in §2. E.g., the definition for mforall ind (which
realizes Π for constant domain semantics) is given in LCL013^0.ax.const:

3 The QMLTP library is available online at
http://www.iltp.de/qmltp/problems.html

4 Some explanations: ^ is λ-abstraction and @ an (explicit) application operator. !,
?, ~, |, and => encode universal and existential quantification, negation, disjunction
and implication in HOL. mu > $i > $o encodes the HOL type μ � ι � o. mimplies,
mforall ind, and mbox d are embedded logical connectives as described in §2. Their
denotation is fixed by adding definition axioms; see e.g. mforall ind below.

http://www.iltp.de/qmltp/problems.html
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thf(mforall_ind,definition,( mforall_ind =

( ^ [Phi: mu > $i > $o, W: $i] : ! [X: mu] : ( Phi @ X @ W ) ) )).

File LCL013^2.ax contains the definition of the serial �-operator in logic D:

thf(mbox_d,definition,( mbox_d =

( ^ [Phi: $i > $o,W: $i] :

! [V: $i] : ( ~ ( rel_d @ W @ V ) | ( Phi @ V ) ) ) )).

thf(a1,axiom,( mserial @ rel_d )).

Similar definitions are provided in the included axiom files for the other logical
connectives and for auxiliary terms like mserial. For problem E1.thf Nitpick
finds a countermodel in 8 seconds (when run with a 20s time limit).

When FMLtoHOL is called with option ‘-f thf:s5:vary’ a modified file
E1.thf is created containing a conjecture identical to above except that mbox d

is replaced by mbox s5 and rel d by rel s5. Moreover, E1.thf now includes
different axiom files LCL013^0.ax.vary and LCL013^6.ax. The former contains
a modified definition of mforall ind, adds a non-emptiness axiom, and adds
further axioms as required (cf. conditions (1)-(3) in §3). Axiom file LCL013^6.ax
specifies mbox s5 as follows:

thf(mbox_s5,definition,( mbox_s5 =

( ^ [Phi: $i > $o,W: $i] :

! [V: $i] : ( ~ ( rel_s5 @ W @ V ) | ( Phi @ V ) ) ) )).

thf(a1,axiom,( mreflexive @ rel_s5 )).

thf(a2,axiom,( mtransitive @ rel_s5 )).

thf(a3,axiom,( msymmetric @ rel_s5 )).

The modified problem in file E1.thf is proved by Satallax and LEO-II within
milliseconds.

The above explanations are all with respect to the adapted tptp2X com-
mand that comes with the QMLTP package. The included axiom files, like
LCL013ˆ6.ax etc., are also provided by this package, so that only the QMLTP
package is required for installing the FMLtoHOL tool.

5 The Prover HOL-P

In the experiments the following HOL provers were applied: Satallax (2.6) [6],
Isabelle (2012) [10], LEO-II [4] (1.5.0), Nitpick (2012) [5] and agsyHOL (1.0) [9].
Isabelle, Satallax, LEO-II and agsyHOL are theorem provers. Nitpick is a (counter-)
model finder. Satallax, and to a lesser extend LEO-II, are also capable of find-
ing countermodels. These systems work for Henkin semantics and they support
the thf0-syntax as a common input language. Moreover, the SystemOnTPTP
infrastructure [15] enables remote calls to instances of these provers at the Uni-
versity of Miami (running on 2.80GHz computers with 1GB memory). Exploit-
ing these features, a simple shell script has been written that bundles these
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systems into a HOL meta-prover, called HOL-P in the remainder. HOL-P has
been employed in the experiments. Using the SystemOnTPTP infrastructure
the experiments below can be easily replicated.

6 Evaluation

The QMLTP library [13] is a benchmark library for testing and evaluating ATP
systems for FML. It is similar to the TPTP library for classical logic [15] and
the ILTP library for intuitionistic logic [14]. Version 1.1 of the QMLTP library
includes 600 FML problems divided into 11 problem domains. The problems were
taken from different applications, various textbooks, and Gödel’s embedding of
intuitionistic logic. It also includes 20 problems in multimodal logic. Only the
HOL approach is applicable to them do date. Therefore these multimodal logic
problems have not been included in our experiments.

HOL-P has been applied in several experiment runs to all 580 monomodal
problems in the QMLTP library. The overall time limit of 600s for each problem
was equally distributed over the five subprovers of HOL-P. Thus, each subprover
was given a 120s time limit per problem. In each experiment run, a different
setting with respect to the selected logic (here D and S4) and the domain condi-
tion (constant, cumulative, varying) was chosen. The results for HOL-P are pre-
sented in Table 1. Moreover, in Table 1 the performance of HOL-P is compared
to corresponding results as reported on the QMLTP-website5 for the provers f2p-
MSPASS—3.0 (an instance-based prover which employs MSPASS [8] to prove or
refute the propositional formulas it generates),MleanSeP—1.2 (a sequent prover;
its calculus extends the classical sequent calculus with specific rules for � and
�), MleanTAP—1.3 (a tableaux prover; a classical tableaux calculus is extended
by adding and employing prefixes to each formula), and MleanCoP—1.2 (a con-
nection prover based on leanCoP [12,11]; again formula prefixes are employed).
Previous results on the HOL provers LEO-II and Satallax (cf. [1]) have not been
included in Table 1; they are now subsumed by HOL-P which is significantly
stronger than both of them.

The HOL approach has the broadest coverage of logics and domain conditions
(and, as mentioned before, it can easily be adapted to support further logics):

ATP system supported modal logics supported domain cond.
MleanSeP 1.2 K,K4,D,D4,T,S4 constant,cumulative
MleanTAP 1.3 D,T,S4,S5 constant,cumulative,varying
MleanCoP 1.2 D,T,S4,S5 constant,cumulative,varying
f2p-MSPASS 3.0 K,K4,K5,B,D,T,S4,S5 constant,cumulative
HOL-P K,K4,K5,B,D,D4,T,S4,S5 constant,cumulative,varying

The experiments show that the HOL approach is very competitive. In particu-
lar, with respect to the accumulated numbers of solved problems in each category
HOL-P has a slight lead (HOL-P solved 2225 problems, MleanCoP 2129). This

5 Cf. http://www.iltp.de/qmltp/download/QMLTP-v1.1-comparison.txt

http://www.iltp.de/qmltp/download/QMLTP-v1.1-comparison.txt
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Table 1. No. of proved monomodal problems (for constant/cumulative/varying domain
semantics, in this order) of the QMLTP library. All provers were run with a 600s time
limit. In HOL-P a timeout of 120s was given to each subprover.

MleanSeP MleanTAP f2p-MSPASS MleanCoP HOL-P
Logic D: constant/cumulative/varying domains

Theorem 135/130/– 134/120/100 076/079/– 217/200/170 208/184/163
Non-Thm 001/004/– 004/004/004 107/108/– 209/204/243 250/269/295
Solved 136/134/– 138/124/104 183/187/– 426/424/413 458/453/458

Logic S4: constant/cumulative/varying domains

Theorem 197/197/– 220/205/169 111/121/– 352/338/274 300/278/245
Non-Thm 001/004/– 004/004/004 036/041/– 082/094/119 132/146/184
Solved 198/201/– 224/209/173 147/162/– 434/432/393 432/424/429

Table 2. No. of monomodal problems in the QMLTP library proved or refuted by
HOL-P. The timeout was set to 600s. 60s was given to each subprover of HOL-P; each
subprover was applied to both the semantical (sem) and the syntactical (syn) variant.

Logic S4 constant domains cumulative domains varying domains
all (sem/syn) all (sem/syn) all (sem/syn)

Theorem 295 (294/282) 267 (265/256) 241 (238/233)
Non-Theorem 132 (132/132) 146 (146/145) 186 (185/185)
Solved 427 (426/414) 413 (411/401) 427 (423/418)

is due to the excellent performance of the (counter-)model finder Nitpick (which
fully subsumes Satallax in the Non-Theorem-category of the experiments and
beats MleanCoP by quite a margin). In both categories, Theorems and Non-
Theorems, HOL-P solved many problems whose QMLTP status was ‘Unsolved’.
In terms of theorem proving performance MleanCoP is still the leading system,
but its margin of lead over the HOL approach has further decreased (cf. the
previous results reported in [1]).

In Table 1 HOL-P has been applied in combination with the semantical en-
coding of accessibility conditions only. An obvious idea, however, is to test both
the semantical and the syntactical encoding. For studying the potential impact
of this idea we have conducted further experiments (so far only for S4) in which
HOL-P was applied to both versions. Since the overall time limit of 600s per
problem was kept, each HOL-P subprover was now given a 60s time limit per
problem. Table 2 presents the results of the modified experiment for S4. The
first and second numbers in brackets indicate how many problems were solved
by the semantical (sem) and the syntactical (syn) approach respectively.

In the Theorem-category the semantical approach performs better. No signif-
icant difference can be observed in Non-Theorem-category. The comparison of
the overall performance results from Table 2 with those for S4 in Table 1 indi-
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Table 3. Individual performances of the subprovers of HOL-P in the Theorem-category
with respect to the experiments in Table 2. Results are presented for constant domain
(const), cumulative domain (cum) and varying domain (vary) semantics.

Logic S4 Isabelle LEO-II agsyHOL Satallax
Theorem const/cum/vary const/cum/vary const/cum/vary const/cum/vary

syn 177/126/120 213/187/163 231/192/171 244/233/207
sem 252/215/192 227/203/183 247/206/183 257/239/214

total 1082 1176 1230 1394

Table 4. Individual performances of the subprovers of HOL-P in the Non-Theorem-
category with respect to the experiments in Table 2

Logic S4 Satallax Nitpick
Non-Theorem const/cum/vary const/cum/vary

syn 0/0/0 132/145/185
sem 48/56/68 132/146/185

total 172 925

cates the following: It makes more sense to run HOL-P in the semantical mode
only than to split the time resources and to run HOL-P in both modi (however,
what has not been studied yet is the performance of HOL-P when both axiom
versions are simply added to one the same problem file).

The individual performances of the subprovers of HOL-P with respect to the
experiments in Table 2 are also interesting. They are presented in Table 3. Satal-
lax is the strongest prover in the Theorem-category both in the syntactical and
the semantical mode. The weak performance of Isabelle in the syntactic mode
is surprising, in particular, since Isabelle has performed strong in recent CASC
competitions.

In the Non-Theorem-category Nitpick performs significantly stronger than Sa-
tallax. The other HOL-P subprovers didn’t solve any problems in this category.
Interestingly, Nitpick shows nearly equal performance in both the syntactical
and the semantical mode, while Satallax solves problems in this category in the
semantical mode only.

As a side-result of our experiments we detected some syntax issues in QMLTP
problems which were undetected so far: Identifiers for axioms and conjectures
were reused; according to TPTP conventions this is not allowed. Examples in-
clude ‘substitution of equivalents’, ‘reflexivity’ and ‘transitivity’. These issues
were solved manually in the generated thf0-files.

7 Summary and Outlook

The FMLtoHOL tool enables the application of higher-order automated theo-
rem provers and model finders for solving FML problems encoded in the new
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qmf-syntax. The tool has been evaluated in combination with the higher-order
meta-prover HOL-P on the QMLTP library. The experiments show that the
HOL approach to automate FMLs is very competitive. Regarding the combined
performance (no. of proved or refuted problems) the HOL approach performed
best.

Future work includes optimizations and extensions of HOL-P and FMLtoHOL.
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Abstract. The program verification tool SLAyer uses abstractions dur-
ing analysis and relies on a solver for reachability to refine spurious coun-
terexamples. In this context, we extract a reachability benchmark suite
and evaluate methods for encoding reachability properties with heaps us-
ing Horn clauses over linear arithmetic. The benchmarks are particularly
challenging and we describe and evaluate pre-processing transformations
that are shown to have significant effect.

1 Introduction

When a proof attempt by a static analyzer or model checker fails, an abstract
counterexample is commonly produced. The counterexample does not necessarily
correspond to a real bug because the analyzer’s abstraction could be too coarse.
Here we describe and evaluate new techniques to check concrete feasibility of
abstract counterexamples produced as failed memory safety proofs by SLAyer, a
separation logic–based shape analyzer [3]. The problem addressed in this paper is
a particular instance of the more general one of state reachability in “resourceful”
abstract transition systems, where the state space is theoretically unbounded,
and changes over time, due to behavior such as dynamic allocation of memory.
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Fig. 1. Average solving time
(Sat+Unsat), relative to the
solving time of 100 unrollings

This poses challenges to reachability tools
along two dimensions: scaling search for long
counter-examples, and encoding state trans-
formations for heaps in a scalable way. Pre-
vious work [2] developed an encoding using
bit-vectors and quantifiers and used bounded
model checking (BMC). Fig. 1 illustrates that
on a representative instance, unfortunately, it
exhibits exponential slowdowns as the length
of the explored path is increased. To further
evaluate tradeoffs we extracted around 100
benchmarks from SLAyer that come from
failed proof attempts in analysis of real-world C programs.

We encode reachability into logic as satisfiability of Horn clauses and use two
backends of the Z3 SMT-solver for solving such clauses. The PDR solver handles
Horn clauses over linear arithmetic (HORN-LA). It is compared with a solver
based on BMC. (For details on the underlying semantics of the Horn-clause
fragment and on the internals of the PDR solver, please see [7]).
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Our main methodological contribution is encodings for resourceful reachabil-
ity into Horn-LA. A basic encoding (§2.2) is refined (§2.3) to use a family of
transition relations indexed by “worlds”. These limit the state space based on
the amount of memory allocated. This refinement allows the solver to explore
smaller state spaces over fewer variables, constrained by smaller formulae. Our
evaluation shows that this encoding helps the PDR solver on the hard instances,
while causing visible overhead on the easy cases. The results (Fig. 6(b)) with
the BMC solver are similar, but the overhead is significantly more detrimental.
Additionally, we propose and evaluate (Fig. 5) two alternative approaches to
shrinking heaps of error states. The evaluation of our methodology establishes
that our PDR solver benefits critically from pre-processing transformations that
we identify and evaluate (Fig. 7(a),7(b)). This paper is our first thorough exper-
imental evaluation of [7] over arithmetical benchmarks.

2 Resourceful Transition System Reachability

1 void access_error()

2 {

3 int* x0, *x1;

4

5 x1 = malloc(sizeof(int));

6 if (nondet()) {

7 x0 = malloc(sizeof(int));

8 }

9 while (nondet()) {

10 *x0 = 3;

11 }

12 }

Consider the faulty routine on the
right. It contains a memory access er-
ror. SLAyer [3] can be used to find
such errors. When SLAyer fails in its
attempt to establish memory safety, it
produces an abstract counterexample
in the form of a Resourceful Transition
System (RTS) – a transition system
over states of some resource (memory,
in our case). Fig. 2 is an RTS extracted
from this example. An RTS is given by
〈V,E, v0, verr, ν, ρ〉, where V and E are
sets of vertices and edges respectively, v0 identifies the root and verr the error ver-
tex, ν labels vertices with states, and ρ labels edges with transition relations. The
abstract counterexample is feasible if there is a path v0, e0, v1, e1 . . . , vn, en, verr
such that the conjunction ν(v0)(s0) ∧

∧
ρ(ei)(si, si+1) is feasible.

2.1 Encoding Resources

To encode resourceful reachability into SMT we adapt a model where states are
summarized as a predicate over a store and a heap. The store tracks the values of
program variables, X, and the heap tracks memory objects. This representation
is given by a triple (f,x, a), where

– f ∈ N is a frontier counter, indicating the ‘next’ free address,
– x ∈ D|X| is the store over values in D (D includes N), and
– a ∈ Array〈N,B× N× D〉 is an array mapping addresses to triples encoding

if the address is allocated, the size of the allocated object, and its value.

The state labeling ν is a relation over (f,x, a), where initially f is 0 and
a maps all addresses to an un-allocated state. Similarly, ρ is a relation
ρ(ei)(f,x, a, f ′,x′, a′).
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v0(�5) : v1(�6) : (x1 �→?)

v2(�9) : (x1 �→?) v3(�7) : (x1 �→?)

v4(�10) : (x1 �→?) v5(�9) : (x1 �→?) ∧ (x0 �→?)

v6 : ERROR

v7(�11) : EXIT

v8(�10) : (x1 �→?) ∧ (x0 �→?)

x1 := alloc(1)

assume(�=0) assume(� �=0)

assume(� �=0)

failed(mem[x0] := 3)

x0 := alloc(1)

assume(�=0) assume(� �=0)

mem[x0] := 3

Fig. 2. failed attempt at proving safety for access error

The unsuccess-
ful transition cor-
responds to an
update into an un-
allocated memory
location, and is
marked as failed.
An encoding into
Horn-LA requires
eliminating arrays,
so we flatten a into
a finite tuple of
triples. The (pre-
set) size n of this
tuple, which is the
number of avail-
able memory loca-
tions and therefore

the bound on the resource, plays a crucial role in deciding reachability.

2.2 Resourceful Reachability as SMT - Basic Encoding

Given an RTS 〈V,E, v0, verr, ν, ρ〉, and a bound n, reachibility can be modeled
as a predicate R(v, f,x, a), where v ∈ V and (f,x, a) is a state as described
above. R is defined by the following set of Horn clauses, where the schema in
the second line is repeated for each eij ∈ E s.t. eij = (vi, vj):

R(v0, f,x, a) ← ν(v0)(f,x, a)

R(vj , f
′,x′, a′) ← R(vi, f,x, a) ∧ ρ(eij)(f,x, a, f ′,x′, a′) ∧ f ′ ≤ n (1)

false ← R(verr, f,x, a)

The free variables f, f ′,x, a,x′, a′ are implicitly universally quantified. Reacha-
bility corresponds to unsatisfiabilty of these Horn clauses:

Proposition 1 (Bounded Resource Reachability). For an RTS, there is
a feasible path from v0 to verr allocating at most n resources if and only if the
clauses defined by (1) are unsatisfiable.

Conversely, if the clauses are satisfiable, the error state is unreachable within a
resource of size n. At this point we see why the bound is crucial: unreachability,
i.e. safety, can be proven only relative to a given bound.

Example 1 (RTS encoding). Continuing our running example, below we show
the clauses encoding the edges between v0 and verr = v6 of the ATS in Fig. 2
over a space of four addresses, i.e. n = 4.

R(0, f,x, a) ← f = 0 ∧ a = (false, , ), . . . , (false, , )︸ ︷︷ ︸
4

// initial state
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R(1, f ′,y,b) ← R(0, f,x, a) ∧ y = 〈x0, f〉 //v0 → v1 : alloc(x1, 1)
f ′ = f + 1 ∧ f ′ ≤ 4

∧
∧h<4

h=0 b[h] =
(
if h = f then (true, 1, ) else a[i]

)
R(2, f,x, a) ← R(1, f,x, a) //v1 → v2 : assume(nondet() = 0)

R(4, f,x, a) ← R(2, f,x, a) //v2 → v4 : assume(nondet() 
= 0)

R(6, f,x, a) ← R(4, f,x, a) ∧ a[x0] = (false, , ) //v4 → v6 : unsuccessfull store

false ← R(6, f,x, a)
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Fig. 3. Slowdown when n increases:
BMC ×, PDR ◦

Observe that the value of n, which is
fixed prior to encoding, has two effects on
the relation R: First, it affects satisfiability
of the Horn clauses. Second, it affects, and
in fact dominates, the number of parame-
ters of R, which is given by 1+|X|+3n. The
problems this can cause are demonstrated
by the example in Fig. 2. First, suppose the
edge (v0, v1) was labeled with ‘alloc(x1, 5)’,
allocating 5 words rather than one word.
In that case, the corresponding rule would
contain a constraint equivalent to f+5 ≤ 4,
and as a result, verr would become unreach-
able. However, given an n ≥ 5 it would still
be reachable. That is to say, underestimat-

ing the size of n required to reach verr may result in a loss of completeness.
Second, notice that none of a[1], a[2] nor a[3] are required in a traversal from
v0 to verr here. However, they all contribute to the resulting constraints and be-
come part of the search space during solving. Fig. 3 shows that as n is increased,
the runtime and memory-outs increase as well.

2.3 Encoding Reachability - Kripke Style

To reduce the cost of propagation over large predicates, we propose and evaluate
a method that introduces a sequence of predicates of increasing arity. The aim is
to search over low arity predicates first, and resort to larger arity predicates only
when search in the lower arity predicates has been exhausted. If a counterexam-
ple trace exists that requires only a part of the available resource, finding it does
not require assigning (irrelevant) values to the entire resource. This encoding is
inspired by possible-world semantics of programming languages. The idea is that
of Kripke models for intuitionistic logics where sets of possible worlds or facts
grow monotonically.

The idea is to choose a chain W := w0(= 0) < w1 < · · · < wm = n, of in-
creasing sizes for the available resource a. From W we encode a set of predicates
{R0, . . . , Rm}, such that Rk has arity 1 + |X|+ 3wk. Analogously to the mono-
tonically growing worlds in a Kripke-style program semantics, the predicates Rk
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capture the set of reachable states with increasing precision. Each Rk is defined
by clauses instantiating the second clause of (1), for each e ∈ E, s.t. eij = (vi, vj).
The first clause of (1) is replaced by the single non-recursive clause, reflecting
that initially no resource is allocated:

R0(v0,x) ← ν(v0)

In addition, to allow the solver to access Rl from Rk for all l > k, ‘world-
changing clauses’ are introduced at each step instantiating the following schema
for all k < l ≤ m, where |a| = wk and |b| = wl:

Rl(vj ,f
′,x′,b′) ← Rk(vi, f,x, a)

∧ ρ(eij)(f,x,b, f ′,x′,b′) ∧ wl−1 < f ′ ≤ wl (2)

∧
∧h<wl

h=0 b[h] =
(
if h < wk then a[h] else (false, , )

)
When changing worlds, first the current state of the smaller world a is ‘copied’

over to a ‘fresh’ larger one b, in which the new elements are initialised to be free.
In practice, this step is only required for transitions that may actually consume
resource (alloc in SLAyer).

R0(verr, )

R1(verr,x, )

. . . Rk(verr,x, ) . . .

Rm(verr,x, )

R0(verr, )

R1(verr,x, )

...

Rn(verr,x, )

Fan Chain

Fig. 4. Schemata for ways of connecting R0 to Rk in a set of Kripke predicates

Since there are several predicates Rk in this encoding, verr may be reachable in
each of them. The purpose of this encoding is to explore smaller Rk before larger
ones, hence we will pose the query in R0 – R0(verr ,x) – and let the solver choose a
larger one if neccessary. There are several ways of setting up that choice: we could
either add m clauses of the form R0(verr ,x) ← Rk(verr,x, a) (creating a fan
into R0, so to speak); or add a chain of clauses Rk(verr ,x, a) ← Rk+1(verr,x, a′)
for 0 ≤ k < m – see Fig. 4.

2.4 Evaluation

There are now several parameters to an encoding: the size of the maximum
available resource n, the set W of increasing sizes of parts of the resource, and
the choice between a fan and a chain of clauses for reaching R0(verr ,x).
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Fig. 5. Fan vs. Chain; PDR ×: 64, ◦:
512 addresses

We considered growing wk with a linear
increase and a log-step increase, i.e. each
wk+1 is double the size of wk and settled
for the latter encoding for our evaluation.
Fig. 5 also suggests that the fanning ap-
proach on large heap sizes is better overall,
though remarkably chaining handles some
hard instances not handled by fanning.

Reducing the sensitivity to the bound
n on heap size exhibited by the previous
encoding was the motivation for the en-
coding using Kripke transition relations.
This aim is largely achieved when using
the PDR backend, as shown in Fig. 6(a).
The results show that solving problems
encoded using Kripke relations with the PDR backend times out much less
frequently, and solves many problems that time out with the single relation
encoding.
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(a) PDR: 512 addresses - chain
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Fig. 6. Single vs Kripke Relations

The improvements can be quite dramatic, but the results also indicate that
the Kripke predicates encoding imposes a considerable overhead, and a number
of problems exhaust memory only with it. Overall, there is a clear improving
trend from above to below the break-even line as problems get hard enough that
less sensitivity to heap size dominates the overhead. We have observed this effect
in both the chaining and the fanning approach.

As shown in Fig. 6(b), the Kripke predicates encoding is, on the other hand,
detrimental to the BMC backend. This effect is independent of the chaining
or fanning approach. The basic encoding solves many more problems than the
Kripke encoding, only a few problems are solved only using the latter. This
should not be surprising because BMC effectively causes the largest arity pred-
icate to always be present in the constraints sent to the SMT solving backend.
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3 Pre-processing Simplifications

We here evaluate pre-processing simplifications that are key to the performance
of our Horn clause solvers. We summarize two transformations on a set of Horn
clauses C. The Inline transformation replaces two clauses by a single clause in
a transformation of the form C, p(u) ← B1 ∧ q(t), q(s) ← B2 =⇒ C, (p(u) ←
B1 ∧B2)θ, where the head predicate q(s) unifies with q(t) with the substitution
θ and there are no other occurences of q in C that unifies with q(s). The Unfold
transformation generalizes inlining by replacing m clauses with q in the body and
n clauses with q in the head and creating up to m×n new clauses. It corresponds
to an iterative squarring transformation or a Davis Putnam resolution step.
Figures 7(a),7(b) demonstrate the significant effect of the exhaustive application
of these transformations on PDR and neutral effect on BMC.
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Fig. 7. Effects of Inline and Unfold transforms

4 PDR and BMC Backends

We have compared the two backend solvers on our benchmark suite. The results,
shown in Fig. 8(a), show that there are instances where each solver succeeds
while the other does not. On instances where both succeed, the BMC solver
tends to spend less time than the PDR solver. For unsatisfiable instances, there
is also a tendency for the BMC solver to succeed only on the very easy ones,
while the PDR solver has more success. This effect is more clearly seen when
considering smaller heap sizes, see Fig. 8(b). In this configuration we see that the
PDR solver dominates for unsatisfiable instances, where the BMC solver usually
exhausts resources; while for satisfiable instances, the BMC solver is faster.
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Fig. 8. BMC vs PDR. Reachable ◦, Unreachable ×

5 Comparison with other Solvers

Horn Clause Solvers. Z3 is not the only SMT solver that can check satisfiability
of Horn clauses over linear arithmetic. The HSF/QARMC tools [5] check satisfia-
bility of Horn clauses over linear real arithmetic and the Eldarica tool [10] accepts
Horn clauses over linear real and integer arithmetic. Furthermore, constraint
logic programming systems, such as MAP [1], TRACER [8], and CHiAO [6]
support different aspects of Horn clauses over arithmetic. To our knowledge,
they don’t yet work in a way compatible with the SMT-LIB benchmark suite.

HSF/QARMC solves Horn clauses where constraints are given as a conjunc-
tion of literals. It therefore relies on converting constraints in the bodies of Horn
clauses into disjunctive normal form (DNF). Given the way memory is encoded
in our benchmarks, the DNF transformation is infeasible and therefore the tool
times out on all the problems we have produced.

Eldarica uses the SMT solver Princess [9] for handling arithmetical constraints
and generating interpolants. It is able to handle Horn clauses with nested con-
straints and we include a comparison in Figure 9. First of all, we interpret the
results to establish these benchmarks as highly challenging for current state-
of-the-art Horn clause solvers. We also see the results as a testament to the
significance of pre-processing that we described in Section 3.

Bounded Model Checking Tools. We have compared our implementation of BMC
on Horn clauses against both the implementation reported in [2] and the well-
established, well-tested model checking tool CBMC [4]. The first comparison,
shown in Fig. 10(a), indicates that while our BMC backend sometimes out-
performs that of [2], when the a priori unrolling depth is chosen well the latter
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Fig. 9. Eldarica vs. Z3
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Fig. 10. BMC vs. CAV12 and CBMC

performs very well. At present, there is a meaningful price our method pays for
the robustness with respect to choice of unrolling bound.

The results of the second comparison, shown in Fig. 10(b), demonstrate that
our backend can compete with CBMC on instances of these problems, returning
relatively quickly for numerous instances for which CBMC runs out of memory.

There is a significant caveat regarding these results though: our backends
operate over the theory of linear real arithmetic, while the other two are over bit-
vectors. The benchmarks themselves do not exercise the difference between these
theories, so the same high-level problem is being solved here. So the currently
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best-performing solving method to establish unsafety/reachability is BMC and
is based on quantified bit-vectors, while the main available method establishing
safety is based on linear arithmetic.

6 Summary

We have presented encodings of resourceful reachability problems into HORN-
LA and evaluated these using two engines BMC and PDR. PDR can solve for
both reachability and unreachability, wheareas BMC can only determine reach-
ability. We found that BMC is generally faster on the reachable cases, but given
significant attention to encoding and pre-processing, our implementation of PDR
performs adequately. The raw data from our experiments is available at:
http://www.cs.kent.ac.uk/people/rpg/jek26/cex-data.zip.
The experimental data forms the basis of publicly available benchmarks:
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/

SLayerCF.

Acknowledgements. Matthew Parkinson and Nathan Chong for invaluable
feedback on drafts.
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Abstract. Proof systems for hybrid logic typically use @-operators to
access information hidden behind modalities; this labeling approach lies
at the heart of most resolution, natural deduction, and tableau systems
for hybrid logic. But there is another, less well-known approach, which we
have come to believe is conceptually clearer. We call this Seligman-style
inference, as it was first introduced and explored by Jerry Seligman in the
setting of natural deduction and sequent calculus in the late 1990s. The
purpose of this paper is to introduce a Seligman-style tableau system.

The most obvious feature of Seligman-style systems is that they work
with arbitrary formulas, not just formulas prefixed by @-operators. To
achieve this in a tableau system, we introduce a rule called GoTo which
allows us to “jump to a named world” on a tableau branch, thereby
creating a local proof context (which we call a block) on that branch.
To the surprise of some of the authors (who have worked extensively
on developing the labeling approach) Seligman-style inference is often
clearer: not only is the approach more modular, individual proofs can
be more direct. We briefly discuss termination and extensions to richer
logics, and relate our system to Seligman’s original sequent calculus.

1 Introduction

Hybrid logic is a simple extension of ordinary modal logic in which it is possible to
name possible worlds (or computational states, or epistemic states, or locations,
or times, or situations, or whatever entities are required for the application at
hand). Special propositional symbols called nominals are added to the underlying
modal language. These symbols are true at exactly one world, thus a nominal i
‘names’ the unique world it is true at. In addition, a collection of modal operators
of the form @i is added. Such a modality wears its intended interpretation on
its sleeve: @iϕ is true at any world w iff it is true at the (unique) world named
by i. Such expressions are called satisfaction statements.

It is relatively straightforward to define proof systems for hybrid logic in a
range of reasoning styles (including tableau [26,5,7,11,10], natural deduction [13],
and resolution [1,2]). A resolution theorem prover exists (the HyLoRes system [3])
as well as at least two high-performance tableau provers (namely HTab [20,21]
and Spartacus [19]). Indeed, even the least practical of all proof styles (the humble
Hilbert system) turns out to be well-behaved [9,8]. Moreover, proof systems in
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different styles can also be given for intuitionistic hybrid logic, which is obtained
by replacing the classical base logic by an intuitionistic one; see [13,16,18] for
a variety of approaches. In [22], an intuitionistic version of the modal logic S5
extended with @-operators has been proposed as a foundation for distributed
functional programming languages; the @-operators are used to reason about
the distribution of resources at different locations.

But behind this apparent diversity lies a common strategy, namely labeling.
Details vary, but in one form or another the basic idea is to use nominals and
satisfaction statements to reach behind the modalities and access the information
hidden there. Of course, labeled deduction methods are used for many non-
classical logics, but the link between labeling and hybrid logic is particularly
intimate—nominals and satisfaction operators provide labeling apparatus built
into the object language itself. So there is a tendency to think that inference
in hybrid logic has to be (some form) of labeled deduction. But this is wrong.
There is another approach, which we call Seligman-style inference, which offers
an interesting alternative. The main purpose of this paper is to explore this
proof-style in the setting of tableau-based reasoning for hybrid logic.

The difference between label-driven and Seligman-style inference is best in-
troduced by example. Let’s consider two ways of formulating the ♦-elimination
rule in a natural deduction framework for hybrid logic. Here’s the rule that the
label-driven approach naturally leads to:

@i♦ϕ

[@i♦j] [@jϕ]···
@kψ

(♦E)
@kψ

This is easy to explain. We make two assumptions: first that at the world
named i we can see a world named j (which is what the satisfaction statement
@i♦j says), and second that ϕ holds at j (which is what the satisfaction state-
ment @jϕ says). We assume nothing else about j beyond these two facts: in
effect we have said “let j be an arbitrary world accessible from i at which ϕ
is true”. Now, if from these two assumptions we can prove some formula @kψ
(which says that ψ holds at the world named k) then from a proof of an exis-
tential statement @i♦ϕ (which says that at i it is the case that ϕ holds at some
accessible world) then we get a proof of @kψ.

1

A little thought will show that this is a sound rule, but note its form. In
particular, note that all the formulas used in this rule are satisfaction statements.
Now, satisfaction statements are global. This is easy to see. If ϕ is indeed true at
the world named i, then @iϕ is true at all worlds. On the other hand, if ϕ is false
at the world named i, then @iϕ is false at all worlds. Thus satisfaction statements

1 For this rule to be correctly applied, j has to be a fresh nominal different from both
i and k, and j must not occur in either ϕ or ψ or in any non-discharged assumptions
of the proof other than those specified. The assumptions @i♦j and @jϕ occurring
as assumptions in the sub-proof on the right are discharged in the application of the
rule. For more on natural deduction in hybrid logic, see Braüner [13].
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embody global information. And this means that the labeled natural-deduction
rule just formulated controls the reasoning by adopting a global perspective.

Contrast this with Seligman systems. In a Seligman-style natural deduction
system the ♦-elimination rule would look like this:

♦ϕ

[♦j] [@jϕ]···
ψ
(♦E)

ψ

Notice the local perspective illustrated by the rule.2 The premises are not
packed inside satisfaction statements. We assume that j is a possible world.
We may not know the name of the world where we are currently evaluating
formulas; we only know that there is a possible world accessible from it (named
j) at which ϕ holds. Now, if it is possible for us, given this information, to prove
some formula ψ (in which j doesn’t occur), then we actually have a proof of
ψ given a proof of ♦ϕ. The core of the argument is similar to that used in the
labeled rule, but (so to speak) we use naked ♦ information: we don’t wrap it
up in the protection of satisfaction statements. In particular, we don’t bother
to specify a global name for the world in which we are working (which is what
the @i operator does in the labeled version of the rule) and, as it turns out, we
don’t need to. Moreover, the subtree on the right is a free-floating proof context.
It is linked to the world in which we are working only by a simple local claim,
namely ♦j (that is: there is an accessible world called j).

This is interesting for at least two reasons. The first is that it holds out the
promise of more modular proof systems: if we don’t have to wrap all our rules in
a protective cocoon of satisfaction statements, perhaps we can work directly with
the original rules for each connective. This is a possibility worth exploring. The
second reason is conceptual. Modal logic is sometimes said to be interesting (see,
for example, [8]) because of the local perspective it takes on possible worlds. But
if hybrid logic relies on label-driven deduction, then it seems that its successes
are due to the global encodings that satisfaction statements make possible. So it
is worth investigating whether the more local approach to inference underlying
Seligman-style reasoning adapts naturally to tableau systems.

Little has been written on Seligman-style systems. They were introduced in
two papers, both by Jerry Seligman, written in the 1990s, namely the natural
deduction based [24] and the Gentzen sequent calculus based [25].3 The first of
these papers gave a natural deduction system for a logic of situations, similar
to hybrid logic. A characteristic feature of this system is that it has a proof
rule enabling travel to another situation, the performance of some hypothetical

2 The restriction for this rule is that j must not occur in ϕ, or ψ or in any non-
discharged assumptions other than those specified.

3 Another Gentzen system for hybrid logic that allows arbitrary formulas to occur in
derivations can be found in [23]. The latter system makes use of standard Gentzen
machinery for the ordinary (non-hybrid) modal logic K, which makes it quite different
from the Seligman-style system of [25].
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reasoning there, followed by a journey back again (as the reader will see, a sim-
ilar idea underlies the GoTo rule in our tableau-based approach). This natural
deduction system was later modified in Braüner [12] with the aim of obtain-
ing a proof-theoretic property called closure under substitution, which requires
keeping more detailed track of hypothetical reasoning. The modified system kept
track of hypothetical reasoning, using what are known as explicit substitutions,
in a modal-logical context. Such explicit substitutions were also used in a natural
deduction system for S4 given in [4], and are similar to the “proof boxes” used
in linear logic.

The authors of this paper became interested in Seligman-style reasoning be-
cause of reasoning problems involving perspective shifts and contextual infor-
mation. First, Braüner has used his Seligman-style natural deduction system
to formalize a well-known false-belief task in cognitive psychology, the Smarties
task.4 To solve such tasks, the subject under investigation has to perform a shift
of perspective, either to another person’s view of the world, or to the subject’s
own view at an earlier time. Such shifts lie at the heart of Seligman-style nat-
ural deduction, which makes it a natural tool for modeling such problems; see
Braüner [14] for further discussion.

More recently, Blackburn and Jørgensen [6] investigated temporal indexicals,
that is, context-sensitive temporal terms such as now, yesterday, today, and
tomorrow. They showed they could be modeled in hybrid logic, but did so using a
labeled tableau calculus. In the course of adapting their work to other reasoning
styles, it became clear that a Seligman-style tableau approach might allow a
simpler presentation of the reasoning involved, but no such calculus existed.
The present paper arose as an attempt to fill this gap.

2 The Seligman-Style Tableau Calculus ST

Let’s get down to details. We work with a basic hybrid language which includes
a countable set of propositional symbols, a countable set of nominals, the propo-
sitional connectives ¬ and ∧, the modal operator ♦, and for each nominal i an
@i-operator. This operator takes any formula ϕ as argument and (as we have
already discussed) @iϕ says that at the world named i, ϕ is true. Formulas are
built as follows:

ϕ ::= i | p | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ | @iϕ.

The other propositional connectives are defined in the usual way, and �ϕ is
defined to be ¬♦¬ϕ. Note that nominals play a special role in hybrid logic as

4 In one form of the Smarties task, a child is presented with a Smarties tube, the well-
known tubes that usually contain the candy-coated chocolate goodies. However this
particular tube contains pencils. After the tube is opened, and the context is updated
with the knowledge that there are pencils within, the child is asked:What would your
mother think was in the tube if she came in? This requires a perspectival shift to a
context in which the Smarties tube is unopened and its real contents undisclosed.
Young and autistic children have difficulty with this—they tend to think that mother
will say that there are pencils within, something she cannot possibly know.
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they can occur either as subscripts to @ (“in operator position”) or as formulas
in their own right (“in formula position”). We generally use i, j, k, . . . to denote
nominals and p, q, r, . . . to denote ordinary propositional symbols.

The semantics for the language of basic hybrid logic is given by interpreting
formulas in models based on a frame (W,R) together with a valuation function V .
Here W is a non-empty set (we call its elements worlds) and R is a binary relation
on this set (the accessibility relation). The valuation V distributes information
over the frame; that is, V takes atomic formulas to subsets of W and it satisfies
the following two conditions:

1. V (p) is a subset of W , when p is an ordinary propositional symbol.
2. V (i) is a singleton subset of W , when i is a nominal.

Satisfiability in a model is defined in the usual way as a relation which obtains
between a model M = (W,R, V ), a point W in the model, and a formula ϕ:

M, w |= ⊥ never

M, w |= a iff a is atomic and w ∈ V (a)

M, w |= ¬ϕ iff M, w 
|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ♦ϕ iff for some w′, wRw′ and M, w′ |= ϕ

M, w |= @iϕ iff M, w′ |= ϕ and w′ ∈ V (i).

A formula ϕ is true in M = (W,R, V ) when for all worlds w ∈ W we have that
M, w |= ϕ. A formula is valid if it is true in all models.

Now for our tableau system. As we have already mentioned, one of the pleasant
properties of Seligman systems is their modularity. So we simply use standard
tableau rules for propositional logic as part of our system. The propositional
rules we have chosen are shown in Figure 1.

But what are the hybrid logical rules? How are we to get away from the global
form of the labeled rules that are standardly used in hybrid tableau systems?
(The reader unfamiliar with labeled tableau rules for hybrid logic should consult
the Appendix at the end of the paper.) To help us find an answer, let us consider

ϕ ∧ ψ
(∧)

ψ
ϕ

¬(ϕ ∧ ψ)
(¬∧)��

��

��
��
�

¬ψ¬ϕ

¬¬ϕ
(¬¬)

ϕ

Fig. 1. Module 1: Tableau rules for propositional logic
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again the Seligman-style rules for natural deduction discussed earlier. How do
the rules of natural deduction deal with the local perspective? Well, in natural
deduction, the key idea is to allow for hypothetical reasoning. This feature of
natural deduction has been utilized in the Seligman-style natural deduction as
follows: if from the assumption of being (locally) at some world (about which
one has assumed nothing) one can conclude something that holds, then one
can delete the assumption of being at that particular world and proceed with
the reasoning. Putting it in a nutshell: the key deductive concept in natural
deduction is hypothetical reasoning, and the Seligman approach finds a way to
embody this concept locally.

So what is the key concept in tableau reasoning? The answer is: branch ex-
pansion. And how can branch expansion be localized? By means of a process
which allows the branch to record shifting perspectives on worlds. We do this in
our tableau calculus by dividing branches into blocks. The general idea here is
that a block on a branch is a partial description of the information present at
a specific world. The rule that allows us to work with multiple blocks is GoTo.
The central idea behind our tableau calculus is that, within a given block, one
can work freely with the formulas belonging to the block. But in the course of
inference we will often need to make use of information about other worlds. The
GoTo rule allows us to temporarily shut down our work in one block and shift to
another. The rule opens this new block simply by stating a name for it. On the
branch of a tableau, application of the GoTo rule is shown by a horizontal line
with a nominal, say j, below the line. This notation means: we have just closed
whatever block we were working with before and have shifted our attention to
a new world, named j, and are now going to start creating a new block (partial
description, proof context) involving this world. In short, just as in any tableau
system, the fundamental mechanism is branch expansion. But the division of
branches into blocks, and the ability to shift our attention between them that
the GoTo rule provides, gives us what we need for Seligman-style reasoning.

So much for intuition. Let’s be more precise. Given a branch Θ in a tableau
we define a block to be one of the following:

1. The initial block, consisting of all the formulas on Θ until the first horizontal
line (or all formulas if there is no such line on Θ).

2. The current block, consisting of all formulas below the last horizontal line
(or all formulas if there is no such line).

3. All formulas that occur between a pair of two consecutive horizontal lines.

The crucial rules of the Seligman-style tableau calculus are given in Figure 2
below. The conditions on rule applications are as follows:

– The propositional rules (∧), (¬∧), (¬¬) as well as (♦) and (¬♦) can only be
applied to premises that belong to the current block (that is, these connec-
tives, being local, have local rules).

– In the rules (@) and (¬@), the first premise i has to belong to the current
block, whereas the second premise @iϕ (¬@iϕ) can appear anywhere on the
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branch (that is, these connectives, being global, transfer information across
blocks).

– GoTo and Name can always be applied as they have no premises
– Nom can be applied as described in the rule itself: if ϕ and i belong to some

block distinct from the current block, and i belongs to the current block,
then ϕ can be added to the current block.

♦ϕ
(♦)�

♦i
@iϕ

¬♦ϕ
♦i

(¬♦)

¬@iϕ

i
@iϕ

(@)

ϕ

i
¬@iϕ

(¬@)

¬ϕ

(Name)†

i

ϕ
i
···
i
(Nom)��

ϕ

i
(GoTo)††

� The nominal i is fresh and ϕ is not a nominal.
† The nominal i is fresh.
�� The horizontal line below the two uppermost premises signifies that these premises
belong to a block distinct from the current one, whereas the third premise (the lower-
most occurrence of i) belongs to the current block.
†† The nominal i must be on the branch.

Fig. 2. Module 2: Tableau rules for basic hybrid logic

It should be clear that the first four rules are simply the obvious (positive
and negative) rules for ♦ and @. It is the last three rules that really drive the
system. The first of these, Name, simply allows us to give a brand new name
to a block. This is reminiscent of what GoTo does, and indeed, with a suitable
side condition we could have collapsed Name and GoTo into a single rule. But
the two rules play rather different roles in our system. Moreover (as we shall
see) the role played by Name, though important, is a relatively restricted: as our
completeness proof shows, it is never necessary to apply Name except possibly
to name the initial block. So we prefer to keep the two rules distinct.

What does the Nom rule do? Recall that the GoTo rule enables us to (tem-
porarily) close down a block and create a new one. But in the course of inference
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we may create multiple blocks, each of which embodies partial information about
some world i. We will often need to integrate this information, and Nom lets us
do this. Basically, it says that if i and ϕ occur together in some block, then, if
you later find yourself at some bock that also contains i, you are free to recall
that ϕ is true. The point is simply that both i-containing blocks are partial
descriptions of the same world, namely the one named by i.

Summing up, our Seligman-style tableau calculus consists of Modules 1 and 2
given in Figure 1 and 2. We call this system ST. Tableaus are built in the expected
way, but we should be explicit about our closure condition: a branch closes either
by having a local contradiction ϕ and ¬ϕ inside a block, or a global contradiction
between formulas @iϕ and ¬@iϕ occurring anywhere on the branch.

Let’s look at an example, a proof in ST of ♦@iϕ → @iϕ, a formula known as
the Back axiom. Note that this example closes with a global contradiction.

¬(♦@iϕ → @iϕ)

(¬→)

1

♦@iϕ
¬@iϕ

(♦) on 2

2
3

♦j
@j@iϕ

j

(@) on 5 and 6

(GoTo)

4
5
6

@iϕ
⊗ on 3 and 7

7

The argument should be clear: we apply an admissible propositional rule (¬→),
and then eliminate the ♦. For the crucial step at line 5 we apply (GoTo) and jump
to j; then apply (@) and the branch closes on @iϕ and ¬@iϕ. The reasoning
involved is clear and straightforward.

Indeed, it is instructive to compare proofs in our Seligman-style calculus ST
with the proofs yielded by the standard labeled calculus LC (see the Appendix).
Consider the following proof of @ij ∧ @jk → @ik, a hybrid validity which says
that the world-naming relation is transitive. This is a telling example, as it
requires equational reasoning about the identity of worlds. The tableau on the
left is in the calculus ST, the one on the right in the calculus LC.5 The Seligman-
style approach makes the form of the argument clearer, and hides tedious book-
keeping details.

5 Note that in both tableaus we have skipped the obvious application of the conjunctive
rule right after (¬→).



A Seligman-Style Tableau System 155

¬(@ij ∧@jk → @ik)

(¬→)

1

@ij
@jk
¬@ik

i
(@) on 2 and 5

(GoTo)

2
3
4
5

j

(@) on 3 and 6

6

k

(¬@) on 4 and 5

7

¬k
⊗ on 7 and 8

8

¬@l(@ij ∧@jk → @ik)

(¬→) on 1

1

@l@ij
@l@jk

¬@l@ik

(@) on 2

2
3
4

@ij

(@) on 3

5

@jk

(¬@) on 4

6

¬@ik

(Ref)

7

@ii

(Nom1) on 5 and 8

8

@ji

(Nom1) on 9 and 6

9

@ik
⊗ on 7 and 10

10

3 Soundness and Completeness

Theorem 1 (Soundness). If there exists a closed tableau in ST having ¬ϕ as
the root formula, then the formula ϕ is valid.

Proof. Let Θ be a branch of a tableau of the calculus ST. Let B be a block on
Θ and let M = (W,R, V ) be a model. We say that B is satisfiable by M if and
only if there exists a world w ∈ W such that for any formula ψ in B, it is the
case that M, w |= ψ. Moreover, we say that Θ is block-wise satisfiable by M
if and only if any block on Θ is satisfiable by M. We say that Θ is block-wise
satisfiable if and only if Θ is block-wise satisfiable by some model M.

Now, the contrapositive of soundness follows from the observation that if a
tableau T of the calculus ST has a branch which is block-wise satisfiable, then the
tableau obtained by applying a rule to T also has a branch which is block-wise
satisfiable. This can be seen simply by inspecting each rule in ST. �

We will now prove completeness of ST. We do so by providing a translation
from tableaus in the labeled calculus LC into tableaus in ST.6 The translation
allows us to reduce completeness of ST to the completeness result for LC (see [5]).
The approach also clarifies the relationship between the Seligman-style and la-
beling approaches, and yields some extra insights: for example, that the Name
rule only needs to be used once in any ST tableau construction.

6 Again, see the Appendix for the definition of LC.
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Definition 1. Let Θ be a tableau branch of the calculus ST. A formula @iϕ
(¬@iϕ) is said to occur as an induced formula on Θ if there is a block B on
Θ such that i, ϕ ∈ B (i,¬ϕ ∈ B).

Lemma 1. Let ϕ be any formula and i any nominal not in ϕ. Assume TLC is a
tableau with root ¬@iϕ in the calculus LC. Then there exists a tableau TST with
root ¬ϕ in the calculus ST, and a bijection b : {Θ | Θ is a branch of TLC} →
{Θ′ | Θ′ is a branch of TST} such that:

1. Given any branch Θ of TLC, all formulas @jψ ∈ Θ and ¬@jψ ∈ Θ occur as
induced formulas on b(Θ).

2. All nominals that occur on b(Θ) also occur on Θ.

Proof. By induction of the number of rule applications made on TLC.
Base case. No rules have been applied and TLC is ¬@iϕ, where i does not occur

in ϕ. Then let TST be the following tableau in ST:

¬ϕ

(Name)

i

T and T ′ both have a single branch, call them Θ and Θ′ respectively. Define b
by b(Θ) = Θ′. The branch Θ only contains the formula ¬@iϕ and this occurs as
an induced formula on Θ′, since the current block of Θ′ contains both i and ¬ϕ.
Hence Condition 1 above holds. Condition 2 holds trivially. This concludes the
base case. This is the only place in the translation where we use the Name rule.

Induction step. Assume TLC, TST and b are given that satisfy the conditions of
the lemma, including Conditions 1 and 2. We need to prove that if TLC is extended
into T ′LC by a single rule application, we can construct a similar extension T ′ST of
TST and a new bijection b′ so that Conditions 1 and 2 again hold. We prove this
by examining each possible case of a rule application building T ′LC from TLC.

Case (∧). Suppose T ′LC is obtained from TLC by an application of (∧) to a
premise @j(ψ1 ∧ ψ2) on a branch ΘLC of TLC. In T ′LC the branch ΘLC has become
extended by formulas @jψ1 and @jψ2. Call the extended branch Θ′

LC. By the
induction hypothesis, b(ΘLC) contains a block B with j, ψ1 ∧ ψ2 ∈ B (since
@j(ψ1 ∧ψ2) occurs as an induced formula on b(ΘLC) by Condition 1). Note that
this block need not be the current one. We can now extend b(ΘLC) as shown in
Figure 3, using GoTo, then Nom, then (∧). Call this extended branch Θ′

ST, and
let T ′ST denote the tableau in which b(ΘLC) has been extended into Θ′

ST. Now
define b′ = (b − {(ΘLC, b(ΘLC))}) ∪ {(Θ′

LC, Θ
′
ST)}, and note that b′ is a bijection

from the branches of T ′LC onto the branches of T ′ST. It now follows immediately
from the induction hypothesis and the construction of the extended tableaus,
that Conditions 1 and 2 still hold when TLC is replaced by T ′LC and b by b′.

The rest of the cases are similar and are left to the reader. Condition 2 is only
used in the case for the rule (♦), where we need to show that the same nominal
is fresh on TST as the one chosen when applying (♦) on TLC. �
Theorem 2 (Completeness). If the formula ϕ is valid, then there exists a
closed tableau in ST having ¬ϕ as the root formula.
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...
———— (GoTo)...

j

ψ1 ∧ ψ2

...
———— (GoTo)...
———— (GoTo)

j

ψ1 ∧ ψ2

ψ1

ψ2

B b(ΘLC)

(Nom)

(∧)

Fig. 3. Case (∧): The extended branch Θ′
ST of T

′
ST

Proof. Assume ϕ is valid. As LC is complete [5], there exists a closed LC-tableau
TLC with root ¬@iϕ, where i is a nominal not occurring in ϕ. By Lemma 1 there is
an ST-tableau TST with root ¬ϕ and a bijection b : {Θ | Θ is a branch of TLC} →
{Θ′ | Θ′ is a branch of TST} such that:

1. Given any branch Θ of TLC, all formulas @jψ ∈ Θ and ¬@jψ ∈ Θ occur as
induced formulas on b(Θ).

2. All nominals that occur on b(Θ) also occur on Θ.

We now prove that TST can be extended into a closed tableau. To this end, let ΘST

denote an arbitrary branch on TST. By definition, b−1(ΘST) is a closed branch,
meaning that it contains a pair of formulas @jψ and ¬@jψ. Condition 1 implies
that these formulas occur induced on ΘST. Thus ΘST contains a pair of blocks
B1, B2 with j, ψ ∈ B1 and j,¬ψ ∈ B2. We can now extend ΘST by applying GoTo
once to open a new block containing j, and afterwards applying (Nom) twice to
get ψ and ¬ψ in the current block. The extended branch is obviously closed, as
the current block will then contain a contradiction. Since ΘST was an arbitrary
branch of TST, this means that every branch of TST can be extended to a closing
branch, so we can close the entire tableau. �

4 Ongoing Work

In this section we briefly discuss ongoing work on termination and extensions
to stronger logics. First, we ask whether the system just defined provides a
decision procedure for basic hybrid logic. Second, we note that our system can
be extended to a complete system for full first-order hybrid logic.
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First, can the tableau system just introduced be used as a decision proce-
dure? It is not difficult to see that unrestricted use of the calculus as presented
here can lead to non-terminating computations; indeed, repeated applications
of GoTo are a trivial way of doing this. Still, our initial investigations suggest
that by imposing natural restrictions on the application of rules, we can get a
terminating calculus without resorting to loop checks (the first loop check free
tableau calculus for hybrid logic was provided in [10]). The first step towards
a terminating calculus is to adopt the standard rule application restrictions for
tableau calculi to our block-based setting. Usually, the following restrictions are
imposed (see e.g. [10]):

(R1) A rule is never applied twice to the same set of premises on the same
branch.

(R2) A formula is never added to a branch where it already occurs.

The adaptation of these to our block-based setting becomes:

(R1′) A rule is never applied to a pair of premises ϕ, ψ at the current block B
if, for some nominal i ∈ B, there is a block B′ with i, ϕ, ψ ∈ B′ at which the
rule instance has already been applied.7

(R2′) A formula is never added to a block where it already occurs.

The only remaining way a branch can be infinite is if it contains infinitely many
blocks initialised with the same nominal (the initialising nominal is the one just
below the horisontal line). To avoid this kind of non-termination we need a third
restriction (R3′), explicitly limiting the applicability of the GoTo rule. We are
currently working on a termination proof based on these ideas.

A second line of work is extending the system to richer logics. One benefit
of the Seligman-style approach is its modularity. So, in principle, it should be
relatively easy to obtain complete proof system for richer hybrid logics by adding
standard rules for the additional connectives involved. This turns out to be the
case for hybrid logics equipped with the tense operators F and P , with the
universal modality A, and with the ↓-binder (see [8] for background information).
Indeed, we have also obtained a complete system for full first-order hybrid logic;
we shall briefly sketch the main ideas involved.

First-order hybrid logic is what you obtain when when you build hybrid logic
over first-order logic instead of over propositional logic. There are a number of
syntactic and semantic choices to be made about how to do this; for discussions
of the various possibilities see [17,15]. We adopted the choices made in [7]. The
syntax of our language is:

ϕ ::= i | t = s | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ψ | ♦ϕ | @iϕ | ∃xϕ.

7 For rules taking a single premise, we let ψ = ϕ.
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Here s, t and t1, . . . , tn are first-order terms. These symbols range over ordinary
first-order constants and variables, and also over composite first-order terms of
the form @if . For example, if f is a symbol standing for the “The President of
the United States” (such a symbol is called a non-rigid designator) then @2013f
is a (composite) first-order term denoting President Obama, and @1962f a term
denoting President Kennedy. But apart from this, all is standard. Following [7],
we assume a constant domain semantics.

Now, given that the underlying first-order language (modulo the use of com-
posite terms @if) is standard, we should expect (if the claims about modularity
are correct) to obtain a complete proof system by bolting on a collection of
standard first-order logic with equality rules, together with a rule for handling
composite terms. And this is exactly what happens. All we need to do is add
the following third module:

∃xϕ(x)
(∃)�

ϕ(b)

¬∃xϕ(x)
(¬∃)†

¬ϕ(t)

(Ref)#

t = t

t = s
ϕ(t)

(RR)��

ϕ(s)

i
j

(DD)††

@if = @jf

� ∃xϕ(x) occurs in the current block and the parameter b is fresh on the branch.
† ¬∃xϕ(x) occurs in the current block and the term t occurs on the branch.
# The term t occurs on the branch.
�� ϕ(t) occurs in the current block and t = s is on the branch.
†† The nominals i and j occur together in some block (not necessarily the current one)
on the branch and f is a non-rigid symbol occurring on the branch.

Fig. 4. Module 3: First-order tableau rules

All the rules, except the one at the far right should be familiar. And the rule
on the far right clearly captures the way our composite terms work: if i and j
name the same world (note that the premises are in the same block) then we
can safely conclude that @if and @jf both denote the same first-order entity.
Completeness can be proved by translation from the labeled system of [7], much
as we did in the propositional case, though the proof is longer and more subtle.
So instead of giving a proof sketch, we will simply give two example of the system
at work. The first shows that if an inequality is true in some world then it is
true in any other world; that is, that @i(t 
= s) → @j(t 
= s) is derivable. The
second shows that “equalities are forever”.
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¬
(
@i(t 
= s) → @j(t 
= s)

)
@i(t 
= s)

(¬ →) on 1

¬@j(t 
= s)
—————— (GoTo)

j

¬t 
= s

(¬@) on 3 and 4

t = s

(¬¬) on 5

—————— (GoTo)

i

t 
= s

(@) on 2 and 7

⊗ on 6 and 8

1

2
3

4

5

6

7

8

¬∀x∀y(x = y → �(x = y))

a = b

(¬∀) twice on 1

¬�(a = b)

♦i
(¬�) on 3

¬@i(a = b)
—————— (GoTo)

i

a 
= b

(¬@) on 5 and 6

b 
= b

(RR) on 2 and 7

b = b

(Ref)

⊗ on 8 and 9

1

2
3

4
5

6

7

8

9

5 Concluding Remarks

In his most detailed exposition of his approach, Jerry Seligman [25] states his
aim clearly: to obtain “a more egalitarian logic in which there are Rules for All”
([25], page 684). The sequent calculus presented there was the starting point for
our work, so to conclude this paper we would like to indicate the main similarities
and differences.

As should be clear by now, the crucial rules are those that handle the nominals
and the @-operator. Seligman uses the following six rules for this purpose; he
calls them Nominal Rules (see [25], page 685):

∨@L i, ϕ, Γ −→ Δ ⇒ i,@iϕ, Γ −→ Δ
∨@R i, Γ −→ Δ,ϕ ⇒ i, Γ −→ Δ,@iϕ
∧@L i,@iϕ, Γ −→ Δ ⇒ i, ϕ, Γ −→ Δ
∧@R i, Γ −→ Δ,@iϕ ⇒ i, Γ −→ Δ,ϕ
name i, Γ −→ Δ ⇒ Γ −→ Δ, if i does not occur in Γ,Δ
term i, Γ −→ Δ ⇒ Γ −→ Δ, if all formulas in Γ,Δ are @-prefixed.

First the easy part. Tableau rules can often be seen as reversed sequent rules,
where the formulas on right of the sequent arrow −→ are negated. If we read
the listed rules this way, our (@) and (¬@) rules are simply his ∨@L and ∨@R
rules, and our Name rule is just Seligman’s name.

The divergences stem from the remaining three rules. Our first attempt at a
tableau system contained the obvious tableau correlates of Seligman’s ∧@L and
∧@R rules. The rules introduced @-prefixes and with these rules we were able
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to @-prefix whole branches, thereby globalizing the information they contained.
Such rules are destructive: they don’t simply expand branches, they change them
more drastically.

Why did we do this? To try and directly capture Seligman’s term rule. His
term rule is essentially our GoTo rule, but note the side condition: it only lets
us jump to a world u if all information is @-prefixed, that is, global. Our first
version of GoTo had the same side condition, so proofs in our early systems would
typically contain multiple applications of the ∧@L and ∧@R rules followed by an
application of GoTo. But we were dissatisfied notationally; destructive rules are
annoying when using a tableau system by hand. Then we noticed a more serious
problem: the @-prefixing permitted by the ∧@L and ∧@R rules interacted badly
with (our tableau versions of) the rules ∨@L and ∨@R. Often we would prefix
an @, only to immediately strip it off, a clear proof redundancy.

These interrelated issues led us to introduce blocks. In essence, by making
use of blocks, we avoid having to give explicit tableau rules corresponding to
rules ∧@L and ∧@R; these rules are absorbed into the concept of a block. This
simultaneously eliminates the destructive tableau-rules, and bypasses the proof
redundancy just noticed. Moreover, by having GoTo create a local proof context
(rather than only be applicable when all the information on the branch has been
@-prefixed) we avoid having to impose the side condition.

The drawbacks we discovered in our early tableau systems are not present
in Seligman’s sequent calculus; Seligman’s rules and side-conditions elegantly
exploit the resources of sequent calculus. But (despite its use of blocks) we
believe our system comes close to being a “natural tableau reversal” of Seligman’s
system. Compare, for example, the sequent derivation of @ij ∧@jk → @ik with
the block derivation given earlier:

i, j, k −→ k ∨@L
i, j,@jk −→ k ∨@L
i,@ij,@jk −→ k ∨@R
i,@ij,@jk −→ @ik

term
@ij,@jk −→ @ik

(∧R)
@ij ∧@jk −→ @ik

This example also illustrates that the term rule in the sequent system is really
more of a GoFrom rule than a GoTo rule. Of course, this reflects the fact that
tableau rules are, in a sense, reversed sequent rules.

Finally, we remark that the use of blocks reverses a longstanding trend in
hybrid logic (reliance on the labeling apparatus in the object language) in fa-
vor of imposing more structure at the metalevel. Dividing branches into blocks
externalizes (passes up to the metalanguage) some of the work done by the @-
operator. The use of induced satisfaction statements in our completeness proofs
(which reflects the way that Seligman’s ∧@L and ∧@R are absorbed into the
concept of a block) is a clear reflection of this externalization.
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2. Areces, C., Goŕın, D.: Ordered Resolution with Selection for H(@). In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 125–141. Springer,
Heidelberg (2005)
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Appendix: Labeled Tableau Rules for LC

@i¬ϕ

(¬)

¬@iϕ

¬@i¬ϕ

(¬¬)

@iϕ

@i(ϕ ∧ ψ)

(∧)

@iψ
@iϕ

¬@i(ϕ ∧ ψ)

(¬∧)
��

��
�

��
��
�

¬@iψ¬@iϕ

@j@iϕ

(@)

@iϕ

¬@j@iϕ

(¬@)

¬@iϕ

@i♦ϕ

(♦)�

@i♦j
@jϕ

¬@i♦ϕ
@i♦j

(¬♦)

¬@jϕ

(Ref)†

@ii

@ij
@iϕ

(Nom1)��

@jϕ

@ij
@i♦k

(Nom2)

@j♦k

� The nominal j is new and ϕ is not a nominal.
† The nominal i is on the branch.
�� The formula ϕ is an atomic formula, i.e., ordinary propositional symbol or nominal.
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Abstract. Increasing interest in control synthesis and probabilistic mo-
del checking caused recent development of LTL to deterministic ω-auto-
mata translation. The standard approach represented by ltl2dstar tool
employs Safra’s construction to determinize a Büchi automaton produced
by some LTL to Büchi automata translator. Since 2012, three new LTL to
deterministic Rabin automata translators appeared, namely Rabinizer,
LTL3DRA, and Rabinizer 2. They all avoid Safra’s construction and
work on LTL fragments only. We compare performance and automata
produced by the mentioned tools, where ltl2dstar is combined with
several LTL to Büchi automata translators: besides traditionally used
LTL2BA, we also consider LTL->NBA, LTL3BA, and Spot.

1 Introduction

Linear temporal logic (LTL) has proved to be an appropriate formalism for spec-
ification of systems behavior with major applications in the area of model check-
ing. Methods for LTL model checking of probabilistic systems [29,5,3] and for
LTL synthesis [4,24,19] mostly need to construct, for any given LTL formula,
a deterministic ω-automaton. As deterministic Büchi automata (DBA) cannot
express all the properties expressible in LTL, one has to choose deterministic ω-
automata with a more complex acceptance condition. The most common choice
is the Rabin acceptance.

There are basically two approaches to translation of LTL to deterministic
ω-automata. A traditional one translates LTL to nondeterministic Büchi au-
tomata (NBA) first and then it employs Safra’s construction [26] (or some of its
variants or alternatives like [23,27]) to obtain a deterministic automaton. This
approach is represented by the tool ltl2dstar [14] which uses an improved
Safra’s construction [16,17]. As every LTL formula can be translated into an
NBA and Safra’s construction can transform any NBA to a deterministic Rabin
automaton (DRA), ltl2dstar works for the whole LTL. However, the resulting
automata are sometimes unnecessarily big.

Since 2012, several translations avoiding Safra’s construction have been intro-
duced. The first one is presented in [18] and subsequently implemented in the tool

� Authors are supported by The Czech Science Foundation, grant no. P202/10/1469.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 164–172, 2013.
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Rabinizer [10]. The algorithm builds a generalized deterministic Rabin automa-
ton (GDRA) directly from a formula. A DRA is then produced by a degeneral-
ization procedure. Rabinizer often produces smaller automata than ltl2dstar.
The main disadvantage is that it works for LTL(F,G) only, i.e. the LTL fragment
containing eventually (F) and always (G) as the only temporal operators. This
method has been extended to a semantically larger fragment and reimplemented
in the experimental tool Rabinizer 2 [21]. In [1] we present a Safraless transla-
tion working with another LTL fragment subsuming LTL(F,G). Our translator
LTL3DRA transforms a given formula into a very weak alternating automaton
(in the same way as LTL2BA [11]) and then into a transition-based general-
ized deterministic Rabin automaton (TGDRA). The construction of generalized
Rabin pairs of TGDRA is inspired by [18]. A DRA is finally obtained by a de-
generalization procedure.

Here we provide a comparison of performance of the LTL to DRA translators
ltl2dstar, Rabinizer, Rabinizer 2, and LTL3DRA. The tool ltl2dstar is de-
signed to use an external LTL to NBA translator. To our best knowledge, the
last experimental comparison of performance of ltl2dstar with different LTL
to NBA translators has been done in 2005 [15]. The comparison shows that with
respect to automata sizes, LTL2BA and LTL->NBA [9] “have the lead and were
the only programs without failures to calculate the DRA.” Since 2005, significant
progress has been made in LTL to NBA translation (it can already be seen in the
comparison of LTL to NBA translators [25] published in 2007). Hence, we run
ltl2dstar with LTL2BA, LTL->NBA, and contemporary translators Spot [6,7]
and LTL3BA [2]. The experimental results obtained are briefly interpreted.

2 Compared Tools

Here we describe settings and restrictions of the considered translators.

– ltl2dstar [14] v0.5.1, http://www.ltl2dstar.de/
We keep the default setting (all optimizations enabled). We use only the
option --ltl2nba="<intf>:<tool>[@<params>]" to specify an external
<tool> for LTL to NBA translation (<intf> specifies if ltl2dstar com-
municates with the <tool> via the interface of lbtt [28] or Spin [13], and
<params> are parameters the <tool> is called with). We use four LTL to
NBA translators:
• LTL->NBA [9], http://www.ti.informatik.uni-kiel.de/~fritz/
We call it with --ltl2nba="lbtt:/pathtoLTL->NBA/script4lbtt.py".

• LTL2BA [11] v1.1, http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
We call it with --ltl2nba="spin:/pathtoLTL2BA/ltl2ba".

• LTL3BA [2] v1.0.2, http://sourceforge.net/projects/ltl3ba/
By default, LTL3BA aims to produce small NBAs. With the op-
tion -M, it aims to produce potentially larger, but more determinis-
tic automata. We have combined both modes with other optimizations
provided by LTL3BA. We have selected two settings with the best re-
sults, namely --ltl2nba="spin:/pathtoLTL3BA/ltl3ba" referenced as

http://www.ltl2dstar.de/
http://www.ti.informatik.uni-kiel.de/~fritz/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://sourceforge.net/projects/ltl3ba/
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LTL3BA and --ltl2nba="spin:/pathtoLTL3BA/ltl3ba@-M -S" refer-
enced as LTL3BAd. Option -S enables strong fair simulation reduction.

• Spot [6,7] v1.1.3, http://spot.lip6.fr/wiki/
Again, Spot can be set to produce either small or more deterministic Büchi
automata. We have combined ltl2dstar with both modes of Spot. The
resulting Rabin automata produced with the first mode are usually iden-
tical to (and sometimes slightly bigger than) the automata produced with
the latter mode. Computation times are also similar. To save some space,
we include only the results for the “more deterministic” mode invoked by
--ltl2nba="spin:/pathtoSpot/ltl2tgba@-sD".

– Rabinizer [10] v0.11, http://crab.in.tum.de/rabinizer/
Recall that Rabinizer works for LTL(F,G) only.

– Rabinizer 2 [21],
http://www.model.in.tum.de/~kretinsk/rabinizer2.html

Rabinizer 2 works with formulae of a fragment called LTL\GU which uses
not only F and G but also next (X) and until (U) temporal operators. The
fragment consists of formulae in the negation normal form (i.e. negations are
only in front of atomic propositions) such that no U is in the scope of any G.

– LTL3DRA [1] v0.1, http://sourceforge.net/projects/ltl3dra/
This tool works with formulae of a slightly less expressive fragment than
LTL\GU. More precisely, there is one more restriction on the scope of any
G: there are no U operators, and X can appear only in front of F or G, i.e. in
subformulae of the form XFϕ or XGϕ. We call this fragment LTL\GUX.
The difference is not important for specification formulae of software and
asynchronous systems as these usually contain no X operators, but it can play
some role in specification formulae of hardware and synchronous systems.

Before we run the translators, we transform input formulae to the expected
format (prefix notation for ltl2dstar and negation normal form for Rabinizer 2)
using the tool ltlfilt [7]. Note that Rabinizer, Rabinizer 2, and LTL3DRA are
called with default settings.

3 Experiments: Benchmarks and Results

All experiments were done on a server with 8 eight-core processors Intel� Xeon�

X7560, 2.26GHz, 448 GiB RAM and a 64-bit version of GNU/Linux. All the
translators are single-threaded. The timeout limit was set to 2 hours.

We run the tools on three benchmark sets: real specification formulae, para-
metric formulae, and random formulae. The benchmark sets can be downloaded
from the web pages of LTL3DRA.

Real Specification Formulae. We use specification formulae from two sources:
BEEM [22] and Spec Patterns [8]. After removing duplicates (typically cases
where an atomic proposition a is consistently replaced by its negation or by
a ∨ b), we have 67 formulae. These formulae are divided into three classes: 12

http://spot.lip6.fr/wiki/
http://crab.in.tum.de/rabinizer/
http://www.model.in.tum.de/~kretinsk/rabinizer2.html
http://sourceforge.net/projects/ltl3dra/
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formulae of LTL(F,G), 19 formulae of LTL\GUX not included in LTL(F,G), and
36 formulae outside LTL\GUX. Note that all the considered formulae outside
LTL\GUX are also outside LTL\GU.

Unlike standard model checking algorithms, applications requiring determin-
istic ω-automata usually need automata equivalent to specification formulae and
not to their negations. Hence, we do not negate the formulae before translation.

Table 1 presents cummulative results of the considered tools on the three
classes of specification formulae. Table 2 provides a cross-comparison of the tools
on the same formulae classes.

Parametric Formulae. We consider 8 parametric formulae of [12] and formulae
θ(n) of [11] and F (n) of [18]:

E(n) =
∧n

i=1 Fpi C1(n) =
∨n

i=1 GFpi
U(n) = (. . . ((p1 U p2)U p3)U . . .)U pn C2(n) =

∧n
i=1 GFpi

R(n) =
∧n

i=1(GFpi ∨ FGpi+1) Q(n) =
∧n

i=1(Fpi ∨ Gpi+1)
U2(n) = p1 U (p2 U (. . . (pn−1 U pn) . . .)) S(n) =

∨n
i=1 Gpi

θ(n) = ¬((
∧n

i=1 GFpi) → G(q → Fr)) F (n) =
∧n

i=1(GFpi → GFqi)

Table 1. For each class of considered real formulae and for each tool, the table shows
cummulative numbers of states, edges, and accepting pairs of produced automata. Fur-
ther, we show the number of minimal automata produced by the tool (minimal means
that no other considered tool produced an automaton with less states for the same
formula). We also provide cummulative computation time (in seconds) and maximal
and average memory peaks (mem max and mem avg, measured in MiB) needed for the
construction of one automaton. The best results are emphasized.

Class Measure
ltl2dstar

Rabinizer Rabinizer 2 LTL3DRA
LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

1
2
fo
rm

u
la
e

o
f
L
T
L
(F
,
G
)

states 55 49 47 45 52 45 59 43
edges 186 171 158 151 167 187 287 161
pairs 18 18 17 17 17 22 18 21

minimal 3 7 7 8 3 10 7 10
time [s] 0.70 0.12 0.14 0.13 0.72 3.08 3.05 0.12

mem max 22.53 8.02 18.66 18.69 91.06 240.75 465.09 19.02
mem avg 19.66 7.13 18.57 18.61 86.92 160.03 173.53 18.90

1
9
m
o
re

o
f
L
T
L
\G

U
X

states 180 191 184 167 132 — 160 137
edges 614 699 671 563 390 — 827 546
pairs 43 44 44 44 32 — 28 46

minimal 2 2 2 3 6 — 11 11
time [s] 2.83 0.24 0.32 0.30 2.11 — 5.98 0.19

mem max 33.81 8.72 18.80 18.83 92.94 — 1013.89 19.50
mem avg 22.29 7.44 18.67 18.72 87.95 — 256.50 19.13

3
6
m
o
re

o
f
L
T
L

states 34 985 135 250 33 927 2 768 386 — — —
edges 359 494 1 726 573 416 794 31 287 1936 — — —
pairs 100 114 97 83 49 — — —

minimal 9 8 9 13 34 — — —
time [s] 26.46 102.15 16.86 1.02 1.64 — — —

mem max 463.95 1 406.86 345.52 24.41 93.69 — — —
mem avg 35.34 65.53 27.77 18.90 89.29 — — —
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Table 2. Cross-comparison of considered tools on the three classes of real specification
formulae. The number in row indexed by r and column c represents in how many cases
the tool r produced a smaller automaton (in the number of states) than the tool c.
The column V shows the sum of these “victories”.

# Tool
12 formulae of LTL(F,G) 19 more of LTL\GUX 36 more of LTL

1 2 3 4 5 6 7 8 V 1 2 3 4 5 7 8 V 1 2 3 4 5 V
1

l
t
l
2
d
s
t
a
r LTL->NBA — 0 0 0 0 1 3 1 5 — 1 1 2 0 4 3 11 — 13 9 3 0 25

2 LTL2BA 6 — 0 0 5 1 5 1 18 4 — 0 1 0 4 3 12 12 — 0 2 0 14
3 LTL3BA 6 1 — 0 5 1 5 1 19 4 1 — 1 0 4 3 13 14 14 — 4 0 32
4 LTL3BAd 6 1 1 — 6 1 5 1 21 4 2 2 — 0 5 4 17 22 17 13 — 2 54
5 Spot 1 1 0 0 — 1 4 1 8 12 9 9 8 — 7 6 51 27 28 27 23 — 105

6 Rabinizer 8 4 4 3 8 — 5 1 33 — — — — — — — — — — — — — —
7 Rabinizer 2 6 3 3 3 6 0 — 1 22 15 15 15 14 10 — 4 73 — — — — — —
8 LTL3DRA 9 4 4 3 9 2 5 — 36 14 12 12 11 9 8 — 66 — — — — — —

Table 3. For each parametric formula and each tool, the table provides the size (num-
ber of states) of the automaton for the highest n such that all the considered tools finish
the computation within the limit (upper row), and the max imal n for which the tool
finishes the computation within the limit (lower row). The best values are emphasized.

Formula
size ltl2dstar

Rabinizer Rabinizer 2 LTL3DRA
max LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

E(n)
n = 9 512 512 512 512 512 512 512 512
max n 9 11 11 11 12 10 9 10

U(n)
n = 5 17 17 17 17 17 — 17 24
max n 10 5 6 10 12 — 9 9

R(n)
n = 3 375 631 290 046 483 789 2 347 15 980 52 97 36
max n 3 3 3 4 3 4 3 6

U2(n)
n = 14 15 15 15 15 15 — 15 15
max n 15 15 15 15 15 — 19 14

C1(n)
n = 7 129 2 2 2 3 128 128 2
max n 11 23 23 23 22 8 7 24

C2(n)
n = 6 18 17 17 11 13 7 384 7
max n 8 11 17 17 16 8 6 15

Q(n)
n = 7 1 331 1 140 1 140 1 140 736 578 578 2 790
max n 7 8 8 8 9 8 7 7

S(n)
n = 9 513 513 513 513 513 512 512 512
max n 14 14 14 14 11 9 9 13

θ(n)
n = 5 21 20 15 5 444 5 444 11 480 7
max n 7 10 19 6 6 7 5 14

F (n)
n = 2 13 181 11 324 5 650 302 4 307 20 32 18
max n 2 2 2 2 2 3 2 4

The results are shown in Table 3. Note that U(n) and U2(n) are not in the
input fragment of Rabinizer. All the other formulae are from LTL(F,G).

Random Formulae. We use LTL formulae generator randltl [7] to get some
more formulae of length 15–30 from various fragments. More precisely, we gener-
ate 100 formulae from the LTL(F,G) fragment, 100 general formulae with higher
occurence of F and G operators, and 100 formulae with uniformly distributed
operators. These three sets are generated by the respective commands:
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– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,X=0,\

implies=0,false=0,true=0,R=0,equiv=0,U=0,W=0,M=0,xor=0" a b c d

– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,F=2,\

G=2,false=0,true=0,X=1,R=1,U=1,W=0,M=0,xor=0" a b c d

– randltl -n 100 --tree-size=15..30 --ltl-priorities="ap=1,\

false=0,true=0,W=0,M=0,xor=0" a b c d

We removed 10 formulae, out of the 300 generated ones, that were elementary
equivalent to true or false. The remaining formulae are divided into four classes
corresponding to the input LTL fragments of the considered tools: we have 97
formulae of LTL(F,G), 29 formulae of LTL\GUX not included in LTL(F,G),
1 formula of LTL\GU not included in LTL\GUX, and 163 formulae not in
LTL\GU. Unfortunately, ltl2dstar combined with LTL->NBA produces an
error message for one formula of LTL\GUX and two formulae outside LTL\GU.
These formulae were removed from the set. Further, there are 19 formulae (none
of them in LTL\GU), for which at least one tool does not finish before time-
out. These formulae are not included in the cummulative results to make them
comparable, but we show the number of timeouts in a separate line. To sum up,
Table 4 presents cummulative results for 97 formulae of LTL(F,G), 28 formu-
lae of LTL\GUX not included in LTL(F,G), and 142 formulae outside LTL\GU
(plus the numbers of timeouts for another 19 formulae outside LTL\GU). We do
not show the results on the single formula of LTL\GU not included in LTL\GUX
due to their low statistical significance.

Table 4. The cummulative results on random formulae. Semantics of the table is the
same as for Table 1. Moreover, the last line shows the number of timeouts of the tools
on additional 19 formulae outside LTL\GU.

Class Measure
ltl2dstar

Rabinizer Rabin. 2 LTL3DRA
LTL->NBA LTL2BA LTL3BA LTL3BAd Spot

9
7
fo
rm

u
la
e

o
f
L
T
L
(F
,
G
)

states 107 620 19 470 9 914 6 008 13 940 511 741 618
edges 949 094 165 856 76 827 48 440 137 977 2222 4 987 2 666
pairs 217 204 196 190 164 198 149 198

minimal 18 36 37 44 41 54 26 44
time [s] 743.66 13.47 10.15 3.42 18.09 48.81 79.92 1.21

mem max 6 561.89 151.16 99.75 24.86 94.03 406.66 6 712.00 22.89
mem avg 95.72 8.90 19.51 18.77 89.27 205.10 632.62 19.23

2
8
m
o
re

o
f
L
T
L
\G

U
X

states 1 183 6 670 6 375 1 509 633 — 451 512
edges 6 227 39 987 38 591 8 057 3 002 — 2422 2 810
pairs 66 68 69 54 48 — 71 70

minimal 9 14 13 15 17 — 11 18
time [s] 15.86 1.14 1.49 0.76 5.01 — 40.34 0.50

mem max 107.75 45.83 41.53 19.58 94.17 — 33 224.44 34.59
mem avg 39.80 9.23 19.63 18.87 89.72 — 1761.70 20.07

1
4
2
+
1
9
m
o
re

o
f
L
T
L

states 173 156 640 971 157 869 143 436 11780 — — —
edges 1 513 621 5 127 962 1 103 410 1 031 393 85476 — — —
pairs 523 625 499 438 354 — — —

minimal 54 41 57 72 126 — — —
time [s] 421.79 384.54 76.33 70.38 16.80 — — —

mem max 1 461.08 6 019.14 1 751.94 2 357.64 99.50 — — —
mem avg 92.59 96.75 37.61 35.45 91.13 — — —
timeouts 8 17 6 2 1 — — —
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Table 5. Cross-comparison of the considered tools on random formulae classes. The
table has a similar semantics to Table 2: each number says in how many cases the tool
in the corresponding row produces a better result than the tool in the corresponding
column. An automaton is better than other if it has less states. Any automaton is
better than timeout or a tool failure. Timeouts and failures are seen as equivalent
results here.

# Tool
97 formulae of LTL(F,G) 29 more of LTL\GUX 163 more of LTL

1 2 3 4 5 6 7 8 V 1 2 3 4 5 7 8 V 1 2 3 4 5 V
1

l
t
l
2
d
s
t
a
r LTL->NBA — 13 10 6 2 10 35 17 93 — 4 5 4 1 6 6 26 — 79 43 38 16 176

2 LTL2BA 44 — 5 4 9 12 41 22 137 14 — 3 2 0 12 6 37 38 — 13 22 7 80
3 LTL3BA 44 17 — 5 11 13 43 23 156 14 3 — 1 0 11 5 34 68 80 — 30 16 194
4 LTL3BAd 48 24 18 — 15 15 45 28 193 15 6 6 — 2 14 8 51 87 97 73 — 24 281
5 Spot 52 31 26 16 — 19 46 32 222 18 8 9 7 — 15 8 65 106 115 99 74 — 394

6 Rabinizer 62 44 43 36 35 — 57 37 314 — — — — — — — — — — — — — —
7 Rabinizer 2 42 23 19 20 19 2 — 26 151 17 10 10 6 7 — 5 55 — — — — — —
8 LTL3DRA 58 43 40 33 35 13 47 — 269 17 11 12 10 9 14 — 73 — — — — — —

Table 5 contains a cross-comparison of the tools on the same formulae sets. In
this case, the formulae previously removed because of a timeout or a tool failure
are included.

4 Observations

For each pair of tools, there are some formulae in our benchmarks, for which one
tool produces strictly smaller automata than the other (see Table 5). Hence, no
tool is fully dominated by another.

All the results for LTL(F,G) fragment show that the Safraless tools (especially
Rabinizer and LTL3DRA) usually perform better than ltl2dstar equipped with
any of the considered LTL to NBA translators. The best results for formulae
of LTL\GUX not included in LTL(F,G) are typically achived by ltl2dstar

combined with Spot, and the Safraless tools Rabinizer 2 and LTL3DRA. For
formulae outside LTL\GU, the current Safraless tools are not applicable. For
these formulae, by far the best results are produced by ltl2dstar combined
with Spot.

The results also provide information about particular tools or relations be-
tween them. For example, one can immediately see that Rabinizer outperforms
Rabinizer 2 on LTL(F,G) formulae. This is explained by an experimental na-
ture of the current version of Rabinizer 2. In particular, the tool misses some
optimizations implemented in Rabinizer [20]. Further, one can observe that Ra-
binizer performs significantly better than the other tools on random formulae of
LTL(F,G), while it is just comparable on real specification and parametric for-
mulae of LTL(F,G). We assume that this is due to the fact that Rabinizer builds
automata state-spaces according to semantics of LTL formulae rather than their
syntax. Thus it does not distinguish between equivalent subformulae which more
often appear in random formulae than in formulae written manually.

If we focus on usage of system resources, we observe that LTL3DRA is often
the fastest tool. The results also show that ltl2dstar in combination with
LTL2BA or LTL3BA has usually the lowest memory consumption.
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During our experimentation we found out that ltl2dstar does not check
whether an intermediate Büchi automaton is already deterministic or not: it
runs Safra’s construction in all cases. Running Safra’s construction only on non-
deterministic BA is profitable for two reasons:

1. Computation of Safra’s construction is expensive.
2. Each deterministic BA can be directly converted into a DRA with one Ra-

bin pair without any change in the state space, while Safra’s construction
typically produces a DRA larger than the intermediate deterministic BA.

For example, given the formula G(p1 → G¬p2), both Spot and LTL3BAd pro-
duce a deterministic BA with two states (and a partial transition function). All
considered LTL to DRA translators output DRA with four states (and total
transition functions), Rabinizer 2 even yields a DRA with five states. Hence, the
automaton produced by Spot or LTL3BAd is smaller even after the addition of
one state to make its transition function total.

5 Conclusions

We conclude that the situation with LTL to DRA translation changed substan-
tially since 2005. The former leading combinations of ltl2dstar with
LTL->NBA or LTL2BA are now surpassed by Safraless tools (on relevant frag-
ments) and ltl2dstar with Spot. However, there is still a space for further
improvements.

Acknowledgements. We would like to thank Alexandre Duret-Lutz for valu-
able suggestions and comments on a draft of this paper.
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S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

26. Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327.
IEEE Computer Society (1988)

27. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro,
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Abstract. We describe new extensions of the Vampire theorem prover for com-
puting tree interpolants. These extensions generalize Craig interpolation in Vam-
pire, and can also be used to derive sequence interpolants. We evaluated our im-
plementation on a large number of examples over the theory of linear integer
arithmetic and integer-indexed arrays, with and without quantifiers. When com-
pared to other methods, our experiments show that some examples could only be
solved by our implementation.

1 Introduction

In interpolation-based verification approaches, a Craig interpolant [3] is a logical for-
mula justifying why a program trace is spurious and therefore can be used, for example,
to refine the set of predicates for predicate abstraction [10], invariant generation [13],
and correctness proofs of programs [8]. As refining a path in the control flow graph of
a program requires iterative computations of interpolants for each path location, Craig
interpolants have been generalized to sequence interpolants for their use in bounded
model checking non-procedural programs [10]. Using sequence interpolants to rea-
son about programs with recursive procedures is however a non-trivial task. The work
of [12] introduces the notion of tree interpolants, which can be used for the verification
of concurrent [5] and recursive programs [8]. In this context, dependencies between
program paths are encoded using a tree data structure, where a tree node represents a
formula valid at an intermediate program location. Tree interpolants provide a nested
structure for representing formulas, and therefore allow to reason about programs with
function/procedure calls.

Similarly to Craig interpolation, the key ingredient in theorem proving based tree in-
terpolation is the computation of special proofs, for example local or split proofs [10,9],
with feasible interpolation. Interpolants from such proofs can be constructed in polyno-
mial time in the size of the proof. Current approaches for building Craig/sequence/tree
interpolants depend on the existence of such proofs. For example, [14] uses SMT rea-
soning to derive Craig interpolants in the quantifier-free theory of linear arithmetic and
uninterpreted functions. This approach is further generalized in [7] for computing tree
interpolants from propositional proofs and in [2,12,5] to derive tree interpolants in the
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theory of linear arithmetic and uninterpreted functions. Contrary to the above tech-
niques, in [9] Craig interpolants are extracted from first-order local proofs in any sound
calculus, without being limited to decidable theories. However, the method of [9] cannot
yet be used for deriving tree and sequence interpolants.

In this paper we address the generality of [9] and describe a tool support for ex-
tracting tree interpolants in arbitrary first-order theories (Section 4). Our method is im-
plemented in the Vampire theorem prover [11] and extends Vampire with new features
for theory reasoning and interpolation. Our implementation adds a general interpola-
tion procedure to Vampire, which can be used for computing Craig interpolants, se-
quence interpolants and tree interpolants. For doing so, we reduce the problem of tree
interpolations to iterative applications of Craig interpolants on tree nodes (Section 3).
Our approach is different from [2,7] where tree interpolants are extracted from only
one proof, by exploiting propositional reasoning or linear arithmetic properties. Our
tool can be used in arbitrary theories and calculus, but comes at the cost of comput-
ing different proofs for each tree node. Our implementation can however be optimized
when considering specific theories, reducing the burden of iterative proof computations.
We tested our tool on challenging examples over arrays, involving reasoning with both
quantifiers and theories (Section 5). To the best of our knowledge, our tool is the only
approach able to derive tree interpolants with both quantifiers and theory symbols. We
also evaluated our implementation on examples coming from the model checking of de-
vice drivers, where quantifier-free reasoning over linear integer arithmetic and integer-
indexed arrays was required. On these examples our method does not perform as well
as theory-specific approaches, e.g. [14]. The strength of our tool comes thus when tree
interpolants in full first-order theories are needed. Extending our implementation with
proof transformations for various theories is an interesting task for future work.

2 Tree Interpolation

All formulas in this paper are first-order, with standard boolean connectives and quanti-
fiers. The language of a formula R, denoted by LR, is the set of all formulas built from
the symbols occurring in R. By a symbol we mean function and predicate symbols;
variables are not symbols. Given two formulas R and B such that R ∧ B is unsat-
isfiable, a formula IR,B is called a Craig interpolant of R and B (or simply just an
interpolant) iff R → IR,B , IR,B ∧ B is unsatisfiable, and IR,B contains only symbols
that occur both in the languages of R and B. A proof of unsatisfiability of R ∧ B is
called local [9] if every proof step uses symbols either only from R, or only from B.

We describe the problem of tree interpolation, by adapting the notation of [1,12].

Definition 1. A tree interpolation problem T = (V, r, P, L) is a directed labeled tree,
where V is a finite set of nodes, r ∈ V is the root, P : (V \ {r}) �→ V is a function
that maps children nodes to their parents, and L : V �→ F is a labeling function that
maps nodes to formulas from a set F of first-order formulas, such that

∧
v∈V L(v) is

unsatisfiable.

Let T = (V, r, P, L) be a tree interpolation problem and P ∗ be the reflexive transitive
closure of P . For V0 ⊆ V we write L(V0) to denote the formula

∧
v∈V0

L(v). For each
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Node: r
L(r): a = b

Node: v1
L(v1): a > 0

Node: v2
L(v2): b < 0

(a) Tree interpolation problem.

Node: r
I(r):⊥

Node: v1
I(v1): a > 0

Node: v2
I(v2): b ≤ 0

(b) Tree interpolant.

Fig. 1. An example of tree interpolation; a and b are integer-valued constants

v ∈ V we define Vin(v) = {c | v ∈ P ∗(c)} and Vout(v) = V \ Vin(v). The problem of
tree interpolation is then to compute a tree interpolant, defined as follows.

Definition 2. Let T = (V, r, P, L) be a tree interpolation problem. A tree interpolant
for T is a function I : V �→ F satisfying the following conditions:

(C1) I(r) = ⊥;
(C2) for each v ∈ V , we have:

(∧
P (ci)=v I(ci) ∧ L(v)

)
→ I(v);

(C3) for each v ∈ V , we have: LI(v) ⊆ LL(Vin(v)) ∩ LL(Vout(v)).

In the following, we refer to I(v) as a node interpolant, or simply just an interpolant,
of node v. Figure 1(a) gives an example of a tree interpolation problem, and Figure 1(b)
shows a correspoding tree interpolant.

3 Tree Interpolation Algorithm

When computing a tree interpolant for a tree interpolation problem T , we need to es-
tablish conditions (C1)-(C3) from Definition 2. Since L(Vin(v)) ∧ L(Vout(v)) is un-
satisfiable for each v ∈ V , we can compute an interpolant between L(Vin(v)) and
L(Vout(v)). However, computing all node interpolants I(v) this way may violate con-
dition (C2), as illustrated in Example 1.

Example 1. Consider the tree interpolation problem from Figure 1(a). We compute
I(v1) as an interpolant between L(v1) and L(v2) ∧ L(r), and I(v2) as an interpolant
between L(v2) and L(v1) ∧ L(r). In this example, we may take I(v1) = (a ≥ 0) and
I(v2) = (b ≤ 0). By definition, I(r) = ⊥. But then I(v1)∧ I(v2)∧L(r) is satisfiable,
and hence I(v1) ∧ I(v2) ∧ L(r) → I(r) does not hold.

Example 1 shows that node interpolants are logically weaker than node labels. Al-
ready computed node interpolants have to be taken into account for computing further
node interpolants. Our tree interpolation algorithm is based on this observation and
summarized in Algorithm 1.

In line 4 all node interpolants are initialized to ∞, representing undefined. A node
interpolant in our algorithm is thus either undefined or a first-order formula. Then we
iterate over all nodes of T according to the loop condition in line 6. That is, we always
choose an arbitray node v with undefined interpolant, such that the interpolants of its
children have already been computed. In lines 7-8 the tree nodes are partitioned into
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Algorithm 1. Tree Interpolation.
1: Input: Tree interpolation problem T = (V, r, P, L)
2: Output: Tree interpolant I of T
3: for each v ∈ V do
4: I(v) =∞
5: end for
6: for each v ∈ V such that I(v) =∞ and I(c) 	=∞ for each c ∈ V with v = P (c) do
7: Rv = S(Vin(v), v) (call to Alg. 2)
8: Bv = S(Vout(v), r) (call to Alg. 2)
9: I(v) = CraigInterpolant(Rv, Bv)

10: end for

Algorithm 2. Interpolant/Label Collection.
1: Input: Set of tree nodes V0 ⊆ V and a node v ∈ V
2: Output: Node interpolant of v or conjunction of children interpolants and label of v

3: S(V0, v) =

{
I(v) if I(v) 	=∞∧

P (c)=v∧c∈V0
S(V0, c) ∧ L(v) otherwise

Vin(v) and Vout(v), which are used to obtain the formulas Rv and Bv , by taking the
conjunction of node labels from root to leaves up to the first defined node interpolant
(see Algorithm 2). Then I(v) is set to a Craig interpolant of Rv and Bv (line 9). Using
induction over the set of nodes, it is now easy to prove that I(v) satisfies the constraints
of tree interpolation for every node v, and hence Algorithm 1 computes a tree inter-
polant I of T . Note that Algorithm 1 does not specify the concrete order in which the
nodes are visited. Different feasible orderings lead to different tree interpolants.

4 Implementation in Vampire

We implemented the tree interpolation method of Algorithm 1 in the Vampire theorem
prover. To make Vampire able to compute tree interpolants, we had to extend Vampire
with new functionalities, including reading tree interpolation problems, deriving tree
interpolants, computing interpolants of tree nodes, and theory-specific proof transfor-
mation steps for proof localisation. We also extended Vampire with built-in data types
for integer-indexed arrays, and added array axioms to the built-in theory reasoning en-
gine of Vampire. All together computing tree interpolants in Vampire required about
5000 lines of C++ code. The architecture of our implementation is given in Figure 2.
Tool Usage. Our implementation is available at http://vprover.org/tree_itp.
For using it, one should simply invoke Vampire on the command line as follows:

vampire --show_interpolant tree --[vampire/z3] problem

The choice of using either vampire or z3 refers to proof generation (see later),
whereas the input format of problem is as detailed below.
Input. Inputs to our implementation are tree interpolation problems in the SMT-LIB 1.2
format, using the input standard of [1]. Propositional variables are used to denote tree
nodes, and logical implication is used to specify parent-child relations between nodes.

http://vprover.org/tree_itp
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Fig. 2. Tree interpolation in Vampire

Tree Interpolation. We use Algorithm 1 to compute and output a tree interpolant I of
T . We explore the tree in a breadth-first manner, starting from the leaves of the tree. At
each level, we visit the nodes from left-to-right and compute their interpolants.
Interpolants of Tree Nodes. When computing interpolants for tree nodes, we adapt
the Craig interpolation procedure of [9] to our setting of Rv and Bv. We collect the
set of symbols occurring only in Rv, respectively in Bv . The set of symbols used in
a Craig interpolant of Rv and Bv is then defined as the set of symbols common to
both Rv and Bv. With such specification of symbols, our task is to derive a local proof
of Rv ∧ Bv → ⊥ and compute a Craig interpolant from this proof. We used [9] to
construct Craig interpolants from local proofs and computed interpolants that are small
both in their number of symbols and quantifiers. For generating local proofs we used
the following two directions.
Proof Localization. We generate local proofs either by using Vampire or by localizing
an SMT proof generated by the Z3 SMT solver [4]. When using Vampire, the symbol
specifications of Rv and Bv are used as Vampire annotations to ensure that the gen-
erated Vampire proofs are local. When running Z3, we first obtain a Z3 proof which
might not be local. Then, using the symbol specifications of Rv and Bv we try to lo-
calize the SMT proof by (i) quantifying away some constant symbols of Rv or Bv as
explained in [9] and by (ii) applying proof transformation steps over linear arithmetic
and uninterpreted functions (as explained later). For parsing and localising SMT proofs,
our implementation extends Vampire with built-in sorts for integer-indexed arrays and
adds array reasoning based on the extensionality axioms of the array theory. To use
Craig interpolants in further steps of tree interpolation, we also extended Vampire with
a parser for converting Vampire formulas into the SMT-LIB format, by considering
theory-specific reasoning over linear integer arithmetic and arrays.
Theory-Specific Reasoning for Proof Localization. In some cases, Vampire rewrites
the non-local parts of an SMT proof without using the approach of [9] for introducing
quantifiers. In [6], we have presented theory-specific proof rewriting rules that localize
proofs involving linear arithmetic with uninterpreted function symbols. Vampire uses
now some of these rules to recognize patterns of non-local SMT proofs and rewrite them
into a local proof in the quantifier-free theory of linear arithmetic and uninterpreted
functions. To illustrate how theory-aware SMT proof localisation is performed in our
implementation, consider the following example. Let R be a = b ∧ b = c and B the
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Table 1. Tree interpolation in Vampire on quantified array problems

Example Description Tree Interpolant
Init set array elements to 0, update one element to 1 all elements 0 or 1
Sorted sort array in ascending order ordering between two concrete array elements
Sorted2 sort array in ascending order ordering for range of array elements
Shift set array elements to the values of their neighbours array elements are all equal

formula c = d ∧ a 
= d, where a, b, c, d are integer-valued constants. Clearly, R and B
is unsatisfiable. A possible SMT proof of unsatisfiability (e.g. by Z3) might involve the
following steps: derive b = d from b = c and c = d and derive a = d from a = b and
b = d, which then contradicts a 
= d. Note that b = d yields a non-local proof step as
it uses symbols that are not common to R and B. Our proof transformation in Vampire
will then reorder this equality derivation. The rewritten proof will then derive a = c
from a = b and b = c and infer a = d from a = c and c = d; clearly, this proof is local
and, unlike [9], uses no quantifiers over b and d.
Optimizations. To reduce the number of local proof computations, we implemented
the following heuristic. When extracting the symbols of Rv and Bv for a node v, we
also derive whether Rv uses only symbols common to Bv . If this is the case, we take
Rv as the interpolant IRvBv . A similar heuristic is implemented also when Bv contains
only symbols common to Rv. In our experiments we observed that these heuristics save
expensive theorem proving calls.
Sequence and Craig Interpolants. Our implementation can also be used to compute
sequence interpolants. In this case, the sequence structure is represented as a sequence
of SMT-LIB assumptions, and no additional propositional variables are used to denote
assumptions (i.e. tree nodes). To use Vampire for computing sequence interpolants, one
should specify sequence instead of tree in the command run execution of Vam-
pire. Our implementation can also be used to simply compute Craig interpolants of
two formulas, by using the approach of [9] and specifying on instead of tree in the
command line. Tree interpolation in Vampire hence brings a general interpolation pro-
cedure, which can be used for tree, sequence and Craig interpolation.

5 Experiments

We evaluated tree interpolation in Vampire using two benchmark suites. One is a collec-
tion of 4 examples where quantified reasoning over the array content is needed. These
examples are taken from [13,15] and involve common array operations, such as initial-
ization, copying and sortedness (Table 1). The other one is a collection of 175 problems
(Table 2), extracted from the bounded model checking of device drivers [12]. These
examples are expressed in the quantifier-free theory of linear integer arithmetic and
integer-indexed arrays. All experiments reported here were obtained using a Lenovo
X200 machine with 4GB of RAM and Intel Core 2 Duo processor with 2.53GHz, and
are available at the url of our tool.
Quantified Array Problems. We computed tree interpolants in the quantified theory
of arrays and integer arithmetic for 4 array problems. The examples involved proce-
dure calls implementing array initialization, copy and sorting. We manually converted
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Table 2. Tree interpolation in Vampire
on quantifier-free array problems

Prover Nb. Benchmarks Success Time
Vampire 175 101 60s
Z3 175 113 60s

Table 3. Tree interpolation in Vampire and iZ3

Tool Quantified problems Quantifier-free problems
Total Solved Total Solved

Vampire 4 4 175 141
iZ3 4 1 175 175

these problems into corresponding tree interpolation problems, and then run our imple-
mentation. Each tree interpolation problem had a tree with 3 nodes. Example 2 shows
later one of these benchmark and Table 1 summarizes our experiments. For each exam-
ple, the table states the name of the example, gives a brief description of the program,
and summarizes the tree interpolant. For the examples Init, Sorted2, and Shift,
one tree node required the computation of a quantified node interpolant. All examples
were solved in less than 1 second. The tree interpolants generated by our method were
successfully used to proved quantified safety assertions over arrays.
Quantifier-Free Array Problems. The experiments described in Table 2 involved pars-
ing 738′890 lines of SMT-LIB, with an average of about 90 tree nodes per benchmark.
This means, that deriving a tree interpolant required on average computing 90 node in-
terpolants per benchmarks. We distinguish between the use of Z3 or Vampire for com-
puting local proofs of node interpolants – see column 1 of Table 2. Column 2 shows the
number of benchmarks used in our experiments. Colum 3 gives the number of problems
on which our implementation succeeded to compute tree interpolants, and column 4 list
the average time (in seconds) per problem required by our implementation.

When using Vampire for local proof generation, we derived tree interpolants for
101 examples. Since the benchmarks were quantifier-free, the tree interpolants were
quantifier-free as well. The 74 examples on which Vampire was not able to compute
local proofs required more complex reasoning about arrays, involving both reading and
writing to arrays.

When using Z3 for local proof generation, Z3 proved all 175 examples, however the
returned proofs were not local. We succeeded to localize proofs, and hence compute
tree interpolants, for 113 examples, out of which 14 tree interpolants contained quanti-
fiers. We failed on 62 examples either because (i) proofs could not be localized, or (ii)
quantified node interpolants were computed. When using quantified node interpolants
in further steps of the tree interpolation, Z3 failed to find proofs in many cases.

Finally we note that some tree interpolation problems could only be solved by either
using Vampire or Z3 for local proof generation. In total, we derived tree interpolants
for 141 examples. The results of Table 2 suggest that improving theory-specific proof
transformations as well as reasoning with both theories and quantifiers would yield
better results for tree interpolation in first-order theories.
Experimental Comparison. We compared our tool to the tree interpolation procedure
of iZ3 [1]. Table 3 shows that iZ3 performs much better on the quanifier-free exam-
ples of Table 2. However, on the quantified array problems, iZ3 succeeded only on the
Sorted example where the tree interpolant did not involved quantifiers. Unlike iZ3,
we derived tree interpolants for all quantified problems. For the problems where iZ3
failed, we either observed an incorrect interpolant, a segmentation fault or a failed proof
attempt by Z3. Example 2 shows an interpolation problem for which iZ3 computes an
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Node: r
L(r): sorted array(A) ∧ A[a] = 10

Node: v1
L(v1): b > a

iZ3 I(v1): ¬(b ≤ a)
Vampire I(v1): b > a

Node: v2
L(v2): c > b ∧ A[c] = 5

iZ3 I(v2): A[c] ≤ 5 ∧ b ≤ c− 1
Vampire I(v2): ¬∀i A[i] ≤ 10 → i ≤ b

Fig. 3. Tree interpolation on the Sorted2 example from Table 1

incorrect result. Table 3 underlines the advantage of tree interpolation in Vampire: it
can be used for quantified reasoning over (arbitrary) first-order theories. To the best of
our knowledge, no other approach can compute quantified tree interpolants.

Example 2. The tree structure of Figure 3 shows the tree interpolation problem of the
Sorted2 example of Table 1. In this example, a, b, c are integer-valued constants
and A is an array of integers. Further, in the root label we have sorted array(A) ⇔
(∀i)(∀j) i < j → A[i] < A[j]. Figure 3 also shows the incorrect tree interpolant
computed by iZ3 and the correct tree interpolant computed by Vampire.

6 Conclusion

We described how tree interpolation in Vampire is implemented and can be used. Our
implementation extends Vampire with deriving tree interpolants, computing interpolants
for tree nodes, theory-specific proof localisations, and built-in data structures for arrays.
In addition, tree interpolation in Vampire can be used to compute sequence or Craig
interpolants. Our experiments highlight the advantage of our implementation for quan-
tified tree interpolation. Future work includes extending our implementation with better
theory reasoning both for proof localisation and proving, and deriving tree interpolants
from only one proof of unsatisfiability. We are also interested in evaluating the quality
of our tree interpolants in the context of model checking, by using them for proving
safety properties of problems.

Acknowledgements. We thank Ken McMillan for the quantifier-free benchmarks.
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Abstract. Double-negation translations are used to encode and decode
classical proofs in intuitionistic logic. We show that, in the cut-free frag-
ment, we can simplify the translations and introduce fewer negations. To
achieve this, we consider the polarization of the formulæ and adapt those
translation to the different connectives and quantifiers. We show that the
embedding results still hold, using a customized version of the focused
classical sequent calculus. We also prove the latter equivalent to more
usual versions of the sequent calculus. This polarization process allows
lighter embeddings, and sheds some light on the relationship between
intuitionistic and classical connectives.

Keywords: classical logic, intuitionnistic logic, double-negation trans-
lation, focusing.

1 Introduction

The relationship between different formal systems is a longstanding field of stud-
ies, and involves for instance conservativity, relative consistency or independence
problems [1]. As for deductive systems, the natural question is to find a conser-
vative encoding of formulæ. By conservative, we mean an encoding of formulæ
such that a formula is provable in the first system if and only if its encoding
is provable in the second system. This work was pioneered by Kolmogorov [2],
Gödel [3] and Gentzen [4] for classical and intuitionistic logics. There exist sev-
eral classes of sequents that are known to be classically provable if and only if
they are intuitionistically provable [5].

In this paper, we refine those translations by removing a large number of un-
necessary negations. Instead of focusing on invariant classes as in [5], we consider
a translation on all the formulæ. A common point with this work, however, is the
use of syntactic transformations. The proof systems we consider are the cut-free
intuitionistic and classical sequent calculi [6]. This allows two remarks:

– the left rules of both calculi are identical; therefore it seems natural to trans-
late them by themselves, when possible.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 182–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– In the absence of the cut rule, a formula is never active in different sides (both
as an hypothesis and as a conclusion) of the turnstyle, having therefore a well-
defined polarity. This last fact holds for all the rules except the axiom rule,
which is easily dealt with, by an η-expansion-like argument, i.e. decomposing
the formula by structural rules until we get axioms between atomic formula
only.

In summary, we can avoid the introduction of negations on formulæ belong-
ing to the “left” (or hypothesis) side of sequents. We also introduce further
refinements, inspired by those of [3,4], to remove even more negations in the
translation, based on the observation that some right-rules are also identical in
the classical and intuitionistic calculi. To show conservativity by syntactic means
without the cut rule, we need to impose a focusing discipline on the right-hand
side of the classical sequent calculus, forced by the single-formula condition on
the right-hand side of an intuitionistic sequent. We dedicate Section 4 to the
study of a customized focused sequent calculus.

The price to pay of an asymmetric translation is that the result misses some
modularity since we dismiss the cut rule: given a proof of a A and a proof of
A ⇒ B, we cannot combine them with a cut rule. Both translations of A are not
the same and so the translations of the proofs do not compose directly. See also
the discussion in Section 6.

The paper is organized as follows. In Section 2, we give a brief overview of the
background material, in particular the negative translations. In Section 3, we
introduce a first polarized refinement of Kolmogorov negative translation, while
Section 4 discusses the properties of the focused sequent calculus that we need
in Section 5 to show that the polarized refinement of Gentzen-Gödel negative
translation still has the same properties than the other translations. Section 6
concludes the paper.

2 Prerequisites

Here, we briefly recall the syntax of first-order logic, sequent calculus and the
already known double-negation translations.

2.1 First-Order Logic

We assume that the reader is familiar with one-sorted first-order logic [6]: terms
are composed of variables and function symbols applied to terms along their
arities, and formulæ are either predicate symbols applied to terms along their
arities or composed ones with the help of the conjunction (∧), disjunction (∨),
implication (⇒), negation (¬) connectives and the universal (∀) and existential
(∃) quantifiers.

To shorten the statement of our results and their proofs, we also define an
operator that removes the trailing negation of formulæ, if any, and otherwise
adds it.



184 M. Boudard and O. Hermant

Definition 1 (antinegation). Let A be a formula, we let �A be:

– B if A is equal to ¬B

– ¬A otherwise.

Note that � is not a connective, it is an operator, similar to Boolean com-
plement in that �¬ is the identity. In particular it has no associated rule in the
sequent calculus. For instance �P (a) is the same as ¬P (a) while �¬(A ∧ B) is
the same as (A ∧B).

2.2 Sequent Calculi

Since they will be discussed in details in the next sections, we explicitly give the
details of the classical and intuitionistic sequent calculi. A sequent is a pair of
two multisets of formulæ, denoted Γ $ Δ. The comma serves as a shorthand for
multi-set union and Γ,A is an overloaded notation for Γ, {A}.

The classical sequent calculus is presented in Figure 1. The formula that
is decomposed is called the active formula. The intuitionistic sequent calculus
differs from the classical in the restriction imposed to the right-hand sides of
sequents: it must be either empty, or reduced to one formula. Consequently, the
following rules are modified: contrR disappears; in the first premiss of the ⇒L

rule and the axiom rule, Δ is empty; finally, the ∨R rule splits to account for
the choice of keeping A or B. For clarity, the intuitionistic sequent calculus is
presented in Figure 2.

Note that, as announced, we do not consider the cut rule to be part of the
calculus; so we reason in cut-free calculi.

2.3 Negative Translations

In this section, we briefly recall four existing translations [7,8]. In 1925, the first
translation is published by Kolmogorov [2]. This translation involves adding a
double negation in front of every subformula:

AKo ≡ ¬¬A for A atomic (¬A)Ko ≡ ¬¬(¬AKo)
(A ∧B)Ko ≡ ¬¬(AKo ∧BKo) (∀xA)Ko ≡ ¬¬∀xAKo

(A ∨B)Ko ≡ ¬¬(AKo ∨BKo) (∃xA)Ko ≡ ¬¬∃xAKo

(A ⇒ B)Ko ≡ ¬¬(AKo ⇒ BKo)

With the Kolmogorov’s translation, A is provable using classical logic if and
only if AKo is provable using intuitionistic logic.

A few years later, Gödel[3], and independently Gentzen[4], proposed a new
translation, where disjunctions and existential quantifiers are replaced by a com-
bination of negation and their De Morgan duals, respectively conjunctions and
universal quantifiers:
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ax
Γ,A � A,Δ

Γ,A,B � Δ ∧L
Γ,A ∧B � Δ

Γ � A,Δ Γ � B,Δ ∧R
Γ � A ∧ B,Δ

Γ,A � Δ Γ,B � Δ ∨L
Γ,A ∨B � Δ

Γ � A,B,Δ ∨R
Γ � A ∨ B,Δ

Γ � A,Δ Γ,B � Δ ⇒L
Γ,A⇒ B � Δ

Γ,A � B,Δ ⇒R
Γ � A⇒ B,Δ

Γ � A,Δ ¬L
Γ,¬A � Δ

Γ,A � Δ ¬R
Γ � ¬A,Δ

Γ, A[c/x] � Δ
∃L

Γ, ∃xA � Δ

Γ � A[t/x], Δ
∃R

Γ � ∃xA,Δ

Γ,A[t/x] � Δ
∀L

Γ, ∀xA � Δ

Γ � A[c/x],Δ
∀R

Γ � ∀xA,Δ

Γ, A,A � Δ
contrL

Γ,A � Δ

Γ � A,Δ
contrR

Γ � A,A,Δ

Γ � Δ
weakL

Γ,A � Δ

Γ � Δ
weakR

Γ � A,Δ

where, in ∀L and ∃R, c is a fresh constant and, in ∀R and ∃L, t is any term.

Fig. 1. Classical sequent calculus

(Agg) ≡ ¬¬A for A atomic (¬A)gg ≡ ¬Agg

(A ∧B)gg ≡ Agg ∧Bgg (∀xA)gg ≡ ∀xAgg

(A ∨B)gg ≡ ¬(¬Agg ∧ ¬Bgg) (∃xA)gg ≡ ¬∀x¬Agg

(A ⇒ B)gg ≡ Agg ⇒ Bgg

As Kolmogorov’s translation, Gödel-Gentzen’s translation allows to show that
A is provable using classical logic if and only if Agg is provable using intuition-
istic logic.

Kuroda [9] defined in 1951 a new translation:
AKu ≡ A for A atomic (¬A)Ku ≡ ¬AKu

(A ∧B)Ku ≡ AKu ∧BKu (∀xA)Ku ≡ ∀x¬¬AKu

(A ∨B)Ku ≡ AKu ∨BKu (∃xA)Ku ≡ ∃xAKu

(A ⇒ B)Ku ≡ AKu ⇒ BKu

A is provable classically if and only if ¬¬AKu is provable intuitionistically.

More recently, Krivine [10] has introduced a fourth translation:
AKr ≡ ¬A for A atomic (¬A)Kr ≡ ¬AKr

(A ∧B)Kr ≡ AKr ∨BKr (∀xA)Kr ≡ ∃AKr

(A ∨B)Kr ≡ AKr ∧BKr (∃xA)Kr ≡ ¬∃x¬AKr

(A ⇒ B)Kr ≡ ¬AKr ∧BKr
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ax
Γ, A � A

Γ,A,B � Δ ∧L
Γ,A ∧ B � Δ

Γ � A Γ � B ∧R
Γ � A ∧ B

Γ,A � Δ Γ,B � Δ ∨L
Γ,A ∨ B � Δ

Γ � A ∨R1
Γ � A ∨ B

Γ � B ∨R2
Γ � A ∨ B

Γ � A Γ,B � Δ ⇒L
Γ,A⇒ B � Δ

Γ,A � B ⇒R
Γ � A⇒ B

Γ � A ¬L
Γ,¬A � Δ

Γ,A � ¬R
Γ � ¬A

Γ,A[c/x] � Δ
∃L

Γ, ∃xA � Δ

Γ � A[t/x]
∃R

Γ � ∃xA

Γ,A[t/x] � Δ
∀L

Γ, ∀xA � Δ

Γ � A[c/x]
∀R

Γ � ∀xA

Γ, A,A � Δ
contrL

Γ,A � Δ

Γ � Δ
weakL

Γ,A � Δ

Γ �
weakR

Γ � A

where, in ∀L and ∃R, c is a fresh constant and, in ∀R and ∃L, t is any term.

Fig. 2. Intuitionistic sequent calculus

A is provable classically if and only if ¬AKr is provable intuitionistically.

Using these existing translations, in particular Kolmogorov’s and Gödel-
Gentzen’s translations, we propose to simplify them as described below.

3 Polarizing Kolmogorov’s Translation

As in Kolmogorov’s translation, let us define the polarized Kolmogorov’s
translation:

Definition 2. Let A,B,C and D be propositions. An occurrence of A in B is

– positive if:
• B = A.
• B = C ∧D and the occurrence of A is in C or in D and is positive.
• B = C ∨D and the occurrence of A is in C or in D and is positive.
• B = C ⇒ D and the occurrence of A is in C (resp. in D) and is negative

(resp. positive).
• B = ¬C and the occurrence of A is in C and is negative.
• B = ∀xC and the occurrence of A is in C and is positive.
• B = ∃xC and the occurrence of A is in C and is positive.
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– negative if:
• B = C ∧D and the occurrence of A is in C or in D and is negative.
• B = C ∨D and the occurrence of A is in C or in D and is negative.
• B = C ⇒ D and the occurrence of A is in C (resp. in D) and is positive

(resp. negative).
• B = ¬C and the occurrence of A is in C and is positive.
• B = ∀xC and the occurrence of A is in C and is negative.
• B = ∃xC and the occurrence of A is in C and is negative.

Definition 3. Let A and B be propositions. We define by induction on the struc-
ture of propositions the positive (K+) and negative translation (K−):

AK+ ≡ A if A is atomic AK− ≡ A if A is atomic

(A ∧B)K
+ ≡ AK+ ∧BK+

(A ∧B)K
− ≡ ¬¬AK− ∧ ¬¬BK−

(A ∨B)K
+ ≡ AK+ ∨BK+

(A ∨B)K
− ≡ ¬¬AK− ∨ ¬¬BK−

(A ⇒ B)K
+ ≡ ¬¬AK− ⇒ BK+

(A ⇒ B)K
− ≡ AK+ ⇒ ¬¬BK−

(¬A)K
+ ≡ ¬AK−

(¬A)K
− ≡ ¬AK+

(∀xA)K
+ ≡ ∀xAK+

(∀xA)K
− ≡ ∀x¬¬AK−

(∃xA)K
+ ≡ ∃xAK+

(∃xA)K
− ≡ ∃x¬¬AK−

Notice how, compared to Section 2.3, we introduce double negations in front
of subformulæ instead of the whole formula. For instance axioms are translated
by themselves, and the price to pay is, as for Kuroda’s and Krivine’s translations,
a negation of the whole formula in the following theorem.

Theorem 1. If the sequent Γ $ Δ is provable in the classical sequent calculus
then ΓK+

,¬ΔK− $ is provable in the intuitionistic sequent calculus.

Proof. By induction on the proof-tree. Since this theorem is not the main result
of this paper, and is refined below (Theorem 3), let us process only one case. All
other cases follow a similar pattern.

π
Γ $ Δ,A[t/x]

∃R Γ $ Δ, ∃xA
↪→

IH(π)

ΓK+

,¬ΔK−
,¬AK−

[t/x] $ ¬R

ΓK+

,¬ΔK− $ ¬¬AK−
[t/x]

∃R
ΓK+

,¬ΔK− $ ∃x¬¬AK−

¬L

ΓK+

,¬(∃x¬¬AK−
),¬ΔK− $

where IH(π) denotes, here and later, the proof obtained by the application of
the induction hypothesis on π.

We also have the inverse translation.

Theorem 2. If the sequent ΓK+

,¬ΔK− $ DK−
is provable in the intuitionistic

sequent calculus, then Γ $ Δ,D is provable in the classical sequent calculus.

Proof. By a straightforward induction on the proof-tree.

We now focus on the polarization of the Gödel-Gentzen’s translation, which
is lighter than the Kolmogorov’s translation, again with the idea of getting a
simpler translation in both directions.
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4 A Focused Sequent Calculus

Gödel-Gentzen negative translation (Definition 2.3 above) removes many nega-
tions from translations and the polarization we give in Section 5 will even more.
If we want to follow the pattern of Theorem 1 to show equiprovability (in the
absence of cut), we can no longer systematically move formulæ from the right to
the left hand sides, since we lack negation on almost all connectives. Therefore,
we must constrain our classical sequent calculus to forbid arbitrary proofs, and
in particular to impose that once a rule has been applied on some formula of
the right-hand side, the next rule must apply on the corresponding subformula
of the premiss. Working on the same formula up to some well-chosen point is a
discipline of capital importance, since we avoid to eagerly swap formulæ from
right to left.

This is why we introduce a focused version of the classical sequent calculus.
The resulting constraint is that we must decompose the stoup [11,12] formula
until it gets removed from the stoup position. Only when the stoup becomes
empty, can we apply rules on other formulæ.

Definition 4 (Focused sequent). A focused sequent is a triple, composed of
two multisets of formulæ and a distinguished set (the stoup) containing zero or
one formula. It will be noted Γ $ A;Δ when the distinguished set contains a
formula A, and Γ $ .;Δ when it contains no formula.

The focused sequent calculus we define serves our particular purpose; for
instance it is not optimized to maximize the so-called negative and positive
phases [13]. Note also that in our paper, negative and positive has a very different
meaning. The calculus is presented in Figure 3 and contains a stoup only in the
right-hand side, since this is the only problematic side.

Note that all the left rules require an empty stoup, and that two new right
rules, focus and release, respectively place and remove a formula of the right-
hand side in the focus.

Only atomic, negated, disjunctive or existentially quantified formulæ can be
removed from the stoup:

– Due to the freshness condition of the ∃-left and ∀-right rule, the ∃-right rule is
the only rule that cannot be inverted (or equivalently permuted downwards).
Therefore existential statements must be removable from the stoup.

– The stoup has only one place, so we cannot allow in it both subformulæ of
a disjunction. This choice must be done by a subsequent call to the focus
rule. More pragmatically, Gödel-Gentzen’s translation introduces negations
in this case, enabling the storage of the subformulæ on the left-hand side
of the sequent. As an informal translation rule, intuitionistic ¬R rules will
correspond to a lost of focus.

– The same reasoning holds for allowing atomic formulæ to be removed from
the stoup. Also, if we do not allow this, the system loses completeness since
the stoup becomes stuck forever.
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– Allowing to remove negated formulæ from the stoup accounts for the aggres-
sive behavior of the operator �: to keep the statement of Theorem 3 short
and close to statements of previous theorems, we must remember that � re-
moves the negation of negated formulæ, therefore forcing them to move on
the left hand side.

As a consequence of the design constraint imposed by our translation, the
rule focus cannot act on a formula which has ∃, ¬ or ∨ as main connective and
the ∃R, ¬R and ∨R rules act on formulæ that are not in the stoup (and, as
mentioned, when the stoup itself is empty). The reasons become clear in the
proof of Theorem 3.

Lastly, we impose the formula in the axiom rule to be atomic, which boils
down to an η-expansion of the usual axiom rule.

To sum up, we consider the connectives ∃, ∨ and ¬, when they appear on the
right-hand side of a sequent, to have a ”positive phase” in the sense of [13] and
the other ones to have a negative phase.

We show that this calculus is equivalent to the usual sequent calculus of
Figure 1.

Proposition 1. Let Γ,Δ be two multisets of formulæ and A be a formula. If
the sequent Γ $ .;Δ (resp. Γ $ A;Δ) has a proof in the focused sequent calculus,
then it has a proof in the classical sequent calculus.

Proof. Straightforward by noticing that, forgetting about the stoup (transform-
ing the semicolon into a comma), all focused rules are instances of the classical
sequent calculus rules. Both rules focus and release lose their meaning and are
simply erased from the proof-tree. 
�

The converse is a corollary of the slightly more general following statement.
As we see below, it is crucial to have some degree of freedom to decompose
arbitrarily Δ′ into A and Δ in order to reason properly by induction.

Proposition 2. Let Γ,Δ′ be two multisets of formulæ. Assume that the sequent
Γ $ Δ′ has a proof in the classical sequent calculus. Let A be a set containing
either a formula (also named A by abuse of notation) or the empty formula, and
let Δ such that Δ′ = A,Δ.

Then the sequent Γ $ A;Δ has a proof in the focused sequent calculus.

Proof. The proof is a little bit more involved, but it appeals only to simple and
well-known principles, in particular to Kleene’s inversion lemmas [14,15], stating
that inferences rules can be permuted and, therefore, gathered.

We give only a sketch of the proof, leaving out the details to the reader, for
two reasons. Firstly, giving all the lengthy details would not add any insight
on the structure of the proof; in the contrary they would blur the visibility of
the main ideas. Secondly, similar completeness results are known for much more
constrained focused proof systems; see for instance the one presented in [13].
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ax
Γ,A � .;A,Δ

Γ,A,B � .;Δ ∧L
Γ,A ∧B � .;Δ

Γ � A;Δ Γ � B;Δ ∧R
Γ � A ∧ B;Δ

Γ,A � .;Δ Γ,B � .;Δ ∨L
Γ,A ∨B � .;Δ

Γ � .;A,B,Δ ∨R
Γ � .;A ∨B,Δ

Γ � A;Δ Γ,B � .;Δ ⇒L
Γ,A⇒ B � .;Δ

Γ,A � B;Δ ⇒R
Γ � A⇒ B;Δ

Γ � A;Δ ¬L
Γ,¬A � .;Δ

Γ,A � .;Δ ¬R
Γ � .;¬A,Δ

Γ, A[c/x] � .;Δ
∃L

Γ, ∃xA � .;Δ

Γ � .;A[t/x],Δ
∃R

Γ � .;∃xA,Δ

Γ,A[t/x] � .;Δ
∀L

Γ, ∀xA � .;Δ

Γ � A[c/x];Δ
∀R

Γ � ∀xA;Δ

Γ,A,A � .;Δ
contrL

Γ,A � .;Δ

Γ � .;A,Δ
contrR

Γ � .;A,A,Δ

Γ � .;Δ
weakL

Γ,A � .;Δ

Γ � .;Δ
weakR

Γ � A;Δ

Γ � A;Δ
focus

Γ � .;A,Δ

Γ � .;A,Δ
release

Γ � A;Δ

where:

– the axiom rule involves only atomic formulæ,
– in ∀L and ∃R, c is a fresh constant,
– in ∀R and ∃L, t is any term,
– in release, A is either atomic or of the form ∃xB,B ∨ C or ¬B,
– in focus, A is neither atomic nor of the form ∃xB,B ∨ C or ¬B.

Fig. 3. Focused classical sequent calculus

First of all, we consider a refined version of the classical sequent calculus of
Figure 1 where proofs are restricted to use the axiom and weak rules on atomic
formulæ. In this way, we know [15] that Kleene’s inversion lemmas [14] make
the proof height decrease strictly. We reason by induction of the height of this
modified proof-tree π, distinguishing the three following cases:

– A is empty, or A contains an atomic, existential, disjunctive or negated
formula that is not the active formula of the last rule r of π. Then we release
A, focus on the active formula if necessary, apply rule r, and we get one or
two premises, on which we can apply the induction hypothesis. Let us give
two instances, where, in the second case, A is empty:
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π
Γ $ B,A,Δ¬L
Γ,¬B $ A,Δ

↪→

IH(π)

Γ $ B;A,Δ ¬L
Γ,¬B $ .;A,Δ

release
Γ,¬B $ A;Δ

π1

Γ $ B,Δ

π2

Γ $ C,Δ∧R
Γ $ B ∧C,Δ

↪→

IH(π1)

Γ $ B;Δ

IH(π2)

Γ $ C;Δ ∧R
Γ $ B ∧ C;Δ

focus
Γ $ .;B ∧ C,Δ

– A contains an atomic, existential, disjunctive or negated formula that is
active in the last rule r of π. Then r must be one of the six rules axiom, ∃R,
∨R, ¬R, weakR or contrR. They are direct and all the remaining cases follow
a similar pattern. Here is the case for the ∃R rule:

π
Γ $ B[t/x], Δ

∃R
Γ $ ∃xB,Δ

↪→

IH(π)

Γ $ .;B[t/x], Δ
∃RΓ $ .; ∃xB,Δ
release

Γ $ ∃xB;Δ

– If A is not empty and not an atomic, existential, disjunctive or negated
formula then, disregarding the last rule of π, we apply Kleene’s inversion
lemma on A, the induction hypothesis on the premises, since the proof height
has decreased, and recompose those premises to get back the corresponding
component(s) of A in the stoup. Here is an example of such a rule :

π
Γ,B $ C,Δ⇒R

Γ $ B ⇒ C,Δ
↪→

IH(π)

Γ,B $ C;Δ ⇒R
Γ $ B ⇒ C;Δ


�

5 Polarizing Gödel-Gentzen’s Translation

We try to reduce the number of negations. We use the polarization of proposi-
tions (Definition 2 above) and replace disjunction and existential quantifiers by
conjunction and universal quantifiers, as in Gödel-Gentzen’s translation.

Definition 5. Let A and B be propositions. We define, by induction on the
structure of propositions, the positive(p) and negative(n) translations:

Ap ≡ A if A is atomic An ≡ ¬¬A if A is atomic
(A ∧B)p ≡ Ap ∧Bp (A ∧B)n ≡ An ∧Bn

(A ∨B)p ≡ Ap ∨Bp (A ∨B)n ≡ ¬(¬An ∧ ¬Bn)
(A ⇒ B)p ≡ An ⇒ Bp (A ⇒ B)n ≡ Ap ⇒ Bn

(¬A)p ≡ ¬An (¬A)n ≡ ¬Ap

(∀xA)p ≡ ∀xAp (∀xA)n ≡ ∀xAn

(∃xA)p ≡ ∃xAp (∃xA)n ≡ ¬∀x¬An
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Theorem 3. Let Γ,Δ be multisets of formulæ, and A be a set containing zero or
one formula. If the sequent Γ $ A;Δ has a proof in the (classical) focused sequent
calculus, then, in the intuitionistic sequent calculus, the sequent Γ p, �Δn $ An

has a proof.

Notice that � removes the trailing negation of Δ in three cases: the negative
translations of ∃, of ∨ and of ¬ (this last one more as a side-effect).

Proof. By induction on the proof of Γ $ A;Δ, considering one by one the 19
cases from Figure 3:

– A left rule. We apply the induction hypothesis on the premises and copy the
left rule. For instance, if the rule is ⇒L, then the induction hypothesis gives
us proofs of the two sequents Γ p, �Δn $ An (since A is put in the stoup
in the ⇒L rule) and Γ p, Bp, �Δn $ that can be readily combined with the
(intuitionistic) ⇒L rule to yield a proof of the sequent Γ p, An ⇒ Bp, �Δn $.
This is what we were looking for, since (A ⇒ B)

p ≡ An ⇒ Bp.
– A contrR rule. It is transformed (after application of the induction hypoth-

esis) into a contrL rule.
– A weakR rule. It is transformed into a weakR rule.
– A release rule. This can occur only if A is atomic or of the form ∃xB, B ∨C

or ¬B. In all cases, we translate it as a ¬R rule, which removes the trailing
negation of An, turning it into the formula �An (see Definition 1), that
integrates directly �Δn, so that we can readily plug the proof obtained by
the application of the induction hypothesis.

– A focus rule on A ∈ Δ. This can occur only if A is neither atomic nor of the
form ∃xB, B ∨ C or ¬B. Therefore, �An = ¬An, and we apply a ¬L rule.

– An axiom rule. Since A is restricted to be atomic, we need to build an
intuitionistic proof of the sequent Γ p, A, �¬¬A, �Δn $ which is a trivial two-
step proof since �¬¬A is ¬A.

– A ¬R rule:

π
Γ,B $ .;Δ

Γ $ .;¬B,Δ

We must find a proof of the sequent Γ p, �¬Bp, �Δn $. But the formula �¬Bp

is identical to Bp, and the induction hypothesis gives us directly a proof of
Γ p, Bp, �Δn $. In other words, ¬R is not translated, thanks to the operator
� (that will soon lead us to minor considerations).

– A ∨R rule:

π1

Γ $ .;B,C,Δ

Γ $ .;B ∨ C,Δ

We must build a proof of the sequent Γ p, �¬(¬Bn ∧ ¬Cn), �Δn $, which is
equal to Γ p,¬Bn ∧ ¬Cn, �Δn $. It is natural to try to apply the ∧L rule:
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Γ p,¬Bn,¬Cn, �Δn $ ∧L
Γ p,¬Bn ∧ ¬Cn, �Δn $

We are committed to find a proof of the premiss, while the induction hy-
pothesis gives us a proof of the following slightly different sequent:

Γ p, �Bn, �Cn, �Δn $

Therefore we must examine two subcases:

• B is an atom, an existential, disjunctive or negated formula. Then Bn =
¬D for some D, and �Bn = D. We build the following proof, given the
proof obtained by application of the induction hypothesis:

Γ p, D, �Cn, �Δn $ ¬R
Γ p, �Cn, �Δn $ ¬D ¬L
Γ p,¬Bn, �Cn, �Δn $

• otherwise �Bn = ¬Bn, and the induction hypothesis gives us directly a
proof of the above sequent.

We do a similar case distinction on C to get from the previous proof a proof
of the sequent Γ p,¬Bn,¬Cn,¬Δn $, which is now exactly what we were
looking for.

– A ∃R rule:

π
Γ $ .;A[t/x], Δ

Γ $ .; ∃xA,Δ

The induction hypothesis gives us a proof of the sequent Γ p, �A[t/x]
n
, �Δn $,

that we turn, in the same way as in the previous case, into a proof of the
sequent Γ p,¬A[t/x]

n
, �Δn $, to which we apply the ∀L rule:

Γ p,¬A[t/x]n, �Δn $
∀L Γ p, ∀x¬An, �Δn $

the end sequent is also equal to Γ p, �∃xAn, �Δn $; so we have exhibited the
proof we were looking for.

– A ∧R, ⇒R or ∀R rule. Those three last cases are easy, since we are in the
stoup, which corresponds to the right-hand side of the (intuitionistic) se-
quent. For example, let us consider the case of the ⇒R rule:

π

Γ,A $ B;Δ⇒R
Γ $ A ⇒ B;Δ

↪→
IH(π)

Γ p, Ap, �Δn $ Bn

⇒R
Γ p, �Δn $ Ap ⇒ Bn


�

The reverse translation is expressed with respect to the unfocused sequent
calculus, which is more liberal and therefore more convenient for the reverse
way. We nevertheless need to slightly generalize the statement.
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Theorem 4. Let Γ,Δ1, Δ2 be multisets of formulæ, such that Δ1 does not
contain any negated formula. Let D be at most one formula. If the sequent
Γ p, �Δn

1 ,¬Δn
2 $ Dn is provable in the intuitionistic sequent calculus, then Γ $

Δ1, Δ2, D is provable in the classical sequent calculus.

Proof. We constraint the intuitionistic proof to have a certain shape before start-
ing the induction. First, we assume that axiom rules are restricted to atoms. It
is always possible to expanse the axioms that are not of this form. Second, we
also assume that ¬L rules on atomic formlæ are permuted upwards as far as
they can [14], this basically induces that this ¬L rule becomes glued either to
an axiom or to a weakening rule and therefore the axiom case will be integrated
to ¬L case. This way, we avoid the presence of non-double negated axioms on
the right-hand side. Unless stated otherwise we do not mention explicitly the
application of the induction hypothesis, which is clear from the context.

– A contraction or a weakening on any of the formulæ of Γ p, �Δn
1 ,¬Δn

2 or Dn

is turned into the same rule on the corresponding formula of Γ,Δ1, Δ2 or D.
Below, we now concentrate on connective and quantifier rules.

– A left-rule on Γ p is turned into the same left-rule on Γ . The potential erasing
of Dn in the two cases ⇒L and ¬L is handled through a weakening.

– A left-rule on ¬Δn
2 can be only a ¬L rule. It is turned into a weakening

on Dn if necessary, since we apply the induction hypothesis on the premiss
Γ p, �Δn

1 ,¬(Δ′
2)

n $ Dn
2 , with Δ2 = Δ′

2, D2.

– A right-rule on Dn, assuming the main connective or quantifier of D is ∧,
⇒ or ∀. The rule is ∧R, ⇒R or ∀R, respectively. It is turned into the same
right-rule on D.

– A right-rule on Dn, assuming D is an atomic, existentially quantified or
disjunctive formula. The rule is ¬R and the premiss is Γ p, �Δ1

n, �Dn,¬Δn
2 $,

to which we only need to apply the induction hypothesis.

– A right-rule on Dn assuming D is a negated formula ¬D′. In this case, the
rule must be ¬R and the premiss is of the form Γ p, �Δ1

n, �(D)n,¬Δn
2 $. But

D is negated, and �Dn =�¬D′p = D′p. So, to apply the induction hypothesis,
we consider that the premiss is Γ p, D′p, �Δ1

n,¬Δn
2 $.

– All possibilities for D have been examined. Notice in particular that a ∨R

or ∃R rule cannot be applied on Dn, since the negative translation of Defi-
nition 5 never introduces this connective (resp. quantifier) in head position.

– A left-rule on �Dn
1 ∈�Δn

1 , assuming D1 is a disjunctive (resp. existentially
quantified) formula. The rule is ∧L (resp. ∀L) and is turned in an ∨R (resp.
∃R) rule on D1, making the active formula(e) of the premiss(es) move from
Δ1 to Δ2 if necessary. Let us detail the ∨ case. D1 = B1 ∨ C1, and �Dn

1 =
¬Bn

1 ∧ ¬Cn
1 . The ∧L rule gives us the premiss :

Γ p
1 , �(Δ′

1)
n,¬Bn

1 ,¬Cn
1 ,¬Δn

2 $ Dn

We must distinguish according to the shapes of B1 and C1. Let us discuss
only B1, the discussion on C1 being exactly the same:
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• B1 is an atomic, existentially quantified, disjunctive or negated formula.
Then ¬Bn

1 is different from �Bn
1 , and to apply properly the induction

hypothesis, B1 must be placed into Δ2.
• Otherwise ¬Bn

1 =�Bn
1 and it is left into Δ1.

– A left-rule on �Dn
1 ∈�Δn

1 , assuming that the main connective or quantifier of
D1 is ⇒, ∧ or ∀. The rule is ¬L in all cases, and we only need to weaken on
Dn if necessary, before applying the induction hypothesis on the premises.

– A left rule on �Dn
1 ∈�Δn

1 , assuming D1 is atomic. By assumption, the next
rule is a rule on D1. If it is a weakening, we translate both rules at once by
weakening on D1 and apply the induction hypothesis to the premiss of the
weakening rule. Otherwise the next rule is an axiom. The only possibility is
that D1 belongs to Γ p, and we translate both rules as an axiom.

– By assumption, D1 cannot be a negated formula, and therefore all the cases
have been considered. 
�

Corollary 1. Let Γ,Δ be multisets of formulæ and D be at most one formula.
If the sequent Γ p, �Δn $ Dn is provable in the intuitionistic sequent calculus,
then the sequent Γ $ Δ,D is provable in the classical sequent calculus.

Proof. Let ¬C1, · · · ,¬Cn be the negated formulæ of Δ and Δ′ the other ones.
We apply Theorem 4 to a Γ composed of Γ,C1, · · · , Cn, a Δ1 composed of Δ′,
an empty Δ2 and finally a D equal to D, which gives a proof of the sequent:

Γ,C1, · · · , Cn $ Δ′, D

to which we apply n times the ¬R rule to get back a proof of the wanted sequent.

6 Conclusion and Further Work

In this paper, we have shown that polarized double-negation translations still are
used to navigate between intuitionistic and classical logics. They are lighter in
terms of double negation, and let more statements being invariant by translation.

For instance, consider the axiom (A ∧ B) ⇒ (A ∨ B). Kolmogorov’s transla-
tion introduces 14 negations: ¬¬(¬¬(¬¬A∧¬¬B) ⇒ ¬¬(¬¬A∨¬¬B)), while its
(positive) polarized variant, only 10 of them: (¬¬(¬¬A∧¬¬B) ⇒ (¬¬A∨¬¬B).
Gödel-Gentzen’s translation would be (¬¬A ∧ ¬¬B) ⇒ ¬(¬¬¬A ∧ ¬¬¬B), in-
troducing 11 negations, while its polarized version introduces only 4 of them:
(¬¬A∧¬¬B) ⇒ (A∨B). Recent work from Fréderic Gilbert tends to show that
it is possible to go further in the removal of double-negations by turning double
negations into an operator that analyses the structure of the formula it double-
negates. The polarization of Krivine’s translation remains also to be examined.

Polarized translations are particularity adapted to cut-free proofs; otherwise
the same active formula may appear both in the left and the right hand sides. As
the negative and positive translations of a formula usually differ, it is impossible
to cut them back. The workaround can be a “manual” elimination of this cut
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by reductive methods up to the point where both translations become equal, or
to loosen the intuitionistic cut rule. We can also decide not to bother with cuts
by eliminating them a priori. In all cases, however, we rely on a cut-elimination
theorem that does not hold in the general case of the application described below.

Polarized double-negation translations has been primarily designed to fit po-
larized deduction modulo [16], an extension of first-order logic by a congruence
on formulæ that is generated by polarized rewrite rules that apply only on a
given side of the turn-style. It has already led to interesting results [17,18] in au-
tomated theorem proving within axiomatic theories. To support this approach,
we must ensure the cut-elimination property of the (sequent calculus modulo
the polarized) rewrite system.

One canonical way is to first show proof normalization for the natural deduc-
tion, and shift this result to the intuitionistic sequent calculus. Then, through
a double-negation translation of the rewrite system this result can be extended
to the classical sequent calculus [19]. In case of polarized rewriting, a polarized
translation can be of great help for this last step, in addition to the develop-
ment of normalization proofs via reducibility candidates. Another way to get cut
admissibility would be to develop semantic proofs.

Lastly, it could be interesting to investigate whether, even in absence of cut
admissibility as it can be the case, the modularity of our translations can be
enforced, or whether cuts between two differently translated left- and right-
formulæ can nevertheless be eliminated. We conjecture that this is possible,
provided the rewrite relation is confluent and terminating.

Acknowledgments. The authors would like to thank P. Jouvelot for his com-
ments and the choice of the title of this paper.
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Abstract. The Nelson-Oppen method [4] allows the combination of sat-
isfiability procedures of stably infinite theories with disjoint signatures.
Due to its importance, several attempts to extend the method to dif-
ferent and wider classes of theories were made. In 2005, it was shown
that shiny [9] and polite [6] theories could be combined with an arbi-
trary theory (the relationship between these classes was analysed in [6]).
Later, a stronger notion of polite theory was proposed, see [3], in order
to overcome a subtle issue with a proof in [6]. In this paper, we analyse
the relationship between shiny and strongly polite theories in the one-
sorted case. We show that a shiny theory with a decidable quantifier-free
satisfiability problem is strongly polite and provide two different suffi-
cient conditions for a strongly polite theory to be shiny. Based on these
results, we derive a combination method for the union of a polite theory
with an arbitrary theory.

Keywords: Nelson-Oppen method, combination of satisfiability proce-
dures, polite theories, strongly polite theories, shiny theories.

1 Introduction

The problem of modularly combining satisfiability procedures of two theories
into a satisfiability procedure for their union is of great interest in the area of
automated reasoning: for instance, verification systems such as CVC4 [1] and
SMTInterpol [2] rely on such a combination procedure.

The first and most well-known method for the combination of satisfiability
procedures is due to Nelson and Oppen, [4]. In this seminal paper, the authors
provide a combination method to decide the satisfiability of quantifier-free for-
mulas in the union of two theories, provided that both theories have their own
procedure for deciding the satisfiability problem of quantifier-free formulas. Af-
ter a correction, see [5], the two main restrictions of the Nelson-Oppen method
are:
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– the theories are stably infinite,

– their signatures are disjoint.

It is also worth mentioning a correctness proof of the Nelson-Oppen method
given by Tinelli and Harandi in [7].

Concerned about the fact that many theories of interest, such as those admit-
ting only finite models, are not stably infinite, Tinelli and Zarba, in [9], showed
that the Nelson-Oppen combination procedure still applies when the stable in-
finiteness condition is replaced by the requirement that all but one of the theories
is shiny. However, a shiny theory must be equipped with a particular function
called mincard, which is inherently hard to compute.

In order to overcome the problem of computing themincard function and of the
shortage of shiny theories, Ranise, Ringeissen and Zarba proposed an alternative
requirement, politeness, in [6], and analysed its relationship with shininess. A
polite theory has to be equipped with a witness function, which was thought to
be easier to compute than the mincard function. They show that given a polite
theory and an arbitrary one, the Nelson-Oppen combination procedure is still
valid when the signatures are disjoint and both theories have their own procedure
for deciding the satisfiability problem of quantifier-free formulas. Some time
later, in [3], Jovanović and Barrett reported that the politeness notion provided
in [6] allowed, after all, witness functions that are not sufficiently strong to
prove the combination theorem. In order to solve the problem they provided a
seemingly stronger notion of politeness, in the sequel called strongly politeness,
equipped with a seemingly stronger witness function, s-witness, that allowed to
prove the combination theorem. However, the authors left open the relationship
between the two notions of politeness and between the strong politeness notion
and shininess.

In this paper we investigate the relationship between shiny and strongly polite
theories in the one-sorted case. We show that a shiny theory with a decidable
quantifier-free satisfiability problem is strongly polite. For the other direction,
we provide two different sets of conditions under which a strongly polite theory
is shiny (see Figure 1 for a more detailed global view of the results). Moreover,
we show that, under some conditions, a polite theory is also strongly polite
and so there is a way to transform a witness function into a strong witness
function. Given the constructive nature of the proofs we were able to design
such a procedure.

1.1 Organization of the Paper

The paper is organized as follows: in Section 2 we recall some relevant definitions.
In Section 3 we begin by recalling the definitions of shininess and of (strong)
politeness and then we proceed to show the equivalence between these notions.
In Section 4 we analyse what was done in the paper and provide directions for
further research.
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T is strongly
polite

by Fact 1

by Proposition 1

T is polite

T is a universal
theory over a finite
signature and has

access to P

checking if a finite
interpretation is a
T -model, with T

over a finite
signature, is
decidable

T is shiny

T is shiny and
has access to

P

P is a decision
algorithm for the
satisfiability of
quantifier-free
formulas

by Proposition 2 and 4 see [6]

Fig. 1. Schematic representation of the results in the paper

2 Preliminaries

The results in this paper concern first-order logic with equality. We assume given
a countably infinite set of variables. We mainly follow the notation in [9].

2.1 Syntax

A signature is a tuple Σ = 〈ΣF , ΣP 〉 where ΣF is the set of function symbols
and ΣP is the set of predicate symbols. We use ∼= to denote the equality logic
symbol and assume the standard definitions of Σ-atom and Σ-term. A Σ-formula
is inductively defined as usual over Σ-atoms and Σ-terms using the connectives
∧,∨,¬,→ or the quantifiers ∀ and ∃. We denote by QF(Σ) the set of Σ-formulas
with no occurrences of quantifiers and, given a Σ-formula ϕ, by vars(ϕ) the set
of free variables of ϕ. We say that a Σ-formula is a Σ-sentence if it has no free
variables. In the sequel, when there is no ambiguity, we will omit the reference
to the signature when referring to atoms, terms, formulas and sentences.

Definition 1 (Arrangement formula). Given a finite set of variables Y and
an equivalence relation E ⊆ Y 2, the arrangement formula induced by E over Y ,
denoted by δYE , is ∧

(x,y)∈E
(x ∼= y) ∧

∧
(x,y)∈Y 2\E

¬(x ∼= y)

In the sequel, we may simply denote δYE by δE if there is no confusion to which
variable set the formula refers to.
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2.2 Semantics

Given a signature Σ, a Σ-interpretation A with domain A over a set of variables
X is a map that interprets each variable x ∈ X as an element xA ∈ A, each
function symbol f ∈ ΣF of arity n as a map fA : An → A and each predicate
symbol p ∈ ΣP of arity n as a a subset PA of An. We denote by dom(A) the
domain of an interpretation A. In the sequel, when there is no ambiguity, we
will omit the reference to the signature when referring to interpretations.

Given an interpretation A and a term t, we denote by tA the interpretation
of t under A. Similarly, we denote by ϕA the truth value of the formula ϕ under
the interpretation A. Furthermore, given a set Γ of formulas, we denote by �Γ �A
the set {ϕA : ϕ ∈ Γ}, and similarly for a set of terms. We write A � ϕ when the
formula ϕ is true under the interpretation A, i.e., A satisfies ϕ.

A formula ϕ is satisfiable if it is true under some interpretation, and unsatis-
fiable otherwise.

Given a set of variables Y we say that two interpretations A and B over a set
X of variables are Y -equivalent whenever dom(A) = dom(B), fA = fB for each
function symbol f , pA = pB for each predicate symbol p, and xA = xB for each
variable x in X \ Y .

We also say that an interpretation is finite (infinite) when its domain is finite
(infinite).

2.3 Theories

Given a signature Σ, a Σ-theory is a set of Σ-sentences and given a Σ-theory T ,
a T -model is a Σ-interpretation that satisfies all sentences of T . We say that a
formula ϕ is T -satisfiable when there is a T -model that satisfies it and say that
two formulas are T -equivalent if they are interpreted to the same truth value
in every T -model. In the sequel, when there is no ambiguity, we will omit the
reference to the signature when referring to theories.

Given a Σ1-theory T1 and a Σ2-theory T2, their union, T1 ⊕ T2, is a Σ1 ∪Σ2-
theory defined by the union of the sentences of T1 with the sentences of T2.

The following definitions introduce some of the conditions used in the results
presented in this paper.

Definition 2 (Smoothness). We say that a theory T is smooth if for every T -
satisfiable quantifier-free formula ϕ, T -model A satisfying ϕ and cardinal κ ≥ |A|
there exists a T -model B satisfying ϕ such that |B| = κ.

Definition 3 (Stable finiteness). We say that a theory T is stably finite if
for every T -satisfiable quantifier-free formula ϕ there exists a finite T -model
of ϕ.

Definition 4 (Stable infiniteness). We say that a theory T is stably infinite
if for every T -satisfiable quantifier-free formula ϕ there exists an infinite T -
model of ϕ.



202 F. Casal and J. Rasga

Definition 5 (Finite witnessability, [6]). We say that a theory T over a
signature Σ is finitely witnessable if there exists a computable function witness :
QF(Σ) → QF(Σ) such that for every quantifier-free formula ϕ the following
conditions hold:

– ϕ and ∃�
w witness(ϕ) are T -equivalent, where

�
w are the variables in witness(ϕ)

which do not occur in ϕ;
– if witness(ϕ) is satisfiable in T then there exists a T -model A such that
A � witness(ϕ) and dom(A) = �vars(witness(ϕ))�A.

A function satisfying the above properties is called a witness function for T .
In [3], a stronger finite witnessability notion was defined in order to clarify an
issue found on [6].

Definition 6 (Strong finite witnessability, [3]). We say that a theory T
over a signature Σ is strongly finitely witnessable if there exists a computable
function s-witness : QF(Σ) → QF(Σ) such that for every quantifier-free formula
ϕ the following conditions hold:

– ϕ and ∃�
w s-witness(ϕ) are T -equivalent, where

�
w are the variables in the

formula s-witness(ϕ) which do not occur in ϕ;
– for every finite set of variables Y and relation E ⊆ Y 2, if s-witness(ϕ)∧δYE is

satisfiable in T then there exists a T -model A such that A � s-witness(ϕ)∧δYE
and dom(A) = �vars(s-witness(ϕ) ∧ δYE )�A.

A function satisfying the above properties is called a strong witness function
for T . The following notion was introduced by Tinelli and Zarba in [9] and its
computability is one of the conditions a theory should satisfy to be shiny.

Definition 7 (mincard function). Given a theory T over a signature Σ, let
mincardT be the function from QF(Σ) to N+ such that

mincardT (ϕ) = min{k : A is a T -model, A � ϕ and |dom(A)| = k}

if ϕ is T -satisfiable, otherwise mincardT (ϕ) is undefined.

So, when ϕ is T -satisfiable the function mincardT returns the cardinality of
the smallest T -model of ϕ. When there is no ambiguity to which theory the
function refers to we will simply write mincard.

3 Shiny and (Strongly) Polite Theories

3.1 Relating Shiny and Strongly Polite Theories

Here we analyse the relationship between shiny and strongly polite theories. We
start by showing that a shiny theory is strongly polite when assuming that it
has a decidable quantifier-free satisfiability problem, but first we recall what is
a shiny theory, see [9], and a strongly polite one, see [3].
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Definition 8 (Shininess, [9]). A theory is shiny whenever it is smooth, stably
finite and its mincard function is computable.

Several theories were proved to be shiny, such as the theory of equality, the
theory of partial orders and the theory of total orders, in [9].

Definition 9 (Strong politeness, [3]). A theory is strongly polite whenever
it is smooth and strongly finitely witnessable.

Proposition 1. A shiny theory with a decidable quantifier-free satisfiability prob-
lem is strongly polite.

Proof. Let T be a shiny theory over a signature Σ and P an algorithm for
its quantifier-free satisfiability problem. Since a shiny theory is by definition
smooth, we are left to prove that T is strongly finitely witnessable in order to
conclude that T is strongly polite. In the sequel, given a T -satisfiable quantifier-

free formula ϕ and E ⊆ vars(ϕ)2 such that ϕ∧ δ
vars(ϕ)
E is T -satisfiable, we denote

by kϕE the result of mincardT (ϕ ∧ δ
vars(ϕ)
E ).

Let
s-witness : QF(Σ) → QF(Σ)

be the map such that s-witness(ϕ) = ϕ ∧Ω, where Ω is∧
E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕ

E

)

and γkϕ
E
is

kϕ
E∧

i,j=1
i�=j

wi � wj

and w1, . . . , wk are distinct variables not occurring in ϕ and in γkϕ

E′ for all E
′ 
= E

contained in vars(ϕ)2 with P(ϕ ∧ δ
vars(ϕ)
E′ ) = 1. It is immediate to conclude that

s-witness is computable since:

– there is a finite number of sets E contained in vars(ϕ)2 since vars(ϕ) is finite;

– formula δ
vars(ϕ)
E can be computed in a finite number of steps since E and

vars(ϕ) are finite;
– the value kϕE is computable since: (i) the mincard function is computable; (ii)

we can decide the satisfiability of ϕ ∧ δ
vars(ϕ)
E with P ; and (iii) T is stably

finite;
– the formula γkϕ

E
is computable in a finite number of steps because kϕE is a

natural number.

Let ϕ be a quantifier free formula. We now show that ϕ and ∃�
w s-witness(ϕ)

are T -equivalent. Let A be a T -model. Assume that A � ∃�
w s-witness(ϕ). Then
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A � ϕ ∧ ∃�
w Ω, and so A � ϕ. For the other direction, assume A � ϕ. We need

to show that
A � ∃�

w
∧

E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕ

E

)
.

Let A′ be an interpretation
�
w-equivalent to A (and so with the same domain

and the same interpretation of functions, predicates and of all variables except
possibly

�
w) such that:

– if their domain is infinite then wA
′

1 
= wA
′

2 for every w1, w2 ∈ �
w;

– if their domain is finite then for each E ⊆ vars(ϕ)2 with P(ϕ ∧ δ
vars(ϕ)
E ) = 1:

• if kϕE ≤ |dom(A′)| then wA
′

1 
= wA
′

2 for every w1, w2 ∈ �
w;

• otherwise, set wA
′

1 = wA
′

2 for every w1, w2 ∈ vars(γkϕ
E
).

Then
A′ �

∧
E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕ

E

)
,

since for each E ⊆ vars(ϕ)2 with P(ϕ ∧ δ
vars(ϕ)
E ) = 1 either

– A′ � δ
vars(ϕ)
E and so A′ � δ

vars(ϕ)
E → γkϕ

E
; or

– A′ � δ
vars(ϕ)
E and so A′ � ϕ ∧ δ

vars(ϕ)
E since A � ϕ and A and A′ only

differ in the interpretation of the variables in
�
w not occurring in ϕ. Since

A′ is a model for ϕ ∧ δ
vars(ϕ)
E , its cardinality has to be greater or equal than

kϕE = mincard(ϕ ∧ δ
vars(ϕ)
E ). Hence A′ � γkϕ

E
and so A′ � δ

vars(ϕ)
E → γkϕ

E
.

We now show that given an equivalence relation E′ over a finite set of variables
Y , if ϕ ∧ Ω ∧ δYE′ is T -satisfiable, then there exists a T -model A that satisfies
ϕ∧Ω∧δYE′ such that dom(A) = �vars(ϕ∧Ω∧δYE′ )�A. So, let E′ be an equivalence
relation over a finite set of variables Y such that ϕ∧Ω ∧ δYE′ is T -satisfiable. Let
p be a natural number and Y1, . . . , Yp finite pairwise disjoint non-empty sets of
variables such that

– Y = Y1 ∪ . . . ∪ Yp; and
– for each i = 1, . . . , p, and y ∈ Yi,

• (y ∼= x) and (x ∼= y) are in δYE′ for each x ∈ Yi;
• ¬(y ∼= x) and ¬(x ∼= y) are in δYE′ for each x ∈ Y \ Yi;

and observe that the variables in Y can be either in vars(ϕ) or in vars(γkE ) for
some E or not in vars(ϕ ∧Ω). Let A be a T -model that satisfies

ϕ ∧Ω ∧ δYE′

and let δ
vars(ϕ)
EA be the arrangement formula induced by EA = {(x, y) : x, y ∈

vars(ϕ) and xA = yA}. Then, obviously, δ
vars(ϕ)
EA is satisfied by A. Moreover, no
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other formula in {δvars(ϕ)E : E ⊆ vars(ϕ)2 and P(ϕ ∧ δ
vars(ϕ)
E ) = 1} is satisfied

by A. Since ϕ ∧ δ
vars(ϕ)
EA is satisfiable we have that the cardinality of its smallest

model is kϕEA = mincard(ϕ∧ δ
vars(ϕ)
EA ). Let K = max{kϕEA , p}. By the smoothness

of T and since ϕ ∧ δ
vars(ϕ)
EA is T -satisfiable, let B be a T -model such that

B � ϕ ∧ δ
vars(ϕ)
EA and |dom(B)| = K,

and let d1, . . . , dp be distinct elements of dom(B) such that

di = yB if Yi ∩ vars(ϕ) 
= ∅ and y ∈ Yi ∩ vars(ϕ)

for i = 1, . . . , p, and assuming that the variables of γkϕ
EA

are w1 . . . , wkϕ
EA

let

e1, . . . , ekϕ
EA

be distinct elements of dom(B) such that

ej = di if wj ∈ Yi

for j = 1, . . . , kϕEA . Observe that distinct variables in w1 . . . , wkϕ
EA

are in distinct

sets in Y1, . . . , Yp since A � δYE′ and A � γkϕ
EA

taking into account that A �
δ
vars(ϕ)
EA and A � Ω. Let B′ be the T -model (

�
w ∪ (Y \ vars(ϕ)))-equivalent to B

such that

xB
′
=

⎧⎪⎨⎪⎩
di if x ∈ Yi for some i ∈ {1, . . . , p}
ej if x /∈ Y and x is wj with wj ∈ vars(γkEA )

xB if x /∈ Y and x /∈ vars(γkEA )

for each x ∈ �
w ∪ (Y \ vars(ϕ)). Let us now prove that B′ � ϕ ∧Ω ∧ δYE′ :

(a) B′ � ϕ. This follows immediately taking into account that B � ϕ and that
B and B′ may only differ in variables in

�
w ∪ (Y \ vars(ϕ)) not occurring in ϕ;

(b) B′ � Ω. Observe that B′ � ϕ ∧ δ
vars(ϕ)
EA since B and B′ may only differ in

variables in
�
w ∪ (Y \ vars(ϕ)) not occurring in ϕ ∧ δ

vars(ϕ)
EA . Moreover B′ � γkEA

and so B′ � δ
vars(ϕ)
EA → γkEA . Since B′ � δ

vars(ϕ)
EA , we have that B′ � δ

vars(ϕ)
E for all

E 
= EA with E ⊆ vars(ϕ)2. Hence B′ � δ
vars(ϕ)
E → γkE for all E ⊆ vars(ϕ)2 and

so B′ � Ω;

(c) B′ � δYE′ . We only need to verify that B′ satisfies the equalities and disequali-
ties induced by E′. This holds since by construction, it assigns the same value to
variables in the same Yi set, and assigns different values to variables in different
sets.

Finally it remains to show that dom(B′) = �vars(ϕ ∧Ω ∧ δYE′)�B′
:

(⊆): Let d ∈ dom(B′). Then d is either a di for some i = 1, . . . , p or a ej for some

j = 1, . . . , kEA . In the case that d = di then we have that d = xB
′
for all x ∈ Yi.

On the other hand, if d = ej then d = wB
′

j for the wj variable in vars(γkEA );
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(⊇): From the construction described above we obtain for every x ∈ vars(ϕ ∧
Ω ∧ δYE′) how to define xB

′
.

Combining the previous items, we obtain that a shiny theory is strongly
finitely witnessable, hence strongly polite. 
�

3.2 Relating Polite and Shiny Theories

In this section, we relate polite and shiny theories using results from [6] and
making use of a sufficient condition for the computability of the mincard func-
tion [9].

Begin by recalling the notion of politeness by Ranise, Ringeissen and Zarba [6].

Definition 10 (Politeness). We say that a theory is polite whenever it is
smooth and finitely witnessable.

We prove that a polite theory is stably infinite, as mentioned in Remark 10
of [6].

Proposition 2. A polite theory is stably finite.

Proof. Let T be a polite theory, witness a witness function for T , and ϕ a T -
satisfiable quantifier-free formula. Hence witness(ϕ) is T -satisfiable and so there
is a T -model A satisfying witness(ϕ) with dom(A) = �vars(witness(ϕ))�A. Since
the number of variables in witness(ϕ) is finite we have that A is a finite model
of this formula, and so of ϕ. Hence T is stably finite. 
�

We now recall a proposition by Ranise, Ringeissen and Zarba in [6] that
provides conditions under which a polite theory is shiny.

Proposition 3 ([6]). Let Σ be a finite signature and T a Σ-theory. Assume
that it is decidable to check if a finite Σ-interpretation is a T -model. Then, if T
is polite then T is shiny and Algorithm 1 computes its mincard function.

Algorithm 1. — mincardwitness algorithm
Input: ϕ, where ϕ is a quantifier-free satisfiable formula
Output: k, where k is the cardinality of the smallest T -model of ϕ
Requires: access to a witness function witness for T
1: n = |vars(witness(ϕ))|;
2: for k = 1 to n
3: for all non-isomorphic T -models A s.t. |dom(A)| = k do
4: ifA � ϕ then return k
5: end for
6: end for

Observe that the conditions on the previous proposition are rather weak –
for instance, if a theory T over Σ is finitely axiomatized then it is decidable to
check if a finite Σ-interpretation is indeed a T -model.
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On the other hand, even if it is not decidable to check whether a finite in-
terpretation is a T -model, it is still possible to construct the mincard function
provided that the theory T is universal as is stated in the next proposition.
This proposition uses a result of Tinelli and Zarba in [9]. Observe that Algo-
rithm 2 makes use of a simple diagram of an interpretation. We suggest [9] for
this definition.

Proposition 4. Let Σ be a finite signature and T a universal Σ-theory with
a decidable quantifier-free satisfiability problem. Then, if T is polite then it is
shiny and Algorithm 2 computes its mincard function.

Proof. By Proposition 2 we obtain that T is stably finite. The thesis follows
immediately by Proposition 23 in [9] that establishes that the mincard function
of any theory is computable by Algorithm 2, if that theory is stably finite, uni-
versal, is over a finite signature, and has a decidable quantifier-free satisfiability
problem. 
�

Algorithm 2. — mincardP algorithm, [9]
Input: ϕ, where ϕ is a quantifier-free satisfiable formula
Output: k, where k is the cardinality of the smallest T -model of ϕ
Requires: access to an algorithm P that decides satisfiability of quantifier-free
formulas and where Δ(A) denotes the simple diagram of A
1: while true do
2: k = 1
3: for all non-isomorphic interpretations A s.t. |dom(A)| = k do
4: if P(Δ(A) ∧ ϕ) == 1 then return k
5: end for
6: k = k + 1
7: end while

3.3 Relating Polite and Strongly Polite Theories

Finally, we state that a strongly finitely witnessable theory is also finitely
witnessable.

Fact 1. Each strongly finitely witnessable theory is finitely witnessable.

This fact follows by observing that a strong witness function is also a witness
function. Specifically, with respect to the second condition of the finite witness-
ability, let E and Y to be the empty set and the result follows.
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3.4 Relating Shiny, Polite and Strongly Polite Theories

Combining the results in the previous sections, we obtain the equivalence be-
tween strong politeness, shininess and politeness, assuming two sets of different
conditions on the theory.

Corollary 1. Let T be a theory over a finite signature. If either

– T is universal; or
– checking whether a finite interpretation is a T -model is decidable,

then the following statements are equivalent:

1. T is shiny;
2. T is strongly polite;
3. T is polite.

Proof. (1. → 2.) Follows by Proposition 1.
(2. → 3.) Follows by Fact 1.
(3. → 1.) If T is universal, follows by Proposition 4, and if checking whether

a finite interpretation is a T -model is decidable, follows by Proposition 3. 
�

Capitalizing on the previous results on the relationship between strong polite-
ness, shininess, and politeness, we now present a new algorithm, Algorithm 3,
that computes a strong witness function for a smooth and finitely witnessable
theory.

Theorem 1. Let Σ be a finite signature and T a polite Σ-theory with a decidable
quantifier-free satisfiability problem. Assume that either T is universal or it is
decidable to check if a finite interpretation is a T -model. Then, Algorithm 3
computes a strong witness function for T .

Proof. We begin by computing the mincard function. If T is universal, by Propo-
sition 4 we have that the mincard function is computable and that Algorithm
2 is an algorithm for it. In the case that it is decidable to check if a finite Σ-
interpretation is a T -model, then by Proposition 3 we have that the mincard
function is computed by Algorithm 1. Therefore, T is shiny. It is immediate to
see that Algorithm 3 computes the function shown in the proof of Proposition 1
to be a strong witness function for T , and so the thesis follows. 
�

Capitalizing on the relationships between the politeness, shininess and strong
politeness established in the previous results, we can now establish a combination
result very similar to the combination proposition of [3], Proposition 2, but
instead of imposing that T2 is strongly finitely witnessable, imposes that T2 is

– finitely witnessable;
– either universal or such that checking if a finite Σ2-interpretation is a model

of T2 is decidable.
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Algorithm 3. — Computes a strong witness function for a theory T
Input: ϕ, where ϕ is a quantifier-free satisfiable formula
Output: s-witness(ϕ)
Requires: access to an algorithm P that decides satisfiability of quantifier-free
formulas, and to the function mincard for T
1: for E ⊆ vars(ϕ)2

2: δ
vars(ϕ)
E = ε

3: for all pairs (x, y) ∈ vars(ϕ)2

4: if (x, y) ∈ E
5: then δ

vars(ϕ)
E = δ

vars(ϕ)
E ∧ (x ∼= y)

6: else δ
vars(ϕ)
E = δ

vars(ϕ)
E ∧ ¬(x ∼= y)

7: end if
8: end for
9: if P(ϕ ∧ δvars(ϕ)

E ) == 1

10: then kE = mincard(ϕ ∧ δvars(ϕ)
E )

11: γkE = ε
12: for i, j = 1, i 	= j to kE
13: γkE = γkE ∧ ¬(xi ∼= xj)
14: end for
15: ϕ = ϕ ∧ (δvars(ϕ)

E → γkE )
16: end if
17: end for
18: return ϕ

Observe that showing these conditions may be more manageable than proving
that T2 is strongly finitely witnessable, particularly because many theories of
interest to SMT applications are either universal or finitely axiomatized.

In other words, these results show that in the one-sorted context, if a theory
is either universal or is such that checking whether a finite interpretation is a
model is decidable, then we can forget the strong politeness requirement and
use the politeness condition by Ranise, Ringeissen and Zarba to construct both
a strong witness function and the mincard function. These functions can then
be used in the application of the Nelson-Oppen method for the combination of
strongly polite theories or shiny theories with an arbitrary theory. The following
result formalizes these statements in a Nelson-Oppen combination theorem.

Theorem 2. Let Σ2 be a finite signature and Ti a Σi-theory with a decidable
quantifier-free satisfiability problem, for i = 1, 2, such that Σ1∩Σ2 = ∅. Assume
that

– T2 is smooth;

– T2 has a witness function;

– either T2 is universal or checking if a finite Σ2-interpretation is a model of
T2 is decidable.
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Then, the function mincardT2 is computable and there is a computable strong
witness function, s-witnessT2 , for T2, such that the following statements are
equivalent:

1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable;
2. there exists E ⊆ Y 2, where Y is vars(Γ1) ∩ vars(Γ2), such that

– Γ1 ∧ δYE ∧ γκ is T1-satisfiable, where κ is mincardT2(Γ2 ∧ δYE );
– Γ2 ∧ δYE is T2-satisfiable;

3. there exists E ⊆ Y 2, where Y is vars(s-witness(Γ2)), such that
– Γ1 ∧ δYE is T1-satisfiable;
– s-witnessT2(Γ2) ∧ δYE is T2-satisfiable;

for every conjunction Γ1 of Σ1-literals and Γ2 of Σ2-literals.

Proof. Observe that the theory T2 is polite and that the mincard function of
T2 is computable either by Proposition 3 if it is decidable to check if a finite
Σ2-interpretation is a model of T2; or by Proposition 4 if T2 is a universal the-
ory. Moreover T2 has also a computable strong witness function by Theorem 1.
Observe also that T2 is stably finite by Proposition 2. Then, the equivalence be-
tween (1) and (2) follows from the combination theorem in [9], Theorem 18, and
the equivalence between (1) and (3) follows from the combination proposition,
Proposition 2, in [3]. 
�

We now provide an example showing an application of the previous theorem.

Example 1. Consider the theories T1 and T2 over the empty signature such that
T1 is axiomatized by ∀x∀y (x ∼= y) and T2 is axiomatized by ∃x∃y ¬(x ∼= y).
Hence every model of T1 has cardinality at most one and every model of T2 has
cardinality at least 2. Let ϕ denote the formula (x ∼= x).

Observe that, in [3], it was shown that theory T2 is smooth and that

witnessT2(ϕ) := ϕ ∧ (w1
∼= w1) ∧ (w2

∼= w2)

is a witness function for T2. Hence this condition for the application of Theorem 2
is fulfilled. Taking into account that mincardT2(ϕ) = 2, then by Algorithm 3,

s-witnessT2(ϕ) = ϕ ∧ (x ∼= x) → γ2

= ϕ ∧ (x ∼= x) → ¬(z1 ∼= z2)

= (x ∼= x) ∧ ¬(z1 ∼= z2).

Let Γ1 be the formula tt, Γ2 the formula ϕ and Y the set vars(s-witness(Γ2))
i.e. {x, z1, z2}. We now would like to check if there is an arrangement of δYE such
that Γ1∧δYE is T1-satisfiable and s-witness(Γ2)∧δYE is T2-satisfiable. Note that the
only arrangement satisfied in T1 is the one induced by E={(x, z1), (x, z2), (z1, z2)}
since all others would require the interpretation to have cardinality greater than
one. However, s-witness(Γ2) ∧ δYE is clearly not satisfiable. Hence, by Theorem
2, we conclude that ϕ is not satisfiable in T1 ⊕ T2. In this simple case it is no
difficult to see that this was the expected conclusion since there are no models
that satisfy the theory resulting from the union of T1 and T2.

Observe the importance of Algorithm 3 to define in a computable way the
strong witnessable function.



Revisiting the Equivalence of Shininess and Politeness 211

Example 2. One can directly apply Proposition 1 to conclude that the theories
of partial orders, total orders and the theory of lattices with top and bottom are
strongly polite, since in [9] it is shown that these theories are shiny and have a
decidable quantifier-free satisfiability problem. Furthermore, using Algorithm 3
we can construct their s-witness functions.

4 Conclusion and Further Research

In this paper we investigated the relationship between the notions of shininess,
politeness and strong politeness. Answering a question left open by Jovanović
and Barrett in [3], we showed that a shiny theory with a decidable quantifier-
free satisfiability problem is strongly polite, as well as showed that a strongly
polite theory is polite. Capitalizing on results relating shiny and polite theories
from [6], as well as results regarding the computability of the mincard function
from [9], we were able to establish that under two different sets of conditions, the
notions of shininess, politeness and strong politeness are equivalent. Moreover,
given the constructive nature of the proof showing that a shiny theory with a
decidable quantifier-free satisfiability problem is strongly polite, we were able
to devise a Nelson-Oppen procedure for the combination of a polite (with an
additional restriction) and an arbitrary theory.

We leave as future work the extension of the results presented in this pa-
per to the many-sorted case. This would allow the application of our results to
other interesting theories such as the theory of lists and the theory of arrays.
We would also like to address the study of the relationship between the com-
plexity of the mincard function (already studied in [9]) and the complexity of
a s-witness function. We also hope to investigate the role of shiny, polite and
strongly polite theories and their relationships in the context of the union of
constraint theories [8].
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Abstract. In the field of non-monotonic logics, the notion of rational closure is
acknowledged as a landmark and we are going to see whether such a construction
can be adopted in the context of mathematical fuzzy logic, a so far (apparently)
unexplored journey. As a first step, we will characterise rational closure in the
context of Propositional Gödel Logic.

1 Introduction and Motivation

A lot of attention has been dedicated to non-monotonic (or defeasible) reasoning (see,
e.g. [11]) to accommodate reasoning patters with exceptions such as “typically, a bird
flies, but a penguin is a bird that does not fly”. Among of the many proposals, the notion
of rational closure [18] is acknowledged as a landmark for non-monotonic reasoning
due to its firm logical properties.

On the other hand, the main formalism developed for dealing with vague notions is
represented by the class of multi-valued or mathematical fuzzy logics [15,16], allowing
to reason with statements involving vague concepts such as “a very young bird does not
fly”. These logics allow to associate to a statement a truth value that is chosen not only
between false and true (i.e., {0, 1}), but usually from the real interval [0, 1] and, thus,
allowing to specify statements of graded truth.1

Here we propose a first attempt towards the definition of a logical system that com-
bines such two forms of reasoning, namely reasoning about vagueness and defeasible
reasoning via rational closure, allowing to cope with reasoning patterns such as

“Typically, a ripe fruit is sweet, but a ripe bitter melon is a ripe fruit that is not
sweet.” 2

More specifically, in what follows, we will propose a formalism for reasoning about
non-monotonic conditionals involving fuzzy statements as antecedents and consequents,
i.e. conditionals C � D that are read as

(∗) “Typically, if C is true to a positive degree, then D is true to a positive degree too.”

1 The previous statement may be graded as a bird may be very young to some degree depending
on the birds age.

2 As the bitter melon ripens, the flesh (rind) becomes tougher, more bitter, and too distasteful to
eat.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 213–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Note that such an interpretation is different from other ones appeared in the literature,
notably e.g. [2,3,4,6,7,9,10,20,21].

While one usually distinguishes three different fuzzy logics, namely Gödel, Product
and Łukasiewicz logics [16] to interpret graded statements,3 we start the journey of our
investigation with Propositional Gödel Logic, leaving the other two and extensions to
(notable fragments of) First-Order Logic for future work.

Related Work. While there have been a non negligible amount of work related to the
notion of rational closure in the classical logic setting, very little is know about it in
the context of mathematical fuzzy logic. Somewhat related are [2,3,4,6,7,9,10], which
rely on a possibilistic logic setting. Specifically, [2] shows that the notion of classical
rational closure can be related to possibility distributions: roughly a conditional C � D
is interpreted as Π(C∧D) > Π(C∧¬D), i.e. the possibility of classical formula C∧D
is greater than the possibility of C ∧ ¬D. The idea has then be used later on in [4] and
related works such as [3,6,10], however, addressing only marginally the fuzzy case as
well, by proposing various interpretation of the fuzzy conditional C � D, e.g. along
the paradigm “the more C the more it is certain that C implies D”. This is a different
interpretation as the one proposed here and, indeed, seems not to apply to the typical
ripe fruits are sweet case. To the best of our knowledge, there has been no attempt so far
to combine rational closure in the context of a pure mathematical fuzzy logic setting,
which, however, does not mean that an approach based on possibilistic logic may not
be viable in the future as well.

In the following, we proceed as follows. After introducing some preliminary notions
in the next section, section 3 characterises preferential entailment, section 4 characterises
rational monotony, and eventually section 5 concludes and addresses future work.

2 Preliminaries

Syntax. We start with a standard propositional language, defined from a finite set P
of atomic propositions and connectives {¬,∧,∨,⊃,≡}. Let L be the set of the propo-
sitional formulae, which we indicate with C,D, . . .. From L and the operator � we
define the conditionals C = {C � D | C,D ∈ L}, where (∗) is the intended interpre-
tation of C � D.

A knowledge base K = 〈T ,D〉 consists of a finite set T of propositions, indicating
what the agent considers as fully true, and a finite set of conditionals D, describing
defeasible information about what typically holds.

Example 1. The example about ripe fruits being sweet, while a ripe bitter melon isn’t,
can be encoded as follows:

T = {rbm ⊃ (rf ∧ ¬s), rbm ⊃ bm}
D = {rf � s} ,

where rbm, bm, rf and s encode ripe bitter melon, bitter melon, ripe fruits and sweet,
respectively. 
�

3 The main reason is that any other t-norm, i.e., the function used to interpret conjunction, can
be obtained as a combination of these three.
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Semantics. At the base of our (preferential) semantics there are the valuations for
propositional Gödel logic. A valuation u is a function that maps each atomic propo-
sition in P into [0, 1], and u is then extended inductively as follows:

u(C ∧D) = u(C) ⊗ u(D)
u(C ∨D) = u(C) ⊕ u(D)
u(C ⊃ D) = u(C)⇒ u(D)
u(¬C) = !u(C) .

C ≡ D is, as usual, an abbreviation for (C ⊃ D) ∧ (D ⊃ C). In Gödel logic, the
semantic operators are defined as:

m⊗ n = min(m,n)
m⊕ n = max(m,n)

m ⇒ n =

{
1 if m ≤ n
n otherwise

-m =

{
1 if m = 0
0 otherwise

with m,n ∈ [0, 1].
Let I = {u, v, . . .} be the set of all the valuations for language L. We shall indicate

with |= the entailment relation defined on such interpretations, where, given a finite
set of propositions Γ , Γ |= D iff for every valuation u ∈ I that verifies the premises
(i.e., s.t. for every proposition C ∈ Γ , u(C) = 1), it holds that u(D) = 1. Note that
Γ |= D can be decided e.g. via the Hilbert style calculi described in [16], or with more
practical methods such as [1,14]. However, deciding entailment is a coNP-complete
problem [16].

Properties of the Conditionals. The preferential approach to crisp non-monotonic rea-
soning is characterised by the satisfaction of some desirable properties.

Here we consider the relevant properties w.r.t. the material implication, instead that
w.r.t. the consequence relation as usually presented in the crisp propositional case. The
properties we take under consideration are Reflexivity, Left Logical Equivalence, Right
Weakening, Cumulative Transitivity (Cut), Monotony, and Disjunction in the Premises,
which are illustrated below.

(REF) C ⊃ C

(LLE)
C ⊃ E C ≡ D

D ⊃ E (RW)
C ⊃ D D ⊃ E

C ⊃ E

(CT)
C ∧D ⊃ E C ⊃ D

C ⊃ E (MON)
C ⊃ E

C ∧D ⊃ E

(OR)
C ⊃ E D ⊃ E
C ∨D ⊃ E

It is rather straightforward to prove that

Proposition 1. Propositional Gödel logic satisfies the properties (REF), (LLE), (RW),
(CT), (MON), and (OR).
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The properties (REF), (LLE), (RW), (CT), and (OR) are interesting because they rep-
resent a set of reasonable and desirable properties for a logic-based reasoning system.
On the other hand, (MON) is the property that we want to drop, still keeping a con-
strained form of monotony that is appropriate for reasoning about typicality. In particu-
lar, the first form of constrained monotony that we take under consideration is Cautious
Monotony (CM). Specifically, the set of properties involving defeasible conditionals we
are interested in is the following:

(REF) C � C

(LLE)
C � E C ≡ D

D � E
(RW)

C � D D ⊃ E
C � E

(CT)
C ∧D � E C � D

C � E
(CM)

C � E C � D

C ∧D � E

(OR)
C � E D � E

C ∨D � E

(1)

The meaning of (CM) is the following: if in every typical situation in which C has a
positive degree of truth also D has a positive degree of truth, then a typical situation
for C ∧D will be a typical situation also for C, and whatever typically follows from C
(e.g. E) follows also from C∧D. In classical logic the set of properties above identifies
the class of the preferential conditionals [17].

Example 2 (Example 1 cont.). Consider Example 1. Let us add the defeasible informa-
tion “typically, a ripe fruit tastes good” represented via the conditional

rf � tg ,

where tg stands for “tastes good”. Then, by using (CM) we may infer that

rf ∧ tg � s ,

i.e., “typically, a ripe and good tasting fruit is sweet”. 
�

3 Characterising Preferential Entailment

Next, we want to define a very basic non-monotonic connection between the antecedent
C and the consequent D according to the interpretation of conditionals given in (∗), that
is the conditional C � D indicates that in the most typical situations in which C has a
positive degree of truth, also D has a positive degree of truth. However, note that Gödel
implication is interpreted w.r.t. a specific connection between the truth values of the
antecedent and the consequent, that is, the conditional is true if the truth value of the
antecedent is at most as high as the truth value of the consequent.

As a consequence, we won’t interpret the conditional C � D as the truth of C ⊃ D
in the most typical situations in which C has a positive degree of truth, but we shall
refer instead to the truth value of C ⊃ ¬¬D in the typical situations. As is easy to
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see from the definition of Gödel negation above, ¬¬D is true iff D has a positive truth
value. Hence, the implication C ⊃ ¬¬D is true either if C is totally false, or if D has a
positive degree of truth, and that is the kind of connection that we want to model with
our conditional.

Note that in propositional Gödel logic the two implications C ⊃ ¬¬D and C ⊃
¬¬¬¬D are logically equivalent; hence, in order to introduce such an interpretation of
our conditional we have to introduce also a new rule (DN) (Double Negation), directly
connected to the just mentioned logical equivalence.

(DN)
C � ¬¬D
C � D

.

The first system we are going to take under consideration corresponds to the class of
conditionals that is characterised by the preferential properties, specified in the previous
section, plus (DN). We shall read such properties as derivation rules, defining a closure
operation on the knowledge bases.

More specifically, given a knowledge base K = 〈T ,D〉, we shall indicate with |=T
the consequence relation obtained from the Gödel consequence relation |= adding the
propositions in T (what the agent considers as strictly true) as extra axioms. Then we
shall use the conditionals in D, the consequence relation |=T and all the rules in Eq. (1)
and rule (DN) to define a closure operation P over the knowledge base. The closure
P (K) will be the set of defeasible conditionals that is derivable from D using these
rules as derivation rules and |=T as the underlying consequence relation. For instance,
if C � D is in P (K) and |=T D ⊃ E, then C � E ∈ P (K) by (RW).

Example 3 (Example 2 cont.). Consider Example 2. Then it can be verified that all
conditionals in D belong to P (K) as well as:

rf ∧ tg � s
rf ∧ s� tg .


�
We next are going to completely characterise such an inference relation from the se-
mantics point of view with a specific class of interpretations. The elements of the in-
terpretations we are going to define will be the belief states A,B, . . ., that are sets of
valuations characterising a possible state of affairs that the agent can consider as true.
Hence, the set of all the possible belief states will be the power-set P(I) of all the
classical Gödel valuations.

Definition 1 (Belief-state interpretation). A belief-state interpretation (bs-
interpretation, for short) is a pair M = 〈S,≺〉, with S ⊆ P(I) and ≺ a
preferential relation between the states; ≺ is asymmetric and transitive and satisfies
the property of smoothness (defined below).

The meaning of A ≺ B is that the belief state A describes a situation that is more
typical than the belief state B.

In the following, we shall indicate with Ĉ the extension of C in M , that is, the set of
belief states in M s.t. each valuation in the belief state associates to C a positive degree
of truth, i.e.

Ĉ = {A ∈ S | u(C) > 0 for all u ∈ A} .
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Next, we define the set of the typical belief states of C, denoted C , as the set of the
preferred states in the extension of C, that is

C = min
≺

(Ĉ) = {A ∈ Ĉ |
 ∃B ∈ Ĉ such that B ≺ A} .

Now, we will use C to define the smoothness condition.

Definition 2 (Smoothness condition). Given a bs-interpretation M = 〈S,≺〉, the
preferential relation ≺ satisfies the smoothness condition iff for every C ∈ L, if Ĉ 
= ∅
then C 
= ∅.

We are now going to use the bs-interpretations to reason about conditionals, that is, we
will define a consequence relation that, given a knowledge base K = 〈T ,D〉, gives
back new non-monotonic conditionals considered as valid.

Specifically, the notion that a bs-interpretation M = 〈S,≺〉 verifies a proposition C,
denoted M |≈ C, is defined as follows:

M |≈ C iff for every A ∈ S, for every u ∈ A, u(C) = 1 .

The notion that M = 〈S,≺〉 verifies a conditional C � D, denoted M |≈ C � D, is
defined as:

M |≈ C � D iff for every A ∈ C, for every u ∈ A, u |= C ⊃ ¬¬D .

Hence C � D is interpreted as saying that in the most typical belief states in which C
has a positive degree of truth also D has a positive degree of truth.

We now move on to the definition of entailment for the conditionals. Given a knowl-
edge base K = 〈T ,D〉, we take under consideration all the bs-interpretations that verify
both the propositions in T and the conditionals in D. So, we say that a bs-interpretation
M is a bs-model of K = 〈T ,D〉 iff M |≈ E for every E ∈ T and M |≈ E � F for
every E � F ∈ D.

Definition 3 (Entailment relation |≈ ). A proposition C is entailed by K, denoted
K |≈ C, iff for every bs-model M of K, M |≈ C holds. A conditional C � D is entailed
by K, denoted K |≈ C � D, iff for every bs-model M , M |≈ C � D holds.

Now we want to prove that the entailment relation |≈ characterises the closure operator
P , i.e. given a knowledge baseK = 〈T ,D〉, let the closure P (K) be the set of defeasible
conditionals that are derivable from D using all the rules in Eq. (1) and rule (DN), then

P (K) = {C � D | K |≈ C � D} .

To do so, we next illustrate several interesting properties that follow from the properties
of the closure operation P .

Lemma 1. The conditional� satisfies supraclassicality (SUPRA):

(SUPRA)
C ⊃ D

C � D
.
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Supraclassicality describes an important property of non-monotonic reasoning, that is,
whatever is derivable from T using propositional Gödel logic is also a defeasible con-
sequence.

Lemma 2. If a conditional� satisfies the properties defining the closure operation P ,
then it satisfies also the following properties:

(EQUIV)
C � D D � C C � E

D � E
(AND)

C � D C � E

C � D ∧ E

(MPC)
C � D ⊃ E C � D

C � E
(1)

C ∨D � C C � E

C ∨D � E

(2)
C � E D � F

C ∨D � E ∨ F
(3)

C � D

C � ¬¬D

(4)
C ∨D � C D ∨ E � D

C ∨ E � C

Next, soundness is established.

Proposition 2 (Soundness). Given a knowledge base K = 〈T ,D〉, if a conditional
C � D is in P (K) then K |≈ C � D.

Now we address the completeness. The proof uses the same general strategy of the
proof in [17],4 based on the notion of normal valuations (in [17] called normal worlds),
but, since the semantic structure is different, the proof is different too.

So, first, let’s define the notion of normal valuation for a proposition C, that is, a
valuation that makes true all the conditionals in P (K) that have C as antecedent.

Definition 4 (Normal valuation). A valuation u is normal for a proposition C w.r.t a
knowledge base K = 〈T ,D〉 iff u(C) > 0, for every proposition E ∈ T u(E) = 1, and
for every proposition D s.t. C � D ∈ P (K), u(C ⊃ ¬¬D) = 1 (i.e., u(¬¬D) = 1).

Now, we need a main lemma, that states that taking under consideration all the normal
valuation for a proposition C we are able to characterise the closure P w.r.t. C.

Lemma 3. For every proposition D, C � D ∈ P (K) iff for every valuation u that is
normal for C w.r.t. K, u(D) > 0 holds.

The Lemma above is the main result to prove our completeness. Furthermore, in the
following if C � D and D � C are both in P (K), then we denote this as C ∼ D ∈
P (K). The following can be shown:

Lemma 4. C ∼ D ∈ P (K) iff for every proposition E, C � E ∈ P (K) iff D � E ∈
P (K).

4 Since the conditionals in [17] are metalinguistic sequents of a non-monotonic consequence
relation, there the authors present a representation result. Here, since we consider the non-
monotonic conditional as a conditional of the language, we present a completeness result.
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From this it follows immediately that if C ∼ D ∈ P (K), a valuation u is normal for C
iff it is normal for D.

Given K, we indicate with C∼ the set of all the propositions that are preferentially
equivalent to C w.r.t. K, namely

C∼ = {D | C ∼ D ∈ P (K)} .

Moreover, we indicate with [C∼] the belief state containing exactly all the valuations
that are normal for the propositions in C∼. Now we define an ordering of the proposi-
tional formulas w.r.t. the conditionals in the preferential closure P (K).

Definition 5. C is not less ordinary than D, denoted C ≤ D, iff C ∨D � C ∈ P (K).
Furthermore, we define C < D iff C ≤ D and D 
≤ C.

The following lemma can be shown.

Lemma 5. If� is a preferential conditional, then < is asymmetric and transitive.

It is easy to see from the definitions of C∼ and < that if C and D are preferentially
equivalent, then they have the same relative position in the ordering <, that is:

Lemma 6. If D is in C∼, then for every proposition E, C < E iff D < E and E < C
iff E < D.

Now we have all the ingredients to define a preferential model MK = {SK,≺K} satis-
fying exactly the conditionals in P (K). Specifically, let SK be the set of the belief states
that correspond to all the valuations that are normal for some formula w.r.t. K, that is

SK = {[C∼] | C ∈ L} .

Let ≺K to be defined on ≤ in the following way:

[C∼] ≺K [D∼] iff C < D .

Some properties of the interpretation MK are easily shown:

Lemma 7. Given MK, for every proposition C, C = {[C∼]}.

Lemma 8. MK is a preferential interpretation.

From these lemmas it is immediate to see that MK is a belief-state model that verifies
K, and it is exactly the model we need to prove completeness.

Lemma 9. Given a knowledge base K, for every conditional C � D, MK |≈ C � D
implies C � D is in P (K).

Hence, eventually, we have the completeness result.

Proposition 3 (Completeness). Given a knowledge base K, if a conditional C � D
is entailed by K, i.e. K |≈ C � D, then C � D is in P (K).

Corollary 1. Given a knowledge base K, K |≈ C � D iff C � D ∈ P (K).
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Extended Preferential Entailment. In the following we make one additional step by
extending preferential entailment over Gödel logic with the aim to capture a missing
property of classical preferential entailment, as the one illustrated below. Specifically,
let us note that the following property (S) is derivable from the preferential properties
in the classical propositional case:

(S)
C ∧D � E

C � D ⊃ E .

Unfortunately, in the case of Gödel logic we can no longer derive it from our rules.

Example 4 (Example 3 cont.). Consider Example 3. We have seen that we may infer

rf ∧ tg � s .

In a classical preferential setting we may infer

rf � tg ⊃ s ,

while under preferential Gödel logic we can not. 
�
So, we next consider the non-monotonic conditional defined by the previous rules, i.e.
(REF), (LLE), (RW), (CT), (CM), (OR) and (DN), with the addition of (S). Let us call
P ′ both the set of such rules and the closure operation defined by such a set of rules.
Our goal is now to semantically characterise P ′.

Luckily, the semantic characterisation of P ′ is easily obtained as it is sufficient to
constrain the previous bs-interpretations to the ones in which the belief sets correspond
to singleton sets, i.e. single valuations.

Definition 6 (Preferential interpretations). A preferential interpretation is a triple
M = 〈S, �,≺〉, with S a set of states, � : S → I a function that associates to every
state s a valuation u ∈ I, and ≺ a preferential relation (asymmetric and transitive),
that satisfies the property of smoothness.

Note that this new class of interpretations is not properly a subclass of the interpretations
based on the belief states, since here it is possible to have the same valuation present
more than once in a model (we could have that two states s, t ∈ S are associated to the
same valuation, i.e., �(s) = �(t)), while in the belief-states proposal a subset of I can
appear at most once in a model. Therefore, we have to redefine some previous notions
in order to deal with the new kind of models.

To start with, again, Ĉ will be extension of C in M , i.e. the set of the states in M
that are associated to a valuation verifying a proposition C to a positive degree: that is,

Ĉ = {s ∈ S | �(s)(C) > 0} .

Similarly, C is the set of the preferred states in the extension of C, that is

C = min
≺
(Ĉ) = {s ∈ Ĉ |	 ∃t ∈ Ĉ such that t ≺ s} .

We say that M verifies a proposition C, denoted M |≈ ′C, iff for each s ∈ S, �(s)(C) =
1. Moreover, M verifies a conditional C � D, denoted M |≈ ′

C � D, iff for every
s ∈ C, �(s)(C ⊃ ¬¬D) = 1. We say that M is a preferential model of K = 〈T ,D〉
(M |≈ ′K) iff M |≈ ′E for every E ∈ T and M |≈ ′E � F for every E � F ∈ D.
Eventually, we shall indicate with |≈ ′ the entailment relation defined using preferential
models.



222 G. Casini and U. Straccia

Definition 7 (Consequence relation |≈ ′). A proposition C is (preferentially) entailed
by K, denoted K |≈ ′

C, iff for every preferential model M of K, M |≈ ′
C holds. A

conditional C � D is (preferentially) entailed by K = 〈T ,D〉, denoted K |≈ ′
C � D,

iff for every preferential model M of K, M |≈ ′C � D holds.

Like the previous section, we want again to prove that the closure operation P ′ is com-
plete w.r.t. the consequence relation |≈ ′, that is

P ′(K) = {C � D | K |≈ ′C � D} .

In this case, the completeness proof follows quite faithfully the representation proof for
propositional classical logic in [17]. We have only to consider some contextual changes
due to the different underlying monotonic consequence relation (the one defining propo-
sitional Gödel logic instead of the one associated to classical propositional logic) and
the presence of the two extra-axioms (DN) and (S).

Indeed, we can show that we can obtain a completeness result. The proof being very
similar to the one in [17], we omit here the list of its main steps.

Proposition 4. Given a finite set of conditionals K, a conditional C � D is in P ′(K)
iff K |≈ ′

C � D.

4 Rational Monotony

Another property that has been deeply investigated in non-monotonic logic is Rational
Monotony (RM), namely

(RM)
C � E C 	� ¬D
C ∧D � E

Rational Monotony is a form of constrained monotony that is stronger than (CM).
Intuitively, it states that if typically the truth value of C is connected to the truth value
of E, while a typical situation in Ĉ does not force ¬D to be true, then in a typical
situation in which C ∧ D has a positive degree of truth also E is true to a positive
degree.

Example 5 (Example 4 cont.). Consider Example 4. According to (RM) we may infer
that “typically, a ripe and expensive fruit is sweet”, that is, from rf � s and rf 
� ¬e
(e stands for expensive), we may infer via (RM) that

rf ∧ e� s .

This inference is not supported by preferential entailment. 
�
In order to semantically characterise the property (RM) we have to add a new constraint
to the preferential order ≺ in the interpretation, that is, modularity.

Definition 8 (Modularity). A partial order≺ on a set S is modular if for every x, y, z ∈
S, if x ≺ y, then either z ≺ y or x ≺ z.

Informally, a modular order organises the elements of the set into layers, and all the
elements of a lower layer are preferred to all the elements laying in higher layers. In our
context, we will take under consideration the class of the preferential interpretations that
have a modular preference order, that, following [18], we call ranked interpretations.
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Definition 9 (Ranked Gödel interpretations). A ranked interpretation is a triple M =
〈S, �,≺〉, with S a set of states, � : S → I a function that associates to every state s a
valuation u ∈ I, and ≺ a modular relation, that satisfies the property of smoothness.

Now, it can be verified that the class of the ranked interpretations satisfy (RM).

Proposition 5 (Soundness). The properties in P ′ and (RM) are verified by the class of
ranked Gödel interpretations.

However, we cannot define a form of entailment based on the ranked interpretations as
we have done in the preferential case, as it may not give any inferential gain. Indeed, let
us say that ranked interpretation M is a ranked model of a knowledge base K = 〈T ,D〉
iff M |≈ ′C for every C ∈ T and M |≈ ′E � F . Then

Definition 10 (Consequence relation |≈ ′′). A proposition C is (rationally) entailed by
K, denoted K |≈ ′′C, iff for every ranked model M of K, M |≈ ′C holds. A conditional
C � D is (rationally) entailed by K = 〈T ,D〉, denoted K |≈ ′′

C � D, iff for every
ranked model M of K, M |≈ ′

C � D holds.

Then we can prove that such an entailment relation corresponds to the closure operation
P ′. That is,

Proposition 6. K |≈ ′′
C � D iff C � D ∈ P ′(K).

Therefore, the entailment relation |≈ ′′, does not provide any inferential gain over |≈ ′.

4.1 Rational Closure

Since it is not possible to define a form of non-monotonic reasoning that satisfies the
rule (RM) and is based on a classical form of entailment, i.e., defined considering all
the ranked models of the knowledge base, Lehmann and Magidor [18] have indicated a
form of non-monotonic logical closure of the knowledge base, called Rational Closure
(RC), that satisfies a series of desiderata and is defined considering only some relevant
ranked models of the knowledge base. We shall indicate by R(K) the rational closure
of the knowledge base K.

Considering the results in the previous section, it is easy to see that the definition
of Lehmann and Magidor’s decision procedure is also applicable to our preferential
semantics and our conditional. From the semantical point of view, we shall refer to the
semantic construction of Rational Closure by Giordano et al. [12] that we find more
intuitive than the original formulation by Lehmann and Magidor.

The first step of the procedure is the definition of the notion of exceptionality.

Exceptionality. A proposition is exceptional if it is falsified in all the most typical
situations that satisfy a knowledge base. That is, a proposition C is exceptional w.r.t.
a knowledge base K iff it is falsified in all the preferential models of the knowledge
base, i.e., � � ¬C ∈ P ′(K). The decision whether a proposition is exceptional can
be reduced to a fuzzy entailment decision problem. In fact, we interpret every non-
monotonic conditional C � D as the satisfaction of C ⊃ ¬¬D in the most typical
situations; we shall indicate with D⊃ the set of the material implications corresponding
to the conditionals in the knowledge base. That is, given a knowledge base 〈T ,D〉,

D⊃ := {C ⊃ ¬¬D | C � D ∈ D} .
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Such a set will be used to decide exceptionality as a classical decision problem.

Proposition 7. Given a knowledge base K = 〈T ,D〉,

�� C ∈ P ′(K) iff T ∪ D⊃ |= ¬¬C .

A conditional C � D is exceptional if its antecedent C is exceptional. Hence, we can
define a function E that, given 〈T ,D〉, gives back the set of the exceptional conditionals
in D, that is,

E(〈T ,D〉) := {C � D ∈ D | T ∪ D⊃ |= ¬C} .

The construction of the Rational Closure of a knowledge base 〈T ,D〉 is then based on
the notion of exceptionality by creating a ranking of the conditionals in D using the
function E . To this end, we define a sequence of subsets of D in the following way:

E0 := D
Ei+1 := E(〈T , Ei〉) .

Since the set D is finite, and every application of E on a set X gives back a subset of
X , the procedure ends into an (empty or non-empty) fixed-point of the function E , that
we shall call E∞.

Now, we can partition the set D in to a sequence 〈D0,D1, . . . ,Dn,D∞〉, where
Di := Ei\Ei+1 (0 ≤ i ≤ n) andD∞ := E∞. Each set Di will contain the conditionals
that have i as ranking value, starting from the conditionals in D0, describing what is
verified only in the most normal situations, up to D∞, describing what does not hold
even in the most exceptional situations.

Note that, assuming that the cardinality of D is m, the identification of the partition
〈D0,D1, . . . ,Dn,D∞〉 is definable doing O(m2) fuzzy entailment tests for proposi-
tional Gödel logic, and, for a given knowledge base, once such partition is done, it is
done once and for all.

Now we can define the ranking value of every formula in our language using the
partition of D into D0, . . . ,Dn,D∞.

Definition 11 (Ranking value). The ranking value of a proposition C is i, denoted
rank(C) = i, iff Di is the first element of the sequence 〈D0,D1, . . . ,Dn〉 s.t.

〈T ,Di〉 
|≈ ′ �� ¬C .

If there is not such an element, rank(C) = ∞. The ranking value of a conditional C �
D, denoted rank(C � D), is the ranking value of C, i.e. rank(C � D) = rank(C).

Note that, due to Proposition 7, the decision of the ranking value of a formula can be
determined in O(m) fuzzy entailment tests.

Following [18], a conditional C � D is in the rational closure of the knowledge
base 〈T ,D〉 if the ranking value of C ∧D is lower than the ranking value of C ∧ ¬D,
that is, the situation in which C ∧ D has a positive degree of truth is less exceptional
than the situation in which C ∧ ¬D has a positive degree of truth. That is, we now can
formulate the “somewhat typical” definition involving the constraint on ranks (see also
the condition on possibility distributions in the introduction)
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Definition 12 (Rational Closure). C � D ∈ R(K) iff either rank(C ∧ D) <
rank(C ∧ ¬D) or rank(C) = ∞.

Example 6 (Example 5 cont.). Let’s check whether we can infer that

rf ∧ e� s .

First of all we have to calculate the ranking value of the conditional rf � s. Since
T ∪ {rf ⊃ ¬¬s} 
|= ¬rf , rank(rf � s) = rank(rf) = 0 and D is partitioned into a
single set D0 = D. Now we have to check the ranking values of

rf ∧ e ∧ s and rf ∧ e ∧ ¬s .

We have that T ∪ D⊃0 
|= ¬(rf ∧ e ∧ s) and, thus, rank(rf ∧ e ∧ s) = 0, while
T ∪D⊃0 |= ¬(rf ∧e∧¬s), since D⊃0 = {rf ⊃ ¬¬s} and, thus, rank(rf ∧e∧¬s) > 0.
From these ranking values, we can conclude that

rf ∧ e� s ∈ R(K) .


�

Please observe that, since all computations are based on a polynomially bounded num-
ber of fuzzy entailment tests, the computational complexity of the decision procedure
for Rational Closure is the same as the entailment problem for propositional Gödel
logic and the procedure can be implemented once a decision procedure for fuzzy logic
entailment is at hand.

Proposition 8. Deciding whether C � D ∈ R(K) is a coNP-complete problem.

Semantic characterisation. We now give also a semantic characterisation of the above
construction, still referring to the analogous constructions for classical propositional
logic. A nice and intuitive characterisation of Rational Closure is given using the min-
imal ranked models introduced in [12]. We apply here a similar definition related to
propositional Gödel logic.

The intuitive idea is the following: given a knowledge base 〈T ,D〉, we consider all
the ranked Gödel interpretations satisfying 〈T ,D〉 that are compatible with 〈T ,D〉,
i.e. all the valuations v that verify T ∪ {¬C | C � D ∈ D∞}. Among all such
models, we prefer those models in which all the valuations are considered ‘as typical as
possible’, that is, in which the valuations are ranked as low as possible.

First of all we need to define the height of a state s ∈ S in a ranked interpretation
M = 〈S, �,≺〉.
Definition 13 (Height k). Consider a ranked interpretation M = 〈S, �,≺〉, with s ∈
S. The height kM (s) of s is the length of the shortest chains s0 ≺ . . . ≺ s from
a s0 s.t. for no s′ ∈ S it holds that s′ ≺ s0.5 The height of a formula C, kM (C),
corresponds to the height of the states with the lowest height that do not falsify C,
that is, kM (C) = kM (s) s.t. �(s)(C) > 0, and there is no state s′ s.t. s′ ≺ s and
�(s′)(C) > 0.

5 Note that for ranked interpretations, kM (s) is uniquely determined. See also [13].
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Note that it is easy to see that M |≈ C � D iff kM (C ∧ D) < kM (C ∧ ¬D) (it is
immediate to check that in Gödel logic v(C) > 0 iff v(¬¬C) > 0, for any valuation
v and any formula C, and hence kM (C ∧ D) = kM (C ∧ ¬¬D)). From now on we
consider only ranked models M = 〈S, �,≺〉 where S and � are such that for every
valuation v compatible with K there is a state s ∈ S s.t. �(s) = v.

Definition 14 (Minimal Ranked Models). Consider two ranked models ofK = 〈T ,D〉,
M = 〈S, �,≺〉 and M ′ = 〈S ′, �′,≺′〉. We say that M is at least as preferred as
M ′ (M ≤R M ′) iff S = S ′ and � = �′, and for each s ∈ S, kM (s) ≤ kM ′ (s).
Let MR

K be the set of the minimal ranked models of the knowledge base K, that is,
MR
K = {M | M |≈ ′K and 
 ∃M ′ s.t. M ′ |≈ ′K and M ′ ≤R M}.

Note that all the minimal ranked interpretations in MR
K are equivalent w.r.t the verifi-

cation relation |≈ ′, since in each minimal interpretation every pair of states s, s′ s.t.
�(s) = �(s′) must have the same height. Hence, the elimination of multiple copies of
the same valuation is not relevant from the point of view of the formulas verified by the
interpretation. Consequently, it is possible to define a smallest minimal ranked inter-
pretation MR

K , that is obtainable from any element of MR
K just eliminating the multiple

copies of the same valuations. We define minimal ranked entailment, denoted |≈R , as
the entailment relation defined by such a minimal ranked model MR

K .

Definition 15 (Minimal Ranked Entailment). A conditional C � D is a minimal
ranked consequence of a knowledge base K = 〈T ,D〉, denoted K |≈R C � D, iff
MR
K |≈ ′

C � D.

We can prove that this notion of entailment characterises the closure operation R.

Proposition 9. Given a knowledge base K, C � D ∈ R(K) iff K |≈R C � D.

The proof of Proposition 9 follows the proof of the analogous result in [12,13], refor-
mulated in order to take into account that we are dealing with Gödel logic, that the
conditional C � D is interpreted w.r.t. the formula C ⊃ ¬¬D and that there are also
the rules (DN) and (S) to take into account. Since the closure operation R can be char-
acterised by means of a single ranked model, Proposition 5 guarantees the satisfaction
of the property (RM).

5 Conclusions

The notion of rational closure is acknowledged as a landmark for defeasible reasoning,
while mathematical fuzzy logic is the reference framework to deal with fuzziness. In
this work we have made a first attempt to connect the two, by characterising rational
closure in the context of Propositional Gödel Logic, axiomatically, semantically, algo-
rithmically and from a computational complexity point of view.

We plan to continue our investigation along several directions. Specifically, to ex-
tend our approach towards other fuzzy logics, such as Łukasiewicz and Product logics,
to extend it to notable fragments of First-Order Logic, such as fuzzy Description Logics
[19,22] along the line [5], and to investigate about possible connections to a possibilistic
logic based approach in line with [2,3,4,6,7,8,10] including as well different interpreta-
tions of fuzzy implications as discussed in [9].
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Abstract. We study the problem of achieving a given value in Markov
decision processes (MDPs) with several independent discounted reward
objectives. We consider a generalised version of discounted reward objec-
tives, in which the amount of discounting depends on the states visited
and on the objective. This definition extends the usual definition of dis-
counted reward, and allows to capture the systems in which the value of
different commodities diminish at different and variable rates.
We establish results for two prominent subclasses of the problem,

namely state-discount models where the discount factors are only depen-
dent on the state of the MDP (and independent of the objective), and
reward-discount models where they are only dependent on the objective
(but not on the state of the MDP). For the state-discount models we use
a straightforward reduction to expected total reward and show that the
problem whether a value is achievable can be solved in polynomial time.
For the reward-discount model we show that memory and randomisa-
tion of the strategies are required, but nevertheless that the problem is
decidable and it is sufficient to consider strategies which after a certain
number of steps behave in a memoryless way.
For the general case, we show that when restricted to graphs (i.e.

MDPs with no randomisation), pure strategies and discount factors of
the form 1/n where n is an integer, the problem is in PSPACE and finite
memory suffices for achieving a given value. We also show that when
the discount factors are not of the form 1/n, the memory required by a
strategy can be infinite.

1 Introduction

Dynamic systems with multiple objectives. Graphs are a classical model for dy-
namical systems with non-deterministic behaviors. Markov decision processes
(MDPs) extend the model of graphs by allowing both non-deterministic as well
as probabilistic behavior. An MDP is given by a finite number of states and ac-
tions, together with a transition function which to a state and an action assigns
a probabilistic distribution on (successor) states. Initially, a token is placed in
a distinguished initial state, and an action is chosen, possibly in a probabilistic
way. The token is then moved to a state determined by the transition function,
and the process continues from the beginning, starting from the successor state.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 228–242, 2013.
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The infinite sequence of states that is produced is called a run, and the aim
usually is to ensure that the produced runs have certain properties.

Discounted objectives. One of the most fundamental optimization objective for
dynamical systems is the discounted reward objective. Given a reward function
that assigns a reward to every state, and a discount factor λ which to every
state assigns a number strictly smaller than 1, the discounted reward of a run
is the sum of the rewards accumulated along the run, where every single reward
accumulated is weighted by the product of discounts of states previously visited.
The goal is to maximize the expected discounted reward.

Traditionally graphs and MDPs have been studied with the aim to optimize a
unique objective. However, in most modeling domains for dynamical systems,
there is not a single objective to optimize, but multiple, potentially depen-
dent and conflicting objectives. Hence recently the problem of multi-objective
optimization for dynamical systems has become an active area of research.
We consider graphs and MDPs with multiple discounted reward objectives (n-
dimensional discounted sum objectives). In the simplest case (which we call
uniform-discount model) the discount factor λ is independent of the states as
well as the dimension of the objectives. More generally the discount factor can
depend on the states of the system (called state-discount model, where the dis-
count factor at state s is λ(s)); or it can depend on the objective (reward-discount
model, where the discount factor for dimension i is λi). In the most general case
(unrestricted model) the discount factors can depend on the dimension as well
as on the state of the system (discount factor for dimension i in state s is λi(s)).

Discounted objectives are intended to capture the fact that the reward gained
soon is more valuable than a reward gained in the distant future. For example, in
financial applications one often has the opportunity of putting money on a risk-
free account with a small interest, and so any reward form (risky) investment
needs to be discounted by the value the invested money could gain on the risk-
free account. Our notion of discount allow to capture the fact that for different
currencies or commodities the interest on the risk-free account can vary (reward-
discount model), or that it can change depending on the circumstances (state-
discount model). The unrestricted model captures both these phenomena.

Classes of strategies. In case of graphs as well as MDPs strategies are recipes
that resolve the non-determinism of the system, i.e. say how actions should be
selected. A strategy looks into the current execution of the system, and speci-
fies how to resolve the non-deterministic behavior. The class of strategies can be
broadly classified into randomised strategies that can specify a probability distri-
bution over the non-deterministic choices, and the special case of pure strategies,
where for every execution of the system one of the non-deterministic choices is
executed (i.e., pure strategies only use Dirac distribution over the choices).

The achievability question. Given a graph or an MDP with n discounted reward
objectives, and a vector (v1, v2, . . . , vn), the achievability question is whether
there exists a randomised strategy (resp. pure strategy if restricted to pure
strategies) such that for each dimension 1 ≤ i ≤ n the expected discounted
reward with respect to ith objective is at least vi.
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Our contributions. While the general problem for graphs and MDPs with multi-
ple discounted sum objectives is challenging, we provide several partial answers.
Below we present our contributions and then list some of the key open problems.

1. The decidability of MDPs with multiple discounted reward objectives under
randomised strategies under uniform-discount model was established in [6].
We first observe that the problem for state-discount model can be solved by a
simple reduction to total reward objectives (solved in [11]). In both the above
cases randomised memoryless strategies (that do not depend on the past) are
sufficient. We then consider MDPs with randomised strategies under reward-
discount model. We show that in contrast to uniform-discount and state-
discount model, randomised memoryless strategies are not sufficient, but it
is sufficient to consider “eventually memoryless” strategies, i.e. the strategies
which behave memorylessly after a fixed-length history-dependent prefix;
this helps us in establishing the decidability of the achievability question.

2. For pure strategies, we consider the problem for graphs and establish decid-
ability for the unrestricted model when the discount factors are of the form
1/n for natural numbers n. In the above case we show that finite-memory
strategies are sufficient, whereas we also show that this is not the case when
we lift the restriction on discount factors.

Key open questions: We now list some interesting open questions related to
graphs and MDPs with multiple discounted sum objectives: (1) The decidability
of MDPs with randomised strategies under the unrestricted model remains open.
(2) The decidability of MDPs with pure strategies under the uniform-discount
model with discount factors of the form 1/n also remains open. (3) Given a graph
and a single rational discount factor (independent of the states), the decidability
of existence of a pure strategy (i.e. a path) such that the discounted sum is
exactly zero is another important open question. In fact, (3) can be reformulated
in terms of achievability question for two dimensions, with one reward being the
negative of the other, such that both are required to be at least zero.

Related work. The study of Markov decision processes with multiple objectives
has been an area of research in applied probability theory, where it is known
as constrained MDPs [14,1]. The attention in the study of constrained MDPs
has been focused mainly to restricted classes of MDPs, such as unichain MDPs
where all states are visited infinitely often under any strategy. For general finite-
state MDPs, [6] studied MDPs with multiple discounted reward functions under
the uniform-discount model. It was shown that memoryless randomised strate-
gies suffice, and a polynomial-time algorithm was given to approximate (up to
a given relative error) the Pareto curve by reduction to multi-objective linear
programming and using the results of [13]. MDPs with multiple qualitative ω-
regular specifications were studied in [10]. It was shown that the Pareto curve can
be approximated in polynomial time in the size of the model; the algorithm re-
duces the problem to MDPs with multiple reachability specifications, which can
be solved by multi-objective linear programming. In [11,12], the results of [10]
were extended to combine ω-regular and expected total reward objectives. MDPs
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with multiple mean-payoff functions objectives were considered in [4]. Finally,
[7,8] study multi-objective verification problem for stochastic games, which is a
model extending MDPs with a second kind of nondeterminism [7,8].

2 Preliminaries

We use N, Z, Q, and R to denote the sets of positive integers, integers, rational
numbers, and real numbers, respectively. Given two vectors v,u ∈ Rk, where
k ∈ N, we write v ≤ u iff vi ≤ ui for all 1 ≤ i ≤ k, and v < u iff v ≤ u and
vi < ui for some 1 ≤ i ≤ k. Given a vector v and a number t ∈ R we use v + t
for the vector (v1 + t, . . . ,vk + t)

A probability distribution over a finite or countably infinite set X is a function
f : X → [0, 1] such that

∑
x∈X f(x) = 1. We call f Dirac if f(x) = 1 for some

x ∈ X . The set of all distributions over X is denoted by dist(X), and given two
distributions d and d′, we define |d− d′| := maxx∈X |d(x) − d′(x)|.
Markov Decision Processes. A Markov decision process (MDP) is a tuple
M = (S,A, Act , δ) where S is a finite set of states, A is a finite set of actions,
Act : S → 2A \ ∅ is an action enabledness function that assigns to each state s
the set Act(s) of actions enabled at s, and δ : S ×A → dist(S) is a probabilistic
transition function that given a state s and an action a ∈ Act(s) enabled at
s gives a probability distribution over the successor states. For simplicity, we
assume that every action is enabled in exactly one state, and we denote this
state Src(a). Thus, henceforth we will assume that δ : A → dist(S). A graph is
an MDP in which δ(a) is Dirac for all a ∈ A.

A run in M is an infinite alternating sequence of states and actions ω =
s1a1s2a2 . . . such that for all i ≥ 1, Src(ai) = si and δ(ai)(si+1) > 0. We denote
by RunsM the set of all runs in M . A finite path of length k in M is a finite prefix
w = s1a1 . . . ak−1sk of a run in M , and we denote by last(w) the last state of w
and by |w| := k the number of states in w.

Strategies and Probabilities. Intuitively, a strategy in an MDP M is a
“recipe” to choose actions. It is formally defined as a function σ : (SA)∗S →
dist(A) that given a finite path w, representing the history of a play, gives a
probability distribution over the actions enabled in last(w). In general, a strat-
egy may use infinite memory. According to the use of randomisation, a strategy
σ, can be classified as pure (or deterministic) if σ(w) is always Dirac, and finite-
memory if it can be defined using a finite automaton that reads a history and
the choice made by σ is based solely on the state in which the automaton ends.
A strategy σ is eventually memoryless if there is � such that for all ws and w′s
where |ws|, |w′s| ≥ � we have σ(ws) = σ(w′s).

Each finite path w in M determines the set Cone(w) consisting of all runs
that start with w. To M , an initial state s and σ we associate the probability
space (RunsM ,F ,PσM,s), where RunsM is the set of all runs in M , F is the σ-field
generated by all Cone(w), and PσM,s is the unique probability measure such that

PσM,s(Cone(s1a1 . . . sk)) = μ(s1)·
∏k−1

i=1 σ(s1a1 . . . si)(ai)·δ(ai)(si+1), where μ(s1)
is 1 if s1 = s and 0 otherwise. We often omit the M from the subscript.
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Rewards. A (discounted) reward structure is a tuple (r, λ) where r : S → R is
a reward function and λ : S → (0, 1) is a discount factor. A discounted reward

of a run ω = s1a1s2a2 . . . is defined to be r(ω) =
∑∞

i=1 r(si) ·
∏i−1

j=1 λ(sj).
The expected discounted reward under a strategy σ is Eσ

s [r, λ] :=∫
ω∈RunsM r(ω) dPσs , and the optimal discounted reward is Eopt

s [r, λ] =

supσ E
σ
s [r, λ]. We also use Eopt

s,a [r, λ] to denote the optimal value after taking

the action a in s, i.e. δ(a)(s′) · Eσ′
s′ [r, λ] where σ′ is defined by σ′(w) = σ(saw)

for all w.
In this paper we deal with multi-objective rewards, i.e. we assume that we

are given n objectives, each as a tuple (ri, λi), together with a vector v ∈ Rn.
The problem we aim to solve is to decide whether there is a strategy σ such that
Eσ
s [ri, λi] ≥ vi for every 1 ≤ i ≤ n. If the answer is positive, we call the vector

v achievable. The vectors v such that v − τ are achievable for all τ > 0, but no
u > v is achievable, are called Pareto-optimal vectors.

As we have already mentioned, in general this problem appears to be difficult,
and hence we study several interesting and useful sub-classes of the general model
(which we call the unrestricted model).

– State-discount model: Here we assume that the discount factor is fully deter-
mined by the state, i.e. λi(s) = λj(s) for every 1 ≤ i, j ≤ n and s ∈ S.

– Reward-discount model: In reward-discount model the discount factor de-
pends only on the objective, i.e. λi(s) = λi(s

′) for all 1 ≤ i ≤ n and s, s′ ∈ S.
In such case we can write just λ instead of λ(s).

Both the above models subsume the restriction studied in [6], where the discount
factor is given as one number, independent of the state or the reward. We refer
to the model of [6] as the uniform-discount model.

3 Results for MDPs and Randomised Strategies

3.1 State-Discount Model

We start with presenting the most direct of our results, which concerns the solu-
tion for state-discount model. This result can be obtained by straightforwardly
extending a well-known reduction from discounted rewards to total reward.
Given a reward function r, the expected total reward of a run w = s1a1s2 . . .
is defined to be

∑∞
i=1 r(si), and the expected value Eσ

s [r] under a strategy σ is
defined accordingly.

Theorem 1. Let us have a state-discount model given by an MDP M =
(S,A, Act , δ) and objectives (r1, λ), . . . (rn, λ). The problem of deciding whether
a point u is achievable can be solved in polynomial time.

Proof. We create an MDP M ′ = (S ∪ {s⊥}, A, Act , δ′) from M by adding a
mandatory transition to dead state s⊥ from s ∈ S with probability 1 − λ(s).
Formally, for all s ∈ S we define δ′ by δ′(s, a)(s′) = λ(s) · δ(s, a)(s′) for all
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s′ 
= s⊥ and δ′(s, a)(s⊥) = 1 − λ(s). The state s⊥ has only self-loops available.
We also define a reward function r′ by r′(s) = r(s) for all s ∈ S, and r′(s⊥) = 0.

It is then easy to show that for any strategy σ we have Eσ
s [r, λ] = Eσ

s [r
′].

Thus we can use the results of [11] for multi-objective total reward to obtain the
desired result. 
�

3.2 Reward-Discount Model

We now present the results related to the reward-discount model. We will show
that when looking for strategies that achieve a given vector v, it is sufficient to
consider randomised history-dependent strategies which are eventually memo-
ryless. To motivate this result, we first give an example where neither memory-
less nor deterministic history-dependent strategies suffice. Let us have an MDP
(which is in fact a graph) from the following picture:

s0 s1s2

The initial state is s0, and there are two reward functions, r1 and r2, where
r1(s1) = r2(s2) = 1 and ri(sj) = 0 for i 
= j. The discount factors are given by
λ1 = 0.25 and λ2 = 0.5.

When the initial state is fixed to s0, every strategy σ is completely determined
by the probabilities pσ(i) of being in the state s1 after 2 · i+1 steps. In addition,
we have

Eσ
s0 [r1, λ1] =

∞∑
i=0

0.252·i+1 · pσ(i)

Eσ
s0 [r2, λ2] =

∞∑
i=0

0.52·i+1 · (1 − pσ(i))

Consider the strategy σ such that pσ(0) = 1, pσ(1) = 0.5 and pσ(i) = 0 for
all i > 1. Under such strategy we get Eσ

s0 [r1, λ1] ≈ 0.258 and Eσ
s0 [r2, λ2] ≈ 0.1.

Obviously, σ must be a history-dependent randomised strategy.
We show that no other strategy performs same as or better than σ. Note

that any strategy σ′ which satisfies pσ
′
(i) < 1 and pσ

′
(j) > 0 for i < j can be

improved as follows. Let q = min{pσ′
(j), (1 − pσ

′
(i))/λ

2·(j−i)
1 }. We change the

strategy σ′ to the strategy σ′′ defined by

pσ
′′
(�) =

⎧⎪⎨⎪⎩
pσ

′
(�) + q · λ2·(j−i)

1 for � = i

pσ
′
(�)− q for � = j

pσ
′
(�) otherwise

We then get

Eσ′′
s0 [r1, λ1] = q · λ2·(j−i)

1 · λ2·i+1
1 − q · λ2·j+1

1 + Eσ′
s0 [r1, λ1] = Eσ′

s0 [r1, λ1]

Eσ′′
s0 [r2, λ2] = −q · λ2·(j−i)

1 · λ2·i+1
2 + q · λ2·j+1

2 + Eσ′
s0 [r2, λ2] > Eσ′

s0 [r2, λ2]
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so σ′′ performs better than σ′. Since this step can be repeated as long as there
are pσ

′
(i) < 1 and pσ

′
(j) > 0 for some i < j, we get that any strategy is

outperformed by some strategy σ̄ for which there is � and x satisfying pσ̄(k) = 1
for k < �, pσ̄(�) = x and pσ̄(k) = 0 for k > �. However, one can easily see
that any such σ̄, except for σ itself, gives a worse reward than σ in the first
or in the second objective, and so in particular no memoryless randomised or
history-dependent deterministic strategy can outperform σ.

Now we prove that for the reward-discount model the problem whether a vec-
tor v is achievable is decidable. The intuition for the proof is the following. Given
discount structures (r1, λ1), . . . , (rn, λn) where the discount factors are pairwise
different, after m steps any future contribution of ith reward will be discounted
by λmi . For m being sufficiently large and for λi > λj we get that λmi / λmj , and
so any reward accumulated w.r.t. jth objective becomes comparably negligible
and cannot be meaningfully “traded off” for reward accumulated w.r.t. ith ob-
jective. This leads to the notion of eventually memoryless strategies, which after
certain number of steps don’t make any tradeoffs, but instead greedily give the
highest priority to the rewards with the higher discount factors.

For the rest of this subsection we fix a reward-discount model given by an
MDP M = (S,A, Act , δ) and reward structures (r1, λ1), . . . , (rn, λn) such that
λi ≥ λi+1 for all 1 ≤ i ≤ n − 1. By U we denote a bound on maximal/minimal
value of discounted rewards; for example, we can set U :=

∑∞
j=0 λj1 · rmax where

rmax = max1≤i≤n maxs∈S |ri(s)|.
The following two lemmas state some basic properties of the set of achievable

points.

Lemma 1. The set of achievable points for a reward-discount model is convex.

Proof. When we have two achievable points u and v together with 0 ≤ c ≤ 1,
the point c · u + (1 − c) · v can be achieved by a strategy that in the first step
randomly (with probability c and 1− c) decides whether to mimic the strategy
for u or v, and sticks to the decision forever. 
�

Lemma 2. Pareto-optimal strategies exist for a reward-discount model, i.e. limit
of a sequence of achievable points is achievable.

Proof. Let u be the limit of a sequence of achievable points, and let us have an
infinite sequence of strategies σ0, σ1, . . . such that σi achieves the point u − 1

i .
Let Θ0 denote the set of the strategies in this sequence, and let w1, w2, . . . be the
enumeration of all finite paths in the MDP. We construct infinite sets Θ0, Θ1 . . .
and distributions d1, d2 . . . such that for every ε > 0 the set Θi contains a strategy
σ that achieves value u− ε, which satisfies |σ(wj)− dj | ≤ ε for all j ≤ i.

We then define a strategy σ by σ(wi) = di for all i ≥ 1. We claim that σ
achieves the point u. Suppose this is not the case, then there must be some ε
such that σ does not achieve u − ε, and let k be such that λki · U ≥ ε/4 for all
1 ≤ i ≤ n. Note that for any strategy σ̄ we have

Eσ̄
s,a[ri, λi] ≥

( ∑
w=s1a0s1...sk

Pσ̄s,a[w] ·
k∑

�=1

λ�−1
i · ri(s�)

)
− ε/4
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Let m be an index such that all paths of length at most m are in the sequence
w1, . . . , wm. There must be a strategy σ′ ∈ Θm such that

– Eσ′
s,a[ri, λi] ≥ ui − ε/4

– We have
∏m

j=0 |σ′(wj)− dj | ≤ ε
(U+ε)·4

Fix one such strategy σ′, then we get

Eσ
s [ri, λi] ≥

∑
w=s0a0s1...sk

Pσs [w] ·
k∑

�=0

λ�i · ri(s�)−
ε

4

≥
∑

w=s0a0s1...sk

(
Pσ

′
s [w]− ε

(U + ε) · 4

)
·

k∑
�=0

λ�i · ri(s�)−
ε

4

≥
∑

w=s0a0s1...sk

(
Pσ

′
s [w] ·

k∑
�=0

λ�i · ri(s�)−
ε ·
∑k

�=0 λ�i · ri(s�)
(U + ε) · 4

)
− ε

4

≥
∑

w=s0a0s1...sk

Pσ
′

s [w] ·
k∑

�=0

λ�i · ri(s�)−
ε

2

≥ (u− ε

4
)− ε

2
≥ u− 3 · ε

4

which contradicts that σ does not achieve the value u− ε. 
�

Theorem 2. Let let u be a Pareto point for a reward-discount model such that
u is not a convex combination of any other Pareto points. Then there is a de-
terministic eventually memoryless strategy achieving u.

Proof. Since u is not a convex combination of other achievable points and be-
cause the set of achievable points is convex by Lemma 1 and downwards closed
by definition, by the separating hyperplane theorem [3] there must be a nonneg-
ative vector w and a number d such that for u · w = d, but for all achievable
points v 
= u we have v ·w < d.

Note that any strategy σ that satisfies
∑

1≤i≤n wi ·Eσ
s [ri, λi] ≥ d also satisfies

that Eσ
s [ri, λi] ≥ ui for all 1 ≤ i ≤ n, since otherwise it achieves the point

v := (Eσ
s [ri, λi])1≤i≤n with v 
= u and v ·w ≥ d, which is a contradiction.

Hence, it suffices to show that deterministic eventually memoryless optimal
strategies σ suffice for optimising the value of

∑
1≤i≤n wi · Eσ

s [ri, λi]. Before we
proceed, we show that we can simplify the problem in several respects. The first
observation is that we can restrict to deterministic strategies σ (this can be
proved by methods similar to the ones used in by [5], and using properties of
single-objective discounted rewards). Further, we can easily preprocess the input
to work with the sequence of the discount factors which is strictly decreasing:
whenever λi = λi+1, then we can create an objective (r′, λi) where r′(s, a) =
wi·ri(s, a)+wi+1 ·ri+1(s, a), and look for a strategy σ which satisfies 1·Eσ

s [r
′, λi]+∑

j �=i wj · Eσ
s [rj , λj ] ≥ d. At the same time, whenever some wi is equal to 0, we

can omit the ith reward since it does not affect the value
∑

1≤i≤n wi ·Eσ
s [ri, λi].
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Thus, from now on we assume that λi > λi+1 for all i and that all wi are
nonzero.

In what follows we will use the notion of an optimal action subject to taking an
action optimal w.r.t. different objectives. For a set B ⊆ A we use Eopt

s′,B [ri, λi] :=
supσ∈ΣB

Eσ
s [r, λ] where ΣB contains the strategies which only assign nonzero

probabilities to actions from B. We put A0 = A, and for all 1 ≤ i ≤ n we define
Ai to contain the actions of Ai−1 which give the best value w.r.t. (ri, λi), i.e.
a ∈ Ai iff a ∈ Ai−1 and

Eopt
s,Ai−1

[ri, λi] = ri(s) +
∑
s′∈S

δ(a)(s′) · λi · Eopt
s′,Ai−1

[ri, λi]

where s = Src(a). Note that for every σ ∈ ΣAi we have E
σ
s [ri, λi] = Eopt

s,Ai
[ri, λi].

This is due to the properties of single-objective discounted reward in which
taking any optimal action suffices to ensure the optimal values [14]. For every
a ∈ Ai−1(s) denote

vi,s,a =
(
Eopt
s,Ai−1

[ri, λi]
)
−
(
ri(s) +

∑
s′∈S

δ(a)(s′) · λi · Eopt
s′,Ai−1

[ri, λi]
)

the loss when taking non-optimal optimal action (within Ai−1(s)) w.r.t. ith
objective. We use ε := min{vi,s,a|vi,s,a > 0} to denote the least positive value
among all vi,s,a.

Now let k be a number such that for all i we have wi ·ε·λki >
∑n

j=i+1 wj ·U ·λkj .
Such number certainly exists by the fact that λi > λi+1 and wi > 0 for all i.

By induction in i we show that in order to be optimal, a strategy σ must pick
actions from Ai on any path ws where |ws| = � > k. Suppose we have proved
the claim for i− 1. Note that if the strategy takes an action a ∈ Ai in ws, then
the optimal reward gained after ws is( i−1∑

j=1

λ�j · wj · Eopt
s,Aj

[rj , λj ]
)
+ λ�i · wi · Eopt

s,Ai
[ri, λi] ,

while if a does not maximise the value, by the choice of k we get that

n∑
i=1

λ�i · Eσ
ws[ri, λi] ≤

( i−1∑
j=1

λ�j · wj · Eopt
s,Aj

[rj , λj ]
)
+

(
wi · λ�i · Eopt

s,Ai
[ri, λi]− wi · ε · λ�i

)
+
( n∑

j=i+1

wj · λ�j · Eopt
s [rj , λj ]

)

<
( i−1∑

j=1

λ�j · wj · Eopt
s,Aj

[rj , λj ]
)
+ wi · λ�i · Eopt

s,Ai
[ri, λi]

Hence, actions from Ai(s) give better value. Consequently, in order to be opti-
mal, the strategy σ must, for any path ws with |ws| > �, only take actions from
An, and as we have argued above, any strategy which takes these actions suf-
fice, meaning that we can pick an arbitrary deterministic eventually memoryless
strategy which eventually plays actions from An. 
�
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By Carathéodory’s theorem [15], for an achievable point u there must be at
most n + 1 achievable points v1 . . .vn+1 of which u is a convex combination,
and for which deterministic eventually memoryless strategies exist. This directly
gives an algorithm which for any achievable point u returns “yes”, and which
does not halt otherwise: Set a step bound m, and try to “guess” n different
deterministic strategies which become memoryless after at most m steps and
which achieve points of which u (or some larger value) is a convex combination.
There is only a finite number of such strategies, so we can guess by exploring all
options. If the strategies are found, return that u is achievable. If the appropriate
strategies can’t be found, increase m and continue from the beginning.

Finally, we give an algorithm that for u which is not achievable returns “no”,
and does not halt otherwise. If u is not achievable, then by Lemma 2 there is
τ such that u − τ is not achievable. Let us pick m such that λmi · U ≤ τ/3 for
all i. Then any strategy satisfies that within m steps, the reward accumulated
w.r.t. ith reward is at most ui − 2 · τ/3, and we know that from that point on
no more than τ/3 can be accumulated. This means that m witnesses that u is
not achievable. Hence, our algorithm fixes a number m and verifies whether for
all strategies it is the case that there is i such that the reward accumulated up
to m steps is at most u − 2 · λmi · U/3. This problem can be expressed using a
formula over reals with addition and multiplication, for which the satisfiability
problem is decidable [16]. If we find out that all strategies satisfy the condition,
we return that u is not achievable, otherwise we increase m and continue.

The two above algorithms can be run in parallel, giving an algorithm that
eventually terminates for any input. This allows us to establish the following
corollary.

Corollary 1. For the reward-discount model, the problem of achievability of a
given vector is decidable.

Remark 1. Our analysis does not yield any upper complexity bound. The lim-
iting factor of our analysis is that in Theorem 1 we don’t have any information
about the vector w. If we were able to bound the coordinates in of w, then later
in the proof we could give a bound on k, and hence establish the upper num-
ber of steps after which the strategies start behaving memoryless. Nevertheless,
there is no obvious way how to achieve this.

4 Results for Graphs and Pure Strategies

In this section we study the decidability of the problem of achievability of a given
vector for graphs. We show decidability of this problem and existence of finite-
memory strategies even for the unrestricted model where the discounts depend
both on the state as well as the objective function. However, we require all of
these discount functions λi to be inverse-integer, which means that for each i
and s ∈ S there is some m ∈ N such that λi(s) = 1/m. Under this restriction,
we are able to represent the integer thresholds as periodic sequences, yielding a
finite-state system. A similar approach was used in a different setting by [2].
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Finally, we show that if not all of the discount reward functions are inverse-
integer then any strategy for a given achievable vector may require an infinite
amount of memory and we leave the decidability of that case as an open problem.

For the rest of this section, fix a graph M = (S,A, Act , δ), i.e. δ(a) is Dirac
for all a ∈ A, i.e. δ(a) is Dirac for all a ∈ A.

Theorem 3. Let (r1, λ1), . . . (rn, λn) be discounted reward structures with
inverse-integer discount factors and let v ∈ Qn be the bound to be achieved,
where n is fixed and all constants are given in unary. The problem whether there
exists a pure strategy σ achieving v can be solved in polynomial time.

Proof. We start by reducing this problem for arbitrary rational rewards functions
ri and lower threshold vi to integer rewards and thresholds. To do so for each i
we multiply the denominator of vi by the denominators of all rational numbers
ri(s) for every s ∈ S to obtain some number di. We now define r′i(s) = di · ri(s)
and v′

i = di · vi. It is easy to see that r′i(ω) = di · ri(ω) for any ω and so for
any σ we have Eσ

s0 [ri, λi] ≥ vi iff Eσ
s0 [r

′
i, λi] ≥ v′

i. Moreover, notice that all the
numbers defining r′i and v′

i are of polynomial size, because n is fixed.
We first focus on the case n = 1. It is well-known that the problem in this

setting can be solved in polynomial time even when all the inputs are given in
binary by finding a solution to a linear program which gives the optimal value
as well as the optimal deterministic strategy for the controller. However, this
approach does not generalise to the n > 1 case. Instead, we will use automata
theory based approach to solve the case n = 1 which works in polynomial-time
if all the constants are represented in unary, and can be exponential otherwise.
The advantage of this approach is that it allows us to solve the general case by
using a cross product construction of the automaton generated for each of the
reward structure.

Now, let the single inverse-integer reward structure be (r, λ) and the lower
threshold bound be v. Also, let amax = 0maxs∈S r(s)/(1 − λ(s))1 and amin =
�mins∈S r(s)/(1 − λ(s))�. Let δ(s) be the set of all possible successors of state
s, i.e. δ(s) = {s′ ∈ S | ∃a∈Act(s)δ(a)(s

′) = 1}. We construct a deterministic au-
tomaton A = (Q,Σ,Δ) with the set of states Q = S×{amin, amin+1, . . . , amax}∪
{�,⊥}, action alphabet Σ = A and transition function Δ : S × A → S. The
initial state of A is (s0, v). Intuitively, if A is in state (s, x) after reading the k-th
letter of the word, then x denotes how big the discounted reward of the tail of
this word should be in order for the whole word to satisfy the condition ≥ v.
Formally, we define the transition function Δ as follows. If the current state is
(s, x) then notice that y := (x − r(s))/λ(s) ∈ Z, because λ is an inverse-integer
discount. Now, if y ∈ {amin, amin+1, . . . , amax} then the automaton for each ac-
tion a such that Src(a) = s have a transition to the state (δ(a), y) which reads
letter a. However, if y > amax then the only transition from (s, x) is to state �
and if y < amin then the only transition is to ⊥. Also, from � the only transition
is to � and from ⊥ the only transition is to ⊥. These special transitions can
read any action letter.
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Lemma 3. There exists a pure strategy σ such that Eσ
s0 [r, λ] ≥ v iff there exists

an infinite word such that the corresponding run of the automaton never reaches
� (a safety accepting condition).

Proof. (⇒) Let σ be any pure strategy such that Eσ
s0 [r, λ] ≥ v and let it generate

a run ω = s1a1s2a2 . . ., where s1 = s0. That is we have r(ω) = Eσ
s0 [r, λ] ≥ v. Let

(s1, x1)(s2, x2) . . . be the sequence of states visited by A while reading the word
a1a2 . . ., where s1 = s0 and x1 = v. Let us modify this sequence by replacing �
and ⊥ states by the actual states of the form (s, x) that would have be visited
if these special states � and ⊥ were not present. In other words, sk+1 = δ(ak)
and xk+1 = (xk − r(sk))/λ(sk) hold for any k even if xk 
∈ {amin, . . . , amax}. We
will show that it cannot be the case that xk > amax for some k and as a result
� did not occur in the original sequence.

The proof is by contradiction; let l be the first step for which xl > amax =
maxs r(s)/(1− λ(s)). It is easy to see that there has to be some constant α > 1
such that xl ≥ maxs r(s)/(1−α ·λ(s)). In fact, we can pick α to be mins 1/λ(s)−
r(s)/(λ(s) ·xl). This is because from the definition of α for any s we would then
have r(s)/(1−α ·λ(s)) ≤ r(s)/(1− (1− r(s)/xl)) = xl. Note that α > 1 because
from the definition of amax if xl > amax then (xl − r(s))/λ(s) > xl for all s.
Finally, we get xl+1/xl = (xl−r(sl))/(xl ·λ(sl)) = 1/λ(sl)−r(sl)/(λ(sl)·xl) ≥ α.
Therefore xl+1 ≥ αxl ≥ xl, but the expression for α increases as xl increases
and so for any k we have xl+k ≥ αxl+k−1 ≥ . . . ≥ αk · xl. In conclusion xk →∞
as k →∞.

On the other hand, for any k let us denote the discounted-reward of
ω until step k by r(ωk) :=

∑k
i=1 r(si) ·

∏i−1
j=1 λ(sj). Notice that x1 = v,

x2 = (v − r(s1))/λ(s1) = v/λ(s1) − r(s1)/λ(s1), x3 = v/(λ(s1) · λ(s2)) −
r(s1)/(λ(s1) · λ(s2)) − r(s2)/λ(s2), and by induction xk = v/

∏k−1
j=1 λ(sj) −∑k−1

i=1 r(si)/
∏k−1

j=i λ(sj). In other words, xk ·
∏k−1

j=1 λ(sj) = v − r(ωk) ≤ r(ω) −
r(ωk) =

∑∞
i=k+1 r(si) ·

∏i−1
j=1 λ(sj), which means xk ≤ λ(sk) ·

∑∞
i=k+1 r(si) ·∏i−1

j=k+1 λ(sj) ≤ (maxs λ(s) ·maxs r(s))/(1−maxs λ(s)), but the right hand side
is a constant while we just showed that xk →∞ as k →∞; a contradiction.

(⇐) Let ω = a1a2 . . . be any infinite word for which A does not enter state
� and let (s1, x1)(s2, x2) . . . be the sequence of states visited by A along this
word. If ⊥ state is in this sequence (and as a result only ⊥ occurs from that
moment on), then note that (amin − r(s))/λ(s) < amin for any s ∈ S and so
when A is starting at any state (s, x) such that x < amin, no state (s′, x′) with
x′ > amax can be reached. Therefore, xk < amax holds for every k in either case.
As we will now show, this condition suffices for the word ω to be accepted and
so the automaton should accept any word once it enters ⊥ no matter what the
tail of that word is. Again, let us denote the discounted-reward of ω until step k
by r(ωk) :=

∑k
i=1 r(si) ·

∏i−1
j=1 λ(sj) and notice that xk

∏k−1
j=1 λ(sj) = v − r(ωk).

We know that for any k we have xk ≤ amax which means that v − r(ωk) ≤
amax ·

∏k−1
j=1 λ(sj), and so v−amax ·

∏k−1
j=1 λ(sj) ≤ r(ωk). Now taking the limit as

k → ∞ we get that v ≤ r(ω), because amax is a constant, and
∏k−1

j=1 λ(sj) → 0
and r(ωk) → r(ω) as k →∞. 
�
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Now, to deal with more than one reward structures, we will use a cross
product of all the automata constructed for each of the reward structures. Let
Ai = (Qi, Σi, Δi) be the automaton generated using the previous construc-
tion for the reward structure (ri, λi). The cross-product automaton A′ is de-
fined as follows A′ = (Q′, Σ′, Δ′), where the set of states Q′ =

∏
i Qi, the

letter alphabet Σ′ = A and the transition function Δ′ is defined as follows:
Δ((s1, . . . , sn), a) = (Δ1(s1, a), Δ2(s2, a), . . . , Δn(sn, a)). The initial state of the
automata A′ is s′0 = ((s0,v1), (s0,v2), . . . , (s0,vn)). Notice that the size of the
automata A′ is polynomial in the size of the original graph, because n is fixed.
Technically we can further reduce the size of A by noticing that any reachable
state ((s1,v1), (s2,v2), . . . , (sn,vn)) satisfies s1 = s2 = . . . = sn. A run of A′ is
accepting if it does not reach the � state in any of the component automata.
This is a safety condition and deciding the existence of a safe run can be done
in time linear in the size of the automaton [9].


�

Theorem 4. Let (r1, λ1), . . . (rn, λn) be inverse-integer reward structures given
in binary, and let v ∈ Qn be a bound. The problem whether there exists a pure
strategy σ achieving v can be solved in PSpace. If such σ exists, then there is
also a finite-memory one.

Proof. We use the same cross-product automaton A′ construction as in the proof
of Theorem 3. The size of the automata A′ is now exponential in the size of
the original graph, but every state can be represented using polynomial space,
because we just need to remember the current state, (s, x), of each component
automaton and the value of x has at most polynomially many bits. Also the
number of states of A′ can be represented using polynomially many bits. Notice
that A′ has an accepting run iff there exists a cycle starting s′0 which never
reaches a � state. So a simple NPSpace (which is =PSpace) algorithm can be
given as follows: we simply simulate the transitions while counting the number
of steps made, and we stop and reject if we reach �, and stop and accept if we
already made more steps than the number of states in A′. The latter implies that
we already formed a cycle and a run that never reaches � exists. A safe strategy
can be reconstructed from the accepting path of our algorithm by looking at the
transitions taken, and repeating a pattern based on them forever. Notice that
the size of the memory such a strategy requires is at most equal to the number
of states in the automaton A′. 
�

Proposition 1. There are uniform-discount rewards (r1, λ), (r2, λ) that are not
inverse-integer such that for some v ∈ Q2: any pure strategy σ which achieves v
requires infinite memory.

Proof. We will show this already for a system with just two states. Let us denote
the states by s1 and s2 and actions by a1 and a2. The uniform discount is set to
λ = 2

3 . From any state the action ai leads to state si. We set r1(s1) = r2(s1) = 0,
r1(s2) = 1, r2(s2) = −1, and the thresholds to v1 = 3/2 and v2 = −3/2.
Notice that since r1(ω) + r2(ω) = 0 for any infinite path ω, the conditions
Eσ
s0 [ri, λi] ≥ vi are satisfied iff r1(ω) = 3/2. Because we are only looking at
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finite-memory pure strategies σ, we can represent the unique run ω it generates
by a string ω′ = b1 . . . bk · (c1 . . . cl)

ω, where k ≥ 0, l ≥ 1, bi, ci ∈ {0, 1} and the
j-th position in ω′ is 0 iff a1 is used at the j-th step of the run ω and otherwise
it is equal to 1. Notice that we have

r1(ω) = b1 +
2

3
b2 + . . .+

(
2

3

)k−1

bk +

(
2

3

)k
1

1− ( 2
3
)l

(
c1 +

2

3
c2 + . . .+

(
2

3

)l−1

cl

)

and if we multiply both sides by 3k ·(3l−2l) the right-hand side will be an integer,
but the left-hand side will not be an integer as r1(ω) = 3/2 and 3k · (3l − 2l) is
an odd number for l ≥ 1.

Finally, we just need to show now that there exists an infinite sequence ω =
b1b2 . . . such that bi ∈ {0, 1} for all i and

r1(ω) = b1 +
2

3
b2 + . . . +

(
2

3

)k−1

bk + . . . =
3

2
. (1)

In other words there exists a pure winning strategy σ which uses an infinite
amount of memory. We use the following algorithm to generate this sequence ω.
We initialise x := 3

2 . At the k-th step, starting with k := 1, if x ≥ 1 then we
set bk := 1 and update x := 3

2 (x − 1), and otherwise set bk := 0 and update
x := 3

2x. We then move to the next step k := k + 1. Intuitively the value of x

at the k-th step tell us what the value of
(
2
3

)k
bk+1 + . . . should be in order for

the total discount reward to be equal to 3
2 . Also, based on the rules how x gets

updated, at any step we have x ≥ 0 and x ≤ 3
2 . From this fact and using similar

reasoning to Lemma 3, we can show that this process will generate an infinite
sequence ω = b1b2 . . . such bi ∈ {0, 1} for all i and the condition (1) holds.

5 Conclusions

We have studied MDPs with multiple discounted objectives. We have extended
the results of [6] by considering a more expressible class of models, which allow
to specify discount factors dependent on states and/or objectives.

As we have already mentioned in the introduction, there are several interesing
and challenging open questions. Except for these, it is also of interest to obtain
a complexity bound for the reward-discound model.
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Abstract. The combination of rules and ontologies has been a fertile
topic of research in the last years, with the proposal of several differ-
ent systems that achieve this goal. In this paper, we look at two of these
formalisms, Mdl-programs and multi-context systems, which address dif-
ferent aspects of this combination, and include different, incomparable
programming constructs. Despite this, we show that every Mdl-program
can be transformed in a multi-context system, and this transformation
relates the different semantics for each paradigm in a natural way. As
an application, we show how a set of design patterns for multi-context
systems can be obtained from previous work on Mdl-programs.

1 Introduction

Several approaches combining rules and ontologies have been proposed in the last
years for semantic web reasoning, e.g. [2,8,9,10,12,16] among others. Ontologies
are typically expressed through decidable fragments of function-free first-order
logic with equality, offering a very good ratio of expressiveness/complexity of
reasoning [1]. The addition of some kind of rule capability in order to be able to
express more powerful queries together with non-monotonic features (in particu-
lar, the negation-as-failure operator not) achieved by joining ontologies and logic
programming result in a very powerful framework for semantic web reasoning.

In this paper, we look at two of these systems: Mdl-programs [7], which are a
straightforward generalization of the well-known dl-programs [9,10], and multi-
context systems (MCSs) [2], which address different aspects of this combination,
and include incomparable programming constructs. One of the main differences
is the structure of programs – an Mdl-program is essentially a logic program
that can query description logic knowledge bases, “feeding” its view of the latter
with newly inferred facts; MCSs, on the other hand, consist of several knowledge
bases, possibly expressed in different languages, each declaring additional rules
that allow communication with the others.

Despite their differences, we show that every Mdl-program can be trans-
formed in a multi-context system in such a way that different semantics for each
paradigm are naturally related: answer-set semantics become grounded equi-
libria, whereas well-founded semantics correspond to well-founded belief sets.
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As a consequence, any useful constructions developed within the framework of
Mdl-programs may be automatically translated to equivalent constructions in
the setting of MCSs. Although the idea behind the syntactic translation is sug-
gested in [3] to justify that MCSs generalize the original dl-programs, even this
claim is not substantiated beyond an intuitive perspective. Here, we will not only
make this syntactic correspondence precise, but discuss in detail the semantic
correspondences it entails, and apply it to obtain a set of design patterns for
MCSs based on such a set for Mdl-programs.

The structure of the paper is as follows. Section 2 recalls the syntax and
semantics of Mdl-programs. Section 3 introduces the syntax of MCSs and the
translation of Mdl-programs into these. Section 4 summarizes the different se-
mantics of MCSs and relates the semantics of an Mdl-program and those of the
MCS it generates. Section 5 applies this correspondence to design patterns for
Mdl-programs. Section 6 concludes the paper.

2 Mdl-Programs

This section presents multi-description logic programs [7], Mdl-programs for
short, which are a straightforward generalization of dl-programs, an already
established framework for coupling description logic knowledge bases with rule-
based reasoning [9,10]. The main advantage of Mdl-programs, as we will see, is
their simplicity. Although they do not possess the level of generality other sys-
tems such asHex-programs [11] or multi-context systems [2] have, Mdl-programs
are quite adequate for reasoning within the semantic web, where a lot of effort
is being put into developing ontologies, which for the main part are description
logic knowledge bases.

2.1 Syntax

The purpose of Mdl-programs is to generalize logic programs with special atoms
that communicate with external description logic knowledge bases, which we
will refer to henceforth simply as “knowledge bases”. The key ingredient of
Mdl-programs is the notion of dl-atom. A dl-atom relative to a set of knowl-
edge bases Σ = {Σ1, . . . , Σn} and a function-free first-order signature Φ is
DLi [S1 op1 p1, . . . , Sm opm pm;Q] (t), where 1 ≤ i ≤ n, each Sk is either a con-
cept or role of Σi, or a special symbol in {=, 
=}; opi ∈ {#,∪- }; each pk is a
unary or binary predicate symbol of Φ, according to whether the corresponding
Sk is a concept or a role; and Q(t) is a dl-query, that is, it is either a concept
inclusion axiom F or its negation ¬F , or of the form C(t), ¬C(t), R(t1, t2),
¬R(t1, t2), =(t1, t2), 
=(t1, t2), where C is a concept from Σi, R is a role from
Σi, and t, t1 and t2 are terms – constants from any Σj or Φ, or variables. The
sequence S1 op1 p1, . . . , Sm opm pm is the input context of the dl-atom; we will
use the greek letter χ to denote generic input contexts.

Note that no requirement is made about any relations between the different
knowledge bases; in particular, the description logics underlying the Σis need
not be the same.
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A dl-rule over Σ and Φ is a Horn clause that may contain dl-atoms, i.e. it
has the form a ← b1, . . . , bk,not bk+1, . . . ,not bm where a is a logical atom
and b1, . . . , bm are either logical atoms or dl-atoms – where the logical atoms
are again built using terms from Φ and constants from any Σi. The head of
r is a and the body of r is b1, . . . , bk,not bk+1, . . . ,not bm. An Mdl-program
over Φ is a pair KB = 〈Σ,P〉 where Σ is as before, each Σi is a description logic
knowledge base and P is a finite set of dl-rules over Σ and Φ (also referred to as a
generalized logic program). As usual, we will omit referring to Φ explicitly. Note
that negation in P is the usual, closed-world, negation-as-failure, in contrast
with the knowledge bases Σi, which (being description logic knowledge bases)
come with an open-world semantics. An Mdl-program with only one knowledge
base (n = 1) is a dl-program – and this definition coincides with that in [9].

The operators # and ∪- extend Σi in the context of the current dl-query. In-
tuitively, Sk # pk (resp., Sk ∪- pk) adds to Sk (resp., ¬Sk) all instances of (pairs
of) terms for which pk holds – the extent of pk –, before evaluating the query.
This only affects P ’s current view of Σi without changing Σi. The components
of an Mdl-program are thus kept independent, communicating only through
dl-atoms; so, although they function separately, giving Mdl-programs nice mod-
ularity properties, there is a bidirectional flow of information via dl-atoms.1

We will adopt some notational conventions throughout this paper. Variables
are capital letters in math font (e.g. X), while constants and terms are in
sans serif. Predicate symbols (from the generalized logic program) begin with
a lowercase letter, while concepts and roles (from the knowledge base) are writ-
ten exactly as they are defined in the source ontologies. We will not use different
fonts for objects of P and objects of the Σis, since these sets are not necessarily
disjoint (the constants of all Σis may be used in P); we will however abstain
from using the same name for a predicate in P and a concept or role in Σi.

Example 1. We illustrate the syntax of Mdl-programs with a simple example.
This program uses two external knowledge bases: Σ1 is the Travel Ontology
travel.owl [13], freely available online, which defines a series of travel-related
concepts, including that of (tourist) Destination; and Σ2 is a freely accessible
wine ontology wine.rdf [15], which compiles a substantial amount of informa-
tion about wines, including the locations of several important wineries around
the world; in particular, this ontology contains a concept Region identifying
some major wine regions throughout the world. These are combined in an Mdl-
program by means of the following generalized logic program P .

wineDest(Tasmania)← (r1)

wineDest(Sydney)← (r2)

wineDest(X)← DL2[;Region](X) (r3)

overnight(X)← DL1[; hasAccommodation](X,Y ) (r4)

oneDayTrip(X)← DL1[Destination � wineDest;Destination](X),

not overnight(X) (r5)

1 The original definition of dl-programs included a third operator, but it can be defined
as an abbreviation of the other two [9], and we follow this methodology.

travel.owl
wine.rdf
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This program defines a predicate wineDest with two instances, corresponding
to two wine regions that are interesting tourist destinations, and a rule (r3)
extending the definition of wineDest with a query to Σ2, importing all instances
of Region in Σ2. Informally, the goal is that wineDest should be a new subconcept
of Destination, but Σ1 is left unchanged.

Rules (r4, r5) identify the destinations only suitable for one-day trips. The
possible destinations are selected via (r5) not only from the information origi-
nally in Σ1, but by (i) extending the concept Destination of Σ1 with all instances
of wineDest in P and then (ii) querying this extended view of Σ1 for all instances
of Destination. The result is then filtered using the auxiliary predicate overnight
defined in (r4) as the set of destinations for which some accommodation is known.
This uses the role hasAccommodation of Σ1, where hasAccommodation(t1,t2)
holds whenever t1 is a Destination and t2 an accommodation facility located
in t1. The reason for resorting to (r4) at all is the usual one in logic program-
ming: the operational semantics of negation-as-failure requires all variables in a
negated atom to appear in non-negated atoms in the body of the same rule.2

An interesting aspect of this example is that Sydney is already an individual of
Σ1 – one of the characteristics of Mdl-programs is precisely that the atoms of P
may use constants of Σ1 as terms. This is relevant: rule (r1) adds new constants
to the domain of KB, but rule (r2) adds information about an individual already
in Σ1. Note the relevance of the extended query in (r5): if Destination were not
updated with the information from wineDest, we would not be able to infer
e.g. oneDayTrip(Tasmania). In the next section we will introduce semantics for
dl-programs and show that this is indeed a consequence of KB.

2.2 Semantics

In order to provide semantics for Mdl-programs, we first recall the notion of
Herbrand base of a logic program P over Φ, denoted HBP – the set of all ground
atoms consisting of predicate symbols and terms from Φ. The Herbrand base of
an Mdl-program KB = 〈Σ,P〉, denoted HBKB, is similarly defined, except that
constant symbols may also come from the vocabulary of the Σis. An interpre-
tation is a subset I of HBKB. We say that I is a model of a ground atom or
dl-atom a under Σ, or I satisfies a under Σ, denoted I |=Σ a, in the following
cases:

– if a ∈ HBKB, then I |=Σ a iff a ∈ I;
– if a is a ground dl-atom DLi[χ;Q](t) with χ = S1 op1 p1, . . . , Sm opm pm,

then I |=Σ a iff Σi(I;χ) |= Q(t), where Σi(I;χ) = Σi ∪
⋃j=1

m Aj(I) and, for
1 ≤ j ≤ m,

Aj(I) =

{
{Sj(e) | pj(e) ∈ I}, opj = #
{¬Sj(e) | pj(e) ∈ I}, opj = ∪-

2 We do not need to extend Destination in this dl-rule because of the structure of
Σ1: the role hasAccommodation is defined as the set of its instances (without any
axioms), so changing other concepts or roles has no effect on its semantics.
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An interpretation I is a model of a ground dl-rule r if I |=Σ H(r) whenever
I |=Σ B(r), where H(r) and B(r) are the head and body of rule r, respectively.
I is a model of KB if I is a model of all ground instances of all rules of P .

Example 2. Given the dl-program KB of Example 1, its Herbrand base contains
all ground atoms built from applying wineDest, overnight and oneDayTrip not
only to the constants of P – Tasmania and Sydney – but also to all individuals
of Σ1, which include (among others), Canberra and FourSeasons (which is not an
instance of Destination), and of Σ2, which includes e.g. AustralianRegion. Thus,
HBKB contains e.g.

wineDest(AustralianRegion) overnight(Tasmania) oneDayTrip(Canberra)

wineDest(FourSeasons) overnight(Sydney) oneDayTrip(Sydney), . . .

This may seem a bit strange, since e.g. wineDest(FourSeasons) does not fit well
with our intended interpretation of wineDest; but this is a well-known side-effect
of the absence of types in logic programming.

This program has only one model. To analyze it, one has to know that the
only instance of hasAccommodation in Σ1 has Sydney as its first argument.
Thus, this model contains overnight(Sydney), as well as wineDest(Tasmania) and
wineDest(Sydney); furthermore, it includes wineDest(t) for every t such that
Σ2 |= Region(t). Finally, for every individual t other than Sydney such that
Σ1 |= Destination(t) or Σ2 |= Region(t), the model contains oneDayTrip(t).

This model may not seem like a very realistic view of the world, but this is a
limitation of the current state of the underlying ontologies.

An Mdl-program KB = 〈Σ,P〉 is positive if the rules in P do not contain
negations. Positive Mdl-programs enjoy the usual properties of positive logic
programs, namely they have a unique least model MKB that can be constructed
by computing the least fixed-point of the Herbrand transformation TKB, which
is defined as the usual Herbrand transformation for logic programs, resorting to
the Σis to evaluate dl-atoms. The Mdl-program in Example 1 is not a positive
program because of the negation in rule (r4).

Answer-set semantics. The answer set semantics of (not necessarily positive)
Mdl-programs is defined again in analogy to that of logic programs. Given an
Mdl-program KB = 〈Σ,P〉, we can obtain a positive dl-program by replacing P
with its dl-transform sPI

Σ
relative to Σ and an interpretation I. This is obtained

by grounding every rule in P and then (i) deleting every dl-rule r such that
I |=Σ a for some default negated a in the body of r, and (ii) deleting from each
remaining dl-rule the negative body. The informed reader will recognize this to
be a generalization of the Gelfond–Lifschitz reduct. Since KBI = 〈Σ, sPI

Σ
〉 is a

positive Mdl-program, it has a unique least model MKBI . An answer set of KB
is an interpretation I that coincides with MKBI .

The model of the Mdl-program in the previous example is also an answer set
of that program.
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Well-founded semantics. Another semantics for Mdl-programs is well-founded
semantics, which again generalizes well-founded semantics for logic programs.
There are several equivalent ways to define this semantics; for the purpose of
this paper, we define the well-founded semantics of an Mdl-programKB = 〈Σ,P〉
by means of the operator γKB such that γKB(I) is the least model of the posi-
tive dl-program KBI defined earlier. This operator is anti-monotonic, so γ2

KB is
monotonic and therefore it has a least and greatest fixpoint, denoted lfp

(
γ2
KB
)

and gfp
(
γ2
KB
)
, respectively. An atom a ∈ HBP is well-founded if a ∈ lfp

(
γ2
KB
)

and unfounded if a 
∈ gfp
(
γ2
KB
)
; the well-founded semantics of KB is the set

containing all well-founded atoms and the negations of all unfounded atoms. In-
tuitively, well-founded atoms are true in every model of P , whereas unfounded
atoms are always false. Note that, unlike answer sets, the well-founded semantics
of KB may not be a model of KB.

The well-founded semantics of the previous example contains all atoms in its
models and the negations of all remaining atoms. This is a consequence of there
being only one answer set for that Mdl-program (see [9] for details).

2.3 Mdl-Programs with Observers

On top of Mdl-programs, we defined a syntactic construction [7] to extend a
concept or role from one of the Σis (in P ’s view of Σi) with all instances of a
predicate in P , or reciprocally. An Mdl-program with observers is a pair 〈KB,O〉,
where KB = 〈Σ,P〉 is an Mdl-program, O = 〈{Λ1, . . . , Λn}, {Ψ1, . . . , Ψn}〉, the
observer sets, where Λi is a finite set of pairs 〈S, p〉 and Ψi is a finite set of pairs
〈p, S〉, in both cases with S a (negated) concept from Σi and p a unary predicate
from P , or S a (negated) role from Σi and p a binary predicate from P .

Intuitively, Λi contains the concepts and roles in Σi that P needs to observe,
in the sense that P should be able to detect whenever new facts about them are
derived, whereas Ψi contains the predicates in P that Σi needs to observe. Note
that a specific symbol (be it a predicate, concept or role) may occur in different
Ψis or Λis. An Mdl-program with observers can be transformed in a (standard)
Mdl-program by replacing P with PO, obtained from P by:

– adding rule p(X)← DLi[;S](X) for each 〈S, p〉 ∈ Λi, if S is a concept (and
its binary counterpart, if S is a role); and

– in each dl-atom DLi[χ;Q](t) (including those added in the previous step),
adding S # p to χ for each 〈p, S〉 ∈ Ψi and S ∪- p to χ for each 〈p,¬S〉 ∈ Ψi.

Example 3. We can rewrite the previous Mdl-program as an Mdl-program with
observers by omitting rule (r3) and taking Λ2 = {〈Region,wineDest〉}.

Having in mind the structure of Σ1 (see footnote on page 246), we can go a
step further, take Ψ1 = {〈wineDest,Destination〉} and replace (r5) with

oneDayTrip(X)← DL1[;Destination](X),not overnight(X) (r′5)

Unfolding this observer now yields a program with the same semantics but where
rule (r4) has been replaced by

overnight(X)← DL1[Destination � wineDest; hasAccommodation](X,Y ) (r′4)
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3 From Mdl-Programs to Multi-context Systems

There are other approaches to combining different reasoning and programming
paradigms; in particular, rules and ontologies can also be combined within AL-
log [8], Hex-programs [11], MKNF [14] and multi-context systems [2,4]. Some of
these systems even allow for more general combinations; however, Mdl-programs,
being less general, are easier to manipulate and understand.

In this section, we show that Mdl-programs (with observers) can be translated
to MCSs. The converse is trivially not true – MCSs are far more general, as their
definition shows. Besides being an interesting result by itself, this translation will
be used in Section 5 to guide the development of an elementary set of design
patterns for MCSs – another useful contribution, since the latter framework is
more general than most other existing approaches [4].

Instead of presenting MCSs on their own, this section is organized as follows.
We begin by defining their syntax and immediately follow with the definition of
the (syntactic) translation from Mdl-programs to MCSs. Then, we introduce the
several semantics for MCSs together with the correspondence results that relate
the semantics of an Mdl-program and the corresponding MCS. In this way, the
constructions and results are more easily appreciated.

Multi-context systems were originally proposed [2] as a way of combining
different reasoning paradigms, where information flows among the different logics
within the system through bridge rules.

The notion of multi-context system is defined in several layers.

1. A logic is as a triple L = (KBL, BSL, ACCL) where KBL is the set of well-
formed knowledge bases of L; BSL is the set of possible belief sets; and
ACCL : KBL → 2BSL is a function describing the semantics of the logic by
assigning to each element of KBL a set of acceptable sets of beliefs.
Note that nothing is said about what knowledge bases or belief sets are; the
former are part of the syntax of the language, their precise definition being
left to L, while the latter intuitively represent the sets of syntactical elements
representing the beliefs an agent may adopt. Still, this definition is meant to
be abstract and general, so part of the purpose of KBL and BSL is defining
these notions for each logic L.

2. Given a set of logics {L1, . . . , Ln}, an Lk-bridge rule, with 1 ≤ k ≤ n, has
the form

s ← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm)

where 1 ≤ ri ≤ n; each pi is an element of some belief set of Lri; and
kb ∪ {s} ∈ KBk for each kb ∈ KBk.

3. A multi-context system (MCS) M = 〈C1, . . . , Cn〉 is a collection of contexts
Ci = (Li, kbi, br i), where Li = (KB i, BS i, ACC i) is a logic, kbi ∈ KB i is a
knowledge base, and br i is a set of Li-bridge rules over {L1, . . . , Ln}.

Given an Mdl-program KB = 〈Σ,P〉, there are two steps in the process of
generating an MCS from KB.
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1. We split P in its purely logical part and its communication part, translating
rules that contain dl-atoms into bridge rules.

2. For each distinct input context χ appearing in P , we create a different copy
of the knowledge base, corresponding to the view of the knowledge base
within the dl-atoms containing χ.

Although the idea behind this syntactic construction is suggested in [4], it is
not defined precisely, neither are the semantic implications discussed. Here, we
will formalize this syntactic correspondence and analyze its implications at the
semantic level.

Definition 1. Let KB = 〈Σ,P〉 be an Mdl-program. For each i = 1, . . . , n, let
χi
1, . . . , χ

i
mi

be the input contexts in dl-atoms querying Σi. Let ψ be a sequential
enumeration of all input contexts in P, i.e. ψ(i, j) is the position of χi

j in the
sequence of all input contexts in P.

1. The translation σKB of literals and dl-atoms is defined by

σKB(a) =

⎧⎪⎨⎪⎩
(0 : L) if a is a literal L

(ψ(i, j) : Q(t)) if a = DLi[χ
i
j ;Q](t)

not(ψ(i, j) : Q(t)) if a = notDLi[χ
i
j ;Q](t)

2. The translation of P is the context C0 = 〈L0, kb0, br0〉 where:

– L0 = 〈KB0, BS 0, ACC 0〉 is the logic underlying P, where KB0 is the set
of all logic programs over P’s signature, BS 0 is the power set of HBP ,
and ACC 0 assigns each program to the set of its models;

– kb0 is P−, the set of rules of P that do not contain any dl-atoms;
– br0 contains p ← σKB(l1), . . . , σKB(lm) for each rule p ← l1, . . . , lm in
P \ P−.

3. For each input context χi
j = P1 op1 p1, . . . , Pk opk pk, the context Cψ(i,j) =

〈Li, kbi, brψ(i,j)〉 is defined as follows.

– Li = 〈KB i, BS i, ACC i〉 is the description logic underlying Σi, with KB i

the set of all knowledge bases over Σi’s signature; BS i contains all sets
of dl-queries to Σi; and ACC i assigns to each knowledge base the set of
dl-queries it satisfies.3

– kbi is Σi.
– For j = 1, . . . , k, brψ(i,j) contains Pj ← (0 : pj), if opj = #, or ¬Pj ←

(0 : pj), if opj = ∪- .

Note that Li and kbi are the same for all contexts originating from Σi.
4. The MCS generated by KB, M(KB), contains C0 and all the Cψ(i,j).

The first context in M(KB) is a logic program with the same underlying
language of P . This implies that any interpretation I of P is an element of BS 0,
and vice-versa. We will use this fact hereafter without mention.

3 Formally, we can define ACC i as computing the set of logical consequences of the
knowledge base and restricting it to those formulas that are dl-queries.
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Example 4. Recall the Mdl-program KB from Example 1. For the purpose of
generating an MCS from KB, observe that there are two different input contexts
associated with Σ1, χ1 = ε and χ2 = Destination#wineDest, and one associated
with Σ2, χ3 = ε. Rules (r1) and (r2) do not include dl-atoms, so they belong
to P−. Rules (r3), (r4) and (r5), which contain dl-atoms, are translated as the
following L0-bridge rules.

wineDest(X)← (3 : Region(X)) (r′3)

overnight(X)← (1 : hasAccommodation(X,Y )) (r′4)

oneDayTrip(X)← (2 : Destination(X)),not overnight(X) (r′5)

The generated multi-context system M(KB) is thus 〈C0, C1, C2, C3〉, where:

C0 = 〈L0, {r1, r2}, {r′3, r′4, r′5}〉 C1 = 〈L1, Σ1, ∅〉
C2 = 〈L1, Σ1, {Destination(X) ← (0 : wineDest(X))}〉 C3 = 〈L2, Σ2, ∅〉

Note that, formally, the syntax of MCSs does not allow variables, so M(KB)
should instead include the ground versions of these rules. However, it is usual to
write MCSs with variables for readability and succinctness [4].

An interesting aspect is that we can translate an Mdl-program with observers
directly to an MCS (without first “unfolding” the observers) as follows.

Definition 2. Let 〈KB,O〉 be an Mdl-program with observers. The MCS it gen-
erates is M(KB,O), defined as follows.

1. Construct M = M(KB).
2. Without loss of generality, assume that M contains contexts Ci∗ correspond-

ing to the empty input context for each Σi.
3. For each (S, p) ∈ Λi, add the bridge rule p ← (i∗ : S) to br0.
4. For each (p, S) ∈ Ψi, add the bridge rule S ← (0 : p) to each brψ(i,j), with

j = 1, . . . , ni, and to br i∗ .

This construction captures the intended meaning of the observers.4

Theorem 1. Let KB = 〈Σ,P〉 be an Mdl-program and O be observer sets for
KB. Then M(KB,O) = M

(〈
Σ,PO

〉)
.

4 Semantics of Multi-context Systems

There are several different semantics for MCSs, all of which are defined in terms
of the semantics for the logics in the individual contexts.

Let M = 〈C1, . . . , Cn〉 be a multi-context system, with Ci = (Li, kbi, br i) for
each 1 ≤ i ≤ n. A belief state for M is a collection S = 〈S1, . . . , Sn〉 of belief sets
for each context, i.e. Si ∈ BS i for each 1 ≤ i ≤ n.

A bridge rule s ← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm) is
applicable in belief state S = 〈S1, . . . , Sn〉 iff pi ∈ Sri for 1 ≤ i ≤ j and pk 
∈ Srk

4 The proofs of all results can be found in [6].
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for j + 1 ≤ k ≤ m. A belief state S = 〈S1, . . . , Sn〉 of M is an equilibrium if
the condition Si ∈ ACC i(kbi ∪ {H(r) | r ∈ br i is applicable in S}) holds for
1 ≤ i ≤ n, where H(r) denotes the head of rule r as usual.

In other words, belief states are simply “candidate” models, in the sense that
they are acceptable as potential models of each context. Information is trans-
ported between different contexts by means of bridge rules, since a bridge rule
in one context may refer to other contexts, and the notion of equilibrium guar-
antees that all belief states are not only models of the local information at each
context, but also reflect the relationships imposed by the bridge rules.

Just as we can generate a multi-context system M(KB) from an Mdl-program
KB, we can generate a belief state for M(KB) from any interpretation of KB.

Definition 3. Let KB = 〈Σ,P〉 be an Mdl-program and I be an interpretation
of KB. The belief state generated by I is SKB(I) = 〈SI

0 , S
I
1 , . . . , S

I
m〉 of M(KB),

where SI
0 = I and SI

ψ(i,j) is the only element of

ACC i

(
Σi ∪ {P (t) | I |= p(t), P # p ∈ χi

j} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χi
j}
)

.

It is straightforward to verify that SKB(I) is a belief state of M(KB). When there
is only one Mdl-program under consideration, we omit the subscript in SKB.

In the example from the previous section, one can check that its model gener-
ates a belief state that is also an equilibrium of M(KB). This suggests that there
are very close connections between I and S(I), which we now prove formally.

Theorem 2. Let KB = 〈Σ,P〉 be an Mdl-program.

1. If I is a model of KB, then S(I) is an equilibrium of M(KB).
2. If S = 〈S0, . . . , Sm〉 is an equilibrium of M(KB), then S0 is a model of KB.

Furthermore, since ACC i always yields a singleton set, equilibria for MCSs
generated from an Mdl-program can be uniquely derived from their first com-
ponent, as expressed by the following corollary.

Corollary 1. If S = 〈S0, . . . , Sm〉 is an equilibrium of M(KB), then S(S0) = S.

This result allows us to state all future equivalences in terms of models of P .

Minimal equilibria. As is the case in logic programming, there can be too many
equilibria for a given multi-context system; for this reason, several particular
kinds of equilibria are defined in [2], reflecting different kinds of preferences one
may adopt to choose among them. These categories closely follow the usual hier-
archy for models of logic programs, as well as of Mdl-programs. The basic concept
is that of minimal equilibrium. This is a relative notion, since (as discussed in [2])
it may not make sense to minimize the belief sets for all contexts.

Let M = 〈C1, . . . , Cn〉 be a multi-context system and C∗ ⊆ {C1, . . . , Cn}
be the set of contexts of M whose models should be minimized. An equilibrium
S = 〈S1, . . . , Sn〉 of M is C∗-minimal if there is no equilibrium S′ = 〈S′1, . . . , S′n〉
of M such that: (1) S′i ⊆ Si for all Ci ∈ C∗; (2) S′i � Si for some Ci ∈ C∗; and
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(3) S′i = Si for all Ci 
∈ C∗. In this paper, we will always use C∗ = M and
simply refer to minimal equilibria, which the reader should understand to mean
M -minimal equilibria.

Since the transformation S from interpretations of Mdl-programs to belief
states preserves inclusions, we also have the following relationship.

Theorem 3. Let KB = 〈Σ,P〉 be an Mdl-program. Then I is the least model of
KB iff S(I) is a minimal equilibrium of M(KB).

Minimal equilibria (or even C∗-equilibria) do not necessarily exist. In logic
programming, it is shown that least models always exist for positive programs, a
result that holds also for dl-programs [9] and Mdl-programs. In MCSs, this class
corresponds to that of definite multi-context systems.

A logic L is monotonic if ACCL(kb) is always a singleton set, and kb ⊆ kb′

implies that the only element of ACCL(kb) is a subset of the only element of
ACCL(kb ′). This coincides with the usual notion of monotonic logic. A logic
L = (KBL, BSL, ACCL) is reducible if (1) there is KB∗

L ⊆ KBL such that
the restriction of L to KB∗

L is monotonic; and (2) there is a reduction function
redL : KBL × BSL → KB∗

L such that, for each k ∈ KBL and S, S′ ∈ BSL,
(2a) redL(k, S) = k whenever k ∈ KB∗

L; (2b) redL is anti-monotonic in the second
argument; and (2c) S ∈ ACCL(k) iff ACCL(redL(k, S)) = {S}. A context C =
(L, kb, br) is reducible if (1) L is reducible; and (2) for all H ⊆ {H(r) | r ∈ br}
and belief sets S, redL(kb ∪H,S) = redL(kb, S) ∪H . A multi-context system is
reducible if all of its contexts are reducible.

A definite MCS is a reducible MCS in which bridge rules are monotonic (that
is, they do not contain not) and knowledge bases are in reduced form (that
is, kbi = redLi(kbi, S) for all i and every S ∈ BS i). Every definite MCS has a
unique minimal equilibrium [2], which we will denote by Eq(M).

Grounded equilibria. The semantics of non-definite MCSs is defined via a gen-
eralization of the Gelfond–Lifschitz reduct to the multi-context case. If M =
〈C1, . . . , Cn〉 is a reducible MCS and S = 〈S1, . . . , Sn〉 is a belief state of M , then
the S-reduct of M is MS = 〈CS

1 , . . . , CS
n 〉, where CS

i = (Li, redLi(kbi, Si), brSi )
and, for each i, brSi is obtained from br i by (1) deleting every rule with some
not (k : p) in the body such that p ∈ Sk, and (2) deleting all not literals from
the bodies of remaining rules. If S = Eq(MS), then S is a grounded equilibrium
of M .

Note that this definition only makes sense if MS is definite; indeed, it has
been shown [2] that this is always the case. In particular, if M is a definite MCS,
then its minimal equilibrium is its only grounded equilibrium. In other cases,
several grounded equilibria (or none) may exist. It is also easy to verify that
grounded equilibria of M are indeed equilibria of M .

Answer sets for Mdl-programs correspond to grounded equilibria for MCSs.
This should not come as a big surprise: both the dl-transform of Mdl-programs
and the reduct of an MCS are generalizations of the Gelfond–Lifschitz transform
of ordinary logic programs.
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Theorem 4. I is an answer set for KB iff S(I) is a grounded equilibrium of
M(KB).

Well-founded semantics. The well-founded semantics for reducible MCSs is also
defined in [2], based on the operator γM (S) = Eq(MS). Since γM is anti-
monotonic, γ2

M is monotonic as usual. However, one can only guarantee the
existence of its least fixpoint by the Knaster–Tarski theorem if BS i has a least
element for each logic Σi in any of M ’s contexts. If this is the case, then the
well-founded semantics of M is WFS (M) = lfp

(
γ2
M

)
.

As with models of logic programs (and of Mdl-programs), WFS (M) is not
necessarily an equilibrium: it contains the knowledge that is common to all
equilibria, but being an equilibrium is not preserved by intersection.5

This definition is very similar to that of well-founded semantics for Mdl-
programs. Therefore, the following result should not come as a surprise.

Theorem 5. I is the well-founded semantics of KB iff S(I) is the well-founded
equilibrium of M(KB).

5 Design Patterns in Multi-context Systems

In real life, a substantial amount of the time required in software development
is spent in finding and implementing design solutions for recurrent problems al-
ready addressed and for which good solutions already exist. For this reason, an
important field in research is that of identifying common scenarios and propos-
ing mechanisms to deal with these scenarios – the so-called design patterns for
software development. With this in mind, the authors proposed an elementary
set of design patterns for Mdl-programs [7].

In this section, we apply the translation from Mdl-programs to MCSs to ob-
tain an initial set of design patterns for MCSs, and discuss how adequate the
resulting patterns are. This discussion focuses on the potential usefulness of the
translation: we capitalize on the mapping previously defined to port interesting
constructions from one formalism to another automatically. As it turns out, we
can overcome some of the problems that affected the set described in [7], thereby
obtaining a more expressive set of design patterns for MCSs. Also, we take ad-
vantage of the intrinsic structure of MCSs to optimize some of the resulting
design patterns, a simpler process than developing efficient ones from scratch.

The simplest design pattern is the Observer Down pattern, applicable when
there is a predicate in P that should include all instances of a concept or role
S in some Σi. This pattern is implemented in an Mdl-program with observers
simply by adding the pair (S, p) to the appropriate observer set Λi. According
to Definition 2, this corresponds to adding a bridge rule p ← (i∗ : S) to br0.
Reciprocally, the pattern Observer Up allows S to include all instances of p,
and is implemented by adding S ← (0 : p) to all contexts generated from Σi.

5 In view of the following result, to obtain an example, pick a dl-program whose well-
founded semantics is not a model (see [5]) and apply the translation defined above.
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Looking at these constructions from the perspective of MCSs, their imple-
mentation follows the same structure: a bridge rule with exactly one literal in its
body is added to a context Ci, thereby updating some Si in Ci’s language using
input from some Sj in Cj . This mechanism makes sense in general, regardless
of whether the MCS is generated from an Mdl-program or not. We thus obtain
a general Observer design pattern that we can apply in any MCS whenever we
want to ensure that some Si in context Ci is updated every time another Sj in
context Cj is changed: simply add the rule Si ← (j : Sj) to br i.

This pattern also captures the Transversal Observer pattern of Mdl-
programs, applicable when one knowledge base needs to observe another; how-
ever, this implementation is simpler than translating this pattern directly, since
in MCSs there is in general no need to use an intermediate context. This type
of simplification will also be used in other patterns.

A more interesting example arises when one looks at the Polymorphic En-
tities design pattern. The setting is the following: in P , there is a predicate p
whose instances are inherited from Q1, . . . , Qk, where each Qj is a concept or
role from Σj . This pattern is again implemented by adding a number of ob-
servers, namely (Qj , p) to each Λj . In the generated MCS, this corresponds to
adding bridge rules p ← (j∗ : Qj) for each j to br0. This pattern can be applied
in a generic MCS whenever we want predicate P from context Ci to inherit all
instances of predicates Q1, . . . , Qk where each Qj is a predicate from a context
Cj . This is achieved by adding bridge rules P ← (j : Qj) for each j to br i.

An example where we can substantially simplify the design pattern obtained
is adding closed world semantics to a predicate in some context. In the setting
of Mdl-programs, where each description logic knowledge base has open-world
semantics and the logic program has default negation, this is achieved by the
Closed World design pattern. To give closed-world semantics to a concept (or
role) S in Σi, we choose fresh predicate symbols s+ and s− in P and add (S, s+)
to Λi, (s

−,¬S) to Ψi and the rule s−(X) ← not s+(X) to P . In the generated
MCS, this corresponds to adding s+ ← (i∗ : S) to br0, ¬S ← (0 : s−) to br i∗ ,
and the rule s−(X)← not s+(X) to kb0.

To generalize this pattern, we first observe that adding s−(X) ← not s+(X)
to kb0 is equivalent to adding the bridge rule s− ← not(0 : s+) to br0, since
the semantics of bridge rules is that of logic programs. As before, the context
C0 is now being used solely as an intermediate for a construction that can be
made directly in Ci; therefore, we can implement Closed-World in an MCS,
giving closed-world semantics to a predicate Si in context Ci by adding the
bridge rule ¬Si ← not(i : Si) to br i. Once again, this pattern makes sense in
any MCS, regardless of the nature of its components – as long as the context Ci

has negation.
The last design pattern we discuss here is Adapter, which is applied when-

ever a component Σk is not known or available at the time of implementation of
others, yet it is necessary to query it. In an Mdl-program, one adds an empty in-
terface knowledge base ΣI whose language includes the desired concept and role
names, and later connect each concept and role in ΣI with its counterpart in Σk



256 L. Cruz-Filipe, R. Henriques, and I. Nunes

by means of Transversal Observer. This pattern works without any changes
in any MCS; however, the resulting program will be simpler because the appli-
cation of Observer yields a simpler MCS than the application of Transversal
Observer in an Mdl-program.

Furthermore, as was observed in [7], in Mdl-programs this pattern does not
work well if one needs dl-atoms querying ΣI which locally extend this knowl-
edge base. In MCSs, this problem does not arise, and thus this implementation
of Adapter is closer to the spirit of this pattern in e.g. object-oriented program-
ming. It is also interesting to notice that this pattern can be modified in a very
simple way to implement a proxy: simply add side-conditions to the body of the
bridge rules connecting CI with Ck that restrict the communication between
these two contexts. As was observed in [7], it is not clear whether a proxy can
be implemented in Mdl-programs.

The ideas in this section constitute an initial approach to the study of design
patterns in multi-context systems. We point out that we obtained for free a set of
design patterns including all design patterns for Mdl-programs in [7], applicable
in a more general setting. Furthermore, several of these patterns were simplified
in a systematic way, removing indirections resulting from the need, in Mdl-
programs, to go through the logic program in order to establish communication
between two different knowledge bases.

6 Conclusions

The basic constructs of Mdl-programs and multi-context systems are based upon
different motivations, and are therefore fundamentally different. In this paper,
we showed how, even so, an arbitrary Mdl-program can be translated into an
MCS, which is equivalent to it in a very precise way – namely, the interpretations
of the Mdl-program naturally give rise to belief states for the generated MCS,
taking this correspondence to the semantic level. Thus, (minimal) models become
(minimal) equilibria, answer sets become grounded equilibria, and well-founded
semantics (for Mdl-programs) become well-founded semantics (for MCSs).

An important aspect of this construction is that we can compute minimal
equilibria and well-founded semantics for MCSs generated from Mdl-programs
efficiently, which is not true in general (the definition of minimal equilibrium
is a characterization that is not computational, and minimal equilibria cannot
usually be constructed in a practical way, except by brute-force testing of all
candidates). Also, there is an algorithmic procedure to check whether an equi-
librium for an MCS generated from a Mdl-program is grounded, which again is
not true in general.

Finally, we showed how this technique can be applied to obtain a start set of
design patterns for MCSs. This set was obtained by translating a pre-existing set
of design patterns for Mdl-programs and simplifying the result following some
general principles motivated by the specificities of MCSs. In some cases, the
resulting patterns turned out to be more encompassing than the original ones.
We intend to use this work as a first step in a more comprehensive study of
design patterns for multi-context systems.
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Abstract. A polarized version of Girard, Scedrov and Scott’s Bounded
Linear Logic is introduced and its normalization properties studied. Fol-
lowing Laurent [25], the logic naturally gives rise to a type system for
the λμ-calculus, whose derivations reveal bounds on the time complexity
of the underlying term. This is the first example of a type system for the
λμ-calculus guaranteeing time complexity bounds for typable programs.

1 Introduction

Among non-functional properties of programs, bounds on the amount of re-
sources (like computation time and space) programs need when executed are
particularly significant. The problem of deriving such bounds is indeed cru-
cial in safety-critical systems, but is undecidable whenever non-trivial program-
ming languages are considered. If the units of measurement become concrete
and close to the physical ones, the problem becomes even more complicated
and architecture-dependent. A typical example is the one of WCET techniques
adopted in real-time systems [29], which not only need to deal with how many
machine instructions a program corresponds to, but also with how much time
each instruction costs when executed by possibly complex architectures (includ-
ing caches, pipelining, etc.), a task which is becoming even harder with the
current trend towards multicore architectures.

A different approach consists in analysing the abstract complexity of pro-
grams. As an example, one can take the number of instructions executed by the
program as a measure of its execution time. This is of course a less informative
metric, which however becomes more accurate if the actual time taken by each
instruction is kept low. One advantage of this analysis is the independence from
the specific hardware platform executing the program at hand: the latter only
needs to be analysed once. A variety of complexity analysis techniques have been
employed in this context, from abstract interpretation [21] to type systems [22]
to program logics [10] to interactive theorem proving. Properties of programs
written in higher-order functional languages are for various reasons well-suited
to be verified by way of type systems. This includes not only safety properties
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(e.g. well-typed programs do not go wrong), but more complex ones, including
resource bounds [22,5,15,7].

In this paper, we delineate a methodology for complexity analysis of higher-
order programs with control operators. The latter are constructs which are avail-
able in most concrete functional programming languages (including Scheme and
OCaml), and allow control to flow in non-standard ways. The technique we in-
troduce takes the form of a type system for de Groote’s λμ-calculus [12] derived
from Girard, Scedrov and Scott’s Bounded Linear Logic [19] (BLL in the fol-
lowing). We prove it to be sound: typable programs can indeed be reduced in
a number of steps lesser or equal to a (polynomial) bound which can be read
from the underlying type derivation. A similar result can be given when the cost
model is the one induced by an abstract machine. To the authors’ knowledge,
this is the first example of a complexity analysis methodology coping well not
only with higher-order functions, but also with control operators.

In the rest of this section, we explain the crucial role Linear Logic has in this
work, in the meantime delineating its main features.

1.1 Linear Logic and Complexity Analysis

Linear Logic [16] is one of the most successful tools for characterizing complex-
ity classes in a higher-order setting, through the Curry-Howard correspondence.
Subsystems of it can indeed be shown to correspond to the polynomial time com-
putable functions [19,18,23] or the logarithmic space computable functions [28].
Many of the introduced fragments can then be turned into type systems for
the λ-calculus [5,15], some of them being relatively complete in an intensional
sense [7].

The reason for this success lies in the way Linear Logic decomposes intu-
itionistic implication into linear implication, which has low complexity, and an
exponential modality, which marks those formulas to which structural rules can
be applied. This gives a proper status to proof duplication, without which cut-
elimination can be performed in a linear number of steps. By tuning the rules
governing the exponential modality, then, one can define logical systems for
which cut-elimination can be performed within appropriate resource bounds.
Usually, this is coupled with an encoding of all functions in a complexity class
C into the system at hand, which makes the system a characterization of C.

Rules governing the exponential modality can be constrained in (at least) two
different ways:
• On the one hand, one or more of the rules governing the modality (e.g.,
dereliction or digging) can be dropped or restricted. This is what happens,
for example, in Light Linear Logic [18] or Soft Linear Logic [23].

• On the other, the logic can be further refined and enriched so as to control
the number of times structural rules are applied. In other words, rules for
the modality are still all there, but in a refined form. This is what happens
in Bounded Linear Logic [19]. Similarly, one could control so-called modal
impredicativity by a system of levels [4].
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The first approach corresponds to cutting the space of proofs with an axe: many
proofs, and among them many corresponding to efficient algorithms, will not be
part of the system because they require one of the forbidden logical principles.
The second approach is milder in terms of the class of good programs that are
“left behind”: there is strong evidence that with this approach one can obtain a
quite expressive logical system [8,7].

Not much is known about whether this approach scales to languages in which
not only functions but also first-class continuations and control operators are
present. Understanding the impact of these features to the complexity of pro-
grams is an interesting research topic, which however has received little attention
in the past.

1.2 Linear Logic and Control Operators

On the other hand, more than twenty years have passed since Classical Logic
has been shown to be amenable to the Curry-Howard paradigm [20]. And, inter-
estingly enough, classical axioms (e.g. Pierce’s law or the law of the Excluded
Middle) can be seen as the type of control operators like Scheme’s callcc. In the
meantime, the various facets of this new form of proofs-as-programs correspon-
dence have been investigated in detail, and many extensions of the λ-calculus for
which Classical Logic naturally provides a type discipline have been introduced
(e.g. [27,6]).

Moreover, the decomposition provided by Linear Logic is known to scale up
to Classical Logic [17]. Actually, Linear Logic was known to admit an involu-
tive notion of negation from its very inception [16]. A satisfying embedding of
Classical Logic into Linear Logic, however, requires restricting the latter by way
of polarities [24]: this way one is left with a logical system with most of the
desirable dynamical properties.

In this paper, we define BLLP, a polarized version of Bounded Linear Logic.
The kind of enrichment resource polynomials provide in BLL is shown to cope
well with polarization. Following the close relationship between Polarized Linear
Logic and the λμ-calculus [25], BLLP gives rise to a type system for the λμ-
calculus. Proofs and typable λμ-terms are both shown to be reducible to their
cut-free or normal forms in a number of steps bounded by a polynomial weight.
Such a result for the former translates to a similar result for the latter, since any
reduction step in λμ-terms corresponds to one or more reduction steps in proofs.
The analysis is then extended to the reduction of λμ-terms by a Krivine-style
abstract machine [13].

2 Bounded Polarized Linear Logic as a Sequent Calculus

In this section, we define BLLP as a sequent calculus. Although this section is self-
contained, some familiarity with both Bounded [19] and Polarized [25] Linear
Logic would certainly help. Some more details can be found in an extended
version of the present paper [9].
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2.1 Polynomials and Formulas

A resource monomial is any (finite) product of binomial coefficients in the form
m∏
i=1

(
xi
ni

)
, where the xi are distinct variables and the ni are non-negative in-

tegers. A resource polynomial is any finite sum of resource monomials. Given
resource polynomials p, q we write p " q to denote that q− p is a resource poly-
nomial. If p " r and q " s then also q ◦ p " s ◦ r. Resource polynomials are
closed by addition, multiplication, bounded sums and composition [19].

A polarized formula is a formula (either positive or negative) generated by
the following grammar

P ::= V | P ⊗ P | 1 | !x<pN ;

N ::= V ⊥ | N ` N | ⊥ | ?x<pP ;

where V ranges over a countable sets of atoms. Throughout this paper, formulas
(but also terms, contexts, etc.) are considered modulo α-equivalence. Formulas
(either positive or negative) are ranged over by metavariables like A,B. Formulas
like V ⊥ are sometimes denoted as X,Y .

In a polarized setting, contraction can be performed on any negative formula.
As a consequence, we need the notion of a labelled formula [A]px, namely the
labelling of the formula A with respect to x and p. The labelled formula [N ]px
(resp. [P ]px) can be thought of roughly as ?x<pN

⊥ (resp. !x<pP
⊥), i.e., in a sense

we can think of labelled formulas as formulas hiding an implicit exponential
modality. All occurrences of x in A are bound in [A]px. Metavariables for labellings
of positive (respectively, negative) formulas are P,Q,R (respectively, N,M,L).
Labelled formulas are sometimes denoted with metavariables A,B when their
polarity is not essential. Negation, as usual in classical linear systems, can be
applied to any (possibly labelled) formula, à la De Morgan. When the resource
variable x does not appear in A, then we do not need to mention it when writing
[A]px, which becomes [A]p. Similarly for !x<pN and ?x<pP .

Both the space of formulas and the space of labelled formulas can be seen as
partial orders by stipulating that two (labelled) formulas can be compared iff
they have exactly the same skeleton and the polynomials occurring in them can
be compared. As an example,

!x<pN " !x<qM iff q " p ∧N " M ;

?x<pP " ?x<qQ iff p " q ∧ P " Q.

In a sense, then, polynomials occurring next to atoms or to the whynot operator
are in positive position, while those occurring next to the bang operator are in
negative position. In all the other cases, " is defined component-wise, in the
natural way, e.g. P ⊗Q " R⊗S iff both P " R and Q " S. Finally [N ]px " [M ]qx
iff N " M ∧ p 2 q. And dually, [P ]px " [Q]qx iff N " M ∧ p " q.

Certain operators on resource polynomials can be lifted to formulas. As an
example, we want to be able to sum labelled formulas provided they have a
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proper form:
[N ]px # [N{x/y + p}]qy = [N ]p+q

x .

We are assuming, of course, that x, y are not free in either p or q. This construc-
tion can be generalized to bounded sums: suppose that a labelled formula is in
the form

[M ]ry = [N{x/y +
∑
u<z

r{z/u}}]ry,

where y and u are not free in N nor in r and z is not free in N . Then the labelled

formula
∑

z<q[M ]ry is defined as [N ]
∑

z<q r
x . See [19, §3.3] for more details about

the above constructions.

2.2 Sequents and Rules

The easiest way to present BLLP is to give a sequent calculus for it. Actually,
proofs will be structurally identical to proofs of Laurent’s LLP. Of course, only
some of LLP proofs are legal BLLP proofs — those giving rise to an exponential
blow-up cannot be decorated according to the principles of Bounded Linear
Logic.

A sequent is an expression in the form $ Γ , where Γ = A1, . . .An is a multiset
of labelled formulas such that at most one among A1, . . . ,An is positive. If Γ
only contains (labellings of) negative formulas, we indicate it with metavariables
like N ,M. The operator # can be extended to one on multisets of formulas
component-wise, so we can write expressions like N #M: this amounts to sum
the polynomials occurring in N and those occurring in M. Similarly for bounded
sums.

The rules of the sequent calculus for BLLP are in Figure 1. Please observe

N �M M⊥ � P
Ax� N,P

� Γ,N � N ,N⊥
Cut� Γ,N

� Γ, [N ]px, [M ]qx p � r q � r `
� Γ, [N `M ]rx

� N , [P ]px � M, [Q]qx r � p r � q
⊗

� N ,M, [P ⊗Q]rx

� N , [N ]px M�
∑

y<q N
!� M, [!x<pN ]qy

� N , [P{y/0}]p{y/0}x N � [?x<pP ]1y
?d� N ,N

� Γ
?w� Γ,N

� Γ,N,M L � N  M
?c� Γ,L

� Γ ⊥� Γ, [⊥]px
1

� [1]px

Fig. 1. BLLP, Sequent Calculus Rules

that:
• The relation " is implicitly applied to both formulas and polynomials when-
ever possible in such a way that “smaller” formulas can always be derived
(see Section 2.3).
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• As in LLP, structural rules can act on any negative formula, and not only
on exponential ones. Since all formulas occurring in sequents are labelled,
however, we can still keep track of how many times formulas are “used”, in
the spirit of BLL.

• A byproduct of taking sequents as multisets of labeled formulas is that mul-
tiplicative rules themselves need to deal with labels. As an example, consider
rule ⊗: the resource polynomial labelling the conclusion P ⊗ Q is anything
smaller or equal to the polynomials labeling the two premises.

The sequent calculus we have just introduced could be extended with second-
order quantifiers and additive logical connectives. For the sake of simplicity,
however, we have kept the language of formulas very simple here. The interested
reader can check [24] for a treatment of these connectives in a polarized setting
or [9] for more details.

As already mentioned, BLLP proofs can be seen as obtained by decorating
proofs from Laurent’s LLP [25] with resource polynomials. Given a proof π, 〈π〉
is the LLP proof obtained by erasing all resource polynomials occurring in π. If
π and ρ are two BLLP proofs, we write π ∼ ρ iff 〈π〉 = 〈ρ〉, i.e., iff π and ρ are
two decorations of the same LLP proof.

Even if structural rules can be applied to all negative formulas, only certain
proofs will be copied or erased along the cut-elimination process, as we will soon
realize. A box is any proof which ends with an occurrence of the ! rule. In non-
polarized systems, only boxes can be copied or erased, while here the process
can be applied to ⊗-trees, which are proofs inductively defined as follows:
• Either the last rule in the proof is Ax or ! or 1;
• or the proof is obtained from two ⊗-trees by applying the rule ⊗.
A ⊗-tree is said to be closed if it does not contain any axiom nor any box having
auxiliary doors (i.e., no formula in the context of the ! rules).

2.3 Malleability

The main reason for the strong (intensional) expressive power of BLL [8] is its
malleability: the conclusion of any proof π can be modified in many different
ways without altering its structure. Malleability is not only crucial to make the
system expressive, but also to prove that BLLP enjoys cut-elimination. In this
section, we give four different ways of modifying a sequent in such a way as to
preserve its derivability. Two of them are anyway expected and also hold in BLL,
while the other two only make sense in a polarized setting.

First of all, taking smaller formulas (i.e., more general — cf. [19, §3.3, p. 21])
preserves derivability:

Lemma 1 (Subtyping). If π $ $ Γ,A and A 2 B, then there is ρ $ $ Γ,B
such that π ∼ ρ.

Substituting resource variables for polynomials itself preserves typability:

Lemma 2 (Substitution). Let π $ $ Γ . Then there is a proof π{x/p} of
$ Γ{x/p}. Moreover, π{x/p} ∼ π.
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Both Lemma 1 and Lemma 2 can be proved by easy inductions on the structure
of π.

As we have already mentioned, one of the key differences between Linear Logic
and its polarized version is that in the latter, arbitrary proofs can potentially be
duplicated (and erased) along the cut-elimination process, while in the former
only special ones, namely boxes, can. This is, again, a consequence of the fun-
damentally different nature of structural rules in the two systems. Since BLLP
is a refinement of LLP, this means that the same phenomenon is expected. But
beware: in a bounded setting, contraction is not symmetric, i.e., the two copies
of the proof π we are duplicating are not identical to π.

What we need to prove, then, is that proofs can indeed be split in BLLP:

Lemma 3 (Splitting). If π $ $ N , [P ]px is a ⊗-tree and p 2 r + s then there
exist M,O such that ρ $ $ M, [P ]rx, σ $ $ O, [P{x/y + r}]sy. Moreover,
N " M#O and ρ ∼ π ∼ σ.

Observe that not every proof can be split, but only ⊗-trees can. The proof of
Lemma 3 is not trivial and requires some auxiliary results (see [9] for more
details). A parametric version of splitting is also necessary here:

Lemma 4 (Parametric Splitting). If π $ $ N , [P ]px, where π is a ⊗-tree and
p 2

∑
x<r s, then there exists ρ $ $M, [P ]sx where

∑
x<rM2 N and ρ ∼ π.

While splitting allows to cope with duplication, parametric splitting implies that
an arbitrary ⊗-tree can be modified so as to be lifted into a box through one
of its auxiliary doors. Please observe that pπ continues to be such an upper
bound even if any natural number is substituted for any of its free variables, an
easy consequence of Lemma 2. The following is useful when dealing with cuts
involving the rule ?d:

Lemma 5. If q 2 1, then
∑

z<q[M ]ry " [M ]ry{z/0}.

3 Cut Elimination

In this section, we give some ideas about how cuts can be eliminated from BLLP
proofs.

Logical cuts (i.e., those in which the two immediate subproofs end with a rule
introducing the formula involved in the cut) can be reduced as in LLP [24], but
exploiting malleability whenever polynomials need to be modified. This defines
the reduction relation �−→ (see [9] for more details). All instances of the Cut
rule which are not logical are said to be commutative, and induce an equivalent
relation ∼= on proofs. In general, not all cuts in a proof are logical, but any cut
can be turned into a logical one:

Lemma 6. Let π be any proof containing an occurrence of the rule Cut. Then,
there are two proofs ρ and σ such that π ∼= ρ �−→ σ, where ρ can be effectively
obtained from π.

The proof of Lemma 6 goes as follows: given any instance of the Cut rule
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π $ $ Γ, [N ]px ρ $ $ N , [P ]px
Cut$ Γ,N

consider the path (i.e., the sequence of formula occurrences) starting from [N ]px
and going upward inside π, and the path starting from [P ]px and going upward
inside ρ. Both paths end either at an Ax rule or at an instance of a rule introduc-
ing the main connective in N or P . The game to play is then to show that these
two paths can always be shortened by way of commutations, thus exposing the
underlying logical cut.

Lemma 6 is implicitly defining a cut-elimination procedure: given any instance
of the Cut rule, turn it into a logical cut by the procedure from Lemma 6, then
fire it. This way we are implicitly defining another reduction relation −→. The
next question is the following: is this procedure going to terminate for every
proof π (i.e., is −→ strongly, or weakly, normalizing)? How many steps does it
take to turn π to its cut-free form?

Actually, −→ produces reduction sequences of very long length, but is anyway
strongly normalizing. A relatively easy way to prove it goes as follows: any BLLP
proof π corresponds to a LLP sequent calculus proof 〈π〉, and the latter itself
corresponds to a polarized proof net 〈〈π〉〉 [25]. Moreover, π −→ ρ implies that
〈〈π〉〉 �→ 〈〈ρ〉〉, where �→ is the canonical cut-elimination relation on polarized
proof-nets. Finally, 〈〈π〉〉 is identical to 〈〈ρ〉〉 whenever π ∼= ρ. Since �→ is known
to be strongly normalizing, −→ does not admit infinite reduction sequences:

Proposition 1 (Cut-Elimination). The relation −→ is strongly normalizing.

This does not mean that cut-elimination can be performed in (reasonably)
bounded time. Already in BLL this can take exponential time: the whole of
Elementary Linear Logic [18] can be embedded into it.

3.1 Soundness

To get a soundness result, then, we somehow need to restrict the underlying
reduction relation −→. Following [19], one could indeed define a subset of −→
just by imposing that in dereliction, contraction, or box cut-elimination steps,
the involved ⊗-trees are closed. Moreover, we could stipulate that reduction is
external, i.e., it cannot take place inside boxes. Closed and external reduction,
however, is not enough to simulate head-reduction in the λμ-calculus, and not
being able to reduce under the scope of μ-abstractions does not make much
sense anyway. We are forced, then, to consider an extension of closed reduction.
The fact that this new notion of reduction still guarantees polynomial bounds
is technically a remarkable strengthening with respect to BLL’s Soundness The-
orem [19].

There is a quite natural notion of downward path in proofs: from any occur-
rence of a negative formula N, just proceed downward until you either find (the
main premise of) a Cut rule, or a conclusion. In the first case, the occurrence
of N is said to be active, in the second it is said to be passive. Proofs can then
be endowed with a new notion of reduction: all dereliction, contraction or box
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digging cuts can be fired only if the negative formula occurrences in its right-
most argument are all passive. In the literature, this is sometimes called a special
cut (e.g. [3]). Moreover, reduction needs to be external, as usual. This notion
of reduction, as we will see, is enough to mimic head reduction, and is denoted
with =⇒.

The next step consists in associating a weight, in the form of a resource
polynomial, to every proof, similarly to what happens in BLL. The pre-weight
π! of a proof π with conclusion $ A1, . . . ,An consists in:
• a resource polynomial pπ.
• n disjoints sets of resource variables Sπ

1 , . . . , Sπ
n , each corresponding to a

formula in A1, . . . ,An; if this does not cause ambiguity, the set of resource
variables corresponding to a formula A will be denoted by Sπ(A). Similarly
for Sπ(Γ ), where Γ is a multiset of formulas.

If π has pre-weight pπ, Sπ
1 , . . . , Sπ

n , then the weight qπ of π is simply pπ where,
however, all the variables in Sπ

1 , . . . , Sπ
n are substituted with 0: pπ{∪n

i=1S
π
i /0}.

The pre-weight of a proof π is defined by induction on the structure of π (see [9]
for more details). The idea is that every occurrence of negative formulas is at-
tributed a fresh variable, which later is instantiated with either 0 (if the formula
is passive) or 1 (if it is active). This allows to discriminate between the case in
which rules can “produce” time complexity along the cut-elimination, and the
case in which they do not. Ultimately, this leads to:

Lemma 7. If π ∼= ρ, then qπ = qρ. If π =⇒ ρ, then qπ 	 qρ.

The main idea behind Lemma 7 is that even if the logical cut we perform when
going from π to ρ is “dangerous” (e.g. a contraction) and the involved ⊗-tree is
not closed, the residual negative rules have null weight, because they are passive.

We can conclude that:

Theorem 1 (Polystep Soundness). For every proof π, if π =⇒n ρ, then
n ≤ qπ.

In a sense, then, the weight of any proof π is a resource polynomial which can be
easily computed from π (rules in [9] are anyway inductively defined), but which
is also an upper bound on the number of logical cut-elimination steps separating
π from its normal form. Please observe that qπ continues to be such an upper
bound even if any natural number is substituted for any of its free variables, an
easy consequence of Lemma 2.

Why then, are we talking about polynomial bounds? In BLL, and as a conse-
quence also in BLLP, one can write programs in such a way that the size of the
input is reflected by a resource variable occurring in its type. As an example,
the type of (Church encodings of) binary strings of length at most x could be
the following in BLLP:

(X 
1 X)
x (X 
1 X)
x (X 
1 X)

(where N 
p M stands for ?pN
⊥`M). The weight, then, turns out to be a tool

to study the behavior of terms seen as functions taking arguments of varying
length. A more in-depth discussion about these issues is outside the scope of this
paper. Please refer to [19].
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4 A Type System for the λμ-Calculus

We describe here a version of the λμ-calculus as introduced by de Groote [11].
Terms are as follows

t, u ::= x | λx.t | μα.t | [α]t | (t)t,

where x and α range over two infinite disjoint sets of variables (called λ-variables
and μ-variables, respectively). In contrast with the λμ-calculus as originally for-
mulated by Parigot [27], μ-abstraction is not restricted to terms of the form [α]t
here.

4.1 Notions of Reduction

The reduction rules we consider are the following ones:

(λx.t)u →β t[u/x]; (μα.t)u →μ μα.t[[α](v)u/[α]v]; μα.[α]t →θ t;

where, as usual, →θ can be fired only if α 
∈ FV (t). In the following, → is just
→βμθ. In so-called weak reduction, denoted →w, reduction simply cannot take
place in the scope of binders, while head reduction, denoted →h, is a generaliza-
tion of the same concept from pure λ-calculus [13]. Details are in Figure 2. Please

t→ u
t→w u

t→w u

tv →w uv

t→w u

[α]t→w [α]u

t→w u

t→h u

t→h u

λx.t→h λx.u

t→h u

μα.t→h μα.u

Fig. 2. Weak and Head Notions of Reduction

notice how in head reduction, redexes can indeed be fired even if they lie in the
scope of λ-or-μ-abstractions, which, however, cannot themselves be involved in
a redex. This harmless restriction, which corresponds to taking the outermost
reduction order, is needed for technical reasons that will become apparent soon.

4.2 The Type System

Following Laurent [25], types are just negative formulas. Not all of them can be
used as types, however: in particular, N ` M is a legal type only if N is in the
form ?x<pO

⊥, and we use the following abbreviation in this case: N 
p
x M =

(?x<pN
⊥) ` M . In particular, if M is ⊥ then N 
p

x M can be abbreviated
as ¬p

xN . Typing formulas are negative formulas which are either ⊥, or X , or
in the form N 
p

x M (where N and M are typing formulas themselves). A
modal formula is one in the form ?x<pN

⊥ (where N is a typing formula). Please
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observe that all the constructions from Section 2.1 (including labellings, sums,
etc.) easily apply to typing formulas. Finally, we use the following abbreviation
for labeled modal formulas: qy[N ]

p
x = [?y<qN

⊥]px.
A typing judgment is a statement in the form Γ $ t : N | Δ, where:

• Γ is a context assigning labelled modal formulas to λ-variables;
• t is a λμ-term;
• N is a typing formula;
• Δ is a context assigning labelled typing formulas to μ-variables.
The way typing judgments are defined allows to see them as BLLP sequents. This
way, again, various concepts from Section 2.2 can be lifted up from sequents to
judgments, and this remarkably includes the subtyping relation ".

Typing rules are in Figure 3. The typing rule for applications, in particular,

1 � p, r{y/0} � q,M � N{y/0}
var

Γ, x : r
z[N ]py � x : [M ]qz | Δ

Γ, x : s
z[N ]py � t : [M ]qy | Δ r � q, r � p

abs
Γ � λx.t : [N �s

z M ]ry | Δ

Θ � t : [N �p
x M ]qy | Ψ Ξ � u : [N ]px | Φ

h � q k � q
Γ � Θ  Υ Υ �

∑
b<h Ξ

Δ � Ψ  Π Π �
∑

b<h Φ
app

Γ � (t)u : [M ]ky | Δ

Γ � t : N | α : M, Δ L � N  M
μ-name

Γ � [α]t : [⊥]qz | α : L, Δ

Γ � t : [⊥]qz | β : N, Δ
μ-abs

Γ � μβt : N | Δ

Fig. 3. Type Assignment Rules

can be seen as overly complicated. In fact, all premises except the first two are
there to allow the necessary degree of malleability for contexts, without which
even subject reduction would be in danger. Alternatively, one could consider an
explicit subtyping rule, the price being the loss of syntax directedness. Indeed,
all malleability results from Section 2.3 can be transferred to the just defined
type assignment system.

4.3 Subject Reduction and Polystep Soundness

The aim of this section is to show that head reduction preserves types, and as
a corollary, that the number of reduction steps to normal form is bounded by a
polynomial, along the same lines as in Theorem 1. Actually, the latter will easily
follow from the former, because so-called Subject Reduction will be formulated
(and in a sense proved) with a precise correspondence between type derivations
and proofs in mind.

In order to facilitate this task, Subject Reduction is proved on a modified type-
assignment system, called BLLPmult

λμ which can be proved equivalent to BLLPλμ.
The only fundamental difference between the two systems lies in how structural
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rules, i.e., contraction and weakening, are reflected into the type system. As we
have already noticed, BLLPλμ has an additive flavour, since structural rules are
implicitly applied in binary and 0-ary typing rules. This, in particular, makes the
system syntax directed and type derivations more compact. The only problem
with this approach is that the correspondence between type derivations and
proofs is too weak to be directly lifted to a dynamic level (e.g., one step in →h

could correspond to possibly many steps in =⇒). In BLLPmult
λμ , on the contrary,

structural rules are explicit, and turns it into a useful technical tool to prove
properties of BLLPλμ. The rules of BLLPmult

λμ are in [9].
Whenever derivability in one of the systems needs to be distinguished from

derivability on the other, we will put the system’s name in subscript position
(e.g. Γ $BLLPmult

λμ
t : N | Δ). Not so surprisingly, BLLPλμ and BLLPmult

λμ type

exactly the same class of terms:

Lemma 8. Γ $BLLPmult
λμ

t : N | Δ iff Γ $BLLPλμ
t : N | Δ

Proof. The left-to-right implication follows from weakening and contraction lem-
mas for BLLPλμ, which are easy to prove. The right-to-left implication is more
direct, since additive var and app are multiplicatively derivable. 
�

Given a BLLPmult
λμ type derivation π, one can define a BLLP proof π! by in-

duction on the structure of π, closely following Laurent’s translation [25]. This
way one not only gets some guiding principles for subject-reduction, but can
also prove that the underlying transformation process is nothing more than cut-
elimination:

Theorem 2 (Subject Reduction). Let π $ Γ $ t : N | Δ and suppose
t →h u. Then there is ρ $ Γ $ u : N | Δ. Moreover π! =⇒+ ρ!.

Observe how performing head reduction corresponds to =⇒, instead of the more
permissive −→. The following, then, is an easy corollary of Theorem 2 and
Theorem 1:

Theorem 3 (Polystep Soundness for Terms). Let π $ Γ $ t : N | Δ and

let t →n
h u. Then n ≤ qπ



.

5 Control Operators

In this section, we show that BLLPλμ is powerful enough to type (the natu-
ral encoding of) two popular control operators, namely Scheme’s callcc and
Felleisen’s C [2,25].

Control operators change the evaluation context of an expression. This is
simulated by the operators μ and [·] which can, respectively, save and restore
a stack of arguments to be passed to subterms. This idea, by the way, is the
starting point of an extension of Krivine’s machine for de Groote’s λμ [13] (see
Section 6).
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5.1 callcc

An encoding of callcc into the λμ-calculus could be, e.g.,

κ = λx.μα.[α](x)λy.μβ.[α]y.

Does κ have the operational behavior we would expect from callcc? First of all,
it should satisfy the following property (see [14]): if k 
∈ FV (e), then (κ)λk.e →∗

e. Indeed:

(λx.μα.[α](x)λy.μβ.[α]y)λk.e →h μα.[α](λk.e)λy.μβ.[α]y →h μα.[α]e →h e,

where the second β-reduction step replaces e{k/λy.μβ.[α]y} with e since k 
∈
FV (e) by hypothesis. It is important to observe that the second step replaces
a variable for a term with a free μ-variable, hence weak reduction gets stuck.
Actually, our notion of weak reduction is even more restrictive than the one
proposed by de Groote in [13]. Head reduction, on the contrary, is somehow
more liberal. Moreover, it is also straightforward to check that the reduction of
callcc in [27, §3.4] can be simulated by head reduction on κ.

But is κ typable in BLLPλμ? The answer is positive: a derivation typing it with
(an instance of) Pierce’s law is in Figure 4, where π is the obvious derivation of

x : rv[(X 
s Y )
1 X]
1 $ x : [(X 
s Y )
1 X ]rv | α : [X ]0.

π

var
y : s[X]1 � y : [X]s | α : [X]0, β : [Y ]0

μ-name
y : s[X]1 � [α]y : [⊥]0 | α : [X]s, β : [Y ]0

μ-abs
y : s[X]1 � μβ.[α]y : [Y ]0 | α : [X]s

abs
� λy.μβ.[α]y : [X �s Y ]1|α : [X]s

app

x : r
v[(X �s Y ) �1 X]

1 � (x)λy.μβ.[α]y : [X]rv|α : [X]

∑
v<r s

v
k � r +

∑
v<r s

k � 1
μ-name

x : r
v[(X �s Y ) �1 X]

1 � [α](x)λy.μβ.[α]y : [⊥]1 | α : [X]k

μ-abs
x : r

v[(X �s Y ) �1 X]
1 � μα.[α](x)λy.μβ.[α]y : [X]k |

abs
� λx.μα.[α](x)λy.μβ.[α]y : [((X �s Y ) �1 X) �r

v X]k |

Fig. 4. A Type Derivation for κ

5.2 Felleisen’s C
The canonical way to encode Felleisen’s C as a λμ-term is as the term ℵ =
λf.μα.(f)λx.[α]x. Its behavior should be something like

(ℵ)wt1 . . . tk → (w)λx.(x)t1 . . . tk,
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σ

var
x : r [X]1 � x : [X]r

μ-name
x : r [X]1 � [α]x : [⊥]0 | α : [X]r

abs
� λx.[α]x : [¬rX]1 | α : [X]r

app
f : h

v [¬1¬rX]
1 � (f)λx.[α]x : [⊥]hv | α : [X]

∑
v<h r

μ-abs
f : h

v [¬
1¬rX]

1 � μα.(f)λx.[α]x : [X]
∑

v<h r | k � 1
k �

∑
v<h r

abs
� λf.μα.(f)λx.[α]x : [¬1¬rX �h

v X]k

Fig. 5. A Type Derivation for ℵ

where x 
∈ FV (t1, . . . , tk), i.e., x is a fresh variable. Indeed:

(ℵ)wt1 . . . tk →h (μα.(w)λx.[α](x))t1 . . . tk →k
h μα.(w)λx.[α](x)t1 . . . tk.

A type derivation for ℵ is in Figure 5, where σ is a derivation for

f : hv [¬1¬rX]
1 $ f : [¬1¬rX]hv | α : [X ]0.

It is worth noting that weak reduction is strong enough to properly simulating
the operational behavior of C. It is not possible to type C in Parigot’s λμ, unless
an open term is used. Alternatively, a free continuation constant must be used
(obtaining yet another calculus [2]). This is one of the reasons why we picked
the version of λμ-calculus proposed by de Groote over other calculi. See [12] for
a discussion about λμ-and-λ-calculi and Felleisen’s C.

6 Abstract Machines

Theorem 3, the main result of this paper so far, tells us that the number of head-
reduction steps performed by terms typable in BLLPλμ is bounded by the weight
of the underlying type derivation. One may wonder, however, whether taking
the number of reduction steps as a measure of term complexity is sensible or not
— substitutions involve arguments which can possibly be much bigger than the
original term. Recent work by Accattoli and the first author [1], however, shows
that in the case of λ-calculus endowed with head reduction, the unitary cost
model is polynomially invariant with respect to Turing machines. We conjecture
that those invariance results can be extended to the λμ-calculus.

It can be shown that BLLPλμ is polystep sound for another cost model, namely
the one induced by de Groote’s K, an abstract machine for the λμ-calculus. This
is done following a similar proof for PCF typed with linear dependent types [7]
and Krivine’s Abstract Machine (of which K is a natural extension). The main
idea consists in extending BLLP to a type system for K’s configurations, this
way defining a weight for each of them in the form of a resource polynomial. The
weight, as expected, can then be shown to decrease at each K’s computation step.
It is worth noting that the weight defined this way is fundamentally different
than the one from Section 3.1. See [9] for some more details.
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7 Conclusions

In this paper we have presented some evidence that the enrichment to Intuition-
istic Linear Logic provided by Bounded Linear Logic is robust enough to be
lifted to Polarized Linear Logic and the λμ-calculus. This paves the way towards
a complexity-sensitive type system, which on the one hand guarantees that ty-
pable terms can be reduced to their normal forms in a number of reduction
steps which can be read from their type derivation, and on the other allows to
naturally type useful control operators.

Many questions have been purposely left open here: in particular, the language
of programs is the pure, constant-free, λμ-calculus, whereas the structure of types
is minimal, not allowing any form of polymorphism. We expect that endowing
BLLP with second order quantification or BLLPλμ with constants and recursion
should not be particularly problematic, although laborious: the same extensions
have already been considered in similar settings in the absence of control [19,7].
Actually, a particularly interesting direction would be to turn BLLPλμ into a
type system for Ong and Stewart’s μPCF [26], this way extending the linear
dependent paradigm to a language with control. This is of course outside the
scope of this paper, whose purpose was only to delineate the basic ingredients
of the logic and the underlying type system.

As we stressed in the introduction, we are convinced this work is the first one
giving a time complexity analysis methodology for a programming language with
higher-order functions and control. One could of course object that complexity
analysis of λμ-terms could be performed by translating them into equivalent
λ-terms, e.g. by way of a suitable CPS-transform [11]. This, however, would
force the programmer (or whomever doing complexity analysis) to deal with
programs which are structurally different from the original one. And of course,
translations could introduce inefficiencies, which are maybe harmless from a
purely qualitative viewpoint, but which could make a difference for complexity
analysis.
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Abstract. We propose an extension of the tableau-based first order
automated theorem prover Zenon to deduction modulo. The theory of
deduction modulo is an extension of predicate calculus, which allows us
to rewrite terms as well as propositions, and which is well suited for proof
search in axiomatic theories, as it turns axioms into rewrite rules. We
also present a heuristic to perform this latter step automatically, and
assess our approach by providing some experimental results obtained on
the benchmarks provided by the TPTP library, where this heuristic is
able to prove difficult problems in set theory in particular. Finally, we
describe an additional backend for Zenon that outputs proof certificates
for Dedukti, which is a proof checker based on the λΠ-calculus modulo.

Keywords: Tableaux, Deduction Modulo, Rewriting, Automated The-
orem Proving, Proof Checking, Zenon, Dedukti.

1 Introduction

Proof search in axiomatic theories, such as Peano arithmetic and set theory,
or decidable fragments (Presburger arithmetic, arrays and pointers, axiomati-
zations of memory models, etc.) is receiving increasing attention, driven by the
applications of formal methods in industrial settings. Leaving axioms wandering
among the hypotheses is not a reasonable option, as it induces a combinatorial
explosion in the proof search space. Moreover, axioms themselves generally do
not bear any specific meaning that could be used by automated theorem provers.

A solution to address this problem is to use a cutting-edge combination of a
first order automated theorem proving method (resolution) with theory-specific
decision procedures. This approach has drawbacks, namely the need for a specific
decision procedure for each given theory. This imposes a decidability constraint
on the theories that we can work with, as well as a lack of automatability. As
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a consequence, we lose genericity over the theories. However, SMT solvers are
well-suited for industrial applications, where those problems are not a concern.

Our approach is to make use of the advances of deduction modulo [9], which
allows us to transform axioms into rewrite rules. For example, Peano arithmetic
or Zermelo set theory can be expressed without axioms. This way, we turn proof
search among the axioms into computations, avoiding unnecessary blowups, and
we shrink the size of proofs by recording only their meaningful steps. Deduction
modulo has already been experimented within first order automated theorem
provers. This is the case of iProver Modulo [7], where a resolution-based auto-
mated theorem prover has been extended to deduction modulo. This is also the
case of Super Zenon [10], which is an extension of the Zenon tableau-based auto-
mated theorem prover [4] to superdeduction [5], a variant of deduction modulo.

In this paper, we go further along this path by adapting Zenon to deduction
modulo itself, and following some of the ideas of [3]. Compared to the approach
of Super Zenon, this new tool, called Zenon Modulo, allows us to capture more
computational aspects of theories, since deduction modulo also adds the possi-
bility to rewrite over terms, while superdeduction only considers rewrite rules
over propositions. Moreover, it will also allow us to compare this extension with
that of iProver Modulo, and assess the impact of the integration of deduction
modulo into different proof search techniques (i.e. resolution and tableaux).

Another contribution introduced in this paper is a heuristic that automatically
transforms any set of axioms (and therefore any theory) into a set of rewrite rules,
which can be used during the proof search step of Zenon. With this heuristic,
we observe significant improvements over the pure axiomatic proof search of
Zenon, as can be seen in the experimental results obtained on the set of problems
provided by the TPTP library [12]. In particular, this heuristic appears to be
quite appropriate for set theory, where we are able to prove difficult problems.

It should be noted that in the short term, we also plan to work on the dual
approach, which consists in building theories modulo manually. In particular, we
aim to consider the set theory of the B method [1], in order to apply Zenon Mod-
ulo to the verification of proof obligations coming from industrial applications,
which is one of the goals of the BWare project [13].

One of the major interests of Zenon to experiment deduction modulo resides
in its certifying approach, i.e. its ability to produce proof certificates that can be
skeptically checked by other proof assistants such as Coq or Isabelle. Extending
Zenon to deduction modulo means to also provide a backend able to check proofs
in deduction modulo. To do so, we have provided Zenon with a backend that
outputs proofs for Dedukti [2], a proof checker based on the λΠ-calculus modulo.

This paper is organized as follows: in Sec. 2, we first introduce the principles
of deduction modulo; we then present, in Sec. 3, the rules of Zenon for deduction
modulo, and describe, in Sec. 4, the corresponding implementation and the ex-
perimental results obtained on the benchmarks provided by the TPTP library;
finally, in Sec. 5, we provide an overview of the Dedukti backend.
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2 From Axioms to Deduction Modulo

Deduction modulo [9] focuses on the computational part of a theory, where ax-
ioms are transformed into rewrite rules, which induces a congruence over propo-
sitions, and where reasoning is performed modulo this congruence. For example,
considering the inclusion in set theory ∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y )),
the proof of A ⊆ A in sequent calculus has the following form:

Ax
. . . , x ∈ A $ A ⊆ A, x ∈ A

⇒R
. . . $ A ⊆ A, x ∈ A ⇒ x ∈ A

∀R
. . . $ A ⊆ A, ∀x (x ∈ A ⇒ x ∈ A)

Ax
. . . , A ⊆ A $ A ⊆ A

⇒L
. . . , ∀x (x ∈ A ⇒ x ∈ A) ⇒ A ⊆ A $ A ⊆ A

∧L
A ⊆ A ⇔ ∀x (x ∈ A ⇒ x ∈ A) $ A ⊆ A

∀L× 2∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y )) $ A ⊆ A

In deduction modulo, the axiom of inclusion can be seen as a computation
rule, and therefore replaced by the rewrite rule X ⊆ Y −→ ∀x (x ∈ X ⇒ x ∈ Y ).
The previous proof is then transformed as follows:

Ax
x ∈ A $ x ∈ A ⇒R$ x ∈ A ⇒ x ∈ A ∀R, A ⊆ A −→ ∀x (x ∈ A ⇒ x ∈ A)$ A ⊆ A

where it can be seen that computations are interleaved with the deduction
rules. It can be noticed that the proof is much simpler than the one completed
using sequent calculus. In addition to simplicity, deduction modulo also allows
for unbounded proof size reduction [6].

There exist some other approaches, which can be considered as variants of
deduction modulo. This is the case of superdeduction [5], the formalism at the
origin of Super Zenon [10], which proposes to use axioms to enrich the deduc-
tion system with new deduction rules (called superdeduction rules). Thus, while
deduction modulo integrates some axioms of the theory as computations, su-
perdeduction integrates them as deduction rules, following Prawitz’s ideas [11].

However, in contrast with superdeduction, deduction modulo can also capture
some computational aspects that are modeled by means of equational axioms.
For instance, if we consider an equational sequent calculus with the theory of
Peano arithmetic, the proof of ∃x (x + s(0) = s(s(0))) is the following without
deduction modulo (in the proof context, we only provide the two axioms of Peano
arithmetic required to complete the proof, referring to them as P):

AxP , s(0) + s(0) = s(s(0) + 0) $ s(0) + s(0) = s(s(0) + 0)
∀L× 2P $ s(0) + s(0) = s(s(0) + 0) Π

SubstPP $ s(0) + s(0) = s(s(0))
∃R{

∀x (x + 0 = x)
∀x, y (x + s(y) = s(x + y))

$ ∃x (x + s(0) = s(s(0)))
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where Π is the proof expressed as follows:
AxP , s(0) + 0 = s(0) $ s(0) + 0 = s(0)
∀LP $ s(0) + 0 = s(0)

ReflP $ s(s(0)) = s(s(0))
SubstPP $ s(s(0) + 0) = s(s(0))

In deduction modulo, the two axioms are transformed into computation rules
on terms, and therefore replaced by the two rewrite rules x + 0 −→ x and
x + s(y) −→ s(x + y). The corresponding proof is then the following:

Refl, s(0) + s(0) −→∗ s(s(0))
$ s(0) + s(0) = s(s(0))

∃R$ ∃x (x + s(0) = s(s(0)))

As previously, it can be noticed that the proof in deduction modulo is much
simpler and shorter than the one obtained using the equational sequent calculus.

3 Deduction Modulo Rules for Zenon

In this section, we provide the adaptation of the proof search rules of Zenon to de-
duction modulo. This mainly consists in extending the usual rules of Zenon [4] by
allowing them to work modulo a congruence relation over propositions induced
by a set of rewrite rules over propositions and a set of equational axioms and
rewrite rules over terms (this extension is partially inspired by the presentation
of tableaux modulo presented in [3]).

In the following, we borrow some of the notations, definitions, and propositions
of [9], and we call FV the function that returns the set of free variables of a
formula. In particular, we introduce the notion of class rewrite system:

Definition 1 (Class Rewrite System). A term rewrite rule is a pair of terms
denoted by l −→ r, where FV(r) ⊆ FV(l). An equational axiom is a pair of terms
denoted by l = r. A proposition rewrite rule is a pair of propositions denoted by
l −→ r, where l is an atomic proposition and r is an arbitrary proposition, and
where FV(r) ⊆ FV(l).

A class rewrite system is a pair, denoted by RE, consisting of:

– R: a set of proposition rewrite rules;
– E: a set of term rewrite rules and equational axioms.

Given a class rewrite system RE , the relations =E and =RE are the congru-
ences generated respectively by the sets E and R∪E . We then define the notion
of RE-rewriting. In the definition below, we use the standard concepts of sub-
term and term replacement: given an occurrence ω in a proposition P , we write
P|ω for the term or proposition at ω, and P [t]ω for the proposition obtained by
replacing P|ω by t in P at ω.

Definition 2 (RE-Rewriting). Given a class rewrite system RE , the propo-
sition P RE-rewrites to P ′, denoted by P −→RE P ′, if P =E Q, Q|ω = σ(l),
and P ′ =E Q[σ(r)]ω , for some rule l −→ r ∈ R, some proposition Q, some
occurrence ω in Q, and some substitution σ.
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The relation =RE is not decidable in general, but there are some cases where
this relation is decidable depending on the class rewrite system RE and the
rewrite relation −→RE , as identified by the following proposition:

Proposition 1 (Decidability of =RE). If the rewrite relation −→RE is con-
fluent and (weakly) terminating, then the relation =RE is decidable.

Given a class rewrite system RE , the proof search rules of Zenon adapted to
deduction modulo are summarized in Figs. 1 and 2 (for the sake of simplification,
the unfolding and extension rules are omitted), where the “ |” symbol is used to
separate the formulas of two distinct nodes to be created, ε is Hilbert’s opera-
tor (ε(x).P (x) means some x that satisfies P (x), if it exists, and is considered
as a term), capital letters are used for metavariables, and Rr, Rs, Rt, and Rts

are respectively reflexive, symmetric, transitive, and transitive-symmetric rela-
tions (the corresponding rules also apply to equality). As hinted by the use of
Hilbert’s operator, the δ-rules are handled by means of ε-terms rather than using
Skolemization. What we call here metavariables are often named free variables
in the tableau-related literature. However, metavariables are not used as vari-
ables as they are never substituted, and do not even help to generate a global
constraint closing all the branches of the tableau at once; metavariables are in-
stead used as clues (through unification attempts) for the “real” instantiation
rules γ∀inst/γ¬∃inst . The proof search rules are applied with the usual tableau
method: starting from the negation of the goal, apply the rules in a top-down
fashion to build a tree. When all branches are closed (i.e. end with a closure
rule), the tree is closed, and this closed tree is a proof of the goal. This algo-
rithm is applied in strict depth-first order: we close the current branch before
starting working on another branch. Moreover, we work in a non-destructive
way: working on a branch will never change the formulas of another branch.

Compared to [9] and [3], it should be noticed that there is no explicit rule of
extended narrowing in the proposed deduction modulo rules for Zenon, since the
relation =RE is actually disseminated in all the initial rules of Zenon. However,
the extended narrowing rule is not only a rule that allows us to apply rewrite
rules, but also a rule that may suggest instantiations for metavariables. The
technique used by Zenon to find those instantiations must therefore be extended
as well. Initially, Zenon tries to close a branch by looking for two formulas P
and ¬P that can be unified by a substitution σ (over metavariables), and this
substitution σ is then used in the γ∀inst/γ¬∃inst rules corresponding to the unified
metavariables. In deduction modulo, this method must be extended as follows:
we look for two formulas P and Q s.t. P =RE P ′, Q =RE ¬Q′, and there exists
a substitution σ s.t. σ(P ′) =E σ(Q′). To be complete, we must also extend this
metavariable instantiation search to any propositional narrowing (even if we are
not trying to close a branch): we look for a formula P and a substitution σ s.t.
P =RE P ′, and there exist P ′

|ω and a rule l −→ r of R∪ E s.t. σ(P ′
|ω) =E σ(l).
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Closure and Cut Rules

P ¬Q & if P =RE Q&
cut if P =RE Q

P | ¬Q

P &⊥ if P =RE ⊥&
¬P &¬� if P =RE �&

¬P &r if P =RE Rr(t,t)&
P ¬Q &s if P =RE Rs(a,b)

and Q=RE Rs(b,a)
&

Analytic Rules

S α∧ if S=RE P∧Q
P,Q

¬S β¬∧ if S=RE P∧Q
¬P | ¬Q

S β∨ if S=RE P∨Q
P | Q

¬S α¬∨ if S=RE P∨Q
¬P,¬Q

S β⇒ if S=RE P⇒Q
¬P | Q

¬S α¬⇒ if S=RE P⇒Q
P,¬Q

S β⇔ if S=RE P⇔Q
¬P,¬Q | P,Q

¬S β¬⇔ if S=RE P⇔Q
¬P,Q | P,¬Q

¬S α¬¬ if S=RE ¬P
P

S
δ∃ if S=RE ∃x P (x)

P (ε(x).P (x))
¬S

δ¬∀ if S=RE ∀x P (x)
¬P (ε(x).¬P (x))

γ-Rules

S γ∀M if S=RE ∀x P (x)

P (X)
¬S γ¬∃M if S=RE ∃x P (x)

¬P (X)

S γ∀inst if S=RE ∀x P (x)
P (t)

¬S γ¬∃inst if S=RE ∃x P (x)
¬P (t)

Fig. 1. Deduction Modulo Rules for Zenon (Part 1)

4 Implementation and Experimental Results

In this section, we present our implementation of the extension of Zenon to de-
duction modulo, as well as a heuristic to transform an axiomatic theory into a
theory modulo automatically. We also discuss the results obtained on the bench-
marks provided by the TPTP library, and we detail a problem that is difficult
according to the TPTP ranking, and whose proof is found by our extension.
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Relational Rules

P (t1, . . . , tn) ¬Q(s1, . . . , sn)
pred if P (t1,...,tn)=RE S(t1,...,tn)

and Q(s1,...,sn)=RE S(s1,...,sn)
t1 	= s1 | . . . | tn 	= sn

f(t1, . . . , tn) 	= g(s1, . . . , sn)
fun if f(t1,...,tn)=E h(t1,...,tn)

and g(s1,...,sn)=E h(s1,...,sn)
t1 	= s1 | . . . | tn 	= sn

P (s, t) ¬Q(u, v)
sym if P (s,t)=RE Rs(s,t)

and Q(u,v)=RE Rs(u,v)
t 	= u | s 	= v

¬P (s, t)
¬refl if P (s,t)=RE Rr(s,t)

s 	= t

P (s, t) ¬Q(u, v)
trans if P (s,t)=RE Rt(s,t)

and Q(u,v)=RE Rt(u,v)
u 	= s,¬Rt(u, s) | t 	= v,¬Rt(t, v)

P (s, t) ¬Q(u, v)
transsym if P (s,t)=RE Rts(s,t)

and Q(u,v)=RE Rts(u,v)
v 	= s,¬Rts(v, s) | t 	= u,¬Rts(t, u)

P (s, t) ¬Q(u, v)
transeq
if P (s,t)=RE (s=t)

and Q(u,v)=RE Rt(u,v)

u 	= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t 	= v,¬Rt(t, v)

P (s, t) ¬Q(u, v)
transeqsym
if P (s,t)=RE (s=t)

and Q(u,v)=RE Rts(u,v)

v 	= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t 	= u,¬Rts(t, u)

Fig. 2. Deduction Modulo Rules for Zenon (Part 2)

4.1 Implementation

The extension of Zenon to deduction modulo described in Sec. 3 has been imple-
mented in a tool called Zenon Modulo1. In this implementation, the class rewrite
system RE is assumed to be a pure rewrite system, i.e. there are only rewrite
rules and no equational axiom in E . In addition, the rewrite relation −→RE
is assumed to be confluent and (weakly) terminating, and the relation =RE is
therefore decidable (see Prop. 1 in Sec. 3). Thus, given two propositions P and
Q, it is sufficient to compare their normal forms (w.r.t. −→RE) to decide whether
P =RE Q. A solution to deal with the relation =RE is then to normalize all the
formulas of the proof search tree. However, this solution is not efficient in general,
as it may perform many useless rewritings. To alleviate this problem, we use an
alternate (but equivalent) solution, which consists in performing rewriting only
if the formula is a literal. In this case, the terms of the formula are normalized,
and one step of proposition rewriting is then applied; if the obtained formula is
still a literal, the process is reiterated.
1 Available on demand (sending a mail to the authors).
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To generate the rewrite system R ∪ E , we have implemented two options.
With the first one, the user builds a theory modulo (with axioms and rewrite
rules) and provides this theory to Zenon Modulo through an extension of the
TPTP input syntax [12], which is one of the input formats used by Zenon,
to natively support rewrite rules. With the second option, the user provides a
purely axiomatic theory and Zenon Modulo transforms it into a theory modulo
automatically. This transformation relies on a heuristic described in Subsec. 4.2.

Zenon Modulo is still in an early stage of development and some features have
not been implemented yet. In particular, this is the case of the narrowing for
terms and propositions. As a consequence, this leads to incompleteness cases,
some of which arise in the benchmarks presented in this paper.

4.2 A Heuristic to Build Theories Modulo

To obtain a theory modulo from an axiomatic theory automatically, we propose
a heuristic that generates rewrite rules from axioms based on the shape of the
latter. In general, this heuristic does not preserve cut-free completeness. Here are
the shapes of axioms that can be handled by our heuristic, as well as the rewrite
rules that are generated from them (in the following P is an atomic formula that
is not an equation, ϕ an arbitrary formula, and s and t two terms):

– Axiom of the form ∀x̄ (P ⇔ ϕ): the proposition rewrite rule P −→ ϕ is
generated if FV(ϕ) ⊆ FV(P ), otherwise if ϕ is a literal and FV(P ) ⊂ FV(ϕ)
then we apply the heuristic to the formula ∀x̄ (ϕ ⇔ P );

– Axiom of the form ∀x̄ (¬P ⇔ ϕ): the proposition rewrite rule P −→ ¬ϕ is
generated if FV(ϕ) ⊆ FV(P ), otherwise if ϕ is a literal and FV(P ) ⊂ FV(ϕ)
then we apply the heuristic to the formula ∀x̄ (ϕ ⇔ ¬P );

– Axiom of the form ∀x̄ s = t: the term rewrite rule s −→ t is generated if
FV(t) ⊆ FV(s), otherwise the term rewrite rule t −→ s if FV(s) ⊂ FV(t).
In addition, all the axioms expressing the commutativity of a given symbol
are excluded from this rule of our heuristic.

In this heuristic, it should be noticed that we exclude the axioms where P
is an equation in order to benefit from the equational reasoning of Zenon. To
illustrate this heuristic, an example is provided in Subsec. 4.4, where it is shown
how a part of the theory is transformed into rewrite rules automatically.

4.3 Experimental Results

We propose a test of our approach on a benchmark drawn from the TPTP
library [12] (v.5.5.0), which is a large library of standard benchmark exam-
ples for automated theorem proving systems. On this benchmark, we compare
Zenon with two different heuristics of Zenon Modulo. The first heuristic consists
in only selecting the axioms that can be transformed into proposition rewrite
rules (equational axioms that can be transformed into term rewrite rules are
ignored), while the second one is a greedy heuristic that transforms every ax-
iom that matches one of the patterns described above, producing both term
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Table 1. Experimental Results over the TPTP Library

TPTP
Category

Zenon Zenon Modulo
(Prop. Rewriting)

Zenon Modulo
(Term & Prop.

Rewriting)

FOF
6,659 problems

1,586 1,626
(2.5%)

+114 (7.2%)

-74 (4.7%)
1,616
(1.9%)

+170 (10.7%)

-140 (8.8%)

SET
462 problems

149 219
(47%)

+78 (52.3%)

-8 (5.4%)
222

(49%)

+86 (57.7%)

-13 (8.7%)

and propositional rewrite rules. The results of this experiment (run on an In-
tel Xeon X5650 2.67GHz computer, with a memory limit of 1GB and a timeout
of 300s) are summarized in Tab. 1, where we have considered the first order prob-
lems of the whole library (FOF category) and the problems of set theory (SET
category). This table has three columns: the first one provides the number of
problems proved by Zenon for each category, while the two other columns show
the results of Zenon Modulo with each of the heuristics described above. For
Zenon Modulo, there are three numbers per category and heuristic: the left-hand
side number is the number of problems proved by Zenon Modulo, while the two
right-hand side numbers represent, from top to bottom, the number of problems
proved by Zenon Modulo but not by Zenon, and the number of problems proved
by Zenon but not by Zenon Modulo.

From the results of Tab. 1, we observe that Zenon Modulo always proves
more problems than Zenon whatever the considered category and the selected
heuristic. If the gain seems to be low for the whole FOF category (less than 3%)
in spite of a significant proportion of problems proved by Zenon Modulo but not
by Zenon (about 7% and 11% depending on the heuristic), this is essentially due
to incompleteness cases of Zenon Modulo, where narrowing is actually required
and for which Zenon succeeds in finding a proof (about 5% and 9% of the cases
depending the heuristic). Once narrowing will have been implemented, we can
reasonably hope to drastically reduce the number of these cases, and obtain a
quite higher gain (probably up to about 11% in the best case scenario).

However, even without narrowing, the gain of Zenon Modulo becomes quite
significant for the SET category (about 50% for both heuristics). This very
promising result in the SET category tends to show that set theory is a good
candidate for automated reasoning with deduction modulo, even when using an
automated heuristic. Moreover, as said in the introduction, we plan to apply
Zenon Modulo in the context of the B method [1], in particular to verify proof
obligations coming from industrial applications. This is one of the tasks of the
BWare project [13]. As the modeling technique used by the B method relies on
a customized set theory, which will have a hand-tailored expression as a rewrite
system, we can therefore be quite confident in the effectiveness of our tool in the
verification of these proof obligations.
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The results of the two instances of Zenon Modulo are close, but the heuristic
based on term and proposition rewriting proves more problems that are not
proved by Zenon (about 11% for FOF and 58% for SET), and once narrowing
will be implemented, this heuristic should therefore be preferred.

It should be also noticed that among the 86 problems of the SET category
proved by Zenon Modulo (with the heuristic based on term and proposition
rewriting) but not by Zenon, there are 29 difficult problems according to the
TPTP ranking, namely 29 with a ranking greater than 0.72, 9 with a ranking
greater than 0.8, and 1 with a ranking greater than 0.9.

4.4 A Nontrivial Example from the TPTP Library

To show the effectiveness of Zenon Modulo, let us describe the proof found for the
problem SET815+4, which has the highest ranking (0.91) among those solved,
and which deals with the theory of ordinal numbers. The conjecture states that
any ordinal number is equal to the union of the elements of its successor. The
axioms used to complete this proof are the following:

∀A,B (A ⊆ B ⇔ ∀X (X ∈ A ⇒ X ∈ B)) (subset)
∀A,B (A =set B ⇔ A ⊆ B ∧B ⊆ A) (eqset)

∀X,A,B (X ∈ A ∪B ⇔ X ∈ A ∨X ∈ B) (union)
∀X,A (X ∈ {A} ⇔ X = A) (singleton)
∀X,A (X ∈

⋃
A ⇔ ∃Y (Y ∈ A ∧X ∈ Y )) (sum)

∀A (A ∈ On ⇔ set(A) ∧ ∀X (X ∈ A ⇒ X ⊆ A) ∧ (ordinal )
strict_wo(mem_pred, A))

∀X,A (X ∈ A + 1 ⇔ X ∈ A ∪ {A}) (successor)

where set is a predicate that requires the argument to be a set, and where On
is the “set” of ordinal numbers, mem_pred the membership relation over ordinal
numbers (this relation is related to ∈ by means of an axiom not shown here as
it is not required to complete the proof), and strict_wo a formula encoding the
strict well-order relation.

According the rules of the heuristic described in Subsec. 4.2, all these axioms
can be turned into proposition rewrite rules (we use the first rule of the heuristic,
and each axiom is oriented from left to right). Once this theory modulo has been
built, we can then try to prove the conjecture, which is expressed as follows:

∀A (A ∈ On ⇒
⋃

(A + 1) =set A)

When applied to this specification, Zenon Modulo produces the (rather short)
proof of Fig. 3. The proof is presented using the rules of Sec. 3, even though
these rules are more used for proof search rather than for proof presentation (for
that purpose, Zenon actually uses an intermediate format, which is described in
2 It means that at least 70% of the tested automated theorem provers fail in proving

the considered problems.
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¬(∀A (A ∈ On⇒
⋃
(A+ 1) =set A))

l1¬(
⋃
(τ1 + 1) ⊂ τ1 ∧ τ1 ⊂

⋃
(τ1 + 1)), ∀X (X ∈ τ1 ⇒ X ⊂ τ1)

l2¬(∀X (X ∈
⋃
(τ1 + 1)⇒ X ∈ τ1))

l3
Π1

¬(∀X (X ∈ τ1 ⇒ X ∈
⋃
(τ1 + 1)))

l4
Π2

Π1

τ3 ∈ τ1 ∨ τ3 ∈ {τ1}, ¬(τ2 ∈ τ1), τ2 ∈ τ3
l5τ3 ∈ τ1

l6τ3 ∈ τ1 ⇒ τ3 ⊂ τ1
l7¬(τ3 ∈ τ1) &&

∀X (X ∈ τ3 ⇒ X ∈ τ1)
l8τ2 ∈ τ3 ⇒ τ2 ∈ τ1
l9¬(τ2 ∈ τ3) &&

τ2 ∈ τ1 &&

τ3 = τ1
l10

τ2 	= τ2 &r&
τ3 	= τ1 &&

Π2

¬(∃Y (Y ∈ (τ1 + 1) ∧ τ4 ∈ Y )), τ4 ∈ τ1
l11¬(τ1 ∈ (τ1 + 1) ∧ τ4 ∈ τ1)

l12
τ1 	= τ1 &r&

¬(τ4 ∈ τ1) &&

where :
τ1 = ε(A).¬(A ∈ On⇒

⋃
(A+ 1) = A)

τ2 = ε(X).¬(X ∈
⋃
(τ1 + 1)⇒ X ∈ τ1)

τ3 = ε(Y ).(Y ∈ (τ1 + 1) ∧ τ2 ∈ Y )
τ4 = ε(X).¬(X ∈ τ1 ⇒ X ∈

⋃
(τ1 + 1))

l1 = δ¬∀, α¬⇒, ordinal, eqset
l2 = β¬∧, subset
l3 = δ¬∀, α¬⇒, sum, δ∃, α∧, successor, union
l4 = δ¬∀, α¬⇒, sum
l5 = β∨, singleton
l6 = γ∀inst

l7 = β⇒, subset
l8 = γ∀inst
l9 = β⇒
l10 = pred
l11 = γ¬∃inst
l12 = β¬∧, successor,union, α¬∨,

singleton

Fig. 3. Proof of Problem SET815+4

detail in [4]). Moreover, to make the presentation more compact, one proof step
may consist of several rules. Notice the clever instantiation rule l6, which cannot
be done before the δ∃ of l3.

5 Proof Verification with Dedukti

In this section, we describe the Dedukti backend that has been implemented for
Zenon Modulo, and which relies in particular on a proof transformation from
classical to constructive logic.

5.1 Dedukti as a Backend for Deduction Modulo

Skeptically checking proof traces produced by an automated theorem prover im-
poses that the traces contain all the information needed by the proof checker
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to assert the validity of proofs. A naive way to check proofs performed by
Zenon Modulo would be to record rewriting as a special rule, but this method
would be very expensive in space, because an arbitrary number of rewrite rules
can occur between any consecutive nodes of the proof. To circumvent this prob-
lem, the proof checker or the formalization of the proof must not distinguish
propositions or terms belonging to the same equivalence class modulo rewriting.
The only information needed is the set of rewrite rules, which cannot be bigger
than the problem statement itself. Dedukti fits this specific constraint in a simple
way: if the set of rewrite rules is translated into Dedukti rewrite rules specified
in the header of the proof, any proposition or term used in the proof can be
replaced by an equivalent proposition or term modulo rewriting.

Dedukti [2] is a type checker for the λΠ-calculus modulo, which is an extension
of the λ-calculus with dependent types and rewrite rules. In order to check proofs
of a given logical system, we have to define an embedding of this system into the
λΠ-calculus modulo. A logical system is embedded into the λΠ-calculus modulo
using declarations of constants and declarations of rewrite rules. As an example,
let us consider the implicative fragment of natural deduction and a predicate
P . To encode this example, we provide the context of Fig. 4, where the syntax
of λΠ-calculus modulo is used. In this context, we can check the trivial proof
of Imp P P by verifying that the term Intro P P (λt : (Proof P ). t) has type
Proof (Imp P P ). This technique, which consists in defining rules as constants
in the λΠ-calculus modulo, is called deep embedding.

However, the λΠ-calculus modulo allows us to define rewrite rules that avoid
the definitions of the previous encoding and therefore get shorter proofs. For
example, we can replace the Intro and Elim constants by the rewrite rule
Proof (Imp A B) −→ (Proof A → Proof B), where A and B are variables
of type Prop. The previous term then reduces to λt : (Proof P ).t, which has the
same type. This technique, which consists in reusing the language features (here,
the λΠ-calculus modulo) is called shallow embedding. In particular, the compu-
tations (β-reduction) of the initial system are preserved. Notice how deduction
modulo allows us to smoothly go from deep to shallow embedding.

The definition of an output to deduction modulo first consists in providing
the declaration of the language (terms, predicates, connectives, etc.), and the

Prop : Type

P : Prop

Imp : Prop → Prop → Prop

Proof : Prop → Type

Intro : ΠA : Prop.ΠB : Prop.(Proof A→ Proof B)→ Proof (Imp A B))

Elim : ΠA : Prop.ΠB : Prop.(Proof (Imp A B))→ (Proof A)→ Proof B)

Fig. 4. Encoding of Natural Deduction in λΠ-Calculus Modulo
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shallow embedding of the natural deduction rules that is close to λΠ-calculus.
We then proceed to the definition of the rewrite rules for propositions and terms,
according to the input set of rewrite rules. Once this encoding has been defined,
proofs can be checked in this context. As an example, we can extend the pre-
vious encoding with a predicate Q and two axioms Imp Q (Imp P P ) and
Imp (Imp P P ) Q. The heuristic of Sec. 4 will replace these two axioms by a
single rewrite rule (these two axioms represent an equivalence), and we just have
to declare the rewrite rule Q −→ Imp P P , modulo which Q admits the same
proof as before, i.e. λt : (Proof P ).t.

5.2 From Classical to Constructive Proofs

Zenon’s logic is classical and expressed in a formalism very close to sequent
calculus [14]. As a consequence, using Dedukti as a backend requires two steps:
the first one is to translate classical proofs of Zenon into proofs of constructive
sequent calculus with equality, which we discuss here, and the second one is a
standard translation from sequent calculus to natural deduction.

The translation from classical to constructive logic relies on an optimized
double-negation translation [15], presented in Tab. 2, where other connectives
(¬ and �) are defined as usual through ⇒ and ⊥. With these definitions, it is
possible to show that a formula A has a classical proof if and only if ϕ(A) has a
constructive proof. The purpose of defining the three functions of Tab. 2 is that
the algorithm introduces a minimal number of double negations. In particular,
we improve over both Kuroda’s and Gödel’s translations [15] by combining their
principles: double negation only after universal quantifiers and double negation
only in front of disjunctive and existentially quantified propositions, respectively.
At top level, we push double negations as far as possible inside the formula, as
Gödel, in front of the first encountered disjunction/existential quantifier (the
role of ϕ); at this point, we stop introducing double negations until, as Kuroda,
we meet a universal quantifier, in which case we start again the process (the role
of ψ). We refine our translation with the polarity of formulas (i.e. the side of the
sequent on which the formula appears): if a formula appears on the left-hand
side of a sequent, we do not put a double-negation in front of it (the role of χ).

Furthermore, the algorithm analyses the structure of the classical proof in
order to remove more double negations. For instance, a disjunction can be
proved constructively even in a classical calculus. As a consequence, the state-
ment of many proofs remains unchanged. This is the case of the TPTP problem
SET815+4, discussed in Sec. 4, whose proof certificate (expressed in λΠ-calculus
modulo), is given in Figs. 5 and 6 of Appx. A. This algorithm of proof trans-
formation has been implemented for Zenon Modulo to produce Dedukti proof
certificates. In particular, Zenon Modulo succeeds in producing a proof certifi-
cate for the previous problem SET815+4, which is correctly checked by Dedukti.
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Table 2. Translation from Classical to Constructive Logic

ϕ χ ψ

A ∧ B ϕ(A) ∧ ϕ(B) χ(A) ∧ χ(B) ψ(A) ∧ ψ(B)
A ∨ B ¬¬(ψ(A) ∨ ψ(B)) χ(A) ∨ χ(B) ψ(A) ∨ ψ(B)
A⇒ B χ(A)⇒ ϕ(B) ψ(A)⇒ χ(B) χ(A)⇒ ψ(B)

∀x A ∀x ϕ(A) ∀x χ(A) ∀x ϕ(A)
∃x A ¬¬∃x ψ(A) ∃x χ(A) ∃x ψ(A)
⊥ ⊥ ⊥ ⊥

Atomic P ¬¬P P P

6 Conclusion

We have proposed an extension of the tableau-based first order automated the-
orem prover Zenon to deduction modulo. This extension essentially consists in
considering a part of a given theory as rewrite rules (over terms and proposi-
tions), and integrating these rewrite rules into the proof search rules of Zenon. We
have also presented an implementation of this extension, called Zenon Modulo,
as well as a heuristic to turn axioms of theories into rewrite rules automatically.
This new tool significantly improves the proof search of Zenon, as shown by the
experimental results obtained on the benchmarks provided by the TPTP library.
In particular, this is the case of the SET category, where Zenon Modulo is able
to prove difficult problems according to the TPTP ranking. Finally, we have
also described an additional backend for Zenon that outputs proof certificates
for Dedukti, which is a proof checker based on the λΠ-calculus modulo.

As future work, we first aim to complete our implementation to deal with
narrowing when trying to find instantiations for metavariables. This will allow
us to ensure completeness for our extension of Zenon, even though narrowing
may paradoxically widen the proof search space in some cases (e.g., in set the-
ory, a metavariable representing a set can be “narrowed” using the major part
of rewrite rules defining the set operators). To deal with these cases, we will
probably implement a switch that will allow us to activate/deactivate the use
of narrowing. It might be also desirable to extend our proof search method to
polarized deduction modulo [8], which is a refinement of deduction modulo to
deal with theories formed with axioms using implications. This extension would
allow us to consider more theories, where a significant part of the axioms are
expressed neither by equivalences, nor by equations, but only by implications.
Finally, in the framework of the BWare project [13], we plan to apply this tool
in the context of the B method [1], with in particular the verification of proof
obligations coming from industrial applications. To achieve this task, we have
to build a theory modulo for the modeling method of B, which is actually a
typed set theory, and we should be able to reuse some ideas of [10], where a B
set theory is proposed using superdeduction. Given the very promising results
of our tool in the SET category of the TPTP library, we are quite confident in
the effectiveness of our tool in the verification of B proof obligations.
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A Proof Certificate for Problem SET815+4 in
λΠ-Calculus Modulo

Declarations:

Term,Prop : Type
Proof : Prop → Type
∧,∨,⇒: Prop → Prop → Prop
∀,∃ : (Term → Prop)→ Prop
On,mem_pred : Term
+1, { },

⋃
: Term → Term

∪ : Term → Term → Term
set : Term → Prop
=,=set,∈,⊂, strict_wo : Term → Term → Prop

Rewrite Rules:

[A,B : Prop]Proof (A ∧B) −→ ΠP : Prop.
(Proof A→ Proof B → Proof P )→ Proof P

[A,B : Prop]Proof (A ∨B) −→ ΠP : Prop.(Proof A→ Proof P )→
(Proof B → Proof P )→ Proof P

[A,B : Prop]Proof (A⇒ B) −→ Proof A→ Proof B
[A : Term → Prop]Proof (∀ A) −→ Πx : Term.Proof (A x)
[A : Term → Prop]Proof (∃ A) −→ ΠP : Prop.

(Πx : Term.Proof (A x)→ Proof P )→ Proof P
[x, y : Term]Proof (x = y) −→ ΠP : (Term → Prop).Proof ((P x)⇒ (P y))
[A,B : Term]A ⊂ B −→ ∀ (λX : Term .X ∈ A⇒ X ∈ B)
[A,B : Term]A =set B −→ A ⊂ B ∧B ⊂ A
[A,B,X : Term]X ∈ A ∪ B −→ X ∈ A ∨X ∈ B
[A,X : Term]X ∈ {A} −→ X = A
[A,X : Term]X ∈

⋃
(A) −→ ∃(λY : Term .Y ∈ A ∧X ∈ Y )

[A : Term]A ∈ On −→ set(A) ∧ strict_wo(mem_pred, A)∧
∀ (λX : Term.X ∈ A⇒ X ⊂ A)

[A,X : Term]X ∈ (A+ 1) −→ X ∈ A ∪ {A}

where [·] is the typing context of a rewrite rule.

Fig. 5. Context of the Proof of Problem SET815+4 in λΠ-Calculus Modulo
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Proof (λ-term):

λA : Term.λH0 : Proof (A ∈ On).H0 (
⋃
(A+ 1) =set A)

(λH1 : Proof (set(A)).
λH2 : Proof (strict_wo(mem_pred, A)∧
(∀ (λX : Term.X ∈ A⇒ X ⊂ A))).H2 (

⋃
(A+ 1) =set A)

(λH3 : Proof (strict_wo(mem_pred, A)).
λH4 : Proof ∀ (λX : Term .(X ∈ A⇒ X ⊂ A)).λP0 : Prop.
λH6 : (Proof (

⋃
(A+ 1) ⊂ A)→ Proof (A ⊂

⋃
(A+ 1))→ Proof P0).H6

(λB : Term.λH7 : Proof (B ∈
⋃
(A+ 1)).H7 (B ∈ A)

(λD : Term .λH8 : Proof (D ∈ (A+ 1) ∧B ∈ D).H8 (B ∈ A)
(λH9 : Proof (D ∈ (A+ 1)).λH10 : Proof (B ∈ D).H9 (B ∈ A)
(λH11 : Proof (D ∈ A).((((H4 D) H11) B) H10))
(λH12 : Proof (D = A).
(λP1 : (Term → Prop).λH13 : Proof (P1 B).H13) (λX : Term.X ∈ A)
(H12 (λX : Term .B ∈ X) H10)))))

(λC : Term .λH14 : Proof (C ∈ A).λP2 : Prop.
λH15 : (ΠY : Term .Proof (Y ∈ (A+ 1) ∧ C ∈ Y )→ Proof P2).H15 A
(λP3 : Prop.λH16 : (Proof (A ∈ A)→ Proof (C ∈ A)→ Proof P3).H16
(λP4 : Prop.λH17 : (Proof (A ∈ A)→ Proof P4).
λH18 : (Proof (A = A)→ Proof P4).H18
(λP5 : (Term → Prop).λH19 : Proof (P5 A).H19)) H14))))

Fig. 6. Proof of Problem SET815+4 in λΠ-Calculus Modulo
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Abstract. Strategies (and certificates) for quantified Boolean formulas (QBFs)
are of high practical relevance as they facilitate the verification of results returned
by QBF solvers and the generation of solutions to problems formulated as QBFs.
State of the art approaches to obtain strategies require traversing a Q-resolution
proof of a QBF, which for many real-life instances is too large to handle. In this
work, we consider the long-distance Q-resolution (LDQ) calculus, which allows
particular tautological resolvents. We show that for a family of QBFs using the
LDQ-resolution allows for exponentially shorter proofs compared to Q-resolution.
We further show that an approach to strategy extraction originally presented for
Q-resolution proofs can also be applied to LDQ-resolution proofs. As a practical
application, we consider search-based QBF solvers which are able to learn tauto-
logical clauses based on resolution and the conflict-driven clause learning method.
We prove that the resolution proofs produced by these solvers correspond to proofs
in the LDQ calculus and can therefore be used as input for strategy extraction
algorithms. Experimental results illustrate the potential of the LDQ calculus in
search-based QBF solving.

1 Introduction

The development of decision procedures for quantified Boolean formulas (QBFs) has re-
cently resulted in considerable performance gains. A common approach is search-based
QBF solving with conflict-driven clause learning (CDCL) [2,11], which is related to
propositional logic (SAT solving) in that it extends the DPLL algorithm [3]. In addition
to solving the QBF decision problem, QBF solvers with clause learning are able to pro-
duce Q-resolution proofs [7] to certify their answer. These proofs can be used to obtain
solutions to problems encoded as QBFs. For instance, if the QBF describes a synthesis
problem, then the system to be synthesized can be generated by inspecting the proof [12].
Such solutions can be represented as control strategies [6] expressed by an algorithm that
computes assignments to universal variables rendering the QBF false, or as control cir-
cuits [1] expressed by Herbrand or Skolem functions. Both approaches can be used for
true QBFs as well as false QBFs. In this work, we focus on false QBFs.

Strategies can be extracted from Q-resolution proofs of false QBFs based on a game-
theoretic view [6]. A strategy is an assignment to each universal (∀) variable that depends
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on assignments to existential (∃) variables with a lower quantification level and maintains
the falsity of the QBF. The extraction algorithm is executed for each quantifier block from
the left to the right. Certificate extraction [1] constructs solutions in terms of a Herbrand
function for each ∀ variable from a Q-resolution proof of a false QBF. Replacing each ∀
variable by its Herbrand function in the formula and removing the quantifiers yields an un-
satisfiable propositional formula. The run time of both extraction algorithms is polynomi-
ally related to the size of the proof. It is therefore beneficial to have short proofs in practice.
Calculi more powerful than traditional Q-resolution possibly allow for shorter proofs.

A way to strengthen Q-resolution is to admit tautological resolvents under certain con-
ditions. In search-based QBF solving, this approach called long-distance resolution is
applied to learn tautological clauses in CDCL [15,16]. The idea of generating tautologi-
cal resolvents is formalized in the long-distance Q-resolution calculus (LDQ) [1].

We consider long-distance resolution in search-based QBF solving. First, we show
that formulas of a certain family of QBFs [7] have LDQ-resolution proofs of polyno-
mial size in the length of the formula. According to [7], any Q-resolution proof of these
formulas is exponential.

Second, we prove that long-distance resolution for clause learning in QBF solvers
as presented in [15,16] corresponds to proof steps in the formal LDQ-resolution calcu-
lus.This observation is complementary to the correctness proof of learning tautological
clauses (i.e. the theorem in [15]) in that we embed this practical clause learning procedure
in the formal framework of the LDQ-resolution calculus. Thereby we obtain a general-
ized view on the practical side and the theoretical side of long-distance resolution in terms
of the clause learning procedure and the formal calculus, respectively.

Third, we prove that strategy extraction [6] is applicable to LDQ-resolution proofs in
the same way as it is to Q-resolution proofs, which have been its original application.

Our results illustrate that the complete workflow from generating proofs in search-
based QBF solving to extracting strategies from these proofs can be based on the LDQ-
resolution calculus. We modified the search-based QBF solver DepQBF [9] to learn
tautological clauses in CDCL.We report preliminary experimental results which illustrate
the potential of the LDQ-resolution calculus in terms of a lower effort in the search pro-
cess. Since LDQ-resolution proofs can be significantly shorter than Q-resolution proofs,
strategy extraction will also benefit from applying LDQ-resolution proofs in practice.

2 Preliminaries

Given a set V of Boolean variables, the set L :=V∪{v | v ∈V} of literals contains each
variable in its positive and negative polarity. We write v for the opposite polarity of v
regardless of whether v is positive or negative. A quantified Boolean formula (QBF) in
prenex conjunctive normal form (PCNF) over a set V of variables and the two quantifiers
∃ and ∀ is of the form P .φ where (1) P :=Q1v1 ...Qnvn is the prefix with Qi ∈ {∃,∀},
vi ∈ V and all vi are pairwise distinct for 1 ≤ i ≤ n, and (2) φ ⊆ 2L is a set of clauses
called the matrix. We write � for the empty clause and occasionally represent a clause
as disjunction of literals. A quantifier block of the form QV combines all subsequent
variables with the same quantifier Q in set V . A prefix can be alternatively written as
sequence Q1V1...QmVm of quantifier blocks where Qi 
=Qi+1 for 1≤ i≤m−1.
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We use var(l) to refer to the variable of literal l and vars(φ) to refer to the set of vari-
ables used in the matrix. A QBF is closed if vars(φ)={vi |1≤ i≤n}, i.e., if all variables
used in the matrix are quantified and vice versa. In the following, by QBF we refer to
a closed QBF in PCNF. Function lev : L → {1, ...,m} refers to the quantification level
of a literal and quant : L → {∃,∀} refers to the quantifier type of a literal such that for
1≤ i≤m and any l ∈L, if var(l)∈ Vi then lev(l) := i and quant(l) :=Qi. A literal l is
existential if quant(l) = ∃ and universal if quant(l) = ∀. We use the same terms for the
variable var(l) of l. We write e for an existential variable and x for a universal variable.

Given a QBF ψ=P .φ, an assignment is a mapping of variables in vars(φ) to the truth
values true (�) and false (⊥). We denote an assignment as a set σ of literals such that if
var(l) is assigned to� then l∈σ, and if var(l) is assigned to⊥ then l∈σ. An assignment
is total if for each v∈vars(φ) either v∈σ or v∈σ, and partial otherwise.

A clause C under an assignment σ is denoted by C"σ and is defined as follows:
C"σ = � if C ∩ σ 
= ∅, C"σ = ⊥ if C \ {v | v ∈ σ} = ∅, and C"σ = C \ {v | v ∈ σ}
otherwise. A QBF ψ = P .φ under an assignment σ is denoted by ψ"σ and is obtained
from ψ by replacing each C∈φ by C"σ , eliminating truth constants� and⊥ by standard
rewrite rules from Boolean algebra, removing for each literal in σ its variable from the
prefix, and removing each quantifier block that does no longer contain any variable.

The QBF ∀v.φ is true if and only if φ"{v} =� and φ"{v}=�. The QBF ∃v.φ is true
if and only if φ"{v}=� or φ"{v}=�. The QBF ∀vP .φ is true if and only if P .φ"{v} and
P .φ"{v} are true . The QBF ∃vP .φ is true if and only ifP .φ"{v} orP .φ"{v} is true.

Given a QBF ψ=P .φ and a clause C∈φ, universal reduction [7] produces the clause
C′ := reduce(C) :=C\{l |quant(l)=∀ and ∀e∈C :quant(e)=∃→ lev(e)< lev(l)} by
removing all universal literals from C which have a maximal quantification level. Uni-
versal reduction on ψ produces the QBF resulting from ψ by the application of universal
reduction to each clause in φ.

A clause C is satisfied under an assignment σ if C"σ = � and falsified under σ and
universal reduction if reduce(C"σ)=�.

Clause learning (Section 4) is based on restricted variants of resolution, which is de-
fined as follows. Given two clauses Cl and Cr and a pivot variable p with p∈Cl and p∈
Cr, resolution produces the resolvent C := resolve(Cl,p,Cr) :=(Cl\{p}∪Cr\{p}).

Long-distance (LD) resolution [15] is an application of resolution where the resolvent
C = resolve(Cl,p,Cr) is tautological, i.e. {v,v} ⊆ C for some variable v. In contrast
to [15], our definition of LD-resolution allows for unrestricted LD-resolution steps. LD-
resolution in the context of [15] is restricted and hence sound, whereas its unrestricted
variant is unsound, as pointed out in the following example.

Example 1. For the true QBF ∀x∃e.(x∨e)∧(x∨e), an erroneous LD-refutation is given
by C1 := resolve((x∨e),e,(x∨e))=(x∨x) and C2 := reduce(C1)=�.

Q-resolution [7] is a restriction of resolution. Given two non-tautological clauses Cl

and Cr and an existential pivot variable p, the Q-resolvent is defined as follows. Let
C′ := resolve(reduce(Cl),p,reduce(Cr)) be the resolvent of the two universally reduced
clauses Cl and Cr. If C′ is non-tautological then C := reduce(C′) is the Q-resolvent of
Cl and Cr. Otherwise no Q-resolvent exists.

The long-distance Q-resolution (LDQ) calculus [1] extends Q-resolution by allowing
certain tautological resolvents. The rules of this calculus amount to a restricted applica-
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tion of LD-resolution. In the following we reproduce the formal rules (LDQ-rules) of the
LDQ-calculus [1] using our notation and definitions. We write p for an existential pivot
variable, x for a universal variable, and x∗ as shorthand for x∨x. We call x∗ a merged
literal. Further, X l and Xr are sets of universal literals (merged or unmerged), such that
for each x ∈X l it holds that if x is not a merged literal then either x ∈Xr or x∗ ∈Xr,
and otherwise either of x∈Xr or x∈Xr or x∗∈Xr. Xr does not contain any additional
literals. X∗ contains the merged literal of each literal in X l. Symmetric rules are omitted.

Cl∨p Cr∨p
[p]

Cl∨Cr
for all v∈Cl it holds that v 
∈Cr (r1)

Cl∨p∨X l Cr∨p∨Xr

[p]
Cl∨Cr∨X∗

for all x∈Xr it holds that lev(p)< lev(x)
for all v∈Cl it holds that v 
∈Cr

(r2)

C∨x′[x]
C

for x′∈{x,x,x∗} and
for all existential e∈C it holds that lev(e)< lev(x′)

(u1)

Rule r2 is a restricted application of resolve(Cl,p,Cr) in that a tautological clause
can be derived only if literals occurring in both polarities are universal and have a higher
quantification level than p. Example u1 extends universal reduction by removing x∗.

Given a QBF ψ, a derivation of a clause C is a sequence of applications of reso-
lution and universal reduction to the clauses in ψ and to derived clauses resulting in
C. If either only Q-resolution, only LD-resolution or only the LDQ-calculus is applied,
then the derivation is a (Q,LD,LDQ)-derivation. A (Q,LD,LDQ)-derivation of the empty
clause � is a (Q,LD,LDQ)-refutation or (Q,LD,LDQ)-proof. Both Q-resolution and the
LDQ-calculus are sound and refutationally complete proof systems for QBFs that do not
contain tautological clauses [1,7]. Figure 1 shows an LDQ-refutation.

3 Short LDQ-Proofs for Hard Formulas

We argue that LDQ-resolution has the potential to shorten proofs of false QBFs by show-
ing that the application of LDQ-resolution on QBFs of a particular family [7] results in
proofs of polynomial size.

A formula ϕt in this family (ϕt)t≥1 of QBFs has the quantifier prefix

∃d0d1e1∀x1∃d2e2∀x2∃d3e3...∀xt−1∃dtet∀xt∃f1...ft

and a matrix consisting of the following clauses:

C0 = d0 C1 = d0∨d1∨e1
C2j = dj∨xj∨dj+1∨ej+1 C2j+1 = ej∨xj∨dj+1∨ej+1 for j=1,...,t−1

C2t = dt∨xt∨f1∨...∨f t C2t+1 = et∨xt∨f1∨...∨f t
B2j−1 = xj∨fj B2j = xj∨fj for j=1,...,t
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(e1)C1 (e2,e3)C2 (e2,e3)C3 (e4,x6,e1,e3)C4 (e5,x6,e1,e3)C5 (e4,e5)C6,R0,R4

∃e2,e4,e5 ∀x6 ∃e1,e3

(e4,x6,e1,e3)R1,R5

(x∗6,e1,e3)R2,R6

(e2,x
∗
6,e1)R7(e2,x

∗
6,e1)R3

(x∗6,e1)R8

(x∗6)R9

�

Fig. 1. The LDQ-refutation as a running example. Labels C1 to C6, R1 to R9 denote the original
clauses and the resolvents, respectively. E.g. “R2,R6” is shorthand for “R2 = R6”, meaning that
the clausesR2 andR6 are equal. The derivation and the labels are explained in Examples 2 and 3.

By Theorem 3.2 in [7], any Q-refutation of ϕt for t ≥ 1 is exponential in t. The for-
mula ϕt has a polynomial size Q-resolution refutation if universal pivot variables are
allowed [14]. In the following, we show how to obtain polynomial size LDQ-refutations
in the form of a directed acyclic graph (DAG). A straightforward translation of this DAG
to a tree results in an exponential blow-up.

Proposition 1. Any ϕt has an LDQ-refutation of polynomial size in t for t≥1.

Proof. An LDQ-refutation with O(t) clauses for (ϕt)t≥1 can be constructed as follows:

1. Derive dt∨xt∨
∨t−1

i=1f i from B2t and C2t. Derive et∨xt∨
∨t−1

i=1f i similarly.
2. Use both clauses from Step 1 together with C2(t−1) and derive the clause dt−1 ∨

xt−1∨
∨t−1

i=1f i∨x∗t . Observe that the quantification level of dt and et is smaller than
the level of xt. Use B2(t−1) to get dt−1 ∨ xt−1 ∨

∨t−2
i=1 f i ∨ x∗t . Derive the clause

et−1∨xt−1∨
∨t−2

i=1f i∨x∗t in a similar way.
3. Iterate the procedure to derive d2 ∨ x2 ∨

∨1
i=1 f i ∨

∨t
i=3 x∗i as well as e2 ∨ x2 ∨∨1

i=1f i∨
∨t

i=3x
∗
i .

4. With C2, derive d1∨x1∨f1∨
∨t

i=2x
∗
i . Use B2 to obtain d1∨x1∨

∨t
i=2x

∗
i . Derive

e1∨x1∨
∨t

i=2x
∗
i in a similar fashion.

5. Use the two derived clauses together with C0 and C1 to obtain
∨t

i=1x
∗
i , which can

be reduced to the empty clause by universal reduction. 
�

This result leads to the assumption that QBF solving algorithms can benefit from employ-
ing the LDQ-calculus. Next, we discuss how it is integrated in search-based QBF solvers.

4 LDQ-Proof Generation in Search-Based QBF Solving

We consider search-based QBF solving with conflict-driven clause learning (QCDCL)
as an application of LDQ-resolution. Search-based QBF solving is an extension of the
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State ld-qcdcl()
while (true)
State s = qbcp();
if (s == UNDET)
assign_dec_var();

else
if (s == UNSAT)
a = analyze_conflict();

else if (s == SAT)
a = analyze_solution();

if (a == INVALID)
return s;

else
backtrack(a);

Assignment analyze_conflict()
i = 0;
Ri = find_confl_clause();
while (!stop_res(Ri))
pi = get_pivot(Ri);
R′
i = get_antecedent(pi);

Ri+1 = resolve(Ri,pi,R
′
i);

Ri+1 = reduce(Ri+1);
i++;

add_to_formula(Ri);
return get_retraction(Ri);

Fig. 2. Search-based QBF solving with LD-QCDCL [15,16] using long-distance resolution

DPLL algorithm [2,3]. Given a QBF ψ =P .φ, the idea of QCDCL [4,8,15,16] is to dy-
namically generate and add derived clauses to the matrix φ. If ψ is false, then the empty
clause � will finally be generated. In this case, the sequence of clauses involved in the
generation of all the learned clauses forms a Q-refutation of ψ.

We focus on the generation of tautological learned clauses in QCDCL based on long-
distance (LD) resolution [15,16]. We call the application of this method in search-based
QBF solving LD-QCDCL. The soundness proof of LD-QCDCL (Lemma 2 and the the-
orem in [15]) shows that the learned clauses have certain properties in the context of
LD-QCDCL. Due to these properties of the learned clauses, LD-resolution is applied in a
restricted fashion in LD-QCDCL, which ensures soundness. In general, unrestricted LD-
resolution relying on the definition in Section 2 is unsound, as pointed out in Example 1.

We prove that the generation of a (tautological) learned clause by LD-resolution in LD-
QCDCL corresponds to a derivation in the LDQ-resolution calculus [1] from Section 2.
Hence learning tautological clauses in LD-QCDCL produces LDQ-refutations. With our
observation we embed the LD-QCDCL procedure [15,16] in the formal framework of the
LDQ-resolution calculus, the soundness of which was proved in [1].

In order to make the presentation of our results self-contained and to emphasize the
relevance of long-distance resolution in search-based QBF solving, we describe LD-
QCDCL in the following. Figure 2 shows a pseudo code.

In our presentation of LD-QCDCL we use the following terminology. Given a QBF
ψ = P .φ, a clause C ∈ φ is unit if and only if C = (l) and quant(l) = ∃, where l
is a unit literal. The operation of unit literal detection UL(C) := {l} collects the as-
signment {l} from the unit clause C = (l). In this case, clause C = ante(l) is the an-
tecedent clause of the assignment {l}. Otherwise, if C is not unit then UL(C) :={} is the
empty assignment. Unit literal detection is extended from clauses to sets of clauses in ψ:
UL(ψ) :=

⋃
C∈φUL(C). Resolution (function resolve) and universal reduction (function

reduce) are defined as in Section 2.
The operation of quantified boolean constraint propagation (QBCP) extends an as-

signment σ to σ′ ⊇ σ by iterative applications of unit literal detection and universal
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reduction until fixpoint1 and computes ψ under σ′, such that for ψ′ := reduce(ψ"σ′ ),
QBCP(ψ"σ) :=ψ′"σ′ .

LD-QCDCL successively generates partial assignments to the variables in a given
QBF ψ. This process amounts to splitting the goal of proving falsity or truth of a QBF
into subgoals by case distinction based on QBF semantics. Similar to [15,16], we assume
that all clauses in the original ψ are non-tautological. Initially, the current assignment
σ is empty. First, QBCP is applied to ψ"σ (function qbcp). If QBCP (ψ"σ) 
= � and
QBCP(ψ"σ) 
= ⊥, then the QBF is undetermined under σ (s == UNDET). A variable
from the leftmost quantifier block, called decision variable or assumption, is selected
heuristically and assigned a value (function assign dec var). Assigning the deci-
sion variable extends σ to a new assignment σ′ and QBCP is applied again to ψ"σ with
respect to σ :=σ′.

If QBCP(ψ"σ)=⊥ (QBCP(ψ"σ)=�), then the QBF is false (true) under the current
assignment σ and the result of the subcase corresponding to σ has been determined (s
== SAT or s == UNSAT). The case QBCP (ψ"σ) = ⊥ is called a conflict because σ
does not satisfy all the clauses in φ. Analogously, the case QBCP(ψ"σ) = � is called
a solution because σ satisfies all clauses in φ. Depending on the cases, σ is analyzed. In
the following, we focus on the generation of a learned clause from a conflict by function
analyze conflict. Dually to clause learning, LD-QCDCL learns cubes, i.e. con-
junctions of literals, from solutions by function analyze solution. We refer to re-
lated literature on cube learning [4,5,8,10,16].

Consider the case QBCP(ψ"σ) = ⊥. Function analyze conflict generates a
learned clause as follows. Since QBCP(ψ"σ) = ⊥, there is at least one clause C ∈ φ
which is falsified, i.e. reduce(C"σ) =�. Function find confl clause finds such a
clause C and initially sets Ri :=C for i= 0, where Ri denotes the current resolvent in
the derivation of the clause to be learned (while-loop).

In the derivation of the learned clause, the current resolvent Ri is resolved with the
antecedent clause R′

i := ante(l) of an existential variable pi = var(l), where l ∈ Ri

(functionsget antecedent and resolve). Variable pi has been assigned by unit literal
detection during QBCP and it is the pivot variable of the current resolution step (function
get pivot). According to [16], functionget pivot selects the unique variable pi as
pivot which has been assigned most recently by unit literal detection among the variables
in Ri. Hence in the derivation variables are resolved on in reverse assignment ordering.
Universal reduction is applied to the resolvent (function reduce).

If the current resolvent Ri satisfies a particular stop criterion (stop res) then the
derivation terminates and Ri is the clause to be learned. The stop criterion according
to [16] makes sure that Ri is an asserting clause, which amounts to the following prop-
erty: Ri is unit under a new assignment σ′⊂σ obtained by retracting certain assignments
from the current assignment σ. Functionget retraction computes the assignments
to be retracted from σ by backtracking (functionbacktrack). The learned clause Ri is
added to φ. QBCP with respect to the new assignment σ :=σ′ detects that Ri is unit.

LD-QCDCL determines that ψ is false if and only if the empty clause � is derived
by function analyze conflict. This case (and similarly for true QBFs and cube

1 For simplicity, we omit monotone (pure) literal detection [2], which is typically part of QBCP.
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learning) is indicated byr == INVALID, meaning that all subcases have been explored
and the truth of ψ has been determined.

Example 2. We illustrate LD-QCDCL by the QBF from Fig. 1. In the following, Ci and
Ri, respectively, denote clauses and resolvents as shown in Fig. 1. Equal, multiply de-
rived resolvents are depicted as single resolvents with multiple labels, e.g. “R2,R6”.

Given the empty assignment σ := {}, QBCP detects the unit clause C1, records the
antecedent clauseante(e1) :=C1, and collects the assignment{e1}:σ :=σ∪{e1}={e1}.
No clause is unit under σ at this point. Assume that variable e2 is selected as decision
variable and assigned to true, i.e., σ :=σ∪{e2}={e1,e2}. Clause C2 is unit under σ and
σ :=σ∪{e3}={e1,e2,e3}with ante(e3) :=C2. Further, clausesC4 andC5 are unit under
σ and universal reduction, and σ :=σ∪{e4}∪{e5}={e1,e2,e3,e4,e5} with ante(e4) :=
C4 and ante(e5) :=C5. Now, clause C6 is falsified under σ, which constitutes a conflict.

The derivation of the learned clause starts with R0 := C6. Variable e5 has been as-
signed most recently among the variables in R0 assigned by unit literal detection. Hence
R0 is resolved with ante(e5) = C5, which gives R1. The following pivot variables are
selected in similar fashion. Further, R1 is resolved with ante(e4)=C4, which gives R2.
Finally, R2 is resolved with ante(e3) =C2, which gives R3 to be learned and added to
the clause set.

Clause R3 is unit under σ′ ⊂ σ and universal reduction, where σ = {e1,e2,e3,e4,e5}
and σ′={e1}. Hence the assignments in σ\σ′={e2,e3,e4,e5} are retracted to obtain the
new current assignment σ :=σ′= {e1}. Now, QBCP detects the unit clauses R3 and C3,
and σ :=σ∪{e2,e3}={e1,e2,e3}. Like above, the clauses C4 and C5 are unit and C6 is
falsified. The assignment obtained finally is σ={e1,e2,e3,e4,e5}.

At this point, the empty clause is derived as follows (for readability we continue the
numbering of the resolvents Ri at the previously learned clause R3): like above, starting
from R4 :=C6=R0, R4 is resolved with ante(e5)=C5 and ante(e4)=C4, which gives
R5 :=R1 and R6 :=R2, respectively. Further, R6 is resolved with ante(e3)=C3, which
gives R7. Two further resolution steps on ante(e2)=R3 and ante(e1)=C1 give R8 and
R9, respectively. Finally � is obtained from R9 by universal reduction.

With Proposition 4 below, we prove that every application of universal reduction and
resolution (functions resolve and reduce in Fig. 2) corresponds to a rule of the LDQ-
resolution calculus [1] from Section 2. We use the following notation. Every resolution
step Si by function resolve in the derivation of a learned clause has the form of a quadru-
ple Si=(Ri,pi,R

′
i,Ri+1), where i≥ 0, Ri is the previous resolvent, pi is the existential

pivot variable, R′
i=ante(l) is the antecedent clause of a literal l∈Ri with var(l)=pi, and

Ri+1 is the resolvent of Ri and R′
i. Proposition 2 and Proposition 3 hold due to the defini-

tion of unit literal detection, because the derivation of a learned clause starts at a falsified
clause, and because existential variables assigned as unit literals are selected as pivots.

Proposition 2. Every clause Ri in function analyze conflict in Fig. 2 is falsified
under the current assignment σ and universal reduction.

Proof. For resolvents returned by function resolve, we argue by induction on the num-
ber of resolution steps. Consider the first step S0 and the clause R0, which by definition
of function find confl clause is falsified under σ and universal reduction. If R0
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is tautological by x∗ ∈R0 then variable x must be unassigned. If it were assigned then
either x∈ σ or x∈ σ and hence R0 would be satisfied but not falsified under σ and thus
R0 would not be returned by function find confl clause. Therefore, the property
holds for R0.

Consider an arbitrary step Si with i>0 and assume that the property holds for Ri. The
clause Ri is resolved with an antecedent clause R′

i of a unit literal. That is, the clause R′
i

has been unit under σ and universal reduction, and hence contains exactly one existential
literal l such that l ∈ σ. If R′

i is tautological by x∗ ∈ R′
i then x must be unassigned by

similar arguments as above. Otherwise, Ri would have been satisfied and not unit. The
variable pi= var(l) has been assigned by unit literal detection and it is selected as pivot
of the resolution step Si. Hence no literal of pi occurs in the resolvent Ri+1. If Ri+1 is
tautological by x∗ ∈Ri+1 then x must be unassigned. Otherwise, either Ri or R′

i would
be satisfied, which either contradicts the assumption that the property holds for Ri or the
fact that R′

i was unit, respectively. Therefore, the property holds for the resolvent Ri+1.
The property also holds for clauses returned by function reduce since this function is

applied to clauses which have the property and universal reduction only removes literals
from clauses. 
�
Proposition 3. A tautological clause Ri in function analyze conflict in Fig. 2 is
never due to an existential variable e with e∈Ri and e∈Ri.

Proof. We argue by induction on the number of resolution steps. Similar to [15,16], we
assume that all clauses in the original QBF ψ are non-tautological. Consider the first step
S0 and the clause R0, which by definition of functionfind confl clause is falsified
under σ and universal reduction. By contradiction, assume that e∈R0 and e∈R0, hence
R0 is tautological due to an existential variable e. Since R0 is falsified, either e ∈ σ or
e∈σ. In either case R0 is satisfied but not falsified since both e∈R0 and e∈R0. Hence,
the property holds for R0.

Consider an arbitrary step Si with i > 0 and assume that the property holds for Ri.
By contradiction, assume that the resolvent Ri+1 of Ri and R′

i is tautological due to an
existential variable e with e ∈ Ri+1 and e ∈ Ri+1. We distinguish three cases how the
literals e and e have been introduced in Ri+1: (1) e∈Ri and e∈Ri, (2) e∈R′

i and e∈R′
i,

and (3) e ∈ Ri and e ∈ R′
i (the symmetric case e ∈ Ri and e ∈ R′

i can be handled sim-
ilarly). By assumption that the property holds for Ri, case (1) cannot occur. In case (2),
R′
i is the antecedent clause of a unit literal l ∈ R′

i. Therefore, either e 
∈ R′
i or e 
∈ R′

i

because otherwise R′
i would not have been found as unit: if e is assigned then R′

i would
be satisfied and if e is unassigned then R′

i is not unit by definition of unit literal detection.
Hence case (2) cannot occur. For case (3), R′

i is the antecedent clause of a unit literal.
Since e∈R′

i, variable e must be assigned with e∈σ because R′
i has been unit. Then Ri

is satisfied because e∈Ri, which contradicts Proposition 2. Since none of the three cases
can occur, the property holds for the resolvent Ri+1. 
�
Proposition 4. Every application of universal reduction and resolution in the deriva-
tion of a learned clause in function analyze conflict in Fig. 2 corresponds to an
application of a rule of the LDQ-resolution calculus [1] introduced in Section 2.

Proof. The following facts about function analyze conflict conform to the rules
of the LDQ-resolution calculus. By assumption similar to the original LD-QCDCL
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procedure [15,16], all clauses in the given QBF ψ (i.e. not containing learned clauses) are
non-tautological. By Proposition 3, all tautological resolvents Ri+1 by function resolve
are due to universal variables in Ri+1. Only existential pivot variables are selected by
functionget antecedent because universal literals cannot be unit in clauses.

The LDQ-rule u1 of universal reduction is defined for tautological clauses as well.
Therefore, universal reduction by function reduce corresponds to the LDQ-rule u1.

Consider an arbitrary resolution step Si = (Ri, pi,R
′
i,Ri+1) in the derivation of a

learned clause. If Ri+1 is non-tautological then Si corresponds to the LDQ-rule r1.
If Ri+1 is tautological by x∗ ∈Ri+1 such that x∗ ∈Ri or x∗ ∈R′

i and (1) if x∗ ∈Ri

then x 
∈R′
i and x 
∈R′

i, and (2) if x∗∈R′
i then x 
∈Ri and x 
∈Ri, then Si corresponds to

the LDQ-rule r1.
If Ri+1 is tautological by x∗ ∈Ri+1 with lev(pi)< lev(x) then Si corresponds to the

LDQ-rule r2 because the condition on the levels of the pivot variable pi and the variable
x, which causes the tautology, holds.

In the following, we show that the problematic case where the resolvent Ri+1 is tau-
tological by x∗ ∈Ri+1 with lev(x)< lev(pi), thus violating the level condition, cannot
occur.

By contradiction, assume that Ri+1 is tautological by x∗∈Ri+1 with lev(x)< lev(pi).
Assume that x∈Ri and x∈R′

i. By Proposition 2, Ri is falsified under the current assign-
ment σ and universal reduction. Hence variable x is unassigned. If it were assigned then
we would have x∈σ because x∈Ri, but then the antecedent clause R′

i would be satisfied
since x∈R′

i. Hence R′
i would not have been unit and would not be selected by function

get antecedent. Since lev(x) < lev(pi) and x is unassigned, the antecedent clause
R′
i could not have been unit. In this case, a literal l∈R′

i of the pivot variable pi= var(l)
would prevent universal reduction from reducing the literal x∈R′

i, which is a contradic-
tion. The same reasoning as above applies to the other cases where x ∈Ri and x ∈R′

i,
x∗∈Ri and x∈R′

i, x∈Ri and x∗∈R′
i, and to x∗∈Ri and x∗∈R′

i. Hence Proposition 4
holds. 
�

In the following example, we illustrate Proposition 4 by relating the steps in the LDQ-
refutation shown in Fig. 1 to rules in the LDQ-calculus.

Example 3. Referring to the resolvents Ri in Example 2 and to clause labels in Fig. 1,
clause “R1,R5” is obtained by Example r1, clause “R2,R6” by r2 where x6 ∈ X l and
x6 ∈Xr, clause R7 by r1, clause R3 by r1, clause R8 by r2 where x∗6 ∈X l and x∗6 ∈Xr,
clause R9 by r1, and clause � by u1.

We have modified the search-based QBF solver DepQBF [9] to generate tautologi-
cal learned clauses by LD-QCDCL as in Fig. 2. This is the variant DepQBF-LDQ im-
plementing the LDQ-resolution calculus, which follows from Proposition 4. Instead
of dependency schemes, both DepQBF and DepQBF-LDQ applied the variable order-
ing by the quantification levels in the prefix of a QBF. We considered the solver
yQuaffle [15,16] as a reference implementation of LD-QCDCL2. The left part of Table 1
shows the number of instances solved in the benchmark set from the QBF evaluation

2 http://www.princeton.edu/˜chaff/quaffle.html, last accessed in July 2013.

http://www.princeton.edu/~chaff/quaffle.html
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Table 1. Search-based QBF solvers with (yQuaffle, DepQBF-LDQ) and without LD-resolution
(DepQBF) in clause learning on preprocessed instances from QBFEVAL’12. Number of solved
instances (left) with a timeout of 900s and detailed statistics (right).

QBFEVAL’12-pre (276 formulas)
yQuaffle 61 (32 sat, 29 unsat)
DepQBF 120 (62 sat, 58 unsat)
DepQBF-LDQ 117 (62 sat, 55 unsat)

115 solved by both: DepQBF-LDQ DepQBF

Avg. assignments 13.7×106 14.4×106
Avg. backtracks 43,676 50,116
Avg. resolutions 573,245 899,931
Avg. learn.clauses 31,939 (taut: 5,571) 36,854
Avg. run time 51.77 57.78

2012 (QBFEVAL’12-pre),3 which was preprocessed by Bloqqer.4 Compared to DepQBF-
LDQ, yQuaffle in total solved fewer instances, among them five instances not solved by
DepQBF-LDQ. DepQBF-LDQ solved three instances less than DepQBF and solved two
instances not solved by DepQBF. A comparison of the 115 instances solved by both
DepQBF-LDQ and DepQBF illustrates the potential of the LDQ-resolution calculus in
LD-QCDCL. For DepQBF-LDQ, the average numbers in the right part of Table 1 are
smaller than for DepQBF, regarding assignments (-5%), backtracks (-13%), resolution
steps (-37%), learned clauses (-14%), and run time (-11%). On average, 17% (5,571) of
the learned clauses were tautological.

We computed detailed statistics to measure the effects of tautological learned clauses
in DepQBF-LDQ. Thereby we focus on instances which were solved and where tauto-
logical clauses were learned. Tautological clauses were learned on 38 of the 117 in-
stances solved by DepQBF-LDQ (32%). Among these 38 instances, 2,714,908 clauses
were learned in total, 641,746 of which were tautological clauses (23%). A total of
22,324,295 learned clauses became unit by unit literal detection, among them 903,619
tautological clauses (4%). A total of 1,364,248 learned clauses were used as start points
(i.e. clauses returned by function find confl clause in Fig. 2) to derive a new
learned clause, among them no tautological clauses (0%).

On a different benchmark set from the QBF competition 2010,3 DepQBF-LDQ solved
three instances more than DepQBF and solved five instances not solved by DepQBF. On
that set, we observed fewer resolutions (-11%) and smaller run time (-9%) with DepQBF-
LDQ, compared to DepQBF. Further, tautological clauses were learned on 25% of the
instances solved by DepQBF-LDQ in that set. On these instances, 35% of the learned
clauses were tautological. Among the learned clauses which became unit, 8% were tau-
tological. Like for the set QBFEVAL’12-pre, no tautological learned clauses were used
as start points to derive new learned clauses.

Additionally, we empirically confirmed Proposition 1. As expected, the refutation size
for the family (ϕt)t≥1 produced by yQuaffle and DepQBF-LDQ scales linearly with t. In
contrast to that, the refutation size scales exponentially with Q-resolution [7] in DepQBF.
Table 2 illustrates the difference in the refutation sizes. Somewhat unexpectedly, yQuaffle
times out on formulas of size t≥19 (and DepQBF times out for t≥21), whereas DepQBF-
LDQ solves formulas of size up to t = 100 in about one second of run time (we did not

3 We refer to supplementary material like further experiments, binaries, log files, and an appendix:
http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z

4 http://fmv.jku.at/bloqqer/

http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z
http://fmv.jku.at/bloqqer/


302 U. Egly, F. Lonsing, and M. Widl

Table 2. Number of resolution steps (in units of 1,000) in refutations of selected formulas in the fam-
ily ϕt from Section 3. The solvers yQuaffle and DepQBF-LDQ implement the LDQ-resolution
calculus, and DepQBF implements Q-resolution. The timeout (TO) was 900 seconds.

Parameter t 13 14 15 16 17 18 19 20
yQuaffle 0.448 0.524 0.606 0.694 0.788 0.888 TO TO
DepQBF 118 253 540 1,146 2,424 5,111 10,747 22,544

DepQBF-LDQ 0.287 0.330 0.376 0.425 0.477 0.532 0.590 0.651

test with higher parameter values). As an explanation, we found that the number of cubes
learned by yQuaffle (i.e. the number of times functionanalyze solution in Fig. 2 is
called) doubles with each increase of t. The learned cubes do not affect the refutation size
but the time to generate the refutation. With DepQBF-LDQ, both the number of learned
clauses and learned cubes scales linearly with t.

5 Extracting Strategies from LDQ-Proofs

We show that the method to extract strategies from Q-refutations [6] is also correct when
applied to LDQ-refutations. This result enables a complete workflow including QBF solv-
ing and strategy extraction based on the LDQ-resolution calculus. A similar workflow
could be implemented based on a translation of an LDQ-refutation into a Q-refutation
as presented in [1]. However, this translation can cause an exponential blow-up in proof
size. By applying strategy extraction directly on LDQ-refutations we avoid this blow-up.

Strategy extraction [6] is described as a game between a universal (∀) player and an ex-
istential (∃) player on a Q-refutation of a QBF . The game aims at an assignment to ∀ vari-
ables that renders the matrix unsatisfiable. It proceeds through the quantifier prefix from
the left to the right alternating the two players according to the quantifier blocks. The ∃
player arbitrarily chooses an assignmentσ∃ to the variables in the current block. Then the
proof is modified according to σ∃ using sound derivation rules outside the Q-resolution
calculus. This modification results in a smaller derivation of � with all literals contained
in σ∃ and their opposite polarities being removed. Based on this modified proof, an as-
signment σ∀ to the following quantifier block, a ∀ block, is calculated such that applying
σ∀ to each clause of the proof and applying some extra derivation rules to the proof results
in a derivation of �. In this section we show with an argument similar to [6], that (1) the
modification of an LDQ-refutation according to any assignment to ∃ variables derives�,
and (2) the modification of an LDQ-refutation according to a computed assignment to ∀
variables derives�.

The reason why this method works for LDQ-refutations in the same way as for Q-
refutations is the following. Consider an LDQ-refutation under an assignment σ∃ to
∃ variables of some quantifier block of level �. Then the applications of rule r2 from
Section 2 (LD-steps) on ∀ variables with quantification level �+1 are always removed.
This is the case because an LD-step can result in a merged literal x∗ only if the pivot
variable p (an ∃ variable) has a lower quantification level than x. Thus before the ∀
player’s turn, the pivot variable of each LD-step that results in merged literals of the re-
spective quantifier block is contained in the partial assignment. Either of the parents in the



Long-Distance Resolution: Proof Generation and Strategy Extraction 303

Algorithm 1. play
Input :QBF P .ψ, LDQ-refutation Π

1 foreach Quantifier block Q inP from left to right do
2 if Q is existential then
3 σ ← any assignment to each variable in Q;
4 else Q is universal
5 C ← topologically first clause in Π with no existential literals;
6 σ ←{x |x∈C∧var(x)∈Q}∪{x |x 
∈C∧x 
∈C∧var(x)∈Q} ;
7 Πp←assign (Π ,σ) (Πp is not an LDQ-refutation);
8 Π ← transform (Πp) (Π is an LDQ-refutation);

Algorithm 2. assign
Input :LDQ-refutation Π , assignment σ to all variables of outermost block
Output
:

Refutation under assignment σ containing LD-rules and P-rules

1 foreach leaf clause C in Π do
2 C ←C"σ;
3 foreach inner clause C topologically in Π do
4 if C is a resolution clause then
5 Cl,Cr ← parents of C;
6 p← pivot of C;
7 C ← p-resolve(Cl,p,Cr);
8 else C is a clause derived by reduction
9 Cc ← parent of C;

10 x← variable reduced from Cc;
11 C ← p-reduce(Cc,p);
12 return Π

LD-step is then set to �, and by fixing the derivation, only one polarity of the ∀ variable
is left in the derived clause.

The algorithms play and assign describe the algorithm presented in [6], where
play implements the alternating turns of the ∀ and the ∃ player. Each player chooses
an assignment to the variables in the current quantifier block (Lines 3 and 6 of play).
The proof is modified after each assignment (Lines 7 and 8 of play) and results in an
LDQ-refutation of the QBF under the partial assignment. The modification of the LDQ-
refutation Π consists of two steps represented by assign and transform. The al-
gorithm assign applies an assignment to Π . It changes each leaf clause according to
the definition of a clause under an assignment in Section 2. Then it adjusts the successor
clauses in topological order (from leaves to root) by either applying an LDQ-resolution
rules or, in cases where the pivot variable or a reduced variable has been removed from at
least one of the parents, by applying one of the additional rules presented in [6,13]. These
additional rules (P-rules) are reproduced in the following. Symmetric rules are omitted.
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Fig. 3. Two possible iterations of the strategy extraction algorithm play on the example in Fig. 1
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In rule r5, narrower(Cl,Cr) returns the clause containing fewer literals. If Cl and Cr

contain the same number of literals, Cl is returned. The narrowest clause is� and� is de-
fined to contain all literals. In the remainder, we write p-resolve(Cl,p,Cr) for a resolution
step over pivot variable p according to rules r1 to r5, and p-reduce(C,x) for a reduction
step reducing variable x according to rules u1 to u3.

After this procedure, the refutation contains applications of P-rules and thus is a proof
outside the LDQ-resolution calculus. It is transformed back into an LDQ-refutation by the
following procedure. Starting at the leaves of the proof, the algorithmtransform (Πp),
where Πp is a proof that contains clauses derived using LDQ-rules and P-rules, steps
through the proof in topological order. Each clause derived by rule r3, is merged with its
parent�. Each clause derived by rule r4 is merged with its parent Cr. Each clause derived
by rule r5, is merged with its narrower parent. Each clause derived by rules u1 to u3 is
merged with its parent. When an empty clause C=� is encountered, the procedure stops
and all clauses that are not involved in deriving C are removed.�-clauses are eliminated
by applying rule r4 or by removing clauses when � is found. The resulting refutation is
an LDQ-refutation.
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Example 4. Figure 3 depicts a possible execution of the play algorithm on the instance
introduced in Fig. 1. First, an arbitrary assignment is chosen for the first existential quanti-
fier block. The leftmost proof shows the result of executingassign on the original proof
in Fig. 1. The leaf clauses are changed according to σ. P-rules are applied to the derived
clauses “R1,R5”, “R2,R6”, R8 (by rule r4) and R7 (by rule r3). The merged literal x∗6 has
disappeared in clause “R2,R6” because of the assignment to e4, which is the pivot variable
of the resolution step deriving “R2,R6”. Before continuing with the ∀ player’s move, the
proof is transformed back to the LDQ-resolution calculus by deleting redundant clauses
and edges as depicted in the proof in the right upper corner of Fig. 3. Next, an assignment
is calculated for the variable x6 in following universal quantifier block by inspecting the
clauseR9 from which x6 is reduced. The proof is then modified according to the computed
assignment, which setsR9 to� in the middle lower proof. If there were more than one vari-
able in this quantifier block, reducing one after another would result in a subsequent appli-
cation of universal reduction, eventually deriving�. In the next transformation, a list of re-
dundant clauses containing� is removed, resulting in the lower right proof. This remain-
ing proof shows unsatisfiability of a propositional formula. The example can be executed
similarly for any other assignment to the variables in the existential quantifier blocks.

This algorithm is correct when executed on a Q-resolution proof [6]. We show that
it is also correct when executed on an LDQ-resolution proof. To this end, we prove that
assign, when called in Line 7 of play, returns a derivation of � using LDQ-rules and
P-rules. Proposition 5 shows that this holds for an arbitrary assignment to all ∃ variables
in the outermost quantifier block, and Proposition 6 shows the same for the computed
assignment to ∀ variables.

We start by showing that any clause generated from parent(s) under a partial assign-
ment by applying an LDQ-rule or a P-rule subsumes the clause generated from the orig-
inal parent(s) under the partial assignment. The proof of the following lemma is based
on a case distinction of Cl, Cr, and C containing none, at least one, or only literals also
contained in σ. The subset relation is shown separately for each case.5

Lemma 1. (cf. Lemma 2.6 in [13]) Given a QBF ψ = ∃VPφ with V the set of all
variables of the outermost quantifier block, P the prefix of ψ without ∃V , and φ the
matrix of ψ, let C, Cl and Cr be clauses of φ, and σ an assignment to V . Then it
holds that p-resolve(Cl

"σ , p, Cr
"σ) ⊆ p-resolve(Cl, p, Cr)"σ and p-reduce(C"σ , x) ⊆

p-reduce(C,x)"σ .

With respect to the application of rule r2 (LD-step), we observe the following from the
play algorithm: Let � be the level of an existential quantifier block, p be an existential
variable with lev(p)=�, x be a universal variable with lev(x)=�+1, σ∃ be an assignment
to the variables of the quantifier block with level �, and C be a clause derived by rule r2
with pivot variable p producing the merged literal x∗. Recall that by the conditions for
rule r2 it must hold that lev(p)< lev(x∗) whenever any merged literal x∗ is produced by
resolving over a pivot p. The algorithm play iterates over the prefix from the lower to
the higher quantification levels. Therefore, σ∃ must contain a literal of p. By modifying
the proof according to σ∃, one of C’s parents becomes � and with that, one polarity of

5 We refer to Footnote 3 for an appendix containing a detailed proof of Lemma 1.
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the x disappears. By further modifying the proof, the P-rule r4 must be applied to de-
rive the modified C, which keeps only opposite polarity of x. Therefore, x∗ is no longer
contained in the proof when its quantifier block is processed.

Lemma 2. Given a QBF in PCNF ψ = ∃VPφ with V the set of all variables of the
outermost quantifier block, P the prefix of ψ without ∃V , and φ the matrix of ψ, an
LDQ-derivation Π of a clause C from ψ, and an assignment σ∃ to V , it holds that
Π ′=assign(Π,σ∃) derives a clause C′ fromPφ"σ∃ such that C′⊆C"σ∃ .

Proof. By induction on the structure of Π using Lemma 1. 
�

Proposition 5. Given a QBF in PCNF ψ = ∃VPφ with V the set of all variables of the
outermost quantifier block,P the prefix of ψ without ∃V , and φ the matrix of ψ, an LDQ-
refutation Π of ψ, and an assignment σ∃ toV , it holds that Πp=assign(Π,σ∃) derives
� fromPφ"σ∃ .

Proof. By Lemma 2, for any clause C derived in Π it holds that Π ′ derives a clause C′

such that C′⊆C"σ∃ . Therefore, if C=�, then Π ′ must derive a clause C′=�. 
�

Proposition 6. Given a QBF in PCNF ψ = ∀VPφ with V the set of all variables of
the outermost quantifier block, P the prefix of ψ without ∀V , and φ the matrix of ψ, an
LDQ-refutation Π of ψ, and an assignment σ∀ toV as computed in Line 6 of Algorithm 1,
Πp=assign(Π,σ∀) derives � from Pφ"σ∀ .

Proof. For any l ∈ σ∀ it holds that var(l) is either not reduced at all, or reduced exactly
once in Π . If var(l) is not reduced at all, then it is not involved in Π and therefore its
assignment does not alter the proof. Let R⊆σ∀ be the set of literals of opposite polarity
of those that are reduced exactly once in the proof. Then there is a set C with |C|= |R|
of clauses such that the clauses in C are directly following one another, each reducing ex-
actly one literal r in R. The last reduced clause of C results in �. This is the case because
all literals of R are in the outermost quantifier block. The algorithm assign (Π ,σ∀)
then applies rule u2 to each clause C, setting each C in C to �. 
�

6 Conclusions and Future Work

We have shown that the LDQ-resolution calculus [1] allows for a complete workflow in
search-based QBF solving, including the generation of LDQ-refutations in QBF solvers
and the extraction of strategies [6] from these LDQ-refutations. The run time of strategy
extraction is polynomial in the refutation size. Therefore, a speedup in strategy extraction
can be obtained from having short LDQ-refutations, compared to Q-refutations [7].

It is unclear whether Herbrand functions can be efficiently constructed in certificate
extraction [1] based on LDQ-refutations. It is possible to build Herbrand functions from
truth tables generated by the strategy extraction method in [6]. However, since each possi-
ble assignment to the existential variables has to be considered, the run time of this naive
method is exponential in the size of the quantifier prefix.

Regarding practice, learning tautological clauses by LD-QCDCL as used in QBF
solvers is conceptually simpler than disallowing tautological resolvents. Tautological
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resolvents can entirely be avoided in clause learning [4]. However, this approach has an
exponential worst case [14], in contrast to a more sophisticated polynomial-time proce-
dure [10].

Experimental results for our implementation of LD-QCDCL illustrate the potential
of the LDQ-calculus in search-based QBF solving. For instances solved by both meth-
ods, one learning only non-tautological clauses and the other learning also tautological
clauses, we observed fewer backtracks, resolution steps, and learned clauses for the latter.

Long-distance resolution can also be applied to derive learned cubes or terms, i.e. con-
junctions of literals (Proposition 6 in [16]). Dually to learned clauses, the learned cubes
represent a term-resolution proof [4] of a true QBF. Our implementation of LD-QCDCL
in DepQBF-LDQ includes cube learning as well.

In LD-QCDCL, a tautological clause is satisfied as soon as the variable causing the
tautology is assigned either truth value. These clauses cannot become unit under the cur-
rent assignment and hence cannot be used to derive a new learned clause in this context.
Therefore, further experiments are necessary to assess the value of learning tautological
clauses.

In general, it would be interesting to compare the different clause learning meth-
ods [4,10,15,16] in search-based QBF solving to identify their individual strengths.
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Abstract. Based on pioneering work of Läuchli and Leonard in the
1960s, a novel and expressive formal language, Model Expressions, for
describing the compositional construction of general linear temporal
structures has recently been proposed. A sub-language, Real Model Ex-
pressions, is capable of specifying models over the real flow of time but
its semantics are subtly different because of the specific properties of the
real numbers.
Model checking techniques have been developed for the general linear

Model Expressions and it was shown that checking temporal formulas
against structures described in the formal language is PSPACE-Complete
and linear in the length of the model expression.
In this paper we present a model checker for temporal formulas over

real-flowed models. In fact the algorithm, and so its complexity, is the
same as for the general linear case.
To show that this is adequate we use a concept of temporal bisimula-

tions and establish that it is respected by the compositional construction
method. We can then check the correctness of using the general linear
model checking algorithm when applied to real model expressions with
their special semantics on real-flowed structures.

1 Introduction

RTL [Rey10a] is the propositional temporal logic with Kamp’s Until and Since
connectives over structures which have the real numbers as the flow of time.
It is the most fundamental continuous time temporal logic, being a basis for
practical metric temporal logics [AH91], and so for reasoning about refinement,
open and reactive systems, distributed (interleaved) and parallel processes, AI
and natural language semantics. The language is as expressive as first-order
languages on structures with monadic predicates over the reals.

Although it may not seem as amenable to automated reasoning as discrete
time temporal logics, some progress has been made towards reasoning tech-
niques for RTL: decidability was shown in [BG85], complete axiom systems in
[GH90,Rey92], and [Rey10a] showed that the complexity, PSPACE, of deciding
satisfiability of RTL formulas was the same as that for discrete time.
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Model-checking in continuous time is a popular ongoing research area with
important practical applications. Up until now it has mostly been concerned
with checking properties of discrete-step systems operating against a continuous
metric background: see for example the timed automata of [AD94] and recent
advances in model-checking in [Be08].

In an alternative, and hopefully eventually complimentary, approach we
have built on foundations from [LL66] and [BG85] and have considered truly
continuous-time behaviour that might be observed in the environment of a re-
active system or from the behaviour of hybrid systems [DN00]. The main con-
tribution [Fe12] has been formal languages for the compositional construction of
models of behaviour in both general linear time and specifically over the reals.
We were able to use the formal language to prove a synthesis result for RTL:
any satisfiable RTL formula has a model described in the formal language, and
we gave an EXPTIME algorithm to find the model [Fe12].

The formal language we introduced in [Fe12] was that of Model Expressions.
Using the historical results in [LL66], it followed that any Until and Since for-
mula that is satisfiable in a linear structure has a model described by a Model
Expression (ME). We formulated a sub-language called Real Model Expressions
(RME) which was adequate to represent a model of any satisfiable RTL formula,
i.e. an Until and Since formula that has a model with flow of time being the real
numbers under their usual order. For the purposes of the current paper it is im-
portant to note that, in order to end up with a real-flowed model, we had to give
a subtly different semantics to RMEs than we gave to MEs over general linear
time. The reals satisfy some rather idiosyncratic properties which we describe
below.

In separate work we have recently proposed model checking algorithms for
Until and Since formulas in general linear structures [Fe13d,Fe13c]. These pro-
cedures take, as inputs, a temporal formula and an ME. The yes/no output is
supposed to tell us whether or not the formula is true at some time in a model
described by the ME. It was shown that checking temporal formulas against
structures described in the formal language is PSPACE-Complete and linear in
the length of the model expression.

Here we want to extend the model-checking approach to RTL. Of course, as
RMEs are a subset of MEs we could just supply a formula and the RME directly
to the general linear time model checker. The trouble with doing that is that, as
we have mentioned above, the semantics for MEs and RMEs are different. In fact,
the corresponding structures are not even isomorphic: one having a countable
flow, the other uncountable.

So in this paper we show that the difference in semantics is not a problem
for the truth of temporal formulas and so not a problem for our model checkers.
To prove this we rely on a bisimulation result from [KdR97], where a notion of
temporal bisimulations was introduced and shown to respect temporal equiva-
lence. By tracing through such bisimulations through the iterations of the com-
positional construction method underlying MEs and RMEs we show that the
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meaning of an RME as an ME is bisimilar to its meaning via the specifically
real-flowed semantics for RMEs.

As we have mentioned, the language with Until and Since is expressively
complete for the reals [Kam68,GHR94]. There are algorithms via translations to
temporal languages, e.g. separation results [GHR93], although they are probably
too computationally complex to be usable in practice. Thus, as a by-product, we
have a (theoretical) model checking algorithm for first-order monadic formulas
over the reals.

Contributions of this paper are as follows: showing that the compositional
construction method preserves temporal bisimulations; showing that the differ-
ent semantics for MEs and RMEs agree on the truth of temporal formulas; a
model checking algorithm for any Until and Since formula against any RME; (in-
herited) complexity results for the algorithm; and a model checking algorithm
for any first-order monadic formula against an RME.

This is a shortened conference version of the paper: full details can be found
in an online report at [Fe13a].

In section 2 we introduce the two logics USLIN over general linear time and
RTL over the reals. Section 3 reminds us of Model Expressions for general linear
time. Section 4 summarises the model checking algorithms for MEs. Section 5
introduces the RME sub-language with its different semantics. Section 6 shows
that the compositional constructions preserve bisimulation between structures
and hence that the two semantics for RMEs and MEs agree on temporal truth.
Section 7 tells us how to do model checking of temporal formulas against models
described by RMEs. Section 8 translates the results for the first-order monadic
logic of the reals order.

2 The Logics

In this section we will introduce the two main logics that we will be considering:
USLIN and RTL.

Fix a countable set L of atoms. Here, frames (T,<), or flows of time, will be
irreflexive linear orders. Structures T = (T,<, h) will have a frame (T,<) and
a valuation h for the atoms i.e. for each atom p ∈ L, h(p) ⊆ T . Of particular
importance will be real structures T = (R, <, h) which have the real numbers
flow (with their usual irreflexive linear ordering). For technical reasons, which
we explain briefly later, our definitions here are slightly unusual in that we allow
frames and structures to be empty.

The language L(U, S) is generated by the 2-place connectives U and S along
with classical ¬ and ∧. That is, we define the set of formulas recursively to
contain the atoms and for formulas α and β we include ¬α, α ∧ β, U(α, β) and
S(α, β).

Formulas are evaluated at points in structures T = (T,<, h). We write T, x |=
α when α is true at the point x ∈ T . This is defined recursively as follows.
Suppose that we have defined the truth of formulas α and β at all points of T.
Then for all points x:
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T, x |= p iff x ∈ h(p), for p atomic;
T, x |= ¬α iff T, x 
|= α;
T, x |= α ∧ β iff both T, x |= α and T, x |= β;
T, x |= U(α, β) iff there is y > x in T such that T, y |= α and for all

z ∈ T such that x < z < y we have T, z |= β; and
T, x |= S(α, β) iff there is y < x in T such that T, y |= α and for all

z ∈ T such that y < z < x we have T, z |= β.
We use the following abbreviations in illustrating the logic: Fα = U(α,�),

“alpha will be true (sometime in the future)” ; Gα = ¬F (¬α), “alpha will always
hold (in the future)”; and their mirror images P and H . Particularly for dense
time applications we also have: C+α = U(�, α), “alpha will be constantly true
for a while after now”; and K+α = ¬C+¬α, “alpha will be true arbitrarily
soon”. They have mirror images C− and K−.

Note that it is straightforward to show that isomorphisms between structures
respect the truth of temporal formulas.

2.1 USLIN

If we use the L(U, S) language over the class LIN of all linear structures then
we obtain the logic which we will call USLIN.

A formula φ is USLIN-satisfiable if it has a linear model: i.e. there is a linear
structure S = (T,<, h) and x ∈ T such that S, x |= φ. We say that a formula
φ is satisfied in a structure S = (T,<, h) iff there is x ∈ T such that S, x |= φ.
A formula is USLIN-valid iff it is true at all points of all linear structures. Of
course, a formula is USLIN-valid iff its negation is not USLIN-satisfiable. We
will refer to the logic of L(U,S) over real structures as USLIN.

Validity has been axiomatised by Burgess in [Bur82] and shown to be decidable
in PSPACE by Reynolds in [Rey10b].

Some interesting formulas satisfiable in USLIN include G⊥, U(�,⊥) and
G(U(�,⊥) ∧ ¬S(�,⊥)).

2.2 RTL

If we work with the L(U,S) language but restrict our attention only to structures
which have the reals as a flow of time then we obtain the logic known as RTL.

A formula φ is R-satisfiable if it has a real model: i.e. there is a real structure
S = (R, <, h) and x ∈ R such that S, x |= φ. A formula is R-valid iff it is true at
all points of all real structures. Again a formula is R-valid iff its negation is not
R-satisfiable. We will refer to the logic of L(U,S) over real structures as RTL.

Let RTL-SAT be the problem of deciding whether a given formula of L(U,S)
is R-satisfiable or not. The main result of [Rey10a] is:

Theorem 1. RTL-SAT is PSPACE-complete.

Previously, it was known from [BG85], via Rabin’s famous decision procedure
for the second-order monadic logic of two successors [Rab69], that RTL was
decidable with a non-elementary upper bound on the complexity of RTL-SAT.
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There are complete axiom systems for RTL in [GH90] and in [Rey92]: the for-
mer using a special rule of inference and the latter just using orthodox rules. The
axioms required by RTL above and beyond those needed for linearity generally
correspond to specific mathematical properties of the reals that are important
for our work below. So we examine a few in detail.

The formulas GF� and HP� ensure that there are no endpoints. U(�,⊥)
is a formula which only holds at a point with a discrete successor point so its
negation is valid in RTL and ensures density. Alternatively, Fp → FFp is a
formula which can be used as an axiom for density: it is also valid in RTL.

(C+p ∧ F¬p) → U(¬p ∨ K+(¬p), p) was used as an axiom for Dedekind
completeness (in [Rey92]) and is valid. Recall the following:

Definition 1. A linear order is Dedekind complete if and only if each non-empty
subset which has an upper bound has a least upper bound.

The formula above says that if p is true constantly for a while but not forever
then there is a least upper bound on the interval in which it remains true. This
formula is not valid in the temporal logic with until and since over the rational
numbers flow of time (but, note that instances can be true in some non-Dedekind
complete structures).

One of the most interesting valid formulas of RTL is Hodkinson’s axiom “Sep”
(see [Rey92]). It is

K+p ∧ ¬K+(p ∧ U(p,¬p)) → K+(K+p ∧K−p).

This can be used in an axiomatic completeness proof to enforce the separability
of the linear order:

Definition 2. A linear order is separable iff it has a countable suborder which
is spread densely throughout the order: i.e. between every two elements of the
order lies an element of the suborder.

The fact that the rationals are dense in the reals shows that the reals are
separable.

Important for us is the following well-known characterisation of the reals. See
for example [Ros82], Theorem 2.30 on page 37.

Theorem 2. If (T,<) is a linear, dense, Dedekind complete, separable order
without endpoints then it is isomorphic to the reals.

3 Model Expressions

In this section we present our formal notation for describing temporal structures
over linear time.

It is well-known from the study of linear orders (e.g., see [Ros82,BG85]), that
four simple operations allow complex structures to be built up iteratively from
simple ones. They are:
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1. concatenation of two structures, consisting of one followed by the other;
2. ω repeats of some structure laid end to end towards the past;
3. ω repeats laid end to end towards the future;
4. and making a densely thorough shuffle of copies from a finite set of structures.

These four operations were used to define a formal language called Model
Expressions (MEs) which describe constructions of linear structures [Fe12]:

I ::= a | λ | I + J | ←−I | −→I | 〈I1, . . . , In〉

where a ∈ Σ = ℘(L) so the letter indicates the atoms true at a point. We refer
to these operators, respectively, as a letter, the empty order, concatenation, lead,
trail, and shuffle.

To define the semantics of model expressions, that is the way that they rep-
resent actual structures, it is best to first remind ourselves of the concept of
lexicographic sums of linear structures [BG85].

Definition 3 (Lexicographic Sum).
Suppose (T,<T ) is a (non-empty) linear order and for each t ∈ T , Xt =

(Xt, <t, ht) is a linear structure.
Then the lexicographic sum of the Xt is

Σ(T,<T )Xt = (U,<, h)

where U = {(t, x)|t ∈ T, x ∈ Xt}, (t, x) < (t′, x′) iff t <T t′ or t = t′ and x <t x′,
and h(p) = {(t, x)|t ∈ T, x ∈ ht(p)}.

For stating and proving a few fundamentals for lexicographic sums
Σ(T,<T )Xt over small finite sets T , it is convenient to introduce the following
⊕ notation as well. If T = {1, 2, . . . , n} under the usual ordering, and each Xt is
a linear structure, define

X1 ⊕ · · · ⊕ Xn = Σ(T,<T )Xt.

It is straightforward to prove that lexicographic sum is associative.
Next we assume that we have fixed a particular partition Q0, Q1, . . . of Q such

that for each i ∈ N, Qi is dense in Q. These are used to define particular shuffles
deterministically as needed by the following constructions.

For the semantics of model expressions we proceed to say when a model expres-
sion is the description of a particular structure. We use the term correspondence
for this relationship.

Definition 4. [Correspondence] A model expression I corresponds to a struc-
ture as follows:

– λ is the empty expression and corresponds to the empty structure (∅, <, h)
where < is the empty relation and h(p) = ∅ for all p ∈ L.

– a corresponds to any single point structure ({x}, <, h) where x is any object,
< is the empty relation and h(p) = {x} if and only if p ∈ a.
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– I +J corresponds to any structure isomorphic to T⊕S, for some structure
T which corresponds to I and S which corresponds to J .

–
←−I corresponds to any structure isomorphic to Σ(N,>)Xt where, for all t ∈ N,

Xt = X is some structure corresponding to I.
–
−→I corresponds to any structure isomorphic to Σ(N,<)Xt where, for all t ∈ N,

Xt = X is some structure corresponding to I.
– For the case of shuffle, say I = 〈I1, . . . , In〉, and suppose that for each

i = 1, . . . , n, Xi coresponds to I. Now define s:Q → 〈I1, . . . , In〉 by: if
t ∈ Qi ⊆ Q then s(t) = Xi; otherwise—if t ∈ Q \

⋃
i≤n Qi—define s(t) = X1.

Then I corresponds to any structure isomorphic to Σ(Q,<)s(t).

We will give an illustration of the non-trivial operations below. The lead op-
eration, I =

←−J has ω submodels, each corresponding to J , and each preceding
the last, as illustrated in Figure 1.

. . . JJJ

Fig. 1. The lead operation, where I =←−J

The trail operator is the mirror image of lead, whereby I =
−→J has ω structures,

each corresponding to J and each proceeding the earlier structures.
The shuffle operator is harder to represent with a diagram. The model ex-

pression I = 〈I1, . . . In〉 corresponds to a dense, thorough mixture of intervals
corresponding to I1, . . . , In, without endpoints. We define the shuffle operation
using the rationals,Q as they are a convenient order with the required properties.

As an example we might suggest the model expression, and corresponding
structure, from Figure 3 for a model of U(q ∧ K+p ∧ GS(p,¬p),¬U(q,¬q) ∧
¬U(q, q)). Note the three different shuffles that it contains.

A famous result from last century, [LL66,BG85], (which has recently been em-
bellished with a formal notation and efficient discovery algorithm [Fe12,Fe13b]),
tells us that such a model expression is capable of describing a model of any
satisfiable formula.

Theorem 3. If φ is a satisfiable formula of USLIN then there is an ME I and
a structure T, and point x such that T corresponds to I, and T, x � φ.

4 Model Checking

We will here give a brief outline of existing results on model checking MEs. We
first formally define the model-checking problem.
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I I1 I I2
. . .

I In

I I1 I I2
. . .

I In

...
...

I ≡
I

I

Fig. 2. The shuffle operation, where I = 〈I1, . . . , In〉

Definition 5. We define the USME-checking problem as follows: given an ME
I and formula φ, determine whether there exists a structure T = (T,<, h) cor-
responding to I and point x ∈ T such that T, x � φ.

The traditional definition of a model checking problem only tests whether a
formula is true at a particular point in the model. The definition above is simpler
for MEs because we do not need to define a way of identifying points in an ME;
note that a letter with a lead, trail or shuffle will appear infinitely often in the
ME. If we want to test whether a formula φ is true at a particular letter in an ME,
we add an atom pstart to that letter and model-check the formula pstart → φ.
If the letter to which we add pstart does not occur with the scope of a lead, trail
or shuffle, it will correspond to only a single point in the structure.

The simplest USME-model checking procedure to understand is the one pre-
sented in the paper [Fe13d]. This procedure follows the traditional approach of
adding subformulas to the model as atoms. The result of adding a formula α as
an atom to an ME I is “add atomα (I)” which will be defined later in this sec-
tion. When adding α as an atom, all sub-formulas of α have already been added

p p p p
. . .

p¬p p ¬p
p ¬p

q qq q
a dense mixture
of q and ¬q

Fig. 3. 〈{p, q}〉+ {p, q}+ 〈{p, q}, {p}〉+ {p, q}+←−−−−−−−−−{p, q}+ 〈{q}〉
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as atoms, so α will be of the form: p ∧ q, ¬p, U(p, q) or S(p, q). The classical
cases are as we would expect, for example add atomp∧q ({p, q}) = {p, q, p ∧ q}.

The difficultly in the model checking procedure comes in adding U(p, q) and
S(p, q) as atoms. Note that the truth of U(p, q) at a point cannot be determined
from the truth of the atoms at the point. In fact, since we are using strict until
operators, the truth of U(p, q) is independent of the truth of the atoms at that
point. The truth of U(p, q) is determined solely by the interval following a point.
For a fixed formula of the form U(p, q) we define a function pre to represent
whether U(p, q) would be true at a point added prior to an interval.

There is a slightly more detailed overview of the procedure in [Fe13a]. Other-
wise see [Fe13d] and [MD12] for full details. Another model-checking procedure
has been specified that avoids building the ME so that it can run in polynomial
space [Fe13c].

In the rest of the paper, we can build our further results on top of any ME
model checker, either of the two above or any other similar correct one.

Definition 6. We assume the USME-checking procedure is as follows: given
an ME I and L(U,S) formula φ, USME(I, φ) will output yes or no to determine
correctly whether there exists a structure T = (T,<, h) corresponding to I and
point x ∈ T such that T, x � φ.

5 Real Model Expressions

Model expressions give us a grammar to describe general linear structures. Our
particular interest in this paper, though, are frames that are isomorphic to the
real numbers. There are two problems that we need to address in order to allow
concentration on real-flowed models. First, some model expressions naturally
describe linear models which can not be real-flowed; for example, ones with end-
points, with discrete jumps or with obvious Dedekind gaps. Second, the general
“correspondence” relationship between model expressions and linear structures,
would not necessarily pick out real-flowed structures, even when a suitable one
exists—in fact the correspondence relationship as defined above will not match
a real-flowed model as it is limited to countable structures.

To address these issues, in [Fe12,Fe13b], we first presented a sublanguage of
model expressions, which we called Real Model Expressions, that can describe
the reals. Here is the syntax for real model expressions (RMEs)1:

Definition 7 (Real Model Expressions). This is a subset of MEs defined
inductively as follows. If a, ai, xi, yi ∈ ℘(L), m,n ≥ 0 and K and the Ki are

RMEs, then 〈a0, . . . , am, x1+K1+y1, . . . , xn+Kn+yn〉, K0+a+K1,
←−−−
a +K and

−−−→K + a are RMEs. (Note that the first case includes the base case when n = 0).

1 Note that here we use the correct version of the RME sublanguage as in [Fe13b].
There was an unfortunate typographical error in the shortened conference exposition
[Fe12].
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We will see below that the letter a0 is used as a sort of background filler
to help ensure that the shuffle structure is Dedekind complete. The abstract
syntax for real model expressions is a direct sub-language of the abstract syntax
for general model expressions. We can see that their syntax will always define
structures without end points and that the base case of this iteration is a shuffle
containing only points. We will see below that such a point shuffle will define
a dense, separable linear order with all the letters homogeneously distributed
across the linear order.

By the way, the ME in Figure 3 is an RME and it is clear that it can describe
a real-flowed structure.

Thus, in our search for model expressions over the reals, we have partially
taken care of the first-mentioned problem above: we have eliminated some ex-
pressions that obviously can not be dense or Dedekind complete, etc. However,
we still need to ensure that the semantics do give us real-flowed structures when
they exist.

To define a real-flowed structure from a real model expression, we define a
function R inductively on all model expressions. However, the main use of R(K)
will be when K is a real model expression.

Definition 8 (R(I)). Suppose I is a model expression. We define a particular
structure R(I) inductively and depending on the form of I as follows.

– R(λ) = (∅, ∅, h), where h(p) = ∅ for every p ∈ L.
– For a letter a, R(a) = ({0}, ∅, h), where for each p ∈ L, h(p) = {0} if p ∈ a

and h(p) = ∅ otherwise.
– If I1 and I2 are model expressions, then R(I1 + I2) = R(I1)⊕R(I2).
– If I is a model expression then R(

←−I ) = Σ(N,>)Xt where Xt = R(I) for each

t ∈ N.
– R(

−→I ) is analogously based on (N, <).
– For the case of shuffle, say I = 〈I1, . . . , In〉, define f :R → 〈I1, . . . , In〉 by: if

t ∈ Qi ⊆ Q then f(t) = Ii; otherwise—if t ∈ R \
⋃

i≤n Qi—define f(t) = I1.
Define R(I) = Σ(R,<)R(f(t)).

Earlier work in [BG85] used similar refinements of the four [LL66] operations
without a formal language of composition of models. They were applied to pro-
vide a decidability result for the monadic and temporal theory of the reals. The
following lemma (with full proof in [Fe13b]) is implicit in that work. It relies on
the above-mentioned characterisation of the reals as dense, Dedekind complete,
separable orders without endpoints.

Lemma 1. For every real model expression K, R(K) is a structure with a frame
that is isomorphic to the reals.

Definition 9. We say that a real-flowed structure (R, <, h) is a compositional
real structure (or model) iff it is isomorphic to R(K) for some real model ex-
pression K.



Verifying Temporal Properties in Real Models 319

An important result from [BG85,Fe12] is that an RTL formula has a real-
flowed model iff it has a compositional real model. In [Fe12,Fe13b], we provided
the explicit RME notation that is adequate for representing real structures, we
are able to give a finite representation in this notation for a model that supports
a given satisfiable L(U,S) formula, and we gave an efficient effective means for
finding it.

Theorem 4. There is an EXPTIME procedure which given a formula φ from
L(U,S) will decide whether φ is R-satisfiable or not and, if so, will provide a real
model expression for a compositional model of φ.

6 Correspondence versus R for an RME

Since the RMEs used to represent real models are a syntactic restriction on the
MEs used to represent general linear time, it is possible to simply enter the RME
into a model checker for general linear time. Our main theorem below confirms
the intuition that it is also correct to do so. The reason that this is not trivial,
is, of course, that the relationship between an RME K and R(K) is not the same
as correspondence between MEs and structures. In this section we investigate
these relationships.

First note that for a given RME K, R(K) is not even isomorphic to any
structure which corresponds to K (as an ME). This is because such a structure
would be countable, the iterations in the definition of correspondence all preserve
countability. The flow of time of R(K), however, is of course the uncountable
reals.

Fortunately we can use a bisimulation result for temporal logic that gives us
a way of saying that two structures satisfy the same temporal formulas. This
is based on the notion of bisimulation for temporal logics over linear structures
defined by [KdR97].

Definition 10 (Bisimulation). Say M = (T,<, g) and M ′ = (T ′, <′, g′) are
bisimilar linear structures.

A bisimulation between M and M ′ is a triple Z = (Z0, Z1, Z2) where Z0 ⊆
T ×T ′, Z1 ⊆ (T 2×T ′2) and Z2 ⊆ (T ′2×T 2) such that Z0 
= ∅ and the following
clauses hold2:

B1. If x1Z0x2 then x1 and x2 satisfy the same proposition letters.
B2. If x1Z0x2 and x1 <1 y1, then there exists y2 in T ′ with x2 <2 y2 such that

y1Z0y2 and x1y1Z1x2y2.
B3. If x1y1Z1x2y2 and there exists z2 with x2 <2 z2 <2 y2, then there exists z1

with x1 <1 z1 <1 y1 and z1Z0z2.
B4. If x1Z0x2 and x2 <2 y2, then there exists y1 in T with x1 <1 y1 such that

y1Z0y2 and x2y2Z2x1y1.

2 There seemed to be some typos in the original definition. These have been fixed to
make the definition consistent with its use in proofs in that paper.
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B5. If x2y2Z2x1y1 and there exists z1 with x1 <1 z1 <1 y1, then there exists z2
with x2 <2 z2 <2 y2 and z1Z0z2.

B6-B9: Clauses B2 to B5 with >1 (>2) instead of <1 (<2).

Definition 11 (Bisimilar). If there is a bisimulation Z = (Z0, Z1, Z2) with
x1Z0x2 then we say that x1 and x2 are bisimilar (notation x1 ↔ x2, or
Z:x1 ↔ x2), and similarly for intervals x1y1 and x2y2.

Definition 12 (Bisimilar Structures). Say M = (T,<, g) is bisimilar to
M ′ = (T ′, <′, g′) iff there is a bisimulation Z = (Z0, Z1, Z2) such that Z0 relates
everything in T to something in T ′ and vice versa. (Also say that a pair of empty
structures are bisimilar to each-other.)

The main result in [KdR97] is that bisimulation implies temporal equivalence.

Lemma 2. If T, t ↔ T ′, t′ then t and t′ agree on the truth of all US formulas.

The important result for us that we manage to prove in this section is that the
two different ways that we make models out of RMEs give us bisimilar results.

However, we shall approach this result in a more general way that will give us
a useful theorem about bisimulations and temporal equivalence being preserved
by the compositional construction method.

Lemma 3. Lexicographic sum preserves bisimulation.

Proof. Say U = (U,<U , hU ) = Σ(T,<T )Xt with each Xt = (Xt, <t, ht) and V =
(V,<V , hV ) = Σ(T,<T )Yt with each Yt = (Yt, <t, ht).

Assume that for each t ∈ T , Xt is bisimilar to Yt via the bisimulation Zt =
(Zt

0, Z
t
1, Z

t
2).

We will show that U is bisimilar to V .
We define the triple Z = (Z0, Z1, Z2) as follows.
We simply put (t, x1)Z0(t

′, x2) iff t = t′ and x1Z
t
0x2.

We put (s, x1)(t, y1)Z1(s
′, x2)(t

′, y2) iff either 1) s = t = s′ = t′ and x1y1
Zs
1x2y2, or 2) s <T t, s = s′, t = t′, x1Z

s
0x2 and y1Z

s
0y2.

We put (s′, x2)(t
′, y2)Z2(s, x1)(t, y1) iff either 1) s′ = t′ = s = t and x2y2

Zt
2x1y1, or 2) s′ = s <T t = t′, x1Z

s
0x2 and y1Z

s
0y2.

Now we show that Z = (Z0, Z1, Z2) is a bisimulation between U and V .
Note that Z0 is not empty because none of the Zt

0 are empty and neither is
T .

Property B1 holds of Z0 as it is inherited from the Zt
0.

To show B2, suppose (s, x1)Z0(s
′, x2) and (s, x1) <U (t, y1). So s = s′ and

either s = t and x1 <t y1 or s <T t. The first case is easy. In the second case put
t′ = t and just choose any y2 ∈ Yt such that y1Z

t
0y2. Thus (s′, x2) <V (t′, y2),

(t, y1)Z0(t
′, y2) and (s, x1)(t, y1)Z1(s

′, x2)(t
′, y2). Which is as required.

To show B3, suppose (s, x1)(t, y1)Z1(s
′, x2)(t

′, y2) and there exists (u′, z2)
with (s′, x2) <V (u′, z2) <V (t′, y2).

We are to show that there exists (u, z1) with (s, x1) <U (u, z1) <U (t, y1) and
(u, z1)Z0(u

′, z2).
From the definition of Z1 there are two cases: either 1) s = t = s′ = t′ and

x1y1Z
t
1x2y2, or 2) s <T t, s = s′, t = t′, x1Z

s
0x2 and y1Z

t
0y2.
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Consider the first case: s = t = s′ = t′ and x1y1Z
s
1x2y2. Then B3 for Zs gives

us the desired z1 to use with u = s.
Otherwise, s <T t, s = s′, t = t′, x1Z

s
0x2 and y1Z

s
0y2.

As (s′, x2) <V (u′, z2) <V (t′, y2) but s′ = s <T t = t′, there are three
sub-cases: u′ = s, u′ = t or s <T u′ <T t.

Consider the sub-case with u′ = s. By B4 for Zs, as x1Z
s
0x2 and x2 < z2,

there exists z1 ∈ Xs with x1 <s z1, z1Z
s
0z2 and x2z2Z

s
2x1z1. Now put u = u′ = s.

We have (s, x1) <U (u, z1) <U (t, y1) and (u, z1)Z0(u
′, z2) as required.

The sub-case with u′ = t is similar.
Now consider the sub-case with s <T u′ <T t. Put u = u′. As Zu is a

bisimulation between Xu and Yu there is some z1 ∈ Xu such that z1Z
u
0 z2. Again

we have (s, x1) <U (u, z1) <U (t, y1) and (u, z1)Z0(u
′, z2) as required.

That demonstrates B3.
B4-B9 are similar variations on B2 and B3.
We are done.

One of the main differences between the semantics of MEs and those for
RMEs via R is the exact type of shuffle that is used. For the former it is based
on Q while for the latter it is based on R. This is enough to make structures
non-isomorphic, as we have noted.

Fortunately, the notion of a shuffle can be more general than we have used
above, and so we can go on to show that any kind of shuffle has the same effect
on the truth of temporal formulas.

Definition 13 (General Shuffling). T is a shuffle of {T1, . . . , Tn} iff T is
isomorphic to Σ(Q,<)Tf(q) where:

– (Q,<) is a dense order without end-points;
– f :Q → {1, . . . , n};
– for every q, q′ ∈ Q, for every i ∈ {1, . . . , n}, if q < q′ then there is q′′ ∈ Q

such that q < q′′, < q′ and f(q′′) = i.

Lemma 4. (General) Shuffling preserves bisimulation. In fact, the respective
shuffling methods do not have to match: made precise as follows.

Suppose {S1, . . . ,Sn} and {T1, . . . , Tn} are such that each Si is bisimilar with Ti.
Suppose S is a shuffle of {S1, . . . ,Sn} and T is a shuffle of {T1, . . . , Tn}.
Then S and T are bisimilar.

The proof of this lemma is similar in form to that of lemma 3, so we omit it
from the short version of the paper. See [Fe13a] for full details.

The following lemma then follows.

Lemma 5. Suppose K is a Model Expression.
Then R(K) is bisimilar to any linear structure which corresponds to K.

Proof. By induction on the construction of K.
Case of λ. Follows by definition of bisimilarity for empty structures.
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Case of a. Just use a bisimulation Z = (Z0, Z1, Z2) in which Z0 relates
the two respective singleton objects and Z1 and Z2 are empty. Checking the
definition of bisimulation is trivial.

Cases of I + J ,
←−
(I) and

−→
(I). Follows directly from Lemma 3.

Case of 〈I1, . . . , In〉. Follows directly from Lemma 4.

7 Model Checking the Reals

So at last we can prove the main theorem that it is correct just to put RMEs into
USME and expect the correct answer regarding truth in the real-flowed model
that they determine.

Theorem 5. Say K is an RME. Given any RTL formula φ, if φ is satisfied
within R(K) then USME(K, φ) returns “true” and otherwise returns “false”.

Proof. This follows immediately from the correctness of USME for general linear
models, the bisimulation between R(K) and any model corresponding to K and
the fact that bisimulation implies temporal equivalence.

The complexity of using a USME checker on RMEs is thus the same as for
USME applied to MEs, of course. That is, using the best possible algorithms, in
PSPACE and linear in the length of the RME.

8 Model Checking FOMLO over the Reals

The first-order monadic language of order, FOMLO, is a first order language
which can describe temporal structures and it is useful to translate between it
and the temporal language.

Kamp showed in [Kam68] that L(U, S) is expressively complete over R and
over N. This means that each formula of the first-order monadic language of the
reals order with one free time variable, has an equivalent expression in the US
language, a formula true at exactly the same times in any real-flowed model.
The equivalence preserving translations from FOMLO (formulas with one free
variable) to temporal formulas ( in L(U, S) over the reals) can be extracted from
such places as the “separation” proofs in [GHR94]. However, it is considered
that any such algorithm may be non-elementarily complex [HR05]. Thus using
them is infeasible.

Nevertheless, we have, in theory, for any RME K a way of model checking any
sentence ψ of FOMLO to see whether R(K) |= ψ or not. We translate ψ into an
equivalent temporal formula and use USME to check whether that holds inR(K).
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Abstract. Complex automated proof strategies are often difficult to
extract, visualise, modify, and debug. Traditional tactic languages, of-
ten based on stack-based goal propagation, make it easy to write proofs
that obscure the flow of goals between tactics and are fragile to minor
changes in input, proof structure or changes to tactics themselves. Here,
we address this by introducing a graphical language called PSGraph for
writing proof strategies. Strategies are constructed visually by “wiring
together” collections of tactics and evaluated by propagating goal nodes
through the diagram via graph rewriting. Tactic nodes can have many
output wires, and use a filtering procedure based on goal-types (pred-
icates describing the features of a goal) to decide where best to send
newly-generated sub-goals. In addition to making the flow of goal infor-
mation explicit, the graphical language can fulfil the role of many tac-
ticals using visual idioms like branching, merging, and feedback loops.
We argue that this language enables development of more robust proof
strategies and provide several examples, along with a prototype imple-
mentation in Isabelle.

1 Introduction

Most tactic languages for interactive theorem provers are not designed to dis-
tinguish goals in cases where tactics produce multiple sub-goals. Thus when
composing tactics, one has no choice but to rely on the order in which goals
arrive, thus making them brittle to minor changes. For example, consider a case
where we expect three sub-goals from tactic t1, where the first two are sent to t2
and the last to t3. A small improvement of t1 may result in only two sub-goals.
This “improvement” causes t2 to be applied to the second goal when it should
have been t3. The tactic t2 may then fail or create unexpected new sub-goals
that cause some later tactic to fail.

As a result: (1) it is often difficult to compose tactics in such a way that all
sub-goals are sent to the correct target tactic, especially when different goals
should be handled differently; (2) when a large tactic fails, it is hard to analyse
where the failure occurred; and (3) the reliance of goal order means that machine
learning new tactics from existing proofs have not been as successful for tactics
as it has been for discovering relevant hypothesis in automated theorem provers.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 324–339, 2013.
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Moreover, if the structure of a tactic is difficult to understand, often the easiest
way for a user to deal with failure is to manually guide the proof until the tactic
succeeds (or becomes unnecessary), rather than correcting the weakness of the
tactic itself. In this case, the proof is made more complicated and insight from
this failure is not carried across to other proofs. Thus, a tactic language where
it is easy to diagnose and correct failures will lead to better tactics and simpler,
more general proofs.

This can be achieved in part by attempting to find as many errors as possible
statically. The problem with existing tactic languages is that tactics are essen-
tially untyped: they are essentially functions from a goal to a conjunction of
sub-goals. In many programming languages, types are used statically to rule out
many “obvious” errors. For example, in typed functional languages, a type error
will occur when one tries to compose two functions which do not have a unifi-
able type. In an untyped tactic language, this kind of “round-peg-square-hole”
situation will not manifest until run-time.

For errors that cannot be found statically, it is very hard to inspect and
analyse the failures during debugging. In the above example, if t2 creates sub-
goals that tactics later in the proof do not expect, the error may be reported in
a completely different place. Without a clear handle on the flow of goals through
the proof, finding the real source of the error could be very difficult indeed.

In this paper, we address these issues by introducing a graphical proof strategy
language called PSGraph. We argue that this language has three advantages over
more traditional tactic languages: (i) it improves robustness of proof strategies
with static goal typing and type-safe tactic “wirings”; (ii) it improves the ability
to dynamically inspect, analyse, and modify strategies, especially when things
go wrong; and (iii) it enables machine learning of new tactics from proofs.

For the sake of this paper, we shall focus on (i) and (ii). A discussion on
the use of PSGraph for (iii) can be found in [10], where a form of of analogous
reasoning through tactic generalisation is developed using PSGraph.

A high-level introduction to PSGraph is given Section 2, followed by a dis-
cussion on goal types in Section 3. Section 4 gives a detailed description of the
language and evaluation, before combinators and hierarchies are introduced in
Section 5. An Isabelle implementation, including experiments, is given in Section
6. We then discuss related work (Section 7) and conclude (Section 8).

2 Proof Strategy Graphs = Tactics + Plumbing

A useful analogy for thinking about designing sophisticated tactics is that of
plumbing. Instead of thinking of tactics as functions that compose, think of
them as individual components whose inputs and outputs can be connected by
various pipes. Each component of the system is a tactic of the underlying theorem
prover, and your job in designing a proof strategy is to create a network of tactics
by plugging input and output from tactics together.

In a pipe network, pipes comes in all sizes and shapes, and you can only
connect the same type of pipes together – after all, there is a reason you don’t
connect the toilet waste water to the mains water. The same is true for tactics:
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Fig. 1. A string diagram

they only work for certain goals (although for some tactics this range of goals
is rather wide). For example, an ‘assumption’ tactic expects a hypothesis to be
unifiable with the goal, and ‘∀-intro’ expects the goal to start with a ∀ quantifier.

Formally, we represent a “pipe network” as a string diagram (see Fig. 1) [8],
and we represent dynamics, or “goals flowing down pipes” using string diagram
rewriting. String diagrams consist of boxes, representing processes and typed
wires that connect them together. Unlike graph edges, wires need not be con-
nected to a box at both ends, but can be left open to represent inputs and
outputs. Just like a piece of pipe on its own, a wire that is open at both ends
represents the identity or “do-nothing” process.

A string diagram rewrite rule is a pair of string diagrams L and R sharing
the same boundary (i.e. there are type-respecting bijections of the respective
inputs and outputs). Typically we write this L R. In order to apply a rewrite
rule, one first finds a matching m : L → G, which is an embedding of L into
G respecting the type of wires and the input/output arities of boxes. Once a
matching is found, the image of m is cut out of G and replaced with R to
produce a new graph. The fact that there exists a bijection of the boundary
between L and R is crucial to the final step, because it tells us precisely how to
“glue” R into the location that L used to be. This agrees with a visual intuition
for diagram substitution, and can also be formalised using double-pushout graph
rewriting. For details, see [8].

Proof strategy graphs (PSGraphs) are string diagrams whose boxes are la-
belled with tactics. As with the plumbing analogy, we think the typing infor-
mation associated with a pipe as a property of the pipe itself. For that reason,
we label wires with goal types, which are predicates defined on goals. Intuitively,
these provide information about some characteristics, such as “shape”, of a goal,
which are used to influence the path a goal takes as it passes through the strat-
egy graph. To represent a goal being on a wire, we introduce a special goal node
to the graph. In the diagrams, we draw such nodes as a circle, while a tactic is
a rectangle.

One evaluation step works by a single tactic node on a single goal. Here, the
goal is consumed from the input wire, the tactic in the tactic node is applied
to the goal, and the resulting sub-goals (if any) are sent down the output wires
where they match. When all the goal nodes are in the output wires of the graph,
i.e. a wire with an open destination, then it has successfully evaluated. If no
output type matches a goal, then evaluation fails. For evaluation this improves
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robustness of the tactic in two ways: (1) since composition is over the type of
goals, we avoid the brittleness arising from defining composition in terms of the
number of sub-goals or order of sub-goals, and (2) if an unexpected sub-goal
arises then evaluation will fail at the actual point of failure as it will not fit
into any of the output pipes. In general, we allow this evaluation procedure
to be non-deterministic by introducing branching whenever a tactic behaves
non-deterministically, or a sub-goal produced by a tactic matches more than
one output wire. However, with appropriate choice of goal types and evaluation
strategy, this branching can be minimised.

can-ripple

induct

ripple

step

rippled

fertilise

any

simp
any

base

inductable

Fig. 2. Rippling

An example of a proof strategy which relies
on specific properties of a goal is rippling [5]. It
is a rewriting technique most commonly used on
step cases of inductive proofs. It ensures that each
‘ripple’ step moves the goal towards the induc-
tion hypothesis (IH). This step is repeated until
the IH can be applied to simplify or fully dis-
charge the goal – a process called ‘fertilisation’.
The advantage of rippling is that it is guaranteed
to terminate, whilst allowing rewriting behaviour
that would not otherwise terminate (e.g. allowing
a rewrite rule to be applied in both directions).
Termination is ensured by checking that a certain
embedding property holds for the goal being rip-
pled, while a measure is reduced from a previous goal. Collectively, these prop-
erties are captured by a goal type, in this cased called ‘can-ripple’. When a goal
is fully ‘rippled’, then ‘fertilisation’ is applied. Fig. 2 illustrates a variant of “in-
duction with rippling” in PSGraph, where the base case and any resulting goals
from the rippling process is sent to the ‘simp’ tactic.

Example 1. Evaluating the top half of the strategy graph given in Fig. 2:

ripple

a

induct

b
ripple

induct

d

c d

ripple

induct

e c

d

ripple

induct

e

c f

induct

d

ripple

bbb

c

Suppose applying induction to goal a yields two base cases b, c and a step case
d. Then, in the first step, a is consumed and b, c are output on the first wire (of
type base) and d is output on the second wire (of type step). Then ripple is
repeatedly applied until all sub-goals are on the output wires.

Proof strategies can easily become very large and complex. In PSGraph, we
can reduce this complexity and size by hiding parts of a graph – achieved by
boxing a subgraphs into a single vertex. This box can be evaluated by evaluating
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rippled

id

can-resolve

strong-fert

reduce-only

weak-fert

any

Fig. 3. Fertilisation

the graph it contains, or it may be unfolded in place. One example of such
hierarchy, is the ‘fertilise’ box of Fig. 2, which is shown in Fig. 3. Here, the
‘id’ tactic simply returns the input goal (e.g. idtac in Coq or all tac in Isabelle),
however it is used to route the input goal to the correct tactic, using the goal
types of the output wires. Here, we separate the case where the goal can be
resolved directly with the IH (called ‘strong fertilisation’), from the case where
the IH can only be used to reduce the goal (‘weak fertilisation’). Note that the
input and output wires of a nested graph must be the same as the node which
contains it. It is also possible in the PSGraph language to nest multiple graphs in
a single node, which can be used to produce branching OR/ORELSE behaviour,
as detailed in Section 5.

3 Goal Types

For a type τ , let [τ ] be the type of finite lists and {τ} be the type of finite sets
whose elements are of type τ .

Rather than considering all goals as members of one big type “goal”, assume
that we have a set of goal types G. A particular goal type α ∈ G represents all
goals with some particular features, which may include local properties like “con-
tains symbol X”, proof state properties such as available facts, global properties
like shared meta-variables, and relational properties with parent and possible
children goals. Others have developed more detailed type theories for tactics
(e.g. [17]) which are closely related to our notion of a goal type. However, for
our purposes it is sufficient to see a goal type as a predicate defined on goals:

Definition 1. A goal type α is a predicate α : goal → bool. Two goal types
are said to be orthogonal, written α ⊥ β, if for all goals g, ¬

(
α(g) ∧ β(g)

)
.

The focus in this paper is on the use of goal types in the diagrammatic lan-
guage, and the underlying theory is therefore beyond the scope of the paper. In
fact, a PSGraph is generic w.r.t. the underlying goal type as it only relies on
predicates as in Definition 1. However, in order to illustrate goal types, we will
use the following example of a goal type in the remainder of this paper:

Example 2. The following BNF shows the syntax of a goal type with a descrip-
tion of what it means:
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GT := top symbol(x1, · · · , xn) the top symbol of the goal is one of: x1, · · · , xn
| inductable structural induction is applicable

| hyp embeds hypothesis embeds in the goal

| measure reducible a measure towards a hypothesis is possible to reduce

| hyp subst | hyp bck res hypothesis applicable as rewrite/resolution rule

| GT1 ; GT2 | or(GT1 ... GTN ) conjunction and disjunction

| not(GT ) | any negation and always succeed

Whilst being relatively simple, GT captures a range of properties, including all
of the goal types from Figs. 2 and 3:

base = not(hyp embeds)

step = can ripple = hyp embeds; measure reduces

rippled = not(measure reducible); or(hyp bck res, hyp subst)

can resolve = hyp bck res; hyp embeds

reduce only = not(hyp bck res); hyp subst; hyp embeds

A richer goal type for the PSGraph framework, developed to support goal type
generalisation for machine learning new graphs from example proofs, is defined
in [10].

The usual notion of a tactic can be treated as a function of the form:

tac : goal → {[goal]} (1)

That is, it takes a single goal to a set whose elements are lists of sub-goals. Each
element of the set represents a branch in the (possibly non-deterministic) tactic
evaluation. Note that we assume that internal details such as the production of an
LCF justification function or direct modification of the proof state (a la Isabelle
[15]), are implicitly handled by the tactic. These details are not necessary to give
the semantics of PSGraph evaluation, but shall play a role in the implementation
of PSGraph in a particular prover, as discussed in Section 6.

For a list L, we say a list of lists L′ is an ordered partition if all of the lists
are distinct, L′ contains the same elements as L and each l ∈ L′ is obtained by
deleting zero or more elements of L (i.e. the order of L is preserved).

Definition 2. For goal types β1, . . . , βn and a list of goals [g1, . . . , gm], a type-
partition is an ordered partition: P = [[gi, gi′ , . . .], [gj , gj′ , . . .], . . .] such that the
k-th list in P contains only goals of type βk.

In general, there may be more than one way to partition a list of goals. Let
part([β1, . . . , βn], [g1, . . . , gm]) be the set of all possible partitions. The set of
partitions is empty precisely when there is a goal in L that is not of type βk for
any k. Furthermore, if all of the goal types are orthogonal, this set must either
be empty or a singleton.
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...

tac

β1 βnβ2

α2α1 αm
...

inductable

induct

step

rippling

rippledbase step

can-ripple

can-ripple

simp

any

base any

g

α

α

Fig. 4. Left to right: A generic tactic, 3 example tactics and a goal node

4 Evaluation of Proof Strategy Graphs

As already mentioned in section 2, a PSGraph is a string diagram whose wires
are labelled with goal types with two kinds of nodes: tactic nodes and goal nodes
(Fig. 4). Tactic nodes, represented as boxes, are labelled by the name of a tactic
function of the form given in (1) and have at least one input and zero or more
outputs. A goal node is represented as a circle with exactly one input and output.

Suppose a goal node g occurs on an input wire of a tactic node labelled ‘tac’,
with output types β1, . . . , βn. The goal node g is propagated through the tactic
node via a set of rewrite rules defined as follows:

1. Evaluate tac(g) to obtain a set of results (lists of sub-goals) from the tactic

2. For each result R ∈ tac(g) form a set of type-partitions: part([β1, . . . , βn], R)

3. For each type-partition [[h1, h
′
1, . . .], . . . , [hn, h

′
n, . . .]] ∈ part([β1, . . . , βn], R),

define a rewrite rule where the input goal in the LHS is consumed in the RHS
and each sub-goals of [hk, h

′
k, . . .] are added to the k-th output wire of the

RHS:
α

g

...
...

βnβ1

α

h′1 h′n

β2

h′2

tac

... ...

tac

... ...

β1 βnβ2 h2h1 hn

......... (2)

We shall call this set of rewrite rulesRW(tac, [β1, . . . , βn], g). If this set is empty,
this corresponds to a failure. If it is a singleton, this corresponds to deterministic
evaluation.

Example 3. Suppose a goal a := even(2∗n) occurs on an input wire of the induct
tactic, which applies a two-step induction on the naturals (creating two base
cases). To evaluate a, we first compute the rulesetRW(induct, [base, step], a) by
applying the tactic induct(a). There is only one possible induction to perform,
so the induct tactic returns a single list of sub-goals {[b, c, d]}, where

b = even(2 ∗ 0), c = even(2 ∗ 1) and d = even(2 ∗ n) $ even(2 ∗ S(S(n))).
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Next, the set of partitions part([base, step], [b, c, d]) is computed. Here, we see
that a and b are base cases, as there are no hypothesis which can embed in the
goal, while d is a step case as the hypothesis does indeed embed in the goal.
Thus, a single partition [[b, c], [d]] is created. In the final step, the single rewrite
rule (Fig. 5) is created. The result of applying this rule corresponds to the first
step of example 1.

a

induct

b

induct

dc

stepbase stepbase

Fig. 5. Evaluation rule from Example 3

To evaluate a goal g over a PSGraph G, we first add g to an input of G
with a goal type which g matches, then repeatedly apply rewrites generated by
evaluating tactic nodes. By using PSGraph evaluation as a tactic in an LCF-style
theorem prover, soundess will be guaranteed by the prover kernel. However, the
next theorem states that evaluation is already “as sound as the tactics it uses”.

Theorem 1 (Soundness). During PSGraph evaluation, goal nodes are only
produced/consumed by calls to tactics, and never duplicated or lost during eval-
uation.

Proof. Every rewrite rule applied during evaluation is the result of a call to
the partition function part on the output of a tactic, which yields rewrite rules
where the input of a tactic is consumed and sub-goals produced by the tactic
must each occur on precisely one output wire.

Definition 3. A PSGraph is said to be in terminal form if the only goal nodes
it contains are on output wires.

Definition 4. Let T be a tree whose leaves are labelled with PSGraphs or ⊥.
Graph leaves in terminal form in T are said to be closed. Otherwise, they are
called open. An evaluation strategy is a function S : T → T which chooses an
open PSGraph G in T and unfolds it by: (i) selecting a goal g on the input wire
of a tactic node tac and (ii) adding the children arising from applying each of
the rules r ∈ RW(tac, [β1, . . . , βn], g), or a single child ⊥ indicating failure, to
G in T . We say T is terminated when all graph leaves are closed.

Example 4. A depth-first strategy SDF will select the open PSGraph that was
last produced, and within it unfold the goal that was last produced. A more
sophisticated strategy SS may for example select the open PSGraph with the
fewest goals and evaluate the goal which is most likely to fail to cut a failed
branch as early as possible.
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Fig. 6. THEN, TENSOR, REPEATα, and OR’ combinators

5 Combinators and Hierarchies

An interesting feature of graphical languages is that it gives us many techniques
for combining strategies. In this section, we will discuss two such techniques:
graph combinators and graph hierarchies.

Graph combinators can be used to syntactically build new strategy graphs
from old graphs. Perhaps the simplest graph combinators are the THEN and
TENSOR1 combinators (Fig. 6). THEN takes all the outputs of one graph and
connects them to all of the inputs of another graph2. TENSOR is at the other
extreme: it combines two graphs into one without plugging any wires together.
The THEN combinator uses goal types on the wires to figure out which output
should be connected to which input, i.e. an output of type βi in G is always
connected to an input of type βi in H . As a consequence, “G THEN H” is only
well-defined when the output types of G match the input types of H and all of
the βi are distinct.

TENSOR can be thought of as a sort of “parallel composition” of strategies.
In an expression like “G THEN (H TENSOR H ′)”, H will handle some of the
goals produced by G and H ′ will handle the rest. Which goal goes where is
determined by the goal type.

One could imagine many variations on the THEN combinator that perform
various more general kinds of wire-pluggings, however, for space reasons, we
consider just one more kind of plugging combinator called REPEATα (Fig. 6).
It connects an output of type α to an input of type α, introducing a feedback
loop. As with the THEN combinator, REPEATα is not always well-defined. It
is defined whenever the graph G has precisely one input and one output of type
α. This is not much of a restriction, as input and output types of PSGraphs
should typically be distinct to make the most of the goal typing system. Note
also that REPEATα is close in character to the traditional REPEAT WHILE
tactical, taking α to be the predicate controlling the repeated application.

Branching can be achieved by exploiting non-determinism of tactic node eval-
uation when faced with non-orthogonal output goal types. This can be seen by

1 We use TENSOR for parallel composition as this is common for graphical languages
(see e.g. [16]), and has also been used in tactic languages such as HiTac [2].

2 This process of plugging one or more inputs and outputs together is defined formally
using graph pushouts in [8].
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the OR’ combinator in Fig. 6, which is a graphical variant of the OR combina-
tor. However, when considering G and H as two distinct alternatives, each graph
should really be considered in isolation, but this information is effectively lost by
combining them into the same graph. For instance, there is nothing to stop us
from adding a wire between them or interleaving evaluation of the two branches.
Moreover, we cannot represent other more controlled types of branching, such
as an ORELSE combinator.

In Section 2, we saw that we can hide complexities by folding subgraphs into a
single node in the graph. This was illustrated by the ‘fertilise’ node for rippling.
We call such a hierarchical node in a PSGraph a graph tactic. In addition to
hiding complexity, a graph tactic can handle branching in a natural way, and
allows us to mark specific subgraphs with different evaluation strategies.

Definition 5. A graph tactic N contains a pair (A,G), consisting of a label
A ∈ {OR,ORELSE} and a non-empty list of pairs G = [(G1, S1), . . . , (Gn, Sn)],
where all of the graphs Gi have the same number and type of inputs/outputs
as N and each Si is an optional evaluation strategy for the graph Gi. A tactic
node that is not a graph tactic is called an atomic tactic.

For a graph tactic containing
(
OR, [(G1, S1), (G2, S2)]

)
, we often omit the

evaluation strategy and label this node OR[G1, G2]. In other cases we give the
node an explicit name, as in e.g. ‘fertilise’. The list G holds the graphs that are
nested, and multiple elements in the list correspond to alternation. The label
OR/ORELSE is called the alternation style of the graph tactic, and the OR and
ORELSE combinators can be naturally expressed with these alternation styles.
OR is a branching search, attempting to evaluate each graph Gi in turn. On
the other hand, ORELSE proceeds sequentially until a single graph is evaluated
successfully. If G is a singleton list then the alternation style will have no impact
on evaluation.

5.1 Evaluation and Unfolding of Hierarchies

So, it only remains to describe the evaluation of a single element (Gi, Si) of
G of graph tactic ‘tac’. This is achieved in the same way as in Section 4, by
generating a set of evaluation rewrite rules. It deviates from evaluation of such
atomic tactics by the way the output nodes are generated. Let L be the LHS of
the usual evaluation rewrite rule (2), with goal node g be on the j-th input wire
of ‘tac’. The set of evaluation rules from (Si, Gi) is then created as follows:

1. Place g on the j-th input wire of the graph Gi, which becomes the root of
the singleton search tree T .

2. Let S be Si if it is defined, if not let it be the evaluation strategy of the
parent graph. Use S to evaluate T until T has terminated.

3. For each terminal leaf G′
i of T , there will be zero or more goals on each of

the output wires. Let R be L with node g removed. For all k, place all of the
goals on the k-th output wire of G′

i on to the k-th output wire of tac in R,
in the same order. This yields a rewrite rule L R.
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Thus, there will be one rewrite rule for each terminal PSGraph in T . This hierar-
chical evaluation procedure buys us two things at once. The first is modularity:
complex strategies can be broken into multiple graph tactics composed in a high-
level strategy graph. The second is fine-grained control over evaluation strategies:
different subgraphs can be associated with different evaluation strategies, which
can be tailored to the specific task at hand.

Gi

...

...
βnβ1

αmα1

OR[G1, . . . , Gn]

αm...α1

β1 βn
...

Fig. 7. An “unfolding” rule

It is also worth noting that there is a second, rewriting-based method of
expressing this hierarchical evaluation procedure. Since the graphs G1, . . . , Gn

in a graph tactic node have the same inputs and outputs as the node itself, we
can define a rewrite rule for each Gi (Fig. 7). This rule (and its inverse) give us a
way to selectively unfold and re-fold parts of the graph. These rules can be used
during evaluation to perform an in situ version of the hierarchical evaluation
procedure described above. Perhaps more interestingly, inspired by [18], they
can be used during proof strategy design to refactor a complex strategy graph.

6 Implementation

The PSGraph language is independent of both the underlying theorem prover
and the goal types used. This is reflected in our implementation, called PSGraph.3

It is implemented in Poly/ML and consists of 4 layers:

1. At the bottom is the core of the existing Quantomatic graph rewriting sys-
tem [13], which implements the (string diagram) theory from [8].

2. Then there is the generic PSGraph language layer, which implements the
features described in Sections 3−5 using Quantomatic.

3. On top of the PSGraph layer, there is the goal type layer, where a goal node
(wrapping a theorem proving specific sub-goal), a goal type and a matching
function between them is defined. The generic layer is then instantiated with
these features.

4. At the top is the theorem prover specific layer, which instantiates the generic
and goal type layers with theorem proving specific features. These include:
the underlying proof and tactic representations, term/goal matching func-
tions, and a set of tactics provided by the prover.

The implementation discussed here contains an instantiation of the goal type
GT of Section 3 for Isabelle/HOL [15]. The goal type in [10] and limited support
for the ProofPower theorem prover4 has also been implemented (also available
from the PSGraph webpage).
3 The tool is available at https://github.com/ggrov/psgraph/tree/lpar13
4 See http://www.lemma-one.com/ProofPower/index/

https://github.com/ggrov/psgraph/tree/lpar13
http://www.lemma-one.com/ProofPower/index/
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6.1 Proof Representation in Isabelle

Theorem provers typically work by applying a tactic to one of the open sub-goals,
which either discharges the sub-goal, or generates new sub-goal which then has
to be discharged. This is repeated until there are no more sub-goals. The results
of these applications must then be combined to create the actual proof. This
step is handled differently between provers: Isabelle combines these steps by
having just one goal in which all the remaining “sub-goals” occur as premises,
whereas HOL/ProofPower generates a “justification function” to combine sub-
goals. Others, such as [2,18,17], have given formal semantics to the relationship
between tactics and the proofs produced. In the context of PSGraph, we see this
as a theorem prover specific task, and instead only focus on working with the
open sub-goals produced. This is reflected by the fact that our key soundness
property is the goal property highlighted in Theorem 1. As a result, the proof
representation has to be handled by the top layer in our architecture, which
instantiates the system for a particular prover.

To prove F in Isabelle, the initial goal (henceforth proof) F =⇒ F is created,
where =⇒ should be read as logical entailment. If a tactic reduces F to the
sub-goals G and H , then the proof becomes G =⇒ H =⇒ F . A tactic in Isabelle
(normally) works on a particular sub-goal, and the index of this sub-goal must
be provided. This will produce a set (lazy sequence to be exact) of new proofs,
where each element is a branch. For example, let tac be a tactic which reduces
H to sub-goals I and J . Then ‘tac 2’ applied to the above proof will give the
(singleton) proof G =⇒ I =⇒ J =⇒ F . When there are no sub-goals, and we
are left with just F , then the proof is completed.

To handle this “side effect” a tactic has on the proof object, during evaluation
we keep track of an Isabelle proof prf, paired with a map m from a name to a
sub-goal index. Then, for a goal g and a tactic tac, the first step in the evaluation
of Section 3 becomes:

– Look up the name of g in m to give the index i.
– Apply tac i prf, which creates a set of new proofs.
– For each new proof: find the new sub-goals starting at position i; update all

indices in m to reflect the new sub-goals (e.g. if two sub-goals are created then
all indices after i have to be incremented by 1); create a fresh name for each
new-sub-goal and update m, and return the new sub-goals with their name.

6.2 Isabelle/Isar Proof Method and GUI

PSGraph has a GUI where users can both draw and, for a given conjecture,
inspect the evaluation of a PSGraph. Fig. 8 shows some screen-shots of this
GUI, which we will return to below.

Our Isabelle instantiation is encoded as a new theory on top of the ‘Main’
Isabelle/HOL theory5. On top of this we have created a new proof method
for Isabelle/Isar called psgraph in order to make usage more Isabelle friendly.
Graphs that have been drawn, or implemented (using the combinators), must

5 See https://isabelle.in.tum.de/ for details.

https://isabelle.in.tum.de/
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Fig. 8. GUI: navigation bar (top), intro graph (left), rippling evaluation (right)

be explicitly registered in Isabelle with a name in order to use them. They can
then be used by the following Isabelle method in the middle of a proof:

apply (psgraph [(interactive)] 〈graph-name〉 [searchf: 〈sname〉] [goalf: 〈ename〉])

〈graph-name〉 refers to the name of a registered graph. The optional (interactive)
flag enters a ‘debugging mode’ where the user can use the GUI to step through
a proof. The navigation bar in Fig. 8 illustrates how the user can ‘Connect’ to
Isabelle, and step through (‘Next’) the proof. ‘Finish’ will return to Isabelle, and
all remaining sub-goals become sub-goals in the Isabelle proof. The evaluation
strategies can be configured by searchf, with a name of a search strategy, and
goalf, which selects which goal to pick first. Finally, note that there is a special
‘current’ mode for the interactive version, where the graph which is currently
open in GUI is used. This option is selected by ‘apply (psgraph (current))’, and
is useful for testing while strategies are being drawn.

Examples and Tool Evaluation. We have implemented the rippling strategy
in PSGraph as an adaptation of the version found in IsaPlanner [7]. The right
hand side of Fig. 8, illustrates a rippling proof in interactive mode with two open
goals (a and b). We have evaluated our rippling implementation on 35 Peano
arithmetic and list examples. These can be seen and tested by downloading the
tool6. The butterfly-shaped strategy on the left of Fig. 8 is an implementation
of the well-known intro-tactic as a PSGraph. This strategy supports ‘any’ input
goal, and uses top symbol, any and not GT predicates. The all node uses all tac,
which is Isabelle’s version of ‘id ’, i.e. the tactic that always succeeds and leaves
the goal unchanged. It is only used to direct the goal to the correct place using
the goal types on the output wires. If a goal starts with an existential/universal
quantifier, a conjunction or implication, then it is sent to the relevant tactic, and

6 See https://github.com/ggrov/psgraph/tree/lpar13/src/examples/LPAR13

https://github.com/ggrov/psgraph/tree/lpar13/src/examples/LPAR13
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the process is repeated. If not, it is sent to the output. Note that an output goal
from this strategy is guaranteed not to start with any of the above symbols.

Limitations. Currently, the GUI navigation is limited in the sense that the
user cannot select specific goals to apply or work with more than one level of
graph hierarchy at the same time. Furthermore, nested graph tactics have to be
implemented separately before they can be used, whereas ideally, these could be
created in place. More generally, we would like to be able to configure tactics
more easily in the GUI, both tactics provided by the prover and graph tactics.
At the moment only ‘breadth-first’ and ‘depth-first’ search are supported, while
a variant of ‘breadth-first’ goal selection is possible. So, we would like to improve
on the evaluation and search strategies and make it easier for users to develop
and plug-in their own strategies. Finally, we would like to improve the debugging
facilities to e.g. enable inspection from a given point in the graph.

7 Related Work

The graphical part of PSGraph is described using string diagrams, whose rewrite
theory was formalised in [8] using a particular family of typed digraphs called
open-graphs. We have elided most details of the underlying formalisation, and
refer to [8]. We are not claiming to be more expressive compared with tactic
languages found in systems such as Isabelle, PVS and Coq. In particular, many
syntactic goal type properties can be handled by the matching construct of Coq’s
Ltac [6]. However, we do believe that the way we handle the flow of goals is more
natural, and PSGraphs are easier to debug, and may lead to more robust proof
strategies, by making users think more about where goals should go next.

Tactics in common theorem provers are essentially untyped (even in Ltac),
meaning there is limited, if any, support for static checking. However, the idea
of “types”, or goal properties, for tactics, which can be checked statically, is not
new. In proof planning [4] tactics are given pre-conditions and post-conditions.
This entails a significant amount of reasoning just to compose them, thus we have
opted for a more light-weight version with our goal types. Moreover, our graphs
provide additional flow properties to guide the goals. There have also been more
type-theoretical approaches to typed tactics, such as the VeriML language [17].
PSGraph deviates from VeriML by using (goal) types purely to compose tactics
and ensure that goals are sent to the correct target. In VeriML, the types include
information about the relationship between tactics and the proofs produced. As
the goal of PSGraph is to be theorem prover generic, this is assumed to be
property of the theorem prover. In that sense, it is closer to proof planning.
In fact, PSGraph did initially start as a new version of the IsaPlanner proof
planner [7], however this was abandoned for pragmatic reasons. We believe our
way of capturing the flow of goals by utilising goal types and essentially treating
composition as “piping”, is novel for proof (strategy) languages.

When writing proofs, as opposed to proof strategies, one often distinguishes
between procedural proofs, where a proof is described as a sequence of tactic
applications (i.e. function composition), ignoring the goals; and declarative or
structured proofs, where the proof is described in terms of intermediate goals
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(goal islands), and the actual proof commands are seen more as a side issue.
We can view PSGraph as a marriage of these concepts in the sense that the
goal-type and goals on the wires create a declarative view, while the graph as a
whole gives a procedural view of how tactics are composed. Autexier and Dietrich
[3] have developed a declarative tactic language on top of a declarative proof
language. Their work is more declarative than PSGraph, whilst our is more
general w.r.t. compositions, as they represent a strategy as a schema which
needs to be instantiated. Similarly, there have been several attempts to create
declarative tactic languages on top of procedural tactic languages [11,9]. Asperti
et al [1] argues that these approaches suffer from two drawbacks: goal selection
for multiple sub-goals, and information flow between tactics – both of these are
addressed by goal types in PSGraph. HiTac is a tactic language with additional
support for hiding complexities using hierarchies [2,18]. Graph tactics have been
inspired by this work, however the use of goal types on input wires enables
multiple goals as input without introducing non-determinism or relying on goal
order, whereas HiTac is restricted to a single input goal.

Finally, it is important to note the difference with the field of diagrammatic
reasoning, as in e.g. [12] and [14], where diagrams are the objects of interest for
reasoning rather than the means of capturing the reasoning process.

8 Conclusion and Future Work

We have presented the PSGraph language together together with an implemen-
tation of it in the PSGraph tool. PSGraph’s “lifting” of proof strategies to the
level of goal-types, rather than the level of goals, enables us to write more robust
strategies that no longer rely on the number and order of sub-goals resulting from
a tactic application for tactic composition. Moreover, as composition of proof
strategies is also at the level of goal-types, we increase type safety and enable bet-
ter static analysis. Moreover, the problem of goal selection/focus/classification
when composing tactics, as highlighted in [1], is significantly improved. Graphs
naturally represent the flow of goals, and enable graphical inspection of evalua-
tion to improve debugging of proof strategies.

We have already discussed the current tool’s limitations.We are currently work-
ing on overcoming some of them by enhancing the GUI and developing new eval-
uation strategies. One interesting avenue to pursue is to try to implement some
existing larger compound tactics such as ‘auto’ in Isabelle. We suspect that this
work will be quite useful in terms developing goal types that are necessary to di-
rect goals in non-trivial strategies. One way to approach this problem is to draw
the strategies with all goal types being any and use machine learning techniques
on a large number of examples to discover the goal type for each wire. We would
also like to develop a notion of sub-typing for goal types, e.g. anything should be
able to be plugged into an any goal type. We are also in the process of starting
to use PSGraph to find new proof strategies by data mining existing libraries as
well as for analogical reasoning. A first attempt on using PSGraph for analogical
reasoning can be found in [10]. Finally, as we support multiple theorem provers, it
will also be interesting to see if strategies we develop can be carried across theorem
provers, thus using PSGraph as a form of proof (strategy) exchange.
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Abstract. The atomic lambda-calculus is a typed lambda-calculus with
explicit sharing, which originates in a Curry-Howard interpretation of a
deep-inference system for intuitionistic logic. It has been shown that it
allows fully lazy sharing to be reproduced in a typed setting. In this paper
we prove strong normalization of the typed atomic lambda-calculus using
Tait’s reducibility method.

1 Introduction

The atomic lambda-calculus is a typeable lambda-calculus with explicit sharing,
recently introduced in [13,12], developed as the Curry–Howard interpretation
of a deep-inference proof system for intuitionistic logic. The present paper con-
stitutes an important step in the development of its meta-theory, by extending
Tait’s reducibility method to show strong normalisation of the simply typed
atomic lambda-calculus. The primary motivation for establishing this result is
to demonstrate that the atomic lambda-calculus is a natural and well-behaved
calculus, to which the main standard techniques and results apply.

Sharing is an approach to efficient computation in lambda-calculi whereby
duplication of subterms is deferred in favor of reference to a common representa-
tion. It is a leading principle behind, among others, explicit substitution calculi
[1,18,8,9,15,2], term calculi with strategies or higher-order transformations [14,3],
and sharing graphs in the style of Lamping [17,4,21]. The atomic lambda-calculus
represents a novel category in this range. As a typeable term calculus it is an
alternative to explicit substitution calculi, providing a different perspective on
sharing: as in sharing graphs, sharing is evaluated atomically, by duplicating
individual constructors. A salient property is that the calculus implements fully
lazy sharing [22,14,5], a degree of sharing that, while standard, had previously
been achieved in lambda-calculi only by means of external transformations.

The paper [12] details how the atomic lambda-calculus and its sharing mecha-
nisms are derived from deep inference [6], a proof methodology where inferences
apply in context, reminiscent of term rewriting. Sharing in deep inference is by ex-
plicit contraction rules, which implement atomic duplication by interacting with

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 340–354, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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individual inferences. By embedding natural deduction within the deep-inference
formalism open deduction [11], duplication in traditional normalisation is broken
up into atomic steps. The atomic lambda-calculus is a direct computational in-
terpretation of the resulting proof system. The paper [12] further establishes the
technical properties of full laziness and PSN, preservation of strong normalisa-
tion with respect to the lambda-calculus.

In the present paper strong normalisation for the typed atomic lambda-
calculus will be proven using the Tait-reducibility method [20,10]. Reducibility is
an abstract method compatible with higher-order logic, whose application pro-
vides a deeper understanding of reduction and its dynamics. The fact that a
reducibility proof can be carried out for the atomic lambda-calculus shows the
generic character of this extension of the lambda-calculus.

2 The Atomic Lambda-Calculus

The atomic lambda-calculus introduced in [12] is a refined lambda-calculus, in
which abstraction is split into a linear abstraction and a sharing operation. Du-
plication and deletion proceeds locally through the evaluation of sharings. The
calculus consists of a standard linear lambda-calculus with a sharing construct,
extended by a further construction called the distributor. The distributor al-
lows to duplicate an abstraction without duplicating its scope: it replaces the
abstraction while duplication of its scope is in progress, where the duplicated
parts of the scope are stored in a tuple of terms (see also the reduction rules in
Section 2.1).

Definition 1. The atomic lambda-calculus ΛA is defined by the grammars

s, t, u, v, w ··= x | λx.t | (t)u | t[γ]

[γ], [δ] ··= [x1, . . . , xn ← t] | [x1, . . . , xn � λy.tn]

tn ··= 〈t1, . . . , tn〉 | tn[γ]

where (i) n ≥ 0, (ii) each variable may occur at most once in a term, (iii) in λx.t,
x must be free in t and becomes bound, (iv) in λy.tn, y must be free in tn and
becomes bound, (v) in t[γ] where [γ] is [x1, . . . , xn ← u] or [x1, . . . , xn � λy.tn],
each xi must be free in t and becomes bound, and (vi) likewise for tn[γ].

Terms t are atomic lambda-terms. The closures [γ] are called respectively
sharing and distributor, and a nullary sharing [← t] is a weakening. Atomic
lambda-terms not containing a distributor are basic terms. A sequence of closures
[γ1] . . . [γn] will be denoted [γi]i≤n or [Γ]. The tn are terms of multiplicity n or n-
terms, and are of the form 〈t1, . . . , tn〉[Γ]. Where possible, terms and n-terms will
not be distinguished, and both denoted t, u, v. A sequence of variables x1, . . . , xn
may be abbreviated 'x; a sharing is then denoted ['x ← t]. Standard notions are:
FV(u) is the set of free variables of u, and u{t/x} denotes the substitution of t for
x in u. A series of substitutions {t1/x1} . . . {tn/xn} is abbreviated {ti/xi}i≤n.



342 T. Gundersen, W. Heijltjes, and M. Parigot

Atomic lambda terms will be considered up to the congruence (∼) induced
by (1) below; note that due to linearity, both terms are only well-defined if both
[γ] and [δ] bind only in t.

t[γ][δ] ∼ t[δ][γ] (1)

The functions �−� : Λ → ΛA and �−� : ΛA → Λ translate between atomic
lambda-terms and standard lambda-terms. The former is defined below. For a
formal definition of the function �−� see [12]; intuitively, it replaces each ab-
straction λx.− in a term by λx.− [x1, . . . , xn ← x], where x1, . . . , xn replace the
occurrences of x, so that ��N�� = N for any lambda-term N .

Definition 2. The functions �−� and {[−]} interpret atomic lambda-terms and
closures respectively as lambda-terms and substitutions. For a sequence of clo-
sures [Γ] = [γ][Γ′] with [Γ′] non-empty, let {[Γ]} = {[γ]}{[Γ′]}.

�x� = x �λx.t� = λx.�t� �(t)u� = (�t�)�u� �t[γ]� = �t�{[γ]}
{[x1, . . . , xn ← t]} = {�t�/xi}i≤n

{[x1, . . . , xn � λy.〈t1, . . . , tn〉[Γ]]} = {λy.�ti�{[Γ]}/xi}i≤n

2.1 Reduction Rules

Reduction in the atomic lambda-calculus, denoted �, consists of two parts:
(i) linear β-reduction, denoted �β: the usual rule (rule β below) applied lin-
early; (ii) sharing reductions, denoted �S , comprising two kinds of rule: (a)
permutations taking closures outward (rules 2–6), and (b) local transformations
that evaluate closures (rules 7–10).

Linear β-Reduction:
(λx.u)t �β u{t/x} (β)

Permutations of Closures:

λx.t[γ] �S (λx.t)[γ] if x ∈ FV(t) (2)
(u[γ])t �S ((u)t)[γ] (3)
(u)t[γ] �S ((u)t)[γ] (4)

u[x1, . . . , xn ← t[γ]] �S u[x1, . . . , xn ← t][γ] (5)
u[x1, . . . , xn � λy.tn[γ]] �S u[x1, . . . , xn � λy.tn][γ] if y ∈ FV(tn) (6)

Transformations on Closures:

u['y ← y]['x, y, 'z ← t] �S u['x, 'y, 'z ← t] (7)

u[x1, . . . , xn ← (v)t] �S u{(yi)zi/xi}i≤n[y1, . . . , yn ← v][z1, . . . , zn ← t] (8)

u[x1, . . . , xn ← λx.t] �S u[x1, . . . , xn � λx.〈y1, . . . , yn〉[y1, . . . , yn ← t]] (9)

u[x1, . . . , xn � λy.〈t1, . . . , tn〉['z ← y]] �S u{λyi.ti['zi ← yi]/xi}i≤n

where {'zi} = {'z} ∩ FV(ti) for every i ≤ n (10)



A Proof of Strong Normalisation of the Typed Atomic Lambda-Calculus 343

The fact that a term u reduces to v in exactly n steps will be denoted u�n v,
while an arbitrary number of steps is indicated simply by �. A term u is called
strongly normalisable if all the reduction sequences starting with u are finite.
The set of strongly normalisable terms is denoted N . Reduction in the atomic
lambda-calculus commutes 1–1 with substitution, due to the linearity condition
on free variables.

Lemma 3. For atomic lambda-terms u, u′, v and v′ and variable x ∈ FV(u), if
u�1 u′, then u{v/x}�1 u′{v/x}; and if v �1 v′, then u{v/x}�1 u{v′/x}.

2.2 Basic Properties of the Atomic Lambda-Calculus

We collect in this section the main basic properties we are using in the strong
normalisation proof. The two main properties are (i) the strong normalisation
property of the sharing reduction, and (ii) the decomposition of the computa-
tional content of sharings and distributors.

Theorem 4 ([12, Theorem 11]). The reduction �S is strongly normalising
and confluent.

Sharing reductions preserve the denotation �t� of a term [12, Prop. 10]. The
normal form under �S of an atomic lambda-term t is called its unfolding u(t).
It is a basic term (i.e., no distributors occur) of the form u[Γ], where sharing in
u occurs only as λy.v['x ← y], of bound variables immediately within the scope
of their binder, and where [Γ] are sharings ['x ← y] of the free variables y in t
that occur in shared subterms [12, Prop. 9]. For closed terms, u(t) =α ��t��.
Definition 5. The unfolded body ub(t) of t is the largest subterm of u(t) not
of the form u[γ].

The unfolded body of a term is what is duplicated during reduction. To iden-
tify the various copies, let a variant of a term t be any term obtained from t by
renaming certain (bound or free) variables. A variant is fresh if all its variables
are fresh, and ti is the fresh variant of t obtained by replacing each variable x
by a fresh variable xi.

For an n-term tn = 〈t1, . . . , tn〉[Γ] let the ith projection πi(t
n) be the atomic

lambda term ti[Γi] where [Γi] is obtained by removing the binders from [Γ]
binding in any tj (i 
= j), and iteratively removing binders in sk when xk is
removed from a distributor [x1, . . . , xk, . . . , xm � λy.〈s1, . . . , sk, . . . , sm〉[Γ′]].

The following basic facts then characterise ub.

Proposition 6.

ub(x) = x ub(λx.t) = λx.ub(t)['x ← x] ub((u)v) = (ub(u))ub(v)

ub(u[x1, . . . , xn ← t]) = ub(u){ub(t)i/xi}i≤n

ub(u[x1, . . . , xn � λy.tn]) = ub(u){ub(λy.πi(t
n))i/xi}i≤n
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Proposition 7. For t = 〈t1, . . . , tn〉[Γ], ub(πi(t)) = ub(ti[← x1] . . . [← xm][Γ])
where x1, . . . , xm are the free variables of all tj (i 
= j).

To characterise the effects of duplication on the free variables of a term t
or an abstracted n-term λy.tn, let FV(t) = FV(λy.tn) = {y1, . . . , yk}, and let
FV(ub(t)i) = FV(ub(λy.πi(t

n))i) = {'y i
1 , . . . , 'y i

k }. Define the renamings of t and
λy.tn to be the sharings ['y 1

i , . . . , 'y n
i ← yi]i≤k, denoted [rn(t) : 1, . . . , n] and

[rn(λy.tn) : 1, . . . , n] and abbreviated [rn(t)] and [rn(λy.tn)] where possible. The
unfolded body and the renamings give the following key decomposition properties
of the computational content of closures.

Lemma 8. u[x1, . . . , xn ← t]� u{ub(t)i/xi}i≤n[rn(t)]

Lemma 9. u[x1, . . . , xn � λy.tn]� u{ub(λy.πi(t
n))i/xi}i≤n[rn(λy.tn)]

3 Typed Atomic Lambda-Calculus

The simply typed atomic lambda-calculus Sa is defined by the following rules (see
[13,12]). Terms, including variables, are typed t : A with A a minimal formula,
one built over →, while n-terms are typed by conjunctive formulae, tn : A1 ∧ · · ·∧
An. With the notation t∗ indicating either a term or an n-term, a judgment is
of the form x1 : A1, . . . , xn : An $ t∗ : B, where x1, . . . , xn are the free variables
of t∗. The antecedent x1 : A1, . . . , xn : An of a judgement is treated as a set,
denoted Γ , Δ, and abbreviated (xi : Ai)i≤n, or 'x : A if Ai = A for all i.

Typing Rules of Sa:

Γ, x : A $ t : B
−−−−−−−−−−−−−−−−−−−− λ
Γ $ λx.t : A →B

Γ $ u : A → B Δ $ v : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− @

Γ,Δ $ (u)v : B

−−−−−−−−−−−−−−− ax
x : A $ x : A

Γ1 $ t1 : A1 · · · Γn $ tn : An
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 〈 〉nΓ1, . . . , Γn $ 〈t1, . . . , tn〉 : A1 ∧ · · · ∧An

Γ, (xi : B)i≤n $ t∗ : A Δ $ u : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ←

Γ,Δ $ t∗[x1, . . . , xn ← u] : A

Γ, (xi : A →Bi)i≤n $ s∗ : C Δ, y : A $ tn : B1 ∧ · · · ∧Bn
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−�

Γ,Δ $ s∗[x1, . . . , xn � λy.tn] : C

The type system Sa of the atomic lambda-calculus is a refinement of the simply
typed lambda-calculus S: the rules ax, λ, and @ are the rules of S restricted by
the linearity condition. The rule for sharing, ←, is a standard cut-rule combined
with contraction on the left. Similarly, the rule for the distributor, �, is a cut-
rule, albeit a highly non-standard one. It contracts on A, the antecedent of
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the implications, but not on their consequent, integrating a limited amount of
deepness.

The typed atomic lambda-calculus Sa enjoys the usual properties of typed
systems, in particular subject reduction.

Theorem 10 ([13]). If Γ $ u : A and u� v, then Γ $ v : A.

Moreover, types are preserved in the interpretation of standard lambda-terms as
atomic lambda-terms, by inserting sharing-inferences (←) where required.

Proposition 11. If Γ $ N : A, then Γ $ �N� : A

Despite the fact that sharing reductions are strongly normalising, commute
with denotation, and preserve typing, preservation of strong normalisation (PSN)
is not immediate since infinite reduction may take place within weakenings: con-
sider the denotation �x[← t]� = x where t is not SN.

4 Proof of Strong Normalisation for Simple Types

In this section we prove the strong normalisation theorem for atomic lambda-
terms, typed in the system Sa, using Tait’s reducibility method. The proof of the
main proposition (Proposition 18) relies on closure properties of the reducibility
sets (Lemma 17), which again relies on closure properties on the set of strongly
normalisable atomic lambda terms proved in Section 5.

For simplifying the presentation, we consider in the remainder of this paper,
that no beta-reduction happens inside n-tuples, that n-tuples are unfolded, and
that all their free variables are captured by closures. This property is preserved
by reduction and it is natural in the context of sharing calculus. In particular all
the useful computation strategies satisfy it, including the one reproducing fully
lazy sharing.

Definition 12. The value |A| of a formula A is defined inductively by:

|X | = N
|A →B| = {u | u is a term and, for each term v ∈ |A|, (u)v ∈ |B|}

Values are extended to conjunctive formulae by the following clauses, for n > 0.
We denote by V the set of variables, and note that 〈〉 is the empty tuple.

|A1 ∧ . . . ∧An| = {tn | for each i ≤ n, πi(t) ∈ |Ai|}
|�| = {〈〉[Γ] | for any x ∈ V, x[Γ] ∈ N}

Values of formulae are called reducibility sets. Note that if t ∈ |A| and t′ is a
variant of t, then t′ ∈ |A|.

Proposition 13. For each minimal formula A, V ⊆ |A| ⊆ N

Proposition 14. For any formulae A1, . . . , An, |A1 ∧ . . . ∧ An| ⊆ N .
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Lemma 15. For any formula A, if u ∈ |A| and u� v, then v ∈ |A| .

Proof. Immediate by induction on A.

Let {·}w denote a term context consisting of repeated applications, so that
{u}w is (. . . (u)w1 . . . )wn.

Lemma 16. For any formula B, if u ∈ |B| then u['x ← y] ∈ |B|.

Proof. By induction on B, if (u)w ∈ |B| then (u['x ← y])w ∈ |B|.

Lemma 17.
(i) If u{v/x} ∈ |B| and x ∈ FV(u), then (λx.u)v ∈ |B|.
(ii) If u{ub(t)i/xi}i≤n[rn(t)] ∈ |B| and t ∈ N , then u[x1, . . . , xn ← t] ∈ |B|.
(iii) If u{ub(λy.πi(t

n))i/xi}i≤n[rn(λy.tn)] ∈ |B| and tn ∈ N ,
then u[x1, . . . , xn � λy.tn] ∈ |B|.

Proof. Each case is proved by induction on B, using context {·}w.
(i) If B is a variable, |B| = N and the result is given by Lemma 21. Otherwise,

let B = C → D. Suppose (u{v/x})w ∈ |C → D| and x ∈ FV(u). Let t ∈ |C|. We
prove that (((λx.u)v)w)t ∈ |D|. Because (u{v/x})w ∈ |C → D| and t ∈ |C|, we
have ((u{v/x})w)t ∈ |D| and by the induction hypothesis, (((λx.u)v)w)t ∈ |D|.
It follows that ((λx.u)v)w ∈ |C → D|.

(ii) If B is a variable, |B| = N and the result is given by Lemma 24. Otherwise,
let B = C → D. Let u′ = (u{ub(t)i/xi}i≤n[rn(t)])w ∈ |C → D| and t ∈ N . Let
v ∈ |C|. We prove that ((u[x1, . . . , xn ← t])w)v ∈ |D|. By the definition of |C→D|
we have (u′)v ∈ |D|. By the induction hypothesis ((u[x1, . . . , xn ← t])w)v ∈ |D|.
It follows that (u[x1, . . . , xn ← t])w ∈ |C → D|.

(iii) The proof is similar to that of (ii).

Proposition 18. If (xi : Ai)i≤n $ u : B and vi ∈ |Ai|, then u{vi/xi}i≤n ∈ |B|.

Proof. We proceed by induction on the derivation of (xi : Ai)i≤n $ u : B.

1. The last rule is ax, with conclusion x : A $ x : A. For v ∈ |A| we have
x{v/x} = v ∈ |A|.

2. The last rule is

(xi : Ci)i≤n $ t : A →B (yj : Dj)j≤m $ u : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− @

(xi : Ci)i≤n, (yj : Dj)j≤m $ (t)u : B

Let vi ∈ |Ci| and wj ∈ |Dj| for i ≤ n and j ≤ m. By the induction hypothesis,
t{vi/xi}i≤n ∈ |A→ B| and u{wj/yj}j≤m ∈ |A|. By the definition of | − |,

((t)u){vi/xi}i≤n{wj/yj}j≤m = (t{vi/xi}i≤n)u{wj/yj}j≤m ∈ |B| .
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3. The last rule is
(xi : Ci)i≤n, x : A $ t : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− λ
(xi : Ci)i≤n $ λx.t : A →B

Let vi ∈ |Ci| for i ≤ n, and suppose w ∈ |A|. By the induction hypothesis
we have t{vi/xi}i≤n{w/x} ∈ |B|. By Lemma 17, (λx.t{vi/xi}i≤n)w ∈ |B|.
It follows that

(λx.t){vi/xi}i≤n = λx.t{vi/xi}i≤n ∈ |A → B| .

4. The last rule is

(yi : Ci)i≤k, (xi : B)i≤n $ u : A (zi : Di)i≤m $ t : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ←

(yi : Ci)i≤k, (zi : Di)i≤m $ u[x1, . . . , xn ← t] : A

Let vi ∈ |Ci| and wj ∈ |Dj | for i ≤ k and j ≤ m, and let u′ = u{vi/yi}i≤k
and t′ = t{wj/zj}j≤m. We have to prove that the following term is in |A|:

(u[x1, . . . , xn ← t]){vi/yi}i≤k{wj/zj}j≤m = u′[x1, . . . , xn ← t′] .

By the induction hypothesis, t′ ∈ |B|; then by Lemma 15 also the unfolded
body ub(t′) is in |B|. Let ub(t′)1, . . . , ub(t′)n be fresh variants. By the induc-
tion hypothesis, u′{ub(t′)i/xi}i≤n ∈ |A|, and u′{ub(t′)i/xi}i≤n[rn(t′)] ∈ |A|
by Lemma 16. It follows by Lemma 17 that u′[x1, . . . , xn ← t′] ∈ |A|.

5. The last rule is

(yi : Ci)i≤k, (xi : A→ B)i≤n $ u : C (zi : Di)i≤m, y : A $ tn : B ∧ · · · ∧B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−�

(yi : Ci)i≤k, (zi : Di)i≤m $ u[x1, . . . , xn � λy.tn] : C

Let vi ∈ |Ci| and wj ∈ |Dj | for i ≤ k and j ≤ m, and let u′ = u{vi/yi}i≤k
and t′ = tn{wj/zj}j≤m. We have to prove that the following term is in |C|:

(u[x1, . . . , xn � λy.tn]){vi/yi}i≤k{wj/zj}j≤m = u′[x1, . . . , xn � λy.t′] .

By the induction hypothesis, t′{s/y} ∈ |B ∧ · · · ∧ B| for each s ∈ |A|,
and therefore πi(t

′{s/y}) = πi(t
′){s/y} ∈ |B|. Then, for each s ∈ |A|,

(λy.πi(t
′))s ∈ |B| by Lemma 17, and by definition of |−|, λy.πi(t

′) ∈ |A→B|.
By Lemma 15 also the unfolding of λy.πi(t

′) belongs to |A→B|, as does any
variant ub(λy.πi(t

′))i. By the induction hypothesis, u′{ub(λy.πi(t
′))i/xi}i≤n

is in |C|, and by Lemma 16, u′{ub(λy.πi(t
′))i/xi}i≤n[rn(λy.tn)] ∈ |C|. It

follows by Lemma 17 that u′[x1, . . . , xn � λy.t′] ∈ |C|.

Theorem 19. If (xi : Ai)i≤n $ u : B then u ∈ N .

Proof. Suppose (xi : Ai)i≤n $ u : B. By Proposition 13, we have xi ∈ |Ai| for
i ≤ n. Therefore by Proposition 18, u{xi/xi}i≤n ∈ |B|, i.e. u ∈ |B|, and by
Proposition 13 we have u ∈ N .
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5 Closure Properties of Strongly Normalisable Atomic
Lambda Terms

In this section we prove closure properties for the set of strongly normalisable
atomic lambda terms which are used in Section 4. To strengthen the induction
hypothesis in several lemmata, we define a further context, {·}w[Δ], which is
given by the following grammar.

∗ ··= {·} | (∗)u | ∗[δ]

The terms within a context {·}w[Δ] are denoted w = w1, . . . , wn, and the shar-
ings are denoted [Δ] = [δ1], . . . , [δm].

Lemma 20. If x ∈ V and in {·}w each wi ∈ N , then (x)w ∈ N .

For each term t ∈ N , we denote by R(t) the sum of the number of reduction
steps in all reduction sequences of t to its normal form. For any term t, we denote
by S(t) the number of sharing-reduction steps in all reduction paths to u(t).

Lemma 21. If (u{v/x})w ∈ N and x ∈ FV(u), then ((λx.u)v)w ∈ N .

Proof. To obtain a suitable induction hypothesis, the context {·}w is strength-
ened to {·}w[Δ], and further closures are inserted. It will be shown by induction
on (R(T ′),S(T )) that if T ′ ∈ N then T ∈ N , where

T = (((λx.u)[Γ])v)w[Δ] T ′ = (u{v/x}[Γ])w[Δ] .

It will be shown that for any term U reached by a reduction step T �1 U , there
is a term U ′ reached by a reduction T ′ � U ′, such that the induction hypothesis
applies to U and U ′ and (R(U ′),S(U)) < (R(T ′),S(T )), giving U ∈ N . Since
this holds for any term U , it follows that T ∈ N .

The first, special case, is T ′ = U (with [Γ] empty), for which U ∈ N is
immediate. For the remaining cases, we have to verify that U and U ′ have the
right form, that the measure decreases and that T ′ � U ′, which implies that
U ′ ∈ N . In the following cases, R(U ′) < R(T ′).

1. If T �1 U is due to u�1 u′, then U and U ′ are as follows.

U = (((λx.u′)[Γ])v)w[Δ] U ′ = (u′{v/x}[Γ])w[Δ]

2. If T �1 U is due to v �1 v′, then U and U ′ are as follows.

U = (((λx.u)[Γ])v′)w[Δ] U ′ = (u{v′/x}[Γ])w[Δ]

3. If T �1 U is due to a rewrite step entirely inside [Γ] or inside w[Δ]—which
covers any rule except (8) and (10)—then U and U ′ are as follows.

U = (((λx.u)[Γ′])v)w′[Δ′] U ′ = (u{v/x}[Γ′])w′[Δ′]



A Proof of Strong Normalisation of the Typed Atomic Lambda-Calculus 349

4. If T �1 U is due to an application of rule (8) or (10) to [Γ] with substitutions
in u, then U and U ′ are as follows.

U = (((λx.u′)[Γ′])v)w[Δ] U ′ = (u′{v/x}[Γ′])w[Δ]

5. If T �1 U is due to an application of rule (8) or (10) to w[Δ] with substitu-
tions anywhere in ((λx.u)[Γ])v, then U and U ′ are as follows.

U = (((λx.u′)[Γ′])v′)w′[Δ′] U ′ = (u′{v′/x}[Γ′])w′[Δ′]

For the remaining cases, R(U ′) ≤ R(T ′) and S(U) < S(T ).

6. If T �1 U is an application of permutation rule (2) to [γ] in λx.u′[γ], where
u = u′[γ], then U and U ′ are as follows (note that T ′ = U ′).

U = (((λx.u′)[γ][Γ])v)w[Δ] U ′ = (u′{v/x}[γ][Γ])w[Δ]

7. If T �1 U is an application of permutation rule (3) to [γ] in ((λx.u)[Γ′][γ])v,
where [Γ] = [Γ′][γ], then U and U ′ are as follows (note that T ′ = U ′).

U = ((((λx.u)[Γ′])v)[γ])w[Δ] U ′ = (u{v/x}[Γ′][γ])w[Δ]

8. If T �1 U is an application of permutation rule (4) to [γ] in ((λx.u)[Γ])v′[γ],
where v = v′[γ], then U and U ′ are as below. Note that T ′ � U ′ by permuting
[γ] outward, from u{v′[γ]/x} to u{v′/x}[γ], and T ′ = U ′ if u = x.

U = ((((λx.u)[Γ])v′)[γ])w[Δ] U ′ = (u{v′/x}[Γ][γ])w[Δ]

For the following proofs, we associate with each closure [γ] its body b[γ] and
its computation [γ]c, defined as follows.

b['x ← t] = t

b['x� λy.tn] = λy.tn

[x1, . . . , xn ← t]c = {ub(t)i/xi}i≤n[rn(t)]
[x1, . . . , xn � λy.tn]c = {ub(λy.πi(t

n))i/xi}i≤n[rn(λy.tn)]

Lemma 22.
1. If z is free in t, then u['x ← t]c{w/z}� u['x ← t{w/z}]c.
2. If z is free in tn, then u['x� λy.tn]c{w/z}� u['x� λy.t{w/z}]c.

Proof. Immediate from the definitions, Lemma 8, and Lemma 9.

The notation [γ]∗ will indicate a either [γ] or [γ]c. For a sequence of closures
[Γ] = [γ1] . . . [γp], we denote by [Γ]∗ a partial computation [γ1]

∗ . . . [γp]
∗. Analo-

gously, {·}w[Δ]∗ denotes a partial computation for a context {·}w[Δ].
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In order to measure the number of reduction steps in a context w[Δ], we use
the notion of applicative n-term, defined by the following grammar.

T n ··= 〈t1, . . . , tn〉 | T n[γ] | (T n)t

Rewrite rules apply to applicative n-terms as normal, but reduction within the
tuple is permitted. Then for a term (u)w[Δ], reduction in the context w[Δ]
is separated from that in u by considering reduction in the applicative n-term
〈x1, . . . , xn〉w[Δ], where {x1, . . . , xn} = FV(u).

Lemma 23. For any terms t, v, and w, if t�1 v and t�S w then w � u(v).

Proof. There are two cases.
1. If t �1

S v, then u(v) = u(w), as sharing reduction is confluent and strongly
normalising by Theorem 4.

2. If t�1
β v, by [12, Lemma 17 and Theorem 18] the unfolding of w beta-reduces

(in zero or more beta-steps) to a term w′ such that u(w′) = u(v).

Lemma 24. If (u[γ]c)w ∈ N and b[γ] ∈ N , then (u[γ])w ∈ N .

Proof. The following stronger statement will be proved: given

T = (u)w[Δ] and T ′ = (u)w[Δ]∗ ,

let T n be the applicative n-term 〈x1, . . . , xn〉w[Δ] where FV(u) = {'x}. If T ′ ∈ N
and T n ∈ N , then T ∈ N .

We proceed by induction on the measure (R(T ′),R(T n)). For each term U
reached by a reduction step T �1 U it will be shown that U ∈ N , proving that
T ∈ N . This will be done by giving a term U ′ reachable by a reduction T ′ � U ′,
to which the induction hypothesis applies; note that since T ′ ∈ N also U ′ ∈ N ,
but it must also be shown that the corresponding applicative n-term Un is in N .
The induction hypothesis for U and U ′ then gives U ∈ N .

1. If the reduction step T �1 U takes place inside u, then U and U ′ are as
follows.

U = (u′)w[Δ] U ′ = (u′)w[Δ]∗

Then R(U ′) < R(T ′), and since FV(u) = FV(u′) we have Un = T n ∈ N .
2. If the reduction step T �1 U takes place inside the context w[Δ], then

R(Un) < R(T n). Let U and U ′ be

U = (u′)w′[Δ′] U ′ = (u′)w′[Δ′]∗

where every closure in w′[Δ′]∗ is computed. The reduction T �1 U �S U ′

corresponds 1-1 to a reduction from T n = 〈x1, . . . , xn〉w[Δ] of the form

T n �1 V �S u(V ) .
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(Given that only unfolded terms are instantiated into the n-tuple in the
reduction V �S u(V ), which holds due to the restriction on tuples instated
in the beginning of Section 4.) Similarly, for the reduction T �S T ′ there
is a corresponding T n �S W . For these reduction paths, Lemma 23 gives
a reduction W �S u(V ). The corresponding reduction path T ′ � U ′ gives
R(U ′) ≤ R(T ′), so that the induction hypothesis applies.

3. If the reduction step T �1 U is a beta-step where u = λx.u′ is the function,
and the argument v is the first element of the context {·}w[Δ], then U and
U ′ are as follows.

U = (u′{v/x})w′[Δ] U ′ = (u′{v/x})w′[Δ]∗

Here, w′[Δ] is w[Δ] with the first application v removed; it follows that
Un = 〈'x, 'y〉w′[Δ] ∈ N because T n = (〈'x〉v)w′[Δ] ∈ N , where 'x and 'y
are the free variables of λx.u′ and v respectively. The induction hypothesis
applies since R(U ′) < R(T ′).

4. Let the reduction step T �1 U be an application of rule (7), combining two
sharings [γ] = ['y ← y] and [δ] = ['x, y, 'z ← t] into one [δ′] = ['x, 'y, 'z ← t],
where u = u′[γ] and [δ] is the first element of the context w[Δ]. Then U and
U ′ are as follows.

U = u′[δ′]w[Δ] U ′ = u′[δ′]∗w[Δ]∗

Then T ′ = u′[γ][δ]∗w[Δ]∗ � U ′, and hence R(U ′) < R(T ′). The difference
between T n and Un is that between the following n-terms.

〈'x, y, 'z〉['x, y, 'z ← t] 〈'x, 'y, 'z〉['x, 'y, 'z ← t]

While t may be duplicated more times in Un than in T n, since no interaction
is possible between the elements of a tuple it follows that Un ∈ N , so that
the induction hypothesis applies.

5. Finally, there is one case where u = u′[γ] and a reduction step forces the
closure [γ] into the context w[Δ]. Since the context w[Δ] consists of closures
and applications; moving [γ] into it means it must be permuted past a clo-
sure [δ] or an application (·)v. In the former case, u′[γ][δ] ∼ u′[δ][γ] is an
equivalence, not a rewrite step; thus the reduction step must be an appli-
cation of rewrite rule (3). But because of the congruence ∼ on terms, the
application (·)v need not be the first element of w[Δ]: there may be closures
[Γ] such that u[γ][Γ] ∼ u[Γ][γ]. Then consider the following rewrite step.

(u′[γ][Γ])v ∼ (u′[Γ][γ])v �1 ((u′[Γ])v)[γ]

Then T , T ′, U and U ′ are as follows.

T = ((u′[γ][Γ])v)w′[Δ′] T ′ = ((u′[γ][Γ]∗)v)w′[Δ′]∗

U = ((u′[Γ])v)[γ]w′[Δ′] U ′ = ((u′[Γ]∗)v)[γ]w′[Δ′]∗
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Here, the context {·}w[Δ] = (({·}[Γ])v)w′[Δ′]. Since T ′ �1 U ′ we have that
R(T ′) < R(U ′). To apply the induction hypothesis to U and U ′, due to the
presence of [Γ]∗ we are forced to include [γ] into the context w[Δ]. It must
then be shown that the n-term Un is in N , given that T n ∈ N ; however, Un

includes [γ] where T n does not:

T n = ((〈x1, . . . , xn, y1, . . . , ym〉[Γ])v)w′[Δ′]

Un = ((〈x1, . . . , xn, z1, . . . , zk〉[Γ])v)[γ]w′[Δ′] .

Here, FV(b[γ]) = {y1, . . . , ym} and FV(u′) = {x1, . . . , xn, z1, . . . , zk}, with
the zi bound by [γ].

In case w′[Δ′] does not bind in [γ], it follows that Un ∈ N because b[γ] ∈ N
(as it is a subterm of T ′ ∈ N ) and T n ∈ N .

Otherwise, let w′[Δ′] bind in [γ]. The n-term B′ below is obtained from T ′

by replacing u = u′[γ] by the tuple 〈x1, . . . , xn, b[γ]〉.

B′ = ((〈x1, . . . , xn, b[γ]〉[Γ]∗)v)w′[Δ′]∗ ∈ N

Recall that the xi are the free variables of u′ not bound by [γ]; then each
element of the tuple is a subterm of u. Then since T ′ ∈ N , also B′ ∈ N , and
since w′[Δ′] binds in [γ], the computations or closures in w′[Δ′]∗ binding in
b[γ] create reductions in u[γ] that have no counterpart in 〈x1, . . . , xn, b[γ]〉,
so that R(B′) < R(T ′). Then the induction hypothesis can be applied for
B′ and the term B below, with Bn = T n ∈ N , giving B ∈ N .

B = ((〈x1, . . . , xn, b[γ]〉[Γ])v)w′[Δ′]

From this it follows that Un ∈ N , by the following argument. Let B1, . . . , Bm

be variants of B. Then a reduction step in Un must do one of three things:
(a) if it duplicates a part of b[γ] from [γ] into a yi, it is a sharing step,

of which there are only finitely many until a step of kind (b) or (c) is
performed,

(b) if it applies to an xi or outside the tuple, there is a corresponding step
in each Bj ,

(c) if it applies to a (part of) b[γ]i that has been duplicated into the tuple,
there is a corresponding step in Bi.

6 Conclusions and Further Work

The present result, of strong normalisation for the simply typed atomic lambda-
calculus, emphasises how the calculus is a natural and well-behaved formalisation
of sharing in the lambda-calculus. Future investigations will expand in three
directions: strengthening the current strong normalisation result; adapting the
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atomic lambda-calculus to address further notions of sharing; and investigating
the practical use of the calculus in computation, for instance in compiling or
implementing functional programming languages.

The present work strongly suggests two angles for future research. A natu-
ral extension would be to characterise the strongly normalisable atomic lambda-
terms by an intersection typing discipline [7,19,16], to which the current reducibil-
ity proof is expected to extend naturally. In a second direction, it is expected
that the type system and strong normalisation proof can be extended to the
second-order case—although subject reduction is not immediately obvious.

For the atomic lambda-calculus in general, further work will focus on varia-
tions on the calculus that more closely approach the reduction dynamics of shar-
ing graphs, to encompass further degrees of sharing. Another direction would
be the inclusion of general recursion in the calculus, and the investigation of its
interaction with the sharing constructs, as a prerequisite of making the calculus
useful in practice to the implementation of functional programming languages.
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Abstract. In behavioral programming, a program consists of separate
modules called behavior threads, each representing a part of the system’s
allowed, necessary or forbidden behavior. An execution of the program
is a series of synchronizations between these threads, where at each syn-
chronization point an event is selected to be carried out. As a result, the
execution speed is dictated by the slowest thread. We propose an eager
execution mechanism for such programs, which builds upon the realiza-
tion that it is often possible to predict the outcome of a synchroniza-
tion point even without waiting for slower threads to synchronize. This
allows faster threads to continue running uninterrupted, whereas slower
ones catch up at a later time. Consequently, eager execution brings about
increased system performance, better support for the modular design of
programs, and the ability to distribute programs across several machines.
It also allows to apply behavioral programming to a variety of problems
that were previously outside its scope. We illustrate the method by con-
crete examples, implemented in a behavioral programming framework
in C++.

Keywords: behavioral programming, synchronization, eager execution,
modular design, distributed design.

1 Introduction

This work is carried out within the framework of behavioral programming (BP)
[10] — a recently proposed approach for the development of reactive systems,
which originated from the language of live sequence charts [5,8]. The basis of
the approach is the construction of systems from special threads, called behavior
threads (b-threads), each of which represents an aspect of the system’s behav-
ior which is specified as being allowed, necessary or forbidden. A simultaneous
execution of these threads constitutes the combined system behavior.

An execution of the program is comprised of a series of synchronization points
between the threads, each of which results in an event being triggered. The
choice of the triggered event is performed by a global coordinator, which, at
every synchronization point, receives input from all the threads before making
the choice. This high amount of coordination grants behavioral programs many
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of their qualities: it eliminates race conditions between the threads, allows for
multi-modal, modular and incremental development, and, in general, promotes
the development of comprehensible and maintainable code. See [10].

However, extensive synchronization has implications on system performance
(see [11]). Since all threads must synchronize before the system can continue
to the next synchronization point, the step from one point to another is con-
strained by the slowest b-thread. In parallel architectures (e.g., multi-core pro-
cessors), execution resources may stand idle while the system waits for a slow
b-thread to finish performing nontrivial computations or time-consuming actions
and reach the next synchronization point. Similar situations can also occur in
programs that run on a single processor — for instance, if a b-thread is perform-
ing lengthy input/output actions that require no processing power, but delay its
synchronization.

We introduce a new execution mechanism for behavioral programs, which we
term eager execution. It allows relaxing the synchronization constraints between
b-threads, resulting in a higher level of concurrency when executing the pro-
gram. At the same time, eager execution maintains all information necessary for
triggering events, and thus adheres to BP’s semantics and supports its idioms.

Eager execution is made possible by automatically analyzing a thread prior
to its execution, resulting in an approximation of the thread’s behavior. With
this information at hand, the eager execution mechanism can sometimes choose
events for triggering without waiting for all of the threads to synchronize, thus
improving the efficiency of the system’s run and avoiding excessive synchroniza-
tion. We present two analysis methods that lead to more eager execution: one
is static and considers the thread as a whole, whereas the other is dynamic and
takes into account the thread’s state during the run. Both methods have been
implemented and tested in BPC, a framework for behavioral programming in
C++. The framework itself, along with the examples described in this paper, is
available online [1].

Relaxing synchronization is helpful in several contexts. First, it improves sys-
tem performance and reduces processor idle time. Moreover, it gives rise to
better modular design of the system, by grouping together related threads into
components, which we call behavioral modules, and allowing these to operate
independently on different time scales. Finally, the techniques presented in this
paper can be leveraged to support a decentralized assimilation of the modules
on different machines by distributing BP’s execution mechanism. Distributed
execution has been implemented and tested in BPC. It is not included in this
paper due to space limitations; it is discussed in Appendix I of [2].

The paper is organized as follows. A short description of behavioral program-
ming and the BPC tool appears in Section 2. We define the eager execution
mechanism and present the two analysis methods in Section 3. In Section 4, we
show how eager execution allows for a modular design of programs. Related work
is discussed in Section 5, and we conclude in Section 6. Proofs are included in
the appendices to this paper.
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2 Behavioral Programming

A behavioral program consists of a set of behavior threads (b-threads), each of
which is an independent code module, which implements a certain part of the
system’s behavior. The threads are interwoven at run time through a series of
synchronization points, and together produce a cohesive system.

The b-threads are driven by events, which are managed by a global coordinator
that is implemented at the core of the behavioral programming framework. At
every synchronization point, each thread BT passes to the coordinator three
disjoint sets of events: those requested by BT , those for which BT waits, and
those blocked by BT . BT then halts until the coordinator wakes it up.

Once all b-threads have reached a synchronization point, the coordinator
calculates the set of enabled events — events that are requested by at least one
b-thread and blocked by none. It then selects one of these events for triggering,
say e, and passes it to some of the b-threads, and those then continue their
execution until the next synchronization point. More specifically, e is passed to
a thread BT if it is either requested or waited-upon by BT ; other threads remain
at the synchronization point, and their declared event sets are re-considered when
the coordinator selects the next event. The model assumes that all inter-b-thread
communication is performed through the synchronization mechanism.

Various implementations of reactive systems as behavioral programs have been
carried out, using frameworks built on top of high-level programming languages
such as Java, Erlang and Blockly; see [10] and references therein. These frame-
works allow the user to use the full flexibility offered by the underlying program-
ming language in writing threads. In this paper, we demonstrate our techniques
using a BP framework in C++, termed BPC [1].

For illustration, we provide an example of a vending machine programmed in
BPC. The example is extended in later sections to demonstrate various aspects
of our techniques. In this section, we only implement the basic functionality of
the machine — collecting coins and dispensing products. The code consists of
three b-threads, called Dispenser, KeyPad and ProductSlot ; they are depicted in
Fig. 1, 2, and 3, respectively. Observe that coin insertions and product selections
are inputs from the environment. In the actual application they are implemented
using a simple user interface, which is omitted from the code snippets. The same
applies to the actual dispensing of the product in the ProductSlot thread.

We stress the key fact that the threads’ transition from one synchronization
point to the next may not be immediate. Since all the threads are required to
synchronize in order for the coordinator to trigger an event, the thread that
takes the longest to move from one synchronization point to the next dictates
the speed of the entire system. This is the issue we address in the paper.

2.1 Behavioral Programming Formalized

While behavioral programming is geared toward natural and intuitive develop-
ment using programming languages, its underlying infrastructure can be con-
veniently described and analyzed in terms of transition systems. We present



358 D. Harel, A. Kantor, and G. Katz

class Dispenser : public BThread {
void entryPoint() {

while ( true ) {
bSync( none, {CoinInserted}, none );
bSync( none, {ProductChosen}, {CoinInserted} );
bSync( {ProvideProduct}, none, {CoinInserted} );

}}};

Fig. 1. The Dispenser thread. This thread is responsible for dispensing wares, after
the user inserts a coin and selects a desired product. The programmer writes behavioral
code by overriding the method entryPoint of class BThread. The thread runs in an
infinite loop, invoking the synchronization API bSync three times in each iteration; each
invocation corresponds to a synchronization point, and includes three sets of events:
requested (blue), waited-upon (green) and blocked (red). In the first synchronization
point, the thread waits for a coin insertion, signified by a CoinInserted event. In the
second, it waits for product selection, signified by a ProdcutChosen event. Finally, in
the third, it dispenses the product, by requesting a ProvideProduct event. Since each
call suspends the thread until an event that was requested or waited-for is triggered,
one product is dispensed per coin; also, it is impossible to obtain the product without
inserting a coin. Observe that the thread also blocks CoinInserted events during its last
two synchronization points; otherwise, extra coins inserted before a product is provided
could be swallowed by the machine.

while ( true ) {
waitForCoinInsertion();
bSync( {CoinInserted}, none, none );
waitForProductSelection();
bSync( {ProductChosen}, none, none );

}

Fig. 2. The main method of the KeyPad thread. This thread is an input “sensor” —
a thread responsible for receiving inputs from the environment and translating them
into BP events. It waits for the user to insert a coin and then requests a CoinInserted
event. Then, it waits for the user to select a product, and requests a ProductCho-
sen event. Coin insertions and product selections are inputs coming from the envi-
ronment, and are abstracted away inside the functions waitForCoinInsertion and
waitForProductSelection. The thread translates these inputs into events that are to
be processed by other threads.

an abstract formalization of behavioral programs and their semantics, similarly
to [9,11].

In the following definitions we implicitly assume a given set Σ of events.
A behavior thread (b-thread) BT is abstractly defined to be a tuple BT =
〈Q, q0, δ, R,B〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q×Σ → Q
is a transition function, R : Q → P(Σ) assigns for each state a set of requested
events, and B : Q → P(Σ) assigns for each state a set of blocked events. A
behavioral program P is defined to be a finite set of b-threads.

Note that in the definitions above, a b-thread’s transition rules are given as
a deterministic, single valued, function δ, assigning the next state given a state
and an event trigger in that state. A natural variant in which the transitions are
nondeterministic is analogously defined; see Appendix II of the supplementary
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while ( true ) {
bSync( none, {ProvideProduct}, none );
provideActualProduct();

}

Fig. 3. The main method of the ProductSlot thread. This thread is an output “actua-
tor”; it is responsible for translating ProvideProduct events into the dispensing of actual
products. Thus, it waits for a ProvideProduct event, and then provides the product by
invoking provideActualProduct.

material [2]. The latter is useful for reactive systems, where the next state might
also depend on external input. Also note that in the formal definition of a b-
thread, there is no need to distinguish between events that are waited-upon by
the thread, and those that are not. In any of the thread’s states, an event that
is not waited-upon can be captured by a transition that forms a self-loop; i.e., a
transition that does not leave the state.

Semantics. Let P = {BT 1, . . . , BT n} be a behavioral program, where n ∈ N
and each BT i = 〈Qi, qi0, δ

i, Ri, Bi〉 is a distinct b-thread. In order to define the
semantics of P , we construct a deterministic labeled transition system (LTS) [12]
denoted by LTS(P ), which is defined as follows. LTS(P ) = 〈Q, q0, δ〉, where
Q := Q1 × · · · × Qn is the set of states, q0 := 〈q10 , . . . , qn0 〉 ∈ Q is the initial
state, δ : Q × Σ → 2Q is a deterministic1 transition function, defined for all
q = 〈q1, . . . , qn〉 ∈ Q and a ∈ Σ, by

δ(〈q1, . . . , qn〉, a) :=
{{

〈δ1(q1, a), . . . , δn(qn, a)〉
}

; if a ∈ E(q)

∅ ; otherwise .

where E(q) =
⋃n

i=1 Ri(qi) \
⋃n

i=1 Bi(qi) is the set of enabled events at state q.
An execution of P is an execution of the induced LTS(P ). The latter is

executed starting from the initial state q0. In each state q ∈ Q, an enabled
event a ∈ Σ is selected for triggering if such exists (i.e., an event a ∈ Σ for
which δ(q, a) 
= ∅). Then, the system moves to the next state q′ ∈ δ(q, a), and
the execution continues. Such an execution can be formally recorded as a pos-
sibly infinite sequence of triggered events, called a run. The set of all complete
runs is denoted by L(P ) := L(LTS(P )). It contains either infinite runs, or finite
ones that terminate in a state in which no event is enabled, called a terminal
state.

3 The Eager Execution Mechanism

We begin with a general description of our proposed execution mechanism for BP,
termed eager execution. Let P = {BT 1, . . . , BT n} be a behavioral program con-
sisting of b-threads BT 1, . . . , BT n. Assume that at some point in the execution

1 I.e., its range includes only singletons and the empty set.
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of P , a subset Psync ⊆ P of the threads has reached a synchronization point,
while the rest are still executing. Further, assume that the coordinator has ad-
ditional information about the events that the threads in P \ Psync will request
and block at the next synchronization point. If, combining the information from
threads in Psync with the information about threads in P \Psync, the coordinator
can find an event e that will be enabled at the next synchronization point, then
e can immediately be chosen for triggering.

The coordinator may then pass e to the threads in Psync to let them continue
their execution immediately, without waiting for the remaining threads to syn-
chronize. Once any of these other threads reaches its synchronization point, the
coordinator immediately passes it event e, as this event was selected for that
particular synchronization point. This is accomplished by having a designated
queue for each of the b-threads, of events that are waiting to be passed, and
putting e in the queues corresponding to the not-yet synchronized threads. The
execution mechanism described is eager, in the sense that it uses predetermined
information to choose the next event as early as possible.

When a thread BT reaches a synchronization point, if the corresponding queue
is nonempty, the coordinator dequeues the next pending event e′. If BT requests
or waits for e′, it is passed to the thread, which then continues to execute. Other-
wise, e′ is ignored, and the coordinator continues with the next event pending in
the queue. In order to reflect the semantics of BP, from the coordinator’s global
perspective BT is not considered synchronized as long as it has events pending
in the queue. Particularly, the events that are requested or blocked by BT at
this point are not considered for the selection of the next event; the coordina-
tor considers only threads that have synchronized and for which there are no
pending events (so that they are halted).

Observe that the eager execution mechanism strictly adheres to the semantics
of BP, as described in Section 2; at every synchronization point, the triggered
event is indeed enabled. Consequently, we get the following result:

Proposition 1. Given a behavioral program P , the sequence of events triggered
by the eager execution mechanism is a valid run (under BP’s semantics).

The key point, however, is that the eager mechanism makes its decisions more
quickly, and thus often produces more efficient runs. The eager execution mech-
anism is formalized in Section 3.3, and Proposition 1 is proved in Appendix A.

It remains to show how the execution mechanism knows which events could
be requested and blocked by threads that are yet to synchronize. We propose
two approaches: static analysis and dynamic analysis.

3.1 Static Analysis

In this approach, the coordinator is given in advance a static over-approximation
of the events that a thread might block when synchronizing. Explicitly, if a thread
has states s1, . . . , sn, this over-approximation is

⋃
1≤i≤n B(si), where B(si) is the

set of events blocked in state si. The over-approximation is static in the sense
that it does not change throughout the run.
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When a thread synchronizes, the coordinator checks if there are events that are
enabled based on the data gathered so far — namely, events that are requested
and not blocked by threads in Psync, and that are never blocked by the other
threads, based on their over-approximations. If such an event exists, it can be
triggered immediately. Otherwise, the coordinator waits for more threads to
synchronize. This generally results in more events becoming enabled, since the
actual set of events that are blocked by a thread is always a subset of the
over-approximation, and since additional requested events are revealed. As soon
as enough information is gathered to deduce that an event is enabled, it is
immediately triggered and passed to all synchronized threads. For threads that
are yet to synchronize, the event is stored in a designated queue, to be passed
to them upon reaching their synchronization point.

Observe that we only discuss over-approximating blocked events but not
the approximation of requested events. The reason is that the analogous ver-
sion would entail using an under-approximation of requested events; and, since
threads do not generally request an event in each of their states, these under-
approximations are typically empty.

Example: Using Static Analysis. We further evolve the example from Sec-
tion 2. Suppose that the vending machine’s developer wishes to introduce a
maintenance mechanism. Once every fixed period of time, the machine is to go
into maintenance mode and measure its inner temperature and humidity.

This type of requirement poses a challenge, in the form of integrating different
time scales into a behavioral program. If maintenance is to occur every t seconds,
a natural approach is adding a thread with the following structure, wrapped in
a loop: (a) sleep for t seconds; (b) request an InitiateMaintenance event. Unfor-
tunately, under a traditional BP execution mechanism, this results in the entire
system pausing for t seconds at a time; since the thread does not reach the next
synchronization point while asleep, the coordinator is unable to trigger an event,

while ( true ) {
sleep( TimeBetweenMaintenancePeriods );
bSync( {InitiateMaintenance}, none, none );

}

Fig. 4. The main method of the MaintenanceTimer thread.
TimeBetweenMaintenancePeriods is a constant, indicating the desired time be-
tween consecutive maintenance cycles. Whenever the thread wakes up it requests an
InitiateMaintenance event, and then goes back to sleep. Observe that since the thread
neither requests nor waits for any other events, any events that were triggered while it
was asleep — such as coin insertions or user selections — are not passed on to it when
it awakes. Therefore, it immediately catches up with the execution upon waking up.
In order to tell the coordinator that the MaintenanceTimer thread blocks no events,
the following line of code is provided as well: bProgram.addThreadBlockingData(
"MaintenanceTimer", none );

This allows the coordinator to trigger an event even if this thread has not synchronized
yet.
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and any coin insertions or product requests by the user go unanswered between
maintenance phases.

One solution is to have the event which initiates the periodic maintenance
be triggered by some external entity — similarly to coin insertions and product
selections. This approach, though feasible, means that the system would depend
on these external events in order to operate properly; the BP framework does
not offer a way to enforce their proper generation.

Instead, we adopt a solution that combines in-line waiting and eager execution.
We use the method described above, and declare (or, as we later discuss, find
automatically) that the new thread does not block any events; in effect, this tells
the coordinator that it should not wait for it at any synchronization point. The
system can then progress, and go along serving clients, while the thread is asleep.
When the thread awakes and synchronizes, it is informed, one at a time, of the
events that have occurred so far, and it can then synchronize and request that
maintenance be triggered. The new thread is depicted in Fig. 4.

3.2 Dynamic Analysis

In this approach, the coordinator is given complete state graphs of the threads,
which are automatically calculated before the program is executed. The labeled
vertices of a state graph correspond to the thread’s synchronization points and
requested/blocked events, while the labeled edges correspond to the program’s
events (that are not blocked at that state). The graph thus provides a complete
description of the thread from the coordinator’s point of view — that is, a
complete description of the events requested and blocked by the thread, but
without any calculations or input/output actions performed by the thread when
not synchronized. For more details on these state graphs, see [6].

During runtime, the coordinator keeps track of the threads’ positions in the
graphs, allowing it to approximate the events they will request and block at
the next synchronization point — even before they actually synchronize. This
method is dynamic, in the sense that the approximations for a given thread can
change during the run, as different states are visited. The fundamental differ-
ence between running a thread and simulating its run using its state graph is
that in the latter, no additional computations are performed, and consequently
transitions can be considered immediate.

Recall that our definition of threads dictates that a thread’s transitions be de-
terministic. Therefore, simulating a thread through its state graph yields precise
predictions of its requested and blocked events at each synchronization point.
In the nondeterministic model, where threads may depend on coin tosses or
inputs from the environment, it may be impossible for the coordinator to deter-
mine a thread’s exact state until it synchronizes; however, the coordinator can
approximate the thread’s requested and blocked events by considering all the
states to which the nondeterministic transitions might send the thread. If, due
to a previous transition, the thread is known to be in one of states s1, . . . , sn,
then the blocked events may be over-approximated by

⋃
1≤i≤n B(si) — simi-

larly to what is done in static analysis. Analogously, the requested events may
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be under-approximated by
⋂

1≤i≤n R(si). For more details see Appendix II of the
supplementary material [2]. As before, if these approximations leave no enabled
events, the coordinator waits for more threads to synchronize.

The other details are as they were in the static analysis scheme. Once an event
is triggered, it is immediately sent to all synchronized threads, and is placed in
queues for threads that are yet to synchronize.

Example: Using Dynamic Analysis. In Section 3.1, we added a thread that
periodically initiates a maintenance process in the vending machine. We now
describe this process in greater detail. Suppose that the goal of the maintenance
process is to keep the machine’s temperature and humidity at a certain level.
Maintenance thus includes two phases: measurement and correction, applied
once for temperature and once for humidity. For simplicity, assume that both
values are always out of the safe range; i.e., that they always require adjusting.

To handle these requirements, we add two new threads to the program —
one to do the measurements, and one to do the corrections. The first, the Mea-
surer, reads information from the environment through sensors, while the second,
the Corrector, affects the environment, through air conditioning and humidity
control systems. These threads are triggered by the periodic InitiateMaintenance
event, as described earlier. Code snippets appear in Fig. 5 and Fig. 6.

while ( true ) {
bSync( none, {InitiateMaintenance}, none );

if ( temperatureTooHigh() )
bSync( {DecreaseTemperature}, none, {ProvideProduct} );

else bSync( {IncreaseTemperature}, none, {ProvideProduct} );
bSync( none, {TemperatureCorrected}, {ProvideProduct} );

if ( humidityTooHigh() ) bSync( {DecreaseHumidity}, none, none );
else bSync( {IncreaseHumidity}, none, none );
bSync( none, {HumidityCorrected}, none );

}

Fig. 5. The main method of theMeasurer thread. Upon triggering of the InitiateMain-
tenance event, this thread wakes up, asks for the appropriate temperature correction,
and waits for confirmation. Afterwards, an analogous process is performed for the hu-
midity level. Observe that the ProvideProduct event is blocked during the temperature
phase, but not during the humidity phase.

Another requirement is that, due to constraints in the machine, it is forbidden
to dispense products between temperature measurement and correction, other-
wise the correction might be interrupted. Therefore, the Measurer thread blocks
events of type ProvideProduct during temperature measurement and correction.
During humidity measurement, however, this limitation does not apply. As mea-
surement and correction operations take a non-zero amount of time, there is a time
window during maintenance in which the dispensing of products is forbidden.

We seek a solution that would prevent dispensing products during the temper-
ature phase, but would permit it during the humidity phase. Static analysis does
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while ( true ) {
bSync( none, allEvents(), none );
if ( lastEvent() == IncreaseTemperature ) {

increaseTemperature(); bSync( {TemperatureCorrected}, none, none );
}
else if ( lastEvent() == DecreaseTemperature ) {

decreaseTemperature(); bSync( {TemperatureCorrected}, none, none );
}
else if ( lastEvent() == IncreaseHumidity ) {

increaseHumidity(); bSync( {HumidityCorrected}, none, none );
}
else if ( lastEvent() == DecreaseHumidity ) {

decreaseHumidity(); bSync( {HumidityCorrected}, none, none );
}

}

Fig. 6. The main method of the Corrector thread. The thread waits for events In-
creaseTemperature, DecreaseTemperature, IncreaseHumidity or DecreaseHumidity; if they
are triggered, it responds by adjusting the temperature or humidity (this part is ab-
stracted away in the subroutines). Then, the thread requests an event notifying that
the request has been handled, and goes back to waiting for new requests. Accessing
the last event triggered is performed via the lastEvent method.

not suffice: as the Measurer thread blocks the ProvideProduct event at some of
its states, the over-approximation includes this event — and so ProvideProduct
events would not be triggered during humidity measurement and correction. Dy-
namic analysis, on the other hand, resolves this issue, as it is able to distinguish
between the two phases; see Table 1 for performance comparison.

Table 1. Performance of the vending machine program using the different execution
mechanisms. The measurements were performed using a customer simulator, purchas-
ing 250 products in random intervals. The table depicts the time the experiment took,
the number of maintenance rounds performed during the experiment, and the average
delay — the time between making an order and receiving the product. The improve-
ment column measures the reduction in delay compared to the traditional execution
mechanism.

Execution #Servings Time (min) #Maintenance Delay (sec) Improvement

Traditional 250 15:40 59 1.68 —

Static 250 12:30 50 0.85 50%

Dynamic 250 9:20 37 0.18 90%

We point out that the Measurer thread’s transitions are not deterministic —
as they depend on input from the temperatureTooHigh and humidityTooHigh

subroutines. As previously explained, this does not pose a problem, as the co-
ordinator calculates an over-approximation based on all the successor states of
the thread’s last known state.

Remark: Recall that dynamic analysis includes spanning the state graphs of
threads and integrating these graphs into the program. Manual spanning of state
graphs is prone to error, and is rather tedious in large systems with many events.
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Consequently, BPC includes an automated tool for performing this spanning
without any overhead on the programmer’s side.

The spanning is performed by separating the thread under inspection from
its siblings, and then iteratively exploring its state graph until all its states and
transitions have been found. Starting at the initial state, we check the thread’s
behavior in response to the triggering of each event that is not blocked by the
thread in that state. After the triggering of each event, the thread arrives at a
new state (synchronization point) — and, with proper book keeping, it is simple
to check if the state was previously visited or not. New states are then added to
a queue to be explored themselves, in an iterative BFS-like manner.

Isolating threads is performed using the CxxTest [15] tool, which is able cap-
ture and redirect function calls within programs. The thread’s calls to the syn-
chronization method bSync are captured, and used to determine the thread’s
current state; similarly, calls to the lastEvent method are captured and used
to fool the thread into believing that a certain event was just triggered. The
strength of this method is that the entire process takes place using the origi-
nal, unmodified program code. Other methods, such as the one used in BPJ [7],
include adding dedicated threads for this purpose — a process that might in
itself introduce additional errors. Once the state graph has been spanned, it
is automatically transformed into a C++ code module and integrated into the
program.

3.3 Eager Execution Formalized

We now formally define the the eager execution mechanism. All definitions in this
section exclusively consider deterministic b-threads; handling nondeterministic
ones is similar (see Appendix II of the supplementary material [2]).

Let P = {BT 1, . . . , BT n} be a behavioral program, where n ∈ N and each
BT i is a distinct b-thread. In order to define the eager execution mechanism,
we construct a labeled transition system (LTS) denoted by L̂TS(P ) = 〈Q̂, q̂0, δ̂〉,
which is defined next. We use some of the notation introduced in Section 2.1.

The set of states is given by Q̂ := (Q1 ×Σ∗)× · · · × (Qn ×Σ∗). Each state is
thus a tuple consisting for each thread of its state and the contents of its event
queue. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state. We use the standard notation δi(qi, ui)
to denote the state in Qi after applying the transition function δi of thread BT i

starting from state qi for each event in the queue ui. Given q, we denote the tuple
comprised of these states by q := 〈δi(qi, ui)〉ni=1; we refer to it as the indication
of q. Note that q naturally corresponds to a state in Q, which is the set of states
of LTS(P ) = 〈Q, q0, δ〉 defined in Section 2.1. We slightly abuse notation and

write that q ∈ Q. Naturally, the initial state is q̂0 := 〈(q10 , ε), . . . , (qn0 , ε)〉 ∈ Q̂.

In each state q = 〈qi, ui〉ni=1 ∈ Q̂, eager execution approximates the requested
and blocked events of each thread. This is indicated by the following sets of
events:Ri(q) ⊆ Σ, for the requested events of threadBT i, and Bi(q) ⊆ Σ, for the
its blocked events. As previously mentioned, eager execution has various forms
(depending on the analysis technique that is used); each form is characterized
by its specific choice for these approximations. The requirements imposed on
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them are the following. We require that Ri(q) is a subset of the events that are
requested by thread BT i at state δi(qi, ui), and that Bi(q) is a superset of the
blocked events at that state. That is,

Ri(q) ⊆ Ri(δi(qi, ui)) Bi(δi(qi, ui)) ⊆ Bi(q) . (1)

Moreover, we require that in case a thread is synchronized, the two approxima-
tions are precise. More formally, if ui = ε for some i ∈ [n] (where [n] denotes the
set of indices {1, . . . , n}), so that in particular δi(qi, ui) = qi, then we require

Ri(q) = Ri(qi) Bi(q) = Bi(qi) . (2)

These two requirements are sufficient for our purposes. One may easily ver-
ify that the eager execution with either static or dynamic analysis technique
complies with the requirements. From these, we obtain that the approximated
enabled events, defined in the following, are contained in the enabled events at
the indication state q ∈ Q; i.e.,

E(q) :=
n⋃
i=1

Ri(q) \
n⋃
i=1

Bi(q) ⊆ E(q) . (3)

In case all threads are synchronized, i.e., ui = ε for all i ∈ [n], we obtain

E(q) = E(q) . (4)

The nondeterministic transition function δ̂ : Q̂× (Σ∪̇{ε})→ 2Q̂ includes also
silent ε-labeled transitions; these ε transitions are not considered part of the
runs of the system. δ̂ is defined for each state q = 〈qi, ui〉ni=1 ∈ Q̂, and σ ∈
Σ ∪ {ε}, as:

– If σ = ε, then δ̂(q, ε) is defined to be those states 〈ri, vi〉ni=1 ∈ Q̂ for which
there is i0 ∈ [n] and a ∈ Σ such that ui0 = a vi0 and ri0 = δi0(qi0 , a), and
for all other i ∈ [n]\ {i0} it holds that ri = qi and vi = ui. These transitions
correspond to threads with queued events processing these events — they
change states, while the other threads do not move.

– If σ ∈ Σ, and moreover σ ∈ E(q), then δ̂(q, σ) is defined to be the singleton

δ̂(q, σ) =
{
〈qi, ui σ〉ni=1

}
. These transitions correspond to new events being

triggered.
– If σ ∈ Σ and σ 
∈ E(q), we define δ̂(q, σ) = ∅. This reflects the fact that

events that are not enabled cannot be triggered.

For a rigorous proof of Proposition 1 using these definitions, see Appendix A.

4 Modularity by Eager Execution

Complex systems can generally benefit from being partitioned into several compo-
nents, each assigned its own execution resources (e.g., a dedicated computer) [13].
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An intelligent partitioning of the system into components makes it possible to exe-
cute different facets of system behavior independently, and thus improve response
time to different tasks. This is particularly crucial when system behavior involves
multiple time scales.

The fact that a behavioral program consists of a collection of threads, each
addressing part of the system’s behavior, suggests a natural way to design pro-
gram components. We call a collection of b-threads that collectively addresses
a certain facet of the system a behavioral module. Each such module can be
assigned distinct computational resources (e.g., a computer) so as to form an
independent component. However, BP’s complete stepwise synchronization be-
tween the b-threads undermines the benefits expected from such a design. In
particular, it would not result in alleviating run-time dependencies between the
components.

In order to understand how eager execution affects behavioral modules, we
make the following definitions. Consider a behavioral program P consisting of a
set behavioral modules M1, . . . ,Mk; thus, the threads in the program are

⋃k
i=1 Mi.

Denote by Ei the set of events that are controlled — i.e., requested or blocked —
at some synchronization point of a thread of module Mi. Typically, these events
are part of the ‘vocabulary’ corresponding to that facet of the system addressed
in module Mi. The modular design of the program is termed strict if E1, . . . , Ek

are pairwise disjoint; i.e., Ei ∩ Ej = ∅ for i 
= j. However, any thread can wait
for any event. A strict modular design essentially means that while modules may
signal one another (by waiting for each other’s events), they do not control each
other’s events; i.e., they are assigned sufficiently independent duties.

For a strict modular design, the eager execution mechanism results in an
implementation in which the threads in each module never need to wait for a
thread in another module to synchronize. Here, static analysis, as described in
Section 3.1, is enough. The modules are thus effectively independent and may
involve different time scales. This is formalized by the following proposition:

Proposition 2. Let P be a behavioral program having a strict modular design
and executed with the eager execution mechanism. If all b-threads of module Mi

are synchronized, then an event e ∈ Ei is enabled if and only if it will also be
enabled upon the arrival of any other thread at its synchronization point.

The proposition implies that, in a strict design, as soon as a module’s threads
have synchronized any enabled event that they control may immediately be
triggered, without waiting for threads from other modules. See Appendix III of
the supplementary material [2] for a rigorous definition of a modular program
design and a proof of the proposition.

4.1 Example: A Modular Design

We implement the traveling vehicles example from [11, Section 7]. The example
includes several vehicles, each operating as an autonomous component traveling
on pre-given cyclic route along an (x, y) grid; in each given time unit during
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the run, each vehicle can travel north, east, south or west. We assume that all
vehicles travel at identical speeds, i.e., cover one unit of distance per time unit.

Using eager execution, this multi-component system can be programmed en-
tirely within the behavioral programming framework, without relying on external
means of communication. The threads of each vehicle, vi, form an independent
behavioral module Mi that involves a designated set of events. This results in a
strict modular design allowing each vehicle to operate independently of others. A
code snippet for the main thread of vehicle vi is depicted in Fig. 7. If each module
has a dedicated processor and event selection is fair, all vehicles are constantly
moving — as the coordinator does not wait for vehicle vi to finish moving and
synchronize again before triggering the movement requested by another vehicle.

while ( true ) {
Vector<Event > requestedEvents;
if ( destinationIsNorth() ) requestedEvents.append( #iMoveNorth );
if ( destinationIsSouth() ) requestedEvents.append( #iMoveSouth );
if ( destinationIsEast() ) requestedEvents.append ( #iMoveEast );
if ( destinationIsWest() ) requestedEvents.append ( #iMoveWest );
bSync( requestedEvents, none, none );
adjustPositionByLastEvent();

}

Fig. 7. The main method of each vehicle thread. The placeholder ‘#i’ is replaced by
the number of the vehicle; for instance, for vehicle v5, the events are 5MoveNorth,
5MoveWest, etc. The thread requests moves in all directions that bring it closer to the
destination. When the call to bSync returns, one of these moves was selected by the
behavioral execution mechanism. The thread then updates its position (by invoking
adjustPositionByLastEvent), and proceeds.

Eager execution allows a light-weight solution if communication between the
vehicles is required — e.g., for collision prevention. Each vehicle can be accompa-
nied by an adviser thread that keeps track of other vehicles. Whenever its vehicle
is dangerously close to another, the adviser blocks movement in the dangerous
direction (for simplicity, deadlocks are ignored). As the modular design remains
strict, adding the adviser threads does not impede the vehicles’ ability to move
independently.

5 Related Work

Within the scope of BP, an alternative approach for supporting modular designs
and multiple time scales in behavioral programs is suggested in [11], where a
program consists of sub-programs, called behavior nodes (b-nodes), each with its
own pool of (internal) events. Coordination between the b-nodes is carried out
by sending external events from one to another. Thus, internal events have to be
translated into external events and vice versa. The feasibility of this approach is
exhibited in [11] by using several examples.

Observing that the b-node approach naturally induces a strict modular design,
our approach offers similar benefits but without the need to go beyond the
behavioral programming idioms; indeed, no additional layer of external events is
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needed. Relaxed synchronization also supports more general, non-strict designs,
in which behavioral programming idioms are used more liberally. In the case of
non-strict designs, eager execution does not ensure that the modules are executed
independently. Nevertheless, it avoids unnecessary synchronization between the
modules (especially when using dynamic analysis of the threads), which may be
sufficient in many situations.

Outside the scope of BP, performance optimization and communication mini-
mization in parallel and distributed settings have been studied extensively. The
trade-off between these two goals is discussed in [4,16]. In [14], the author sug-
gests imposing certain limitations on the communication between the components,
which allows for execution-time optimization to be performed during compilation.

A method similar to our static analysis appears in [3], where invariants about
system components are used for conflict resolution within the BIP framework.

6 Conclusion and Future Work

The contribution of this paper is in the proposed eager execution mechanism,
which allows relaxing synchronization in behavioral programs. This scheme gen-
erally improves system performance, and allows behavioral programs to be writ-
ten using a modular design that supports multiple time scales. Our approach
is made possible by the realization that, by analyzing a b-thread prior to its
execution, it is sometimes possible to accurately predict a valid outcome of a
synchronization point without actually waiting for the thread to synchronize.

In this paper we made no assumptions on how the coordinator chooses the
next event to be triggered from among the enabled events. In practice, however,
such assumptions can sometimes simplify system development. One example is
the prioritized event selection used in [9]. We believe that our methods can be
naturally adapted to such mechanisms too.

The technique discussed in this paper requires that each b-thread commu-
nicate with a global coordinator at every synchronization point. While this
constraint is significantly weaker than stepwise synchronization with all other
b-threads, it may limit the applicability of the approach for designing multi-
component applications in distributed architectures, in which communication is
costly and time-consuming. In Appendix I of [2], we show how a variant of eager
execution, called distributed execution, can be utilized to reduce these costs. This
is done at the expense of not completely refraining from synchronization between
threads of different modules, even in a strict modular design, so that Proposi-
tion 2 does not hold in that context. Finding ways to reduce communication
costs while still upholding Proposition 2 is left for future work.
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of program P using the eager execution mechanism, and LTS(P ) from Section 2.1,
which captures the original semantics. Technically, we claim that each complete
run of L̂TS(P ) is a complete run of LTS(P ); i.e., L(L̂TS(P )) ⊆ L(LTS(P )). This
is a consequence of the following lemmata.

When considering L̂TS(P ), q
σ→ q′ stands for q′ ∈ δ̂(q, σ), as customary when

discussing transition systems (for any states q, q′ ∈ Q̂ and a possibly silent

event σ ∈ Σ∪{ε}). Also, recall that q ∈ Q̂ is a terminal state if for all σ ∈ Σ∪{ε}
it holds that δ̂(q, σ) = ∅. Similar notations and terminology apply to LTS(P ).

Lemma 1. Let q, q′ ∈ Q̂ and σ ∈ Σ ∪ {ε} such that q
σ→ q′ in L̂TS(P ).

1. If σ = ε, then q′ = q.

2. If σ ∈ Σ, then q
σ→ q′ in LTS(P ).

Proof. 1: Denote q = 〈qi, ui〉ni=1 ∈ Q̂, and suppose that σ = ε. By the definition

of δ̂, we obtain that q′ = 〈ri, vi〉ni=1, where all the coordinates are the same as
in q, except for the one corresponding to i0 ∈ [n]. In the latter coordinate we
get δi0(ri0 , vi0 ) = δi0(δi0 (qi0 , a), vi0) = δi0(qi0 , a vi0) = δi0(qi0 , ui0), as needed.

2: Now, suppose σ ∈ Σ. According to the definition of δ̂, σ ∈ E(q) and q′ =
〈qi, ui σ〉ni=1. By (3) (see Section 3.3) and by the definition of δ, we get that in

LTS(P ) it holds that q
σ→ 〈 δi(δi(qi, ui), σ) 〉ni=1 = 〈 δi(qi, ui σ) 〉ni=1 = q′. 
�

Corollary 1.

1. Let r0
σ1→ r1

σ2→ · · · σk→ rk be a finite execution of L̂TS(P ) (k ≥ 0). There

exists a finite execution s0
a1→ s1

a2→ · · · at→ st of LTS(P ) (t ≥ 0) such that
rk = st and σ1 σ2 · · ·σk = a1 a2 · · ·at.

2. Let r0
σ1→ r1

σ2→ · · · be an infinite execution of L̂TS(P ). There exists an

execution s0
a1→ s1

a2→ · · · of LTS(P ) such that σ1 σ2 · · · = a1 a2 · · · .

Proof (sketch). 1: By induction on k. For k = 0 the claim follows from the fact
that q̂0 = q0 ∈ Q; the induction step follows from Lemma 1.

2: By an inductive construction of the execution, which similarly follows from
Lemma 1. 
�

Lemma 2.

1. If q ∈ Q̂ is a terminal state in L̂TS(P ), then q is a terminal state in LTS(P ).

2. There is no infinite sequence q
ε→ q′

ε→ q′′
ε→ · · · in L̂TS(P ).

Proof. 1: As q is terminal, by the definition of δ̂ it holds that all the queues in q
are empty (otherwise, δ̂(q, ε) 
= ∅); i.e., q = 〈qi, ε〉ni=1. Let a ∈ Σ. Because q is
terminal, a 
∈ E(q). Thus, by (4) (see Section 3.3), a 
∈ E(q), and therefore by
the definition of δ, δ(q, a) = ∅.

2: For each state q = 〈qi, ui〉ni=1 ∈ Q̂, consider the total size of the queues,
denoted by ϕ(q) := Σn

i=1|ui| ∈ N. Given such an infinite sequence of states, ϕ is

strictly decreasing (by the definition of δ̂), which contradicts the well-foundness
of the natural numbers. 
�



372 D. Harel, A. Kantor, and G. Katz

Corollary 2. Let r0
σ1→ r1

σ2→ · · · be a complete (finite or infinite) execution

of L̂TS(P ). There exists a complete (finite or infinite, respectively) execution

s0
a1→ s1

a2→ · · · of LTS(P ) such that σ1 σ2 · · · = a1 a2 · · · .

The corollary follows from Corollary 1 and Lemma 2. It is equivalent to
L(L̂TS(P )) ⊆ L(LTS(P )), which is the technical formulation of Proposition 1.
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Abstract. Subset spaces constitute a relatively new semantics for bi-
modal logic. This semantics admits, in particular, a modern, computer
science oriented view of the classic interpretation of the basic modalities
in topological spaces à la McKinsey and Tarski. In this paper, we look
at the relationship of both semantics from an opposite perspective as it
were, by asking for a consideration of subset spaces in terms of topology
and topological modal logic, respectively. Indeed, we shall finally ob-
tain a corresponding characterization result. A third semantics of modal
logic, namely the standard relational one, and the associated first-order
structures, will play an important part in doing so as well.

Keywords: modal logic, topological semantics, subset spaces, knowledge
and topological reasoning.

1 Introduction

Nowadays, successful applications of modal logic to computer science are abun-
dant. We focus on a particular system from the realm of formal reasoning here,
which may be seen as a cross-disciplinary framework for dealing with spatial as
well as epistemic scenarios: the talk is of Moss and Parikh’s bi-modal logic of
subset spaces; see [12], [5], or Ch. 6 of [2].

We shall now indicate how the interrelation of the underlying ideas, knowledge
and spatiality, is correspondingly revealed. The epistemic state of an agent under
discussion, i.e., the set of all those states that cannot be distinguished by what
the agent topically knows, can be viewed as a neighborhood U of the actual state
x of the world. Formulas are then interpreted with respect to the resulting pairs
x, U called neighborhood situations. Thus, both the set of all states and the set of
all epistemic states constitute the relevant semantic domains as particular subset
structures. The two modalities involved, K and �, quantify over all elements of U
and ‘downward’ over all neighborhoods contained in U , respectively. This means
that K captures the notion of knowledge as usual (see [7]), and � reflects effort
to acquire knowledge since gaining knowledge goes hand in hand with a shrinkage
of the epistemic state. In fact, knowledge acquisition is this way reminiscent of a
topological procedure. The appropriate logic for ‘real’ topological spaces, called

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 373–388, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



374 B. Heinemann

topologic, was first determined by Georgatos in his thesis [8]. Meanwhile, a lot
of work has been done on the development of a modal logical theory of subset
spaces and, in particular, topological spaces on this basis; see [2] for a guide to
the earlier literature. (To our knowledge, [10], [3], and [13], are the most recent
papers in this field, with the last two forging links between subset spaces and
Dynamic Epistemic Logic (DEL); see [6].)

The topological semantics of modal logic dates back to the late 1930s; see the
respective notes in the paper [11]. In recent years, the research into logics based
on this semantics has considerably been ramped up to satisfy requirements relat-
ing to spatial modelling and reasoning tasks in computer science; the handbook
[5] contains lots of references regarding this as well (see, in particular, Ch. 5 and
Ch. 10 there). The characteristic feature is the following interpretation of the
modal box here: for every formula α, the validity domain of �α is defined to
be the interior of the validity domain of α. With that, the well-known modal
system S4 has been proved to be the logic of the class of all topological spaces;
see [11] again. – This is all that must be said about topological modal logic for
the moment; more facts will be given in Section 3 below.

There is a translation from mono-modal to bi-modal formulas which conveys
the already rather transparent connection between the two interpretations in
topological spaces just mentioned. Its decisive clause reads �α �→ �Kα; see
[5], Proposition 3.5. This translation even gives rise to an embedding of S4 into
topologic; see [5], Theorem 3.7. Thus, the elder, purely spatial formalism may be
retrieved from a more comprehensive framework regarding epistemic issues, too.

Conversely, can subset spaces be identified in a purely topological way? – As
it stands, this question is not raised precisely enough. So we must say that we
are not looking for a somehow good-natured translation in the other direction
here; this issue has already been discussed in [5], Sect. 3.2. Instead, our topic
is the following. Subset spaces are closely related to certain bi-modal Kripke
models having the same logic; see [5], Sect. 2.3. These structures of course are
bi-topological since they validate, in particular, two modal logics containing S4.
Thus, our initial question is to be specified as follows: can a topological char-
acterization of all those bi-topological structures that originate from a subset
space be given and, should the situation arise, up to what extent in terms of
topological modal logic? – The goal of this paper is to give an affirmative answer
and a corresponding description, respectively.

The present paper grew out of a remark of Anil Nerode at LFCS 2013. It
makes a contribution in several respects. First, it clarifies the interplay of the
three semantics involved to a greater extent. Second, it facilitates an alternative
view of subset spaces. In fact, it is generally very desirable (and common in
mathematics) to have at hand different ways of seeing a subject, in order to be
able to react on varying problems flexibly. Third, the crucial axiom schema of
the logic of subset spaces, called the Cross Axioms in [5], is given a topological
reading as a certain cover property here. And finally, a topological formulation
of the properties defining subset spaces as first-order structures is supplied. All
this makes this paper a theoretical one on a system being, on the other hand,



Characterizing Subset Spaces as Bi-topological Structures 375

of practical relevance to the reasoning process. The latter has been taken as a
justification to submit the paper to LPAR.

We now proceed to the technical issues. In the following section, we first intro-
duce the language for subset spaces, and we recapitulate the known relationship
between subset spaces and Kripke models. Later on in this section, we review
the logic arising from that language. Section 3 then deals with the basics of
topological modal logic in more detail. In Section 4, the topological effect of the
Cross Axioms is illuminated. The final technical section contains the characteri-
zation theorem announced above, before the paper is finished by some concluding
remarks.

2 The Language and the Logic of Subset Spaces

In this section, we first fix the language for subset spaces, L. After that, we link
the semantics of L with the common relational semantics of modal logic. Finally,
we recall some facts on the logic of subset spaces needed subsequently.

To begin with, we define the syntax of L. Let Prop = {p, q, . . .} be a denumer-
ably infinite set of symbols called proposition variables (which should represent
the basic facts about the states of the world). Then, the set Form of all L-
formulas1 over Prop is defined by the rule α ::= � | p | ¬α | α ∧ α | Kα | �α.
The mono-modal fragment MF of Form is obtained by disregarding the clause
for K in this rule. Later on, the boolean connectives that are missing here are
treated as abbreviations, as needed. The dual operators of K and � are denoted
by L and �, respectively; K is called the knowledge operator and � the effort
operator.

We now turn to the semantics of L. For a start, we define the relevant domains.
We let P(X) designate the powerset of a given set X .

Definition 1 (Semantic Domains).

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a (subset) frame.

2. Let S = (X,O) be a subset frame. Then the set

NS := {(x, U) | x ∈ U and U ∈ O}

is called the set of neighborhood situations of S.
3. Let S = (X,O) be a subset frame. An S-valuation is a mapping V :

Prop → P(X).
4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=

(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of our bi-
modal language. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in

1 The prefix ‘L’ will be omitted provided there is no risk of confusion.
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question about it. Furthermore, Definition 1.3 shows that values of proposition
variables depend on states only. This is in accordance with the common practice
in epistemic logic; cf. [7].

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from
Form. Based on that, we define the notion of validity of L-formulas in subset
spaces and in subset frames. In the following, neighborhood situations are often
written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let (x, U) ∈ NS be a
neighborhood situation. Then

x, U |=M � is always true
x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U 
|=M α
x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β
x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x, U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α] ,

where p ∈ Prop and α, β ∈ Form. In case x, U |=M α is true we say that α
holds in M at the neighborhood situation x, U.

2. Let M = (X,O, V ) be a subset space based on S. An L-formula α is called
valid in M iff it holds in M at every neighborhood situation of S.

3. An L-formula α is called valid in S iff it is valid in every subset space M
based on S; in this case, we write S |= α.

Note that the idea of knowledge and effort described in the introduction is
made precise by Item 1 of this definition. In particular, knowledge is defined as
validity at all states that are indistinguishable to the agent; cf. [7].

Obviously, subset spaces are on the same level of language as are Kripke
models in common modal logic (whereas subset frames correspond to Kripke
frames).

Subset frames and spaces might be considered from a different perspective, as
is known since [5] and reviewed in the following. Let a subset frame S = (X,O)
and a subset space M = (X,O, V ) based on S be given. Take WS := NS as a
set of worlds, and define two accessibility relations RK

S and R�
S on WS by

(x, U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x, U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x, U), (x′, U ′) ∈ WS . Moreover, let VM(p) := {(x, U) ∈ WS | x ∈ V (p)},
for every p ∈ Prop. Then, bi-modal Kripke structures SS :=

(
WS , {RK

S , R�
S }
)

and MM :=
(
WS , {RK

S , R�
S }, VM

)
result in such a way that MM is equivalent

to M in the following sense.

Proposition 1. For all α ∈ Form and (x, U) ∈ WS , we have that x, U |=M α
iff MM, (x, U) |= α.
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Here (and later on as well), the symbol ‘|=’ denotes the usual satisfaction
relation of modal logic. – The proposition is easily proved by induction on α.
We call SS and MM the Kripke structures induced by S and M, respectively.

The question to what extent one can go the other way round, i.e., associate
subset spaces to suitable Kripke structures so that the latter are the induced
ones, will play an important part below. Some significant information on what
‘suitable’ means in this connection, is provided by looking at the logic of subset
spaces (referred to as LSS later). Here is a sound and complete axiomatization
(cf. [5], Sect. 2.2):

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ Form; note that the last schema represents the
aforementioned Cross Axioms. As a result, we obtain that LSS is sound and
complete also with respect to the class of all Kripke models M such that

– the accessibility relation R of M belonging K is an equivalence (in other
words, where K is an S5-modality),

– the accessibility relation R′ of M belonging to � is reflexive and transitive
(i.e., � is S4-like),

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called
the cross property), and

– the valuation of M is constant along every R′-path, for all proposition
variables.

The most interesting fact is the cross property here, formalizing the interplay
between knowledge and effort. Thus, a bi-modal Kripke frame is called a cross
axiom frame, iff its relations satisfy all these conditions apart from the last one;
and a bi-modal Kripke model is called a cross axiom model, iff it is based on a
cross axiom frame and the final requirement is satisfied, too. Now, it is easy to see
that every induced Kripke frame is a cross axiom frame and every induced Kripke
model is a cross axiom model. Hence we should find the candidates relating to
the above question among these structures.

We are going to change from first-order to topological properties for now.
However, we shall return to those later on.

3 Topological Modal Logic

The paper [1] as well as van Benthem and Bezhanishvili’s chapter of the hand-
book [2] (that is, Ch. 5 there) contain all the facts from topological modal logic
that are relevant for our purposes; these are freely quoted below.
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First in this section, we revisit the topological semantics of modal logic. Let
T = (X, τ) be a topological space, V a T -valuation in the sense of Definition 1, and
M := (X, τ, V ). Then, the topological satisfaction relation |=t is defined canoni-
cally for�, the proposition variables, and in the boolean cases, whereas the clause
for the �-operator reads

M, x |=t �α : ⇐⇒ ∃U ∈ τ : [x ∈ U ∧ ∀ y ∈ U : M, y |=t α] ,

for all x ∈ X and every mono-modal formula α ∈ MF.2

We now connect |=t to the common relational semantics. As is known, a
reflexive and transitive binary relation R on a set W is called a quasi-order on W .
Quasi-ordered non-empty sets (W,R) are also called S4-frames since the modal
logic S4 is sound and complete with respect to this class of structures. Given
an S4-frame (W,R), a subset U ⊆ W is called R-upward closed iff w ∈ U and
w R v imply v ∈ W , for all w, v ∈ W . (Correspondingly, R-downward closed sets
are defined.) The set of all R-upward closed subsets of W is, in fact, a topology
on W (with the R-downward closed sets being topologically closed ones). This
topology, denoted by τR, is Alexandroff, i.e., the intersection of arbitrarily many
open sets is again open. With that, we obtain the following correlation (which
is easy to prove again).

Proposition 2. Let M = (W,R, V ) be an S4-model and MM := (W, τR, V ) be
based on the associated Alexandroff space. Then, for all α ∈ MF and w ∈ W , we
have that M,w |= α iff MM , w |=t α.

And vice versa, starting from an Alexandroff space T = (X, τ) yields an
equivalent S4-frame ST := (X,Rτ ) by taking the specialization order Rτ of τ
for the accessibility relation (i.e., xRτ y : ⇐⇒ x belongs to the closure {y} of
{y}, for all x, y ∈ X); as for the equivalence just asserted, note that we have
τ = τRτ in this case (while R = RτR is always true).

Restricting the just established one-to-one correspondence to spaces satisfying
the separation axiom T0 additionally (i.e., for any two distinct points there is an
open neighborhood of either of them not containing the other one), yields a one-
to-one correspondence between partially ordered sets and Alexandroff T0-spaces;
this is recorded for later purposes here.

The next topic to be treated is the topological impact of the modal system
S5. It is well-known that the accessibility relation of a Kripke frame validating
this logic is an equivalence. The topological counterpart of the class of all such
frames is given by the next proposition.

Proposition 3. Let T = (X, τ) be a topological space. Then, all S5-sentences
are (topologically) valid in T iff every τ-closed set is open.

Here, we have used the obvious notion of topological frame validity. A proof
of Proposition 3 only making recourse to the satisfaction relation |=t is given

2 This formulation and the one given in the introduction are easily seen to be
equivalent.
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in [2], p. 253. However, one can also argue with the aid of the accessibility
relation and the specialization order, respectively. For that, note that the R-
upward closed sets are precisely the unions of equivalence classes whenever R
is an equivalence relation. This implies that every τR-closed set is open in this
case. On the other hand, the latter demand on τ entails that Rτ is symmetric
and thus an equivalence, as can be seen easily.

Finally in this section, we deal with the question of topological completeness,
which has been touched upon in the introduction already. Concerning S4, several
ways to establish this property can be found in the literature quoted so far.

We focus on our bi-modal setting now, in view of subsequent applications. It
turns out that the most straightforward proceeding will do here, at least for the
time being.

Definition 3 (Bi-topological Structures).

1. Let X be a non-empty set and σ, τ topologies on X. Then, the tuple S :=
(X, σ, τ) is called a bi-topological space.

2. Let S = (X, σ, τ) be a bi-topological space and V an S-valuation. Then
M := (X, σ, τ, V ) is called a bi-topological model.

Unless stated otherwise, formulas from Form will be interpreted in bi-topol-
ogical structures by use of the bi-topological satisfaction relation |=t as from
now;3 the modality K should correspond to σ and the modality � to τ in
doing so.

Proposition 2 has an obvious bi-modal analogue which is formulated for the
more special structures we are interested in here.4

Proposition 4. Let M = (W, {R,R′}, V ) be a Kripke model such that R is an
equivalence relation, R′ a quasi-order, and, for all proposition variables, V is
constant along every R′-path. Moreover, let MM := (W, τR, τR′ , V ). Then, for
all α ∈ Form and w ∈ W , we have that M,w |= α iff MM , w |=t α.

Let LS denote the bi-modal logic determined by the axiom schemata 1 – 7
from above (and having modus ponens as well as the necessitation rules for both
modalities as proof rules). Then, we obtain the following theorem.

Theorem 1. The logic LS is sound and complete with respect to the class of all
bi-topological models (X, σ, τ, V ) satisfying the following requirements.

1. Every σ-closed set is open.
2. The topology τ is Alexandroff.
3. For every point x ∈ X, the valuation V is constant throughout the least

τ-open set containing x.

3 Concerning notations in this regard, we do not distinguish between the common
mono-modal case and the bi-modal one considered here; this should not lead to
confusion.

4 Some later auxiliary results too could have been stated in a more general form.
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Proof. First note that, for every point x ∈ X , a least τ -open neighborhood of x
really exists in case τ is Alexandroff. Now, the soundness of the axioms is clear
from the above, except for Axiom 5. However, the validity of Axiom 5 can be
established directly (i.e., by using the definition of |=t).

As to completeness, note that the canonical model MLS of the logic LS satisfies
all the conditions that are stated for M in Proposition 4. Thus, it suffices to prove
that MMLS

meets the three requirements given in the theorem. Since the first
and the second item are clear from the above again, an argument is needed for
the third one only. For it, note that, in general, the least τR′ -open neighborhood
of any point x is contained in the union of all R′-paths through x, provided
that R′ is a quasi-order. The path-constancy of the proposition variables, which
is satisfied on the canonical model, therefore implies the validity of the third
condition. This completes the proof of the theorem.

Can the preceding theorem be extended (in the correctly understood sense)
to the logic LSS? – Among other things, this question will be discussed in the
next section.

4 Topological Cross Axiom Spaces

It is not immediately clear how a topological counterpart of the cross property
looks like. The ‘näıve’ LSS-analogue of Theorem 1 should, therefore, apply to
the specialization orders of the topologies involved. We state the corresponding
result at the beginning of this section. Afterwards, we show that a particular
correspondence between topological concepts and the Cross Axioms appears
nevertheless. – We need a certain converse of Proposition 4.

Proposition 5. Let M := (X, σ, τ, V ) be a bi-topological model, and let MM :=
(X, {Rσ, Rτ}, V ). Then, for all α ∈ Form and x ∈ X, we have that M, x |=t α
iff MM, x |= α.

With that, the just announced theorem can be proved easily.

Theorem 2. The logic LLS is sound and complete with respect to the class of
all bi-topological models (X, σ, τ, V ) satisfying the following requirements.

1. Every σ-closed set is open.
2. The topology τ is Alexandroff.
3. The specialization orders Rσ and Rτ satisfy the cross property (i.e., Rτ ◦

Rσ ⊆ Rσ ◦Rτ ).
4. For every point x ∈ X, the valuation V is constant throughout the least

τ-open set containing x.

Proof. Only the third item must be considered yet. First, note that the canon-
ical relations of LLS (see [4], Definition 4.18) satisfy the cross property.5 Hence

5 A direct argument for this is given in [5], Proposition 2.2. Note that a simpler
argument would do in case of a normal modal logic, since the Cross Axioms K�p→
�Kp with p a proposition variable are Sahlqvist formulas; see [4], Theorem 4.42.
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completeness ensues in the same way as in the proof of Theorem 1. On the
other hand, the soundness of LLS for the given class of structures follows from
Proposition 5. This proves the theorem.

We now introduce a certain cover property for bi-topological spaces. Then
we show that this property corresponds to the Cross Axioms in the same way
as, for example, the transitivity of the accessibility relation associated with the
operator � corresponds to the formula schema �α → ��α (as related to the
most basic modal logic).

Definition 4 (Cover Property). Let S = (X, σ, τ) be a bi-topological space.
Then, S is said to satisfy the cover property iff, for all points x ∈ X, every
τ-open cover C of any σ-open neighborhood of x contains a σ-open cover C′ of
some τ-open neighborhood of x (to the effect that

⋃
C ⊇

⋃
C′).

The desired correspondence between the cover property and the Cross Axioms
is established by the following proposition (cf. Proposition 3).

Proposition 6. Let S = (X, σ, τ) be a bi-topological space. Then, all the Cross
Axioms are (topologically) valid in S iff S satisfies the cover property.

Proof. First, we prove that every Cross Axiom is valid in S whenever S satisfies
the cover property. To this end, take any bi-topological model M = (X, σ, τ, V )
based on S and any point x ∈ X , and assume that M, x |=t K�α (with α ∈
Form). Then there exists a σ-open neighborhood U of x such that �α holds in
M throughout U . Thus, for all y ∈ U there is a τ -open neighborhood Uy of y
such that α holds in M throughout Uy. Evidently, C := {Uy | y ∈ U} is a τ -
open cover of the σ-open neighborhood U of x. According to the cover property,
C contains a σ-open cover C′ of some τ -open neighborhood Ux of x. Take any
z ∈ Ux. Then there is a σ-open set U ′ ∈ C′ containing z. We have M, z |=t Kα
because U ′ ⊆

⋃
C′ ⊆

⋃
C. From that we obtain that M, x |=t �Kα, as z has

been chosen arbitrarily. This shows that K�α → �Kα is valid in S.
Second, suppose that the cover property is violated in S. Then there is a point

x ∈ X and a τ -open cover C of some σ-open neighborhood U of x such that no
σ-open cover C′ of any τ -open neighborhood U ′ of x is contained in C. Define
an S-valuation V as follows. Fix any p ∈ Prop, let V (p) :=

⋃
C, and let V be

arbitrary for the proposition variables different from p. Let M := (X, σ, τ, V ).
Then, M, x |=t K�p. On the other hand, for all τ -open neighborhoods U ′ of x
there is a point y ∈ U ′ such that every σ-open neighborhood U ′′ of y contains a
point z /∈

⋃
C, since otherwise we could construct a good-natured σ-open cover

C′ of some τ -open neighborhood of x. This implies that M, x |=t �L¬p. It follows
that some of the Cross Axioms are invalid in S.

Note that, in a sense, the just given argument is incompatible with the re-
quirement on the constance of proposition variables as stated, e.g., in the fourth
item of Theorem 2.

With a view to canonicity (and to the topological characterization result we
have in mind), we now connect the cover property with the cross property (in
the fashion of our reasoning after Proposition 3).
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Proposition 7. 1. Let S = (W, {R,R′}) be a cross axiom frame, and let SS :=
(W, τR, τR′). Then SS satisfies the cover property.

2. Let S = (X, σ, τ) be a bi-topological space with σ and τ being Alexandroff.
Suppose that S satisfies the cover property. Then the associated Kripke frame
SS := (X, {Rσ, Rτ}) satisfies the cross property.

Proof. 1. For every u ∈ W , let R(u) := {v ∈ W | uRv} and R′(u) := {v ∈
W | uR′ v}. Obviously, R(u) and R′(u) are the least τR-open and τR′ -open
neighborhoods of u, respectively; moreover, R(u) equals the R-equivalence
class of u. Now, let w ∈ W be any point, and let C be any τR′ -open cover
of some τR-open neighborhood Uw of w. Take the τR′ -open neighborhood
R′(w) of w and define C′ := {R(v) | v ∈ R′(w)}. Then, C′ clearly is a τR-
open cover of R′(w). We argue that

⋃
C′ ⊆

⋃
C. For this, take any x ∈

⋃
C′.

Then, x ∈ R(v) for some v ∈ R′(w). Thus we have w R′ v Rx. Due to the
cross property, it follows that w R y R′ x, for some y ∈ W . We obtain y ∈
R(w) ⊆ Uw because of the minimality of R(w). And we get x ∈ R′(y) ⊆ U
for some U ∈ C because of the minimality of R′(y) and the fact that y ∈ Uw.
This shows that x ∈

⋃
C, as desired.

2. Let xRτ y Rσ z be satisfied for any x, y, z ∈ X . We have σ = σRσ and
τ = τRτ , since σ and τ are Alexandroff; this was mentioned right after
Proposition 2 above. Thus, it makes sense to speak about the minimal τ -
open cover C of the minimal σ-open neighborhood Ux of the point x on the
one hand, on the other hand, we have Ux = Rσ(x) and C = {Rτ (u) | u ∈ Ux}.
According to the cover property, C contains a σ-open cover C̃ of some τ -open
neighborhood of x. For reasons of minimality, this means that C contains the
cover C′ of the minimal τ -open neighborhood of x defined in the first part
of the proof (here with Rσ instead of R and Rτ instead of R′ though) as
well. From xRτ y Rσ z we now infer z ∈

⋃
C′. Hence z ∈

⋃
C. This implies

that there exists a point v ∈ X such that xRσ v Rτ z, due to the choice of
C. Thus, the cross property is established.

As a consequence, we obtain the following characterization of bi-topological
spaces arising from cross axiom frames.

Theorem 3. Let S = (X, σ, τ) be a bi-topological space. Then there is a cross
axiom frame S = (W, {R,R′}) such that σ = τR and τ = τR′ iff

1. every σ-closed set is open,
2. the topology τ is Alexandroff, and
3. S satisfies the cover property.

Proof. The necessity of the three conditions follows from both Proposition 7.1
and some of the results quoted in Section 3. Now, assume that these conditions
are satisfied. Then σ is clearly Alexandroff. By Proposition 7.2, the frame SS =
(X, {Rσ, Rτ}) satisfies the cross property. Moreover,Rσ is an equivalence and Rτ

a quasi-order; see Section 3 again. Additionally, we have σ = τRσ and τ = τRτ .
This proves the theorem.
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In the next section, we will prove a similar (but more complex) statement
with regard to Kripke structures induced by subset spaces. This will be the
main outcome of this paper.

By virtue of Theorem 3, a bi-topological space S = (X, σ, τ) is called a topo-
logical cross axiom space iff those three requirements are satisfied. And a bi-
topological model M = (X, σ, τ, V ) based on a topological cross axiom space is
called a topological cross axiom model iff, for every point x ∈ X , the valuation
V is constant throughout the least τ -open set containing x.

We conclude this section with a version of Theorem 2 having a purely topo-
logical reading.

Theorem 4. The logic LLS is sound and complete with respect to the class of
all topological cross axiom models.

Proof. The soundness of LLS with respect to the given class of structures is clear
from (the uncritical part of) Proposition 6. Concerning completeness, we must
give reasons respecting just the cover property. We proceed as in the proof of
Theorem 2 relating to this, and apply Proposition 7.1 additionally.

Theorem 3 and Theorem 4 comprise, in particular, all that we can achieve with
regard to our characterization problem on the (modal-)logical side. However,
more turns out to be possible on the topological one.

5 The Characterization Theorem

We shall now specify a couple of further requirements for bi-topological Alexan-
droff spaces to arise from induced cross axiom frames. This puts us in a position
to state and prove the main result of this paper subsequently.

Definition 5 (Minimal Basis; Orthogonality).

1. Let S = (X, σ, τ) be a bi-topological space such that σ and τ are Alexandroff.
For any x ∈ X, let Rσ(x) := {y ∈ X | xRσ y} (as above), and let Rτ (x)
be defined analogously. Then, the sets Bσ := {Rσ(x) | x ∈ X} and Bτ :=
{Rτ (x) | x ∈ X} are called the minimal bases of σ and τ , respectively.

2. Let S, x, and Rτ (x), be as above. Then we let R−1
τ (x) := {y ∈ X | y Rτ x}

and Bτ := {R−1
τ (x) | x ∈ X}. The latter set is called the set of minimal

τ -closed sets.
3. Let A,B ⊆ P(X) be two sets of subsets of X. These sets are said to be

orthogonal iff any two members A ∈ A and B ∈ B intersect in at most one
point.

Note that Bσ and Bτ are indeed bases of σ and τ , respectively. Moreover, note
that, for every x ∈ X , the set R−1

τ (x) is downward closed (see Section 3) and
equals the closure {x} of {x} actually; this justifies the naming in Definition
5.2. Finally, the condition stated in the third item reflects, at least in part, the
geometric idea of orthogonality.

We obtain the following criterion resting on the just introduced notations.
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Proposition 8. Let S = (X, σ, τ) be a bi-topological space with σ and τ being
Alexandroff.

1. The minimal bases Bσ and Bτ are orthogonal iff, for all x, y ∈ X, there exists
at most one Rτ -successor of x inside Rσ(y).

2. The minimal base Bσ and the set Bτ of minimal τ-closed sets are orthogonal
iff, for all x, y ∈ X, there exists at most one Rτ -predecessor of x inside
Rσ(y).

Proof. 1. First, assume that Bσ and Bτ are orthogonal. Let x, y be any points
of X and suppose that two different Rτ -successors z1, z2 of x are contained
in Rσ(y). Then, however, a contradiction to the orthogonality of the minimal
bases immediately results, since both z1, z2 ∈ Rτ (x). – The sufficiency of the
condition can be seen easily as well.

2. This assertion can be proved in a similar manner.

For brevity, we say that a bi-topological space S satisfies the orthogonality
properties iff both conditions stated in Proposition 8 are met.

Our next requirement concerns a certain binary relation �S on the minimal
base Bσ of a bi-topological Alexandroff space S = (X, σ, τ). This relation should
be a quasi-order and, in a sense, without a gap. The precise definitions follow
right away.

Definition 6 (�S ; Density Property). Let S = (X, σ, τ) be a bi-topological
space with σ and τ being Alexandroff.

1. For all x, y ∈ X, put Rσ(x) �S Rσ(y) : ⇐⇒ there are x′ ∈ Rσ(x) and
y′ ∈ Rσ(y) such that y′ ∈ Rτ (x

′).
2. The just defined relation �S is said to satisfy the density property iff, when-

ever Rσ(x) �S Rσ(y) �S Rσ(z), then, for any x′ ∈ Rσ(x) and z′ ∈ Rσ(z)
such that z′ ∈ Rτ (x

′), there exists y′ ∈ Rσ(y) satisfying y′ ∈ Rτ (x
′) and

z′ ∈ Rτ (y
′).

With that, we obtain the following result with the aid of standard arguments
from the logic of subset spaces.

Proposition 9. Let S = (X, σ, τ) be a topological cross axiom space. Then, the
corresponding relation �S is

1. a quasi-order in any case, and
2. even a partial order if, in addition, the relation Rτ is antisymmetric and the

minimal bases Bσ and Bτ are orthogonal.

Proof. 1. The reflexivity of �S is obvious. In order to establish the transitivity
of this relation, we take advantage of the cross property, which is satisfied
by the frame SS = (X, {Rσ, Rτ}) according to Proposition 7.2.

2. This follows from the definitions with the aid of the cross property again.6

6 Note that this result can under certain conditions be obtained ‘purely logically’, by
adding a particular axiom schema for tree-like structures; see [9], Proposition 3.5.
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Finally, we introduce a condition that may appear somewhat odd to the reader
at first glance. However, its significance will become clear from the construction
in the proof of Theorem 5 below.

Definition 7 (Tamely Ramified). Let S = (X, σ, τ) be a bi-topological space
such that σ and τ are Alexandroff. Moreover, let Bσ and Bτ be the minimal bases
of σ and τ , respectively. Then we say that Bσ is tamely ramified across Bτ , iff
the following is satisfied for any two Rσ(x), Rσ(y) ∈ Bσ : if every point of Rσ(y)
is contained in the symmetric closure, taken with respect to Rτ , of Rσ(x), then
Rσ(x) �S Rσ(y).

It turns out that tame ramification in the sense of the previous definition is
always factual for spaces that are derived from induced Kripke frames.

Proposition 10. Let S = (X, σ, τ) be a bi-topological space and S = (X,O)
a subset frame such that σ = τRK

S
and τ = τR�

S
. Then Bσ is tamely ramified

across Bτ .

Proof. Due to the fact that R�
S originates from the containment relation, the

correctness of the assertion can be seen rather easily.

The preparatory work towards our main result has been completed by the
last proposition. Thus, we are in a position to prove our final theorem now.

Theorem 5. Let S = (X, σ, τ) be a bi-topological space. Then there is a subset
frame S = (X,O) such that σ = τRK

S
and τ = τR�

S
iff

1. every σ-closed set is open,
2. the topology τ is Alexandroff and satisfies the separation property T0,
3. S satisfies the cover property,
4. S satisfies the orthogonality properties,
5. the relation �S is a quasi-order satisfying the density property,
6. the minimal basis Bσ of σ is tamely ramified across the minimal basis Bτ

of τ , and
7. every element of the minimal basis Bσ contains a τ-open point.

Proof. The left-to-right direction is easy to prove. Let S = (X,O) be a subset
frame such that σ = τRK

S
and τ = τR�

S
. Items 1 and 2 then follow from topological

modal logic; see Section 3. Item 3 is clear from Proposition 7.1, since RK
S and R�

S
satisfy the cross property; see the end of Section 2. Furthermore, one is quickly
convinced that the first-order conditions corresponding to the orthogonality and
the density properties are applicable to RK

S and R�
S . By Proposition 8, S sat-

isfies the orthogonality properties, and by Proposition 9.1, the relation �S is
a quasi-order which, in particular, satisfies the density property. Proposition 10
guarantees that the last but one item is satisfied. For the last one, note that the
openness of {x} exactly means that x has no Rτ -successor apart from x itself.

For the other direction, assume that the seven requirements are met by S.
It suffices to show that SS = (X, {Rσ, Rτ}) is isomorphic to the Kripke frame
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SS =
(
WS , {RK

S , R�
S }
)
induced by some subset frame S = (Y,O), for we will have

σ = τRσ = τRK
S
and τ = τRτ = τR�

S
in this case (after identifying isomorphic

structures). – The following is clear from our previous statements and results.

(a) The relation Rσ is an equivalence (see Proposition 3 and the remark there-
after), and the relation Rτ is a partial order (see the remarks after Proposi-
tion 2).

(b) SS satisfies the cross property (see Proposition 7.2).
(c) For all x, y ∈ X , there exists at most one Rτ -successor of x inside the

equivalence class Rσ(y) of y, and there exists at most one Rτ -predecessor of
x inside Rσ(y) (see Proposition 8).

(d) The relation �S is a partial order (see Proposition 9.2).

The set Y will be obtained as a certain set of partial functions on Bσ shortly.7

For this purpose, let x, y ∈ X be given and suppose that Rσ(x) �S Rσ(y).
It can be concluded from (b) and (c) that the relation Rτ restricted to Rσ(x)
in the domain and Rσ(y) in the range, is an injective and surjective partial
function, say fRσ(x),Rσ(y). This function is, in fact, strictly partial because of
the last condition stated in the theorem. Now, let Y be the set of all partial
functions f : Bσ → X having a domain dom(f) that is maximal with respect to
the following three conditions:

– f(Rσ(x)) ∈ Rσ(x), for all Rσ(x) ∈ dom(f);
– f(Rσ(y)) = fRσ(x),Rσ(y)◦f(Rσ(x)), for all Rσ(x), Rσ(y) ∈ dom(f) satisfying

Rσ(x) �S Rσ(y);
– the range of f is Rτ -connected, i.e., for all x, y ∈ range(f), xRs

τ y is valid,
where Rs

τ denotes the symmetric closure of Rτ .

Note that (d) and the density property imply the coherence of the second con-
dition, whence the process of maximizing the domain is really possible.

For every x ∈ X , let URσ(x) := {f ∈ Y | f(Rσ(x)) exists}, and let O :=
{URσ(x) | x ∈ X}. Then, SS

∼= SS is valid for the subset frame S := (Y,O). To
see this, note that a one-to-one mapping h from the set NS of all neighborhood
situations of S onto the set of all points of X is mediated by f, URσ(x) �→ fRσ(x),
where fRσ(x) := f(Rσ(x)), in such a way that, for all f, g ∈ Y and x, y ∈ X with
f ∈ URσ(x), we have that

g ∈ URσ(x) ⇐⇒ gRσ(x) Rσ fRσ(x).

All this is rather easy to prove, and the claimed isomorphism is established with
regard to the K-component thus. As to the �-part, we prove that, for all f ∈ Y
and x, y ∈ X such that f ∈ URσ(x) ∩ URσ(y),

URσ(y) ⊆ URσ(x) ⇐⇒ fRσ(x) Rτ fRσ(y),

showing the compatibility of the containment relation ⊆ with the accessibility
relation Rτ . The right-to-left direction is more or less obvious. For the left-to-
right direction, assume that URσ(y) ⊆ URσ(x). This means that, for all f ∈ Y , if

7 We once more note that Bσ equals the set of all Rσ-equivalence classes.
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fRσ(y) is defined, then fRσ(x) is defined as well. According to the way the elements
of Y have been obtained, we conclude that every point of Rσ(y) is contained in
the symmetric closure, taken with respect to Rτ , of Rσ(x) from that. Now, the
ramification condition applies, ensuring the existence of points x′ ∈ Rσ(x) and
y′ ∈ Rσ(y) which materialize Rσ(x) �S Rσ(y). Since f ∈ URσ(x) ∩ URσ(y), it
follows that fRσ(x) Rτ fRσ(y) holds as well, whence the left-to-right direction is
proved, too. Consequently, h is an isomorphism, as desired.

The proof of Theorem 5 lights up the relative proximity of the topological
and the relational semantics of modal logic once again.

Finally in this section, we fix the analogue of Theorem 5 for bi-topological
models. In fact, the following corollary is obtained as an immediate consequence
of that theorem.

Corollary 1. A bi-topological model M is determined by a subset space in the
sense of the preceding theorem, iff

1. the bi-topological space underlying M satisfies all the conditions stated there,
and

2. the valuation of M meets the constancy property as formulated, e.g., in the
third item of Theorem 1.

6 Concluding Remarks

Investigations into multi-topological structures appear rather unfrequent in topo-
logical modal logic; see [2], Sect. 2 and Sect. 3 of Ch. 5, for some hints. The
present paper adds a new facet to this field by working out a hitherto undis-
covered connection between bi-modal logic and bi-topological spaces. We have,
actually, given a bi-modally oriented characterization of bi-topological spaces
arising from subset spaces here.

The second contribution of this paper is Theorem 4, stating the soundness and
completeness of the logic of subset spaces, LLS, with respect to the class of all
topological cross axiom spaces. In this connection, the question arises whether
this theorem can also be proved in a ‘more topological’ way, i.e., by means of
the approach to topological canonicity undertaken, e.g., in [1], Sect. 3.1.

Our new approach raises several issues that should be treated by future re-
search. We only mention two of the questions coming up here, in particular, by
confining ourselves to the framework of subset spaces. What is the bi-topological
effect of those additional schemata that are relevant to the logic of special classes
of subset spaces? And can notably topological spaces be characterized along the
lines followed in this paper? – Here is a concrete starting point towards a possible
answer. The Weak Directedness Axioms of common modal logic, ��α → ��α,
come along with the closure of the open sets under finite intersections in topo-
logic; see [5]. In topological modal logic, we have a corresponding class of spaces:
the extremally disconnected ones (where the closure of each open set is clopen by
definition); see [2], Sect. 2.6 of Ch. 5. But we neither know up to now whether the
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latter property is sufficient for the closure under finite intersections (as related
to the subset space semantics), nor how the Union Axioms of topologic can be
captured within the new framework.
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Abstract. We present a novel technique for combining statistical ma-
chine learning for proof-pattern recognition with symbolic methods for
lemma discovery. The resulting tool, ACL2(ml), gathers proof statis-
tics and uses statistical pattern-recognition to pre-processes data from
libraries, and then suggests auxiliary lemmas in new proofs by analogy
with already seen examples. This paper presents the implementation of
ACL2(ml) alongside theoretical descriptions of the proof-pattern recog-
nition and lemma discovery methods involved in it.

Keywords: Theorem Proving, Statistical Machine-Learning, Pattern
Recognition, Lemma Discovery, Analogy.

1 Introduction

Over the last few decades, theorem proving has seen major developments. Au-
tomated (first-order) theorem provers (ATPs) (e.g. E, Vampire, SPASS) and
SAT/SMT solvers (e.g. CVC3, Yices, Z3) are becoming increasingly fast and effi-
cient. Interactive (higher-order) theorem provers (ITPs) (e.g. Coq, Isabelle/HOL,
Agda, Mizar) have been enriched with dependent types, (co)inductive types, type
classes and provide rich programming environments.

The main conceptual difference between ATPs and ITPs lies in the styles of
proof development. For ATPs, the proof process is primarily an automatically
performed proof search in a first-order language. In ITPs, the proof is guided by
the user who specifies which tactics to apply. ITPs often work with higher-order
logic and type theory.

Communities working on development, implementation and applications of
ATPs and ITPs have accumulated big corpora of electronic proof libraries. How-
ever, the size of the libraries, as well as their technical and notational sophistica-
tion often stand in the way of efficient knowledge re-use. Very often, it is easier
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to start a new library from scratch rather than search the existing proof libraries
for potentially common heuristics and techniques.

Pattern-recognition [2] is an area of machine-learning that develops statistical
methods for discovering patterns in data. In the statistical sense, a pattern is
a correlation of several numeric features, by which the data is represented. For
instance, the correlation between the theorem statement and the auxiliary lem-
mas required in its proof can be data-mined to improve automation of premise
selection in ATPs [7, 8, 18, 22, 23]. The history of successful and unsuccessful
proof attempts and proof steps can also be used to inform interactive proof
development in ITPs [9, 17].

Statistical machine-learning methods are well-suited for fast processing of
big proof libraries, adapt well to proofs of varied sizes and complexities (first-
or higher-order); and are generally tolerant to noise. However, they have very
weak capacities for conceptualisation. For instance, ML4PG [17] only displays
the families of related proofs to the Coq user, and can tell the correlation of
which features formed the pattern, but it neither explains why this happens nor
formulates any conceptual proof hints.

While statistical methods focus on extracting information from existing large
theory libraries, many symbolic methods are instead concerned with automating
the discovery of lemmas in new theories [4, 6, 11, 13, 20, 21], while relying on
existing proof strategies, e.g. proof-planning and rippling [1]. These systems are
naturally more deterministic and algorithmic than statistical AI.

IsaCoSy [13] and IsaScheme [21] are two term synthesis systems built on
top of Isabelle. They generate candidate conjectures which are filtered through
a counter-example checker. Surviving conjectures are passed to an automated
prover and those proven are added to the theory. The systems differ in their
heuristics for term generation: IsaCoSy only generates irreducible terms, while
IsaScheme uses schemes [3] to specify the shapes of candidate theorems. A sim-
ilar system is QuickSpec and its extension HipSpec [4,5], which generates equa-
tional theorems about Haskell programs, using congruence closure for conjecture
generation. MATHsAiD [20] generates theories by forward reasoning from a given
set of axioms, applying various ‘interestingness’ heuristics.

Symbolic methods have limits: they can be slow on large inputs due to the
increase in the search space, rely on having access to good counter-example
finders for filtering of candidate conjectures and require existing proof strategies
for proving those remaining.

In this paper, we show that it is possible to combine statistical and symbolic
methods to get the best of both worlds: statistical pattern-recognition methods
are well-suited for finding families of similar proofs; symbolic tools can use this
data for more efficient lemma discovery. Feeding outputs of one algorithm to the
other leads to a very natural proof-pattern recognition system, see Figure 1. To
realise this general thesis about the synthesis of the two styles of proof-pattern
recognition, we have made the following methodological choices:

1) We chose the ACL2 prover for our experiments: it is based on first-order
logic and has features of both ITPs and ATPs. ACL2 will try to prove given



Proof-Pattern Recognition and Lemma Discovery in ACL2 391

User

feature extractionnew lemmas

Interface of ACL2(ml)

Symbolic Lemma Discovery

(Lemma Analogy)

Statistical Machine-Learning

(Clustering)

similar lemmas

similar lemmas

Fig. 1. Architecture of proof-pattern recognition methods in ACL2(ml). The Emacs
interface for ACL2 extracts important features from ACL2 theorems, connects to
machine-learning software, clusters the theorems there, and sends the result (fami-
lies of similar theorems) to the screen. In addition, for an unproved theorem T , it
sends the cluster C of T to the Lemma Analogy tool, which in its turn generates an
auxiliary lemma by analogy with auxiliary lemmas of the theorems in C.

conjectures automatically, but strongly relies on the user having supplied the
auxiliary lemmas required for rewriting. Thus, the user must often intervene
and advance the proof by adding new lemmas, much like in ITPs. Section 2
gives a brief introduction to ACL2.

2) On the machine-learning side, we chose to adapt the ML4PG [17] design
of interactive proof-pattern recognition; cf. Figure 1. We extended this work
with a new feature extraction algorithm for ACL2(ml), based on term trees
and recurrent clustering. Much like in ML4PG, we discover families of related
lemmas, rather than premise hierarchies like in [18,22,23]. Unlike [18,22,23], we
use clustering instead of supervised learning; and do not use sparse methods.
Section 3 explains our new method in detail.

3) On the symbolic side, we develop a novel lemma generation approach
which uses the statistical suggestions to reduce the search space. Speculating
the correct lemma in a proof can often be the eureka moment which allows a
proof to succeed. It is these eureka lemmas which we would like to reproduce
automatically. We propose an analogy driven approach where the term structure
of an example source lemma is analysed to produce an analogous target lemma
for a given target problem. In the context of ITP, the user is then presented with
an auxiliary lemma suggestion which is customised to the particular problem on
which he is working. Section 4 is devoted to this subject.

We implement the above choices in the ACL2 extension ACL2(ml), available
at [10]. Finally, we conclude with evaluation of this method in Section 5. The re-
sults we obtain with ACL2 have a wider significance, as methodology we develop
here would apply to a wide range of first-order theorem provers.

2 Background

ACL2 [14, 16] (standing for A Computational Logic for an Applicative Com-
mon Lisp) is a programming language, a logic, and a theorem prover supporting
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;; Factorial
1 (defun fact (n) (if (zp n) 1 (* n (fact (- n 1)))))

2 (defun helper-fact (n a) (if (zp n) a (helper-fact (- n 1) (* a n))))

3 (defun fact-tail (n) (helper-fact n 1))

4 (defthm fact-fact-tail (implies (natp n) (equal (fact-tail n) (fact n))))

;; 2^n
1 (defun power (n) (if (zp n) 1 (* 2 (power (- n 1)))))

2 (defun helper-power (n a) (if (zp n) a (helper-power (- n 1) (+ a a))))

3 (defun power-tail (n) (helper-power n 1))

4 (defthm power-power-tail (implies (natp n) (equal (power-tail n) (power n))))

;; Fibonacci
1 (defun fib (n) (if (zp n) 0 (if (equal n 1) 1 (+ (fib (- n 1)) (fib (- n 2))))))

2 (defun helper-fib (n j k) (if (zp n) j (if (equal n 1) k (helper-fib (- n 1) k (+ j k)))))

3 (defun fib-tail (n) (helper-fib n 0 1))

4 (defthm fib-fib-tail (implies (natp n) (equal (fib-tail n) (fib n))))

Fig. 2. ACL2 definitions and theorems. 1: recursive arithmetic functions. 2: helpers of
tail-recursive arithmetic functions. 3: tail-recursive arithmetic functions. 4: Equivalence
theorems of recursive and tail-recursive functions.

reasoning in the logic. The ACL2 programming language is an extension of an
applicative subset of Common Lisp. The ACL2 logic is an untyped first-order
logic with equality, used for specifying properties and reasoning about the func-
tions defined in the programming language. All the variables in the formulas
allowed by the ACL2 system are implicitly universally quantified. The syntax of
its terms and formulas is that of Common Lisp.

Example 1. Given the recursive and tail-recursive functions to compute factorial,
2n and Fibonacci, the ACL2 user can specify the equivalence between the func-
tions as shown in Figure 2 with theorems fact-fact-tail, power-power-tail
and fib-fib-tail. Note the similarity between these lemmas.

ACL2 has both automatic and interactive features. It is automatic in the
sense that once a defthm command is submitted, the user can no longer interact
with the system (the ACL2 proof engine applies a collection of automatic tactics
until either the conjecture is proven or none of the tactics is applicable). Often,
non-trivial results cannot be proven on the first attempt. The user then has
to interact with the prover by supplying a suitable collection of definitions and
auxiliary lemmas, used in subsequent proofs as rewriting rules. These lemmas
are suggested by a preconceived hand proof or by inspection of failed proofs; this
kind of interaction is referred to as The Method [14].
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Example 2. ACL2’s first attempt at proving the conjecture fact-fact-tail of
Example 1 fails, and the user needs to introduce a lemma (inspired by the failed
proof of fact-fact-tail), which is automatically proven by ACL2:

(defthm fact-fact-tail-helper (implies (and (natp n) (natp a))

(equal (helper-fact n a) (* a (fact n)))))

ACL2 can now automatically prove the conjecture fact-fact-tail, using this
auxiliary result. In later sections, we will show how ACL2(ml) automatically
detects similar theorems and generates auxiliary lemmas for them.

The proofs of equivalence between the recursive and tail-recursive functions in
Figure 2 follow a common pattern: the equivalence theorems are not proven by
ACL2 in the first attempt, and the user must introduce auxiliary lemmas about
the helper functions. In general, the detection of common patterns and the
generation of new lemmas from those patterns is based on user’s experience and
can be challenging. The ACL2 distribution consists of several libraries containing
hundreds of theorems, developed by several users with their own notations. It can
be a challenge to detect patterns across different users, notations and libraries.
Moreover, given two similar theorems T1 and T2, the lemmas used to prove T1

can be substantially different to the ones needed for T2 (e.g. different function
symbols, different lemma structures, additional conditions, new concepts).

In the next sections, we describe how these challenges can be addressed auto-
matically. We consider two running examples. The first one is the JVM library
developed in [12]. This library contains the correctness proofs of the Java byte-
code associated with several arithmetic programs such as multiplication, factorial
and Fibonacci, including the theorems of Figure 2. As a second running example,
we consider the Lists library presented in [15]. From this library, we consider
three functions that will appear later in the paper: sort (that sorts a list of
natural numbers), rev (which reverses a list), and int (which takes two lists
as arguments and returns the list of elements that appear in both); and three
theorems about these functions.

(defthm sortsort (implies (nat-listp x) (equal (sort (sort x)) (sort x))))

(defthm revrev (implies (true-listp x) (equal (rev (rev x)) x)))

(defthm int-x-x (implies (true-listp x) (equal (int x x) x)))

3 Statistical Proof-Pattern Recognition with ACL2(ml)

We present a statistical proof-pattern recognition extension to ACL2, called
ACL2(ml). Its implementation design follows the ML4PG tool for Coq [17]:
this Emacs-based machine-learning extension works on the background of the
theorem prover, gathers statistics of proof features, and then, on user’s request,
connects to a machine-learning toolbox (MATLAB or Weka); groups the proofs
using clustering algorithms, and displays families of related proofs to the user.
This approach allows real-time interaction between the user, the prover, and the
machine-learning systems; as [17] explains in detail.
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implies

natp

n

equal

fact-tail fact

n n

impl natp equal fact-t. fact n n’ n”

impl 0 1 1 0 0 0 0 0
natp 0 0 0 0 0 1 0 0
equal 0 0 0 1 1 0 0 0
fact-t. 0 0 0 0 0 0 1 0
fact 0 0 0 0 0 0 0 1
n 0 0 0 0 0 0 0 0
n’ 0 0 0 0 0 0 0 0
n” 0 0 0 0 0 0 0 0

Fig. 3. Term tree and adjacency matrix for Theorem fact-fact-tail; assuming the
root-to-leaf direction of edges

Here, we concentrate only on original components of ACL2(ml) as compared
to ML4PG. There are two such features: a novel algorithm for term tree feature
extraction and the method of recurrent clustering.

Term Tree Feature Extraction in ACL2(ml). The discovery of statisti-
cally significant features in data is a research area of its own in machine learning,
known as feature extraction [2]. Irrespective of the particular algorithm used,
most pattern-recognition tools will require that the features have numeric val-
ues; and the number of selected features is limited and fixed (sparse methods,
like the ones applied in e.g. [18,22,23], are the exception to the latter rule). The
feature extraction algorithm implemented in ML4PG was based on correlation
between the goal shapes, the tactics and tactic parameters within a few steps
of the interactive proof. As ACL2 is not a tactic-driven language, we need to
extract features from the ACL2 terms directly. Feature extraction from terms
or term trees is common to most feature-extraction algorithms implemented in
automated theorem provers: see e.g. [18, 22, 23].

Definition 1 (Term tree). A variable or a constant is represented by a tree
consisting of one single node, labelled by the variable or the constant itself. A
function application f(t1, . . . , tn) is represented by the tree with the root node
labelled by f , and its immediate subtrees given by trees representing t1, . . . , tn.

Example 3. Theorem fact-fact-tail from Example 1 can be represented by
the term tree of Figure 3.

A variety of methods exists to represent trees as matrices, for instance using
adjacency matrices and incidence matrices, with the former shown in Figure 3.
The adjacency matrix and the various previous methods of term tree feature
extraction (e.g. [18,22,23]) share the following common properties: different tree
nodes are represented by distinct matrix entries (features); the matrix entries
(feature values) are binary; and the size of the matrix depend on the tree size. For
big libraries, such matrices can grow very large (up to 106 in some experiments)
and at the same time very sparse, which implies the use of sparse machine-
learning in [18, 22, 23].

In ACL2(ml), we implement a more compact feature extraction, where a total
number of features is fixed for all libraries at 49, and the average density of
matrices is 20%. The smaller and denser feature vectors can be used to data-mine
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Table 1. Left. Dense term tree feature extraction matrix for theorem fact-fact-tail.
Right. Dense term tree feature extraction matrix for definition fact. The operator “::”
indicates the concatenation of values (e.g. 4::5=45).

variables arity 0 arity 1 arity 2

td0 0 0 0 [implies]
td1 0 0 [natp] [equal]
td2 [n] 0 [fact-tail]::[fact] 0
td3 [n]::[n] 0 0 0

variables arity 0 arity 1 arity 2 arity 3

td0 0 0 0 0 [if]
td1 0 [1] [zp] [*] 0
td2 [n]::[n] 0 [fact] 0 0
td3 0 0 0 [-] 0
td4 [n] [1] 0 0 0

both big and small data sets. Large and sparse feature vectors would require to
use big data sets of proofs, where the size of the example data set is comparable to
the number of features. In our interactive setting, it is crucial that the ACL2(ml)
tool works equally well with both big and small proof libraries; and that the user
can interact with it at any stage of the proof development.

We develop a method to overcome the problem of having to track a large
(potentially unlimited) number of ACL2 symbols by a finite number of features,
as follows. The ACL2 symbols are represented by distinct feature values given
by rational numbers. The feature values are computed dynamically by recurrent
clustering algorithm, thus reflecting the recursive nature of the ACL2 functions
and proofs. The features are given by the finite number of properties common
to all possible term trees: the term arity and the term tree depth; see Table 1.
This is formalised in the following definitions.

Definition 2 (Term tree depth level). Given a term tree T , the depth of
the node t in T , denoted by depth(t), is defined as follows:

− depth(t) = 0, if t is a root node;
− depth(t) = n + 1, where n is the depth of the parent node of t.

Definition 3 (ACL2(ml) term tree matrices). Given a term tree T for a
term with signature Σ, and a function [.] : Σ → Q, the ACL2(ml) term tree
matrix MT is a 7× 7 matrix that satisfies the following conditions:

− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is a
variable and depth(t) = j.

− the (i, j)-th entry of MT (i 
= 0) is a number [t], such that t is a node in
T , t has arity i + 1 and depth(t) = j.

We deliberately specify [.] only by its type in Definition 3. In ACL2(ml), this
function is dynamically re-defined for every library and every given proof stage,
as we are going to describe shortly in Definition 4. In practice, there will be a
set of such functions computed in every session of ACL2(ml).

To make the feature extraction uniform across all ACL2 terms appearing in
the library, the matrices are extended to cover terms up to arity n and tree-
depth m. The parameters n and m can vary slightly; for all libraries considered
in the paper n = 5 and m = 7 were sufficient, giving a feature vector size of
49 – a small size compared to sizes up to 106 in sparse approaches [18, 22, 23].
Having a clustering algorithm working for small sets of examples is crucial for
the technique of recurrent clustering we implement for ACL2(ml).
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Recurrent Clustering.As discussed above, the function [.] influences results
of ACL2(ml) proof-pattern recognition; and the computation of [.] needs to be
sensitive to the similarities that exist between the symbols appearing in the
proofs. As ACL2 is a functional language, every entry in a term tree is necessarily
itself defined in ACL2. This symbol definition can itself be clustered against other
definitions used by the library; and the process can be repeated recursively to
include all the necessary standard library definitions. This is how the feature
extraction becomes a part of recurrent clustering in ACL2(ml).

We first define some essential clustering parameters. ACL2(ml) connects auto-
matically to clustering [2] algorithms available in Weka (K-means, FarthestFirst
and E.M.). Clustering techniques divide data into n groups of similar objects
(clusters), where the value of n is a learning parameter provided by the user.
Increasing the value of n makes the algorithm separate objects into more classes,
and, as a consequence, each cluster will contain fewer examples. There is a num-
ber of heuristics to determine the optimal value of n; ACL2(ml) has its own
function to dynamically adjust n for every run of clustering using an auxiliary
granularity parameter. Granularity can be varied by the user; and ranges be-
tween 1 and 5, low granularity produces big and general clusters while high
granularity produces small and precise clusters (see the top row of Table 2).
Given a granularity value g, the number of clusters n is given by the formula

n = 'objects to cluster
10− g (.

The clustering algorithm assigns a proximity value to every term in a cluster.
This ranges from 0 to 1, and indicates the certainty of the given example belong-
ing to the cluster. ACL2(ml) shares with ML4PG some additional heuristics to
ensure output quality, e.g., all experiments are run 200 times and only the ones
with high frequencies are displayed to the user.

The choice of clustering algorithm, granularity and ACL2 libraries are ac-
commodated in ACL2(ml) through a menu included in the Emacs interface. On
user’s demand, the ACL2(ml) interface displays families of related theorems; we
call this process Theorem Clustering. In addition, ACL2(ml) clusters all the li-
brary definitions in the background every time a new definition is introduced.
We call this process Definition Clustering.

The main reason for distinguishing theorem clustering and definition cluster-
ing is as follows. Theorem clustering is the ultimate goal of the proof mining
here, but the feature tables for the theorems depend on the numeric represen-
tation of the symbols appearing in the theorems (see Definition 3 and Table 1).
These symbols are normally defined within the libraries one uses, or else im-
ported from CLISP. The following definition proceeds inductively on the type of
symbols appearing in ACL2 definitions.

Definition 4 (Function [.]). Given the nth term definition of the library (call
the term t), a function [.] is inductively defined for every symbol s in t as follows:
− [s] = i, if s is the ith distinct variable in t (note that all formulas are implicitly
universally quantified in ACL2);
− [s] = −[m], if t is a recursive definition defining the function s with measure
function m automatically assigned by the ACL2;
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∗ Type r e c o gn i s e r s (r = {symbolp , characterp , s tr ingp , consp , acl2−numberp , integerp ,

rat i ona lp , complex−ra t i ona l p}) : [ri] = 1 +
∑i

j=1
1

10×2j−1 ( where ri i s the ith

element o f r ) .

∗ Constructors (c = {cons , complex}) : [ci] = 2 +
∑i

j=1
1

10×2j−1 .

∗ Acce ssor s (a1 = {car , cdr} , a2 = {denominator , numerator} , a3 = { rea lpar t , imagpart}) :

[a
j
i
] = 3 + 1

10×j
+

i−1
100

.

∗ Operations on numbers (o = {unary−/, unary−−, binary −+, binary −∗}) :

[oi] = 4 +
∑i

j=1
1

10×2j−1 .

∗ I n t eg e r s and r a t i o na l numbers : [0] = 4.3 , [n] = 4.3 +
|n|
10

( with n �= 0 and |n| < 1) and

[n] = 4.3 + 1
100∗|n| ( with n �= 0 and |n| ≥ 1) .

∗ Boolean ope ra t ions (b = {equal , i f , <}) : [bi] = 5 +
∑i

j=1
1

10×2j−1 .

Fig. 4. Formulas to compute the value of function [.] for the ACL2 functions imported
from CLISP. The above formulas serve to assign closer values to the functions within
each of the six above groups, and more distant numbers across the groups – thus
distinguishing the groups unambiguously.

− [s] = k , if s is a function imported from CLISP; and [s] = k in Figure 4;
− [s] = 5 + 2 × j + p, where Cj is a cluster obtained as a result of definition
clustering with granularity 3 for library definitions 1 to n − 1, s ∈ Cj and p is
the proximity value of s in Cj. (Note that a cluster in definition clustering is
given by a set of terms; and the default granularity 3 generally provides a good
balance between the size of clusters and their precision.)

Note the recurrent nature of clustering in Definition 4, with symbol number-
ing for the nth term depending on the clustering results for previous n−1 terms.
As the above definition implies, the function [.] is adaptive, and is recomputed
automatically when new definitions (and hence new symbols) are introduced.
The motivation behind the various parameters of Definition 4 is as follows:
− Variables. The variable encoding reflects the number and order of unique vari-
ables appearing in the term, note its correspondence to the De Bruijn indexes.
− Recursive case. For every recursive function s, ACL2 assigns a termination
measure function m. So, m necessarily exists for all recursive definitions and
implicitly contains some “type” information (e.g. the measure for the function
rev is the length of its input and the measure for fact is the value of its input).
It has a negative value in order for feature values to distinguish the occurrence
of the inductive symbol being currently defined from occurrence of any external
functions invoked in the body of the term. The value −[m] identifies all induc-
tively defined symbols with the same ACL2 termination measure function.
− Finally, the formula 5+2×j+p assigns [s] a value within [5+2×j, 5+2×j+1],
depending on their statistical proximity p for that cluster – p always lies within
[0, 1]. Thus, elements of the same cluster have closer values comparing to the val-
ues assigned to elements of other clusters or to the imported CLISP functions.

We finish this section with some examples of ACL2(ml) clustering. All exam-
ples are run with several clustering functions and a choice of statistical parame-
ters, allowing us to evaluate whether the feature extraction method we present
here is robust across a range of algorithms, see Table 2.
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Table 2. Results of Clustering experiments in ACL2(ml) for a choice of algorithms
and granularities. When granularity g is chosen by the user, ACL2(ml) dynamically
calculates the number n of clusters; the table shows the size of one most relevant
cluster that ACL2(ml) displays to the user in each case. Top table. Experiments
for Theorem fib-fib-tail using JVM library (150 lemmas). We mark if the cluster
contains (in addition to Theorem fib-fib-tail): a) Theorem fact-fact-tail, b) The-
orem power-power-tail, c) other theorems related to the equivalence of recursive and
tail-recursive functions. Bottom table. Experiments for Theorem revrev using Lists
library (100 lemmas). All the clusters contain theorems d) sortsort and e) int-x-x (in
addition to revrev). Note the stable performance of our feature extraction algorithm
across several algorithms and parameters.

Algorithm:
g = 1 g = 2 g = 3 g = 4 g = 5

(n = 16) (n = 18) (n = 21) (n = 25) (n = 30)

fib-fib-tail experiments
K-means 9a,b,c 4a,b,c 3a,c 2a 2a

(one relevant cluster)
E.M. 16a,b,c 16a,b,c 9a,b,c 4a,b,c 4a,b,c

FarthestFirst 12a,b,c 12a,b,c 10a,b,c 5a,b,c 4a,b,c

Algorithm:
g = 1 g = 2 g = 3 g = 4 g = 5

(n = 11) (n = 12) (n = 14) (n = 16) (n = 20)

revrev experiments
K-means 22d,e 22d,e 20d,e 11d,e 3d,e

(one relevant cluster)
E.M. 29d,e 25d,e 25d,e 23d,e 19d,e

FarthestFirst 45d,e 34d,e 30d,e 26d,e 15d,e

Example 4. Using the JVM library, ACL2(ml) detects lemmas similar to the-
orem fib-fib-tail (see Figure 2). Table 2 shows the sizes of clusters that
ACL2(ml) will display for this theorem for various clustering algorithms and
granularities. In Table 2, we can see a clear pattern: fib-fib-tail is consis-
tently grouped with other theorems related to the equivalence of recursive and
tail-recursive functions – this is done with all variations of learning algorithms
and granularities, albeit with varied degree of precision. For this set of examples
and this stage of the proof, the feature extraction function [.] returned values:
[fact] = 12.974, [power] = 12.973, [fib] = 12.618.
[helper-fact] = 16.961, [helper-power] = 16.967, [helper-fib] = 16.431.
[fact-tail] = 18.970, [power-tail] = 18.969, [fib-tail] = 18.735.
Note that the numbers above correspond to our intuitive grouping in Figure 2.

Table 2 also shows the lemmas of library Lists that are similar to revrev. In
this case, the most precise cluster is detected by K-means with g = 5, but we can
notice that revrev is always clustered with theorems sortsort and int-x-x.

4 Lemma Discovery in ACL2(ml)

One of the motivations of this research is to provide the ACL2 users with an
efficient interactive lemma suggestion mechanism when automated proof search
fails. The symbolic side of ACL2(ml) uses analogical reasoning to efficiently pro-
duce lemmas which are relevant to the current conjecture. In particular, it auto-
matically attempts to suggest lemmas which are characterised as eureka lemmas
– i.e. ones whose invention is mathematically creative and difficult to automate.
In Section 3, we described how ACL2(ml) employs statistical machine-learning
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Fig. 5. Left: The source theorem and lemma along with the target theorem for which
we seek an analogous lemma. Right: overview of the process of generating analogical
lemmas. Here the label iteration is the iteration step and mappings is a count of the
number of analogy mappings.

to determine similarity of theorem statements based on the term structure. In
this section, we show how ACL2(ml) uses this information to construct analogous
lemmas – this greatly reduces the search space for lemma discovery.

We introduce the following terminology: A Target Theorem (TT) is a theorem
currently being attempted in ACL2, but requiring user’s intervention. A Source
Theorem (ST) is a theorem which has been suggested as similar to the TT
by the statistical ACL2(ml). A Source Lemma (SL) is a user-supplied lemma
required for proving the source theorem. The symbolic side of ACL2(ml) groups
(potentially multiple) statistical suggestions into ST and SL pairs, each being
evaluated in turn. The process then outputs some Target Lemmas (TLs) — these
lemmas are analogical to some SL and not falsified by counter-example checking.

Example 5. Let us consider the case shown by Figure 5, where a user of ACL2
wants to prove the TT1: (helper-fib n 0 1) = (fib n). As described in Section
3 and Table 2, ACL2(ml) suggests the closest analogy to be:
(helper-fact n 1) = (fact n). Only one user-defined auxiliary lemma is used
in the proof of this ST: (helper-fact n a) = (* a (fact n)). The job of the
lemma analogy process is to construct the corresponding TL for the fibonacci
example, this will be our running example throughout this section.

The overall process for lemma analogy is shown in Figure 5. It has two main
components: Analogy Mapping and Term Tree Mutation. Analogy Mapping cal-
culates which symbols could be analogical to each other using the definition
clustering techniques from Section 3. Term Tree Mutation then uses this infor-
mation to construct candidate target lemmas analogical to a given SL. Symbols
belonging to the background theory, i.e. symbols shared between the source and
target, are not changed by Analogy Mapping.

1 To ease readability, we use infix notation instead of ACL2 notation, e.g. t1 = t2

instead of (equal t1 t2).
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Definition 5 (Analogy Mapping A). For all symbols s1, . . . , sn occurring in
the current ST, the set of admissible analogy mappings is the set of all mappings
A such that
- A(si) = si for all shared background symbols; otherwise:
- A(si) = sj for all combinations of i, j ∈ 1 . . . n, such that si and sj belong to
the same cluster in the last iteration of definition clustering.

Example 6. For our running example, the shared background theory includes
symbols {+, *,-, 1, 0}. We thus get a mapping:
A = {fact �→ fib, helper-fact �→ helper-fib, + �→ +, 1 �→ 1 . . . }

Term Tree Mutation. Given an analogy mapping, candidate lemmas are
constructed by mutating the term tree of the SL. IsaScheme [21] works similarly,
by defining schemes which determine the shape of a generated term. Here, we
extend this idea by iteratively allowing larger perturbations on this shape if
no suitable candidate lemma has been found. We refer to this as mutation, an
overview of the process is shown in Figure 5. The algorithm proceeds down three
levels of increasing term tree mutation. After each iteration, we test the validity
of the set of generated equations using a counter-example checker. If no candidate
conjecture survives counter-example checking, mutation proceeds to the next
iteration. The Term Tree Mutation algorithm for the case of equational lemmas
is shown in Figure 6, however note that each sub-routine work on arbitrary
terms and the mutation algorithm can thus trivially be generalised. The first
iteration, Tree Reconstruction, replaces symbols in the SL with their analogical
counterparts. The second iteration, Node Expansion further mutates the term,
by synthesising small terms (max depth 2) in place of variables. Finally, the last
iteration, Term Tree Expansion similarly adds new term structure, but on the
top-level of the term.

Iteration 1 – Tree Reconstruction. The first iteration recursively replaces
symbols in the source term by their analogical counterpart specified by A. If the
analogous function has fewer arguments than the source, we simply ignore excess
arguments. If it has more arguments, we insert variables in the free positions.

Example 7. The running example has SL (helper-fact n a) = (* a (fact n))

with A as in Example 6. TreeRec performs the replacements to produce sets
of candidate left- and right-hand sides, including for instance, the potential
left-hand side (helper-fib n n1 a) and the right-hand sides (* a (fib n)) and
(* n1 (fib a)) – as well as other variants with variables in different order. Note
that we introduce a new variable n1 as helper-fib has one more argument than
its analogical counterpart helper-fact. In this case, no combination of left- and
right-hand sides yield an equational theorem.

Iteration 2 – Node Expansion. If Tree Reconstruction fails to produce
any conjecture passing counter-example testing, the second iteration synthesises
terms which are allowed to replace variables, thus growing the term tree from
the leaves. These synthesised terms are however limited to depth 2 and built
from the shared function symbols, to keep the search space tractable.
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TTMutation
Input: An analogy mapping A, a set of shared symbols F, and an equational source

term tl = tr.

1. Compute Tree Reconstructions giving sets of candidate left- and right hand sides.
L1 = TreeRec(A, tl)
R1 = TreeRec(A, tr)

Counter-example check all pairs of terms as candidate equations.
Res = TestAllEqs(L1, R1)
if not(Res = []) then return Res
If no candidate lemma found, continue to next iteration.

else

2. Compute Node Expansions
L2 = map (NodeExp F) L1
R2 = map (NodeExp F) L2

Counter-example check all pairs of terms generated so far as candidate equations.
Res = TestAllEqs(L1++L2, R1++R2)
. . .

3. Compute Tree Expansions
L3 = (TreeExp F) L2
R3 = (TreeExp F) R2

return TestAllEqs (L1++L2++L3, R1++R2++R3)

Fig. 6. Term Tree Mutation. The algorithm proceeds through three iterations of in-
creasingly mutating the source term. This work is performed by the functions TreeRec,
NodeExp and TreeExp. The left- and right hand sides of the original equation are mu-
tated separately and after each step all combinations of equalities are counter-example
tested (by the function TestAllEqs).

Example 8. In our running example, we look at the new terms generated from
the right-hand side of the SL. Suppose we start from one candidate from the pre-
vious iteration: (* n1 (fib a)). Node Expansion will consider all possible ways
of replacing the variables a and/or n1 by terms built from shared background
theory functions {+, *, -}, applied to available variables, {a, n, n1}, and con-
stants, {1, 0}. The set of potential right-hand sides will now include terms such
as (* n1 (fib (- n 1))) (having replaced a by (- n 1)), as well as many more
similar alternatives.

Iteration 3 – Term Tree Expansion. As opposed to Iteration 2, which in-
troduced new term structure at the leaves, this phase allows for insertion of term
structure at the top level. Term Tree Expansion considers all terms synthesised
so far and explores how they can be used as arguments to shared background
theory functions.

Example 9. For the running example, we consider the whole set of candidate
terms for the right-hand side. We consider all terms that can be built giv-
ing some combination of these as arguments to the background theory func-
tions {+, *, -}. For instance, one of the new terms that is built in this iter-
ation is (+ (* n (fib (- n1 1))) (* a (fib n1)), having added a top-level +.
The counter-example checker does not find a counter-example for the conjecture
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(helper-fib n n1 a) = (+ (* n (fib (- n1 1))) (* a (fib n1)). Hence, the re-
sult is shown to the user as a suggestion of an auxiliary lemma to employ in the
current proof.

5 Evaluation and Conclusions

We have presented ACL2(ml), an ACL2 extension combining statistical ma-
chine learning, to detect proof patterns, with symbolic techniques for generating
new auxiliary lemmas. All software and extensive evaluation results are avail-
able from [10]. Both sides of ACL2(ml) are original techniques on their own.
However, comparing ACL2(ml) with other alternative tools, two of its features
distinguish it from all other approaches: its methods of generating the proof-
hints interactively and in real-time, in response to the user’s call; and secondly,
its flexible environment for integration of statistical and symbolic techniques.
We finish with an evaluation of the system.

Scalability. The ACL2 proofs libraries can grow very big, especially in indus-
trial scenarios. The statistical ACL2(ml) tool works well with libraries of varied
sizes and complexities; and does not need any fine-tuning when the user adds
more libraries. To illustrate this, we increased by 6.64 times the data set used
in Example 4 and Table 2 (by adding as noise lemmas coming from standard
ACL2 libraries; and also the ones presented in [19] – the data set contains 996
theorems). Table 3 shows that ACL2(ml) still finds precise clusters; e.g., it still
finds a cluster containing exactly the three theorems proving equivalence of re-
cursive and tail-recursive functions similar to fib-fib-tail. Similar results are
shown with respect to other functions from e.g. JVM library, see [10].

Table 3. Results of Clustering experiments in ACL2(ml) for k−means clustering al-
gorithm and a choice of granularities. Experiments for Theorem fib-fib-tail. We
mark if the cluster contains (in addition to Theorem fib-fib-tail): a) Theorem
fact-fact-tail, b) Theorem power-power-tail, c) theorems related to the equiva-
lence of recursive and tail-recursive functions. The size of the data set is 996 theorems
coming from the JVM library [12], the standard ACL2 libraries: Lists, powerlists and
sorting; and a library related to the formalisation of a computer algebra system pre-
sented in [19].

g = 1 g = 2 g = 3 g = 4 g = 5
(n = 110) (n = 124) (n = 142) (n = 166) (n = 199)

fib-fib-tail 57a,b,c 50a,b,c 25a,b,c 8a,b,c 4a,b,c

Usability of Statistical Suggestions. The statistical side of ACL2(ml) is
not deterministic; but it is possible to empirically evaluate the usability of the
statistical results produced by ACL2(ml). Using the data set containing 996 theo-
rems presented in Table 3, and considering the clusters obtained with granularity
5, we notice that: 37% of clusters identified by ACL2(ml) can be directly used
by the Lemma Analogy tool of ACL2(ml) to mutate lemmas. Additionally, 15%
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of clusters contain theorems that use the same lemmas in their proofs, another
15% of clusters consist of theorems that are used in the proofs of other theorems
of the same cluster, and about 19% of clusters contain basic theorems whose
proofs are similar, but based on simplification, and hence unsuitable for Lemma
Analogy application. Only 14% of clusters do not show a clear correlation that
could be reused.

Modularity. ACL2(ml) provides a flexible environment for integrating sta-
tistical and symbolic machine-learning methods. The statistical parameters can
be easily tuned to provide a better input for the Analogy tool.

Example 10. Consider the generation of auxiliary lemmas for fib-fib-tail and
revrev. The auxiliary lemma for fib-fib-tail is generated from the lemma
marked with either a or b in Table 2. Other lemmas in this cluster can be
considered as noise. In this case, the granularity and algorithm choice are not
particularly relevant because the auxiliary lemma can be created from all the
clusters and the search space is small. However, the correct auxiliary lemma is
generated faster when increasing the granularity parameter.

In the case of revrev, the relevant clusters are bigger than in the case of
fib-fib-tail and the relevant lemma for revrev is only generated from the-
orem sortsort. Then, the noise can be reduced by setting ACL2(ml) to the
highest granularity 5 with K-means algorithm, which reduces the cluster to 3
lemmas.

All our running examples were based on the cases when the proofs of the
theorems required introduction of only one user-defined auxiliary lemma; and
hence the analogy tool concentrated only on them. However, in the general case,
the similar theorems found by statistical ACL2(ml) can rely on several auxiliary
lemmas. To help the Analogy tool decide which of them should be used for new
lemma generation, the statistical tool can be applied recursively to cluster these
auxiliary lemmas; and thus find those more likely to result in a good analogy.

Lemma Discovery. The Analogy algorithm is designed to be fast and reduce
the combinatorial explosion introduced by typical theory exploration techniques.
By starting from an exemplar source lemma, we use mutation to perturb the
term. We compare our tool with QuickSpec [5] – a state of the art system for
generating equational conjectures about Haskell programs. While QuickSpec is
designed to suggest a number of conjectures about a given set of symbols, the
lemma analogy system aims at just discovering a few lemmas relevant to some
particular proof attempt.

The ACL2(ml) approach is more suitable for integration into an ITP, as anal-
ogy can reduce the search space, making lemma discovery tractable in theories
where QuickSpec runs out of memory. QuickSpec works by generating all terms
up to a given depth (default is 3) and then use testing to evaluate the terms and
divide them into equivalence classes. These represent a large number of equations
so the set is pruned before displaying it to the user in an attempt to only show a
small set of interesting equations. Table 4 shows the results of all combinations
of source and target theorems from the examples used on the natural numbers
examples introduced into ACL2(ml). QuickSpec takes as input only the function
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Table 4. Results of lemma analogy in comparison with QuickSpec. 
n denotes a
success with n returned lemmas, and (
n) denotes a valid generated lemma which is
not applicable to the TT. × denote failure to find exactly the desired lemma, while
OoM denotes that the system ran out of memory. The numbers correspond to the
number of formulae generated by QuickSpec

Target QuickSpec
fact power expt sum sum sq mult fib Lemma Valid Invalid

Source

fact - 
1 
1 
1 
1 
2 
1 × 10 5
power 
1 - 
1 
1 
1 
2 
1 × 17 4
expt 
1 
1 - 
1 
1 
2 
1 × OoM OoM
sum 
1 
1 
1 - 
1 
2 
1 × 7 2
sum sq 
1 
1 
1 
1 - 
2 
1 × 7 1
mult 
1 
1 
1 
1 
1 - 
1 × 200 20
fib (
2) (
2) × × × × - × OoM OoM

symbols from the target theorems for each run. Both systems produce results in-
stantly, except in the cases where QuickSpec runs into exponential blowups. The
Analogy tool usually returns one lemma relevant to the TT, whereas QuickSpec
may return a very large number of results (some of which are not valid), which
is not ideal for displaying to a user of an interactive system. It also runs out
of memory on examples involving functions with many arguments and a higher
degree of commutativity, such as the tail recursive version of multiplication (as
the number of terms within its depth limit increases). These kind of theories are
generally problematic for any theory exploration system relying merely on term
generation, e.g. [4, 13, 21]. Despite their heuristics, the search space grows too
big. The integration in an ITP allows us to use information about the current
proof attempt, and thus navigate these theories.

Like proof-critics [1], which is a technique for lemma discovery in automated
provers, we use information from the current proof-attempt to guide the search
for auxiliary lemmas. However, while proof-critics only analyses the current
proof attempt, ACL2(ml) also learns from all previous proofs. Some proof-critics
are also closely reliant on particular proof-techniques, such as rippling, while
ACL2(ml) is independent of this.

Limitations and Further Work. Below, we summarise the limitations of
the system and indicate directions of further work. Although the statistical side
of ACL2(ml) can process and cluster any proof and lemma shape, the symbolic
analogy tool cannot handle all possible analogical cases (and no algorithmic
approach could do that in principle).

Different patterns. Statistical ACL2(ml) groups in the same clusters theorems
revrev, and int-x-x; however, the lemmas used in revrev cannot be mutated
to generate any of the lemmas needed in the proof of int-x-x.

Smaller lemmas. The lemma analogy tool currently only adds term structure;
therefore, it cannot generate smaller lemmas. E.g. Lemmas fact-fact-tail and
fib-fib-tail are in the same cluster (see Table 2); the analogy tool succeeds in
generating the lemma fib-fib-tail given the source lemma fact-fact-tail,
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but fails to go the other way around. This would require removing term structure,
i.e. the inverse operation of Term Tree Expansion (see Section 4).

Conditional lemmas. Apart from type recogniser conditions (e.g. natp is the
type recogniser for natural numbers), several ACL2 lemmas need additional con-
ditions, which, at the moment, are not generated by the symbolic ACL2(ml).
Discovering appropriate conditions for generated lemmas is a difficult problem
for theory exploration systems.

New definitions. Another big challenge in lemma discovery is invention of new
concepts. The proof of Lemma int-x-x needs a new concept called subp which is
the recogniser for subsets of lists – (subp x y) returns true or false according
to whether every element of x is an element of y.
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Abstract. We show that if a theory R defined by a rewrite system is
super-consistent, the classical sequent calculus modulo R enjoys the cut
elimination property, which was an open question. For such theories it
was already known that proofs strongly normalize in natural deduction
modulo R, and that cut elimination holds in the intuitionistic sequent
calculus modulo R.
We first define a syntactic and a semantic version of Friedman’s A-

translation, showing that it preserves the structure of pseudo-Heyting
algebra, our semantic framework. Then we relate the interpretation of
a theory in the A-translated algebra and its A-translation in the orig-
inal algebra. This allows to show the stability of the super-consistency
criterion and the cut elimination theorem.

Keywords: Deduction modulo, cut elimination, A-translation, pseudo-
Heyting algebra, super-consistency.

1 Introduction

Deduction Modulo is a formalism that aims at separating computation from rea-
soning in proofs by making inferences modulo some congruence. This congruence
is generated by rewrite rules on terms and on propositions, and, assuming con-
fluence and termination, it is decidable by blind computation (normalization).

Rewrite rules on propositions is a key feature, allowing to express in a first-
order setting without any axiom theories such as higher-order logic [8,10] or
arithmetic [11]. Reasoning without axioms turns out to be a critical advantage
for automated theorem provers [18,2,3,5] to not get lost during proof-search.

As a counterpart, fundamental properties such as cut elimination become a
hard challenge. At the same time it is needed at both theoretical (consistency
issues, e.g.) and practical levels, for instance to ensure the completeness of the
proof-search algorithm of the aforementioned theorem provers. In the general
case, it does not hold and this is why new techniques have been developed in
order to ensure cut elimination for the widest possible range of rewrite systems.

Anticipating the definitions of Section 2, let us give two examples (see also
Section 4.3) to illustrate the failure of cut elimination and/or normalization in
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general. For terminating (and confluent) examples, see [16]. The congruence gen-
erated by the rewrite system P → P ⇒ Q enables to prove the sequent $ Q with
a cut and this proof is neither normalizable in Natural deduction (the λ-term
(λx.x x) (λx.x x), that represents the aforementioned proof is typable) nor ad-
mits cut [10]. Instantiating Q by P yields the rewrite system P → P ⇒ P . This
allows for the same non-normalizing proof, while $ A becomes provable in only
two steps and without cut ; more generally, semantic means [16] show that in
this case cut is admissible, showing the independence of normalization and cut
elimination. All those questions are undecidable [6].

A first path to solve this problem, investigated in [10], is to show that a con-
gruence has a reducibility candidate-valued model. Then any proof normalizes in
natural deduction modulo this congruence. This propagates to cut elimination
in intuitionistic sequent calculus modulo, but fails to directly extend to classical
sequent calculus modulo. To fix this, a second derived criterion is proposed.

A second way is super-consistency, a notion developed in [7] that is a semantic
criterion independent from reducibility candidates. It assumes the existence,
for a given congruence, of a model for any pseudo-Heyting algebra. Since the
reducibility candidates model of [10] is an instance of pseudo-Heyting algebra,
this criterion implies that of [10], and all of its normalization / cut elimination
corollaries. So this suffers the same drawback. A recent work [4] has also extended
the criterion to the classical case, but still requires a modification of the criterion
- specifically, pseudo-Heyting algebras become pre-Boolean algebras.

The beauty of super-consistency is that it is not hardwired for a particular
deduction system. That is why it should indifferently prove cut elimination for
the natural deduction, the intuitionistic as well as the classical sequent calculus.
This is exactly what show here: cut-elimination for the classical sequent calculus
modulo a given congruence, assuming the unmodified congruence has the un-
modified super-consistency property.

After giving the definitions one would need to keep the paper as much self
contained as possible, we introduce shortly the deduction modulo, relying on a
basic knowledge first-order logic. Then we present the A-translation of propo-
sitions and rewrite systems [10], inspired by Friedman’s A-translation [12], a
refinement of double-negation translations, that bridges the intuitionistic and
the classical worlds.

The core of the paper resides in the lifting of this translation on pseudo-
Heyting algebras, at the semantic level. After verifying that all properties are
preserved, we show that super-consistency is stable by A-translation: the rewrite
system has a model in the translated algebra, so the translated rewrite system
has a model in the original algebra.

Those results allow us to deduce that super-consistency is sufficient to prove
cut-elimination in classical sequent calculus, propagating the normalization prop-
erty of natural deduction modulo to cut elimination in intuitionistic and even-
tually classical sequent calculus, following [10].
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2 Definitions

2.1 Pseudo-Heyting Algebra

Definition 1 (pseudo-Heyting algebra (pHA, [7])). Let B be a set and ≤
a relation on it, A and E be subsets of ℘(B), �̃ and ⊥̃ be elements of B, ⇒̃ ,
∧̃ , and ∨̃ be functions from B × B to B, ∀̃ be a function from A to B and ∃̃ be
a function from E to B. The structure B̃ = 〈B,≤,A, E , �̃ , ⊥̃ , ⇒̃ , ∧̃ , ∨̃ , ∀̃, ∃̃〉 is
said to be a pseudo-Heyting algebra if for all a, b, c in B, A in A and E in E:

1. a ≤ a and if a ≤ b, b ≤ c then a ≤ c (≤ is a pre-order),
2. a ≤ �̃ and ⊥̃ ≤ a (maximum and minimum element),
3. a ∧̃ b ≤ a, a ∧̃ b ≤ b and if c ≤ a, c ≤ b then c ≤ a ∧̃ b,
4. a ≤ a ∨̃ b, b ≤ a ∨̃ b and if a ≤ c, b ≤ c then a ∨̃ b ≤ c,
5. for any x ∈ A, ∀̃A ≤ x and if for any x ∈ A, b ≤ x then b ≤ ∀̃A,
6. for any x ∈ E, x ≤ ∃̃E and if for any x ∈ E, x ≤ b then ∃̃E ≤ b,
7. a ≤ b ⇒̃ c iff a ∧̃ b ≤ c.

Axioms for ∧̃ and ∀̃ (resp. ∨̃ and ∃̃) confer them the property of a greatest
lower bound (resp. lowest upper bound), while the unicity of the latters is not
guaranteed, since ≤ is not anntisymmetric. Another guise of pHAs are Truth
Value Algebras [7]. Also, ∧̃ and ∨̃ are easily shown to be pre-commutative
(a ∧̃ b ≤≥ b ∧̃ a) and pre-associative.

Definition 2 (Full [7]). A pseudo-Heyting algebra is said to be full if A = E =
℘(B), i.e. if ∀̃ A and ∃̃ A are defined for all A ⊂ B.

In this paper, all the pHA considered are full. When the pre-order is antisym-
metric, then a full pHA is exactly a complete HA, in the terminology of [20]. In
this paper, complete refers to the order " described below.

Definition 3 (Ordered pseudo-Heyting algebra). A pseudo-Heyting alge-
bra B̃ is called ordered if it is equipped with an additional order relation " on B
such that

– " is a refinement of ≤, i.e. if a " b then a ≤ b,
– �̃ is a maximal element,
– ∧̃ , ∨̃ , ∀̃ and ∃̃ are monotonous, ⇒̃ is left anti-monotonous and right

monotonous.

Definition 3 is an adapation to pHA of the corresponding definition of [7]. The
“refinement condition” is shown in [7] to be a derived property (Proposition 4),
but it is in fact trivially equivalent to the closure condition of B̃+.

Definition 4 (Complete ordered pseudo-Heyting algebra [7]). An or-
dered pseudo-Heyting algebra B̃ is said to be complete if every subset of B has a
greatest lower bound for ". Notice that this implies that every subset also has a
least upper bound. We write glb(a, b) and lub(a, b) the greatest lower bound and
the least upper bound of a and b for the order ".

The order relation " does not define a Heyting algebra order and, if by chance
it does, the Heyting algebra operations may be different from those of B̃ .
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2.2 Rewrite System

We work in usual predicate logic. Terms are variables and applied function
symbols along their arity. Propositions are atoms (applied predicate symbols
along their arity), and compound propositions with the help of connectives
∧,∨,⇒,�,⊥ and quantifiers ∀, ∃. α-equivalent propositions are identified. To
avoid parenthesis, ⇒ and ⇒̃ are considered to be left associative, therefore
A ⇒ B ⇒ B reads (A ⇒ B) ⇒ B. Negation is not a primitive connective, and
is defined by A ⇒ ⊥.

Definition 5 (Proposition rewrite rule). We call proposition rewrite rule
any rule P → A rewriting atomic propositions P into an arbitrary proposition
A such that FV(A) ⊆ FV(P ).

Definition 6 (Proposition rewrite system). We define a proposition rewrite
system as an orthogonal [19], hence confluent, set of proposition rewrite rules.
The congruence generated by this rewrite system is noted ≡.

2.3 Interpretation

Definition 7 (B̃-valued structure [7]). Let L = 〈fi, Pj〉 be a language in

predicate logic and B̃ be a pHA, a B̃-valued structure M = 〈M, B̃, f̂i, P̂j〉 for the

language L is a structure such that f̂i is a function from Mn to M where n is
the arity of the symbol fi and P̂j is a function from Mn to B, the domain of B̃,
where n is the arity of the symbol Pi.

Definition 8 (Denotation [7]). Let B̃ be a pHA, M be a B̃-valued structure
and φ be an assignment, i.e. a function associating elements of M to variables.
The denotation in M of a proposition A or of a term t is defined as:

– �x�φ = φ(x),

– �f(t1, ..., tn)�φ = f̂(�t1�φ, ..., �tn�φ),
– �P (t1, ..., tn)�φ = P̂ (�t1�φ, ..., �tn�φ),
– ���φ = �̃ ,

– �⊥�φ = ⊥̃ ,

– �A ⇒ B�φ = �A�φ ⇒̃ �B�φ,

– �A ∧B�φ = �A�φ ∧̃ �B�φ,

– �A ∨B�φ = �A�φ ∨̃ �B�φ,

– �∀x A�φ = ∀̃ {�A�φ+〈x,e〉 | e ∈ M},

– �∃x A�φ = ∃̃ {�A�φ+〈x,e〉 | e ∈ M}.

The denotation of a proposition containing quantifiers is always defined if the
pHA is full, otherwise it may be undefined.
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Definition 9 (Model [7]). The B̃-valued structure M is said to be a model of
a rewrite system R if for any two propositions A,B such that A ≡ B, �A� = �B�.

Soundness and completeness hold [7]: the sequent Γ $ B is provable if and only
if �Γ � ≤ �B� for any pseudo-Heyting algebra B̃ and any model interpretation
for R in B̃. The direct way is an usual induction [7], while the converse is a
direct consequence of the completeness theorem with respect to Heyting algebra.
For instance one can construct the Lindenbaum algebra [7], or a context-based
algebra [17].

2.4 Classical Sequent Calculus Modulo

Figure 1 recalls the classical sequent calculus modulo. It depends on a congruence
≡ determined by a fixed rewrite system R. If R is empty≡ boils down to syntactic
equality and we get usual sequent calculus. The intuitionistic sequent calculus
modulo has the same rules, except that the right-hand sides of sequents contain
at most one proposition. Two rules are impacted: ∨-r splits into two rules ∨1

and ∨2, and, in the right premiss of the ⇒-left rule, Δ is overwritten by A.

identity group

axiom, A ≡ B
A � B

Γ � A,Δ Γ,B � Δ
cut, A ≡ B

Γ � Δ

logical group
Γ,A,B � Δ

∧-l, C ≡ A ∧ B
Γ, C � Δ

Γ � A,Δ Γ � B,Δ
∧-r, C ≡ A ∧ B

Γ � C,Δ

Γ,A � Δ Γ,B � Δ
∨-l, C ≡ A ∨ B

Γ,C � Δ

Γ � A,B,Δ
∨-r, C ≡ A ∨ B

Γ � C,Δ

Γ,B � Δ Γ � A,Δ
⇒-l, C ≡ A⇒ B

Γ,C � Δ

Γ,A � B,Δ
⇒-r, C ≡ A⇒ B

Γ � C,Δ

⊥-l, A ≡ ⊥
A �

$-r, A ≡ $
� A

Γ, {t/x}A � Δ
∀-l, B ≡ ∀xA

Γ, B � Δ

Γ � A,Δ
∀-r, B ≡ ∀xA, x fresh

Γ � B,Δ

Γ,A � Δ
∃-l, B ≡ ∃xA, x fresh

Γ,B � Δ

Γ � {t/x}A,Δ
∃-r, B ≡ ∃xA

Γ � B,Δ

structural group
Γ,B1, B2 � Δ

contr-l, A ≡ B1 ≡ B2
Γ,A � Δ

Γ � B1, B2, Δ
contr-r, A ≡ B1 ≡ B2

Γ � A,Δ

Γ � Δ
weak-l

Γ,A � Δ

Γ � Δ
weak-r

Γ � A,Δ

Fig. 1. Classical sequent calculus modulo
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2.5 Super-Consistency

Definition 10 (Super-consistency [7]). A rewrite system R (a congruence
≡) in deduction modulo is super-consistent if it has a B̃-valued model for all full,
ordered and complete pseudo-Heyting algebra B̃.

Super-consistency is akin to consistency with respect to all pHA. Note that
the choice of the structure (Definition 7) is open. Considering only HA is not
enough, as the rewrite system P → P ⇒ P devised in Section 1 , as well as the
one of Section 4.3 would then be super-consistent but not normalizing.

3 A-translations

Instead of first performing a negative translation [10] and then the proper A-
translation, as in the original work of Friedman [12], we consider a variant of the
composition of both.

3.1 Syntactic Translation of a Proposition

Definition 11 (A-translation of a proposition).
Let B be a proposition. Let A be a proposition in which free variables are not

bound by quantifiers in B. A is said B-unbound. We let BA be:

– BA = B if B is atomic,
– �A = �,
– ⊥A = ⊥,
– (B ⇒ C)A = (BA ⇒ A ⇒ A) ⇒ (CA ⇒ A ⇒ A),
– (B ∧ C)A = (BA ⇒ A ⇒ A) ∧ (CA ⇒ A ⇒ A),
– (B ∨ C)A = (BA ⇒ A ⇒ A) ∨ (CA ⇒ A ⇒ A),
– (∀x B)A = ∀x (BA ⇒ A ⇒ A),
– (∃x B)A = ∃x (BA ⇒ A ⇒ A).

Remark 1. Kolmogorov’s double negation translation [10] of B is ¬¬B⊥. As well
as this translation has been simplified by Gödel, Gentzen and others [14,13,20],
we can also simplify Definition 11 so that it introduces less A.

Definition 12 (A-translation of a rewrite system). Let R = {Pi → Ai}
be a proposition rewrite system and A be a formula that is Ai-unbound for all i.
We define its A-translation, written RA, as {Pi → AA

i }.

3.2 Semantic a-translation of a pHA

We now lift the A-translation process at the semantic level.

Definition 13 (Semantic a-translation). Let B̃ be the full pseudo-Heyting
algebra 〈B,≤, ℘(B), ℘(B), �̃ , ⊥̃ , ⇒̃ , ∧̃ , ∨̃ , ∀̃, ∃̃〉 and let a ∈ B.

We let B̃a be the structure 〈B,
a

≤ , ℘(B), ℘(B),
a

�,
a

⊥,
a⇒,

a

∧,
a

∨,
a

∀,
a

∃〉, that we call
the a-translation of B̃, where:
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– b
a

≤ c iff b ⇒̃ a ⇒̃a ≤ c ⇒̃a ⇒̃ a,
–

a

� � �̃ ,
–

a

⊥ � ⊥̃ ,
– b

a⇒ c � ((b ⇒̃ a ⇒̃ a) ⇒̃ (c ⇒̃ a ⇒̃a)),

– b
a

∧ c � ((b ⇒̃ a ⇒̃a) ∧̃ (c ⇒̃ a ⇒̃a)),

– b
a

∨ c � ((b ⇒̃ a ⇒̃a) ∨̃ (c ⇒̃ a ⇒̃a)),

–
a

∀A � (∀̃ (A ⇒̃ a ⇒̃ a)),

–
a

∃A � (∃̃ (A ⇒̃ a ⇒̃ a)).

with the convention that, for any A ⊆ B, A ⇒̃ a ⇒̃ a = {b ⇒̃a ⇒̃ a | b ∈ A}.

We may straightforwardly check that 〈B,
a

≤ , ℘(B), ℘(B),
a

�,
a

⊥,
a⇒,

a

∧,
a

∨,
a

∀,
a

∃〉
is a valid structure, in the sense that

a

≤ operators are well-defined; in particular
a

∀ and
a

∃ are defined for any subset of B. We show below that it is also a full,
ordered and complete pHA.

4 Results

4.1 On the a-translation of a pHA

We recall some useful facts about the semantic implication that hold in pseudo-
Heyting algebras:

Proposition 1. Let B be a pHA and a, b, c ∈ B̃ such that b ≤ c. Then:

b ≤ a ⇒̃ b (1)

a ⇒̃ b ∧̃ a ≤ b (2)

b ≤ b ⇒̃ a ⇒̃a (3)

a ⇒̃ b ≤ a ⇒̃ c (4)

c ⇒̃ a ≤ b ⇒̃ a (5)

b ⇒̃a ⇒̃ a ≤ c ⇒̃ a ⇒̃ a (6)

b ⇒̃a ⇒̃ a ⇒̃ a ≤ b ⇒̃ a (7)

Proof. Standard, using the definition of ⇒̃ . Let us show 7: by 3 b ≤ b ⇒̃ a ⇒̃a ≤
b ⇒̃a ⇒̃ a ⇒̃a ⇒̃ a. Then by definition of ⇒̃ we get first (b ⇒̃ a ⇒̃a ⇒̃ a) ∧̃ b ≤ a
and then b ⇒̃ a ⇒̃a ⇒̃ a ≤ b ⇒̃ a. �

Proposition 2. If B̃ is a full pHA then its a-translation
a

B is a full pHA.

Proof. We check one by one all the points of Definition 1 and Definition 2:

–
a

≤ is a pre-order: inherited from ≤
– b

a

≤ a

� since b ⇒̃ a ⇒̃a ≤ �̃ ⇒̃ a ⇒̃a (by 6). Similarly for
a

⊥.

– b
a

∧ c is a lower bound of b and c. Let us show b
a

∧ c
a

≤ b. By definition of
a

∧ and of ∧̃ , b
a

∧ c ≤ b ⇒̃a ⇒̃ a. By 6 (b
a

∧ c) ⇒̃ a ⇒̃ a ≤ b ⇒̃a ⇒̃ a ⇒̃a ⇒̃ a
and by 7 of Proposition 1 b ⇒̃a ⇒̃ a ⇒̃a ⇒̃ a ≤ b ⇒̃ a ⇒̃a which allows us to

conclude. Similar arguments show that b
a

∧ c
a

≤ c.
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– b
a

∧ c is a greatest lower bound of b and c: let d such that d
a

≤ b and d
a

≤ c. By

definition of ∧̃ ,
a

∧ and of
a

≤ , d ⇒̃ a ⇒̃a ≤ b
a

∧ c and by 3 of Proposition 1,

b
a

∧ c ≤ (b
a

∧ c) ⇒̃ a ⇒̃ a which allows us to conclude.

– b
a

∨ c is an upper bound of b and c. Let us show b
a

≤ b
a

∨ c. By definition of

∨̃ and of
a

∨, b ⇒̃ a ⇒̃a ≤ b
a

∨ c. We conclude by 3 of Proposition 1. Similar

arguments show that c
a

≤ b
a

∨ c.

– b
a

∨ c is a least upper bound of b and c. Let d such that b
a

≤ d and c
a

≤ d.
Then, (b ⇒̃ a ⇒̃ a) ∨̃ (c ⇒̃ a ⇒̃a) ≤ d ⇒̃ a ⇒̃ a and by 6 of Proposition 1,
((b ⇒̃ a ⇒̃a) ∨̃ (c ⇒̃ a ⇒̃ a)) ⇒̃ a ⇒̃a ≤ d ⇒̃ a ⇒̃a ⇒̃ a ⇒̃ a. By applying 7,
d ⇒̃ a ⇒̃a ⇒̃ a ⇒̃ a ≤ d ⇒̃ a ⇒̃ a, which allows us to conclude.

–
a

∀A is a lower bound of A. Let x ∈ A. Then
a

∀A ≤ x ⇒̃ a ⇒̃a by definition of
a

∀ and ∀̃. Using Proposition 1, by 6 (
a

∀A) ⇒̃ a ⇒̃ a ≤ x ⇒̃ a ⇒̃ a ⇒̃a ⇒̃ a and
by 7 x ⇒̃ a ⇒̃a ⇒̃ a ⇒̃a ≤ x ⇒̃ a ⇒̃ a, which allows us to conclude.

–
a

∀A is a greatest lower bound of A. Let b such that for any x ∈ A, b
a

≤ x. Then
b ⇒̃a ⇒̃ a ≤ x ⇒̃ a ⇒̃a and by definition of ∀̃, b ⇒̃a ⇒̃ a ≤ ∀̃(A ⇒̃ a ⇒̃a) =
a

∀A. By 3 of Proposition 1,
a

∀A ≤ (
a

∀A) ⇒̃ a ⇒̃ a, which allows us to conclude.

–
a

∃A is an upper bound of A. Let x ∈ A. Then x ⇒̃ a ⇒̃ a ≤
a

∃A by definition
of

a

∃ and ∃̃. By 3
a

∃A ≤ (
a

∃A) ⇒̃ a ⇒̃a, which allows us to conclude.

–
a

∃A is a least upper bound of A. Let b such that for any x ∈ A, x
a

≤ b.
Then x ⇒̃ a ⇒̃a ≤ b ⇒̃a ⇒̃a and by definition of ∃̃,

a

∃A = ∃̃(A ⇒̃ a ⇒̃ a) ≤
b ⇒̃a ⇒̃ a. By Proposition 1 we derive (

a

∃A) ⇒̃ a ⇒̃ a ≤ b ⇒̃a ⇒̃ a ⇒̃a ⇒̃ a
and b ⇒̃ a ⇒̃a ⇒̃ a ⇒̃ a ≤ b ⇒̃a ⇒̃ a, which allows us to conclude.

– direct way of the implication property. Assume b
a

≤ c
a⇒ d, that is to say

b ⇒̃a ⇒̃ a ≤ ((c ⇒̃ a ⇒̃a) ⇒̃ (d ⇒̃ a ⇒̃ a)) ⇒̃ a ⇒̃ a. As an intermediate result
we claim that for any x, y and z, (x ⇒̃ (y ⇒̃ z)) ⇒̃ z ⇒̃ a ≤ x ⇒̃ (y ⇒̃ a).

x ⇒̃ (y ⇒̃ z)≤x ⇒̃ (y ⇒̃ z) (reflexivity)
(x ⇒̃ (y ⇒̃ z)) ∧̃ x ∧̃ y≤z (Definition of ⇒̃)

x ∧̃ y≤x ⇒̃ (y ⇒̃ z) ⇒̃ z (Definition of ⇒̃)
x ∧̃ y≤[x ⇒̃ (y ⇒̃ z) ⇒̃ z] ⇒̃a ⇒̃ a (Proposition 1)

[x ⇒̃ (y ⇒̃ z) ⇒̃ z ⇒̃ a] ∧̃ x ∧̃ y≤a (Definition of ⇒̃)
x ⇒̃ (y ⇒̃ z) ⇒̃ z ⇒̃ a≤x ⇒̃ (y ⇒̃ a) (Definition of ⇒̃)

If we replace in this last inequality x by c ⇒̃ a ⇒̃ a, y by d ⇒̃ a and z by a,
we get ((c ⇒̃ a ⇒̃ a) ⇒̃ (d ⇒̃ a ⇒̃a)) ⇒̃ a ⇒̃ a ≤ ((c ⇒̃ a ⇒̃ a) ⇒̃ (d ⇒̃ a ⇒̃a))
so that we derive b ⇒̃a ⇒̃ a ≤ (c ⇒̃ a ⇒̃ a) ⇒̃ (d ⇒̃ a ⇒̃a), or said otherwise
(b ⇒̃ a ⇒̃a)∧̃(c ⇒̃ a ⇒̃ a) ≤ d ⇒̃ a ⇒̃a. By Proposition 1 we get the inequality
((b ⇒̃ a ⇒̃a)∧̃(c ⇒̃ a ⇒̃a)) ⇒̃ a ⇒̃ a ≤ d ⇒̃a ⇒̃ a ⇒̃ a ⇒̃a ≤ d ⇒̃ a ⇒̃a, which

is exactly b
a

∧ c
a

≤ d.

– conversely, assume b
a

∧ c
a

≤ d, i.e. ((b ⇒̃ a ⇒̃ a) ∧̃ (c ⇒̃ a ⇒̃ a)) ⇒̃ a ⇒̃ a ≤
d ⇒̃ a ⇒̃a. By 6 of Proposition 1 we get that ((b ⇒̃ a ⇒̃ a) ∧̃ (c ⇒̃ a ⇒̃a)) ≤
((b ⇒̃ a ⇒̃a)∧̃(c ⇒̃ a ⇒̃a)) ⇒̃ a ⇒̃a, so b ⇒̃ a ⇒̃a≤(c ⇒̃ a ⇒̃ a) ⇒̃ (d ⇒̃ a ⇒̃a)
by definition of ⇒̃ . And by 3 we get that (c ⇒̃ a ⇒̃a) ⇒̃ (d ⇒̃ a ⇒̃ a) ≤
((c ⇒̃ a ⇒̃ a) ⇒̃ (d ⇒̃ a ⇒̃a)) ⇒̃ a ⇒̃a, which allows us to conclude. �
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Proposition 3. Let B be a full and ordered pHA, with respect to ". Let a ∈ B̃.
The a-translation Ba of B is a full and ordered pHA with respect to ".

Proof. By Proposition 2, Ba is a full pHA. We check Definition 3:

– " is by definition an order relation on B, which is also the domain of B̃a.
–

a

� (resp.
a

⊥) is maximal (resp. minimal) for the same reason.

– assume b " c. Then b ≤ c and by Proposition 1 b
a

≤ c.

–
a

∧ is monotonous. Let b, c, d be elements of the algebra, and assume b " c.
By left-antimonotonousity of " with respect to ⇒̃ , b ⇒̃a ⇒̃ a " c ⇒̃a ⇒̃ a,

so b
a

∧ d = (b ⇒̃ a ⇒̃a) ∧̃ (d ⇒̃ a ⇒̃ a) " (c ⇒̃ a ⇒̃a) ∧̃ (d ⇒̃ a ⇒̃ a) = c
a

∧ d by
monotonicity of " with respect to ∧̃ .

– the other properties with respect to
a

∨, a⇒,
a

∀ and
a

∃ are shown in the same
way: first notice that b ⇒̃ a ⇒̃a " c ⇒̃a ⇒̃ a and then use the corresponding
property of " with respect to the original connective. Remember that, for
A,A′ sets of elements of B̃a, A " A′ means that, for any x ∈ A, there exists
y ∈ A′ such that x " y. �

Proposition 4. If B is a full, ordered and complete pHA, then its a-translation
Ba is a full, ordered and complete pHA.

Proof. From Proposition 3, B̃a is full and ordered. The greatest lower and lowest
upper bounds of any A subset of B (the domain of B̃a) for " are members of B
because B̃ is complete. The condition of Definition 4 is fulfilled. �

4.2 Relating Interpretations

Proposition 5. Let B be a full, ordered and complete pHA. Consider a B̃-valued
structure M and note �.� the denotation M generates in B̃. Let A be a closed
proposition and let B�A� be the �A�-translation of B:

1. M is also a B̃�A�-valued structure. Let �.��A� be the denotation it generates
in B̃�A�.

2. for any term t, any assignment φ, �t�φ = �t��A�
φ .

3. For any proposition B, any assignment φ, �BA�φ = �B��A�
φ .

A is chosen to be closed, otherwise we would need to consider �A�φ0 for a
fixed φ0 and consider only formulæ B such that A is B-unbound. We rather
avoid those complications.

Proof. M is obviously a B̃�A�-valued structure (see Definition 7) since the domain
of both pHAs is the same and M assigns values only to atomic constructs. The
second claim is also obvious, since the domain for terms does not change. We
prove the last claim by an easy induction on the structure of B, where we omit
the valuation φ, which plays no role. We note a = �A� in the definition of the
operators of B̃�A�.
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– if B is an atomic formula P (t1, · · · , tn), then by construction and definition
of the A-translation:

�BA� = �B� = P̂ (�t1�, · · · , �tn�) = P̂ (�t1��A�
, · · · , �tn��A�

) = �B��A�

– ��A� = �̃ = ����A�
, similarly for ⊥.

– �(B ⇒ C)A� = (�BA� ⇒̃ �A� ⇒̃ �A�) ⇒̃ (�CA� ⇒̃ �A� ⇒̃ �A�) = �BA� a⇒ �CA�
which, by induction hypothesis is equal to �B��A� a⇒ �C��A�

= �B ⇒ C��A�
.

– similarily for ∧ and ∨.
– �∀xBA� = ∀̃{�BA�〈x,d〉 ⇒̃ �A� ⇒̃ �A� | d ∈ M} and by induction hypoth-

esis and the notation of Definition 13, this is equal to ∀̃{�B��A�
〈x,d〉 | d ∈

M}⇒̃ �A� ⇒̃ �A� = a

∀{�B��A�
〈x,d〉 | d ∈M} = �∀xB��A�

.

– similarly for ∃. �

4.3 Stability of Super-Consistency

In this section we show that the super-consistency property of a rewrite system
is preserved by A-translation under certain conditions.

First, notice that the general statement is not true because nasty interfer-
ences can happen if the A-translation is done with respect to a A containing
propositions of the rewrite system. In particular, we can lose the normalization
property, which is implied by super-consistency, and so, super-consistency itself.
To illustrate this, consider the following rewrite system consisting of the sole
rule P → � ∧ �. Super-consistency comes out easily: given a pHA B̃, we let
P̂ = �̃ ∧̃ �̃ . But super-consistency fails for its P -translated rewrite system:

P → (� ⇒ P ⇒ P ) ∧ (� ⇒ P ⇒ P )

Γ � π1 : A Γ � π2 : B
∧i, A ∧ B ≡ C

Γ � 〈π1, π2〉 : C

Γ, x : A � π : B
⇒i, C ≡ A⇒ B

Γ � λx.π : C

Γ � π : C ∧e1, C ≡ A ∧ B
Γ � fst(π) : A

Γ � π1 : C Γ � π2 : A ⇒e, C ≡ A⇒ B
Γ � π1 π2 : B

fst〈π1, π2〉� π1 (λx.π1) π2 � {π2/x}π1

Fig. 2. Some typing and reduction rules of natural deduction modulo [10]

As we will see, in natural deduction we can define a proof-term that is not
normalizing. Adopting the syntax and typing rules of [10], shown in Figure 2,
we let t1 and t2 be the following λ-terms, I being the constant corresponding to
the �-intro rule:1

1 At the price of readability, I and � can be everywhere safely replaced by λy.y and
B ⇒ B, respectively.
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t1 = λx.[fst(x I) (λz.(x I))]

t2 = λz.〈t1, t1〉

Those terms can be typed respectively by � ⇒ P ⇒ P and by � ⇒ (� ⇒
P ⇒ P ∧ � ⇒ P ⇒ P ) or, using the congruence, by � ⇒ P : both bound
z can be assigned the type �, while x has the type � ⇒ P ≡ � ⇒ (〈(� ⇒
P ) ⇒ P ), (� ⇒ P ) ⇒ P )〉, this last type identification being the source of the
problems. With those terms, we form the following looping reduction sequence:

t1 t2 � fst(t2 I) (λz.(t2 I))

� fst(〈t1, t1〉) (λz.〈t1, t1〉)
� t1 t2

Since we do not have normalization, we cannot have super-consistency. This is
why restricting A is the key to Theorem 1.

Definition 14 (R-compatibility). Let R be a rewriting system. A proposition
A is said to be R-compatible if and only if does not contain any predicate or
function symbol appearing in R.

Proposition 6. Let R be a rewrite system, and A be a closed proposition. Let
B̃ be a pHA and consider a B̃-valued structure M, generating an interpretation
� �. Let B̃�A� be the �A�-translation of B̃ and RA be the A-translation of R.

If the interpretation � ��A� generated by M in B̃�A� is a model of R then RA

has a B-model.

Proof. Let P → FA ∈ RA. By hypothesis, P → F ∈ R and �P ��A� = �F ��A�.

We conclude by noticing that, by definition, �P ��A�
= �P � and that, by Propo-

sition 5, �F ��A�
= �FA�. �

The main requirement of Proposition 6 is that � ��A� must be a model of R.
The choice of � � is here a degree of freedom, but this is not sufficient, even
assuming super-consistency. Indeed, the example of the beginning of the section
shows that this is impossible if A is not R-compatible. We must go through the
following definition lemma.

Lemma 1 (Relative grafting of structures). Let B̃ be a pHA and M0 and
M1 be two B̃-valued structures. Let A be a proposition. We define M2, the A-
grafting of M0 onto M1 as the following B̃-structure:

– for any function symbol f , f̂ = f̂0 (the value assigned by M0) if f syntacti-

cally appears in A and f̂ = f̂1 (the value assigned by M1) otherwise.
– for any predicate symbol P , P̂ = P̂0 (the value assigned by M0) if P syn-

tactically appears in A and P̂ = P̂1 (the value assigned by M1) otherwise.
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Let � �i be the interpretation generated by Mi for i = 0, 1, 2. Then, for any
proposition B:

– if B contains only predicate and function symbols appearing in A,(remind
that � and ⊥ are connectives), �B�2 = �B�0

– if B contains no predicate or function symbol appearing in A, �B�2 = �B�1
Proof. Easy induction on the structure of B. The base case is guaranteed by the
definition and it propagates readily. �

Theorem 1. Let R be a super-consistent rewrite system and let A be a closed
R-compatible proposition. RA is super-consistent.

Proof. Let B̃ be a pHA. Let M0 be any B̃-valued structure, and � �0 the inter-
pretation it generates. Let a = �A�0.

R has a B̃a-model because it is super-consistent. Let � �a1 be the interpretation

and M1 the associated B̃a-valued structure. M1 is as well a B̃-valued structure,
so let M2 be the A-grafting of M0 onto M1, as in Lemma 1. Let � �2 and � �a2
be the interpretations generated in B̃ and B̃a, respectively. From Lemma 1 we
derive:

– �A�2 = �A�0
– for any rewrite rule in R, P → F , �P �a2 = �P �a1 and �F �a2 = �F �a1
In particular, � �a2 inherits from � �a1 the property to be a model of the rewrite

system R. We have fulfilled the requirements of Proposition 6: the pHA is B̃, the
structure is M2, � �a2 is a model of R in B̃a = B̃�A�2, since �A�2 = �A�0 = a.

Therefore RA has a B̃-model for any B̃-model, and it is super-consistent. �

5 Super-Consistency and Classical Sequent Calculus

5.1 From Intuitionistic to Classical Deduction Modulo

We adapt results of [10] to the settings of A-translation that shift cut-elimination
in the intuitionistic calculus to the classical calculus. In the sequel we let R be
a rewrite system and A be a closed R-compatible proposition.

Proposition 7. Let B,C be propositions. If B →R C then BA →RA CA. If
B ≡R C then BA ≡RA CA.

Proof. By induction on the structure of B for the first point, and on the deriva-
tion of B ≡R C for the second point. �

Proposition 8. Assume that A is R-compatible. If R is a terminating and con-
fluent rewrite system[19] then so is RA.
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Proof. Consider a rewriting sequence A1 →RA · · · →RA An. A is R-compatible,
so no proposition or term appearing in A can be rewritten. Thus we can define
the rewriting sequence A′1 →R · · · →R A′n, starting at A′1 = A1 by applying the
same rules. This sequence must be finite.

As for confluence, consider a critical pair C RA ← B →RA D, with B atomic.
We know that B can be rewritten by the corresponding “antecedent” rules of
R: C0 R ← B →R D0, with CA

0 = C and DA
0 = D. Since R is confluent, there

exists some proposition E0 such that C0 →∗
R E0

∗
R← D0. We also have C →∗

R

EA
0
∗
R← D by Proposition 7, and RA has the diamond property [19]. Since it is

terminating, it is confluent. �

Lemma 2. The rules
Γ,C $ A

Γ,C ⇒ A ⇒ A $ A
and

Γ $ C
Γ,C ⇒ A $ A

are derivable

in intuitionistic sequent calculus modulo.

Proof. Direct combination of ⇒-l, ⇒-r and axiom rules. �

Proposition 9. If the sequent Γ $ Δ has a proof (with cuts) in the classical
sequent calculus modulo R then ΓA, (ΔA) ⇒ A $ A has a proof (with cuts) in
the intuitionistic sequent calculus modulo RA.

Proof. By an immediate induction we copy the structure of the proof of Γ $ Δ,
using Proposition 7 to rewrite propositions and the admissible rules of Lemma 2
to remove the tail As. This is the only hurdle to get back a sequent of a shape
that allows us to apply the induction hypothesis.

Notice that, in the ∨-r case, we must apply once the ∨1 rule and once the ∨2,
which requires a contraction on the left-hand side. �

Definition 15. Let Γ $ Δ;A be an intuitionistic sequent. Δ contains at most
one proposition and Δ;A stands for A if Δ is empty and Δ otherwise.

Γ $ Δ;A is said to represent a classical sequent A1, · · · , An $ B1, · · · , Bp

if there exists a one-to-one correspondence ξ between A1, · · · , An, B1, · · ·Bp and
Γ,Δ:

– if ξ(Ai) ∈ Γ then ξ(Ai) = AA
i or ξ(Ai) = AA

i ⇒ A ⇒ A
– if ξ(Ai) ∈ Δ then ξ(Ai) = AA

i ⇒ A
– if ξ(Bi) ∈ Γ then ξ(Bi) = BA

i ⇒ A
– if ξ(Bi) ∈ Δ then ξ(Bi) = BA

i or ξ(Bi) = BA

i ⇒ A ⇒ A

Lemma 3. Let B be a proposition. Then BA cannot be of the forms A, X ⇒ A
and X ⇒ A ⇒ A.

Proof. A mere check of Definition 11 according to the structure of B. �

Proposition 10. Let A be a proposition. Let Γ $ Δ;A be a sequent that rep-
resents A1, · · · , An $ B1, · · · , Bp. If this sequent has a cut-free proof in the
intuitionistic sequent calculus modulo RA, and no right-rule other than axiom
apply on A then the sequent A1, · · · , An $R B1, · · · , Bp has a cut-free proof in
the classical sequent calculus modulo R.
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Proof. By induction on the intuitionistic proof of the sequent Γ $ Δ;A, using
Proposition 7:

– if the last rule is a logical rule applied to a proposition of the form AA

i or
BA
i , we copy this rule and apply the induction hypothesis.

– If the last rule is a logical rule applied to a proposition of another form,
it must be an ⇒-l or a ⇒-r rule. The sequent in the principal premiss is
also a representation of the sequent A1, · · · , An $R B1, · · · , Bp - potentially
weakened by one proposition if Δ is not empty and a ⇒-l rule was applied.
So we just need to apply the induction hypothesis, potentially introducing
a weak-r if necessary.

– if the last rule is an axiom, we copy it. Copying an axiom rule is possible
because, by Lemma 3, the axiom rule can be only applied between propo-
sitions of the same nature, with no, a single, or two implications with A at
the head and the same A-translated proposition at the base.

– if the last rule is a structural rule, we copy it on the side required by ξ and
apply induction hypothesis. �

It is essential to assume that no rule apply on A other than axiom, otherwise
the result fails; for instance the sequent $;C ⇒ C is intuitionistically provable
while the empty sequent is not classically provable.

5.2 Cut Elimination in Classical Sequent Calculus Modulo

Theorem 2. If a rewrite system R is super-consistent the classical sequent cal-
culus modulo R has the cut elimination property.

Proof. Let Γ $ Δ be a provable sequent in the classical sequent calculus modulo
R. Let A be a proposition not containing any predicate or function symbol of
R. The sequent ΓA, ΔA ⇒ A $ A has a proof in the intuitionistic sequent calcu-
lus modulo RA by Proposition 9 above. By Theorem 1, RA is super-consistent.
Therefore, by Corollary 4.1 of Proposition 4.1 of, ΓA, ΔA ⇒ A $ A has a cut-free
proof in the intuitionistic sequent calculus.

Moreover, no rule on A other than axiom is introduced: Proposition 9 intro-
duces only axioms, that are translated into axioms in natural deduction, and the
structure of A is therefore not exposed to any introduction or elimination rules.
Another argument is that we can “freeze” A and view it as an atomic formula
in all the discussion above. So the proof cannot use any information on A, since
it is a generic parameter of the theorem.

Consequently, by Proposition 10 the sequent Γ $ Δ has a cut-free proof. �

Note that the argument appeals to a normalization procedure of the proof-
terms of Natural deduction modulo, considering commutative cuts (Section 3.6
of [10]). Other cut elimination methods for Natural deduction modulo (as the
one of [9]) do not apply since they do not get rid of commutative cuts.
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6 Conclusion

In [10] R⊥ had to be assumed to have a pre-model in order to show cut elimina-
tion for the classical sequent calculus modulo R (Theorem 4.1 of [10]). [7] shows
that it is sufficient to show R⊥ to be super-consistent. We have shown here that
we can instead discuss the super-consistency of R directly.

Our result is a priori more restrictive, since by instantiating A by ⊥ we get
the super-consistency of R⊥ that in turn implies the existence of a pre-model
for R⊥. It is currently unknown whether all those criteria are equivalent or not:
can we, for instance, find a rewrite system and a proposition A, such that RA

is super-consistent while R is not super consistent ? Does the existence of a
pre-model for R entail super-consistency ? On the good side, our criterion works
directly on R and avoids a duplication of arguments: we now in one pass have
normalization for natural deduction modulo R ([7,10]) and cut elimination for
the classical sequent calculus, and bypass the need of two separate pre-model
(or super-consistency arguments) for R and R⊥. Moreover, super-consistency, by
abstracting over reducibility candidates, provides a certain ease of use.

We have also shown a general result, by A-translating rewrite systems and
semantics frameworks, instead of ⊥-translating them. For the proof of cut elim-
ination, we believe that the latter, better known as double-negation translation,
would have been sufficient, as in [10]. But the work on A-translation bears a
more general character, that can be used for other applications.

Super-consistency appears to be the right criterion to deal with when one
wants to know about the cut elimination property of a deduction modulo theory,
as the property holds whatever the syntactic calculus is. It would be interesting
to see how the super-consistency criterion extends to other first-order framework,
like the calculus of structures [15] or λΠ-calculus modulo, that is at the root of
the Dedukti proof-checker [1].

Whether we can widen the criterion and replace pseudo-Heyting algebras by
Heyting algebras in Definition 10, the idea being to use cut-admissibility (through
semantic completeness, in the mood of [17] for instance) instead of normaliza-
tion in the proof of Theorem 2 is a conjecture. Analyzing [4,9] closely shows
that cut-admissibility results crucially depend on finding in the interpretation
of the atoms P a syntactical version of P in the model formed out of con-
texts/propositions. Super-consistency does not directly allows this, due to the
abstract construction of a generic model. This appeals to a more informative
structure, in both papers algebras of sequents were introduced which happens
to be only pseudo-Heyting algebras.
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Blocked Clause Decomposition
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Abstract. We demonstrate that it is fairly easy to decompose any
propositional formula into two subsets such that both can be solved by
blocked clause elimination. Such a blocked clause decomposition is use-
ful to cheaply detect backbone variables and equivalent literals. Blocked
clause decompositions are especially useful when they are unbalanced,
i.e., one subset is much larger in size than the other one. We present al-
gorithms and heuristics to obtain unbalanced decompositions efficiently.
Our techniques have been implemented in the state-of-the-art solver Lin-
geling. Experiments show that the performance of Lingeling is clearly
improved due to these techniques on application benchmarks of the SAT
Competition 2013.

1 Introduction

Random simulation is a useful technique to find patterns in Boolean circuits,
such as equivalent gates and gates that are always true or false [1]. It works as
follows: random values are assigned to the input gates and propagated through
a given Boolean circuit. In case two gates always have the same value in many
simulations, they are potentially equivalent. SAT sweeping [2] can be used to
determine whether a potentially equivalent pair is indeed equivalent.

We want to lift random simulation to the domain of Boolean formulas. Yet
even computing a single solution is hard for most interesting Boolean formulas.
Therefore we focus on computing solutions for a satisfiable subset of a Boolean
formula. The main question that arises is: which subset? If the subset is too
large, then solving the formula is still hard. Hence, computing many solutions
to observe patterns is too costly. On the other hand, if the subset is too small,
the patterns get obscured and therefore hard to detect.

We propose to obtain a useful subset by blocked clause decomposition. A set
of clauses is called blocked if and only if blocked clause elimination (BCE) [3]
is able to remove it completely. We show that any Boolean formula can be
decomposed in polynomial time into two blocked sets such that one subset is
maximal. On average, the maximal subset contains about 90% of the clauses of
a given formula. A major advantage of our approach is that multiple solutions
for blocked sets can be computed using a linear number of steps in the size of
the set. We conjecture that all solutions of a blocked set can be computed in a
time polynomial in the number of solutions.
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We want to find backbone variables [4] and implied binary equivalences. To
detect these patterns, we decompose a formula into two blocked sets of which
one is maximal. Afterwards, many solutions for the large subset are obtained
by applying a linear time algorithm. These solutions partition the literals of
the formula into equivalence classes. Literals in the same class are potentially
equivalent. SAT sweeping is used to compute the backbone and equivalences of
the large subset which are used to simplify the original formula. Experimental
results show that this approach helps to solve hard application benchmarks.

Detection of these patterns has been studied in earlier work as well. Instead
of using a subset of a formula to detect backbone variables, [5] proposes to use
local minima computed by a local search solver. However, local search solvers
perform poorly on most hard real-world SAT problems. For random formulas,
the backbone of a formula is fragile [6]: i.e., removal of a few clauses reduces
the size of the backbone. Hyper binary resolution (HBR) can be used to detect
binary equivalences [7]. Yet HBR can only find “easy” equivalences, i.e., those
that can be detected by unit propagation.

The remainder of this paper is structured as follows: first we briefly discuss
the preliminaries in Section 2 and some definitions is Section 3. Section 4 deals
with the theoretical results regarding blocked clause decompositions. We present
in Section 5 heuristics and optimizations for decomposition algorithms. Section 6
explains how decompositions can be used to find backbone variables and binary
equivalences. Experimental results are shown in Section 7 and we draw some
conclusions in Section 8.

2 Preliminaries

In this section we review necessary background concepts: conjunctive normal
form level Boolean satisfiability, resolution and blocked clause elimination.

CNF. For a Boolean variable x, there are two literals, the positive literal, de-
noted by x, and the negative literal, denoted by x̄. A clause is a disjunction of
literals and a conjunctive normal form (CNF) formula a conjunction of clauses.
A clause can be seen as a finite set of literals and a CNF formula as a finite set
of clauses. A unit clause contains exactly one literal. A clause is a tautology if it
contains both x and x̄ for some x. The sets of variables and literals occurring in
a formula F are denoted by vars(F ) and lits(F ), respectively. A literal l is pure
within a formula F if and only if l̄ /∈ lits(F ).

A truth assignment for a CNF formula F is a function τ that maps variables
in F to {1, 0}. If τ(x) = v, then τ(x̄) = ¬v, where ¬1 = 0 and ¬0 = 1. A clause
C is satisfied by τ if τ(l) = 1 for some l ∈ C. An assignment satisfies F if it
satisfies every clause in F . An assignment falsifies a clause C if it assigns all
literals that occur in C to 0. Formulas are logically equivalent if they have the
same set of satisfying assignments over the common variables.

A variable is said to be in the backbone of a formula if it is assigned to the
same truth value in all satisfying assignments.
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Resolution and Blocked Clauses. The resolution rule states that, given
two clauses C1 = (l ∨ a1 ∨ . . . ∨ an) and C2 = (l̄ ∨ b1 ∨ . . . ∨ bm), the clause
C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), called the resolvent of C1 and C2, can be
inferred by resolving on the literal l. This is denoted by C = C1 ⊗l C2.

Given a CNF formula F , a clause C, and a literal l ∈ C, l blocks C w.r.t. F
if (i) for each clause C′ ∈ F with l̄ ∈ C′, C ⊗l C′ is a tautology, or (ii) l̄ ∈ C,
i.e., C is itself a tautology1. A pure literal blocks the clauses in which it occurs.
Pure literal elimination removes clauses with pure literals until fixpoint.

A clause C is blocked w.r.t. a given formula F if there is a literal that blocks
C w.r.t. F . Removal of blocked clauses preserves satisfiability [8]. For a CNF
formula F , blocked clause elimination (BCE) repeats the following until fixpoint:

If there is a blocked clause C ∈ F w.r.t. F , let F := F \ {C}.

BCE is confluent and does not preserve logical equivalence [9]. The CNF formula
resulting from applying BCE on F is denoted by BCE(F ). We say that BCE
can solve a formula F if and only if BCE(F ) = ∅. Also note the following
monotonicity property, which immediately follows from the definitions (also see
Lemma 1 in [3]). It is a crucial observation for the rest of the paper.

Proposition 1. If G ⊆ F and C is blocked w.r.t. F , then C is blocked w.r.t. G.

3 Definitions

Let F be a formula in CNF represented as a set of clauses. A subset G ⊆ F is
called a satisfiable subset (SS) of F , if it satisfiable. If in addition G is maximal,
i.e., there is no other SS H with G ⊂ H ⊆ F , then G is called a maximal
satisfiable subset (MSS) of F .

Note that maximality of G does not require that G is an SS of F with the
largest cardinality (a solution to the MaxSAT problem). Actually if G is an MSS
then the complement F \ G is a minimal correcting subset (MCS). See [10] for
more details on the relation between the notions of MSS, MCS, as well as the
minimal unsatisfiable subset (MUS), and the MaxSAT problem. Similar to these
standard definitions we propose the following new characterizations.

Definition 1. Let G ⊆ F be a subset of F for which BCE(G) = ∅. Then G is
called a Blocked Subset (BS) of F .

Definition 2. Let BS be the set of all formulas that can be solved by BCE.

Hence all blocked subsets of any formula occur in BS. Lemma 1 in [3] can be
reformulated as follows.

1 Here l̄ ∈ C is included in order to handle the special case that for any tautological
binary clause (l ∨ l̄), both l and l̄ block the clause. Notice that, even without this
addition, every non-binary tautological clause contains at least one literal that blocks
the clause.
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Proposition 2 (BS monotonicity). If F ∈ BS and G ⊆ F then G ∈ BS.

If G ∈ BS, G ⊆ F , and maximal then G is called a maximal blocked subset
(MBS) of F . Obviously an MBS is also an MSS, but there are of course MSSs,
which are not an MBS, since all satisfiable formulas have itself as MSS, but
in general can not be solved by BCE. For example, consider the CNF formula
F = (a∨ b̄)∧ (b∨ c̄)∧ (c∨ ā). F is satisfiable, but cannot be solved by BCE. We
define MaxBS of a given CNF formula F to be the problem of finding an MBS
of F with the largest cardinality.

4 Decompositions

One key observation in this paper is that every CNF formula can be decomposed
into two subsets that both can be solved by BCE. Throughout the paper we
will present procedures how to compute such decompositions. We will use the
symbols L and R to denote the two subsets. Set L refers to the left or large
subset as some algorithms aim to make one subset as large as possible. Set R
refers to the right or remainder subset.

4.1 Symmetric Decompositions

A blocked clause decomposition of a CNF formula F is called symmetric if both
subsets can be solved by BCE. A decomposition is asymmetric if only one of the
subsets can be solved by BCE. It is easy to compute a symmetric decomposition
for a given formula.

Consider the PureDecompose algorithm shown in Fig. 1. When this algorithm
terminates, L and R := F \ L can be solved by pure literal elimination and
hence both L and R are blocked subsets of F . Note, that BCE simulates pure
literal elimination [3]. Following the construction method, |L| ≥ |R|. The run-
time of PureDecompose can be made linear in the size of F using a standard
implementation of occurrence lists.

Lemma 1. The PureDecompose algorithm will produce a symmetric blocked
clause decomposition for any CNF formula.

PureDecompose (formula F )
PD1 let L := ∅
PD2 while F not empty do
PD3 select a variable x ∈ vars(F )
PD4 if |Fx| ≥ |Fx̄| then L := L ∪ Fx

PD5 else L := L ∪ Fx̄

PD6 F := F \ (Fx ∪ Fx̄)
PD7 return L

Fig. 1. Pseudo-code of PureDecompose algorithm, with Fl the set of clauses with l
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Proof. Follows from the observation that L and F \ L are blocked sets of F . �

Theorem 1. Any CNF formula F can be decomposed into two subsets L,R ⊆ F
such that F = L ∪R and L,R ∈ BS, in a time linear in the size of F .

Proof. Follows from the observation that the PureDecompose algorithm produces
a symmetric blocked clause decomposition in linear time. �

The PureDecompose algorithm can be made more unbalanced (i.e., produce
a larger L) by applying BCE on F in between lines PD2 and PD3 and move
eliminated clauses to L. We decided against this “optimization” in the remainder
of this paper, after observing that it is too costly for some huge formulas. As post-
processing, after PureDecompose terminates, one can increase unbalancedness by
looping over the clauses C ∈ F \ L and add C to L if C is blocked with respect
to L. Notice that blockedness of C has to be checked with the latest L.

4.2 Maximal Blocked Sets

This subsection discusses two favorable properties of maximal blocked sets. First,
given an MBS M of a formula F , both F and M contain the same set of variables.
Second, given a formula F one can compute an MBS of F in polynomial time.

Lemma 2. Given a CNF formula F and an MBS M of F , vars(F ) = vars(M).

Proof. Assume that vars(F ) 
= vars(M). There must be a clause C ∈ F \ M
containing a literal l corresponding to a variable x ∈ vars(F ) \ vars(M). Because
l̄ does not occur in lits(M), C is blocked on l w.r.t. M . Hence, M ∪C is a blocked
subset of F . However this contradicts that M is a maximal blocked subset. �

Consider the ConstructiveDecompose algorithm shown in Fig. 2 which moves
clauses from F to L using BCE. The number of BCE calls is at most |F | and
each of those calls has a polynomial runtime in the size of F .

ConstructiveDecompose (formula F )
CD1 let L := ∅
CD2 forall C ∈ F do
CD3 if BCE(L ∪ {C}) = ∅ then L := L ∪ {C}
CD4 return L

Fig. 2. Pseudo-code of the ConstructiveDecompose algorithm

Lemma 3. ConstructiveDecompose returns an MBS for a CNF formula F .

Proof. Given a CNF formula F and the blocked subset M returned by the al-
gorithm ConstructiveDecompose. Assume that M is not an MBS of M . In other
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words, there exists a clause C ∈ F \ M such that BCE(M ∪ C) = ∅. This is
not possible because when C was evaluated in the algorithm, the current L of
ConstructiveDecompose must have been a subset of M . If BCE(M ∪C) = ∅, then
due to monotonicity of BCE for all L ⊆ M it holds that BCE(L∪C) = ∅. Hence,
C should have been in M . �

Theorem 2. Computing a maximal blocked subset of a given CNF formula F
can be realized in a time polynomial in the size of F .

Proof. Follows from the observations that ConstructiveDecompose produces an
MBS for a given formula F and requires polynomial time in the size of F . �

Lemma 4. There exists a CNF formula for which the ConstructiveDecompose
algorithm produces an asymmetric decomposition.

Proof. Consider the following formula:

A := (a ∨ b̄) ∧ (ā ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ c) ∧ (c ∨ d̄) ∧ (c̄ ∨ d) ∧ (d ∨ ē) ∧ (d̄ ∨ e) ∧
(ā ∨ c) ∧ (a ∨ ē) ∧ (c̄ ∨ e)

Assume that the ConstructiveDecompose algorithm adds the clauses to L in the
order in which they occur in A. This means the first eight clauses, lets call them
A′, are added to L because A′ is a blocked set. However, BCE cannot solve
any A′ ∪ C with C ∈ A \ A′. Additionally, A \ A′ is not a blocked set. Hence,
ConstructiveDecompose produces an asymmetric decomposition of A. �

We can obtain an algorithm that produces a symmetric maximal blocked clause
decomposition by combining the PureDecompose and ConstructiveDecompose al-
gorithms. Instead of L := ∅ in ConstructiveDecompose, change the initialization
to L := PureDecompose (F ).

An alternative approach is a destructive algorithm. Initially all clauses are
in the large set and one by one a clause is eliminated. Algorithm 3 shows this
approach for BS extraction. On the notion of “destructive” and “constructive”
minimization algorithms, particularly in the context of minimal unsatisfiable
subset (MUS) extraction, see [11].

In contrast to the ConstructiveDecompose algorithm, the DestructiveDecompose
algorithm might not produce an MBS.

Lemma 5. There is a CNF formula for which the DestructiveDecompose algo-
rithm produces an asymmetric decomposition and a non-maximal blocked set.

DestructiveDecompose (formula F )
DD1 let L := F
DD2 while BCE(L) is not empty do
DD3 remove a clause C ∈ BCE(L) from L
DD4 return L

Fig. 3. Pseudo-code of the DestructiveDecompose algorithm
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Proof. Consider the following formula:

D := (a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ c) ∧ (ā ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c̄)

Let’s assume that the DestructiveDecompose algorithm removes clauses based on
their order in D. This means that first the clauses (a ∨ b), (a ∨ b̄), (ā ∨ b), and
(ā∨ b̄) will be removed, because BCE cannot eliminate any clause from D before
that point. Now F \ L is unsatisfiable and hence cannot be solved by BCE. In
contrast, PureDecompose will produce a symmetric decomposition of D resulting
in L = (a∨b), (a∨ b̄), (a∨c), (b∨c) and R := F \L = (ā∨b), (ā∨ b̄), (ā∨c), (b̄∨ c̄).

DestructiveDecompose produces L = (ā ∨ c), (b ∨ c̄), (b̄ ∨ c̄) which is not an
MBS of F , because (ā ∨ b), (ā ∨ b̄) ∈ D are blocked w.r.t. L. �
Theorem 3. The MaxBS problem is NP-hard.

Proof. We show that the theorem holds by converting the NP-complete problem
of Maximum Independent Set into MaxBS. The conversion works as follows.
Given a graph G = (V,E), we construct a CNF formula that contains Boolean
variables v for each vertex v ∈ V . For each vertex v ∈ V , the formula contains
the unit clause (v), while for each edge uv ∈ E the formula contains the binary
clause (ū ∨ v̄).

FMIS :=
∧
v∈V

(v) ∧
∧

uv∈E
(ū ∨ v̄)

Now we will show that a graph G = (V,E) has an independent set of size k if
and only if the corresponding FMIS contains a blocking set of size k + |E|.

(⇒) Let S ⊆ V be an independent set of size k of G. The formula F ′

containing all binary clauses of FMIS and unit clauses (v) for v ∈ S is a blocking
set of size k + |E|. To see that BCE can solve F ′, notice that all binary clauses
are blocked on the literals ū for u ∈ V \ S. After eliminating all these binary
clauses, the unit clauses (v) for v ∈ S have become blocked (pure literals).

(⇐) Given a blocked subset B of FMIS of size k + |E|. If B contains all
the binary clauses in FMIS, then the independent set is represented by the unit
clauses in B: since B contains all binary clauses, it cannot contain both vertices
of an edge because the clauses (u), (v), (ū ∨ v̄) together are unsatisfiable and
hence not solvable by BCE.

If B does not contain all binary clauses, we will make another blocked subset
B′ of FMIS that contains all binary clauses of FMIS by exchanging unit clauses
in B with the missing binary clauses. Let (ū ∨ v̄) be a missing binary clause in
FMIS \B. In case (ū∨ v̄) is blocked w.r.t. B, simply add (ū∨ v̄) to B and remove
an arbitrary unit clause from B. In case (ū ∨ v̄) is not blocked w.r.t. B, then
both (u), (v) ∈ B. Now, add (ū ∨ v̄) and remove either (u) or (v) from B. By
removing (u) or (v) from B, (ū ∨ v̄) becomes blocked on ū or v̄, respectively. �

4.3 Computing Solutions in Polynomial Time

Given a blocked set B, one can compute a solution for B in polynomial time [3].
A procedure to obtain a solution uses the reconstruction stack. This stack is a
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sorted list of the clauses in B based on the order in which BCE can eliminate
them. Given a reconstruction stack S of B, one can compute a solution as follows.
Generate a random truth assignment τ of the variables in B. Pop the clauses
from S one by one. If τ falsifies a clause C with blocking literal l, flip the truth
value of l in τ to 1. Fig. 4 shows how to compute a reconstruction stack and
demonstrates how to use the stack to obtain satisfying assignments.

ReconstructionStack (blocked set B)
RS1 let S be an empty stack
RS2 while B not empty do
RS3 let C ∈ B be a clause that is blocked w.r.t. B
RS4 B := B \ C
RS5 S.push(C)
RS6 return S

GetSolution (blocked set B)
GS1 let τ be a random truth assignment of the variables in B
GS2 S := ReconstructionStack (B)
GS3 while S not empty do
GS4 C := S.pop() and let l ∈ C be the blocking literal
GS5 if τ falsifies C then τ (l) = 1
GS6 return τ

GetMultipleSolutions (blocked set B, bit-width w)
GMS1 let T be a set of assignments of random bit-vectors with width w for x ∈ vars(B)
GMS2 S := ReconstructionStack (B)
GMS3 while S not empty do
GMS4 C := S.pop()
GMS5 let b be an all zero bit-vector of width w
GMS6 forall l ∈ C do b := b OR T (l)
GMS7 let l′ ∈ C be the blocking literal w.r.t. B
GMS8 T (l′) := T (l′) XOR NOT(b)
GMS9 return T // set of w satisfying assignments

Fig. 4. Pseudo-code ReconstructionStack, GetSolution, GetMultipleSolutions algorithms

One can use the reconstruction set to compute multiple solutions in linear
time of the size of the blocked set using bit-vectors. The bottom part of Fig. 4
shows the algorithm. Each variable is assigned a random bit-vector of width w.
Positive literals have the bit-vector assignment of the corresponding variable,
while negative literals have a bit-vector assignment which complements the one
of the corresponding variable. For each clause C that is popped from the stack,
a bit-vector b is obtained by computing the logical OR of all the bit-vectors of
the literals l ∈ C. If b contains zeros, then those bits are flipped in the bit-vector
assignment of the literal that blocks C. The result of the algorithm is a set of w
satisfying assignments — some of them might be equivalent.



Blocked Clause Decomposition 431

The complexity of computing all solutions of a blocked set is unknown, but we
conjecture below that they can be computed in polynomial time in the number
of solutions. It is not clear whether one can use the reconstruction stack to
enumerate the solutions of blocked sets.

Conjecture 1. Given a blocked set B with k satisfying assignments. Computing
all satisfying assignments of B requires at most k polynomial-time computations.

Below some intuition why we believe that the conjecture might hold. Consider
a Boolean circuit BC with unrestricted output gates and a CNF formula FBC

being the Tseitin translation of BC. Let n be the number of input gates of BC.
The number of solutions of FBC is 2n – exactly one solution for each assignment
to the input gates. We showed that BCE can eliminate all clauses from a Boolean
circuit for which the output gates are not restricted [3]. Hence FBC is a blocked
set. The variables in FBC corresponding to the input gates occur in the last
clauses that BCE will eliminate. Assigning variables in the reverse order that
BCE eliminates them, will enumerate the solutions of FBC . We observed this for
other blocked sets as well, although we also found some counter-examples. We
expect that a more sophisticated procedure could work for any blocked set.

In case the conjecture holds, blocked sets are useful when they have few and
many solutions. Given a maximal blocked set M of a CNF formula F , F is
satisfiable if and only if a solution of M exists which satisfies F — because M
is a subset of F and vars(F ) = vars(M). So in case M has few solutions we can
compute them all in polynomial time to solve F . If M has many solutions, then
we can generate a lot of them in linear time to search for patterns.

5 Heuristics and Efficiency

For the applications of blocked clause decomposition that we have in mind, one
wants to have the decomposition as unbalanced as possible. Ideally, one subset
contains only one clause while the large subset contains all the other clauses. In
this section we discuss heuristics to obtain unbalanced decompositions.

In order to make a decomposition useful, one must be able to compute it
efficiently. This section offers several ideas we came up with to improve the
performance. A fast implementation of BCE is crucial for all the algorithms. An
important optimization is a literal-based priority queue. Details about this and
other BCE optimizations are presented in Section 10 of [3].

The QuickDecompose Algorithm. If a formula is partitioned arbitrarily it
is not unlikely that one of its part can be solved by BCE. In this case we can add
all its clauses to the MBS, which we want to construct. Otherwise, the partition
should be refined. This idea leads to the QuickDecompose algorithm shown in
Fig. 5, which is similar in spirit to the QuickXplain algorithm [12].

QuickDecompose is a more efficient variant of ConstructiveDecompose. Hence,
it will always produce a maximal blocked set (Lemma 3), but decompositions
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can be asymmetric (for example on the CNF formula A in Lemma 4). In order
to make all decompositions symmetric, the initialization at line QD1 should be
changed to L := PureDecompose (F ).

The advantage of this algorithm is that it only needs O(log|F |) calls to BCE
to zero in on an MBS, if the formula F has exactly one MSB, which in addition
also is assumed to contain a single clause. We conjecture that O(m + log|F |)
calls are needed in general, where m is the maximum size of an MBS of F . Thus
this algorithm is particularly useful if m is small. However, for practically all
benchmarks from the SAT competitions, we observed that m is close to |F |.

QuickDecomposeRecursive (formula F )
QDR1 if BCE(L ∪ F ) = ∅ then L := L ∪ F
QDR2 else if |F | 	= 1 then // partition F in non-empty sets G and H
QDR3 let F = G ∪H with G,H 	= ∅ and G ∩H = ∅
QDR4 QuickDecomposeRecursive (G)
QDR5 QuickDecomposeRecursive (H)

QuickDecompose (formula F )
QD1 let L := ∅ // visible in QuickDecomposeRecursive
QD2 QuickDecomposeRecursive (F )
QD3 return L

Fig. 5. Pseudo-code of the QuickDecompose algorithm

Optimizations. The most important optimization is to replace the recursive
simple depth-first search by a prioritized search, where larger subsets are tried
first. Further, many instances are encodings from circuit SAT problems [3], where
the circuit is encoded via Tseitin encoding and zero/one constraints on circuit
nodes and outputs are added as additional unit clauses. In this situation, re-
moving the units from the CNF results in a blocked set. Thus we added a
pre-processing algorithm, which removes N from F , where N ⊆ F is the set
of non-unit clauses of F , and then initializes L to N , if BCE(N) = ∅.

We also observed that it can be useful to check whether removing at most
50% of the longest clauses would result in a blocked set. If this is the case we
proceed with the shorter clauses and initialize L accordingly.

Finally, redundant BCE calls might occur, for which it has already determined
previously that the formula is not solvable through BCE. Thus we maintain a
cache of formulas F for which BCE(F ) was not successful and produced a non-
empty set as result. Thus the call to the BCE procedure at line QDR1 would first
check whether its argument is not already in the cache.
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Results. We developed two decomposition tools. The first tool, called Bcdd,
implements PureDecompose. Bcdd comes in two variants: the one shown in
Fig. 1 (default) and one with the optimization discussed in the last sentences
of Section 4.1 (post-processing). The second tool, called Sblitter, implements
QuickDecompose and includes the optimizations described above. The results
are shown in Table 1. Observe that the tools can help each other by providing
the symmetric decomposition of Bcdd to Sblitter. Although the runtime of
Sblitter is polynomial in the size of its input, it was not able to finish (obtain
a maximal blocked set) on most benchmarks within 100 seconds.

Table 1. Comparing the decomposition tools on 299 benchmarks from the SAT Com-
petition 2013 application track. We removed a huge instance (esawn uw3.debugged)
with 54 million clauses which caused a memory out. Column ’A’ shows the average
fraction of the large subset. The sum of the sizes of the blocked subset L is shown in
column ’B’, the sum of the remaining clauses in ’R’, both in millions of clauses. The
number of benchmarks with exactly one remaining clause is listed in column ’O’. Then
the sum of the time taken follows in column ’T’. The number of times the time-out of
100 seconds was hit for Sblitter and 10 seconds for Bcdd is shown in column ’TO’.
In those 81 = 299 − 218 cases where Sblitter (actually all versions) finished before
the time-out an MBS was found. The last column ’M’ lists the sum of the maximum
memory used in all the runs in GB.

tool mode A B R O T TO M

Bcdd|Sblitter post-processing 85% 371 69 55 25 218 71

Bcdd|Sblitter default 84% 367 73 55 25 218 71

Bcdd post-processing 82% 358 82 0 2 44 41

Bcdd default 80% 349 91 0 2 21 39

Sblitter default 33% 143 298 55 24 218 72

6 SAT Sweeping, Equivalence Checking and Extraction

SAT sweeping is a well-known and very effective preprocessing technique for
satisfiability problems represented as circuits. It is based on techniques used in
formal equivalence checking of circuits. See [2,13] for a complete list of references,
and further the independently derived results in [14,15]. Similar techniques have
been used in the context of computing backbones, see for instance [16]. Related
approaches for sequential equivalence checking [17] are used for preprocessing
model checking problems and resemble refinement techniques in fast algorithms
for minimizing automata [18].

One variant of SAT sweeping starts by assigning random bit-vectors to the in-
put gates of a given circuit. Afterwards, these values are propagated. Gates with
the same bit-vector value are potentially equivalent. Next, a pair of potentially
equivalent gates is selected and a SAT formula is generated stating that these
gates are not equivalent. In case the formula is satisfiable, the set of potentially
equivalent gates is refined. Otherwise, the two gates are merged. This process
continues until there are no potentially equivalent gates left.
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SAT sweeping might also be a useful preprocessing technique for SAT solving.
However, porting this technique to SAT solving is not trivial. Unlike a circuit,
a SAT formula has no input gates. Consequently, assigning variables to random
values followed by propagation will typically result in a conflict. Hence, it is
much harder to obtain a list of potentially backbone or equivalent variables.

In order to use SAT sweeping as preprocessing technique for a CNF formula
F , we need to compute a large satisfiable subset L of F , which is easy to satisfy.
This is exactly what blocked clause decomposition gives us. Further, it is easy to
find a solution for a blocked set, i.e., linear in the size of the subset. This gives
a fast way to initialize the partition of potentially equivalent literals. We used
the GetMultipleSolutions algorithm in Fig. 4 to efficiently generate many random
solutions in linear time. Variables with the same bit-vector value are potentially
equivalent, while potential backbone variables have either all true or all false
bit-vectors.

EquivalenceExtraction (satisfiable set L)
EE1 let τ be a solution for L, hence τ (L) = 1
EE2 let P = {{l ∈ lits(L) | τ (l) = 1}} // partition of potentially equivalent literals
EE3 let E = ∅ // set of determined equivalences
EE4 while exists a class C ∈ P with l, k ∈ C and l 	= k do
EE5 if SAT(L ∪ {(l)} ∪ {(k̄)}) then refine P by returned solution τ
EE6 else if SAT(L ∪ {(l̄)} ∪ {(k)}) then refine P by returned solution τ
EE7 else add equivalence l = k to E and remove k from C
EE8 return E

Fig. 6. Pseudo-code of the EquivalenceExtraction algorithm

Given a satisfiable formula L, SAT sweeping can be implemented as shown in
the algorithm in Fig. 6. As result it produces the strongest set of equivalences
E, modulo transitivity and equivalent literal substitution, with L |= E. If one of
the SAT calls in line EE5 or EE6 returns a solution τ then τ(l) 
= τ(k) and thus
the partition P is refined by splitting class C into C0 = {l ∈ C | τ(l) = 0} and
C1 = {l ∈ C | τ(l) = 1}. The result of the refinement is (P\{C}) ∪ {C0, C1}.

In practice, several important optimizations are required (see also [13]). First,
incremental SAT solving [19] should be used, adding L as fixed formula per-
manently, but treating the two unit clauses added in line EE5 and EE6 as as-
sumptions [19]. This allows to reuse learned facts from one SAT call to the next,
which is particularly important for learned equivalences: If both queries to the
SAT solver in line EE5 and EE6 are unsatisfiable, the SAT solver will in essence
learn the two clauses (l̄ ∨ k) and (l ∨ k̄), which implicitly record equivalence of l
and k in the SAT solver as well.

The second most important optimization is to bound the time spent in each
SAT solver call, by for instance posing a limit on the number of conflicts. Third,
it is useful to simplify L by SAT based preprocessing. Note, however, that un-
restricted satisfiability preserving preprocessing, such as unrestricted BCE, will
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just turn L into an empty CNF, which then will not have any equivalences. We
propose to restrict preprocessing to those cases, where solutions to L projected
on the common variables between L and R = F \ L do not change. More con-
cretely blocked clause addition is disabled, and common variables are “frozen”,
which means they can not be eliminated nor used as blocking literal etc. This
technique will of course not preserve internal equivalences within L, but still
proved to be useful in practice.

Regarding heuristics for choosing the pair of literals l and k in line EE4, which
are tried to be merged next, we suggest to alternate between randomly picking
literals, favoring large equivalence classes, and then for every second candidate
pair pick two random literals from the next equivalence class in a round-robin
fashion, smallest classes first.

The extraction algorithmwill implicitly also produce many learned unit clauses
of the backbone of the blocked set. In our current implementation we remove
them immediately from the partition P . If at least one unit is kept in P our
algorithm will actually produce the backbone of the blocked set. It can then be
seen as an extension of the iterative backbone extraction algorithm in [16].

7 Results

The algorithms presented above have been implemented. Source code and the
log files of the experiments are available at http://fmv.jku.at/bcd.

We evaluated the effectiveness of SAT sweeping on CNF formulas on some
instances from the application track of the SAT Competition 2013 using an
improved version of the SAT solver Lingeling [20], the winner of this track.

We observed that our equivalence extraction tool was only useful for those
benchmarks for which our decompose tools were able to compute a maximal
blocked subset. Therefore, we selected all 81 instances of the application track
for which Bcdd | Sblitter (with post-processing) was able to compute an MBS
in 100 seconds (see Table 1 for details). Our equivalence extraction tool outputs
the backbone variables and equivalences or a subset in case the time limit of
2000 seconds was hit. The simplified CNF is finally given to Lingeling. The total
running time is limited to 5000 seconds, both for the sequence of blocked clause
decomposition, equivalence extraction and then Lingeling, as well as for plain
SAT solving by Lingeling. This is the same time limit as used in the competition
but on Intel Q9550 2.83GHz instead of Intel E5440 2.83 GHz processors.

For 16 out of 81 instances with an MBS, the extract part runs into the time
limit of 2000 seconds. For the other 65 instances, extract was able to reduce all
equivalence classes of the partition P to singletons. Altogether, the MBSs of
all 81 instances consist of 10 355 344 clauses, from which 3 313 948 (32%) were
still active (non-singletons) after SAT based preprocessing. From those active
variables the tool removed 66 267 backbone variables (2%) and found 343 716
equivalences (10%), due to succeeding implication checks at lines EE5 and EE6

in EquivalenceExtraction. Out of 397 228 SAT solver calls, 48 912 produced a
solution (12%), while 241 790 were unsatisfiable (61%), and 106 526 calls (27%)

http://fmv.jku.at/bcd
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used up the budget of 100 conflicts. The GetMultipleSolutions algorithm was
called 52 834 times in an interleaved fashion with the main equivalence extraction
loop, right after the SAT calls in line EE5 and EE6, scheduled with a frequency of
approximately every 4th SAT solver call. Each time it used bit-vectors of width
512 and produced altogether 27 051 008 solutions. These solutions were used to
split 2 164 294 classes (90%), while the single solutions from the SAT solver calls
in lines EE5 or EE6 returning a solution only split 237 943 classes (10%).
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Fig. 7. Running plain SAT solving (original) and our new approach (decompose | extract
| solve) on the 81 application track instances from the SAT Competition 2013 for which
our decompose tools can compute a maximal blocked subset within 100 seconds. The
total time limit is 5000 seconds (also used during the competition). For the anytime
algorithms decompose and extract a fixed time budget was allowed of at most 100 and
2000 seconds, respectively. The rest of the time is used for solving (solve).

Fig. 7 shows the results of our experiments. Notice that Lingeling contains
many advanced equivalence reasoning engines which were enabled during all
runs. Our new approach is able to solve ten instances more than plain SAT
solving. It requires at most 100 seconds to determine whether a formula would
benefit from our approach, i.e., whether decompose can compute an MBS. If we
take this time into account on the other 218 instances, Lingeling solves one in-
stance less. So the total gain on the whole suite is nine benchmarks. Although the
new approach is faster, quite some time is spent on equivalence extraction. We
expect that a faster implementation of extract can further improve the results by
bringing the decompose | extract | solve line closer to the solve line. Furthermore,
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by speeding up decompose, we can compute MBSs for more formulas thereby
enlarging the number of benchmarks for which our approach is expected to be
useful.

8 Conclusions

We introduced the concept of blocked clause decompositions and showed that
any CNF formula can be decomposed into two blocked sets in polynomial time.
Additionally, we showed how to obtain a maximal blocked set in polynomial
time. The problem of finding a maximal blocked set with the largest cardinality
is NP-hard. We presented several algorithms to obtain decompositions as well
as heuristics and optimizations to make the procedures effective and efficient.

We implemented blocked clause decomposition and SAT sweeping for CNF
formulas in Lingeling, winner of the application track of the SAT Competition
2013. We evaluated the proposed techniques on the benchmarks of this track.
Lingeling with the new techniques was able to solve ten more instances for which
our tools were able to compute a maximal blocked set within 100 seconds.

Future work will focus on improving the efficiency of our tools. In case we can
obtain maximal blocked sets faster, SAT sweeping is expected to be useful for
more benchmarks. Additionally, by reducing the costs of SAT sweeping, we can
increase the benefit of this preprocessing technique. Finally, SAT sweeping can be
implemented more effectively via inprocessing [21] — by interleaving detection
of backbone variables and binary equivalences with conflict-driven search.
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Abstract. Similarly to Maximum Satisfiability (MaxSAT), Minimum Satisfia-
bility (MinSAT) is an optimization extension of the Boolean Satisfiability (SAT)
decision problem. In recent years, both problems have been studied in terms of
exact and approximation algorithms. In addition, the MaxSAT problem has been
characterized in terms of Maximal Satisfiable Subsets (MSSes) and Minimal Cor-
rection Subsets (MCSes), as well as Minimal Unsatisfiable Subsets (MUSes) and
minimal hitting set dualization. However, and in contrast with MaxSAT, no such
characterizations exist for MinSAT. This paper addresses this issue by casting the
MinSAT problem in a more general framework. The paper studies Maximal Fal-
sifiability, the problem of computing a subset-maximal set of clauses that can be
simultaneously falsified, and shows that MinSAT corresponds to the complement
of a largest subset-maximal set of simultaneously falsifiable clauses, i.e. the solu-
tion of the Maximum Falsifiability (MaxFalse) problem. Additional contributions
of the paper include novel algorithms for Maximum and Maximal Falsifiabil-
ity, as well as minimal hitting set dualization results for the MaxFalse problem.
Moreover, the proposed algorithms are validated on practical instances.

1 Introduction

Maximum and Minimum Satisfiability (resp. MaxSAT and MinSAT) are two well-
known optimization extensions of Boolean Satisfiability (SAT) (e.g. [30,34,39]). While
the goal of MaxSAT is to compute an assignment that maximizes the number of satisfied
clauses, the goal of MinSAT is to compute an assignment that minimizes the number of
satisfied clauses. Besides the plain versions, where all clauses are soft and so relax-
able, both MaxSAT and MinSAT admit weighted versions as well as the existence of
hard clauses, i.e. clauses that must be satisfied. MinSAT has been studied since the mid
90s [8, 9, 27, 37], with the original focus being on the computational complexity of the
problem and on approximation algorithms. In recent years there has been a renewed
interest in MinSAT, with the focus being on branch-and-bound and iterative algorithms,
but also on encodings of MinSAT to MaxSAT [5, 6, 21, 28, 31, 33, 34, 45].

Like MaxSAT, MinSAT finds a growing number of practical applications (e.g. [13,
14, 16, 19, 23, 26]), and it has also been used in complexity characterizations of other
problems (e.g. [2, 15, 18, 20]). More importantly, given a MaxSAT problem where the
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soft clauses are all unit, complementing the soft clauses gives a MinSAT problem. As
shown in recent work (e.g. [6, 34] among others), the resulting optimization problems
can be fairly different, and so reducing MaxSAT to MinSAT can in some settings pro-
duce problem instances that are easier to solve. As a result, one can expect the integra-
tion of MinSAT algorithms in portfolios of MaxSAT algorithms in the near future.

MaxSAT has been extensively studied in the context of reasoning about inconsistent
sets of constraints. It is well-known that each MaxSAT solution represents a largest
Maximal Satisfiable Subset (MSS) [12, 36]. The complement of an MSS is a Minimal
Correction Subset (MCS), i.e. a subset-minimal relaxation of a formula that renders the
formula satisfiable. Moreover, another well-known result is that each MCS is a minimal
hitting set of the Minimal Unsatisfiable Subsets (MUSes), and each MUS is a minimal
hitting set of the MCSes [10, 12, 36, 43]. In contrast, and despite the vast body of work
on MinSAT, similar results for the case of MinSAT are non-existent.

This paper addresses this issue and conducts a more comprehensive characterization
of the MinSAT problem. The main contributions of the paper can be summarized as fol-
lows. First, the paper introduces Maximal Falsifiability, which represents the problem
of computing subset-maximal sets of simultaneously falsifiable clauses. Second, the pa-
per addresses MinSAT from the perspective of the largest maximal falsifiable solution
based on the connection between MinSAT solutions and the so-called Maximum Fal-
sifiability (MaxFalse) solutions. Third, the paper develops algorithms for Maximal and
Maximum Falsifiability, thereby indirectly developing novel algorithms for the MinSAT
problem. Moreover, and for the case of plain maximal falsifiability, the paper shows that
it can be reduced to the maximal independent set problem. Thus, well-known linear
time algorithms for maximal independent set [25] can be used for computing a single
maximal falsifiability solution. Similarly, algorithms for the enumeration of maximal
independent set [24, 29] can be used for enumerating maximal falsifiability solutions.
In addition, the paper also shows that a minimal hitting set relationship, which for the
case of maximal satisfiability relates MCSes and MUSes [10, 12, 36, 43], also exists
for the case of maximal falsifiability. Thus, enumeration problems related with Maxi-
mal Falsifiability can be tackled by hitting set dualization, similarly to what has been
done in the context of maximal satisfiability [10, 36]. Finally, the paper presents some
preliminary results on both Maximal and Maximum Falsifiability algorithms.

The paper is organized as follows. Section 2 introduces the basic definitions and
notation used throughout the paper. Section 3 introduces the Maximal and Maximum
Falsifiability problems as well as related computational problems. Section 4 develops
algorithms for Maximal Falsifiability, whereas Section 5 develops algorithms for Max-
imum Falsifiability (and so for MinSAT). Theoretical results for enumeration problems
and minimal hitting sets are presented in Section 6. Section 7 provides experimental
results for Maximal and Maximum Falsifiability, and Section 8 concludes the paper.
Appendix A presents a list of acronyms used in the paper followed by Appendix B
containing pseudo-codes of some of the algorithms proposed in the paper.

2 Preliminaries

This section briefly introduces the definitions used throughout. Additional standard
definitions can be found elsewhere (e.g. [11]). Boolean formulas are represented in
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calligraphic font, F ,M,S, T ,U ,W ,F ′, . . . A Boolean formula in conjunctive nor-
mal form (CNF) is defined as a finite set of finite sets of literals. Where appropriate,
a CNF formula will also be understood as a conjunction of disjunctions of literals,
where each disjunction represents a clause and a literal is a variable or its comple-
ment. The variables of formula F are denoted by var(F). Variables are represented by
X = {x, y, z, x1, y1, z1, . . .} and literals by {l, l1, l2, . . .}. The clauses of a formula are
represented by {c, c1, c2, . . .}. A literal l is called pure in formula F if there is a clause
in formula F containing l but no clause in F that contains a complementary literal ¬l.
An assignment is a map A : var(F) �→ {0, 1}. A clause is satisfied by an assignment
if one of its literals is assigned value 1. A model of F is an assignment that satisfies all
clauses in F .

The standard definitions of MaxSAT are assumed (e.g. [30]). Moreover, the follow-
ing definitions also apply. Given a CNF formula F , sets of clauses S, S ⊆ F , and C,
C = F \ S, are called a Maximal Satisfiable Subset (MSS) and a Minimal Correction
Subset (MCS), respectively, if S is satisfiable and ∀c∈C set S ∪ {c} is unsatisfiable.
A set of clauses U , U ⊆ F , is called a Minimal Unsatisfiable Subset (MUS) if U is
unsatisfiable and ∀c∈U set U \ {c} is satisfiable. The reader is referred to [12, 36] for
further details. In the context of MaxSAT and MinSAT, a formula F is viewed as a
2-tuple (H,R), where H denotes the hard clauses, which must be satisfied, and R
denotes the soft (or relaxable) clauses. A weight can be associated with each clause,
such that hard clauses have a special weight �. Hence, the weight function is a map
w : H∪R → {�}∪N, such that ∀c∈Hw(c) = � and

∑
c∈Rw(c) < �. If no weight

function is specified, it is assumed that ∀c∈R w(c) = 1.
The paper also considers a number of optimization problems in graphs. Given an

undirected graph G = (V,E), an Independent Set (IS) is a set I ⊆ V such that
∀u,v∈I , (u, v) 
∈ E. A vertex cover is a set C ⊆ V such that ∀(u,v)∈E , u ∈ C ∨ v ∈ C.
Finally, a clique (or complete subgraph) is a set L ⊆ V such that ∀u,v∈L, u 
= v ⇒
(u, v) ∈ E. Given an independent set I ⊆ V , a well-known result is that V \ I is
a vertex cover of G and I is a clique of GC , the complemented graph. The Maximum
Independent Set (MIS) problem consists in computing an IS of largest size. The Maxi-
mal Independent Set (MxIS) problem consists in computing a subset-maximal IS. Both
problems can be generalized to the case when a weight is associated with each vertex.
More importantly, given the above relationships between ISes, VCes and cliques, so-
lutions of the MIS and MxIS problems also represent, respectively, solutions for the
Minimum Vertex Cover (MVC) and a Minimal Vertex Cover (MnVC) of graph of a
graph G, as well as a Maximum Clique (MaxClique) and a Maximal Clique (MxClique)
of the complemented graph GC . A well-known result is that a maximal independent set
can be computed in linear time [25]. The topic of enumeration of maximal independent
sets has also been extensively studied (e.g. [1, 24, 29, 44]).

3 Maximal and Maximum Falsifiability

This section starts by introducing the plain maximal and maximum falsifiability prob-
lems. In this case, H = ∅ and so F = R, i.e. all clauses are soft (and so relaxable) and
their cost is 1. Generalizations of the basic problems are considered later in this section.
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Definition 1 (All-Falsifiable). A set of clauses U is All-Falsifiable if there exists a truth
assignment A such that A falsifies all clauses in U .

Proposition 1. A set of clauses U is all-falsifiable iff all the literals of U are pure.

Proof. Let U be all-falsifiable. Assume, that not all the literals of U are pure. This
means that there exist a literal l and clauses ci and cj in U such that l ∈ ci and ¬l ∈ cj .
But every complete truth assignment A satisfies at least one of these clauses, because
literals l and ¬l cannot be falsified simultaneously. Hence, our initial assumption —
that not all the literals of U are pure — must be false.

Let all the literals of U be pure. And let us choose a complete assignment A in the
following way: A(var(l)) = ¬l, ∀l∈U . Then assignment A falsifies all clauses of U ,
i. e. U is all-falsifiable. 
�

Definition 2 (MFS). Given a formula F , a Maximal Falsifiable Subset (MFS) of F is
a subset M ⊆ F such that:
1. M is all-falsifiable.
2. For any subformula P , F ⊇ P � M, P is not all-falsifiable.

Definition 3 (Maximum Falsifiability). Given a formula F , Maximum Falsifiability
(MaxFalse) denotes the problem of computing the largest (in terms of the number of
clauses) MFS of F .

Definition 4 (Minimum Satisfiability). Given a formula F , Minimum Satisfiability
(MinSAT) is the problem of computing the smallest number of simultaneously satisfied
clauses of F (while the other clauses of F are falsified).

Proposition 2. M represents a MaxFalse solution iff F \ M represents a MinSAT
solution.

Notice that the proof of Proposition 2 is quite trivial and, thus, is omitted here.
Nevertheless, Proposition 2 indicates that, in addition to recent algorithms for Min-
SAT [5, 28, 31, 33, 34], possible alternatives include dedicated algorithms for the Max-
False problem, and also solutions based on the enumeration of MFSes.

Besides MFSes, additional minimal sets are of interest. One example is a minimal
set of clauses which, if removed from F , yield an all-falsifiable set of clauses.

Definition 5 (MCFS). Given a formula F , a Minimal Correction (for Falsifiability)
Subset (MCFS) is a set C ⊆ F such that:
1. F \ C is all-falsifiable.
2. ∀c∈C , F \ (C \ {c}) is not all-falsifiable.

Definition 6 (MNFS). Given a formula F , a Minimal Non-Falsifiable Subset (MNFS)
is a set N ⊆ F such that:
1. N is not all-falsifiable.
2. ∀c∈N , N \ {c} is all-falsifiable.
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Example 1. Consider the following formula:

c1 c2 c3 c4 c5
F � (x1) ∧ (x̄1) ∧ (x̄1 ∨ x2) ∧ (x̄2) ∧ (x3)

The sets {c2, c3, c5}, {c1, c4}, and {c1, c2} denote, respectively, examples of an MFS,
an MCFS and an MNFS.

A relevant result is the relationship between plain maximal falsifiability and maximal
independent sets. Given F , let G = (V,E) be an undirected graph such each clause of
F is represented by a vertex of G. Moreover, there exists an edge between two vertices
iff the corresponding clauses have complemented literals. Clearly (see Proposition 1)
clauses with complemented literals cannot be simultaneously falsified. Hence, an MFS
of F represents a MxIS of G and a MxClique of the complemented graph. Moreover,
an MCFS corresponds to an MnVC of G. Thus, for plain maximal falsifiability, an MFS
can be computed in linear time [25].

The relationship between MFSes and MxISes yields a somewhat straightforward
hitting set relationship. For any maximal independent set I , V \ I represents a minimal
vertex cover. An immediate observation is:

Proposition 3. Given a graph G = (V,E) with a set of MnVCes C, the minimal hitting
sets of C are the edges of G and the minimal hitting sets of the edges of G are the
MnVCes C of G.

As a result, for the case of plain maximal falsifiability the following holds:

Proposition 4. Let F be a set of soft clauses. Then:
– The MNFSes of F are the minimal hitting sets of the MCFSes F and vice-versa.
– Each MNFS of F consists of exactly two clauses and represents an edge in the

graph G defined above.
– The number of MNFSes of F is O(m2), where m denotes the number of clauses

in F .

Reductions of MaxClique to MaxSAT and MinSAT are well-known (e.g. [32]). For
example, such reductions also allow solving MIS, MVC, with MaxSAT (and MinSAT)
algorithms. A new encoding of MIS into MinSAT can be devised, which does not use
hard clauses. Given an undirected graph G = (V,E), one can construct a set of clauses
F such that each vertex vi ∈ V is represented by a clause ci ∈ F . For each edge
e = (vi, vj) a new variable xe is introduced in F such that xe ∈ ci and ¬xe ∈ cj .

Example 2. Consider the graph G = (V,E), with V = {v1, v2, v3, v4} and E =
{(v1, v2), (v1, v3), (v2, v3), (v2, v4)}, shown in Figure 1a. Each vertex vi is represented
by a clause ci and for each edge (vi, vj) a new variable xvi,vj is introduced. The
graph can be represented by a set of clauses F (Figure 1b) in the following way: c1 =
xv1,v2 ∨xv1,v3 , c2 = ¬xv1,v2 ∨ xv2,v3 ∨ xv2,v4 , c3 = ¬xv1,v3 ∨¬xv2,v3 , c4 = ¬xv2,v4 .
A maximal independent set of G corresponds to an MFS of F .

We now consider other formulations of maximal falsifiability, where H 
= ∅ and
where each soft clause c is associated a non-unit weight. As a result, a weight is also
associated with each MFS, MCFS and MNFS.
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v1 v2

v3v4

(a) Graph G (see Example 2)

F =

⎧⎪⎪⎨⎪⎪⎩
c1 = xv1,v2 ∨ xv1,v3 ,
c2 = ¬xv1,v2 ∨ xv2,v3 ∨ xv2,v4 ,
c3 = ¬xv1,v3 ∨ ¬xv2,v3 ,
c4 = ¬xv2,v4

⎫⎪⎪⎬⎪⎪⎭
(b) Set of clauses F for G

Fig. 1. From maximal independent set to maximal falsifiability

Similar to the MaxSAT case, the problems considered for MaxFalse/MinSAT are
plain (H = ∅ and unit weights), partial (H 
= ∅ and unit weights), weighted (H = ∅
and arbitrary weights), and partial weighted (H 
= ∅ and arbitrary weights) Max-
False/MinSAT. Observe that these definitions follow earlier work for the concrete case
of MinSAT (e.g. [34]).

MFSes for (partial) (weighted) maximal falsifiability problems are defined similarly
to plain case, but H is required to be satisfied for the truth assignment that identifies
the MFS. Moreover, the weighted versions of the MaxFalse and MinSAT problems are
defined as follows.

Definition 7 (Partial Weighted Maximum Falsifiability). Given a formula F , with
hard clauses H, H is satisfiable, and soft clauses R, Maximum Falsifiability (Max-
False) denotes the problem of computing the MFS of F with the largest weight.

Definition 8 (Partial Weighted Minimum Satisfiability). Given a formula F , with
hard clauses H and soft clauses R, Minimum Satisfiability (MinSAT) is the problem of
computing a subset of clauses of R with the smallest weight, that together with H are
simultaneously satisfiable (while the other clauses of R are falsified).

A simple observation is that although weights can be associated with MFSes, MCF-
Ses and MNFSes, their number is independent of the weight function (e.g. [41]).

For the cases where H 
= ∅, the problems of computing MFSes and MxISes are
no longer equivalent. Observe that, when H 
= ∅, finding an MFS becomes NP-hard.
A proof is immediate, since we can reduce SAT to MaxFalse: H corresponds to the
original clauses and there are no soft clauses. Section 6 revisits the difference between
MFSes and MxISes in the case H 
= ∅, and also general minimal hitting results.

4 Algorithms for Maximal Falsifiability

As indicated in Section 3, there are linear time algorithms for plain maximal falsifiabil-
ity, while the general case of the problem is NP-hard. Since there are several encodings
of MinSAT into MaxSAT (e. g. [21, 31, 45]), these encodings can be also used for solv-
ing the maximal falsifiability problem. One of the most effective encodings of MinSAT
is the so-called �-encoding1. It consists in negating each soft clause c of the formula,

1 The reader is referred to [21] for the details of �-encoding.
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Algorithm 1. Basic linear search (BLS)

1 Function BLS(F = H ∪R)
2 (st,A) ← SAT(H) # initial SAT call

3 if st = false then
4 return (false, ∅)

5 C ← R
6 FilterFalsifiedClauses(H, C,A)

7 foreach c ∈ C do # trying to falsify each clause

8 (st,A) ← SAT(H ∪ {¬c})
9 if st = true then

10 H ← H∪ {¬c}
11 C ← C \ {c}
12 FilterFalsifiedClauses(H, C,A)

13 return (true,R \ C)

which results in constructing a group of unit clauses g = {¬c}. Group g is then relaxed
by a relaxation variable r and made hard, while the clause ¬r is added to the soft part
of the formula.

Let F be a CNF formula, and �-Enc(F ) be its �-encoding into MaxSAT. Observe
that there is a one to one correspondence between an MFS of F and an MSS of �-
Enc(F ), an MCFS of F and an MCS of �-Enc(F ) and, finally, an MNFS of F and an
MUS of �-Enc(F ). Moreover, the size of an MFS of F equals the size of the corre-
sponding MSS of �-Enc(F ), and similarly for MCFSes/MCSes and MNFSes/MUSes
of F and �-Enc(F ), respectively. Thus, one approach for finding an MFS of formula
F is to find an MSS (or its complement — MCS) of �-Enc(F ), e.g. with recently
proposed algorithms for computing MCSes [38, 42]. Nevertheless, this paper proposes
instead native algorithms for both maximal and maximum falsifiability.

Let H and R denote the hard and soft clauses of F , respectively. To find an MFS of
F , one needs to determine a subset of R that is a maximally all-falsifiable set, subject
to the models of H. Therefore, during the search it is necessary to call a SAT oracle.

Algorithm 1 shows the pseudo-code of the Basic Linear Search (BLS) algorithm for
the general case of maximal falsifiability, inspired on algorithms for MCSes [38, 42].
Given a H and R, denoting the hard and soft clauses of F , the algorithm finds an
MFS M, M ⊆ R, of formula F . Algorithm 1 is based on the connection between
MinSAT and MaxFalse and at first finds a solution of the minimal satisfiability prob-
lem for F , i. e. an MCFS C, C ⊂ R, and then uses it to compute the complementary
MFS M = R \ C. First, Algorithm 1 checks whether the hard part of the formula is
satisfiable or not (see line 3). If it is not, the BLS algorithm returns an empty MFS.
Otherwise, it initializes the correction set C to be equal to R (line 5). At each itera-
tion of the main loop (lines 7–12) Algorithm 1 tries to reduce C by removing a single
clause c ∈ C. This is done by checking whether clause c can be falsified together with
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Algorithm 2. MaxFalse Binary Search (MFBS)

1 Function MFBS(F = H ∪R)
2 (Fw, R,W ) ← (H, array[R.size()], array[R.size()])
3 foreach (ci, wi) ∈ R do
4 (R[i],W [i]) ← (ri, wi) # ri fresh relaxation variable

5 foreach lij ∈ ci do Fw ← Fw ∪ {(¬lij ∨ ri)}
6 (λ, μ, lastA) ← (ComputeLB(R), ComputeUB(Fw), ∅)
7 while λ 
= μ do
8 κ ← �λ+μ

2 �
9 (st,A) ← SAT(Fw ∪ CNF(

∑R.size()−1
i=0 W [i]×R[i] ≤ κ))

10 if st = true then (lastA, μ) ← (A, GetSolution(R,A))
11 else λ ← SubSetSum(W,κ)

12 return Falsified(R, lastA)

clauses that were falsified at previous iterations (line 8). A possible improvement of
the BLS algorithm is that instead of removing just one clause c from C per iteration,
one can filter all clauses from C that were falsified by each SAT call. This is done by
calling a function FilterFalsifiedClauses(H, C,A) (line 6 and line 12), where A
is a model of H ∪ {¬c} returned by the oracle. Every clause falsified by A is removed
from C, and its negation is then made hard (added to H). Note that calling the func-
tion FilterFalsifiedClauses(H, C,A) can significantly reduce the number of SAT
calls.

5 Algorithms for Maximum Falsifiability

A solution to the MaxFalse problem can be obtained by computing a solution to the
MinSAT problem (Proposition 2). On the other hand, and as mentioned in Section 4
several encodings have been proposed to translate MinSAT into MaxSAT. Thus, the
MaxFalse problem can be computed by encoding the problem into MaxSAT. This paper
proposes instead native algorithms for the MaxFalse problem.

The three algorithms proposed are based on iteratively calling a SAT solver, to de-
termine if a subset of the soft clauses with a maximum current cost exists. The idea is
similar to the classical iterative SAT-based MaxSAT solvers. Initially each soft clause is
relaxed by associating to the clause a relaxation variable (a fresh Boolean variable). This
process of relaxing a soft clause, guarantees that whenever a soft clause is satisfied by
an assignment, then its associated relaxation variable is assigned true. In each iteration
a constraint is added to the formula sent to the SAT solver, in order to force a current
maximum cost on the set of relaxation variables assigned true. The current cost of each
iteration depends on the bounds being refined, either a lower bound, an upper bound
or both. The three algorithms proposed correspond to the three types of search possible
(to refine the bounds): Binary search (MFBS) (which refines both an upper and a lower
bound); Linear search starting from a lower bound (named Linear search UNSAT-SAT,
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MFLSUS); and Linear search starting from an upper bound (named Linear search SAT-
UNSAT, MFLSSU). In the following the pseudo-code of the Binary search algorithm
is presented and described, while the pseudo-codes of the Linear search algorithms are
presented in appendix B.

Algorithm 2 shows the pseudo-code of the MaxFalse Binary Search (MFBS) algo-
rithm for maximum falsifiability. First, Algorithm 2 obtains a working formula Fw by
relaxing all the soft clauses in R together with all the hard clauses. In this case, the
relaxation of the soft clauses is not the usual relaxation as in MaxSAT. Instead, the al-
gorithm follows the relaxation of soft clauses as in the Model-Guided algorithm [21]
for MinSAT. A fresh relaxation variable is associated with the original soft clause, and
a set of binary clauses is added to the working formula, each containing the negation of
a literal of the soft clause, and the associated relaxation variable (line 5).

The algorithm proceeds by computing an initial lower and upper bound in line 6. The
upper bound is computed by calling the SAT solver on the working formula with pref-
erences set for the relaxation variables, that is the relaxation variables are prefered to be
falsified. Then the sum of weights of the relaxation variables set to true corresponds to
the upper bound.

The lower bound is computed by a greedy heuristic. Each variable is associated with
two sums: the sum of weights of the soft clauses where the variable appears as a pos-
itive literal, and the sum of weights of the soft clauses where the variable appears as a
negative literal. The minimum value of the two sums is obtained, and associated with
the variable, as the minimum weight necessary to satisfy due to an assignment to the
variable. Then the maximum among all variables is computed and added to the lower
bound. Afterwards the clauses associated to the variable with the maximum value are
processed by deleting all clauses associated to the minimum sum. The process is re-
peated until there are no more variables.

Lines 7-11 present the main loop of the MFBS algorithm. In each iteration the al-
gorithm computes a value κ in the middle of the bounds, and makes a call to the SAT
solver with the working formula Fw together with a constraint (encoded into CNF) en-
forcing the maximum allowed cost to be at most κ. If the SAT solver returns true, then
the satisfying assignment is recorded and the upper bound μ is updated accordingly. If
the SAT solver returns false, then the lower bound is updated to the next allowed weight
considering the set of weights. Such weight is obtained by the SubSetSum() function
similar to [3].

The algorithm iterates until both bounds are the same (line 7), and returns a set of
soft clauses falsified by the last assignment with function Falsified() in line 12.

6 Minimal Hitting Sets and Enumeration Problems

One of the most important practical applications of the Maximal Satisfiability problem
is enumeration of MUSes of a CNF formula. The idea of the method is based on the
well-known relationship of minimal hitting set duality between MCSes and MUSes:
each MCS (MUS) of a CNF formula is a minimal hitting set (or a minimal set cover)
of the complete set of MUSes (MCSes) of the formula. The corresponding theoretical
results were considered in [12,43]. Enumeration of MUSes based on enumerating MC-
Ses was done in [10, 36, 42]. The duality relationship between MCSes and MUSes was
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also used for solving the SMUS problem in [22, 35]. The approach did not consist in
enumerating all MCSes and MUSes — instead, in order to get a lower bound on the
size of the smallest MUS, only some MCSes were computed.

This section proves that the relationship of a minimal hitting set duality also exists
for the case of Maximal Falsifiability, i. e. between MCFSes and MNFSes. The corre-
sponding assertions are presented in the form of theorems. Two auxiliary propositions
are used in the proofs. Hereinafter, letters M, N , and C are used to denote an MFS,
an MNFS, and an MCFS of a CNF formula, respectively. The complete sets of MFSes,
MNFSes and MCFSes of a CNF formula F are denoted by M(F), N(F), and C(F).

Proposition 5. Formula F is not all-falsifiable iff it contains at least one MNFS.

Proof. Such an MNFS can be constructed by a simple algorithm that finds a pair of
clauses in F that contain a complemented literal. The opposite is trivial. 
�

Proposition 6. A set of clauses U , U ⊆ F , is all-falsifiable iff there is an MCFS C such
that U ∩ C = ∅.

Proof. It follows from the fact that for any all-falsifiable subset U , U ⊆ F , there is
an MFS M such that U ⊆ M ⊆ F . By definition, for any MFS M there exists a
complementary MCFS C = F \M. It is not hard to see that U ∩ C = ∅. 
�

Theorem 1. Subformula C, C ⊂ F , is an MCFS iff C is a minimal hitting set of N(F).

Proof. Proposition 5 implies that subformula C is a hitting set of N(F) iff the comple-
mentary subformula M = F \ C is all-falsifiable (otherwise, M contains at least one
MNFS that is not hit by C).

Let C ⊂ F be a minimal hitting set of N(F). This means that M is all-falsifiable,
and ∀c∈C formula C \ {c} is not a hitting set of N(F). Assume, that M is not an MFS
of F , i. e. ∃c∈C such that M∪ {c} is still all-falsifiable. This implies that C \ {c} is a
hitting set of N(F) — contradiction. Hence, M is an MFS and C is MCFS of F .

Let C ⊂ F be an MCFS of formula F . Then the complementary subformula M is
an MFS, and C is a hitting set of N(F). Assume, that C is not a minimal hitting set of
N(F). Then ∃c∈C such that C \ {c} is still a hitting set of N(F). This means that its
complementary subformulaM∪{c} is all-falsifiable. However, this contradicts the fact
that M is an MFS of F . Therefore, C is a minimal hitting set of N(F). 
�

Theorem 2. Subformula N , N ⊆ F , is an MNFS iff N is a minimal hitting set
of C(F).

Proof. Proposition 6 implies that subformula N is not all-falsifiable iff N has a non-
empty intersection with all the MCFSes of F , i. e. N is a hitting set of C(F).

Let N be an MNFS of formula F . Irreducibility of N ensures that any subformula
N ′, N ′ ⊂ N , is an all-falsifiable formula. Hence, by Proposition 6, N ′ does not hit all
the MCFSes of F . Thus, N is a minimal hitting set of C(F).

Let N be a minimal hitting set of C(F). This means that ∀c∈N formula N \ {c}
does not hit all the MCFSes of F , i. e. there is an MCFS C such that N \ {c} ∩ C = ∅.
Hence, N \ {c} is a subset of MFS M = F \ C, and, therefore, is all-falsifiable. By
definition, subformula N is an MNFS of F . 
�



Maximal Falsifiability: Definitions, Algorithms and Applications 449

Observe that the proofs of the propositions presented above make use only of the
general definitions of an MFS, MCFS, and MNFS described in Section 3. Therefore,
the propositions hold for both plain and partial maximal falsifiability.

It should be noted that in contrast to Maximal Satisfiability, for the case of Maximal
Falsifiability it can be more helpful to enumerate MNFSes instead of MCFSes. A set
of MNFSes can give us a lower bound on the size of each MCFS and, hence, an upper
bound on the optimal value for MaxFalse. Therefore, this can be used to bootstrap
algorithms that refine an upper bound (see Section 5).

Observe that there is no correspondence between computing MFSes and MxISes
for the case H 
= ∅ because of the different interpretations of the hard constraints.
Although the maximal independent set problem does not consider a concept of a hard
constraint (in this sense computing an MFS is a more general problem than computing
an MxIS), one can consider the weighted version of the problem. While for the case
of partial maximal falsifiability each clause c ∈ H must be satisfied, vertices with
a high weight in the weighted maximal independent set problem are preferable to be
independent. Hence, there is no translation from one problem into another similar to
the one described2 in Section 3.

In contrast to plain maximal falsifiability, for which MNFSes are known to contain
exactly two clauses (see Proposition 4), formulas with hard clauses may have MNFSes
that contain just one clause. This fact is shown below.

Proposition 7. Let F be a pair of sets of clauses (H,R), where clauses of H are hard
while clauses of R are soft (relaxable). Then if there exists a subset of clauses W ⊆ R
such that H |= W , then W is included into all MCFSes of F .

Proof. Proof by contradiction. Let W be a subset of R such that H |= W . Assume, that
there exists MCFS C such that W 
⊆ C. This means that an MFS M = R \ C intersects
W , i. e. M∩W 
= ∅. Entailment H |= W means that each clause c ∈ W is satisfied
by all models of H. By definition, all clauses of M can be falsified simultaneously by
some model of H, Therefore, M∩W = ∅ — contradiction. 
�

Corollary 1. Let F be a pair of sets of clauses (H,R), where clauses of H are hard
while clauses of R are soft (relaxable). Then if there exists a subset of clauses W ⊆ R
such that H |= W , then for any clause ci ∈ W set {ci} is an MNFS of F .

Proof. Implied by Proposition 7 and Theorem 2. 
�

Note that Corollary 1 gives a sufficient condition of partial formulas having MNFSes
of size 1. Furthermore, it can be observed that formulas with hard clauses can also have
MNFSes of size > 2. Indeed, let us consider a set of clauses F ′ = {c1 = ¬x1 ∨
¬x2, c2 = ¬x1 ∨ x2, c3 = x1 ∨ ¬x2, c4 = x1 ∨ x2} . Clearly, this plain CNF formula
is unsatisfiable (moreover, it is an MUS). By negating F ′ with the use of auxiliary
variables, one can get a negation of F ′ — a partial CNF formula F = H ∪ R, where
clauses of H encode equivalences of the form ti ≡ ci, i ∈ {1, . . . , 4}, and R =

2 Recall that the connection between plain maximal falsifiability and maximal independent set
in Section 3 established the correspondence between independent vertices and clauses that can
be simultaneously falsified.
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{¬t1,¬t2,¬t3,¬t4}. Formula F has only one MNFS, which corresponds to the MUS
of F ′ and contains all 4 clauses of R.

This immediately shows that the number of all MNFSes of partial formulas cannot
be polynomial in general. Although this implies that enumeration of MNFSes for such
formulas may not be feasible in practice, instead of enumerating MNFSes of F =
H ∪ R, we can efficiently enumerate MNFSes of R (see Proposition 4) and use them
to compute a lower bound for bootstrapping the algorithms for MaxFalse.

7 Experimental Results

This section describes the experimental results obtained for Maximal Falsifiability as
well as for Maximum Falsifiability. The first section shows a comparison on the quality
of the solution obtained for Maximal Falsifiability. Then section two presents a study
on the performance of the algorithms proposed for Maximum Falsifiability.

The algorithms described in this paper were implemented in C++ using incremental
SAT solvers. The experiments were performed on an HPC cluster, with quad-core Intel
Xeon E5450 3 GHz nodes with 32 GB of memory. In order to evaluate the performance
of the algorithms in real industrial problems (not random nor crafted problems), all
the Industrial Partial MaxSAT and Industrial Weighted Partial benchmarks from the
MaxSAT Evaluation 20133 were collected. The collected MaxSAT benchmarks were
transformed into MaxFalse instances by selecting the ones that only contained unit soft
clauses and by negating the unit literals on those instances. A total of 935 MaxFalse
instances were obtained.

As explained in Section 4, a different alternative to Maximal/Maximum Falsifiabil-
ity consists in transforming the MaxFalse instance by encoding it into MaxSAT via
for example the �−encoding, and then computing a MCS/MaxSAT of the resulting
MaxSAT instance. In our experiments, whenever we compare with this encoding ap-
proach, since the original instances only contain unit soft clauses, then no aditional
variables or clauses are added, and this corresponds to solving MaxSAT on the original
instances obtained from the MaxSAT Evaluation.

7.1 Maximal Falsifiability

The BLS Algorithm 1 of Section 4 was implemented in a tool mxlFalse. The underlying
SAT solver of the maximumFalse tool is the Minisat 2.2 [17].

This section studies the quality of the solutions obtained. The cost of the MCFSes
obtained with mxlFalse is compared against the value of the upper bound heuristic of
Section 5, as well as against the cost of the MCSes obtained by mcsls2 [38] (an efficient
MCS extractor) after transforming the instance into MaxSAT.

In the experiments both the mxlFalse and mcsls2 were set to enumerate MCFSes
and MCFS (respectively) for 3 min, whereupon the minimum cost MCFS/MCS was
obtained. The results obtained were then divided by the optimum cost, and the values
were plotted in the scatter plots of Figure 2. Figure 2 (a) compares the value of mxlFalse

3 http://maxsat.ia.udl.cat/

http://maxsat.ia.udl.cat/
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Fig. 2. (a) scatter plot between mxlfalse and ub (b) scatter plot between mxlfalse and mcsls2

(divided by the optimum cost) and the value obtained by the upper bound (divided by
the optimum cost). It can be seen from the scatter plot that in the vast majority of cases
the value of mxlFalse is closer to 1 (thus, closer to the optimum) than the value of the
upper bound (UB). In particular all the instances in the left hand side of the plot.

Figure 2 (b) compares the value of mxlFalse (divided by the optimum cost) and the
value obtained by mcsls2 (divided by the optimum cost). In this case, mcsls2 produces
solutions closer to the optimum, but nevertheless there are instances that mcsls2 is 10
times over the optimum while mxlFalse is very close. In such situations, it would be
worthwhile to additionally consider running mxlFalse.

7.2 Maximum Falsifiability

The Maximum False algorithms proposed in Section 5 were implemented in a tool
called maximumFalse. Namely, the following algorithms were implemented: binary
search (maximumFalse-b), linear search unsat-sat (maximumFalse-lsus) and linear se-
arch sat-unsat (maximumFalse-lssu). This section presents results on the performance
of the previous algorithms running for 1800 seconds with 4GB of memory limit. The
underlying SAT solver of the maximumFalse tool is the Glucose SAT solver [7].

Figure 3 presents a cactus plot for the previous algorithms on the MaxFalse bench-
marks considered. From the figure it can be seen that binary search (maximumFalse-b)
is much better than the linear search approaches (maximumFalse-lsus/-lssu), while the
linear search unsat-sat outperforms (slighty) the linear search sat-unsat.

Figure 3 also shows the running times for two core-guided MaxSAT algorithms run-
ning on the original MaxSAT instances. Namelly, we consider bcd2 [40] and wpm1 [4]
(2012 version). As expected, the core-guided MaxSAT approaches outperform maxi-
mumFalse algorithms. Note that the MaxSAT algorithms result from over a decade of
research, while in this paper we are proposing a more general framework for MaxFalse.
Also, it is unknown in the literature how to take advantage of core-guided algorithms
natively in MaxFalse algorithms, whether if it is even possible.

Nevertheless, we considered the use of virtual best solvers (VBS) between the maxi-
mumFalse solvers and the core-guided algorithms. Interestingly, the VBSes considering
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maximumFalse solvers consistently outperform their counterpart without the maximum-
False solvers. For example, vbs-wpm1-maximumFalse is able to solver over 100 more
instances than wpm1 alone.

Such results indicate that porfolio approaches for MaxSAT solver can benefit from
the inclusion of maximumFalse solvers.

8 Conclusions

Motivated by the recent interest in MinSAT, this paper develops a comprehensive char-
acterization of this problem, which follows the one developed earlier for MaxSAT. To
achieve this goal, the paper introduces the problems of maximum and maximal falsifi-
ability. The case of plain maximal falsifiability is shown to correspond to the compu-
tation of a maximal independent set in an undirected graph. Also, the paper develops
a reduction of maximal independent set into maximal falsifiability (and so to minimal
satisfiability), which does not involve hard clauses. Moreover, as pointed out, maximal
falsifiability can be viewed as a more general formulation (with respect to maximal
independent set), as it allows hard clauses to be considered. Maximal falsifiability is
also used to introduce a number of new concepts: maximal falsifiable subsets (MSFes),
minimal correction for falsifiability subsets (MCFSes), and minimal non-falsifiability
subsets (MNFSes). In addition, the paper develops native algorithms for both maximal
and maximum falsifiability, namely algorithms for computing one MFS and for solving
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the MaxFalse problem, and shows how these problems can be solved by reduction to
MaxSAT. Finally, minimal hitting set duality between MCFSes and MNCSes is proven
for the general (partial) case. The experimental results are interesting in that algorithms
for maximal/maximum falsifiability show promise to be used in portfolios of algorithms
for maximal/maximum satisfiability.

The work described in the paper opens a significant number of research directions.
Concrete examples include additional algorithms for computing MFSes and for Max-
False, the integration of MaxFalse algorithms in portfolios of MaxSAT algorithms,
among others.
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6. Argelich, J., Li, C.-M., Manyà, F., Zhu, Z.: MinSAT versus MaxSAT for optimization prob-
lems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 133–142. Springer, Heidelberg
(2013)

7. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers. In: IJCAI,
pp. 399–404 (2009)

8. Avidor, A., Zwick, U.: Approximating MIN k-SAT. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 465–475. Springer, Heidelberg (2002)

9. Avidor, A., Zwick, U.: Approximating MIN 2-SAT and MIN 3-SAT. Theory Comput.
Syst. 38(3), 329–345 (2005)

10. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS,
vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

12. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and be-
haviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

13. Bourke, C., Deng, K., Scott, S.D., Schapire, R.E., Vinodchandran, N.V.: On reoptimizing
multi-class classifiers. Machine Learning 71(2-3), 219–242 (2008)

14. Brihaye, T., Bruyère, V., Doyen, L., Ducobu, M., Raskin, J.-F.: Antichain-based QBF solving.
In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 183–197. Springer,
Heidelberg (2011)



454 A. Ignatiev et al.

15. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-
interval graphs. ACM Transactions on Algorithms 6(2) (2010)

16. Chen, T., Filkov, V., Skiena, S.: Identifying gene regulatory networks from experimental data.
Parallel Computing 27(1-2), 141–162 (2001)
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A List of Acronyms

CNF Conjunctive Normal Form
SAT Boolean Satisfiability
IS Independent Set
MIS Maximum Independent Set
MxIS Maximal Independent Set
MaxClique Maximum Clique
MxClique Maximal Clique
MnVC Minimal Vertex Cover
MVC Minimum Vertex Cover
VC Vertex Cover

MaxSAT Maximum Satisfiability
MCS Minimal Correction Subset
MSS Maximal Satisfiable Subset
MUS Minimal Unsatisfiable Subset
MaxFalse Maximum Falsifiability
MCFS Minimal Correction (for Falsifiability) Subset
MFS Maximal Falsifiable Subset
MinSAT Minimum Satisfiability
MNFS Minimal Non-Falsifiable Subset

B Linear Search Algorithms for Maximum Falsifiability

Algorithm 3. MaxFalse Linear Search SAT-UNSAT(MFLSSU)

1 Function MFLSSU(F = H∪R)
2 (Fw, R,W )← (H, array[R.size()], array[R.size()])
3 foreach (ci, wi) ∈ R do
4 (R[i],W [i])← (ri, wi) # ri fresh relaxation variable

5 foreach lij ∈ ci do Fw ← Fw ∪ {(¬lij ∨ ri)}
6 (st, μ, lastA)← (true, ComputeUB(Fw), ∅)
7 while st = true do
8 (st,A)← SAT(Fw ∪ CNF(

∑R.size()−1
i=0 W [i]×R[i] < μ))

9 if st = true then (lastA, μ)← (A, GetSolution(R,A))
10 return Falsified(R, lastA)
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Algorithm 4. MaxFalse Linear Search UNSAT-SAT(MFLSUS)

1 Function MFLSUS(F = H∪R)
2 (Fw, R,W )← (H, array[R.size()], array[R.size()])
3 foreach (ci, wi) ∈ R do
4 (R[i],W [i])← (ri, wi) # ri fresh relaxation variable

5 foreach lij ∈ ci do Fw ← Fw ∪ {(¬lij ∨ ri)}
6 (st, λ, lastA)← (false, ComputeLB(R), ∅)
7 while st = false do
8 (st,A)← SAT(Fw ∪ CNF(

∑R.size()−1
i=0 W [i]×R[i] ≤ λ))

9 if st = false then λ← SubSetSum(W,λ)
10 else lastA← A

11 return Falsified(R, lastA)
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Abstract. We describe a framework that combines deductive, numeric,
and inductive reasoning to solve geometric problems. Applications in-
clude the generation of geometric models and animations, as well as
problem solving in the context of intelligent tutoring systems.
Our novel methodology uses (i) deductive reasoning to generate a par-

tial program from logical constraints, (ii) numerical methods to evaluate
the partial program, thus creating geometric models which are solutions
to the original problem, and (iii) inductive synthesis to read off new
constraints that are then applied to one more round of deductive reason-
ing leading to the desired deterministic program. By the combination of
methods we were able to solve problems that each of the methods was
not able to solve by itself.
The number of nondeterministic choices in a partial program provides

a measure of how close a problem is to being solved and can thus be used
in the educational context for grading and providing hints.
We have successfully evaluated our methodology on 18 Scholastic Ap-

titude Test geometry problems, and 11 ruler/compass-based geometry
construction problems. Our tool solved these problems using an average
of a few seconds per problem.

Keywords: geometry, reasoning, synthesis.

1 Introduction

We describe a framework for solving geometry problems, which are specified as a
tuple of inputs, outputs, and constraints between them. The perfect solution to
a geometry problem consists of a constructive model generation procedure along
with a proof of its correctness. The synthesized procedure can allow models to
be constructed in real time, within an interactive environment, as the input
points are moved — this has applications in both dynamic geometry environ-
ments [WCY05] and animations.

This class of problems is a subset of CLP(R) [JMSY92] — Constraint Logic
Programming with Real variables. Current implementation of CLP(R) in Pro-
log has limited support for non-linear constraints [swi]. Gröbner bases suggest

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 457–472, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



458 S. Itzhaky et al.

a technique for solving ruler-and-compass construction problems, but this tech-
nique relies on expressing the constraints using polynomials [Buc98]. This is
insufficient for our target domain, since problems typically contain numerical
data in the form of both angles and length, requiring some use of trigonometry.

Our solver starts out by constructing a model of inputs and outputs that sat-
isfy the constraints using a combination of symbolic and numeric reasoning. To
bridge the gap between the two techniques, we use the notion of partial programs.
A partial program is one that contains “choice” statements, meaning that cer-
tain output objects need to be chosen nondeterministically from certain loci. To
evaluate these programs in practice, we use numerical methods for minimizing
a non-negative function that has the value 0 iff the relevant constraints are met.
These methods typically perform well when the number of dimensions is low
(up to 2), so a considerable effort is invested in decreasing the search dimension.
More specifically, the solver has a built-in knowledge base of geometric theorems,
written as a set of Datalog rules. Given an input problem specification, the algo-
rithm tries to identify small search spaces and splits the problem into individual
search invocations of low dimension. Once all the output objects are found we
have a solution to the given problem. Constructing the instance suffices to solve
geometry problems from SAT exams, etc. (This typically requires computing the
value of some quantity such as length, angle, area, etc, which can be read off
from the model).

Perhaps more interestingly, the solver goes beyond the construction of the
model in the following two ways. First, if numeric reasoning was required to
constructing the model, then the solver attempts to eliminate this need in an
attempt to decrease running time. The procedure works as follows: it constructs
a second model for another instance of the problem in which the positions of
the inputs have been perturbed. The solver next searches for equalities be-
tween distances and angles that occur in both of the constructed models, but
were not mentioned in the input specification. According to theorems shown
in [Hon86,GKT11], the probability that such equalities are incidental approaches
zero. The solver adds these new equalities to the input constraints and solves
the new problem. This elimination of numeric search produces a more efficient
program, making future evaluations of instance of the same problem much faster.
By an instance of a given problem we mean the same constraints with different
values for the inputs (e.g. different lengths of segments or positions of points).
Furthermore, the resulting program provides a complete, constructive solution
rather than a numeric approximation. Second, once a deterministic program has
been synthesized, our solver generates a proof that the program always con-
structs a model satisfying the constraints. Thus the correctness of the construc-
tion is automatically proved. We view a total program as a perfect solution for
a given geometric problem, whereas a partial program searches for the answer.
The dimension of the search spaces provides an estimation for the run-time cost
of the search.

In the future we plan to use our geometric solver as a helper and tutor for
geometry students. The above metric for partial programs will be useful for
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measuring how far a student is from a solution, and gauging the “size of hints”
that students need to help them solve a given problem.

The main contributions of this paper are the following:

1. Our solver for geometric programs shows how we can combine the comple-
mentary strengths of symbolic, numeric, and inductive reasoning.

2. We introduce a non-deterministic language of partial programs for capturing
partial insights about geometric constructions. Such programs have an under-
lying cost corresponding to the size and number of loci that must be searched
numerically. This language is useful both as an intermediate data-structure
for our solver, and for the user to communicate insights.

3. We provide a substantial experimental evaluation that demonstrates the ef-
ficacy of our solver. Out of the 21 questions in SAT practice tests we found
freely available on the Internet, we were able to automatically solve 18. The
only questions we were not able to solve are those when the size of the problem
is part of the input or output (e.g. when the user is asked to determine the
number of sides a given polygon has). In 6 of the problems we tested it on, the
solver was able to eliminate all of the numeric search steps, thus synthesizing
a very efficient program that solves a general version of the given problem.

In the following we define the format of geometry problems that we consider.
We present our solver in detail. Finally we report on our experimental results.

2 Geometric Construction Problems

We begin by describing how a geometric construction problem is specified. We
also define the three components of the solution to that problem, namely the
model, the drawing program, and the proof that the program is correct.

The same formalism also applies to another subclass of problems, which we
refer to as measurement problems, where a student is required to calculate some
value, for example, an angle or an area.

Problem Specification; A geometry construction problem is a CSP — con-
straint satisfaction problem — consisting of a set V of variables and a set C of
constraints. Each variable, v ∈ V , denotes a real number, point, line, or circle.
For pure construction problems, the variables are partitioned into input vari-
ables I (thought of as given with the problem) and output variables O (to be
constructed).

For measurement problems, the distinction between inputs and outputs is not
significant; instead, a set of query expressions Q is given, and the output is a
numeric value for each such term.

Solution; The solution consists of a model, a drawing program, and a proof
of correctness. The model is an assignment to the variables that satisfies all
of the constraints C. The drawing program is a sequence of computations. The
program is proved correct for all inputs that satisfy their constraints.
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3 Partial Programs

We now describe the language of partial programs, which combines imperative
and declarative constructs. The solver’s first main step will be to construct a
partial program that is used to build the desired model.

A partial program is a sequence of instructions. Some of the construction
steps require numeric search to find the relevant objects. The language of partial
programs is defined by the BNF grammar shown in Figure 1. The scheme is
generic, in the sense that it allows for domain-specific predicate and function
symbols, denoted by P and F respectively in the grammar.

Program S ::= A1; . . . ;An;

Statement A ::= v := F (v1, . . . , vn) | p :∈ R | Assert ϕ

Range R ::= G(v1, . . . , vn) | R1 ∩R2

Constraint ϕ ::= γ1 ∧ . . ∧ γn
Atom γ ::= P (v1, . . . , vn)

Fig. 1. A language for partial programs

For geometry, We used the set of symbols shown in Table 1. These pred-
icates and functions are very natural for two-dimensional Euclidean geometry.
The functions line(�), ray(p,u), segment(a, b), circle(p, r), and disc(p, r) are
primitive, in the sense they are internally recognized by the system; the others
are just names to use in logical inference rules (see 4.1 below). To re-target the
framework to another domain, such as three-dimensional space, a designer may
introduce other symbols, but the discussion of this goes beyond the scope of this
paper.

Intuitively, the reader may find it useful to think of a partial program as a
representation of partial insight into the problem, an algorithm for solving it but
with a few “holes”.

Example 1. A simple partial program.

1: a := 〈0, 0〉 // a is the origin

2: b :∈ circle(a, 10) // b is on circle of given center, radius

3: c := Middle(a, b) // c is midpoint of segment ab

4: Assert c.y = 4 // the y value of c is 4

This program looks for a point b of distance 10 from the origin, such that the
midpoint of the line segment from the origin to b has height 4 above the x axis.

The first three statements specify a range of possible values for the objects to
be found (in this case, the three points a, b, and c), and the assertion specifies
a constraint. An assertion is different from an assignment, in the sense that it
constrains properties of objects that have already been assigned.

To evaluate this program, one should search across points on the circle of
radius 10 around the origin, for a point b such that c.y = 4 holds.
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Program variables and functions are typed, and assignments must be properly
typed. Thus, in a statement v := F (v1, . . , vn), if the type of v is T , then F should
be a function returning an object of type T , and in a statement v :∈ G(v1, . . , vn),
G should return a set S ⊆ T . E.g., if v is a point (T = R2), we require that
G(v1, . . , vn) ⊆ R2.

The Assert ϕ statement initiates a numeric search over variables provided in
ranges above, but not yet fixed. A successful completion of the search assigns
fixed values to some of these variables. Each constraint is translated to the
numeric requirement that some necessarily non-negative value be minimized.
For example, the constraint c.y = 4 is translated to “minimize (c.y − 4)2”.

Table 1. Notation for function and predicate symbols used for geometry

circle(O,r) the circle centered at O with radius r
linetru(A,B) the line through A and B
raythru(A,B) the ray whose origin is A and goes through B
ray(A,u) the ray whose origin is A with direction u
segment(A,B) the line segment connecting A and B
Dist(A,B) distance between points A and b
∠(A,B,C) the (smaller) angle ∠ABC
∠ccw(A,B,C) the angle ∠ABC, measured counterclockwise
Middle(A,B) the mid-point of the segment AB
Circumf(R) the circumference of the circle R

ArcDist(O,A,B) the length of the arc
�

AB on the circle centered at O
Diameter(R,AB) true iff AB is a diameter in circle R
IntersectSegments(A,B,C,D) true iff AB intersects CD
Colinear(A,B,C) true iff A, B, and C are on the same line

Running Example, Part I. Partial program to generate a regular hexagon.
The following partial program generates a regular hexagon abcdef given side

ab. It first chooses a point o on the perpedicular bisector of ab. Next it draws c
such that cob makes the same angle as aob and oc = ob. Next draw d such that
dob makes the same angle as aob and od = ob, and so on, until point f is drawn.
The user then asserts that ∠foa = ∠aob.

c

de

f

a b

o

∠(f, o, a) = α
a b

c

d
e

f
o

∠(f, o, a) 	= α

Fig. 2. A hexagon — drawn around its circumcenter; A different choice of o leads to a
sub-optimal run
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1: o :∈ Perp-Bisect(a, b)
2: r := |ob|
3: α := ∠(a, o, b)
4: c :∈ circle(o, r) ∩ ray(o,Rotate(b− o, α))
5: d :∈ circle(o, r) ∩ ray(o,Rotate(c − o, α))
6: e :∈ circle(o, r) ∩ ray(o,Rotate(d− o, α))
7: f :∈ circle(o, r) ∩ ray(o,Rotate(e− o, α))
8: Assert ∠(f, o, a) = α

This partial program relies on the insight that all sides subtend the same angle
with the circumcenter of the regular hexagon, as illustrated by Figure 2. Other
insights, e.g. that triangle 4abo is equilateral, would generate simpler partial
programs (see part V of this running example).

3.1 Operational Semantics

The partial program interpreter visits each non-deterministic assignment (p :∈
R) and attempts to choose a value for p that satisfies the assertions.

To be able to use numeric methods, we interpret each assertion as a non-
negative expression that is zero iff the assertion is true. We then choose those
points that minimize the sum of these expressions.

For example, the assertion that two real scalar values x, y are equal is trans-
lated to the expression (x− y)2 and the assertion that two vectors u,v ∈ R2 are
perpendicular is translated to the square of their inner product, (u · v)2.

Example 2. Consider the following partial program:

1: a := (0, 10)
2: b := (40, 0)
3: c :∈ segment(a, b)
4: Assert |ac| = 2|bc|
In the assertion, |xy| denotes the distance function. We use a standard hill-

climbing algorithm to find the value of c in the segment ab that minimizes the
expression |ac| − 2|bc|.

Our hill-climbing procedure discretizes the search space. It partitions it into
a finite number of sub-spaces and minimizes the expression among the division
points. It then recursively descends to the chosen sub-space. The coarser the
discretization factor, the faster the search, but the greater the chances of the
search getting stuck in non-optimal local minima and thus requiring random
restarts.

The interpreter is implemented using a sequential pass that keeps track of
the variables that are not yet determined. It processes each Assert statement
in turn by invoking numeric search. If the dimension of the combined search
space is 1 at that point (space is isomorphic to R), numeric search is done by
hill-climbing. If it is 2 or more, we use nested hill-climbing, such that for every
value of the first variable that has to be evaluated, we perform hill-climbing on
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the second variable and determine an optimum with respect to the value set for
the first variable.

The model generation algorithm uses a heuristic for avoiding multi-dimen-
sional search where possible: it iterates the variables (in the order they are
defined in the program), fixing them one by one to the minimum obtained from
hill-climbing. If at some point, however, the procedure encounters a non-model
(the minimum of the target function is not 0), it back-tracks and try different
minima for variables that have already been set.

3.2 Cost Metric for Partial Programs

We define a metric to approximate performance of partial programs. The deduc-
tive algorithm that creates the partial program tries to construct a minimal one
via this metric. As part of this effort, we will consider 3 compile-time criteria:
• Combined dimension of loci being searched;

• Number of choice statements (v :∈ R) in the program;

• Distance from a choice to its corresponding Assert.
A program with smaller dimension will always be preferred over higher di-

mensions. The statement counts are considered less important.

Definition 1. The cost of a choice statement v :∈ R is defined in terms of a
set of symbolic parameters, which represent the cost of searching various kinds
of spaces (that is, there is some partial ordering between them).

• S – if R is a segment.

• Y – if R is a ray.

• L – if R is a line.

• C – if R is a circle.

• S ·C – if R is a disc.

For an R that is any finite number of points, the cost is 1.

We partition the partial program into blocks, where a block is a sequence of
statements between two assertions.

Definition 2. For each assertion, its cost is the cost of the block between it
and the assertion before it (or the beginning of the program, if this is the first
assertion).

Definition 3. The cost of a block is the product of the costs of all the choice
statements in it, and the number of variables controlled by the choice statements
in the block. It is a polynomial in the symbolic parameters.

Definition 4. A variable v is said to be controlled by a choice statement iff:

• It is on the left-hand side of a choice statement, v :∈ R; or

• It is assigned via v := F (v1, . . , vn), and there is some vi which is itself con-
trolled by a choice statement.

Definition 5. The cost of a partial program is the sum of the costs of all the
Assert statements occurring in it.
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When we later say dimension, it means the degree of the cost polynomial.

Example 3. The cost of the program in Example 2 is S, because the search is
over a segment, and only one variable is controlled by the choice statement.

Running Example, Part II. Consider the partial program from part I.
The choice of o is over the perpendicular bisector of the segment ab (written

Perp-Bisect(a, b)) which is a line. The choices for c, d, e, f are then over the
intersections of a circle in a ray, which are at most 2 each – so they are assigned a
cost of 1. The set of choice-controlled variables in the block is {o, c, d, e, f, r, α}.
The cost is therefore 7L.

4 Solution Generation

Figure 3 shows the phases that our geometry solver follows. The first pass of de-
ductive reasoning produces an initial partial program. This program is run with
some inputs to build a model or two. If the partial program is nondeterministic,
then the models produced are studied to induce additional constraints. These
constraints are then used in a second pass of deductive synthesis to construct a
(lower cost) program.

Most of the computational effort goes into identifying implied constraints.
Part of them are identified symbolically (4.1) and some numerically (4.3).

4.1 Deductive Reasoning

Our deductive reasoning involves standard application of logic programming
with Datalog (e.g., see [AHV95,GMUW09]), which is too weak by itself to solve
the problem we are targeting. Later on, we combine deductive with inductive
reasoning to make the method more effective. The deductive reasoning procedure
builds the partial program, by first doing a single step of preprocessing and
encoding, and then running inference in a loop.

Deductive Reasoning
(1st pass)

Numerical Search

Inductive Synthesis
of facts

Deductive Reasoning
(2nd pass)

Constraints

Partial program

Model

Additional constraints

Program

Fig. 3. Architectural diagram
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Preprocessing and Encoding. Each geometric axiom in our knowledge base
is originally given in the form ϕ(U) → ψ(U ) where ϕ and ψ are conjunctions
of literals with free variables U . The problem specification is a conjunction of
ground literals.

The main gap between the language of geometric axioms and Datalog is the
presence of function symbols. From both axioms and ground facts, we replace
function symbols f of arity k via relation symbols f̃ of arity k + 1. In partic-
ular, we replace each term f(t1, t2, . . . , tk) by a new symbol α and we assert
f̃(t1, t2, . . . , tk, α). If the term is a ground term then α is a constant, otherwise
it is a variable. As a by-product we loose the information that α is unique, but
we will see that this will not keep us from proving the required properties.

This translation may introduce variables in the head of a rule that do not
occur in the body. In Datalog terminology, such a rule is unsafe. In the next
subsection we will explain how our deductions are evaluated. We will point out
that since our axioms are “acyclic”, deduction remains tractable and in fact
bounded, even with these unsafe rules.

We must ensure that each such unsafe variable occurs in exactly one atom.
We do this by rewriting each relevant conjunction as a new invented predicate
symbol and adding a new rule to define it.

Inference. Datalog programs can be efficiently evaluated using seminäıve eval-
uation as described in [AHV95,GMUW09]. A small extension of this method is
needed when instantiating an unsafe rule, e.g., if the variable Xi occurs in the
head but not the body of the rule r(X1, X2, . . .) ← ϕ [KR11].

We instantiate such rules, with fresh constant symbols for the unsafe variables.
Furthermore, if a constant symbol c already exists such that the corresponding
head is already in the generated set, then this instance of the rule is superfluous,
so it is not instantiated.

Recall that by construction each such unsafe variable occurs in exactly one
atom. This ensures that the derived atom with its fresh constant symbol exactly
captures the meaning of the implicit existential quantifier.

Note that the introduction of fresh constant symbols above has the effect of
introducing new objects into our system. Our current set of geometry axioms
is acyclic meaning that for any input problem only a bounded number of new
objects can be created.

Table 2. Axioms for explaining the running example

1 |PQ| = X → Q ∈ circle(P,X)
2 |PQ| = |SQ| → Q ∈ Perp-Bisect(P, S)

3 ∠(P,Q, S) = Y → S ∈ ray(Q,Rotate(P −Q,Y ))

Running Example, Part III. We will show how the partial program from
part I might be constructed automatically using this technique.



466 S. Itzhaky et al.

Assume we have the following declarative specification of the regular hexagon:

|ao| = |bo| = |co| = |do| = |eo| = |fo|
∠(a, o, b) = ∠(b, o, c) = ∠(c, o, d) = ∠(d, o, e)
= ∠(e, o, f) = ∠(f, o, a)

Our inference system contains the axioms shown in Table 2 (For the sake of
this example only, there is an underlying assumption that ∠ denotes a coun-
terclockwise angle and Rotate performs a counterclockwise rotation. This is
done to keep the example simple. In practice, we use a richer set of axioms). It
produces the following atoms (among others):

o ∈ Perp-Bisect(a, b);
c, d, e, f ∈ circle(o, |ao|)
c ∈ ray(o,Rotate(b− o,∠(a, o, b)))

4.2 Query Planning

Query planning mediates deductive reasoning and numerical search: it attempts
to associate a search space with variables that have not been inferred. To this
end, the query planner may choose a set of input variables I ′. Note that in the
case of construction problems, after the second pass it must be that I ′ = I so
there is no freedom, but for the first pass we are free to choose any subset.

Locus Assignment. Let P be the Datalog program representing the axioms,
and I the set of tuples from the specification. P (I) is the result of inference,
expressed as sets of ground atoms, e.g., r(c1, . . . , ck) ∈ P (I).

During this phase of the computation, three relation symbols become im-
portant: 
= (disequality), ∈ (set membership), and known (indicates already-
computed values).

To disambiguate these symbols occurring in derived ground atoms from their
common mathematical use, we surround such atoms in quotes.

Initially, known = I ′. The ‘known’s are then propagated according to assign-
ments that have been inferred. For each output symbol s such that ‘known(s)’ 
∈
P (I), look for the following potential search spaces:

1. l, s.t. l is a constant and ‘s ∈ l’, ‘known(l)’ ∈ P (I)

2. l1 ∩ l2 s.t. ‘l1 
= l2’ ∈ P (I) and

‘s ∈ l1’, ‘s ∈ l2’, ‘known(l1)’, ‘known(l2)’ ∈ P (I)

We choose the “best” locus based on the cost metric of 3.2. The best locus
over all symbols is chosen and an assignment of the form ‘s :∈ R’ is emitted
to the program. Then s is marked as known by adding ‘known(s)’ to I. This
process is repeated until all output symbols s have ‘known(s)’ ∈ P (I).

Running Example, Part IV. We are given one side of the hexagon, ab.
We therefore introduce ‘known(a)’, ‘known(b)’. From these we infer (by way of
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deduction) that ‘known(Perp-Bisect(a, b))’, and the procedure will emit the
choice statement ‘o :∈ Perp-Bisect(a, b)’.

As a consequence, ‘known(o)’ is introduced, which makes two more objects
known: ◦1 = ‘circle(o, |ao|)’ and y1 = ‘ray(o,Rotate(b − o,∠(a, o, b)))’. Now
— because both c ∈ ◦1 and c ∈ y1 are present, it will also emit:
‘c :∈ circle(o, |ao|) ∪ ray(o,Rotate(b − o,∠(a, o, b)))’

The other points are traced similarly leading to the program in part I.

Assertion Assignment. The assigned search spaces define an over-approxi-
mation of the input–output relation. In order to generate a correct partial pro-
gram, we need to add Assert statements. To this end, we go back to the
specification, breaking it down into individual constraints. For each constraint,
we identify the earliest point in the partial program at which it can be tested,
that is, when all of the constraint’s arguments have already been defined.

Example 4. If the locus assignment generated the associations in (a) below,
and if the specification has the atoms: |ab| = 10 |ac| = 20 |bc| = 15, then
knowing only a, none of the constraints can be checked. Knowing a and b allows
us to check the first constraint, so an Assert statement is inserted after line 2.
Knowing a, b, and c provides the means to check the other two constraints, so
another Assert is added after line 3 (see (b) below).

1: a := (10, 0)
2: b :∈ ray(a, (1, 1)))
3: c :∈ circle(a, 20)

1: a := (10, 0)
2: b :∈ ray(a, (1, 1)))
3: Assert |ab| = 20
4: c :∈ circle(a, 20)
5: Assert |ac| = 20 ∧ |bc| = 15

(a) (b)

4.3 Inductive Synthesis

In the next phase, we try to improve the efficiency of the program generated
by the first pass of deductive reasoning. To do that, we attempt to learn facts
that our deductive reasoning technique fell short of inferring by reading them off
the model generated by the previous phase. There is an underlying assumption
that since the model contains real numbers, then if we perform computations
on the values and uncover an equality — with very high probability [Hon86]
this equality is not coincidental, but is in fact logically implied by the partial
program (hence, by the specification) that created the model in the first place.

The new facts we reveal may then be used by the same deductive reasoning
mechanism, as if they were originally given as part of the specifications. Because
we now have more information, there is a chance that the second run will yield
a lower-cost partial program.

Running Example, Part V. Consider the partial program for drawing the
hexagon from part I. The generated model contains 7 points: 6 vertices of the
hexagon (a, b, c, d, e, f) and one circumcenter (o). Among the facts learnable from
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the model are |ao| = |ab| and |bo| = |ab|. Given these two facts, the deductive
reasoning engine is now able to produce the following code fragment to compute
the coordinates of the point o more efficiently:

1: o :∈ circle(a, |ab|) ∩ circle(b, |ab|)
Replacing line 1 of the original program with this statement would then yield

a program with search dimension 0 (because there are only two points in the
intersection of the two circles) instead of dimension 1 (an infinite number of
points lying on the perpendicular bisector).

Note. section 4 of the technical report [IGIS12] provides a much more detailed
study of this example.

5 Evaluation

We consider two kinds of benchmark examples.

• Questions found in SAT practice tests.

• Construction problems, when some elements are given and you are required to
draw a new shape: a regular polygon of n sides, given one of them, a square
inside a given square, a rectangle inside a given square, a square inside a
given triangle, a right triangle, given its circumcircle, an equilateral triangle
touching 3 given parallel lines

Appendix A contains a partial listing of SAT benchmarks. A full listing of our
benchmarks can be found in [IGIS12].

5.1 Generation of Partial Programs

We show that our partial program generation scheme is very effective. We evalu-
ate this by comparing statistics about model generation for the following cases:
• Without a partial program

• Using deductive synthesis.

• Using a combination of deductive + inductive synthesis.

Table 3 contains the statistics of time taken to generate a model and the
total number of dimensions that were searched (For example, the number of
dimensions for a completely unknown point is 2, while the number of dimensions
for an unknown point that lies on a circle is 1). The column “O” shows the
original dimension of the problem, if we were to apply numerical methods to it
directly.

On the first pass, the symbolic part generates a partial program (as described
in 4.1, 4.2), and the numeric part generates a model via hill-climbing search based
on the partial program. The running time (in seconds) of each part is provided
in columns “S” (symbolic) and “N” (numeric) below “1st pass”. The resulting
dimension is shown in column “R”, and “k” is the maximal dimension of the
individual search space associated with each Assert (see 3.2). Where k is lower
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than the total dimension, it means that the multi-dimensional search has been
decomposed into several searches of lower dimension, improving performance
considerably.

Table 3. Benchmark measurements

1st pass 2nd pass
Dimension Time (s) Dim. Time (s)

# O R k* S N R k* S N
1 4 1 1 0.16 0.54 0 0 0.98 0.00
2 2 0 0 0.04 0.00 0 0
3 4 1 1 0.14 0.35 1 1 0.13 0.36
4 6 1 1 0.22 0.12 0 0 0.40 0.00
5 8 4 1 0.35 0.24 1 1 5.19 0.11
6 6 1 1 0.38 0.84 1 1 3.23 1.63
7 4 1 1 0.09 0.02 1 1 0.12 0.02
8 4 2 1 0.38 0.02 2 1 0.42 0.02
9 8 2 2 0.64 38.13 1 1 1.86 0.62
10 14 1 1 0.73 0.53 1 1 21.16 0.54
11 12 2 1 0.63 0.86 0 0 12.17 0.01
12 8 1 1 0.22 0.02 1 1 0.59 0.02
13 4 1 1 0.18 0.06 1 1 0.18 0.06
14 6 1 1 0.06 0.03 1 1 0.10 0.03
15 10 2 1 0.29 1.20 2 1 11.93 0.98
16 7 1 1 0.53 0.01 1 1 1.41 0.02
17 8 2 1 0.27 0.47 2 1 0.54 0.46
18 10 1 1 0.20 0.04 1 1 0.70 0.03
19 6 2 1 0.23 0.08 2 1 0.31 0.08
20 8 0 0 0.14 0.00 0 0
21 11 2 1 0.11 0.26 1 1 0.85 0.03
22 4 1 1 0.08 0.01 1 1 0.09 0.01
23 6 0 0 0.56 0.00 0 0
24 10 2 1 0.18 0.04 2 1 0.95 0.04
25 4 1 1 0.22 0.10 1 1 0.24 0.09
26 10 2 1 0.35 0.19 2 1 0.49 0.19
27 10 2 1 0.32 0.04 2 1 1.13 0.35
28 8 3 1 0.37 0.48 3 1 0.37 0.46
29 6 1 1 0.47 0.03 1 1 0.75 0.03

* k (the rank) is the maximal dimension of

the search space as defined in 3.2

The results of the second pass
show the effect of incorporating
results of inductive synthesis, that
is, facts learned by querying the
model generated by the first pass.
In 6 of the cases, the values in
the columns of “2nd pass” ex-
hibit lower dimensions compared
to the first pass. The running time
of the symbolic reasoning part is
higher, due to the increase in the
number of formulas to process.
In most cases, however, this ef-
fort is worthwhile as it leads to a
faster program, reducing the run-
ning time of the numeric part.

5.2 Proof Statistics

With the deductive inference
mechanism shown earlier, the av-
erage number of steps effectively
used to generate the program (not
including tried and failed paths)
was 51.7. We had 47 axioms; each
axiom was used 31.9 times on
average. The average number of
statements per partial program
generated was 8.2.

6 Related Work

Geometry constraint solving is a
long studied problem, where the
goal is to find a configuration
for a set of geometric objects
that satisfy a given set of con-
straints between the geometric el-

ements [BFH+95]. A variety of techniques have been proposed including logical
inference and term rewriting [Ald88], numerical methods [Nel85], algebraic meth-
ods [Kon92], and graph based constraint solving [BFH+95]. These techniques
either require some symbolic reasoning or some form of search. Our work is
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different from these works in two regards. First, we combine both symbolic rea-
soning and numerical search for model generation. Second, we deal with the more
sophisticated problem of constructive model generation. While essentially an
instance of CLP(R) [JMSY92], geometry has its own properties, which we use
to create a specialized solver.

This paper is most closely related to some recent work in the area [GKT11].
Our methodology of program generation followed by model generation is similar
and relies on the same theoretical result about geometry property testing. We
add to it the incorporation of symbolic deduction, and the additional artifact of
the partial program, which provides a more general answer to a given problem
and also conveys some insight about the solution.

Our notion of partial programs, which combine imperative and declarative
constructs for geometry constructions is similar to a recent proposal on doing
so for a general purpose programming language [SL08]. Our interpretation of
a partial program is based on use of numerical methods unlike use of SMT
solvers [KKS12]. More significantly, we also automate the construction of a par-
tial program from fully declarative specifications using deductive reasoning, and
also refine a partial program into one that is more constructive using inductive
synthesis techniques.

7 Conclusion and Future Work

We have presented a system that constructs geometric figures. It also allows in-
sights from the user in the form of partial programs. In the case of end-users, this
interactivity allows humans and machines to work together to solve complicated
problems. In the educational domain, this interactivity allows students to express
partial insights about a geometry construction problem, which the system can
then extend to a complete solution, following the student’s hint. In the future we
will perform user studies both in the end-user setting and the classroom setting.
We believe that the methodology we have introduced, combining deductive and
inductive synthesis via partial programs, will find uses in many other domains.
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A Examples of Benchmarks

This is a partial listing. The full list can be found in the Technical Report [IGIS12].

dist(Q,A) = 100
dist(Q,R) = 100 Q �= B
Q �= L ∠ccw(B,Q,A) = 40
∠ccw(R,Q,L) = 25 middle(L,A) = Q
middle(K,B) = Q known(Q)
known(B) ?(A,R,L, K)

∠ccw(D, A,B) = 50 ∠ccw(C,D,A) = 45
∠ccw(A, B, F) = 50 ∠ccw(B,F,E) = 60
∠ccw(F,E,C) = 90 segment(A,B) = AB
segment(C,D) = CD P ∈ AB
P ∈ CD segment(E,F) = EF
P ∈ EF known(A)
known(B) ?(C,D, E,F,P)

∠(P, S,R) = :90: segment(P, S) = PS
∠(S,R,Q) = :90: T ∈ PS
∠(R,Q,P) = :90: dist(P, S) = d
∠(Q,P, S) = :90: dist(P, T) = k
5 · r = 2 r · d = k
known(P) known(S)
?(R,Q, T)

circle(O, 75) = R
A ∈ R A �= B
B ∈ R A �= C
C ∈ R B �= C
segment(A,C) = AC O ∈ AC
dist(B,O) = d dist(A,B) = d
known(O) ?(A, B, C, R)

square(A,B, C, D)
dist(B,E) = e known(A)
dist(C,E) = e known(B)
dist(B,C) = e ?(C,D,E)

∠ccw(A,B,C) = 30 known(A)
∠ccw(B,C,D) = 20 known(B)
∠ccw(D,A,B) = 20 ?(C,D)
¬colinear(A,C,D)
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Abstract. QBFs (quantified boolean formulas), which are a superset of
propositional formulas, provide a canonical representation for PSPACE
problems. To overcome the inherent complexity of QBF, significant effort
has been invested in developing QBF solvers as well as the underlying
proof systems. At the same time, formula preprocessing is crucial for
the application of QBF solvers. This paper focuses on a missing link in
currently-available technology: How to obtain a certificate (e.g. proof)
for a formula that had been preprocessed before it was given to a solver?
The paper targets a suite of commonly-used preprocessing techniques and
shows how to reconstruct certificates for them. On the negative side, the
paper discusses certain limitations of the currently-used proof systems in
the light of preprocessing. The presented techniques were implemented
and evaluated in the state-of-the-art QBF preprocessor bloqqer.

1 Introduction

Preprocessing [24,47,46,9] and certificate generation [5,6,35,23,39,40] are both
active areas of research related to QBF solving. Preprocessing makes it possible
to solve many more problem instances. Certification ensures results are correct,
and certificates are themselves useful in applications. In this paper we show how
to generate certificates while preprocessing is used. Hence, it is now possible to
certify the answers for many more problem instances than before.

QBF solvers are practical tools that address the standard PSPACE-complete
problem: given a closed QBF, decide whether it is true. In principle, such solvers
can be applied to any PSPACE problem, of which there are many; for example,
model checking in first-order logic [50], satisfiability of word equations [43], the
decision problem of the existential theory of the reals [18], satisfiability for
many rank-1 modal logics [48], and so on [23,7,34]. Unlike SAT solvers (for NP
problems), QBF solvers are not yet routinely used in practice to solve PSPACE
problems: they need to improve.

Fortunately, QBF solvers do improve rapidly [44]. One of the main findings
is that a two-phase approach increases considerably the number of instances
that can be solved in practice: in the first phase, preprocessing, a range of fast
techniques is used to simplify the formula; in the second phase, actual solving, a
complete search is performed. Another recent improvement is that QBF solvers
now produce certificates, which include the true/false answer together with a

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 473–489, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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correct/incorrect

correct/incorrect

checker

preprocessor postprocessor

solver

checker

original QBF reconstructed certificate

trace

simplified QBF simple certificate

Fig. 1. Architecture

justification for it. Such a justification can be for example in the form of a
proof of the given formula. Certificates ensure that answers are correct, and
are sometimes necessary for other reasons. For example, certificates are used to
suggest repairs in QBF-based diagnosis [25,49,45].

Clearly, both preprocessing and certificate generation are desirable. Alas, no
tool-chain supports both preprocessing and certificate generation at the same
time. This paper shows how to reconstruct certificates in the presence of a wide
range of preprocessing techniques. In our setup (Figure 1), the preprocessor
produces a simplified formula together with a trace. After solving, we add a
postprocessing step, which uses the trace to reconstruct a certificate for the
original formula out of a certificate for the simplified formula.

The contributions of this paper are the following:

– a review of many preprocessing techniques used in practice (Section 3)
– a negative result about the reconstruction of term resolution-based

certificates (Section 4)
– certificate reconstruction techniques, corresponding to a wide range of

formula preprocessing techniques (Section 5)
– an efficient implementation, and its experimental evaluation (Section 7)

2 Preliminaries

A literal is a Boolean variable or its negation. For a literal l, we write l̄ to denote
the literal complementary to l, i.e. x̄ = ¬x and ¬x = x; we write var(l) for x. A
clause is a disjunction of literals. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. Whenever convenient, a clause is treated as a set of
literals, and a CNF formula as a set of sets of clauses. Dually to a clause, a term
is a conjunction of literals. A formula in disjunctive normal form (DNF) is a
conjunction of terms.
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For a set of variables X , an assignment τ is a function from X to the constants
0 and 1. We say that τ is complete for X if the function is total.

Substitutions are denoted as ψ1/x1, . . . , ψn/xn, with xi 
= xj for i 
= j. An
application of a substitution is denoted as φ[ψ1/x1, . . . , ψn/xn] meaning that
variables xi are simultaneously substituted with corresponding formula ψi in φ.

Quantified Boolean Formulas (QBFs) [14] extend propositional logic with
quantifiers that have the standard semantics: ∀x. Ψ is satisfied by the same truth
assignments as Ψ [0/x] ∧ Ψ [1/x], and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified
otherwise, QBFs are in closed prenex form, i.e. in the form Q1x1 . . .Qkxk. φ,
where xi form a nonrepeating sequence of variables and Qi ∈ {∃, ∀}; the formula
φ is over the variables {x1, . . . , xk}. The propositional part φ is called the matrix
and the rest the prefix. If additionally the matrix is in CNF, we say that the
formula is in QCNF. A prefix P induces ordering on literals [13]: for literals l1,
l2 we write l1 < l2 and say that l1 is less than l2 if var(l1) appears before var(l2)
in P.

A closed QBF is false (resp. true), iff it is semantically equivalent to the
constant 0 (resp. 1). If a variable is universally quantified, we say that the variable
is universal. For a literal l and a universal variable x such that var(l) = x, we
say that l is universal. Existential variable and literal are defined analogously.

2.1 QU-Resolution

QU-resolution [52] is a calculus for showing that a QCNF is false. It comprises
two operations, resolution and ∀-reduction. Resolution is defined for two clauses
C1∨x and C2∨ x̄ such that C1 ∪C2 does not contain complementary literals nor
any of the literals x, x̄. The QU-resolvent (or simply resolvent) of such clauses
is the clause C1 ∨ C2. The ∀-reduction operation removes from a clause C all
universal literals l for which there is no existential literal k ∈ C s.t. l < k.

For a QCNF P . φ, a QU-resolution proof of a clause C is a finite sequence of
clauses C1, . . . , Cn where Cn = C and any Ci in the sequence is part of the given
matrix φ; or it is a QU-resolvent for some pair of the preceding clauses; or it
was obtained from one of the preceding clauses by ∀-reduction. A QU-resolution
proof is called a refutation iff C is the empty clause.

QU-resolution is a slight extension of Q-resolution [15]. Unlike QU-resolution,
Q-resolution does not enable resolving on universal literals. While Q-resolution
is on its own refutationally complete for QCNF, resolutions on universal literals
are useful in certain situations (see also [21]).

2.2 Term-Resolution and Model Generation

Term-resolution is analogous to Q-resolution with the difference that it operates
on terms and its purpose is to prove that a QBF is true [22]. Resolution is defined
for two terms T1∧x and T1∧ x̄ where T1 ∪T2 do not contain any complementary
literals nor any of the literals x, x̄; the resolvent is the term T1 ∧ T2. The ∃-
reduction operation removes from a term T all existential literals l such that
there is no universal literal k ∈ T with l < k.
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Since term-resolution is defined on terms, i.e. on DNF, the model generation
rule is introduced in order to enable generation of terms from a CNF matrix. For
a QCNF Φ = P . φ, a term T is generated by the model generation rule if for each
clause C there is a literal l s.t. l ∈ C and l ∈ T . Then, a term-resolution proof
of the term Tm from Φ a is a finite sequence T1, . . . , Tm of terms such that each
term Ti was generated by the model generation rule; or it was obtained from
the previous terms by ∃-reduction or term-resolution. Such proof proves P . φ iff
Tm is the empty term. (Terms are often referred to as ‘cubes’, especially in the
context of DPLL QBF solvers that apply cube learning.) In the remainder of the
article, whenever we talk about term-resolution proofs for QCNF, we mean the
application of the model generation and term-resolution rule. A QCNF formula
is true iff it has a term-resolution proof [22].

In this paper, both term-resolution and QU-resolution proofs are treated as
connected directed acyclic graphs so that the each clause/term in the proof
corresponds to some node labeled with that clause/term.

2.3 QBF as Games

The semantics of QBF can be stated as a game between an universal and an
existential player [1]. The universal player assigns values to universal variables
and analogously the existential player assigns values to the existential variables.
A player assigns a value to a variable if and only if all variables preceding it in
the prefix were assigned a value. The universal player wins if under the complete
resulting assignment the underlying matrix evaluates to false and the existential
player wins if the underlying matrix evaluates to true. A formula is true iff there
exists a winning strategy for the existential player. The notion of strategy was
formalized into models of QBF [16].

Definition 1 (Strategy and Model). Let Φ = P . φ be QBF with the universal
variables u1, . . . , un and with the existential variables e1, . . . , em. A strategy M
is a sequence of propositional formulas ψe1 , . . . , ψem such that each ψei is over
the universal variables preceding ei in the quantification order. We refer to the
formula ψx as the definition of x in M .

A strategy M is a model of Φ if and only if the following formula is true

∀u1, . . . , un. φ[ψe1/e1, . . . , ψem/em]

i.e., φ[ψe1/e1, . . . , ψem/em] is a tautology.

Notation. Let Φ = P . φ be a QBF as in Definition 1 and M = (ψe1 , . . . , ψem) be
a strategy. For a formula ξ we write M(ξ) for the formula ξ[ψe1/e1, . . . , ψem/em].
For a total assignment τ to the universal variables U = u1, . . . , un, we write
M(ξ, τ) for M(ξ)[τ(u1)/u1, . . . , τ(un)/un]. Intuitively, M(ξ, τ) is the result of
the game under strategy M and the moves τ . Hence, if ξ is over the variables
of Φ, then M(ξ) is over U and M(ξ, τ) yields the constant which results from
evaluating ξ under the strategy M and assignment τ . In particular, M is a model
of Φ iff M(ξ, τ) = 1 for any τ .
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Example 1. For a QCNF ∀u∃e. (ū ∨ e) ∧ (u ∨ ē), the strategy M = (φe), where
φe = u is a model. Observe that M(ū ∨ e) = M(u ∨ ē) = u ∨ ū are tautologies.

A formula QCNF is true if and only if it has a model [16, Lemma 1]; deciding
whether a strategy is a model of a formula is coNP-complete [16, Lemma 3]. We
should note that here we follow the definition of model by Büning et. al., which
has a syntactic nature. However, semantic-based definitions of the same concept
appear in literature [35,4].

3 QBF Preprocessing Techniques

For the following overview of preprocessing techniques we consider a QCNF
P . φ for some quantifier prefix P and a CNF matrix φ. All the techniques are
validity-preserving.

Let C ∈ φ be a clause comprising a single existential literal l. Unit propagation
is the operation of removing from φ all clauses that contain l, and removing the
literal l̄ from clauses containing it.

A clause C ∈ φ is subsumed by a different clause D ∈ φ if D ⊆ C; subsumption
removal consists in removing clause C.

Consider clauses C,D ∈ φ together with their resolvent R. If R subsumes
C, then we say that C is strengthened by self-subsumption using D. Self-
subsumption strengthening consists in replacing C with R [20].

A literal l is pure in Φ if l̄ does not appear in φ. If l is pure and universal,
then the pure literal rule (PRL) [17] consists in removing all occurrences of l. If
l is pure and existential, then the PLR removes all the clauses containing the
literal l.

The technique of blocked clause elimination (BCE) [36,9] hinges on the defini-
tion of a blocked literal. An existential literal l is blocked in a clause C if for any
clause D ∈ φ s.t. l̄ ∈ D there is a literal k ∈ C with k < l and k̄ ∈ D. A clause is
blocked if it contains a blocked literal. BCE consists in removing blocked clauses
from the matrix.

Variable elimination (VE) [42,24] replaces all clauses containing a certain
variable with all their possible resolvents on that variable. In QBF, to ensure
soundness, the technique is carried out only if a certain side-condition is satisfied.
For an existential variable x, let us partition φ into φx ∪φx̄ ∪ ξ where φx has all
clauses containing the literal x, and φx̄ has all clauses containing the literal x̄. For
any clause C ∈ φx that contains some literal k s.t. x < k and any clause D ∈ φx̄,
there is a literal z < x s.t. z ∈ C and z̄ ∈ D. Variable elimination consists in
replacing φx ∪ φx̄ with the set of resolvents between the pairs of clauses of φx
and φx̄ for which the resolution is defined.

The binary implication graph (e.g. [28]) Gφ is constructed by generating for
each binary clause l1∨l2 ∈ φ two edges: l̄1 → l2 and l̄2 → l1. If two literals appear
in the same strongly connected component of Gφ, then they must be equivalent.
Equivalent literal substitution (ELS) consists in replacing literals appearing in the
same strongly connected component S by one of the literals from S; this literal
is called the representative. The representative is then substituted in place of
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the other literals of S. While in plain SAT preprocessing a representative can be
chosen arbitrarily, in QBF it must be done with care. First, three conditions are
checked: (1) S contains two distinct universal literals (also covers complementary
universal literals); (2) S contains an existential literal le and a universal literal lu
such that le < lu; (3) S contains two complementary existential literals. If either
of the conditions (1), (2), or (3) is satisfied, then the whole formula is false (cf. [2]),
and ELS stops. Otherwise, ELS picks as representative the literal that is the
outermost with respect to the considered prefix. Observe that if the component
contains exactly one universal literal, it will be chosen as the representative. All
clauses that become tautologous due to the substitution, are removed from the
matrix (this includes the binary clauses that were used to construct the strongly
connected components).

4 Limitations

In this section we focus on the limitations of currently-available calculi from the
perspective of preprocessing. In particular, we show that term-resolution+model-
generation proofs cannot be tractably reconstructed for blocked clause elimina-
tion and variable elimination. For a given parameter n ∈ N+ construct the
following true QCNF with 2n variables and 2n clauses.

∀u1∃e1 . . .∀un∃en.
∧

1≤i≤n (ūi ∨ ei) ∧ (ui ∨ ēi) (1)

Proposition 1. Any term-resolution proof of (1) has size exponential in n.

Proof. Pick an arbitrary assignment τ to the universal variables u1, . . . , un. We
say that a term T agrees with an assignment τ iff there is no literal l such that
l̄ ∈ T and τ(l) = 1. Given a term-resolution proof π for (1), we show that π
must have a leaf that agrees with τ by constructing a path from the root to
some leaf such that each node on that path agrees with τ . The root of π agrees
with τ because it does not contain any literals. If a term T agrees with τ , and
T is obtained from T ′ by ∃-reduction, then T ′ also agrees with τ since τ assigns
only to universal variables. If T agrees with τ and is obtained from T0 and T1

by term-resolution on some variable y, then y ∈ Tk and ȳ ∈ T1−k for some
k ∈ {0, 1}. Hence, at least one of the terms T0 and T1 agrees with τ .

Recall that each leaf T of π must be obtained by the model-generation rule;
i.e., for each clause C of (1) there is a literal l s.t. l ∈ C and l ∈ T . Hence, for
each pair of clauses (ūi∨ei)∧(ui∨ēi) either ūi, ēi ∈ T or ui, ei ∈ T . Consequently,
each leaf of π has n universal literals.

For each of the 2n possible assignments τ , the proof π must contain a leaf Tτ
that agrees with τ . Since Tτ contains n universal literals, for a different assign-
ment τ ′ there must be another leaf Tτ ′ that agrees with it. Overall, π must must
contain at least 2n different terms.

Proposition 2. Both blocked clause elimination and variable elimination reduce
the matrix of (1) to the empty set of clauses in polynomial time.
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Proof. Immediate from definitions of blocked clause and variable elimination.

Corollary 1. If blocked clause elimination or variable elimination are used for
preprocessing, then reconstructing a term-resolution proof takes exponentially
more time than preprocessing, in the worst case.

In the remainder of the paper we do not consider term-resolution+model-
generation proofs for certification since Corollary 1 shows that, in the context of
preprocessing, this calculus is not appropriate. Rather than term-resolution, we
will use models to certify true formulas. We should note, however, that for such
we are paying a price of higher complexity for certificate verification. While
term-resolution+model-generation proofs can be verified in polynomial time,
verification of models is coNP-complete. (For false formulas, QU-resolution is
used for certification, which is still verifiable in polynomial time.)

In a similar spirit, we do not consider the preprocessing technique of universal-
expansion [12], which is based on the identity ∀x. Φ = Φ[1/x] ∧ Φ[0/x]. While
there is no hard evidence that there is no tractable algorithm for reconstructing
QU-resolution proofs for universal-expansion, recent work hints in this direc-
tion [30]. Hence, only the techniques described in Section 3 are considered.

5 Certificate Reconstruction

This section shows how to produce certificates in the context of preprocessing.
In particular, we focus on two types of certificates: QU-resolution refutations
(Section 2.1) for false formulas and models (Definition 1) for true formulas. We
consider each of the techniques presented in Section 3 and we show how a
certificate is reconstructed from the certificate of the preprocessed formula. This
means that reconstruction produces a model (resp. refutation) for a formula Φ
from a model (resp. refutation) for a formula Φ′, which resulted from Φ by the
considered technique. For nontrivial reconstructions we also provide a proof of
why the reconstruction is correct.

Having a reconstruction for each of the preprocessing techniques individually
enables us to reconstruct a certificate for the whole preprocessing process. The
preprocessing process produces a sequence of formulas Φ0, . . . , Φn where Φ0 is
the input formula, Φn is the final result, and each formula Φi+1 is obtained
from Φi by one preprocessing technique. For the purpose of the reconstruction,
we are given a certificate Cn for the formula Φn. This final certificate Cn is in
practice obtained by a QBF solver. The reconstruction for the whole processing
process works backwards through the sequence of formulas Φ0, . . . , Φn. Using
Cn, it reconstructs a certificate Cn−1 for the formula Φn−1, then for Φn−2 and so
on until it produces a certificate C0 for the input formula. The reminder of the
section describes these individual reconstructions for the considered techniques.

We begin by two simple observations. If a transformation removes a clause,
then reconstruction of a QU-resolution proof does not need to do anything.
Analogously, reconstruction of models is trivial for transformations adding new
clauses.
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Observation 1. Consider a QCNF Φ = P . φ and a clause C ∈ φ. Any QU-
resolution proof of Φ′ = P . φ � {C} is also a QU-resolution proof of Φ.

Observation 2. Consider a QCNF Φ = P . φ and a clause C over the variables
of Φ. Any model of Φ′ = P . φ∪{C} is a model of Φ.

5.1 Subsumption, Self-Subsumption, and Unit Propagation

In the case of subsumption, a QCNF Φ = P . φ is transformed into Φ′ =
P . φ � {C} for a clause C for which that there is another clause D ∈ φ such
that D ⊆ C. For reconstructing QU-resolution nothing needs to be done due to
Observation 1. For any model M ′ of Φ′, the formula M ′(φ� {C}) is a tautology
and in particular M ′(D) is a tautology and therefore necessarily M ′(C) is a
tautology because C is weaker than D. Hence, M ′(φ) is a tautology and M ′ is
also a model of Φ.

In order to reconstruct unit propagation and self-subsumption we first show
how to reconstruct resolution steps. For such, consider the transformation of a
QCNF Φ = P . φ into the formula Φ′ = P . φ∪{C} where C is a resolvent of
some clauses D1, D2 ∈ φ. Any QU-resolution proof π′ of Φ′ where C appears as
a leaf of π′ is transformed into a QU-resolution proof of Φ by prepending this
leaf with the resolution step of D1 and D2. Any M ′ model of Φ′ is also a model
of Φ due to Observation 2.

Each self-subsumption strengthening consists of two steps: resolution and sub-
sumption. Unit propagation consists of resolution steps, subsumption, and the
pure literal rule (see Section 5.3). Hence, certificates are reconstructed accord-
ingly. Note that in self-subsumption strengthening, resolution steps may be car-
ried out on universal literals while in unit propagation this would not be mean-
ingful because the moment the matrix contains a unit clause where the literal is
universal, the whole formula is trivially false due to universal reduction.

5.2 Variable Elimination (VE)

To eliminate a variable x from P . φ, VE partitions the matrix φ into the sets
of clauses φx, φx̄, and ξ as described in Section 3. Subsequently, φx and φx̄ are
replaced by the set φx ⊗ φx̄, which is defined as the set of all possible resolvents
on x of clauses that do not contain another complementary literal. Recall that
VE can be only carried out if the side-condition specified in Section 3 is fulfilled.

To reconstruct a QU-resolution proof we observe that VE can be split into
operations already covered. The newly added clauses are results of resolution on
existing clauses, which was already covered in Section 5.1. Clauses containing x
are removed, which does not incur any reconstruction due to Observation 1.

To reconstruct models we observe that any given formula Φ can be written
as Φ = P1 ∃xP2 . (x ∨ φ1) ∧ (x̄ ∨ φ2) ∧ ξ for CNF formulas φ1, φ2, and ξ
that do not contain x. Then, VE consists in transforming Φ into the formula
Φ′ = P1 P2 . (φ1 ∨ φ2)∧ ξ (note that φ1 ∨ φ2 corresponds to (x ∨ φ1)⊗ (x̄ ∨ φ2)).
VE’s side-condition specifies that any clause C ∈ φ1 that contains some literal k
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such that k > x and any clause D ∈ φ2, there is a literal z < x such that z ∈ C
and z̄ ∈ D.

In order to construct a model for the original formula Φ from a model M ′ of Φ′,
we aim to add to M ′ a definition for x which sets x to 1 when φ1 becomes 0
and it sets it to 1 when φ2 becomes 0. Since M ′ is a model of Φ′, the strategy
M ′ satisfies one of the φ1, φ2 for any game. The difficulty lies in the fact that
φ1 and φ2 may contain variables that are on the right from x in the quantifier
prefix (those in P2) and these must not appear in the definition of x. Hence, we
cannot use φ1 and φ2 to define x as they are. Instead, we construct a formula φ′2
by removing from φ2 all unsuitable literals, i.e. literals k for which x < k. Then,
we set the definition for x to M ′(φ′2). Now whenever φ′2 evaluates to 1, so do
φ2 and (x ∨ φ1) ∧ (x̄ ∨ φ2), because x is set to 1. If, however, φ′2 evaluates to 0,
then φ2 might not necessarily evaluate to 0, but x is set to 0 by our strategy
regardless. Due to the side-condition, in such cases φ1 must evaluate to 1 and
therefore our strategy is safe. This is formalized by the following proposition.

Proposition 3. Let Φ = P1 ∃xP2 . (x ∨ φ1) ∧ (x̄ ∨ φ2) ∧ ξ with φ1 and φ2 not
containing x; let Φ′ = P1 P2 . (φ1 ∨ φ2) ∧ ξ, as above. Define φ′2 to be φ2 with
all the literals not less than x deleted; i.e., φ′2 = {{l | l ∈ C, l < x} | C ∈ φ2}. If
M ′ is a model for Φ′, then M = M ′∪{ψx} is a model for Φ, where ψx = M ′(φ′2).

Proof. The functions of M form a well-defined strategy since M ′ is a well-defined
strategy and ψx does not contain any literals k with k > x. To show that M is a
model of Φ, consider any complete assignment τ to the universal variables of Φ.
Now we wish to show that the matrix of Φ evaluates to 1 under M and τ . Since M ′

is a model of Φ′, and ξ does not contain x, it holds that M(ξ, τ) = M ′(ξ, τ) = 1.
So it is left to be shown that the subformula (x∨φ1)∧ (x̄∨φ2) is true under M
and τ .

Because φ1, φ2 do not contain x we have M(φ1) = M ′(φ1), M(φ2) = M ′(φ2),
M(φ′2) = M ′(φ′2), and M(φ1∨φ2, τ) = M ′(φ1∨φ2, τ) = 1. Split on the following
cases (distinguishing between the values of x under τ and M).

If M(x, τ) = M ′(φ′2, τ) = 1. Because φ′2 is stronger than φ2, i.e. M(φ′2) →
M(φ2), also M(φ2, τ) = 1. Hence M((x ∨ φ1) ∧ (x̄ ∨ φ2), τ) = 1.

If M(x, τ) = M ′(φ′2, τ) = 0. There must be a clause C′ ∈ φ′2 s.t. M
′(C′, τ) = 0,

i.e. for all literals l ∈ C′, M ′(l, τ) = 0. Let C ∈ φ2 be a clause from which C′

resulted by removing some literals (possibly none), i.e. C′ = {l | l ∈ C, l < x}.
Now consider two sub-cases depending on whether C = C′ or C 
= C′. If
C = C′, M ′(C, τ) = 0 and M ′(φ2, τ) = 0, from which M ′(φ1, τ) = 1 because
M ′(φ1 ∨ φ2, τ) = 1. Hence M((x ∨ φ1) ∧ (x̄ ∨ φ2)) = 1. If C 
= C′, due to
the side-condition, C contains for each clause D ∈ φ1 a literal lD s.t. l̄D ∈
D and lD < x. Since each literal lD is less than x, it is also in C′. Since
M(C′, τ) = 0, each M(lD, τ) = 0 and M(l̄D, τ) = 1. From which M(φ1, τ) = 1
and M((x ∨ φ1) ∧ (x̄ ∨ φ2), τ) = 1. 
�
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5.3 Pure Literal Rule (PLR)

PLR for existential literals is a special case of both variable elimination and
blocked clause elimination. (An existential pure literal is a blocked literal in any
clause.) Hence, certificate reconstruction for existential PLR is done accordingly.

For a universal literal l with var(l) = y, a QCNF Φ = P1 ∀y P2 . φ is translated
into the QCNF formula Φ′ = P1 P2 . φ′ by removing l from all clauses where it
appears. To obtain a QU-resolution proof π for Φ from a QU-resolution proof
π′ one inserts l in any of the leafs C′ ∈ φ′ of π′ s.t. there exists C ∈ φ with
C′ = C � {l}. Then, ∀-reductions of l are added to π′ whenever possible. Note
that the addition of l cannot lead to tautologous resolvents since only l is inserted
and never l̄. The newly added universal literals must be necessarily ∀-reduced
as π′ eventually resolves away all existential literals. Since l is universal, any
model of Φ′ is also a model of Φ.

5.4 Blocked Clause Elimination (BCE)

For a QCNF Φ = P . φ, BCE identifies a blocked clause C ∈ φ and a blocked
existential literal l ∈ C, and removes C from φ. Recall that for a blocked literal
it holds that for any D ∈ φ such that l̄ ∈ D there exists a literal k ∈ C such
that k̄ ∈ D and k < l.

To reconstruct QU-resolution proofs, nothing needs to be done due to
Observation 1. To show how to reconstruct models, let M ′ be a model for Φ′ =
P . φ�{C}. Let W be the set of literals that serve as witnesses for l being blocked,
i.e. W =

{
k ∈ C | k 
= l and there exists a D ∈ φ s.t. k̄, l̄ ∈ D and k < l

}
.

The intuition for constructing a model for P . φ is to play the same as M ′

except for the case when the literals W are all 0, then make sure that l evaluates
to 1. This is formalized by the following proposition.

Proposition 4. Let Φ, Φ′, M ′, and W be defined as above. Let x = var(l) and
ψ′x ∈ M ′ be the definition for x. Define ψx = ψ′x ∨ M ′(

∧
k∈W k̄) if l = x and

ψx = ψ′x ∧ M ′(
∨

k∈W k) if l = x̄. Finally, define M = M ′ � {ψ′x}∪{ψx}. Then
M is a model of Φ. (Note that universal literals of W are untouched by M ′.)

Proof. Strategy M is well-defined because literals in W are all less than l and
therefore definitions for those literals also contains literals less than l. Let us
consider some total assignment τ to the universal variables of Φ under which all
literals in W are 0 under M (for other assignments M behaves as M ′ and C is
true). Now let us split the clauses of φ into 3 groups. Clauses that do not contain
l̄ nor l; clauses that contain l; and those that contain l̄. For any clause D ∈ φ not
containing l nor l̄, M(D, τ) = 1 since M(D, τ) = M ′(D, τ) and M ′ is a model
of Φ′. For any clause D ∈ φ containing l, M(D, τ) = 1 since M(l, τ) = 1; this
includes the clause C. Due to the sidecondition, any clause D ∈ φ that contains
l̄ also contains a literal k s.t. k̄ ∈ W . Since for M(k̄, τ) = 0, i.e. M(k, τ) = 1, it
holds that M(D, τ) = 1. 
�
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5.5 Equivalent Literal Substitution (ELS)

For a formula Φ = P . φ, ELS constructs strongly connected components of the
binary implication graph G of φ. Once a strongly connected component S of
the graph is constructed, ELS checks whether S yields falsity. If it does, ELS
produces a QU-resolution proof for such. The following discusses scenarios of
falsity that may arise. First recall that if there is a path in G from a literal l1 to
lk then there is a set of clauses (l̄1 ∨ l2), (l̄2 ∨ l3), . . . , (l̄k−1 ∨ lk), which through
a series of QU-resolution steps enables us to derive the clause l̄1 ∨ lk. Also recall
that whenever there is a path from l1 to lk in some component S1, there is also
a path from l̄1 to l̄k in the component S2, obtained from S1 by negating all
literals and reversing all edges. These observations are repeatedly used in the
following text.

(1) If S contains two universal literals l1 and l2, derive the clause l̄1∨ l2, which
is then ∀-reduced to the empty clause. (Note that this also covers l2 = l̄1.)

(2) If S contains an existential literal le and an universal literal lu such that
le < lu, derive the clause l̄e ∨ lu from which ∀-reduction gives l̄e. Derive le
analogously. Finally resolve l̄e and le to obtain the empty clause.

(3) If S contains two literals e and ē for some existential variable e, derive the
unit clauses e and ē and resolve them into the empty clause.

If none of the three conditions above are satisfied, all literals in S are sub-
stituted by a representative literal r, which is the smallest literal from S w.r.t.
the literal ordering <. This yields a formula Φ′ = P ′ . φ′, where P ′ resulted from
P by removing all variables that appear in S except for var(r). A certificate is
reconstructed as follows.

If a QU-resolution proof π′ for Φ′ relies on a clause C′ ∈ φ′ that resulted from
some cause C ∈ φ by replacing a l ∈ S by r, construct the clause l̄∨r and resolve
it with C to obtain C′. Analogously, if C′ resulted from C by replacing l̄ ∈ S
with r̄, construct the clause l ∨ r̄ and resolve it with C to obtain C′.

If M ′ is a model of Φ′ and r is existential, then S does not contain any
universal literals and M ′ defines the value for r by some formula ψr = M ′(r).
In such case ψr is over universal variables that are less than all the literals in S
because r was chosen to be the outermost literal. If x ∈ S for some existential
variable x, set ψx as ψr; if x̄ ∈ S for some existential variable x, set ψx as ¬ψr.
If r is universal, all the other literals in S are existential and so for x ∈ S � {r}
we set ψx = r; for x̄ ∈ S � {r}, we set ψx = r̄.

6 Related Work

Local simplifications based on identities such as 0x = 0 appear in number of
instances of automated reasoning (c.f. [27]). In SAT solving, it was early rec-
ognized that going beyond such local simplifications leads to significant perfor-
mance gains. A notable technique is variable elimination (VE), which originates
in the Davis&Putnam procedure (DP). While DP is itself complete, it suffers
from unwieldy memory consumption. It has been shown that applying VE only
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if it does not lead to increase of the formula’s size, gives an incomplete yet pow-
erful technique [51]. The preprocessor SatELite [20] boosts VE by subsumption,
self-subsumption, and unit propagation.

Nowadays, preprocessors (and SAT solvers themselves) contain a number of
preprocessing techniques such as blocked clauses elimination [36,41,32], hyper
binary resolution [3] and others (cf. [28]). Reconstructing solutions in SAT is
generally easier than in QBF, but it has also been investigated [31].

Many SAT preprocessing techniques were generalized for QBF [8,47,24,11,9];
application thereof is crucial for QBF solving [44]. QBF leads to a number of
specifics in the techniques. VE can be only performed under a certain side-
condition (Section 3); Van Gelder [52] further generalizes this side-condition.
A technique specific to QBF is universal-variable expansion [12,11] where a
universal quantifier ∀x. Φ is expanded into Φ[0/x] ∧ Φ[1/x] and then brought
into the prenex form by variable renaming. (Expansion can be used to obtain a
complete solver [5,8,37,29].) In his recent work, Van Gelder provides some initial
insights into reconstruction of variable elimination and expansion [53]. There,
however, he only shows how to reconstruct an individual leaf of a term-resolution
proof, but does not show how to construct the proofs themselves.

A number of works focus on the certification of QBF solvers (e.g. [6,35,39,26])
motivated by error prevention [10], but also because the certificates themselves
can be useful (e.g. [25,49,45,4,33]).

7 Experimental Evaluation

We test five scenarios, corresponding to different settings for preprocessing (full,
simple, or none) and for solving (with a qdag dependency manager, or simple).
Table 1 defines and names the scenarios that we tested—the last letter indi-
cates whether certificate generation was enabled (yes or no). The scenario nsy
represents the state-of-the-art in QBF solving with certificate generation, and
is the scenario we set out to improve. The scenario ssy represents our contri-
bution to QBF solving with certificate generation. We use the QBC format for
certificates [35]: the size of models is the number of ∧-gates used, the size of
refutations is the number of resolution steps used. (See online1 for the exact
testing environment being used.)

Results and Discussion. Figure 2 shows the overall performance of five scenarios
on the QBFEVAL 2012 benchmark. There is a clear gap between scenarios that
use preprocessing (fqn, ssn, ssy) and scenarios that do not use preprocessing
(nsn, nsy)—preprocessing is clearly beneficial. The gap nsy–nsn shows that
enabling tracing in depqbf deteriorates its performance. The gap ssy–ssn is
smaller than the gap nsy–nsn, indicating that enabling tracing in bloqqer+depqbf
deteriorates performance less than it does for depqbf alone. The gap fqn–ssn
should be reduced by future work. The most important observation to make on

1 http://sat.inesc-id.pt/~mikolas/lpar13-prepro/

http://sat.inesc-id.pt/~mikolas/lpar13-prepro/
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Fig. 2. Overall performance on the QBFEVAL 2012 benchmark

Table 1. Number of solved instances out of 344, for several scenarios

Scenario True/SAT False/UNSAT

Name Preprocessing Solving Tracing Unchecked Checked Unchecked Checked Total

fqn full qdag no 99 n/a 94 n/a 194
nsn none simple no 42 n/a 58 n/a 100
nsy none simple yes 7 25 0 55 87
ssn simple simple no 80 n/a 90 n/a 170
ssy simple simple yes 8 69 0 89 166

Figure 2 is that our proposed scenario (ssy) significantly improves the state-of-
the-art in QBF solving with certificate generation (nsy). Table 1 gives the total
number of solved instances for each scenario, thus it corresponds to the rightmost
points in Figure 2. The generated certificates (in scenarios nsy, ssy) were not all
checked: Those instances on which the certificate checker timed out are listed
in the unchecked column. (Recall that checking strategies is coNP-complete.)
The 7 unchecked certificates in the nsy scenario are largely disjoint from the
8 unchecked certificates in the ssy scenario— the overlap is exactly one instance.

Figure 3 shows that preprocessing is beneficial mostly for hard instances.
Figure 3a depicts certificate size with preprocessing (ssy) versus certificate size
without preprocessing (nsy). There is a clear threshold around 105: above it
preprocessing helps, below it preprocessing is detrimental. Figure 3b depicts time
spent in the solver versus total solving time (which includes preprocessing and
postprocessing) for the three scenarios that use preprocessing. There is a clear
threshold around 2 minutes: above it, scenarios that do not generate certificates
(fqn, ssn) have negligible overhead.

The correlation between certificate size and total running time is only moder-
ate (≈ 0.6). As an example of the high variance, for the 10 instances that were
solved in 64-to-128 seconds, the average certificate size was 4.7 × 105, with a
standard deviation of 4.8× 105.



486 M. Janota, R. Grigore, and J. Marques-Silva

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e1 1e2 1e3 1e4 1e5 1e6 1e7

ss
y

nsy

(a) Certificate size

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

o
n
ly

 s
o
lv

in
g
 [
m

in
u
te

s]

pre/postprocess+solving [minutes]

fqn
ssn
ssy

(b) Solving time

Fig. 3. The effect of pre/postprocessing on certificate size and on solving time

Table 2. Time spent in solver as a percent of the total solving time

Scenario min [%] med [%] geom avg [%] max [%]

fqn 4 91 66 100
ssn 19 98 86 100
ssy 11 57 50 92

8 Conclusions and Future Work

This paper brings together two different facets of QBF solving: preprocessing
and certification. Certification is important for practical applications of QBF
and preprocessing is crucial for performance of nowadays QBF solvers. Both
of the facets were extensively investigated [22,52,40,8,47,9,24] but there is no
available toolchain combining the two. However, the need for such technology
has been recognized by others [44]. This paper addresses exactly this deficiency.
For a number of representative preprocessing techniques, the paper shows how
certificates can be reconstructed from a certificate of a preprocessed formula.
Experimental evaluation of the implemented prototype demonstrates that the
proposed techniques enable QBF solving with certification that is performance-
wise very close to a state-of-the-art QBF solving without certification. Hence,
the contribution of the paper is not only theoretical but also practical since the
implemented tool will be useful to the QBF community.

On the negative side, the paper demonstrates that current methods of QBF
certification are insufficient for full-fledged preprocessing in the case of true for-
mulas. Namely, term-resolution+model-generation proofs incur worst-case expo-
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nential blowup in blocked clause elimination and variable elimination. This is
an important drawback because term-resolution proofs can be checked in poly-
nomial time, which is not the case for model-based certification (used in the
paper). This drawback delimits one direction for future work: Can we produce
polynomially-verifiable certificates for true QBFs in the context of preprocessing?
Another item of future work is narrowing the performance gap between solving
with and without certificate generation. In this regard, methods for certifying
universal-variable expansion should be developed [12] and other techniques, such
as hyper-binary resolution, must be certified.

Last but not least, methods for solving QBF were generalized to domains such
as SMT or verification [19,38]. We may expect that the contributions made by
this paper will also be helpful for these works.
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Abstract. Backtracking is a basic technique of search-based satisfia-
bility (SAT) solvers. In order to backtrack, a SAT solver uses conflict
analysis to compute a backtracking level and discards all the variable as-
signments made between the conflicting level and the backtracking level.
We observed that, due to the branching heuristics, the solver may re-
peat lots of previous decisions and propagations later. In this paper, we
present a new backtracking strategy, which we refer to as partial back-
tracking. We implemented this strategy in our solver Nigma. Using this
strategy, Nigma amends the variable assignments instead of discarding
them completely so that it does not backtrack as many levels as the clas-
sic strategy. Our experiments show that Nigma solves 5% more instances
than the version without partial backtracking.

Keywords: satisfiability, backtracking, conflict-driven conflict learning.

1 Introduction

Most modern SAT solvers are based on conflict-driven clause learning (CDCL).
As a basic technique of CDCL solvers, backtracking helps the solver jump out of
a local search space where no solution could ever be found [1]. In CDCL solvers,
backtracking is non-chronological and guided by conflict analysis to determine
how far the solver would jump back. The first non-chronological backtracking
strategy was introduced in GRASP [1]. When GRASP meets a conflict, it keeps
the current level and flips the value of the most recent decision variable. Back-
tracking only occurs if the flipping still leads to a conflict. Later, random back-
tracking was proposed to introduce randomness into selecting the backtracking
level [2,3]. Essentially, the learnt clause is used for randomly deciding which
variable is to be flipped. Nowadays, most solvers utilize a non-randomized back-
tracking strategy [4], which is referred to as classic backtracking in this paper.
This strategy is more aggressive than that used in GRASP, since backtracking is
always carried out after each conflict, making the resulting assignment trail al-
ways look like the one obtained when the learnt clause has already been included
in the formula.

No matter what kind of backtracking a solver takes, it is observed that some-
times the solver backtracks quite far, which is almost equivalent to a restart.
However, due to the wide adoption of VSIDS [4] and phase saving [5], the solver
may make similar decisions as the ones before backtracking and hence repeat
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some propagations. In this paper, we present a new backtracking strategy, re-
ferred to as partial backtracking. We implemented this strategy in our solver
Nigma. Using this strategy, Nigma amends the variable assignments between the
conflicting level and the assertion level instead of discarding them completely.
Nigma still backtracks after each conflict, but it does not have to backtrack as
many levels as those solvers using classic backtracking. Our experiments show
that Nigma backtracks 10% ∼ 60% fewer levels than the version with classic
backtracking.

This paper is organized as follows. Section 2 introduces the basic notions
in SAT solving and CDCL solvers. Section 3 analyzes the classic backtracking
strategy and the phenomenon of repeated propagation. Section 4 presents the
implementation details of the partial backtracking strategy. Several optimiza-
tions on the implementation are discussed in Section 5. Section 6 presents the
experiment results, showing the performance of our solver Nigma is improved
after adopting the partial backtracking strategy. Section 7 concludes with some
discussion on the future work.

2 Preliminaries

In this section, we introduce the basic notations and terminology on SAT solving
and CDCL solvers.

A literal is either a Boolean variable x or its negation ¬x, and a clause is a
disjunction of literals. A formula is said in conjunction normal form (CNF) if
it is a conjunction of clauses. The satisfiability problem is to determine if there
exists an assignment that evaluates a given Boolean formula to TRUE.

We say a variable or literal is free if it is unassigned and a clause is unit if it
only contains one free literal and all other literals have been assigned FALSE. A
unit clause essentially asserts that the sole free literal must be assigned TRUE.
We call this assertion an implication, written as l@dl, indicating that the literal
l is implied to be TRUE at the decision level dl (the definition of decision level
is given below).

CDCL solvers check the satisfiability of Boolean formulas through Boolean
constraint propagation (BCP) and conflict analysis. BCP is an iterative process
of searching for unit clauses and obtaining implications until reaching a fixed
point or encountering a conflict, that is, a clause whose literals are all assigned
FALSE. We call the clause with all literals being assigned FALSE a conflicting
clause. Most solvers store implications in the implication queue and propagate
them one by one in FIFO manner. Algorithm 1 shows the propagation of an
implication with two watched literals [4] and Algorithm 2 shows the iterative
process of propagation.

If BCP terminates with a conflict, then the solver extracts the reason as a
clause and adds it into the Boolean formula to avoid recurrence of the same
conflict in the future. This process is called conflict analysis or learning and
the new added clause is called a learnt clause. It is always desirable for a learnt
clause to become unit after backtracking to some level.
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Algorithm 1. Propagate(l@dl)

1: wl1 ← ¬l
2: for all clause c where wl1 is watched do
3: Search for a non-FALSE unwatched literal l′ in c
4: if Exists l′ then
5: Unwatch wl1
6: Watch l′

7: else
8: wl2 ← the other watched literal in c
9: if wl2 is FALSE then
10: ImplicationQueue.Clear()
11: ConflictAnalysis()
12: return
13: else if wl2 is TRUE then
14: continue
15: else
16: ImplicationQueue.Push(wl2@dlcurr) {dlcurr is the current level}
17: end if
18: end if
19: end for

Algorithm 2. BCP ()

1: while ImplicationQueue is not empty do
2: l@dl ← ImplicationQueue.Pop()
3: Propagate(l@dl)
4: end while

If BCP terminates without conflicts, then the solver selects a free variable and
gives it a value heuristically. This variable assignment is referred to as a decision
and pushed into a stack. A decision level is associated with each decision to
denote the its depth in that stack.

We refer the readers to [6] for more information on SAT solving and CDCL
solvers.

3 Classic Backtracking

In this section, we present the classic backtracking and identify the phenomenon
of repeated propagation.

According to the classic backtracking, the solver resolves conflicts by back-
tracking to the assertion level dlasrt, which is the second highest level among
the literals in the learnt clause (we say a level dl1 is higher than dl2 if dl1 > dl2),
and hence erasing all the variable assignments between dlasrt and the conflicting
level dlconf , which is the level where the conflict occurs. After backtracking, the
learnt clause becomes unit and the solver invokes BCP. This kind of backtracking
unavoidably discards all the propagations between dlasrt and dlconf .
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¬x1 ∨ x2
¬x3 ∨ ¬x4
¬x1 ∨ x4 ∨ x5 ∨ x6
x5 ∨ x13
¬x7 ∨ x8
¬x7 ∨ x9
¬x2 ∨ ¬x8 ∨ x10
¬x8 ∨ ¬x9 ∨ ¬x10
x4 ∨ x7 ∨ ¬x11
x7 ∨ x11 ∨ x12
x6 ∨ x11

(a) Clauses

Variable Activity Score Last Value

x1 10 TRUE
x3 8.1 TRUE
x2 7.2 TRUE
x5 6.4 FALSE
x12 6 FALSE
x7 5.5 TRUE
x6 3.7 FALSE
x13 2.5 TRUE
x10 2.2 TRUE
x8 1.5 TRUE
x4 0.5 FALSE
x9 0 FALSE
x11 0 FALSE

(b) Variables

Level Assignments

1 x1, x2
2 x3, ¬x4
3 ¬x5, x6, x13
4 ¬x12
5 x7, x8, x9, x10

(c) Assignments

Fig. 1. The status before backtracking

Peter van der Tak et al. observed that CDCL solvers may reassign the same
variables to the same Boolean values after a restart, and proposed the partial
restart strategy [7]. One important reason of reassignments is the wide adoption
of VSIDS [4] and phase saving [5]. We observed that backtracking exhibits a
similar phenomenon, which we refer to as repeated propagation (note that a
restart is a special form of backtracking). We give an example to illustrate this
phenomenon.

Consider the clauses and variable assignments in Figure 1a and Figure 1b.
Since the solver tends to select the most active free variables and their last
values as decisions, we have the resulting assignment trail shown in Figure 1c.
Then the solver encounters a conflict while propagating x8 at the level 5 (the
conflicting clause is framed in Figure 1a). The clause ¬x7 ∨ ¬x2 is learnt by
1-UIP [8] and thus dlasrt = 1. According to VSIDS, the solver will only increase
the activity scores (assuming the increment is 1) of the variables involving in
the conflict, namely, {x2, x7, x8, x9, x10}. Therefore, the activity scores of the
variables assigned between dlconf and dlasrt, {x3, x4, x5, x6, x12, x13}, remain the
same. As shown in Figure 2c, in the decision immediately after backtracking to
dlasrt, x3 will be chosen and assigned TRUE again at the level 2. Note that the
resulting set of variable assignments at the level 2 is a superset of that before
backtracking. The set of variable assignments at the level 3 is also similar to
that before backtracking, except that x6 has been “lifted” to the level 2.
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¬x1 ∨ x2
¬x3 ∨ ¬x4
¬x1 ∨ x4 ∨ x5 ∨ x6
x5 ∨ x13
¬x7 ∨ x8
¬x7 ∨ x9
¬x2 ∨ ¬x8 ∨ x10
¬x8 ∨ ¬x9 ∨ ¬x10
x4 ∨ x7 ∨ ¬x11
x7 ∨ x11 ∨ x12
x6 ∨ x11
¬x7 ∨ ¬x2

(a) Clauses

Variable Activity Score Last Values

x1 10 TRUE
x2 8.2 TRUE
x3 8.1 TRUE
x7 6.5 TRUE
x5 6.4 FALSE
x12 6 FALSE
x6 3.7 TRUE
x10 3.2 TRUE
x8 2.5 TRUE
x13 2.5 TRUE
x9 1 TRUE
x4 0.5 FALSE
x11 0 FALSE

(b) Variables

Level Assignments

1 x1, x2, ¬x7
2 x3, ¬x4, ¬x11, x12, x6
3 ¬x5, x13
4 x10
5 x8, ¬x9

(c) Assignments

Fig. 2. The status after backtracking

By comparing the variable assignments before and after each backtracking,
we have Figure 3 that shows the percentage of discarded variable assignments
that are chosen as decisions or propagated again before the next backtracking.
It is interesting to see that the solver tends to either enter a totally different
search space or stubbornly stick to its previous choices. But for a majority of
backtrackings, a large proportion of discarded variable assignments are repeated.
Note that we only consider those backtrackings that go back more than 10
levels and do not take account of restarts. Also, the variable assignments on the
conflicting level are not counted in computing this percentage.

4 Partial Backtracking

In this section, we present the partial backtracking strategy that allows the solver
to backtrack to some level dlback such that dlconf > dlback ≥ dlasrt, therefore
saving the propagations between dlback and dlasrt.

There are two reasons that classic backtracking prefers to use the assertion
level as the backtracking level. First, after each backtracking, the learnt clause
becomes unit and hence BCP can be invoked. Second, the succeeding BCP will
not cause any consistency issue. To adopt the partial backtracking strategy, we
need to update BCP procedure so that the two conditions are still met.
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Fig. 3. Repeated variable assignment percentage while solving ACG-15-5p1.cnf from
SAT Challenge 2012

The first condition can be easily satisfied by backtracking to any level lower
than dlconf but higher than or equal to dlasrt. We note that the assertion level
is the lowest level that the solver can backtrack to while keeping the learnt
clause unit. The main complications come from maintaining the second condi-
tion. There are four kinds of issues BCP may encounter after backtracking to a
level higher than dlasrt. In Section 4.1, we will discuss these issues and give the
corresponding solutions at clause level. The complete solution will be given in
Section 4.2.

4.1 Complications and Solutions for Partial Backtracking

Unusual Implication. Classic backtracking guarantees that the solver always
obtains implications at the current level dlcurr, that is, for any implication l@dl
in the implication queue, dl = dlcurr (see Algorithm 1). However, this is not true
for partial backtracking. A simple counterexample is the implication obtained
from the learnt clause. This implication is at dlasrt, which is lower than or equal
to dlcurr after backtracking partially (dlcurr = dlback ≥ dlasrt). Moreover, this
implication may result in more implications, which can be scattered at any level
between dlasrt and dlcurr.

To the best of our knowledge, no existing solver exploits this guarantee in any
essential way. In the implementation of Nigma, we simply relax this restriction.

Inappropriate Watched Literal. Generally, if a clause becomes unit and its sole
free literal gets assigned according to this implication, its watched literals are
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certainly assigned at the highest decision level among all its literals. This con-
dition may be violated after backtracking partially.

Consider a clause x1 ∨ ¬x2 ∨ x3. Suppose x3 is assigned FALSE at the level
10, and x1 and x2 are free. So x1 and ¬x2 are watched for this clause. During
BCP after backtracking partially, x1 may be assigned FALSE at the level 6. In
this case, it is inappropriate to still watch x1. Since the level of x3 is higher than
the level of x1, x3 should be watched instead.

In order to solve this issue, we use the following procedure, where δ(l) is a
function that returns the decision level where the literal l gets assigned.

– AdjustWatchedLiteral(wl, c)
Pre-condition: The literal wl is watched in the clause c; All the unwatched
literals in c are FALSE.
Description: Search for an unwatched literal l in c such that δ(l) > δ(wl)
and for any unwatched literal l′ in c, δ(l) ≥ δ(l′). If successful, unwatch wl,
watch l and return l. Otherwise, return wl.

Spurious Conflict. As we noted before, BCP may lead to conflicts. A standard
conflict has the following implicit feature: the two FALSE literals with the highest
levels in the conflicting clause are assigned at the same level. However, during
BCP after backtracking partially, the solver might encounter a spurious conflict
where these two literals are assigned at different levels.

We give a simple example to illustrate the spurious conflict. Consider a clause
x1 ∨ ¬x2. After backtracking partially, we may have two implications ¬x1@10
and x2@15 at the same time. This is a conflict (as all the literals are FALSE),
but it is different from the standard one.

The spurious conflict cannot be resolved by the standard learning proce-
dure. From another perspective, the spurious conflict essentially implies that
the FALSE literal with the highest level should have been implied at the second
highest level among the literals in the conflicting clause. In other words, without
learning, we can immediately obtain an implication by simply backtracking to
a level between the highest level and the second highest level in the conflicting
clause. That level can also be but not necessary the second highest level be-
cause we are able to handle the unusual implication now. We have the following
procedure to resolve spurious conflicts.

– ResolveSpuriousConflict(c)
Pre-condition: All the literals in the clause c are FALSE; The literals wl1
and wl2 are watched in c; δ(wl1) 
= δ(wl2).
Description: If δ(wl1) > δ(wl2), backtrack to the level δ(wl1) − 1 and push
the implication wl1@δ(wl2) into the implication queue. If δ(wl1) < δ(wl2),
backtrack to the level δ(wl2)− 1 and push the implication wl2@δ(wl1) into
the implication queue.

Wrong Decision Level. After backtracking partially, some assigned variables
need to update their decision levels. For example, consider a clause x1 ∨ x2.



Partial Backtracking in CDCL Solvers 497

Initially, x1 is assigned TRUE at the level 18 and x2 is free. Suppose at the
level 20, a conflict is identified and the solver backtracks to the level 19 while
dlasrt = 5. Further suppose that the succeeding BCP induces the implication
¬x2@15. As a result, the decision level of x1 should be modified to 15. The issue
can be solved by backtracking to the level 17 and get the implication x1@15.
The following procedure is used for this purpose.

– ResolveWrongDecisionLevel(c)
Pre-condition: All the unwatched literals in the clause c are FALSE; c
has a TRUE watched literal wltrue and a FALSE watched literal wlfalse;
δ(wltrue) > δ(wlfalse).
Description: Backtrack to the level δ(wltrue) − 1 and push the implication
wltrue@δ(wlfalse) into the implication queue.

Both processes of resolving spurious conflict and wrong decision level might
trigger further backtracking. A helper procedure, ClearInvalidImplications, is
defined to adjust the implication queue accordingly.

– ClearInvalidImplications()
Description: Remove invalid implications from the implication queue. An
implication l@dl is invalid if dl > dlcurr.

In spite of the possible chained backtracking, whenever BCP terminates, the
current decision level is always higher than or equal to the assertion level.

4.2 BCP after Partial Backtracking

As mentioned before, the standard BCP needs an adjustment if the solver takes
a partial backtracking. Algorithm 3 shows the procedure PropagateAmending
that is a special propagating procedure to be used after backtracking partially.
Algorithm 4 shows the procedure BCPAmending that replaces the standard
BCP procedure.

Let us revisit the example in Section 3. At this time, when the conflict occurs
at the level 5, the solver takes a partial backtracking to the level 4 (see Figure 4a).
While propagating the implication ¬x7@1, the solver obtains ¬x11@2 (unusual
implication) (see Figure 4b) due to x4 ∨ x7 ∨ ¬x11. In the next iteration of
propagation, the solver identifies a spurious conflict (x7 ∨ x11 ∨ x12) and has to
go back one level to resolve it (see Figure 4c). Due to the existence of x6∨x11, x6

should have been implied at the level 2 (wrong decision level), so the solver goes
back one level again (see Figure 4d). Then BCP terminates because no more
implication or conflict can be found. It is clearly seen that the solver amends
the existing assignment trail conservatively, not simply discarding a significant
portion of it. We note that under this strategy, it is possible that the solver
enters a search space which is quite different from the one resulting from the
classic backtracking.

We shall point out that, when the implication to be propagated happens to
be at the current level, the effect of PropagateAmending is exactly the same as
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Algorithm 3. PropagateAmending(l@dl)

1: wl1 ← ¬l
2: for all clause c where wl1 is watched do
3: Search for a non-FALSE unwatched literal l′ in c
4: if Exists l′ then
5: Unwatch wl1
6: Watch l′

7: else
8: wl1 ← AdjustWatchedLiteral(wl1, c)
9: wl2 ← the other watched literal in c
10: if wl2 is FALSE then
11: if δ(wl1) > δ(wl2) then
12: wl2 ← AdjustWatchedLiteral(wl2, c)
13: end if
14: if δ(wl1) == δ(wl2) then
15: Backtrack to δ(wl1)
16: ConflictAnalysis() {Standard conflict}
17: ClearInvalidImplications()
18: return
19: else
20: ResolveSpuriousConflict(c) {Spurious conflict}
21: ClearInvalidImplications()
22: end if
23: else if wl2 is TRUE then
24: if δ(wl2) > δ(wl1) then
25: ResolveWrongDecisionLevel(c) {Wrong decision level}
26: ClearInvalidImplications()
27: end if
28: else
29: ImplicationQueue.Push(wl2@δ(wl1))
30: end if
31: end if
32: end for

Algorithm 4. BCPAmending()

1: while ImplicationQueue is not empty do
2: l@dl ← ImplicationQueue.pop()
3: PropagateAmending(l@dl)
4: end while
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Level Assignments

1 x1, x2, ¬x7
2 x3, ¬x4
3 ¬x5, x6, x13
4 ¬x12

(a)

Level Assignments

1 x1, x2, ¬x7
2 x3, ¬x4, ¬x11
3 ¬x5, x6, x13
4 ¬x12

(b)

Level Assignments

1 x1, x2, ¬x7
2 x3, ¬x4, ¬x11, x12
3 ¬x5, x6, x13
4

(c)

Level Assignments

1 x1, x2, ¬x7
2 x3, ¬x4, ¬x11, x12, x6
3
4

(d)

Fig. 4. The status after backtracking partially

Propagate. This indicates that PropagateAmending is essentially a generaliza-
tion of Propagate.

5 Optimization

In this section, we discuss optimizations applicable to PropagateAmending and
BCPAmending.

First, the implication queue can be constructed as a priority queue. As we
described before, most CDCL solvers organize implications in a queue and prop-
agates them in FIFO manner. However, since the implications in the queue can
be scattered on different levels, unnecessary propagations can be avoided by
giving higher priority to the implication at the lowest level in the queue. The in-
tuition is that propagation may induce backtracking due to spurious conflict and
wrong decision level, making some implications invalid and removed from the
queue. For example, suppose that we have the implications x1@10 and ¬x2@20
in the implication queue. If propagating x1@10 incurs a backtracking to some
level lower than 20, ¬x2@20 becomes invalid and the solver needs not propagate
it.

Second, even if encountering a standard conflict in PropagateAmending, it
is possible to postpone the conflict analysis. Suppose, while propagating x1@10,
the solver meets a standard conflict at the level 20. If the solver does not analyse
the conflict immediately but continues propagating, it may backtrack to some
level lower than 20 later due to spurious conflict or wrong decision level, making
that conflict disappear automatically.

Third, it is unnecessary to call PropagateAmending in each iteration of
BCPAmending. As mentioned before, PropagateAmending is a generalization
of Propagate and it is more expensive than Propagate. If the implication to
be propagated happens to be at the current level, calling Propagate directly
instead of PropagateAmending will not cause any issue.
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Solver SAT UNSAT Solved #

Nigma-PB 222 251 473
Nigma-CB 212 240 452
Glucose-2.2 212 246 458

(a) The Number of Solved Instances
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Fig. 5. Experiment results of Nigma-PB, Nigma-CB and Glucose 2.2 on the benchmark
suite from the application track of SAT Challenge 2012

Fourth, it is also unnecessary to backtrack partially every time a conflict
occurs. The motivation of partial backtracking is to save propagations. Thus this
strategy should be more efficient if a large number of propagations are going to
be discarded or repeated. In Nigma, we measure the saving by the number of
levels the solver would go back by classic backtracking, namely, dlconf − dlasrt.
According to our experiments, when we set the triggering condition to dlconf −
dlasrt > 10, around 5% ∼ 30% of conflicts will trigger partial backtracking.

6 Experiment Results

In this section, we present experiment results using our solver Nigma, which is a
CDCL solver based on MiniSat 2.2 [9]. The benchmark suite consists of the 600
instances from the application track of SAT Challenge 2012 [10]. We conducted
experiments on a 3.40GHz × 8 Intel Core i7-2600K processor with 900 second
timeout and 7GB memory limit per instance.

The versions of Nigma with partial backtracking and with classic backtracking
are denoted by Nigma-PB and Nigma-CB, respectively. Nigma-PB is configured
as follows: if dlconf−dlasrt ≤ 10, the solver simply follows the classic backtracking
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Fig. 6. Nigma backtracks fewer levels with partial backtracking

strategy; otherwise, the solver backtracks only one level, that is, it backtracks
to the level dlconf − 1. We use Glucose 2.2 [11] as an additional reference.

Figure 5a shows the number of instances solved by the three solvers and
Figure 5b is the cactus plot of the results. It is clearly seen that when applying
partial backtracking, Nigma-PB solved 21 more instances than Nigma-CB, and
it also performs better than Glucose 2.2.

An in-depth view of the effect of partial backtracking is given in Figure 6,
showing the percentage of fewer levels the solver backtracks for each solved
instance. We note that, for a majority of instances, when the solver takes a
partial backtracking, it backtracks 10% ∼ 60% fewer levels finally, compared
with classic backtracking.

We also compare two additional metrics in the experiment, in order to explain
the performance improvement by partial backtracking from a different perspec-
tive. The first metric is the number of decisions to solve an instance. Generally
speaking, fewer decisions indicate the solver explores the search space in a better
way [8]. According to the experiment, among the 439 instances solved by both
Nigma-PB and Nigma-CB, 317 instances are solved by Nigma-PB with fewer
decisions than by Nigma-CB.

The second metric is the number of decisions per conflict for a solved in-
stance. We are interested in this metric because the power of CDCL solvers
stems from identifying and learning from conflicts. The number of decisions per
conflict reflects how frequently the solver identifies a conflict. The smaller this
number is, the more often the solver detects and corrects its fault in making
decisions. Partial backtracking has the potential to reduce this number as the
solver might detect a standard conflict at a level higher than dlasrt (see Line
14-18 in Algorithm 3) while retaining the ability to detect a standard conflict at
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dlasrt. The experiment result confirms our conjecture: 387 instances are solved
by Nigma-PB with fewer decisions per conflict than by Nigma-CB.

7 Conclusions

In this paper, we presented the partial backtracking strategy which is essen-
tially an extension of classic backtracking. This strategy amends the assignment
trail instead of simply discarding a portion of it. As a result, some propagations
need not to be repeated and the solver can go deeper in certain search space.
Our experiments show that this new kind of backtracking improves the perfor-
mance of CDCL solvers. Besides the optimizations mentioned in Section 5, we
are investigating the following two aspects to further improve its efficiency.

First, in our current implementation, the solver backtracks to dlasrt − 1 first.
In fact, any level higher than dlasrt can be used for the initial backtracking, as
going back to that level still keeps the learnt clause unit. We are interested in
designing a better heuristic to select the initial backtracking level.

Second, we would explore other criteria to trigger a partial backtracking. A
promising candidate is the number of variable assignments the solver would
discard by taking a classic backtracking.
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Abstract. Large formal mathematical libraries consist of millions of
atomic inference steps that give rise to a corresponding number of proved
statements (lemmas). Analogously to the informal mathematical prac-
tice, only a tiny fraction of such statements is named and re-used in
later proofs by formal mathematicians. In this work, we suggest and
implement criteria defining the estimated usefulness of the HOL Light
lemmas for proving further theorems. We use these criteria to mine the
large inference graph of all lemmas in the core HOL Light library, adding
thousands of the best lemmas to the pool of named statements that can
be re-used in later proofs. The usefulness of the new lemmas is then eval-
uated by comparing the performance of automated proving of the core
HOL Light theorems with and without such added lemmas.

1 Introduction

In the last decade, large formal mathematical corpora such as the Mizar Math-
ematical Library [5] (MML), Isabelle/HOL [33] and HOL Light [7]/Flyspeck [6]
have been translated to formats that allow easy experiments with external au-
tomated theorem provers (ATPs) and AI systems [10, 17, 26]. Several AI/ATP
methods for reasoning in the context of a large number of related theorems and
proofs have been suggested and tried already, including: (i) methods (often ex-
ternal to the core ATP algorithms) that select relevant premises (facts) from the
thousands of theorems available in such corpora [8,15], (ii) methods for internal
guidance of ATP systems when reasoning in the large-theory setting [31], (iii)
methods that automatically evolve more and more efficient ATP strategies for
the clusters of related problems from such corpora [28], and (iv) methods that
learn which of such specialized strategies to use for a new problem [14].

In this work, we start to complement the first set of methods – ATP-external
premise selection – with lemma mining from the large corpora. The main idea of
this approach is to enrich the pool of human-defined main (top-level) theorems
in the large libraries with the most useful/interesting lemmas extracted from the
proofs in these libraries. Such lemmas are then eligible together with (or instead
of) the main library theorems as the premises that are given to the ATPs to
attack new conjectures formulated over the large libraries.

This high-level idea is straightforward, but there are a number of possible
approaches involving a number of issues to be solved, starting with a reasonable
definition of a useful/interesting lemma, and with making such definitions effi-
cient over corpora that contain millions to billions of candidate lemmas. These

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 503–517, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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issues are discussed in Sections 4 and 5, after motivating and explaining the
overall approach for using lemmas in large theories in Section 2 and giving an
overview of the recent related work in Section 3.

As in any AI discipline dealing with large amount of data, research in the
large-theory field is driven by rigorous experimental evaluations of the proposed
methods over the existing corpora. For the first experiments with lemma mining
we use the HOL Light system, together with its core library and the Flyspeck
library. The various evaluation scenarios are defined and discussed in Section 6,
and the implemented methods are evaluated in Section 7. Section 8 discusses
the various future directions and concludes.

2 Using Lemmas for Theorem Proving in Large Theories

The main task in the Automated Reasoning in Large Theories (ARLT) domain
is to prove new conjectures with the knowledge of a large body of previously
proved theorems and their proofs. This setting reasonably corresponds to how
large ITP libraries are constructed, and hopefully also emulates how human
mathematicians work more faithfully than the classical scenario of a single hard
problem consisting of isolated axioms and a conjecture [30]. The pool of previ-
ously proved theorems ranges from thousands in large-theory ATP benchmarks
such as MPTP2078 [1], to tens of thousands when working with the whole ITP
libraries.1

The strongest existing ARLT systems combine variously parametrized
premise-selection techniques (often based on machine learning from previous
proofs) with ATP systems and their strategies that are called with varied num-
bers of the most promising premises. These techniques can go quite far already:
when using 14-fold parallelization and 30s wall-clock time, the HOL(y)Hammer
system [10, 11] can today prove 47% of the 14185 Flyspeck theorems [12]. This
is measured in a scenario2 in which the Flyspeck theorems are ordered chrono-
logically using the loading sequence of the Flyspeck library, and presented in
this order to HOL(y)Hammer as conjectures. After each theorem is attempted,
its human-designed HOL Light proof is fed to the HOL(y)Hammer’s learn-
ing components, together with the (possibly several) ATP proofs found by
HOL(y)Hammer itself. This means that for each Flyspeck theorem, all human-
written HOL Light proofs of all previous theorems are assumed to be known,
together with all their ATP proofs found already by HOL(y)Hammer, but noth-
ing is known about the current conjecture and the following parts of the library
(they do not exist yet).

So far, systems like HOL(y)Hammer (similar systems include Sledgehammer/-
MaSh [13] and MaLARea [29]) have only used the set of named library theorems
for proving new conjectures and thus also for the premise-selection learning. This
is usually a reasonable set of theorems to start with, because the human mathe-
maticians have years of experience with structuring the formal libraries. On the

1 14185 theorems are in the HOL/Flyspeck library, about 20000 are in the Is-
abelle/HOL library, and about 50000 theorems are in the Mizar library.

2 A similar scenario has been introduced in 2013 also for the CASC LTB competition.



Lemma Mining over HOL Light 505

other hand, there is no guarantee that this set is in any sense optimal, both for
the human mathematicians and for the ATPs. The following three observations
indicate that the set of human-named theorems may be suboptimal:

Proofs of different length: The human-named theorems may differ considerably
in the length of their proofs. The human naming is based on a number of
(possibly traditional/esthetical) criteria that may sometimes have little to
do with a good structuring of the library.

Duplicate and weak theorems: The large collaboratively-build libraries are hard
to manually guard against duplications and naming of weak versions of var-
ious statements. The experiments with the MoMM system over the Mizar
library [27] and with the recording of the Flyspeck library [9] have shown
that there are a number of subsumed and duplicated theorems, and that
some unnamed strong lemmas are proved over and over again.

Short alternative proofs: The experiments with AI-assisted ATP over the Mizar
and Flyspeck libraries [2,10] have shown that the combined AI/ATP systems
may sometimes find alternative proofs that are much shorter and very dif-
ferent from the human proofs, again turning some “hard” named theorems
into easy corollaries.

Suboptimal naming may obviously influence the performance of the current
large-theory systems. If many important lemmas are omitted by the human nam-
ing, the ATPs will have to find them over and over when proving the conjectures
that depend on such lemmas. On the other hand, if many similar variants of
one theorem are named, the current premise-selection methods might focus too
much on those variants, and fail to select the complementary theorems that are
also necessary for proving a particular conjecture.3

To various extent, this problem might be remedied by the alternative learn-
ing/guidance methods (ii) and (iii) mentioned in the introduction: Learning of
internal ATP guidance using for example Veroff’s hint technique [32], and learn-
ing of suitable ATP strategies using systems like BliStr [28]. But these methods
are so far much more experimental in the large-theory setting than premise se-
lection.4 That is why we propose the following lemma-mining approach:

1. Considering (efficiently) the detailed graph of all atomic inferences contained
in the ITP libraries. Such a graph has millions of nodes for the core HOL
Light corpus, and hundreds of millions of nodes for the whole Flyspeck.

2. Defining over such large proof graphs efficient criteria that select a smaller
set of the strongest and most orthogonal lemmas from the corpora.

3. Using such lemmas together with (or instead of) the human-named theorems
for proving new conjectures over the corpora.

3 This behavior obviously depends on the premise-selection algorithm. It is likely to oc-
cur when the premise selection is mainly based on symbolic similarity of the premises
to the conjecture. It is less likely to occur when complementary semantic selection
criteria are additionally used as, e.g., in SRASS [25] and MaLARea [29].

4 In particular, several initial experiments done so far with Veroff’s hints over the
MPTPChallenge and MPTP2078 benchmarks were so far unsuccessful.
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3 Overview of Related Work and Ideas

A number of ways how to measure the quality of lemmas and how to use them
for further reasoning have been proposed already, particularly in the context of
ATP systems and proofs. Below we summarize recent approaches and tools that
initially seemed most relevant to our work.

Lemmas are an essential part of various ATP algorithms. State-of-the-art
ATPs such as Vampire [21], E [23] and Prover9 [16] implement various variants
of the ANL loop [34], resulting in hundreds to billions of lemmas inferred during
the prover runs. This gave rise to a number of efficient ATP indexing techniques,
redundancy control techniques such as subsumption, and also fast ATP heuristics
(based on weight, age, conjecture-similarity, etc.) for choosing the best lemmas
for the next inferences. Several ATP methods and tools work with such ATP
lemmas. Veroff’s hint technique [32] extracts the best lemmas from the proofs
produced by successful Prover9 runs and uses them for directing the proof search
in Prover9 on related problems. A similar lemma-extracting, generalizing and
proof-guiding technique (called E Knowledge Base – EKB) was implemented by
Schulz in E prover as a part of his PhD thesis [22].

Schulz also implemented the epcllemma tool that estimates the best lemmas
in an arbitrary DAG (directed acyclic graph) of inferences. Unlike the hint-
extracting/guiding methods, this tool works not just on the handful of lemmas
involved in the final refutational proof, but on the typically very large number of
lemmas produced during the (possibly unfinished) ATP runs. The epcllemma’s
criteria for selecting the next best lemma from the inference DAG are: (i) the size
of the lemma’s inference subgraph based at the nodes that are either axioms or
already chosen (better) lemmas, and (ii) the weight of the lemma. This lemma-
selection process may be run recursively, until a stopping criterion (minimal
lemma quality, required number of lemmas, etc.) is reached. Our algorithm for
HOL Light (Section 5) is quite similar to this.

AGIntRater [20] is a tool that computes various characteristics of the lem-
mas that are part of the final refutational ATP proof and aggregates them
into an overall interestingness rating. These characteristics include: obviousness,
complexity, intensity, surprisingness, adaptivity, focus, weight, and usefulness,
see [20] for details. AGIntRater so far was not directly usable on our data for
various reasons (particularly the size of our graph), but we might re-use and try
to efficiently implement some of its ideas later.

Pudlák [19] has conducted experiments over several datasets with automated
re-use of lemmas from many existing ATP proofs in order to find smaller proofs
and also to attack unsolved problems. This is similar to the hints technique,
however more automated and closer to our large-theory setting (hints have so
far been successfully applied mainly in small algebraic domains). To interreduce
the large number of such lemmas with respect to subsumption he used the E-
based CSSCPA [24] subsumption tool by Schulz and Sutcliffe. MoMM [27] adds
a number of large-theory features to CSSCPA. It was used for (i) fast interreduc-
tion of million of lemmas extracted (generalized) from the proofs in the Mizar
library, and (ii) as an early ATP-for-ITP hammer-style tool for completing proofs
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in Mizar with the help of the whole Mizar library. All library lemmas can be
loaded, indexed and considered for each query, however the price for this breadth
of coverage is that the inference process is limited to subsumption extended with
Mizar-style dependent types.

AGIntRater and epcllemma use a lemma’s position in the inference graph as
one of the lemma’s characteristics that contribute to its importance. There are
also purely graph-based algorithms that try to estimate a relative importance
of nodes in a graph. In particular, research of large graphs became popular
with the appearance of the World Wide Web and social networks. Algorithms
such as PageRank [18] (eigenvector centrality) have today fast approximative
implementations that easily scale to billions of nodes.

4 The Proof Data

We initially consider two corpora: the core HOL Light corpus (SVN version 146)
and the Flyspeck corpus (SVN version 2886). The core HOL Light corpus con-
sists of 1,984 named theorems, while the Flyspeck corpus contains 14,185 named
theorems. There are 97,714,465 lemmas in Flyspeck when exact duplicates are
removed, and 420,253,109 lemmas when counting duplicates. When removing
duplicates only within the proof of each named theorem, the final number of
lemmas is 146,120,269. For core HOL Light the number of non-duplicate lem-
mas is 1,987,781. When counting duplicates it is 6,963,294, and when removing
duplicates only inside the proof of each named theorem it is 2,697,212 . To obtain
the full inference graph for Flyspeck we run the proof-recording version of HOL
Light [9]. This takes 14 hours of CPU time and 42 GB of RAM on an Intel Xeon
2.6 GHz machine. This time and memory consumption are much lower when
working only with the core HOL Light, hence many of the experiments were so
far done only on the smaller corpus.

There are 140,534,426 inference edges between the unique Flyspeck lemmas,
each of them corresponding to one of the LCF-style kernel inferences done by
HOL Light [9]. During the proof recording we additionally export the informa-
tion about the symbol weight (size) of each lemma, and its normalized form that
serially numbers bound and free variables and tags them with their types. This
information is later used for external postprocessing, together with the infor-
mation about which theorems where originally named. Below is a commented
example of the initial segment of the Flyspeck proof trace, the full trace (1.5G in
size) is available online5, as well as the numbers of the original named Flyspeck
theorems.6

F13 #1, Definition (size 13): T <=> (\A0. A0) = (\A0. A0)
R9 #2, Reflexivity (size 9): (\A0. A0) = (\A0. A0)
R5 #3, Reflexivity (size 5): T <=> T
R5 #4, Reflexivity (size 5): (<=>) = (<=>)
C17 4 1 #5, Application(4,1): (<=>) T = (<=>) ((\A0. A0) = (\A0. A0))
C21 5 3 #6, Application(5,3): (T <=> T) <=> (\A0. A0) = (\A0. A0) <=> T
E13 6 3 #7, EQ_MP(6,3) (size 13): (\A0. A0) = (\A0. A0) <=> T

5 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/proof.trace.old.gz
6 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/facts.trace.old.gz

http://mizar.cs.ualberta.ca/~mptp/lemma_mining/proof.trace.old.gz
http://mizar.cs.ualberta.ca/~mptp/lemma_mining/facts.trace.old.gz
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4.1 Initial Post-processing and Optimization of the Proof Data

During the proof recording, only exact duplicates are easy to detect. Due to
various implementational issues, it is simpler to always limit the duplication de-
tection to the lemmas derived within a proof of each named theorem, hence this
is our default initial dataset. HOL Light does not natively use de Bruijn indices
for representing variables, i.e., two alpha-convertible versions of the same theo-
rems will be kept in the proof trace if they differ in variable names. Checking for
alpha convertibility during the proof recording is nontrivial, because in the HOL
Light’s LCF-style approach alpha conversion itself results in multiple kernel in-
ferences. That is why we keep the original proof trace untouched, and implement
its further optimizations as external postprocessing of the trace.

In particular, to merge alpha convertible lemmas in a proof trace T , we just
use the above mentioned normalized-variable representation of the lemmas as an
input to an external program that produces a new version of the proof trace T ′.
This program goes through the trace T and replaces references to each lemma
by a reference to the earliest lemma in T with the same normalized-variable
representation. The proofs of the later named alpha variants of the lemmas in
T are however still kept in the new trace T ′, because such proofs are impor-
tant when computing the usage and dependency statistics over the normalized
lemmas. So far we have done this postprocessing only for the core HOL Light
2,697,212 lemmas,7 because printing out of the variable-normalized version of
the 146,120,269 partially de-duplicated Flyspeck lemmas would produce more
than 100G of data. From the 2,697,212 partially de-duplicated core HOL Light
lemmas 1,076,995 are left after this stronger normalization. It is clear that such
post-processing operations can be implemented different ways. In this case, some
original information about the proof graph is lost, while some information (proofs
of duplicate lemmas) is still kept, even though it could be also pruned from the
graph, producing a differently normalized version.

The ATP experiments described below use only the two versions of the proof
trace described above, but we have also explored some other normalizations. A
particularly interesting optimization from the ATP point of view is the removal of
subsumed lemmas. An initial measurement with the (slightly modified) MoMM
system done on the clausified first-order versions of about 200,000 core HOL
Light lemmas has shown that about 33% of the clauses generated from the
lemmas are subsumed. But again, ATP operations like subsumption interact
with the level of inferences recorded by the HOL Light kernel in nontrivial ways.
It is an interesting task to define exactly how the original proof graph should
be transformed with respect to such operations, and how to perform such proof
graph transformations efficiently over the whole Flyspeck.

5 Selecting Good Lemmas

Several approaches to defining the notion of a useful/interesting lemma are men-
tioned in Section 3. There are a number of ideas that can be explored and

7 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/human.gz

http://mizar.cs.ualberta.ca/~mptp/lemma_mining/human.gz
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combined together in various ways, but the more complex methods (such as
those used by AGIntRater) are not yet directly usable on the large ITP datasets
that we have. So far, we have experimented mainly with the following techniques:

1. A direct OCAML implementation of lemma quality metrics based on the
HOL Light proof-recording data structures.

2. Schulz’s epcllemma and its minor modifications.

3. PageRank, applied in various ways to the proof trace.

5.1 Direct Computation of Lemma Quality

The advantage of the direct OCAML implementation is that no export to ex-
ternal tools is necessary and all the information collected about the lemmas by
the HOL Light proof recording is directly available. The basic factors that we
use so far for defining the quality of a lemma i are its: (i) set of direct proof
dependencies d(i) given by the proof trace, (ii) number of recursive dependen-
cies D(i), (iii) number of recursive uses U(i), and (iv) number of HOL symbols
(HOL weight) S(i). When recursively defining U(i) and D(i) we assume that in
general some lemmas may already be named (k ∈ Named) and some lemmas are
just axioms (k ∈ Axioms). Note that in HOL Light there are many lemmas that
have no dependencies, but formally they are still derived using for example the
reflexivity inference rule (i.e., we do not count them among the HOL Light ax-
ioms). The recursion when defining D thus stops at axioms, named lemmas, and
lemmas with no dependencies. The recursion when defining U stops at named
lemmas and unused lemmas. Formally:

Definition 1 (Recursive dependencies and uses).

D(i) =

⎧⎨⎩1 if i ∈ Named ∨ i ∈ Axioms,∑
j∈d(i)

D(j) otherwise.

U(i) =

⎧⎨⎩1 if i ∈ Named,∑
i∈d(j)

U(j) otherwise.

In particular, this means that

D(i) = 0 ⇐⇒ d(i) = ∅ ∧ ¬(i ∈ Axioms)

and also that

U(i) = 0 ⇐⇒ ∀j¬(i ∈ d(j))

These basic characteristics are combined into the following lemma quality metrics
Q1(i), Q2(i), and Q3(i). Qr

1(i) is a generalized version of Q1(i), which we (apart
from Q1) test for r ∈ {0, 0.5, 1.5, 2}:
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Definition 2 (Lemma quality).

Q1(i) =
U(i) ∗D(i)

S(i)

Q2(i) =
U(i) ∗D(i)

S(i)2

Qr
1(i) =

U(i)r ∗D(i)2−r

S(i)

Q3(i) =
U(i) ∗D(i)

1.1S(i)

The justification behind these definitions are the following heuristics:

1. The higher is D(i), the more necessary it is to remember the lemma i, because
it will be harder to infer with an ATP when needed.

2. The higher is U(i), the more useful the lemma i is for proving other desired
conjectures.

3. The higher is S(i), the more complicated the lemma i is in comparison to
other lemmas. In particular, doubled size may often mean in HOL Light that
i is just a conjunction of two other lemmas.8

5.2 Lemma Quality via Epcllemma

Lemma quality in epcllemma is defined on clause inferences recorded using E’s
native PCL protocol. The lemma quality computation also takes into account
the lemmas that have been already named, and with minor implementational
variations it can be expressed using D and S as follows:

EQ1(i) =
D(i)

S(i)

The difference to Q1(i) is that U(i) is not used, i.e., only the cumulative effort
needed to prove the lemma counts, together with its size (this is also very close to
Qr

1(i) with r = 0). The main advantage of using epcllemma is its fast and robust
implementation using the E code base. This allowed us to load in reasonable
time (about one hour) the whole Flyspeck proof trace into epcllemma, taking
67 GB of RAM. Unfortunately, this experiment showed that epcllemma assumes
that D is always an integer. This is likely not a problem for epcllemma’s typical
use, but on the Flyspeck graph this quickly leads to integer overflows and wrong
results. To a smaller extent this shows already on the core HOL Light proof
graph. A simple way how to prevent the overflows was to modify epcllemma to
use instead of D the longest chain of inferences L:

L(i) =

{
1 if i ∈ Named ∨ i ∈ Axioms,

maxj∈d(i)(1 + L(j)) otherwise.

8 The possibility to create conjunctions is quite a significant difference to the clausal
setting handled by the existing tools. A longer clause is typically weaker, while longer
conjunctions are stronger. A dependence on a longer conjunction should ideally be
treated by the evaluating heuristics as a dependence on the multiple conjuncts.
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This leads to:

EQ2(i) =
L(i)

S(i)

Apart from this modification, only minor changes were needed to make ep-
cllemma work on the HOL Light data. The HOL proof trace was expressed
as a PCL proof (renaming the HOL inferences into E inferences), and artificial
TPTP clauses of the corresponding size were used instead of the original HOL
clauses.

5.3 Lemma Quality via PageRank

PageRank (eigenvector centrality of a graph) is a method that assigns weights
to the nodes in an arbitrary directed graph (not just DAG) based on the weights
of the neighboring nodes (“incoming links”). In more detail, the weights are
computed as the dominant eigenvector of the following set of equations:

PR1(i) =
1− f

N
+ f

∑
i∈d(j)

PR1(j)

|d(j)|

where N is the total number of nodes and f is a damping factor, typically set
to 0.85. The advantage of using PageRank is that there are fast approximative
implementations that can process the whole Flyspeck proof graph in about 10
minutes using about 21 GB RAM, and the weights of all nodes are computed
simultaneously in this time.

This is however also a disadvantage in comparison to the previous algorithms:
PageRank does not take into account the lemmas that have already been selected
(named). The closer a lemma i is to an important lemma j, the more important
i will be. Modifications that use the initial PageRank scores for more advanced
clustering exist [3] and perhaps could be used to mitigate this problem while still
keeping the overall processing reasonably fast. Another disadvantage of PageR-
ank is its ignorance of the lemma size, which results in greater weights for the
large conjunctions that are used quite often in HOL Light. PR2 tries to counter
that:

PR2(i) =
PR1(i)

S(i)

PR1 and PR2 are based on the idea that a lemma is important if it is needed
to prove many other important lemmas. This can be again turned around: we
can define that a lemma is important if it depends on many important lemmas.
This is equivalent to computing the reverse PageRank and its size-normalized
version:

PR3(i) =
1− f

N
+ f

∑
i∈u(j)

PR3(j)

|u(j)| PR4(i) =
PR3(i)

S(i)

where u(j) are the direct uses of the lemma j, i.e., i ∈ u(j) ⇐⇒ j ∈ d(i). The
two ideas can again be combined (note that the sum of the PageRanks of all
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nodes is always 1):

PR5(i) =
PR1(i) + PR3(i)

S(i)

5.4 Selecting Many Lemmas

From the methods described above, only the various variants of PageRank (PRi)
produce the final ranking of all lemmas in one run. Both epcllemma (EQi) and
our custom methods (Qi) are parametrized by the set of lemmas (Named) that
have already been named. When the task is to choose a predefined number of
the best lemmas, this naturally leads to the following recursive lemma-selection
algorithm (used also by epcllemma):

Algorithm 1. Best lemmas

Input a lemma-quality metric Q, set of lemmas Lemmas, an initial set of named
lemmas Named0 ⊂ Lemmas, and a required number of lemmas M

Output set Named of M best lemmas according to Q
1: Named← Named0
2: m← 0
3: while m < M do
4: for i ∈ Lemmas do
5: Calculate(QNamed(i))
6: end for
7: j ← argmax{QNamed(i) : i ∈ Lemmas \Named}
8: Named← Named ∪ {j}
9: m← m+ 1
10: end while
11: Return(Named)

There are two possible choices of Named0: either the empty set, or the set
of all human-named theorems. This choice depends on whether we want re-
organize the library from scratch, or whether we just want to select good lem-
mas that complement the human-named theorems. Below we experiment with
both approaches. Note that this algorithm is currently quite expensive: the fast
epcllemma implementation takes 65 seconds to update the lemma qualities over
the whole Flyspeck graph after each change of the Named set. This means that
producing the first 10000 Flyspeck lemmas takes 180 CPU hours. That is why
most of the experiments are limited to the core HOL Light graph where this
takes about 1 second and 3 hours respectively.

6 Evaluation Scenarios and Issues

To assess and develop the lemma-mining methods we define several evaluation
scenarios that vary in speed, informativeness and rigor. The simplest and least
rigorous is the expert-evaluation scenario: We use our knowledge of the formal
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corpora to quickly see if the top-ranked lemmas produced by a particular method
look plausible. Because of its size, this is the only evaluation done for the whole
Flyspeck corpus so far.

The cheating ATP scenario uses the full proof graph of a corpus to com-
pute the set of the (typically 10,000) best lemmas (BestLemmas) for the whole
corpus. Then the set of newly named theorems (NewThms) is defined as the
union of BestLemmas with the set of originally named theorems (OrigThms):
NewThms := BestLemmas ∪OrigThms. The derived graph GNewThms of di-
rect dependencies among the elements of NewThms is used for ATP evaluation,
which may be done in two ways: with human selection and with AI selection.
When using human selection, we try to prove each lemma from its parents in
GNewThms. When using AI selection, we use the chronological order (see Sec-
tion 2) of NewThms to incrementally train and evaluate the k-NN machine
learner [12] on the direct dependencies from GNewThms. This produces for each
new theorem an ATP problem with premises advised by the learner trained on
the GNewThms dependencies of the preceding new theorems. This scenario may
do a lot of cheating, because when measuring the ATP success on OrigThms, a
particular theorem i might be proved with the use of lemmas from NewThms
that have been stated for the first time only in the original proof of i (we call
such lemmas directly preceding). In other words, such lemmas did not exist be-
fore the original proof of i was started, so they could not possibly be suggested
by lemma-quality metrics for proving i. Such directly preceding lemmas could
also be very close to i, and thus equally hard to prove.

The almost-honest ATP scenario is like the cheating ATP scenario, however
directly preceding new lemmas are replaced by their closest OrigThms ances-
tors. This scenario is still not fully honest, because the lemmas are computed
according to their lemma quality measured on the full proof graph. In particular,
when proving an early theorem i from OrigThms, the newly used parents of i
are lemmas whose quality was clear only after taking into account the theorems
that were proved later than i. These theorems and their proofs however did not
exist at the time of proving i. Still, we consider this scenario sufficiently hon-
est for most of the ATP evaluations done with over the whole core HOL Light
dataset.

The fully-honest ATP scenario removes this last objection, at the price of
using considerably more resources for a single evaluation. For each originally
named theorem j we limit the proof graph used for computing BestLemmas to
the proofs that preceded j. Since computing BestLemmas for the whole core
HOL Light takes at least three hours for the Qi and EQi methods, the full
evaluation on all 1,984 core HOL Light theorems would take about 2,000 CPU
hours. That is why we further scale down this evaluation by doing it only for
every tenth theorem in core HOL Light.

The chained-conjecturing ATP scenario is similar to the cheating scenario, but
with limits imposed on the directly preceding lemmas. In chain1-conjecturing,
any (possibly directly preceding) lemma used to prove a theorem i must it-
self have an ATP proof using only OrigThms. In other words, it is allowed to
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guess good lemmas that still do not exist, but such lemmas must not be hard
to prove from OrigThms. Analogously for chain2-conjecturing (resp. chainN),
where lemmas provable from chain1-lemmas (resp. chainN−1) are allowed to be
guessed. To some extent, this scenario measures the theoretical ATP improve-
ment obtainable with guessing of good intermediate lemmas.

7 Experiments

The ATP experiments are done on the same hardware and using the same setup
that was used for the earlier evaluations described in [10, 12]: All systems are
run with 30s time limit on a 48-core server with AMD Opteron 6174 2.2 GHz
CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. When using only the orig-
inal theorems, the success rate of the 14 most complementary AI/ATP methods
run with 30s time limit each and restricted to the 1954 core HOL Light theo-
rems is 65.2% (1275 theorems) and the union of all methods solves 65.4% (1278
theorems).

In the very optimistic cheating scenario (limited only to the Qi metrics),
this numbers go up to 76.5% (1496 theorems) resp. 77.9% (1523 theorems). As
mentioned in Section 6, many proofs in this scenario may however be too
simple because a close directly preceding lemma was used by the lemma-
mining/machine-learning/ATP stack. This became easy to see already when
using the almost-honest scenario, where the 14 best methods (including also
EQi and PRi) solve together only 66.3% (1296 theorems) and the union of all
methods solves 68.9% (1347 theorems). The resource-intensive fully-honest eval-
uation is limited to a relatively small subset of the core HOL Light theorems,
however it confirms the almost-honest results. While the original success rate
was 61.7% (less than 14 methods are needed to reach it), the success rate with
lemma mining went up to 64.8% (again, less than 14 methods are needed). This
means that the non-cheating lemma-mining approaches so far improve the over-
all performance of the AI/ATP methods over core HOL Light by about 5%.
The best method in the fully-honest evaluation is Q2 which solves 46.2% of the
original problems when using 512 premises, followed by EQ2 (using the longest
inference chain instead of D), which solves 44.6 problems also with 512 premises.
The best PageRank-based method is PR2 (PageRank divided by size), solving
41.4% problems with 128 premises.

An interesting middle-way between the cheating and non-cheating scenarios is
the chained-conjecturing evaluation, which indicates the possible improvement
when guessing good lemmas that are “in the middle” of long proofs. Since this
is also quite expensive, only the best lemma-mining method (Q2) was evaluated
so far. Q2 itself solves (altogether, using different numbers of premises) 54.5%
(1066) of the problems. This goes up to 61.4% (1200 theorems) when using only
chain1-conjecturing and to 63.8% (1247 theorems) when allowing also chain2

and chain3-conjecturing. These are 12.6% and 17.0% improvements respectively.
Finally, since regular lemma-mining/machine-learning/ATP evaluations over

the whole Flyspeck corpus are still outside our resources, we present below
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several best lemmas computed by epcllemma’s EQ2 method over the 97,714,465-
node-large proof graph of all Flyspeck lemmas:9

|- a + c + d = c + a + d

|- x * (y + z) = x * y + x * z

|- (a + b) + c = a + b + c

|- &1 > &0

|- a ==> b <=> ~a \/ b

|- BIT1 m + BIT0 n = BIT1 (m + n)

8 Future Work and Conclusion

We have proposed, implemented and evaluated several approaches that try to
efficiently find the best lemmas and re-organize a large corpus of computer-
understandable human mathematical ideas, using the millions of logical depen-
dencies between the corpus’ atomic elements. We believe that such conceptual
re-organization is a very interesting AI topic that is best studied in the context
of large, fully semantic corpora such as HOL Light and Flyspeck. The byproduct
of this work are the exporting and post-processing techniques resulting in the
publicly available proof graphs that can serve as a basis for further research.

The most conservative improvement in the strength of automated reasoning
obtained so far over the core HOL Light thanks to lemma mining is about 5%.
There are potential large improvements if the guessing of lemmas is improved.
The benefits from lemma-mining should be larger when proving over larger cor-
pora and when proving larger steps, but a number of implementational issues
need to be addressed to scale the lemma-mining methods to very large corpora
such as Flyspeck.

There are many further directions for this work. The lemma-mining methods
can be made faster and more incremental, so that the lemma quality is not
completely recomputed after a lemma is named. Fast PageRank-based clustering
should be efficiently implemented and possibly combined with the other methods
used. ATP-style normalizations such as subsumption need to be correctly merged
with the detailed level of inferences used by the HOL Light proof graph. The
whole approach could also be implemented on a higher level of inferences, using
for example the granularity corresponding to time-limited MESON ATP steps.
Guessing of good intermediate lemmas for proving harder theorems is an obvious
next step, the value of which has already been established to a certain extent in
this work.

Acknowledgments. We would like to thank Stephan Schulz for help with
running epcllemma, Yury Puzis and Geoff Sutcliffe for their help with the Agint
tool and Jǐŕı Vyskočil and Petr Pudlák for many discussions about extracting
interesting lemmas from proofs.

9 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/proofs.grf1.lm.flfull

http://mizar.cs.ualberta.ca/~mptp/lemma_mining/proofs.grf1.lm.flfull
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Abstract. The number of states a program has tends to grow exponen-
tially in the size of the code. This phenomenon, known as state explosion,
hinders the verification and repair of large programs. A key technique for
coping with state explosion is using abstractions, where one substitutes
a program’s state graph with smaller over-approximations thereof. We
show how module-based abstraction-refinement strategies can be applied
to the verification of programs written in the recently proposed frame-
work of Behavioral Programming. Further, we demonstrate how — by
using a sought-after repair as a means of refining existing abstractions
— these techniques can improve the scalability of existing program repair
algorithms. Our findings are supported by a proof-of-concept tool.

Keywords: Abstraction-refinement, program repair, behavioral
programming.

1 Introduction

Explicit model-checking algorithms operate by spanning a program’s state graph
and comparing it to a given specification. This method becomes infeasible for
large systems, as the state graphs tend to grow exponentially in the size of the
program (the state explosion problem). Abstraction techniques [11] are among
the most important methods for coping with state explosion and increasing the
scalability of model-checking algorithms.

The key idea underlying abstraction techniques is to replace the concrete
system model (i.e., the program’s state graph) with a smaller abstraction thereof.
Typically, the abstraction constitutes an over-approximation — it includes the
behaviors of the concrete system, and may also include other behaviors. In the
case of model-checking, proving that a given property holds for the abstract
model implies that it holds for the concrete model as well. Since the abstract
model is more succinct, the state explosion problem is hopefully mitigated.

We study the application of abstraction techniques to the recently proposed
programming framework of Behavioral Programming (BP) [17]. In BP, programs
consist of behavioral threads — threads of code that run in parallel, each designed
to affect a specific behavior of the system. In the first part of our work, we present
a formulation of BP’s semantics that supports the notion of modules, which
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are logically related threads grouped together, and discuss abstracting these
modules. We then demonstrate how the composition of module abstractions
yields an over-approximation of the entire behavioral program.

In the second part of our work we discuss model-checking abstract behavioral
programs, and propose a counterexample guided abstraction refinement (CE-
GAR) [10] scheme for BP. When model-checking over-approximations, coun-
terexamples found by the model-checker may prove spurious, i.e. nonexistent in
the concrete system. In CEGAR, one validates each counterexample against the
concrete system and, if it is spurious, refines the abstract model in a way that
eliminates it. The process is then repeated iteratively until the property is proven
or a genuine counterexample is found. Based on our module-based abstraction
of behavioral programs, we propose a two layer abstraction-refinement scheme,
similar to that of [9], in which spurious counterexamples of the composed system
are used to refine module abstractions. In our setting, module interdependencies
make it impossible to resolve spurious counterexamples by examining modules
individually; our algorithm compensates by considering these interdependencies
and refining multiple modules simultaneously when needed.

In the third part of the paper, we combine our abstraction techniques with a
program repair algorithm. In [15] we demonstrated how safety violations can be
eliminated from behavioral programs by adding separate, non-intrusive behav-
ioral threads to the program. Since that repair technique included spanning the
program’s concrete state graph, it was susceptible to the state explosion prob-
lem. Here, we modify the technique to work on abstract state graphs instead of
concrete ones, without affecting the algorithm’s correctness and soundness. We
observe that a given abstraction might not allow finding a correct repair even if
one exists, in which case we use the desired repair as a means for refining the
abstraction further. We believe that similar repair-driven refinement techniques
may also be applicable to other frameworks, besides BP.

The rest of this paper is organized as follows. We define behavioral program-
ming and its semantics in Section 2, followed by a discussion on abstracting
behavioral programs in Section 3. We then discuss applying CEGAR to BP in
Section 4, and suggest an abstraction-based repair algorithm in Section 5. Our
experimental results appear in Section 6. Discussion of related and future work
appears in Section 7.

2 Behavioral Programming

2.1 Overview

Behavioral Programming (BP) is a programming approach that extends and
generalizes scenario-based programming. It was introduced with the language of
Live Sequence Charts (LSCs) [12, 16], and is now implemented also in a variety
of programming languages, such as Java, C++, Erlang and others; see [17] and
references therein.

A behavioral program consists of independent threads of behavior that
are interwoven at run time. Each behavior thread (abbr. b-thread) repeatedly
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performs local computations, and then synchronizes with its counterparts. At
every synchronization point, each b-thread declares sets of events to be con-
sidered for triggering (requested events) and events whose triggering it forbids
(blocked events). The thread then pauses until the synchronization point is re-
solved.

Events that have been requested by at least one b-thread and blocked by none
are termed enabled. In each synchronization point, an event selection mechanism
triggers one of these events and notifies all b-threads, allowing them to resume.
B-threads may react to triggered events that they did not request, in which case
they are said to be waiting for these events. The model disallows inter b-thread
communication except through the synchronization mechanism.

The motivation behind BP is that it facilitates incremental non-intrusive de-
velopment, as demonstrated in the example of Fig. 1, borrowed from [15]. This
trait also plays a role in our repair algorithm in Section 5.

wait for
WaterLevelLow

request AddHot

request AddHot

request AddHot

WhenLowAddHot

wait for
WaterLevelLow

request AddCold

request AddCold

request AddCold

WhenLowAddCold

wait for AddHot

while blocking
AddCold

wait for
AddCold while
blocking AddHot

Stability

· · ·
WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

· · ·

Event Log

Fig. 1. (From [15]) An example of the incremental development of a system for control-
ling water level in a tank with hot and cold water sources. At first, b-thread WhenLowAddHot

is created; it repeatedly waits for WaterLevelLow events and requests three times the event
AddHot. It is then discovered that adding just three water quantities for every sensor read-
ing is insufficient, and b-thread WhenLowAddCold is added. It performs a similar action to
that of WhenLowAddHot, but with event AddCold. Then, when WhenLowAddHot and WhenLowAddCold

are executed simultaneously, the run may include three consecutive AddHot events fol-
lowed by three AddCold events. A new requirement is thus introduced, to the effect that
water temperature should be kept stable. We add the b-thread Stability to enforce the
interleaving of AddHot and AddCold events.

2.2 Semantics

Since b-threads communicate strictly through the synchronization mechanism, a
thread is considered “at state” only when at a synchronization point. Thus, local
actions performed between synchronization points can be modeled and verified
locally for each thread, and are omitted from the BP model.

We formally define a b-thread BT over event set Σ and atomic proposition
set AP by a tuple BT = 〈Q, δ, q0, R,B, L〉, where Q is a set of states (one for
each synchronization point), q0 is the initial state, R : Q → 2Σ and B : Q → 2Σ

map states to events requested and blocked at these states (respectively), L :
Q → 2AP is a labeling function, and δ : Q × Σ → 2Q is a transition function.
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We stipulate that for every q ∈ Q, R(q) ∩ B(q) = ∅. Further, we require that
for every state q ∈ Q, if e ∈ Σ −B(q) then δ(q, e) 
= ∅; i.e., there is a transition
for every event that is not blocked in state q, though it may be a self loop. If
|δ(q, e)| ≤ 1 for every q and e, we say that BT is deterministic.

The construction of a program from b-threads is performed using the com-
position and finalization operators. The parallel composition of threads BT 1 =
〈Q1, δ1, q10 , R

1, B1, L1〉 and BT 2 = 〈Q2, δ2, q20 , R
2, B2, L2〉, both over the same

Σ and AP , yields the b-thread defined by

BT 1 ‖ BT 2 = 〈Q1 ×Q2, δ, 〈q10 , q20〉, (R1 ∪R2)− (B1 ∪B2), B1 ∪B2, L1 ∪ L2〉

where 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, e) if and only if q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e).
The union and subtraction of labeling functions are defined in the natural way,
i.e. e ∈ ((R1 ∪ R2) − (B1 ∪ B2))(〈q1, q2〉) if and only if e ∈ R1(q1) ∪ R2(q2)
and e /∈ B1(q1) ∪B2(q2). Observe that if an event is blocked in one thread and
requested in the other, it becomes blocked in the composed thread, in consistence
with the fact that a blocked event cannot be triggered even if requested. It is
straightforward to verify that the requested and blocked events in every state
remain disjoint, and that in every state there exists a transition for every non-
blocked event. Hence, BT 1 ‖ BT 2 is a valid b-thread.

A composition of b-threads is also termed a module, which is of course a
b-thread in its own. Intuitively, a module is a set of threads that have yet to be
plugged into a specific behavioral program, and so it still contains the relevant
request and block data. Only once all the modules in a program are composed
with each other can this data be discarded, through the finalization operator.

The finalization operator, denoted [·], transforms a b-thread into a la-
beled transition system (LTS) over Σ and AP . Formally, [〈Q, δ, q0, R,B, L〉] =
〈Q, δ′, q0, L〉 where Q, q0 and L remain the same, and the transition function
δ′ : Q×Σ → 2Q is given by

q̃ ∈ δ′(q, e) ⇐⇒ q̃ ∈ δ(q, e)
∧

e ∈ R(q)

Observe that R and B are omitted, as they are already taken into considera-
tion through the definition of δ′. The output of the finalization operator thus
represents a general (as opposed to a behavioral) program.

Formally, we define the behavioral program P , comprised of b-threads
BT 1, BT 2, . . . , BT n to be the LTS defined by P = [BT 1 ‖ . . . ‖ BT n]. An
execution of P is an execution of this LTS: it starts from q0, and in each state
q ∈ Q an event is chosen for triggering if such an event exists (i.e., an event e ∈ Σ
for which δ(q, e) 
= ∅). Then, the execution moves to state q̃ ∈ δ(q, e), and so
on. An execution can thus be formally recorded as a (possibly infinite) sequence

of states and triggered events, ε = q0
e1→ q1

e2→ · · · . The matching set of events,
without states, is called a run. The set of all runs of the program is denoted
by L(P ). Each execution ε of the system defines a trace Tr(ε) = L(q0)L(q1) . . .,
which is the sequence of sets of atomic propositions associated with the states
visited along the execution. The traces of the system are defined as the traces
of its executions, i.e. Tr(P ) = {Tr(ε) | ε is an execution of P}.
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The above semantics for BP differ from those used previously (e.g., in [15]), as
they offer better support of the notion of modules. An equivalence between these
two versions is established in Appendix I of the supplementary material [2].

The BP semantics can be extended to better describe open systems. One
variant is obtained by marking some of the threads and events as controlled by
the environment (“external”), as is done in [15]. Another is to use concurrent
game structures and alternating-time temporal logic [3]. While our techniques
can be adapted to these extensions, we leave the details for future work.

3 Abstractions for Behavioral Programming

Given behavioral programs P and P , we say that P is an over-approximation
of P if and only if Tr(P ) ⊆ Tr(P ). Thus, for any LTL formula Φ over AP ,
Tr(P ) � Φ implies Tr(P ) � Φ, and so verifying that Tr(P ) � Φ shows that the
original program is correct (for an introduction to LTL see, e.g., [6]). In this
section we focus on constructing a suitable program P that is smaller than P ,
so that checking whether Tr(P ) � Φ is easier than checking whether Tr(P ) � Φ.

3.1 Abstracting a Behavioral Thread

We begin by defining abstractions of b-threads. Let BT = 〈Q, δ, q0, R,B, L〉 be
a thread over events Σ and propositions AP , and let π be a AP -preserving par-
tition of Q, i.e., q1 ≡π q2 =⇒ L(q1) = L(q2). Let ηπ : Q → Q/π, termed the
abstraction function induced by π, be a function that maps each state to its
equivalence class under π. ηπ gives rise to a b-thread BT = 〈Q, δ, q0, R,B, L〉,
called the abstraction thread of BT induced by π, defined in the following man-
ner. The states of BT are the equivalence classes Q = Q/π, and its initial
state is q0 = ηπ(q0). For every state q ∈ Q, the mapping functions are given
by R(q) =

⋃
q∈η−1

π (q) R(q), B(q) =
⋂

q∈η−1
π (q) B(q) and L(q) = L(q) for (every)

q ∈ η−1
π (q). The transitions relation δ is derived from δ by:

q
e→ q̃

ηπ(q)
e→ ηπ(q̃)

Note that for every q, R(q) ∩B(q) = ∅, and that q has a transition for every
e /∈ B(q). Hence, BT is a valid b-thread. The definition is designed to make
BT more permissive than BT — that is, to ensure that replacing BT with BT
within a given program results in an over-approximation of that program. In
particular, the abstraction preserves atomic proposition of states, and abstract
states request at least as much and block no more than their matching concrete
states. Formally, we present the following Lemma, proven in Appendix II of the
supplementary material [2]:

Lemma 1. Let P = [BT 1 ‖ . . . ‖ BT n] be a behavioral program. Let π be an AP -
preserving partition of the states of BT 1, and let BT 1 be the abstraction of BT 1

induced by π. Finally, let P = [BT 1 ‖ BT 2 ‖ . . . ‖ BT n]. Then Tr(P ) ⊆ Tr(P ).
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By definition, a thread’s abstraction is determined by the AP -preserving par-
tition π in use. Clearly, an abstraction of a minimal number of states is achieved
when π is the AP -partition itself, i.e. q1 ≡π q2 ⇐⇒ L(q1) = L(q2). As our goal
is to minimize the number of states of the composed program, this partition is of
special interest. We refer to this abstraction as the coarsest abstraction of BT ,
and denote it by B̂T .

3.2 Abstracting a Behavioral Program

Due to BP’s composite nature — where sets of composed threads are threads
themselves — thread abstraction can be applied at various points throughout
the composition process. In choosing when to apply it, our goal is to end up with
an over-approximation that is neither too concrete (to mitigate state explosion),
nor too abstract (so that it is meaningful). In our experiments, the best results
were achieved by first grouping threads that are logically related and composing
them into modules. Intuitively, this entails clustering threads that assign similar
atomic propositions to their states into the same module. Each module is then
abstracted individually, effectively ignoring threads that deal with other atomic
propositions. Finally the abstractions are composed, generating the desired over-
approximation. In this section we provide motivation for this approach, and
propose an automated way for grouping together logically related threads.

To illustrate the benefits of using modules, we first discuss two of the more
natural alternatives. One approach is to apply abstraction at the last step of
the composition process: i.e., to compute BT = BT 1 ‖ . . . ‖ BT n and then

set P = [B̂T ]. While this method produces meaningful abstractions, it entails
calculating the very large b-thread BT , which has at least as many states as P .
Hence, this technique suffers from the state explosion problem that we have been
trying to avoid. Another natural approach is to abstract each of the basic threads,

i.e. calculate P = [B̂T 1 ‖ . . . ‖ B̂T n]. While this method does indeed circumvent
the state explosion problem, our experiments show that the abstractions it tends
to produce are too coarse to be of any practical use. Specifically, behavioral
programming promotes writing threads that are small and specific, and tend to
contain a single atomic proposition. Thus, early abstraction usually collapses
the threads into a couple of states each, abstracting away most implementation
details. Later, during verification tasks, multiple rounds of refinement are needed
until a meaningful model is obtained.

The module based method can be seen as a middle ground between these two
extreme alternatives. On one hand, as abstraction is applied during the early
phases of the composition process, the state explosion problem is averted. On
the other hand, as it is applied to threads that are sufficiently complex, the
resulting over approximation is more likely to be meaningful.

The rationale behind grouping together logically related threads, as opposed
to just using an arbitrary partitioning of the threads, is the desire to generate
small modules: logically related threads tend to share atomic propositions, and
request and block similar events. Consequently, the resulting abstractions tend
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to contain fewer states, and the approximation labeling functions R and B tend
to be tighter, reducing the number of edges in the final over-approximation.

We conclude this section by discussing an automated method for grouping
together logically related threads. As the above discussion suggests, such threads
tend to share atomic propositions and requested/blocked events, and indeed this
is how we attempt to group them. Let BT be a thread with states q1, . . . , qm,
and let ap ∈ AP . We define the correlation between BT and ap as:

cor(BT, ap) =
|{i | ap ∈ L(qi)}|

m

A thread’s correlation to an atomic proposition is thus the fraction of states to
which the labeling function assigns the proposition. Intuitively, threads that have
high correlation to the same atomic proposition may be logically related. Setting
a threshold M , say 0.5, induces a partitioning of the threads into modules,
denoted ≡M . At first each thread is considered to reside in a separate module,
and then pairs of modules are iteratively joined by the rule:

cor(BT i, ap) ≥ M
∧

cor(BT j , ap) ≥ M =⇒ BT i ≡M BT j

Analogous correlation can be defined between threads and events, by considering
the fraction of states in which a thread requires or blocks the event. These
correlations are easy to compute using static analysis of the threads, and are
supported by the BPC framework.

Further information that can be taken into account when looking for related
threads includes various string distance metrics applied to their respective names
and locations in the directory structure — as programmers tend to group similar
threads together and give them similar names. These measures are also straight-
forward to compute using automated methods. Finally, any or all of the above
measures can be combined into a single metric, yielding the desired partition
into logically related modules.

We summarize the resulting module-based abstraction algorithm:

Algorithm 1. Module-Based Abstraction

1: Partition the threads into modules BTM1 , . . . , BTMm

2: For each module BTMi , calculate B̂TMi

3: return P = [B̂TM1 ‖ . . . ‖ B̂TMm ]

By iteratively applying Lemma 1, we get the following corollary:

Corollary 1. Let BT 1, . . . , BT n be threads over event set Σ and atomic propo-
sitions AP . Let P = [BT 1 ‖ . . . ‖ BT n], and let P be the program returned by
algorithm 1. Then Tr(P ) ⊆ Tr(P ).
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4 Counterexample Guided Abstraction-Refinement

Given a behavioral program P and an LTL property Φ, we attempt to prove
that P � Φ by calculating an over-approximation P and proving that P � Φ.
However, it may be the case that P � Φ but P 
 Φ, because P is too abstract
(see an illustration in Fig. 2). Model checking P then results in a spurious coun-
terexample, i.e. one that exists in P but not in P . A standard technique for
handling this problem, known as counterexample guided abstraction refinement
(CEGAR) [10], uses such spurious counterexamples in order to refine P in a way
that eliminates them. The process is repeated until a genuine counterexample is
found, or until the property is shown to hold.

In this section, we describe an implementation of CEGAR in the context of BP.
The two main phases of the technique — determining whether a counterexample
is spurious or genuine and refining the abstraction in order to eliminate spurious
executions — are discussed in Sections 4.1 and 4.2, respectively.

For simplicity, we limit the discussion to safety properties, for which coun-
terexamples are finite executions. The method can be extended to liveness prop-
erties and the associated loop counterexamples through loop unwinding; see [10].

ia

b

b

c

i

ba c

e1

e3

e4, e3

e2

e3

e4

e1
e2

e3 e3

e4, e3

e4

Fig. 2. A concrete state graph (on the left), and a matching abstraction (on the right).
The atomic proposition labeling appears inside the states. The two states with identical
labeling (b) are abstracted into a single state. The abstract state graph contains fewer
states, but it also allows spurious executions. While some properties, such as G(a →
X¬a), hold for both graphs, the property G(a→ G¬c) holds in the concrete case but
not in the abstract one, because of the spurious execution fragment i

e1→ a
e3→ b

e3→ c.

4.1 Determining If an Execution Is Spurious

Suppose that on checking whether P � Φ, the model-checker replies in the neg-
ative, providing a finite counterexample ε. We wish to determine whether ε is a
valid execution of the original system. The idea, based on [10], is to simulate ε
on the concrete program in order to check if it constitutes a genuine execution.
During this simulation, we must take into account the two layer structure of
our abstraction scheme, as well as the role of requested and blocked events, in
determining whether runs are valid.

Let P = [B̂TM1 ‖ . . . ‖ B̂TMm ] be an abstract program, composed of m

abstract modules, and let ε = q0
e1→ q1

e2→ . . .
en→ qn be a finite execution of P .

It is tempting to say that ε is a valid execution of the concrete system if and
only if its projections onto the modules form valid executions of the modules;
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indeed, a similar technique is used in [9]. However, in our context, this approach
does not suffice. Consider, for instance, the case where the transition labeled
e1 in ε exists in each of the concrete modules, but that none of them requests
event e1. In this case, looking at each module separately, we would have no way
of knowing whether event e1 is indeed enabled on the program level. Thus, our
scheme must take into account the mutual effect modules have on each other.

We begin with some notation. For a set of states S, we denote by R(S, e)
the subset of states of S in which event e is requested. We use Post(S, e) to
denote the set of successors of states in S when event e is triggered. Finally, let
q = 〈q1, q2, . . . , qm〉 denote an abstract state, and let ηj denote the abstraction
function of module BTMj . We use η to denote the global abstraction function,
i.e. η(〈q1, . . . , qm〉) = 〈η1(q1), . . . , ηm(qm)〉. This function and its inverse function
are not stored explicitly, as doing so for every state in P would entail enumerating
all states of P — negating the advantages offered by our two layered approach.
Instead, η is only computed locally for specific states, on demand, by invoking
the module abstraction functions.

Our technique follows the idea of [10], and defines a series of sets {Si}, rep-
resenting the concrete states the system can actually reach in each step of ε.
These sets are computed by using the concrete module state graphs. The defini-
tion of Si is given by S0 = {〈q10 , q20 , . . . , qm0 〉} for the concrete initial states and
Si = Post(R(Si−1, ei), ei) ∩ η−1(qi) for 1 ≤ i ≤ n.

The idea behind this definition is to walk on the abstract graph according
to the execution, and for each abstract state identify the concrete states that
are truly reachable along this specific execution, using the Si sets. As we later
prove, a run is genuine if and only if it corresponds to a series of non-empty
sets. Each set is derived from its predecessor by looking only at states in which
the next event is requested, and calculating their successor states. Out of these
successors we only keep those that are abstracted to the next state of the abstract
execution, as expressed by intersecting with η−1(qi).

The actual algorithm for checking whether an execution is spurious is thus:

Algorithm 2. Check If Spurious

1: for i := 0 to n do
2: Calculate Si; if it is empty, return True
3: return False

The algorithm’s correctness is established via Lemma 2, proven in Appendix
III of the supplementary material [2]:

Lemma 2. Let ε be an execution of P . Then ε is spurious, i.e. is not a valid
execution of P , if and only if algorithm 2 returns True.

Observe that computing the Si sets is performed using the concrete state
graphs of the modules, and does not entail constructing the explicit state graph of
P . Every state q ∈ Si is stored as the set of module states to which it corresponds.
The sets R(q, e) and Post(R(q, e), e) can be computed locally from these states.
Further, there is no need to actually compute η−1(qi), which is costly; instead,
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for every q ∈ Post(R(Si−1, ei), ei), we check whether η(q) = qi by applying the
module abstraction functions to its components, which is substantially cheaper.

4.2 Refining in Order to Eliminate a Spurious Execution

We now discuss refining P in order to eliminate a spurious counterexample, thus
allowing another round of model-checking. The iteration on which algorithm 2
halted indicates where the refinement should occur. Indeed, this is where the
abstract and concrete graphs diverge, and so splitting the previous abstract
state into multiple states could render the spurious execution invalid.

Suppose that the Check If Spurious algorithm stopped because Si+1 = ∅.
This indicates a problem with transition qi

ei+1→ qi+1 of the execution: either the
concrete system can only reach states that are not mapped to abstract state
qi+1, or event ei+1 is not even enabled in the concrete program — although it is
enabled in the abstract one. Each case is characterized and handled differently:

Case 1. For all concrete states in Si, transitions labeled ei+1 do not lead to
abstract state qi+1, i.e. Post(Si, ei+1) ∩ η−1(qi+1) = ∅. In this case, we split qi
into 2 abstract states: state q′i that corresponds to the concrete states Si, and

state q′′i that corresponds to the remaining states, η−1(qi) − Si. By definition,

execution ε would visit abstract state q′i instead of qi, from which there would
be no transitions to qi+1. Thus, ε would no longer be a valid execution of the
abstract program. This case corresponds to the technique used in [10].

Case 2. There exists a state q ∈ Si such that Post(q, ei+1) ∈ η−1(qi+1). How-
ever, ei+1 /∈ R(q); if that were not so, we would get Si+1 
= ∅. In this case, state
q is waiting for event ei+1 without requesting it. The request for ei+1 is made by
a different state in η−1(qi). As both states are mapped into the same abstract

state, the outcome is the edge qi
ei+1→ qi+1.

In this case, performing refinement as in Case 1 might not suffice, as the
state requesting event ei+1 might also be in Si. We thus resort to two rounds
of refinement: first, we split state qi into q′i and q′′i , as before. Then, we further

refine state q′i, in order to separate states requesting event ei+1 from those that

do not. Formally, we split q′i into state qRi corresponding to concrete states q ∈ Si

such that ei+1 ∈ R(q), and state qNR
i corresponding to concrete states q ∈ Si

such that ei+1 /∈ R(q). By definition, execution ε would visit abstract state qNR
i

instead of qi, from which there would be no transitions to qi+1, making it an
invalid execution of the abstract program.

The following Lemma immediately follows from the above discussion:

Lemma 3. Let ε be a spurious execution of P , and let P ′ be the refined program
obtained by the above refinement step. Then ε is not a valid execution of P ′.

Observe that the iterative verification process entails explicitly computing
η−1(q) once per each refinement step. While this step is expensive, hopefully the
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number of iterations is small. Reducing the number of iterations is part of our
motivation for using logically related modules — see discussion in Section 3.2.

We note that the resulting refinement is defined in terms of a global abstract
state that should be split into smaller states. However, as η is not stored explic-
itly, this refinement cannot be applied directly. Constrained by our two layered
setting, we may only perform refinements on the module abstraction functions
η1, . . . , ηm, indirectly refining η. Thus, a set of refinements for the η1, . . . , ηm
functions needs to be derived from the desired η refinement. This can be per-
formed by separating (within the modules) any pair of concrete states that do
not always appear simultaneously in the new global abstract states. However,
as not every refinement of η can be expressed as refinements of η1, . . . , ηm, the
resulting global refinement may be finer (i.e., produce more states) than the
desired one.

5 Repair Using Abstractions

In this section, we propose a way of dealing with violated safety properties, using
a program repair algorithm. For completeness, we begin with a brief review of
the work in [15], which the present section extends.

Software maintenance is a difficult and error prone task. As bugs are discov-
ered and requirements are added or changed, developers must modify existing
code. This is tedious work; and as programmers are often constrained by lim-
ited knowledge of module interdependencies, they may wind up introducing new
errors. Research on automated program repair aims to address these challenges.

Our scope includes fixing safety violations in existing programs. Finding these
violations can be reduced to invariant checking [6]. Thus, without loss of gener-
ality, a program is correct if its state graph has no reachable “bad” states. This,
along with the event blocking idiom of BP, enables an elegant method of repair
by trimming: correcting the program by removing edges from its state graph us-
ing the blocking idiom, so that bad states become unreachable. This technique
resembles the Supervisory Control model [23], where one seeks a supervisor that
controls a plant by disabling transitions in the plant’s state graph.

The repair is non-intrusive, i.e. performed strictly by adding new threads
to the program (termed “wait-block patches”), and without modifying existing
code. The patch threads are passive, in the sense that they never request any
events or assign any atomic propositions to states, thus keeping the repaired
program as close to the original as possible. Only when the execution gets dan-
gerously close to a bad state does the patch block events that would cause a
violation, forcing the system to choose a different execution path. In [15] it is
shown that, for programs with deterministic threads, this method does not elim-
inate correct executions, as events are blocked only when they are guaranteed to
lead to a violation. Further, no deadlocks are created as a result of such patching.

This repair technique is adequate for systems that are capable of generating
the desired (“good”) behavior but may, in some scenarios, produce erroneous
output. For instance, patching may be applied to a variety of bugs resulting
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from race conditions between parallel components — fixing them by temporarily
blocking one of the components, forcing it to yield to its counterpart. However,
not all systems can be repaired in this way, and the repair algorithm fails grace-
fully in this case. A soundness result shows that if a correct patch exists, it will
indeed be found by the repair algorithm.

The algorithm operates by analyzing a program’s state graph and looking
for the smallest fixpoint set of states that can be removed from the graph in
order to render qb, the single bad state, unreachable. Specifically, the algorithm
backtracks from qb, attempting to isolate it by trimming edges without creating
deadlocks. Whenever all the successors of a state are bad, it is marked as bad
itself; see Fig. 3. Below is the repair algorithm’s pseudo-code; Pre denotes the
predecessor states of a given set of states.

Algorithm 3. Concrete Safety Patching

1: BAD ← {qb}, PRE ← Pre(BAD)
2: while ∃q ∈ PRE such that ∀e,Post(q, e) ∈ BAD do
3: Move q from PRE to BAD
4: if q is the initial state then return Failure
5: PRE ← Pre(BAD)
6: return a patch that blocks edges from PRE to BAD

q1

q2 q3

q4 q5

qb

I q1

q2 q3

q4 q5

qb

II q1

q2 q3

q4 q5

qb

III q1

q2 q3

q4 q5

qb

IV

Fig. 3. The algorithm for trimming the concrete state graph of a program in order to
correct a safety violation. Graph I depicts the initial configuration, with the only bad
state, qb, marked in red. The edges from states in PRE to states in BAD cross the
dotted red line, and are candidates for blocking. In the first iteration, blocking these
edges would cause a deadlocked in state q4. Thus, in graph II state q4 is also marked
as bad, and q2 joins PRE. Unfortunately, now a deadlock would be caused in state
q2, and the algorithm iterates again, putting q2 in BAD. The next iteration puts q5
in BAD. Only then, in graph IV, can edges crossing the dotted line be safely removed
without causing deadlocks. The states in BAD are thus rendered unreachable, fixing
the safety violation.

As this algorithm uses the program’s concrete state graph, it does not scale
to large programs. We thus seek to adjust it so it can use an over-approximation
instead. Unfortunately, directly applying the concrete patching algorithm to an
abstract graph yields erroneous results. In particular, the algorithm might fail
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e1, e2
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Fig. 4. A concrete state graph on the left, and its abstraction on the right. The atomic
propositions appear inside the states. The safety property in question is the invariant
G¬b, which is violated when the states in red are reached. In the concrete graph, a
simple patch can fix the problem: by blocking e1 in the initial state, the red state is
made unreachable, and no deadlocks are caused. On the abstract graph, however, no
repair is possible without causing a deadlock somewhere in the program. As a result
of the nondeterminism in state a, where two edges correspond to the same event, we
are unable to block one edge while leaving the other enabled.

when a correct answer exists, or the resulting patches might also eliminate good
executions — traits that did not exist in the concrete version. See Fig. 4.

Intuitively, the reason for these failures is the fact that patch-incompatible con-
crete states are abstracted into the same abstract states. By patch-incompatible,
we mean that the concrete algorithm would block a different set of events in each
of the concrete states. In the abstract graph, however, such blocking becomes
impossible, resulting in the algorithm’s undesired behavior. In order to overcome
this difficulty, we incorporate a refinement phase into the repair algorithm; how-
ever, instead of using counterexamples as means of guiding the refinement, the
driving force is the need to create abstract states that correspond only to patch-
compatible concrete states.

The algorithm uses an over-approximation of the state graph, in which qb is
the single abstract bad state, corresponding to qb. As in the concrete case, we
assume the concrete b-threads are deterministic. Here is the pseudo-code:

Algorithm 4. Abstract Safety Patching

1: BAD ← {qb}
2: while True do
3: PRE ← Pre(BAD)
4: if ∃q ∈ PRE such that NeedToRefine(q) then
5: Refine(q)
6: else if ∃q ∈ PRE such that ∀e,Post(q, e) ⊆ BAD then
7: Move q from PRE to BAD
8: if q is the initial state then return Failure
9: else
10: return a patch that blocks edges from PRE to BAD
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The core of the algorithm remains the same as in the concrete case: we start
at the bad state qb, backtracking and marking states that only lead to bad states
as bad themselves. Once we reach a setting in which all states in PRE also have
edges leading to good states (as to not create deadlocks), we return a patch
trimming the edges from PRE to the bad states. The refinement phase prevents
good executions from being likewise trimmed:

Algorithm 5. NeedToRefine(q)

1: E ← {e ∈ Σ | Post(q, e) ∩ BAD 	= ∅}
2: if exists q ∈ η−1(q), e ∈ E such that e ∈ R(q) and η(Post(q, e)) /∈ BAD then
3: return True
4: if exists q ∈ η−1(q) such that R(q) ⊆ E then
5: return True
6: return False

In order to determine if an abstract state q needs to be refined, we look at the
events that we would like to block in it (set E). If there exists a concrete state
in η−1(q) for which e ∈ E is requested and leads to a good state, refinement is
needed to prevent good executions from being eliminated. Similarly if there exists
a state in η−1(q) that has no requested events that would remain unblocked,
refinement is needed in order to avoid causing a deadlock. The actual refinement
is performed as follows:

Algorithm 6. Refine(q)

1: For every q ∈ η−1(q) calculate B(q) = {e ∈ R(q) | η(Post(q, e)) ∈ BAD}
2: Form a partition η−1(q) = C1 ·∪C2 ·∪ . . . ·∪Ck ·∪Cdeadlock such that if B(q) = R(q),
then q ∈ Cdeadlock; else, q1, q2 ∈ Ci ⇐⇒ B(q1) = B(q2).

3: Split abstract state q into k + 1 new states q1, . . . , qk+1 such that η
−1(qi) = Ci for

1 ≤ i ≤ k, and η−1(qk+1) = Cdeadlock.

Set B(q) contains the events to be blocked in q. The refinement splits the
problematic abstract state into multiple abstract states, each representing con-
crete states in which the same events need to be blocked. Observe that state
qk+1, in which the necessary blocking will introduce a deadlock, will be put in
BAD in one of the following iterations of the main algorithm.

For correctness and soundness, we present the following theorem, proven in
Appendix IV of the supplementary material [2]. This result is analogous to the
one for the concrete algorithm presented in [15]; hence, it demonstrates that
the improved scalability does not come at the expense of the concrete version’s
desirable qualities.

Theorem 1. For a behavioral program P and a violated safety property Φ,
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1. A patch returned by algorithm 4 eliminates all bad executions of the program,
does not eliminate good executions, and does not create deadlocks.

2. If there exists a wait-block patch that corrects P with respect to Φ, such a
patch will be found by algorithm 4. Otherwise, the algorithm will issue a
Failure notice.

In this algorithm, the inverse global abstraction η−1(q) is computed multiple
times; indeed, this is an expensive step. However, for programs that are “close to
being correct”, the repair algorithm may only need to perform a few refinements,
hopefully terminating in reasonable time. As discussed in Section 4.2, not every
refinement is obtainable in our two layered structure; see discussion therein.

6 Experimental Results

For our experiments we used the BPC framework for BP in C++, available
online [1]. We implemented the algorithms presented in the previous sections,
namely thread abstraction, partitioning into modules, CEGAR verification and
abstraction based patching, as a proof-of-concept tool on top of BPC. Since our
goal was to show the improved scalability offered by the abstraction techniques,
we also implemented concrete versions of the same algorithms in BPC. All im-
plementations are explicit; symbolic implementation is left for future work.

We tested our algorithms on a BP based web-server application. The server,
a work in progress, implements basic TCP and HTTP protocol stacks and is
compatible with the Firefox browser. Due to the server’s size of several million
states, BPC ran out of memory when attempting to verify it concretely.

In contrast, the abstraction based methods were able to produce an initial
abstraction of the system within 22 seconds. The automated module partitioning
algorithm successfully divided the threads into logically related modules along
the lines of the TCP and HTTP layers, grouping the HTTP threads into a single
module and dividing the TCP threads between a few modules. The resulting
over-approximation contained 800 states and some 12500 transitions.

We then used this over-approximation to identify and repair a bug where
the TCP stack would, under certain conditions, acknowledge a FIN message
for already closed connections. Identifying this bug using the CEGAR-based
verification algorithm took 9.5 minutes, and included 3 refinement phases, at
the end of which a genuine counterexample was produced. Producing a patch
that fixes the bug using algorithm 4 then took 38 minutes.

Our experiments were run on a 2.66 GHz T500 laptop. The model and some
of the properties used for our tests are available from [2].

7 Related Work and Conclusion

The main contribution of our work is in applying abstraction techniques to
behavioral programming. In particular, we propose a technique for efficiently
generating over-approximations of programs, which can later be used in analysis
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algorithms. We demonstrate two such algorithms: a CEGAR based method for
model-checking behavioral programs, and an abstraction based algorithm for the
repair of safety violations. We regard this research as a step in the direction of
developing more scalable methodologies and tools for formal analysis of BP.

Another contribution of our work is in the field of program repair, where we
show an abstraction based algorithm that uses repair-guided refinement. Pro-
gram repair is closely related to the synthesis problem, where various abstraction-
refinement schemes have been proposed (e.g., [13, 18]); thus, we feel that this is
a useful concept that could potentially improve the scalability of existing repair
methods, not necessarily restricted to BP.

The use of abstraction-refinement based techniques to expedite model-
checking has been extensively studied (e.g., [4, 10, 11, 22]) and has been imple-
mented in several frameworks, such as SLAM [7] and BLAST [19]. Among these,
the work most closely related to ours is the MAGIC framework [8,9]. There, the
authors similarly propose a two layer CEGAR approach, in which modules are
abstracted separately and their abstractions then composed. However, the set-
ting of [8,9] allows spurious counterexamples to be checked against each module
separately — whereas in the setting of BP, checking involves all modules simul-
taneously. Analogously, refinements may not be confined to a single module.

In the area of program repair, recent work has focused on locating faulty
components and then using synthesis to alter or replace them. In [20, 24], the
authors seek corrections in the form of strategies that may be implemented with-
out introducing new states (memoryless strategies), in order to alter the original
program as little as possible. We address the same need by only adding code,
leaving the original program unmodified. The work of [14] discusses repairing
boolean programs by using abstractions of these programs. This approach is
similar to ours, but does not include a refinement phase in case spurious execu-
tions in the abstract program prevent finding a repair. In [21], the authors tackle
state explosion by maintaining an under-approximation of a repair candidate,
at each iteration adding more constraints that it must fulfill. New constraints
are produced by checking the candidate against the concrete faulty system. This
technique appears orthogonal to our own, in which the program is abstracted
and the repair candidate is calculated explicitly. Attempting to combine the two
methods seems promising, and is left for future work.

A different repair approach includes using genetic and co-evolutionary pro-
gramming [5, 25], where a set of candidate programs is iteratively evaluated
against the specification. Programs with high fitness survive, and are mutated
to produce the next iteration’s candidates, until a correct program is obtained.
This approach handles more general bugs than ours (as it is not limited to trim-
ming), but may extensively alter the original program’s code.

In the future, we plan to extend our abstraction-based repair algorithm to
handle violated liveness properties, as well safety ones. Indeed, some preliminary
work we have done shows promising results. Another direction we hope to pursue
is improving the performance of BPC by enhancing it with symbolic capabilities.
Finally, another interesting line of work is strengthening our module-partitioning
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algorithm: we feel the programmer-created b-threads contain currently untapped
meta data about the structure of the system, which could be utilized in making
“smarter” partitions. We hope that tapping this meta data will also prove useful
in the context of automated compositional verification.
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Abstract. Stream reasoning is an emerging research area focusing on
the development of reasoning techniques applicable to streams of rapidly
changing, semantically enhanced data. In this paper, we consider data
represented in Description Logics from the popular DL-Lite family, and
study the logic foundations of prediction and explanation over DL-Lite
data streams, i.e., reasoning from finite segments of streaming data to
conjectures about the content of the streams in the future or in the past.
We propose a novel formalization of the problem based on temporal
“past-future” rules, grounded in Temporal Query Language. Such rules
can naturally accommodate complex data association patterns, which
are typically discovered through data mining processes, with logical and
temporal constraints of varying expressiveness. Further, we analyse the
computational complexity of reasoning with rules expressed in different
fragments of the temporal language. As a result, we draw precise de-
marcation lines between NP-, DP- and PSpace-complete variants of our
setting and, consequently, suggest relevant restrictions rendering predic-
tion and explanation more feasible in practice.

1 Introduction

A data stream is a temporally ordered collection of data, representing the flow
of information through a certain channel over time [1]. Semantic applications
generating and consuming such streams of rapidly changing data are becoming
increasingly common, with domains ranging through scientific, medical, finan-
cial, urban, and many others. As has been argued by many authors, the shift
of the paradigm from traditional, static data to streaming information requires
deep revisions and advancements in the area of automated reasoning. On the one
hand, the capacity and velocity of data streams present a serious technological
challenge for the existing reasoning systems, tailored towards static data models
and softer latency requirements. On the other one, the real-time and real-world
nature of streaming information encourages investigations into novel forms of
reasoning, going beyond the basic, deductive query answering — forms, which
could support the construction of versatile analytical tools for enhancing the
understanding and utilization of knowledge conveyed in data streams [2,3]. This
latter research agenda motivates directly our presented work.
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In this paper, we study the logic foundations of two non-deductive types of in-
ference over data streams: prediction and explanation, i.e., reasoning from finite
segments of streaming data to conjectures about the content of the streams in
the future and in the past. Thus defined notions of prediction and explanation
are variations of their well-established analogs in philosophy of science, where
they are often related to the classical problem of causality.1 There, to predict is
to identify the expected effects of existing causes, while to explain — inversely —
to find possible causes of the observed effects [4]. In systems managing real-time
information, prediction is of major importance as an inference guiding decision
making processes based on the currently available data. Meanwhile, explanation
is pivotal to comprehending the situation which underlies and justifies the ob-
served data, which often requires procuring the relevant chain of circumstances
leading to it or abstracting the data into higher-level knowledge. Both modes
of inference are essential for achieving situation awareness in a real-time infor-
mation system [5]. Although prediction (and to a lesser degree explanation) has
been addressed in the context of streaming data, the focus of the relevant work
lies predominantly on the data mining level, i.e., on the methodology of learn-
ing the association patterns occurring in the data and extrapolating them via
statistical techniques to yet unobserved data [3,6]. On the contrary, virtually no
attention has been given to predictive and explanatory reasoning in its strictly
logical sense, as a symbolic inference, on the knowledge representation level. This
is a critical gap whenever streams of semantically rich data are considered, as in
such scenarios bridging the statistical and semantic view on the data is instru-
mental to designing robust reasoning techniques. To the best of our knowledge,
in this work we present the first insights and results on logical and computational
aspects of prediction and explanation over semantic data streams.

Following the popular paradigm of ontology-based data access, we consider
data expressed as Description Logic (DL) axioms, accessed through an onto-
logical layer expressed in DLs from the popular DL-Lite family [7]. Further,
we define a special type of temporal “past-future” rules, grounded in Temporal
Query Language [8]. Such rules can naturally accommodate complex data asso-
ciation patterns, identified in the data mining phase, with logical and temporal
constraints of varying expressiveness. Based on this foundation, we propose a
novel formalization of the two studied types of inference, as abduction of a data
sequence satisfying the consequent or, respectively, the antecedent of a temporal
rule. We analyse the computational complexity of such tasks over rules expressed
in different fragments of the temporal language, and as a result, we draw precise
demarcation lines between NP-, DP- and PSpace-complete variants of the prob-
lem. Building on these findings, we discuss relevant restrictions to the prediction
and explanation tasks which can render the reasoning feasible in practice.

The paper is organized as follows. In the next section, we recap preliminaries of
DLs and conjunctive query answering. In Section 3, we systematically introduce
all temporal components of the framework, including data streams, Temporal
Query Language and temporal rules. Then, in Section 4, we define prediction and

1 See http://plato.stanford.edu/entries/scientific-explanation/
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explanation and motivate our proposal. In Section 5, we present the complexity
results and, further, discuss their consequences on the main problem. The proofs
of the results are included in the full technical report [9]. An overview of related
work and concluding remarks are presented in the last two sections.

2 Preliminaries

A Description Logic (DL) language is given by a vocabulary Σ = (NI,NC,NR)
and a set of logical constructors [10]. The vocabulary consists of countably infi-
nite sets of individual names (NI), concept names (NC) and role names (NR). An
ABox A is a finite set of assertions A(a) and r(a, b), for a, b ∈ NI, A ∈ NC and
r ∈ NR. A TBox T is a finite set of terminological axioms, e.g., concept and role
inclusions, whose precise syntax is determined by the given DL. The semantics
is given in terms of DL interpretations I = (ΔI , ·I), defined as usual [10]. An
interpretation I is a model of T and A, denoted as I |= T ,A, iff it satisfies
every axiom in T and A. If T and A have a common model they are said to be
consistent.

Abiding by the nomenclature of ontology-based data access paradigm, we
consider the ABox as data and the TBox as the ontology, which provides an
additional semantic layer over the data, thus enriching the querying capabili-
ties. A conjunctive query (CQ) over a DL vocabulary Σ is a first-order formula
∃y.ϕ(x,y), where x,y are sequences of variables, from a countably infinite set
of variables NV. The sequence x denotes the free (answer) variables in the query,
while y the quantified ones. The formula ϕ is a conjunction of atoms over NC,NR

of the form A(u), r(u, v), where u, v ∈ NV ∪ NI are called terms. By term(q) we
denote the set of all terms occurring in a CQ q and by avar(q) the set of all its
answer variables. We call q grounded whenever avar(q) = ∅. A grounded CQ q
is satisfied in I iff there exists a mapping μ : term(q) �→ ΔI , with μ(a) = aI

for every a ∈ NI, such that for every A(u) and r(u, v) in q it is the case that
μ(u) ∈ AI and (μ(u), μ(v)) ∈ rI . We say that q is entailed by a TBox T and an
ABox A, denoted as T ,A |= q iff q is satisfied in every model of T and A. An
answer to q is a mapping σ such that σ : avar(q) �→ NI. By σ(q) we denote the
result of uniformly substituting every occurrence of x in q with σ(x), for every
x ∈ avar(q). An answer σ is called certain over T ,A iff T ,A |= σ(q). The set of
all certain answers to q over T ,A is denoted by cert(q, T ,A). By QΣ we denote
the class of all conjunctive queries over the vocabulary Σ.

In this paper, we focus on logics from the DL-Lite family [7], such as DL-
LiteR, DL-LiteF or DL-LiteA, underlying the OWL 2 QL ontology language
profile 2, for which CQs enjoy the so-called first-order rewritability property,
defined as follows.

Definition 1 (FO rewritability [7]). For every CQ q ∈ QΣ and a TBox T ,
there exists a FO formula qT such that for every ABox A and answer σ to q, it
holds that σ ∈ cert(q, T ,A) iff db(A) � σ(qT ), where db(A) denotes A considered
as a database/FO interpretation and � is the FO satisfaction relation.

2 See http://www.w3.org/TR/owl2-profiles/
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Recall, that given T in any of such DLs and a grounded q, the FO rewriting
qT of q is a union of possibly exponentially many CQs, including q. The number
of these CQs is bounded by �(T )�(q), where �(†) denotes the size of the input †
measured in the total number of symbols used. Every CQ q′ in qT is of the size
linear in �(q) and is such that T ∪ {q′} |= q. The query entailment problem is
NP-complete in the combined complexity, even when the TBox is empty, while
checking consistency of T ,A is in PTime [7].

Regardless of this default focus, many of the results presented here can be
naturally extended to other DLs exhibiting similar characteristics, such as other
members of the DL-Lite family or logics in the EL family [11].

3 Temporal Data and Queries

We consider a discrete, linear flow of time (Z, <), with integers representing
time instants ordered by the smaller-than relation. An interval over Z is a set
I = [I−, I+] = {i ∈ Z | I− ≤ i ≤ I+}, where I− ≤ I+ ∈ Z ∪ {−∞,+∞} denote
the beginning and the end of I, respectively. We assume that N = [0,+∞].

Definition 2 (A-sequence). An A-sequence A = (Ai)i∈I is a sequence of
ABoxes, for some interval I over Z.

A-sequences represent collections of datasets ordered temporally w.r.t. the
underlying time flow. The ordering of the ABoxes follows the smaller-than or-
dering of their indices. An A-sequence A is said to be consistent with a TBox T
if every ABox in it is consistent with T . Consider A-sequences A = (Ai)i∈I and
B = (Bi)i∈J . We use the following notation:

– A ⊆ B (A = B) iff I ⊆ J (I = J) and Ai = Bi for every i ∈ I,
– T ,A |= B (A |= B) iff J ⊆ I and T ,Ai |= Bi (Ai |= Bi) for every i ∈ J ,
– A ⇀ B iff there exists a mapping f : I �→ J , such that:

• i < j iff f(i) < f(j), for every i, j ∈ I,
• Ai = Bf(i), for every i ∈ I,

– A #B, whenever I ∩ J 
= ∅, to denote the A-sequence (Ci)i∈I∪J such that:
• Ci = Ai, for every i ∈ I \ J ,
• Ci = Bi, for every i ∈ J \ I,
• Ci = Ai ∪ Bi, for every i ∈ I ∩ J ,

– A≤n (A≥n), for n ∈ I, to denote the A-sequence (Ai)i∈I′ ⊆ A, such that
I ′ = [I−, n] (I ′ = [n, I+]).

The notion of data stream adopted here specializes that of ontology stream, as
introduced in [12], by considering temporal variability only on the data (ABox)
level, while prohibiting changes on the ontology (TBox) level.

Definition 3 (Data stream). A data stream under a TBox T is an A-sequence
A = (Ai)i∈Z consistent with T , with a designated subsequence Aω ⊆ A, called
the recorded segment of A, where ω is a finite interval over Z. For the current
time n ∈ Z, we call A≤n the past, and A≥n the future of A.
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In full generality, a data stream is then an infinite sequence of datasets con-
sistent with a fixed TBox. Obviously, in practical scenarios, one can effectively
know and manage only a finite fragment of the past of a given stream, while
remaining agnostic about its future. What we call above the recorded segment
of A is precisely this finite, accessible portion of the stream.

Next, we recall a variant of Temporal Query Language, proposed in [8], to
be used for accessing data streams. It is a lightweight combination of Linear
Temporal Logic (LTL) [13] with CQs, where CQs are embedded in the temporal
language using the epistemic semantics.

Definition 4 (Temporal Query Language). The temporal query language
(TQL) over a class of conjunctive queries QΣ is the smallest set of formulas
induced by the grammar:

φ ::= [q] | ¬φ | φ ∧ φ | φUφ | φSφ

where q ∈ QΣ. By avar(φ) we denote the set of free variables in φ. A TQL
formula φ is called grounded whenever avar(φ) = ∅. The entailment relation for
grounded TQL formulas w.r.t. an A-sequence A = (Ai)i∈I under a TBox T in
time i ∈ I is defined inductively as follows:

T ,A, i |= [q] iff T ,Ai |= q,
T ,A, i |= ¬φ iff T ,A, i 
|= φ,
T ,A, i |= φ ∧ ψ iff T ,A, i |= φ and T ,A, i |= ψ,
T ,A, i |= φUψ iff there exists j ∈ I with j > i such that

T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i < k < j,

T ,A, i |= φSψ iff there exists j ∈ I with j < i such that
T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i > k > j.

An answer to a TQL formula φ is a mapping σ : avar(φ) �→ NI. By σ(φ)
we denote the result of uniformly substituting every occurrence of x in φ with
σ(x), for every x ∈ avar(φ). An answer σ is called certain over T ,A at i ∈ I iff
T ,A, i |= σ(φ). The set of all such answers is denoted by certi(φ, T ,A).

Observe that given the epistemic interpretation of the embedded CQs, [q]
reads as “q is entailed in the given time instant”, for a grounded CQ q. We can
immediately paraphrase this interpretation by invoking FO rewriting of q, in the
sense of Definition 1. Note that the following correspondences immediately hold:

T ,A, i |= [q] iff T ,Ai |= q iff db(Ai) � qT .

Consequently, the negation ¬[q] is naturally interpreted as negation-as-failure,
reading “it is not true that q is entailed in the given time instant”. This warrants
the following equivalences:

T ,A, i |= ¬[q] iff T ,Ai 
|= q iff db(Ai) 
� qT .
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These observations are critical for the work presented in this paper, as they allow
to study satisfaction of TQL formulas by decoupling the temporal component
of the problem from the CQ component, and addressing the latter, without loss
of correctness, by applying the standard FO rewriting techniques and results,
recalled in Section 2. Importantly, such lightweight combination of languages
allows also for a modular reuse of existing temporal reasoners and highly opti-
mized, efficient query answering engines [8].

LTL with operators U and S, standing for (strict) until and since, which
captures precisely the temporal component of TQL, is known to be expressively
complete over (Z, <) [14]. Apart from the full TQL, in what follows we consider
also some of its strict subsets. By TQL∃ we denote the fragment in which the
syntax of U- and S-formulas is restricted to the form �Uφ and �Sφ, where � is a
constant symbol denoting the logical truth. This restriction corresponds to LTL
with operators sometime in the future and sometime in the past, in place of U
and S. Further, with TQL+ we refer to the positive fragment of TQL, i.e., TQL
without the negation operator. Finally, by TQL∃,+, we denote the intersection
of TQL∃ and TQL+.

Following the temporal separation approach of Gabbay [14], we consider TQL
formulas belonging to two disjoint categories:

– past-present : formulas without the operators of type U,
– future-present : formulas without the operators of type S.

By the semantics of TQL, it follows that for any TQL formula φ, TBox T ,
A-sequence A = (Ai)i∈I , and time point n ∈ I, the equivalences below hold:

– certn(φ, T ,A) = certn(φ, T ,A≤n), whenever φ is past-present,
– certn(φ, T ,A) = certn(φ, T ,A≥n), whenever φ is future-present.

Given the distinction above, we define the notion of temporal rules, which is
closely related to Gabbay’s concept of executable temporal logic [14]. Temporal
rules straightforwardly embody the “declarative past–imperative future” pattern
over TQL.

Definition 5 (Temporal rules). A temporal rule in TQL is an expression of
the form:

ψ ⇒ φ

where ψ, φ are TQL formulas such that ψ is past-present and φ is future-present.
The rule ψ ⇒ φ is satisfied for a substitution ( = σ∪σ′, for some σ : avar(ψ) �→
NI and σ′ : avar(φ) �→ NI agreeing on avar(ψ) ∩ avar(φ), over a TBox T and
an A-sequence A = (Ai)i∈I , at time n ∈ I iff σ ∈ certn(ψ, T ,A) implies σ′ ∈
certn(φ, T ,A).

Temporal rules are equipped with well-defined semantics and allow for rela-
tively easy control of the expressiveness-complexity trade-off, due to their close
relationship with LTL. They are also a natural formalism for expressing asso-
ciation rules discoverable in time series data by means of various data mining
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techniques. This sort of association rules typically combine diverse data patterns
with logical and temporal constraints [15]. Although lacking some essential prob-
abilistic and real-time features, not present in the basic variants of LTL, tem-
poral rules can arguably provide a robust logic foundation for target learning
languages over streaming DL-Lite data. As an example, we present a prototyp-
ical temporal association rule used in a climate application predicting droughts
in certain regions of India [16]

Climate application example: Consider a temporal rule ψ ⇒ φ encoding a cor-
relation between several measurements and weather phenomena occurring in
specific geographic locations, in a specific order, known to be a good predictor
of drought. The rule is defined by the TQL formulas:

ψ = (¬[∃y.(HeavyRainIn(y) ∧ locIn(y,north))] S [∃y, z.(SST (y, low) ∧ NAO(z,high)])
∧ [locIn(x,northeast)]

φ = � U ([DroughtIn(x)] ∧ ([DroughtIn(x)] U [SevereDroughtIn (x)]))

It states that if at some point in the past the SST (sea surface temperature)
was found out to be low, the NAO (North Atlantic Oscillation) was high, and
since then there has been no heavy rain recorded in North province, then at
some point in the future there will be drought in x, whenever x is located in
Northeast, which will persist until severe drought occurs in x. �

4 Prediction and Explanation

By adopting temporal rules as the language of association patterns in streaming
data, we are able to formulate very intuitive and clear-cut definitions of predic-
tion and explanation over data streams: a prediction (explanation) is a possible
future (past) of the data stream, which entails the consequent (antecedent) of a
temporal rule, given its antecedent (consequent) is entailed by the recorded seg-
ment. This meaning of the two types of inference is schematically depicted in
Figure 1 and further made precise in the following two definitions. We consider
a data stream A under a TBox T , with the recorded segment Aω ⊆ A, where ω
is a finite interval over Z.

Definition 6 (Prediction). Let ψ ⇒ φ be a temporal rule and σ ∈ certn(ψ, T ,
Aω), for a time n ∈ ω. A prediction at n from ψ ⇒ φ and σ over T ,Aω is an
A-sequence D = (Di)i∈[n,+∞] such that σ′ ∈ certn(φ, T ,Aω # D), for some σ′

agreeing with σ on avar(ψ) ∩ avar(φ).

Definition 7 (Explanation). Let ψ ⇒ φ be a temporal rule and σ ∈ certn(φ, T ,
Aω), for a time n ∈ ω. An explanation of σ at n based on ψ ⇒ φ is an A-sequence
D = (Di)i∈[−∞,n] such that σ′ ∈ certn(ψ, T ,Aω #D) for some σ′ agreeing with
σ on avar(ψ) ∩ avar(φ).

From a high-level perspective, prediction and explanation are classifiable as
strictly different types of inference in that the former is deductive (following from
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Fig. 1. Prediction and explanation over data streams

the antecedent to the consequent), while the latter abductive (from the conse-
quent to the antecedent) [4]. Technically, however, it is strikingly apparent that
the gist of both inferences is essentially the same and comes down to solving two
identical subproblems: 1) verifying that a certain TQL formula (ψ in prediction
and φ in explantation) is entailed by the recorded segment, thus triggering the
particular inference, and 2) finding an A-sequence which entails the second TQL
formula in the temporal rule (φ in prediction and ψ in explantation). As far as
the former task, reducible to deductive entailment, is relatively well-understood,
and hence is only shortly addressed in the next section, the latter has not yet
been formulated in the literature, and is the central problem studied in the
remainder of this paper. The problem has a strongly abductive flavour and is
conceptualized here based on the nomenclature coined in [17,18,19].

Definition 8 (A-sequence abduction). An A-sequence abduction problem
is a tuple (T ,A, φ), where T is a TBox, A = (Ai)i∈I is an A-sequence, for some
I−, I+ ∈ Z, and φ is a grounded future-present (resp. past-present) TQL for-
mula. A solution to (T ,A, φ) is an A-sequence D = (Di)i∈J with J = [I−,+∞]
(resp. J = [−∞, I+]), such that A#D is consistent with T , and T ,A#D, 0 |= φ.
The solution D is called:

– 5e-minimal iff for every solution D′, if D |= D′ then D′ |= D,
– 5b-minimal iff for every solution D′, if T ,A#D |= D′ then T ,A#D′ |= D,
– 5s-minimal iff for every solution D′, if D′ ⇀ D then D = D′.

As usually in the context of abductive reasoning, we employ several mini-
mality criteria which help to reduce the solution space to a computationally
manageable level. The first two are generalizations of criteria known in the clas-
sical, atemporal abduction. Intuitively,5e-minimality (for entailment) places the
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Table 1. Data stream in the climate application example

. . . −2 −1 0 1 . . .

locIn(l1,north) locIn(l1,north) locIn(l1, north) locIn(l1,north)
locIn(l2,northeast ) locIn(l2,northeast ) locIn(l2,northeast ) locIn(l2,northeast )

DroughtIn(l2) SevereDroughtIn (l2)
SST (m1, low) RainIn(l1)
NAO(m2, high)

Table 2. Predictions (up) and explanations (down) in the climate application example

1 2 3 4 . . .

D1: DroughtIn(l2) SevereDroughtIn (l2)

D2: RainIn(l1) DroughtIn(l2) SevereDroughtIn (l2)

D3: SevereDroughtIn (l2) SevereDroughtIn (l2)

D4: DroughtIn(l2) DroughtIn(l2) SevereDroughtIn (l2)

. . . −5 −4 −3 −2
D5: SST (m1, low)

NAO(m2, high)

D6: SST (m1, low) locIn(l2,northeast )
NAO(m2, high)

D7: SST (m1, low)
NAO(m2, high)

precedence over solutions which are logically weakest — they assume the least
possible data in every given state — irrespectively of the background knowl-
edge. The 5b-minimality (for entailment w.r.t. background knowledge) takes
also into account the assumed TBox and ABox. Observe that 5b-minimality is
strictly stronger than 5e-minimality, i.e., whenever a solution D is 5b-minimal
it must be 5e-minimal, while the converse does not hold in general. Note that
whenever a problem has a solution at all, it must have a 5b-minimal (and thus
an 5e-minimal) solution. The 5s-minimality criterion (for structure) is a novel
one, tailored specifically for abduction problems, whose solutions are sequential
structures. It ensures the identified sequence D has no redundant subsequences.
To rephrase it, D is not minimal in the sense of 5s whenever one can obtain a
solution distinct from D simply by removing some ABoxes from D.

The minimality criteria, discussed above, are consequently applied to predic-
tions and explanations. In fact, the abductive procedures developed in the next
section are complete for 5s- and 5e-minimal solutions, and in practice, we also
tend to favor 5b-minimal solutions, as more basic. For a more intuitive illus-
tration of the two tasks and the minimality criteria we elaborate further on the
climate application scenario, introduced in the previous section.

Climate application example cntd.: Let ψ ⇒ φ be the temporal rule as be-
fore, grounded with the substitution σ = {x �→ l2}. Consider TBox T =
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{SevereDroughtIn " DraughtIn, HeavyRainIn " RainIn} and data stream A
with the recorded segment Aω ⊆ A, where ω = [−2, 1], defined as in Table 1.
Table 2 presents several predictions from ψ ⇒ φ and σ, at time 1 (D1-D4) and
explanations of σ based on ψ ⇒ φ, at time −2 (D5-D7). To put equivalently,
these are possible solutions to the A-sequence abduction problems (T ,A1, φ)
and (T ,A−2, ψ), respectively. Note, that all empty and hidden cells in the ta-
ble are empty ABoxes. Observe that D1 and D5 are both 5s- and 5b-minimal.
Equivalently, Solutions D2 and D6 are still 5s-minimal but not 5e-minimal,
and hence not 5b-minimal either. In the case of D2 axiom RainIn(l1) ∈ D1,
although not undermining the prediction, is not necessary for the solution to
hold. In D6, axiom locIn(l2, northeast) ∈ D−2 is simply redundant, as it is al-
ready present in the data stream. Prediction D3 is 5s-minimal and 5e-minimal,
yet not 5b-minimal. Note that considering the background knowledge constraint
SevereDroughtIn " DraughtIn, axiom DraughtIn(l2) is logically weaker than the
assumed SevereDroughtIn(l2) ∈ D2, and could be possibly used to replace the
latter in the solution. Finally, D4 and D7 are 5b-minimal but not 5s-minimal,
as both can be turned into distinct solutions by subtracting the state D2 from
the former and either of the empty states D−3 or D−2 from the latter.

5 Complexity of Reasoning

In this section, we study the combined complexity of reasoning problems com-
prising different variants of prediction and explanation tasks. The proofs are
included in the full technical report [9]. Note that a “recognition” result with
respect to a minimality criterion signals that the underlying decision procedure
is complete but not necessarily sound, i.e. the identified solutions might require
an additional check for being minimal in the given sense. A “computation” result
implies soundness as well [19].

We start by considering ABox abduction, i.e., the task of abducing a minimal
ABox ensuring entailment and non-entailment of selected CQs, which is later
generalized to sequences of such problems.

Definition 9 (ABox abduction). An ABox abduction problem is a tuple Ω =
(T ,A, P,N), where T is a TBox, A an ABox, and P,N ⊆ QΣ are sets of
grounded CQs. An ABox D is called a solution to problem Ω iff A∪D is consistent
with T and:

1. T ,A ∪ D |= [q], for every q ∈ P ,
2. T ,A ∪ D |= ¬[q], for every q ∈ N .

Note, that 5e- and 5b-minimality criteria transfer immediately from Defini-
tion 8, on considering a single ABox as an A-sequence with exactly one element.
The 5s-minimality does not apply in the context of ABox abduction. The results
obtained here rest on and extend some of those presented in [19].

Lemma 1 (Solving ABox abduction problems). Let Ω be an ABox abduc-
tion problem and D an 5e-minimal solution to Ω. Then:
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1. computing D for Ω = (T , ∅, P, ∅) is in PTime, if T = ∅ or D is 5b-minimal,
2. recognizing D for Ω = (T ,A, P, ∅) is NP-complete, if T 
= ∅ or A 
= ∅,
3. computing D for Ω = (T ,A, P,N) is DP-complete, if P 
= ∅ and N 
= ∅,

even when A = ∅ and irrespective of deciding 5b-minimality,

where D is fixed up to renaming individuals in the included ABoxes.

The PTime result in the first case follows by observing that the addressed
ABox abduction problems can be solved immediately by grounding the conjuncts
of the CQs. Solving the second type of problems might involve NP-complete CQ
entailment checks and/or a nondeterministic choice from an exponential number
of queries in the FO rewriting of a CQ. For the last case, recall that DP denotes
the intersection of the classes of NP and coNP problems. The result is due to the
simultaneous presence of positive and negative CQs, which requires entailment
and non-entailment checks, with the latter in coNP.

Next we focus on solving A-sequence abduction problems in TQL. Since tech-
nically abduction for future-present formulas is symmetric to abduction for past-
present formulas, we only study the former setting, noting that all results trans-
fer automatically to the latter. The central challenge to be addressed is that
solutions to such problems are in principle of infinite length, which makes their
computation generally impossible in finite time. However, we are able to identify
certain finite structures which can be unambiguously unfolded into the corre-
sponding A-sequences. Thus, rather than searching for A-sequences directly, we
focus on finding their finite representations, called A-structures.

Definition 10 (A-structures). An A-structure is a tuple S = (S,S0,→),
where S is a finite set of ABoxes, S0 ∈ S is the initial ABox, and →: S �→ S is
a transition function. The unfolding of S is an A-sequence S0, . . . ,Si,Si+1, . . .,
where for every i ∈ N, Si ∈ S and Si → Si+1.

The key to the abductive algorithms we develop here is ensuring existence
of an upper bound on the size of the A-structures that are to be found. Tech-
nically, the proofs rest on the construction of so-called quasimodels, which link
A-structures with the input abductive problems. Intuitively, a quasimodel s =
(si)i∈N is an abstraction of an infinite sequence of temporal states entailing a
given A-sequence. Each si-th element (ti,A(ti)) in that sequence consists of the
set ti of subformulas of φ that must be entailed in i and the minimal ABox
A(ti) that must hold at i for φ to be true at time 0. Particularly instrumental
are special quasimodels called ultimately periodic, which consist of a finite initial
sequence called the head, followed by an infinite repetition of some terminal sub-
sequence of the head, called the period. We show that every 5e- and 5s-minimal
solution to an A-sequence abduction problem corresponds to an ultimately pe-
riodic quasimodel, which can be further associated with an A-structure of a
particular size, linear in the length of the head of the quasimodel.

For A-sequence abduction over full TQL formulas the relevant A-structures
are consist of at most exponentially many states in the size of the given abduction
problem. This resonates closely with the “small model” property of LTL, which
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rests on similarly defined bounds [13]. Recall that by �(†) we denote the total
size of the input †.

Lemma 2 (A-sequence vs. A-structure). Let D be an 5e- and 5s-minimal
solution to an A-sequence abduction problem Ω = (T ,A, φ), where A = (Ai)i∈I
and φ is a TQL formula. Then there exists an A-structure S = (S,S0,→) whose
unfolding is D, such that |S| = f(�(Ω)), for some function f(x) ∈ O(2x).

The basic algorithm which recognizes 5e- and 5s-minimal solutions to A-
sequence abduction problems is an adaptation of Sistla and Clarke’s decision
procedure for LTL [13]. In principle, the underlying computation model has
to be changed from finite-state automata to finite-state transducers, i.e., Turing
machines using additional write-only output tapes, as a recognized solution needs
to be effectively presented. This revision, however, does not affect the complexity
of the algorithm, which remains PSpace-complete, irrespectively of the possibly
exponential size of solutions.

Theorem 1 (Recognizing A-sequence solutions). Recognizing an 5e- and
5s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ), where
φ is a TQL formula, is PSpace-complete.

In case of TQL∃ and TQL+ we are able to show that the upper bound on the
size of the relevant A-structures is smaller — in fact, linear in the size of the
input.

Lemma 3 (A-sequence vs. A-structure for TQL∃,TQL+). Let D be an
5e- and 5s-minimal solution to an A-sequence abduction problem Ω = (T ,A, φ),
where A = (Ai)i∈I and φ is a TQL∃ or TQL+ formula. Then there exists an
A-structure S = (S,S0,→) whose unfolding is D, such that |S| ≤ f(�(φ)), for
some f(x) ∈ O(x).

Given the linear size of the solutions, the worst case complexity of recognizing
A-sequence solutions for TQL∃ drops to DB. In this case, it is sufficient to guess
a linearly long head of a candidate quasimodel and verify it satisfies all the neces-
sary structural conditions. As states in the quasimodel can contain positive and
negative occurrences of CQs, the abduction of the respective minimal ABoxes is
DB-complete.

Theorem 2 (Recognizing A-sequence solutions for TQL∃). Recognizing
an 5e- and 5s-minimal solution to an A-sequence abduction problem (T ,A, φ),
where φ is a TQL∃ formula, is DB-complete.

In case of TQL+, the complexity of abductive reasoning is even smaller, in
fact NP-complete, as no negative CQs have to be considered. Reducing the
TQL language further down to TQL∃,+ does not yield any additional gain, even
when 5b-minimality is considered. This is a consequence of the non-determinism
involved in choosing the order in which U-formulas are fulfilled in the consecutive
states. In the worst case, all permutations must be considered, which enables
reduction from the NP-hard Hamiltonian path problem.
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Lemma 4 (Recognizing A-sequence solutions for TQL+,TQL∃,+). Rec-
ognizing a 5e- and 5s-minimal solution to an A-sequence abduction problem
Ω = (T ,A, φ), where φ is a TQL+ or TQL∃,+ formula, is NP-complete. The
result holds even for 5b-minimal solutions and when A = ∅.

Note that in most cases computing A-sequence solutions, as opposed to rec-
ognizing them, is bound to be of a higher complexity due to the necessity of
conducting pairwise comparisons between exponentially many alternatives.

As the last task considered in this section, we address entailment of TQL for-
mulas by finite A-sequences. As explained in Section 4, this problem corresponds
to deciding whether the antecedent of a temporal rule, in case of prediction, or
its consequent, in explanation, is entailed by a given fragment of the recorded
segment. In the following theorem, we show that the problem is DP-complete in
general or NP-complete in a special case, where the difference is determined by
the presence of lack of negative CQ occurrences.

Theorem 3 (Entailment by finite A-sequences). Let T be a TBox and A =
(Ai)i∈I an A-sequence, where I is a finite interval over Z. Deciding T ,A, n |= φ,
for some n ∈ Z, is DP-complete iff φ is a grounded TQL or TQL∃ formula, and
NP-complete iff φ is a grounded TQL∃,+ formula.

The analysis above shows that prediction and explanation are computation-
ally hard in general, but can be made easier by progressively simplifying the as-
sumed setting. Notably, by restricting the expressiveness of temporal operators
and eliminating negation from the underlying TQL, the complexity of reasoning
can be reduced from PSpace- to NP-complete. The remaining non-determinism,
warranting NP-hardness, can be mostly attributed to the size of FO rewritings
of CQs and the number of alternative orders in which U/S-subformulas are to
be fulfilled over time. Can these too be tamed granting an even lower complex-
ity? Most likely, yes. We suspect that by considering 5b-minimal solutions and
allowing only formulas whose structure unambiguously determines the order of
fulfilment of U/S-subformulas, the combined complexity of prediction and expla-
nation should drop further to PTime. Less assumptive predictions and explana-
tions (such as based on the 5b-minimality criterion) and a simpler language for
learning temporal association rules might moreover offer conjectures of a higher
likelihood, thus offering another reward for the lost expressiveness.

6 Related Work

To the best of our knowledge, prediction and explanation in the conceptual and
technical sense considered here have not been addressed in the literature. Lecue
and Pan study prediction over ontology streams in [3], but clearly follow the data
mining approach to the problem, focusing on detection of statistical correlations
in data and their future projections. Such a perspective is orthogonal to ours,
as here we deal exclusively with the knowledge representation and reasoning
level, assuming that relevant association rules are already given and symbolically
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expressed as temporal rules. In the report [5], Thirunarayan et al. propose to
use abductive logic programming for generating explanations, understood as
abstractions of quantitative data into qualitative descriptions, as an integral
component of a situation awareness framework over the Semantic Sensor Web.
Although the preliminary nature of this proposal does not allow for a detailed
comparison with ours, it clearly follows a similar motivation and formal direction.

Other types of reasoning services over semantic streaming data, not of im-
mediate relevance to this work, have been considered in a number of papers,
e.g., [1,12,2]. Yet more remotely related work deals with prediction and tempo-
ral association rule mining in the field of relational databases [6,15], aspects of
abductive reasoning in temporal logics [20], logics for causal reasoning [21], and
prediction and explanation in other AI contexts [4].

7 Conclusions and Outlook

In this paper, we have introduced a novel formalization of predictive and ex-
planatory reasoning over DL-Lite data streams, and delivered a number of re-
sults characterizing the computational complexity of both tasks using different
variants of the underlying temporal rule formalism. We believe that the ap-
proach we propose, which allows for studying prediction and explanation from
the purely logical and computational perspective, is vital for the development
of robust stream reasoning techniques applicable to semantically rich data, as
it introduces a symbolic layer which can usefully mediate between the semantic
and statistical view on the data.

An especially promising direction of advancing this work further is to investi-
gate the use of other temporal logics for expressing temporal rules, in particular
those offering real-time and probabilistic features, e.g., PCTL [22]. Arguably,
such rules could be tighter aligned with typical models of causal reasoning [21]
and the practice of temporal association rule learning [15]. As an alternative to
the probabilistic approach, a qualitative one, based on defeasible semantics [23],
could be also potentially useful. Considering the implementation prospects, a
natural and technically feasible approach is likely to be found in combining tem-
poral databases, recently supported via SQL:2011 [24], with existing reasoning
tools enabling execution of temporal logic programs, such as MetateM [25].
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Abstract. We develop a resolution-based method for forgetting con-
cept and role symbols in ALCH ontologies, or for computing uniform
interpolants in ALCH. Uniform interpolants use only a restricted set of
symbols, while preserving logical consequences of the original ontology
involving these symbols. While recent work towards practical methods
for uniform interpolation in expressive description logics limits attention
to forgetting concept symbols, we believe most applications would bene-
fit from the possibility to forget both role and concept symbols. We focus
on the description logic ALCH, which allows for the formalisation of role
hierarchies. Our approach is based on a recently developed resolution-
based calculus for forgetting concept symbols in ALC ontologies, which
we extend by redundancy elimination techniques to make it practical for
larger ontologies. Experiments on ALCH fragments of real life ontologies
suggest that our method is applicable in a lot of real-life applications.

1 Introduction

Ontologies model a domain of interest using description logics by describing the
vocabulary of this domain in terms of roles and concepts. Reflecting the different
applications and contexts in which ontologies are used, ontologies are modelled
using different description logics that vary in expressivity and complexities of
common reasoning tasks. In the development of complex ontologies, it is often
desirable to restrict the vocabulary of an ontology to a smaller set of symbols.
Uniform interpolation, also known as forgetting, establishes this by construct-
ing a new ontology that only uses a predefined set of symbols, such that all
logical consequences of the original ontology using these symbols are preserved.
Examples where this is useful are: (i) Ontology Reuse. When constructing larger
ontologies, it can be useful to reuse parts from existing ontologies. Using uniform
interpolation, one can restrict the vocabulary of the reused ontology to the sym-
bols that are known and interesting for the new application. (ii) Predicate Hiding.
When publishing or sharing an ontology, it is often desirable to hide confidential
parts from the ontology, without affecting the intended meaning of the remaining
vocabulary [5]. (iii) Exhibiting Hidden Relations. Relations between symbols are
often stated indirectly in an ontology and only become visible through the use
of reasoners. With increased complexity of the ontology, this makes it hard to
get a deeper understanding of the ontology and to maintain ontology changes.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 552–567, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Forgetting Concept and Role Symbols in ALCH-Ontologies 553

The uniform interpolant over a set of symbols makes the relations between these
symbols explicit. (iv) Logical difference. In the development of evolving ontolo-
gies, it is important for ontology engineers to ensure that modifications do not
interfere with the meaning of existing terms. This can be achieved by comput-
ing the uniform interpolants of two versions of an ontology over the common
set of used symbols, or over a set of symbols under consideration, and checking
whether the resulting ontologies are equivalent [12].

Uniform interpolation has been extensively investigated for simpler descrip-
tion logics such as EL or DL-Lite [8,22,15,13]. Recently, practical algorithms for
forgetting concept symbols in the more expressive description logic ALC have
been developed [12,11]. In this paper, we investigate forgetting of role symbols
as well, and supplement earlier presented work with optimisation techniques to
make it practical on larger ontologies. Since roles play a larger role in this con-
text, we focus on the description logic ALCH, which extends ALC with role
hierarchies. It is known that already in the description logic ALC uniform inter-
polants cannot be finitely expressed in the language of the logic [14]. This also
applies to ALCH. For this reason our method computes uniform interpolants
for the target language ALCHμ, which extends ALCH with fixpoint operators,
thus enabling us to always compute finite representations. If fixpoints are used
in the uniform interpolant, it is possible to represent it in ALCH by extending
the signature of the interpolant.

Our work is based on a recently developed method for forgetting concept sym-
bols in ALC-ontologies [11]. The method is based on a resolution-based decision
procedure for ALCH. In order to analyse the practicality of our approach, we
undertake an experimental evaluation on ALCH-fragments of a set of real-life
ontologies. The results suggest that uniform interpolation can be used for the
presented applications in a lot of real-life situations.

Proofs of all theorems can be found in the accompanying technical report [9].

2 Preliminaries

Let Nc, Nr be two disjoint sets of concept symbols and role symbols. Concepts
in ALCH are of the following form:

⊥ | � | A | ¬C | C �D | C 
D | ∃r.C | ∀r.C,

where A ∈ Nc, r ∈ Nr and C and D are arbitrary concepts. �, C 
D and ∀r.C
are defined as abbreviations: � stands for ¬⊥, C 
D for ¬(¬C �¬D) and ∀r.C
for ¬∃r.¬C.

A TBox is a set of concept axioms of the forms C " D (concept inclusion)
and C ≡ D (concept equivalence), where C and D are concepts. An RBox
is a set of role axioms of the form r " s (role inclusion) and r ≡ s (role
equivalence), where r and s are role symbols. C ≡ D is a short-hand for the
two concept axioms C " D and D " C, and r ≡ s is a short-hand for the two
role axioms r " s and s " r. We assume an ontology consists of a TBox and an
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RBox. Given an ontology O, we define "O to be the reflexive transitive closure
of the role inclusions in O.

The semantics of ALCH is defined as follows. An interpretation is a pair
I = 〈ΔI , ·I〉, where the domain ΔI is a nonempty set and the interpretation
function ·I assigns to each concept symbol A ∈ Nc a subset of ΔI and to each
role symbol r ∈ Nr a subset of ΔI×ΔI . The interpretation function is extended
to concepts as follows.

⊥I := ∅ (¬C)I := ΔI \ CI (C �D)I := CI ∪DI

(∃r.C)I := {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept inclusion C " D is true in an interpretation I iff CI ⊆ DI . I is model
of a TBox T if all concept inclusions in T are true in I. A TBox T is satisfiable
if there exists a model for T , otherwise it is unsatisfiable. T |= C " D holds iff in
every model of T we have CI ⊆ DI . Two TBoxes T1 and T2 are equi-satisfiable
if every model of T1 can be extended to a model of T2, and vice versa. The
definitions of truth, model, satisfiability and equi-satisfiability extend to roles,
RBoxes and ontologies in a similar way. Observe that O |= r " s iff r "O s.

In order to define ALCHμ, we extend the language with a set Nv of concept
variables. ALCHμ extends ALCH with concepts of the form μX.C and νX.C,
where X ∈ Nv, and C is a concept in which X occurs as a concept symbol only
positively (under an even number of negations). μX.C denotes the least fixpoint
of C on X and νX.C the greatest fixpoint.

A concept variable X is bound if it occurs in the scope C of a fixpoint expres-
sion μX.C or νX.C. Otherwise it is free. A concept is closed if it does not contain
any free variables. Axioms in ALCHμ are of the form C " D and C ≡ D, where
C and D are closed concepts.

Following [2], we define the semantics of fixpoint expressions. Let V be an as-
signment function that maps concept variables to subsets of ΔI . V [X �→ W ]
denotes V modified by setting V(X) = W . CI,V is the interpretation of C
taking into account this assignment, and when V is defined for all variables
in C, CI,V = CI . The semantics of fixpoint concepts is defined as follows:

(μX.C)I,V :=
⋂
{W ⊆ ΔI | CI,V[X %→W ] ⊆ W}

(νX.C)I,V :=
⋃
{W ⊆ ΔI | W ⊆ CI,V[X %→W ]}.

The size of an (ALCH- or ALCHμ-)axiom is defined recursively as follows:
size(A) = 1, where A is a concept symbol, size(¬C) = size(C) + 1, size(∃r.C) =
size(∀r.C) = size(C) + 2, size(C � D) = size(C 
 D) = size(C) + size(D) + 1,
size(μX.C) = size(νX.C) = size(C) + 2 and size(C " D) = size(C ≡ D) =
size(C) + size(D) + 1.

A signature Σ is a subset of Nc∪Nr. sig(E) denotes the concept and role sym-
bols occurring in E, where E ranges over concept descriptions, axioms, TBoxes,
RBoxes and ontologies. Given two ontologies O1 and O2 and a signature Σ, we
say O1 and O2 are Σ-inseparable, in symbols O1 ≡Σ O2, iff for every concept or
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role inclusion α with sig(α) ⊆ Σ, O1 |= α implies O2 |= α, and vice versa. Given
an ontologyO and a signature Σ, O′ is a uniform interpolant of O if sig(O′) ⊆ Σ
and O ≡Σ O′. From this definition, it follows that uniform interpolants for a
given ontology and signature are unique modulo logical equivalence. For a given
ontology O and signature Σ, we will therefore speak of the uniform interpolant
and denote it by OΣ . Given an ontology O and a concept or role symbol σ,
the result of forgetting σ in O, denoted by O−σ, is the uniform interpolant OΣ ,
where Σ = sig(O) \ {σ}.

3 Overview of the Method

We reduce the problem of computing uniform interpolants to the problem of
forgetting single symbols. In order to compute the uniform interpolant for any
signature Σ, we forget each symbol in sig(O) \ Σ one by one. The method for
computing O−σ, where σ is either a role or a concept symbol, consists of three
phases:

Phase 1: Eliminate the symbol using a resolution-based calculus, obtaining
O′ = Fσ

ALCH(O).

Phase 2: Eliminate the newly introduced symbols, obtaining O−σ = FD(O′).

Phase 3: Apply simplifications and represent clauses as proper concept inclu-
sions.

Central to the method is a new resolution-based calculus which works on a
structural transformation based normal form. The calculus is described in Sec-
tion 4. Depending on whether the symbol to be forgotten is a role or a concept
symbol, in Phase 1 a different method based on this resolution calculus is used to
derive consequences on the selected symbol. This is described in Section 5. The
result is a finitely bounded set N of axioms such that σ 
∈ sig(N) and N ≡Σ O
for Σ = sig(O) \ {σ}, but N may use new symbols due to structural transforma-
tion. These symbols, called definers, all occur in a form that allows for elimination
in a simple and uniform way, following a known principle first presented in [16].
This is performed in Phase 2 and described in Section 6. Depending on whether
the aim is to compute a representation in ALCHμ or in ALCH, the result may
involve fixpoint operators or extend the signature of the original ontology.

After Phase 2, the uniform interpolant is already computed, but we add a
third phase that makes the resulting ontology more accessible by applying sev-
eral equivalence-preserving transformations. The following main theorem of this
paper states the correctness of the method.

Theorem 1. For any ALCH-ontology O and any symbol σ, our method termi-
nates and returns the uniform interpolant of O over sig(O) \ {σ} in ALCHμ. If
the result does not make use of a fixpoint operator, it is the uniform interpolant
of O over sig(O) \ {σ} in ALCH.
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4 The Underlying Calculus

Our method for forgetting concept and role symbols is based on a resolution
calculus RALCH which provides a decision procedure for ALCH-ontology satis-
fiability. The calculus extends a calculus introduced in [11] by incorporating the
role hierarchy. In order to make our method practical for larger ontologies, we
extend RALCH with redundancy elimination techniques, resulting in the calculus
Rs
ALCH.
Both calculi operate on sets of clauses, which are defined as follows. Let ND ⊆

Nc be a set of definer symbols or definers, which do not occur in any input
ontology.

Definition 1. An ALCH-literal is a concept description of the form A, ¬A,
∀r.D or ∃r.D, where A is a concept symbol, r a role symbol and D is a definer.

A TBox is in ALCH-conjunctive normal form if every axiom is of the form
� " L1 � ... � Ln, where each Li is an ALCH-literal. The right part of such
a concept inclusion is called ALCH-clause. In the following we assume ALCH-
clauses are represented as sets of literals (this means no clause contains the same
literal more than once and the order of the literals does not matter). The empty
clause is denoted by ⊥ and represents a contradiction.

For our method it is crucial that any ALCH-TBox is transformed into an equi-
satisfiable TBox in ALCH-conjunctive normal form using structural transfor-
mation as follows. First the input TBox is transformed into negation normal
form. Then every concept C that occurs immediately below a role restriction
is replaced by a definer D, and we add the axiom D " C for each such sub-
concept. The resulting TBox does not contain any nested role restrictions and
can be brought into ALCH-conjunctive normal form by applying standard CNF-
transformation techniques. For an ontology O, let clauses(O) refer to the set of
clauses generated in this way from the TBox of O.

The calculus RALCH uses the rules shown in Figure 1. Since the normal form
has to be preserved, the role propagation rule may require the introduction of a
new definer symbol D3 representing the conjunction of the definers D1 and D2

occurring in the premises. This is done by adding new clauses ¬D3 � D1 and
¬D3 � D2 to the clause set. Observe that the resolution rule also applies to
definer literals. This way for each pair of clauses ¬D1 � C1 and ¬D2 � C2 we
derive the clauses ¬D3 �C1 and ¬D3 �C2, for which the side conditions of the
rules are satisfied.

In order to ensure termination, it is necessary to reuse definers whenever pos-
sible. For this we define an identification function for introduced definers, that
identifies definers with the context from which they have been created, and whose
range is finitely bounded. The function id(D) is defined as follows. (i) If D is in-
troduced by the initial normal form transformation, then id(D) = {D}. (ii) If D
is required by the role propagation rule and the respective role restrictions are
∀s.D1 and Qr.D2, then id(D) = id(D1) ∪ id(D2).

If the role propagation rule requires a new definer D, we first check whether
a definer D′ with id(D) = id(D′) is already present, and reuse it in this case.
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Resolution:
C1 *A C2 * ¬A

C1 * C2

provided C1 * C2 does not contain more than one negative definer literal.

Role Propagation:

C1 * ∀s.D1 C2 * Qr.D2

C1 * C2 * Qr.D3

r +O s

where Q ∈ {∃, ∀} and D3 is a (possibly new) definer representing D1 , D2,
provided C1 * C2 does not contain more than one negative definer literal.

Existential Role Restriction Elimination:

C * ∃r.D ¬D
C

Fig. 1. Rules of the calculus RALCH

Otherwise we introduce a new definer in the way described above. Observe that
the domain of id is bounded by 2n, where n is the number of definers introduced
by the initial normal form transformation. Therefore the number of clauses that
can possibly be derived is limited by a double-exponential bound. We can prove:

Theorem 2. RALCH is sound and refutationally complete, and provides a de-
cision procedure for ALCH-ontology satisfiability.

As in traditional resolution-based decision procedures, it is possible to extend
the method with redundancy elimination and further simplification techniques.
For this purpose, it is possible to exploit the structure imposed by the introduced
definers. Note that new definers are introduced by adding clauses of the form
¬D1�D2. ¬D1�D2 is equivalent to the concept inclusion D1 " D2. This concept
inclusion can be transferred to subsumption between existential and universal
role restrictions, and to subsumption between clauses.

Definition 2. A literal l1 is subsumed by a literal l2 (l1 "l l2) if either l1 = l2
or if l1 = Qr.D1 and l2 = Qr.D2 for Q ∈ {∃, ∀} and there is a clause ¬D1 �D2

in the current clause set. A clause C1 is subsumed by a clause C2 (C1 "C C2)
if every literal l1 ∈ C1 is subsumed by a literal l2 ∈ C2. A clause C is redundant
with respect to a clause set N , if N contains a clause C′ with C′ "C C. The
reduction of a clause C, red(C), is obtained from C by removing every literal
that is subsumed by another literal in C.

Example 1 (Subsumption and reduction). Assume D3 represents D1
D2, which
means we have the clauses ¬D3�D1 and ¬D3�D2. Then ¬A�B is subsumed by
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Tautology deletion: N ∪ {C *A * ¬A}
N

Subsumption deletion: N ∪ {C, D}
N ∪ {C}

provided C +C D

Reduction: N ∪ {C}
N ∪ {red(C)}

Fig. 2. Simplification rules

¬A�B�C, ∃r.D3 is subsumed by ∃r.D1, ∀r.D3�B is subsumed by ∀r.D1�A�B
and red(A � ∃r.D3 � ∃r.D2) = A � ∃r.D2.

In addition to subsumption and reduction, we also detect tautological clauses
which contain pairs of contradictory literals. This leads to a set of simplification
rules shown in Figure 2. We denote the calculusRALCH extended with these rules
by Rs

ALCH. It can be shown that these rules preserve soundness and refutational
completeness, as stated by the following theorem.

Theorem 3. Rs
ALCH is sound and refutationally complete and provides a deci-

sion procedure for ALCH-ontology satisfiability.

5 Forgetting Concept and Role Symbols

In this section, we describe the methods FA
ALCH and Fr

ALCH for forgetting respec-
tively concept symbols and role symbols. Both methods are based on Rs

ALCH.
For any definer D, we say D is connected to A, if D either co-occurs with A in

a clause or if D co-occurs in a clause with another definer D′ that is connected
to A. If the aim is to forget a concept symbol, we restrict the rules of Rs

ALCH
by adding the following conditions:

Resolution: A is the symbol we want to forget or a definer.
Role Propagation: D1 and D2 are connected to the symbol we want to forget.

For a concept symbol A, FA
ALCH denotes the calculus Rs

ALCH with these mod-
ifications for A. For any ontology O, FA

ALCH(O) denotes the ontology consisting
of the RBox of O and the TBox represented by clauses(O) saturated using the
rules of FA

ALCH, after removing all clauses containing A or positive definer literals
that are not role restrictions.

Theorem 4. Given an ontology O, FA
ALCH(O) is a clausal representation of

O−A, that is, FA
ALCH(O) ≡Σ O, where Σ = sig(T ) \ {A}, and every symbol in

FA
ALCH(O) is either a definer or in Σ.
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Role hierarchy:
s + r r + t

s + t

Universal role restriction monotonicity:

C * ∀r.D
C * ∀s.D

s + r ∈ O

Existential role restriction monotonicity:

C * ∃r.D
C * ∃s.D

r + s ∈ O

Role restriction resolution:

C0 * ∀r.D0 ... Cn * ∀r.Dn C * ∃r.D
C0 * ... * Cn * C

O |= D0 , ... ,Dn ,D + ⊥

provided (i) there is no role s with r + s ∈ O and (ii) C0 * ... * Cn * C does not
contain more than one negative definer literal.

Fig. 3. Rules for forgetting role symbol r

The method FA
ALCH provides a focused way to forget the concept symbol A.

In order to forget role symbols, a few modifications have to be made. Since role
symbols also occur in the RBox of an ontology, the RBox has to be processed as
well. Additionally, we need rules that compute all derivations on a selected role
symbol in a focused way.

The rules in Figure 3, together with the rules of RALCH, where the resolution
rule is restricted to only resolve on definer literals, constitute the method Fr

ALCH,
where r is the role symbol to be forgotten. The role hierarchy rule is the only rule
applied on the RBox of the input ontology, and makes implicit role inclusions
around the role symbol to be forgotten explicit. The universal and existential role
monotonicity rules compute inferences on the basis of clauses and RBox axioms.
If there is no role inclusion s " r, the universal role monotonicity rule cannot
be applied and we have to apply role propagation on that role exhaustively in
order to preserve all consequences when forgetting r.

If there is no role inclusion r " s, we can neither apply the existential role
restriction monotonicity rule nor role propagation. Instead we use the role re-
striction resolution rule in this case, which is similarly motivated as the resolution
rule, but works on larger sets of clauses. This rule is formulated to allow the use
of an external reasoner to check satisfiability of concepts (even though in theory
RALCH can be used for this as well).
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Non-cyclic definer elimination:

T ∪ {D + C}

T [D �→C]
provided D 	∈ sig(C)

Definer purification:

T

T [D �→�]
provided D occurs only positively in T

Cyclic definer elimination:

T ∪ {D + C[D]}

T [D �→νX.C[X]]
provided D ∈ sig(C[D])

Fig. 4. Rules for eliminating definer concept symbols

For any ontology O, we define Fr
ALCH(O) as the ontology consisting of the

RBox of O and the TBox represented by clauses(O) saturated using the rules
of Fr

ALCH, after removing all the axioms and clauses that use the symbol r or
contain a positive definer literal that is not a role restriction.

Theorem 5. For any ontology O, Fr
ALCH(O) is a clausal representation of O−r.

6 Definer Elimination

In Phase 2, the symbols introduced by the normal form transformation or the role
propagation rule are eliminated. Note that we only derive clauses that contain
at most one negative definer literal in Phase 1. This means we can for each
definer D group the clauses of the form ¬D �Ci, 0 ≤ i ≤ n, into a single axiom
of the form D "

�
0≤i≤n Ci that can be seen as a definition of the definer. This

definition can be used to undo the structural transformation and eliminate the
remaining definers. If a definition is cyclic, we use a fixpoint operator in the
result. Figure 4 shows the rules for definer elimination. The rules are justified
by Ackermann’s Lemma and its generalisation to the fixpoint case [1,16].

If the output of the algorithm contains fixpoints, we can represent it in ALCH
by extending the desired signature Σ by the cyclic definers. This is done by
omitting the cyclic definer elimination rule.

7 Examples

To illustrate the presented method this section includes two examples of respec-
tively forgetting concept and role symbols.

Example 2 (Forgetting Concept Symbols). Let O1 be the following ontology.

A " B � C B " ∃r.B C " ∀s.¬B r " s
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We want to compute O−B
1 . We obtain the following clause set clauses(O1).

1. ¬A �B � C 2. ¬B � ∃r.D1 3. ¬D1 �B

4. ¬C � ∀s.D2 5. ¬D2 � ¬B

We first apply the resolution rule.

6. ¬A �C � ∃r.D1 (resolution on 2 and 1)

7. ¬D1 � ∃r.D1 (resolution on 2 and 3)

8. ¬D2 � ¬A � C (resolution on 5 and 1)

We cannot resolve on clauses 3 and 5, since the conclusion would contain more
than one negative definer literal. We can however apply role propagation on
clauses 2 and 4, which makes further applications of the resolution rule possible.

��9. ¬B � ¬C � ∃r.D3 (role propagation on 2 and 4, id(D3) = {D1, D2})
��10. ¬D3 �D1

��11. ¬D3 �D2

��12. ¬D3 �B (resolution on 10 and 3)

��13. ¬D3 � ¬B (resolution on 11 and 5)

14. ¬D3 (resolution on 12 and 13)

Clause 14 makes clauses 10–13 become redundant, and existential role restriction
elimination on Clause 9 possible.

15. ¬B � ¬C (exist. role restr. elimination on 9 and 14)

Clause 15 makes Clause 9 become redundant. We saturate the remaining clauses.

��16. ¬A �C � ¬C (resolution on 15 and 1, tautology)

17. ¬D1 � ¬C (resolution on 15 and 3)

Only clauses that do not contain B or a positive definer are included in
FB
ALCH(O1). These are the clauses 4, 6, 7, 8, 14 and 17. Eliminating the de-

finers and expressing clauses as concept inclusions (Phases 2 and 3) results in
the following ontology O−B

1 :

A " C � ∃r.νX.(¬C 
 ∃r.X) C " ∀s.(¬A �C)

Example 3 (Forgetting Role Symbols). Let O2 contain the following axioms. We
want to compute O−r

2 .

A " ∃r.(A �B) B " ∀r.¬A

C " ∀r.¬B s " r

We obtain the following clausal representation clauses(O2):

1. ¬A � ∃r.D1 2. ¬D1 � A �B

3. ¬B � ∀r.D2 4. ¬D2 � ¬A

5. ¬C � ∀r.D3 6. ¬D3 � ¬B
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We observe that there is no role r′ with r " r′ and that D1 
 D2 
 D3 is
unsatisfiable, which means we can apply role restriction resolution on 1, 3 and 5:

7. ¬A � ¬B � ¬C (role restriction resolution on 1, 3 and 5)

Furthermore, we do have a role r′ with r′ " r, namely s which means we can
apply universal role restriction monotonicity:

8. ¬B � ∀s.D2 (universal role restriction monotonicity on 3)

9. ¬C � ∀s.D3 (universal role restriction monotonicity on 5)

Omitting all clauses containing r and applying Phases 2 and 3 leads to the
uniform interpolant O−r

2 consisting of the following axioms:

A 
B 
 C " ⊥ B " ∀s.¬A C " ∀s.¬B

8 Experimental Evaluation

In order to investigate the practicality of our approach, we implemented our
method in Scala1 using the OWL-API2 and evaluated it on ALCH-fragments of
ontologies from the NCBO Bioportal ontology repository.3 The ontologies of this
corpus are known to have diverse complexity, size and structure [7]. For the role
restriction resolution rule, we made use of the HermiT reasoner Version 1.3.6 [18]
for checking satisfiability of conjunctions of definer concepts.

It turns out that several additional optimisations are necessary to make the
method perform well on larger ontologies. Especially the role propagation rule
creates a lot of unnecessary derivations when applied in its unrestricted form.
This can be reduced by analysing the structure of the clause set before applying
the rule to see in which cases it actually leads to new derivations on the symbol
we want to forget. We further used module extraction in order to reduce the
size of the input ontologies. Given an ontology O, the �⊥∗-module of O over Σ
contains a subset of the axioms of O that preserves all consequences of O in Σ,
given O is consistent [17]. In order to compute OΣ , it is therefore sufficient to
apply our method on the �⊥∗-module of O over Σ. In order to keep the clauses
small, we further apply structural transformation to replace every subconcept C
in the TBox that does not contain the symbol we want to forget by a new
symbol X , which reduces the number of clauses a lot [12]. These symbols are
replaced by the original subconcepts in the final result. For a complete overview
of optimisations used we refer to the paper [10] on practical aspects of computing
uniform interpolants in ALC.

The corpus for our experiments was created as follows. From the NCBO Bio-
portal repository, we selected those ontologies that contain role hierarchies, and
for which parsing and module extraction using the OWL-API was possible. We
then restricted the selected ontologies to ALCH by removing all axioms that are

1 http://www.scala-lang.org
2 http://owlapi.sourceforge.net
3 http://bioportal.bioontology.org

http://www.scala-lang.org
http://owlapi.sourceforge.net
http://bioportal.bioontology.org
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not expressible in ALCH using simple reformulations. This led to a corpus of
115 ontologies, on which we ran our experiments.

The experiments were conducted on an Intel Core i5-2400 CPU with four cores
running at 3.10 GHz and 8 GB of RAM. Since our implementation does not make
use of multi-threading (except for computations of the HermiT reasoner), we ran
several experiments in parallel, taking care that experiments do not affect each
other due to use of resources.

We started with a series of experiments to evaluate the perfomance of for-
getting small sets of symbols, which may for example be interesting for pred-
icate hiding or for computing logical differences between ontology versions, as
mentioned in the Introduction. First, we evaluated the performance of concept
forgetting. For this, we randomly selected samples of 5, 50, 100 and 150 concept
symbols for each ontology and computed the result of forgetting these, with a
timeout set to 100 seconds. In 4.5% of the cases, our implementation was not
able to compute the uniform interpolant in the given time limit, and in 16.7% of
the remaining cases, fixpoints where used in the result. Even though it known
that uniform interpolants can be of size triple exponential of the size of the in-
put ontology [14], in our experiments uniform interpolants were much smaller.
In fact, in 62.8% of the cases where a uniform interpolant could be computed,
the uniform interpolant was smaller than the input ontology. In the worst case
however, the uniform interpolant was 104 times bigger than the input ontology.
The difference also becomes more apparent when looking at the axiom size.

On average, the average axiom size of the uniform interpolant was 1.8 times
bigger than in the input ontology, and the largest axiom size 10.3 times bigger.
This effect was to be expected since more information about the role structure of
the ontology and indirect concept relations has to be presented in the definitions
of fewer concepts. Considering that in the input ontologies the average axiom
size was only 3.48, and the average maximal axiom size was 15.21, this still
means most axioms were not overly complex. However, in the worst case, the
computed uniform interpolant contained an axiom that was 1,406 times bigger
than the largest one in the input.

Next we evaluated forgetting of role symbols. Since the role restriction resolu-
tion rule makes use of an external reasoner, and can have more than two clauses
as premises, one could expect that forgetting role symbols is much more expen-
sive than forgetting concept symbols. On the other hand, since most ontologies
have much fewer role symbols than concept symbols, it seems reasonable to con-
duct the experiments with smaller sets of symbols to be forgotten. We therefore
compared how forgetting 5 role symbols performed in comparison with forgetting
5 concept symbols, again with a timeout of 100 seconds. Forgetting role sym-
bols could be performed in 86.6% of the cases in the given time frame, whereas
forgetting concept symbols succeeded in 99.8% of the cases. The impact on the
ontology size was on the other hand less apparent. In only 3.8% of the cases
the uniform interpolant was actually bigger than the input ontology (10.5% for
concept symbols), and on average the interpolant was 93% of the size of the in-
put ontology (97% for concept symbols). The largest axiom per ontology was on
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Table 1. Results for computing uniform interpolants

|Σ| Timeouts Fixpoints Interpolant Axiom Size Max. Axiom Average
Size Size Duration

50 15.12% 6.99% 22.50% 799.37% 1,053.68% 24.2 sec.

100 18.38% 11.57% 45.21% 646.32% 847.36% 21.0 sec.

150 22.25% 13.58% 76.55% 837.66% 5,657.87% 23.7 sec.

All 18.38% 10.44% 45.74% 757.69% 2,309.08% 23.0 sec.

average 1.58 times larger than in the input ontology (1.18 for concept symbols),
and in the worst case 51.1 times larger (360.3 for concept symbols). One might
suspect that this result is partly due to the exploitation of role hierarchies using
the role restriction monotonicity rules. But it turned out that when ignoring the
RBox, the results were nearly unchanged, and even slightly better.

To evaluate our complete method, we computed uniform interpolants for small
signatures of size 50, 100 and 150. This corresponds to the applications exhibiting
hidden relations and ontology reuse mentioned in the Introduction, as well as
predicate hiding, if only a small part of the ontology is to be published.

For these uniform interpolants, usually a large number of symbols, including
both role and concept symbols, had to be forgotten from the input ontology,
even though module extraction already performs part of the job. For this rea-
son we set a higher timeout of 1,000 seconds. The results are summarised in
Table 1. It shows the percentage of experimental runs where a timeout occured,
the percentage in the remaining set where fixpoints were used in the result,
the ontology size, average axiom size and maximal axiom size of each uniform
interpolant compared to the respective values of the input ontologies, and the
average duration. In 18.38% of the cases the uniform interpolant could not be
computed in 1,000 seconds, and in only 10.44% of the remaining cases, it made
use of fixpoint operators. Despite the relatively high number of timeouts, the
average duration was only 23 seconds, and the cumulative distribution of dura-
tions shows (Figure 5), that around 1,600 out of 2,911 runs (more than half of
them) could be performed in less than a second. This suggests that computing
uniform interpolants is in most cases a cheap operation.

It is known that uniform interpolants of ALC-ontologies can be in the worst
case be triple exponential in the size of the input ontology [14]. When fixpoints
are used, the worst case complexity is better, but still double exponential. This
bound was not at all reflected in the empirical results, where the average in-
terpolant is less than half the size of the input ontology. In only 6.05% of the
cases the uniform interpolant was bigger (see also Figure 5). The axioms in the
uniform interpolant were usually around 8–10 times larger than in the input
ontology, which is still a reasonable size for ontology analysis considering that
in the input ontologies the average axiom size was less than 4.

It should be noted that randomly drawn samples of signatures not neccessar-
ily reflect realistic use cases. One might assume that it is most often desirable
to forget or preserve symbols that are closer related to each other, whereas
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Fig. 5. Cumulative distribution of durations of experimental runs and sizes of the
computed uniform interpolants

randomly selected symbols are more likely to be randomly distributed along the
whole ontology, which can contain thousands of symbols. We therefore believe
that our method would perform even better in realistic use cases.

9 Related Work

Most previous work has focused on uniform interpolation in simpler description
logics like EL and DL-Lite (see for example [8,22,15,13]). In [21,20], one of the
first approaches for a more expressive description logic, namely ALC, is pre-
sented. Their method uses a tableaux-reasoner to add inferences from the input
ontology in an incremental way. Regular checking for TBox-equivalence is used
to decide whether the uniform interpolant is computed and the process can stop.
By using tableaux-reasoning as a basis, the authors hope to make their method
easily extendable with known techniques from existing tableau-reasoners. Its less
focused way of deriving inferences make it however unfeasible for large ontologies.
In [14], it was discovered that the method is incomplete. The solution offered can
be seen as an extension of the original method, even though tableau-reasoning is
not stated explicitly. The resulting method can be used to compute all uniform
interpolants that can be finitely represented in ALC, but offers no solutions for
ontologies where the interpolant cannot be represented without fixpoints.

A more practical approach for forgetting concept symbols in ALC is pre-
sented in [12]. A resolution-based method influenced by [6] is used to derive
consequences on the selected concept symbol in a focused way. Experiments on
modified ontologies from the NCBO Bioportal ontology show the practicality of
this approach under certain restrictions. Since their approach does not use struc-
tural transformation, a calculus based on meta-rules is used to make resolutions
on nested concepts expressions possible. A disadvantage is that the method does
not terminate if infinite chains of nested role-restrictions are derivable. The so-
lution offered is to approximate interpolants by a given (lower) bound instead.
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A method using fixpoints for the description logic EL was presented in [15].
This method aims at forgetting concept symbols, and computes derivation graphs
for least common subsumers and most general subsumees of the concept to
be eliminated. This graph is analysed to decide whether fixpoint operators are
necessary in the result or not. In [13], an automata based representation is used
to make finite representations of uniform interpolants possible. The computed
automata can be used to decide whether a finite representation in pure EL is
possible and can be translated into corresponding EL-TBoxes in this case.

The method presented in this paper is an extension of a recently introduced
method for forgetting concept symbols inALC-ontologies [11], which is evaluated
in [10]. Both methods take ideas from second-order quantifier elimination tech-
niques presented in [4], especially from the resolution-based method SCAN [3]
and a method based on a generalised version of Ackermann’s Lemma [16]. The
latter technique has first been applied for description logics in [19]. Like the
methods presented in [12] and [15], the method presented in [11] focuses on
forgetting concept symbols. Our current method adds redundancy elimination
techniques and is the first practical algorithm for forgetting role symbols from
ontologies in expressive description logics.

10 Conclusion and Future Work

We presented a method for forgetting concept and role symbols from ALCH-
ontologies, or for computing uniform interpolants of ALCH-ontologies. Since
uniform interpolants cannot always be represented in a finite way, the resulting
ontology may use fixpoint operators, which can be simulated in ALCH by ex-
tending the signature of the interpolant. Our experimental results suggest that
the method is already applicable in a lot of real life situations.

An open point regards the use of fixpoints. One can construct easy examples
where our method computes an interpolant with fixpoints, even though the uni-
form interpolant can be represented in ALCH. Reasons for this are interactions
between different fixpoint expressions in the ontology and indirect knowledge
encoded in the remaining part of the ontology. For example, it is possible that
the cyclic relation expressed by a fixpoint expression is already covered by a
set of axioms that was not touched by the method, or that the fixpoint can be
represented in a finite way due to entailments from the remaining ontology. Of
course this leaves also the question on whether optimal use of fixpoint is actually
practical on large ontologies, since an approach focused solely on the symbols
we want to forget would not be sufficient here.
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Abstract. Propositional satisfiability (SAT) solvers, which typically operate us-
ing conjunctive normal form (CNF), have been successfully applied in many do-
mains. However, in some application areas such as circuit verification, bounded
model checking, and logical cryptanalysis, instances can have many parity (xor)
constraints which may not be handled efficiently if translated to CNF. Thus, ex-
tensions to the CNF-driven search with various parity reasoning engines rang-
ing from equivalence reasoning to incremental Gaussian elimination have been
proposed. This paper studies how stronger parity reasoning techniques in the
DPLL(XOR) framework can be simulated by simpler systems: resolution, unit
propagation, and parity explanations. Such simulations are interesting, for exam-
ple, for developing the next generation SAT solvers capable of handling parity
constraints efficiently.

1 Introduction

Propositional satisfiability (SAT) solver technology has developed rapidly providing
a powerful solution technique in many industrial application domains (see e.g. [1]).
The efficiency of SAT solvers is partly due to efficient data structures and algorithms
that allow very efficient Boolean constraint propagation and conflict-driven clause learn-
ing in conjunctive normal form (CNF). Straightforward Tseitin-translation [2] of
a problem instance to CNF may result in poor performance, especially in the
case of parity (xor) constraints, that can be abundant in applications such as circuit
verification, bounded model checking, and logical cryptanalysis. Although pure par-
ity constraints (linear arithmetic modulo two) can be efficiently solved with Gaussian
elimination, they can be very difficult for resolution [3] and thus for state-of-the-art
conflict-driven clause learning (CDCL) satisfiability solvers as their underlying proof
system is equivalent to resolution [4]. Due to this inherent hardness of parity constraints,
several approaches to combining CNF-level and xor-constraint reasoning have been
proposed [5,6,7,8,9,10,11,12,13,14,15,16,17,18] (see [19] for an alternative state-based
approach). In these approaches, CNF-driven search has been extended with various par-
ity reasoning techniques, ranging from plain unit propagation via equivalence reasoning
to Gaussian elimination. Stronger parity reasoning may prune the search space effec-
tively but often at the expense of high computational overhead, so resorting to simpler
but more efficiently implementable systems, e.g. unit propagation, may lead to better
performance.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 568–583, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we study to what extent such simpler systems can simulate stronger par-
ity reasoning engines in the DPLL(XOR) framework [13]. The DPLL(XOR), similar to
the DPLL(T ) approach [20] to Satisfiability Modulo Theories, is a framework to inte-
grate a parity reasoning engine to a CDCL SAT solver. The aim is to offer generalizable
results that provide a foundation for developing techniques to handle xor-constraints in
next generation SAT solvers. Instead of developing yet another propagation engine and
assessing it through an experimental comparison we believe that useful insights can
be acquired by considering unanswered questions on how some existing propagation
engines and proof systems relate to each other on a more fundamental level. Several ex-
perimental studies have already shown that SAT solvers extended with different parity
reasoning engines can outperform unmodified solvers on some instance families, so we
focus on more general results on the relationships between resolution, unit propagation,
equivalence reasoning, parity explanations, and Gauss-Jordan elimination, which is a
complete parity reasoning technique.

We show that resolution can simulate equivalence reasoning efficiently, which raises
a question whether significant reductions in solving time can be gained by integrating
specialized equivalence reasoning in a SAT solver since in theory it does not strengthen
the underlying proof system of the SAT solver. In practice, though, the performance
of the SAT solver is largely governed by variable selection and other heuristics that are
likely to be non-optimal, which may justify the pragmatic use of equivalence reasoning.

Although equivalence reasoning alone is not enough to cross the “exponential gap”
between resolution and Gauss-Jordan elimination, another light-weight parity reasoning
technique comes intriguingly close at simulating complete parity reasoning. We show
that parity explanations, an efficiently implementable conflict explanation technique,
on nondeterministic unit propagation derivations can simulate Gauss-Jordan elimina-
tion on a restricted yet practically relevant class of xor-constraint conjunctions. Choos-
ing assumptions and unit propagation steps nondeterministically may not be possible
in an actual implementation with greedy propagation strategies. However, we present
further experimental results indicating that the simulation may still work in an actual
implementation to some degree provided that parity explanations are stored as learned
xor-constraints as described in [16].

Additional xor-constraints can also be added to the formula in a preprocessing step in
order to enable unit propagation to deduce more implied literals, which has the benefit of
not requiring modifications to the SAT solver. We present a translation that enables unit
propagation to simulate parity reasoning systems stronger than equivalence reasoning
through the use of additional xor-constraints on auxiliary variables. The translation takes
into account the structure of the original conjunction of xor-constraints and can produce
compact formulas for sparsely connected instances. Using the translation to simulate full
Gauss-Jordan elimination with plain unit propagation requires an exponential number of
additional xor-constraints in the worst case. Recently, it has been shown in [21] that a
conjunction of xor-constraints does not have a polynomial-size “arc consistent” CNF-
representation, which implies it is not feasible to simulate Gauss-Jordan elimination by
unit propagation in the general case. On many instances, though, better solver perfor-
mance can be obtained by simulating a weaker parity reasoning system as it reduces
the size of the translation substantially. By applying our previous results on detecting
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whether unit propagation or equivalence reasoning is enough to deduce all implied liter-
als, the size of the translation can be optimized further. The experimental evaluation on a
challenging benchmark set suggests that the translation can lead to significant reduction
in the solving time for some instances.

2 Preliminaries

Let B = {⊥,�} be the set of truth values “false” and “true”. A literal is a Boolean
variable x or its negation ¬x (as usual, ¬¬x will mean x), and a clause is a disjunction
of literals. If φ is any kind of formula or equation, (i) vars(φ) is the set of variables
occurring in it, (ii) lits(φ) = {x,¬x | x ∈ vars(φ)} is the set of literals over vars(φ),
and (iii) a truth assignment for φ is a, possibly partial, function τ : vars(φ) → B. A
truth assignment satisfies (i) a variable x if τ(x) = �, (ii) a literal ¬x if τ(x) = ⊥, and
(iii) a clause (l1 ∨ .. ∨ lk) if it satisfies at least one literal li in the clause.

Resolution. Given two clauses, x ∨ C and ¬x ∨D for arbitrary disjunctions of literals
C and D, their resolvent is C ∨ D. Given a CNF formula φ, a resolution derivation on
φ is a finite sequence π = Ĉ1Ĉ2...Ĉm of clauses such that for all 1 ≤ i ≤ m it holds
that either (i) Ĉi is a clause in φ, or (ii) Ĉi is the resolvent of two clauses, Ĉj and Ĉk,
in π with 1 ≤ j, k < i. A clause C is resolution derivable from φ if there is resolution
derivation on φ including C. The formula φ is unsatisfiable if and only if the empty
clause is resolution derivable from φ.

Xor-constraints. An xor-constraint is an equation of the form x1 ⊕ ... ⊕ xk ≡ p,
where the xis are Boolean variables and p ∈ B is the parity.1 We implicitly assume
that duplicate variables are always removed from the equations, e.g. x1 ⊕ x2 ⊕ x1 ⊕
x3 ≡ � is always simplified into x2 ⊕ x3 ≡ �. If the left hand side does not have
variables, then it equals to ⊥; the equation ⊥ ≡ � is a contradiction and ⊥ ≡ ⊥ a
tautology. We identify the xor-constraint x ≡ � with the literal x, x ≡ ⊥ with ¬x,
⊥ ≡ ⊥ with �, and � ≡ ⊥ with ⊥. A truth assignment τ satisfies an xor-constraint
x1⊕...⊕xk ≡ p if τ(x1)⊕...⊕τ(xk) = p. We use D [x/Y ] to denote the xor-constraint
obtained from D by substituting the variable x in it with Y . For instance, (x1 ⊕ x2 ⊕
x3 ≡ �) [x1/x2 ⊕�] = x2 ⊕�⊕ x2 ⊕ x3 ≡ � = x3 ≡ ⊥. The straightforward CNF
translation of an xor-constraint D is denoted by cnf(D); for instance, cnf(x1 ⊕ x2 ⊕
x3 ≡ ⊥) = (¬x1∨¬x2 ∨¬x3)∧ (¬x1 ∨x2∨x3)∧ (x1 ∨¬x2∨x3)∧ (x1 ∨x2∨¬x3).
We define the linear combination of two xor-constraints, D = (x1 ⊕ ... ⊕ xk ≡ p) and
E = (y1 ⊕ ... ⊕ yl ≡ q), by D + E = (x1 ⊕ ... ⊕ xk ⊕ y1 ⊕ ... ⊕ yl ≡ p ⊕ q). An
xor-constraint E = (x1 ⊕ ...⊕ xk ≡ p) with k ≥ 1 is a prime implicate of a satisfiable
xor-constraint conjunction φxor if (i) φxor |= E but (ii) φxor 
|= E′ for all xor-constraints
E′ for which vars(E′) is a proper subset of vars(E).

A cnf-xor formula is a conjunction φor ∧ φxor, where φor is a conjunction of clauses
and φxor is a conjunction of xor-constraints. A truth assignment satisfies φor ∧ φxor if it
satisfies every clause and xor-constraint in it.

1 The correspondence of xor-constraints to the “xor-clause” representation used e.g. in
[13,15,16] is straightforward: x1⊕ ...⊕xk ≡ � corresponds to the xor-clause (x1⊕ ...⊕xk)
and x1 ⊕ ... ⊕ xk ≡ ⊥ to (x1 ⊕ ...⊕ xk ⊕�).
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2.1 DPLL(XOR) and Xor-Reasoning Modules

We are interested in solving the satisfiability of cnf-xor formulas of the form φor ∧ φxor

defined above. Similarly to the DPLL(T ) approach for Satisfiability Modulo Theories,
see e.g. [20,22], the DPLL(XOR) approach [13] for solving cnf-xor formulas consists
of (i) a conflict-driven clause learning (CDCL) SAT solver that takes care of solving
the CNF-part φor, and (ii) an xor-reasoning module that handles the xor-part φxor. The
CDCL solver is the master process, responsible of guessing values for the variables
according to some heuristics (“branching”), performing propagation in the CNF-part,
conflict analysis, restarts etc. The xor-reasoning module receives variable values, called
xor-assumptions, from the CDCL solver and checks (i) whether the xor-part can still be
satisfied under the xor-assumptions, and (ii) whether some variable values, called xor-
implied literals, are implied by the xor-part and the xor-assumptions. These checks can
be incomplete, like in [13,15] for the satisfiability and in [13,15,12] for the implication
checks, as long as the satisfiability check is complete when all the variables have val-
ues. The very basic interface for an xor-reasoning module can consist of the following
methods:

– init(φxor) initializes the module with φxor. It may return “unsat” if it finds φxor

unsatisfiable, or a set of xor-implied literals, i.e. literals l̂ such that φxor |= l̂ holds.
– assume(l) is used to communicate a new variable value l deduced in the CNF

solver part to the xor-reasoning module. This value, called xor-assumption literal
l, is added to the list of current xor-assumptions. If [l1, ..., lk] are the current xor-
assumptions, the module then tries to (i) deduce whether φxor ∧ l1 ∧ ...∧ lk became
unsatisfiable, i.e. whether an xor-conflict was encountered, and if this was not the
case, (ii) find xor-implied literals, i.e. literals l̂ for which φxor∧l1∧...∧lk |= l̂ holds.
The xor-conflict or the xor-implied literals are then returned to the CNF solver part
so that it can start conflict analysis (in the case of xor-conflict) or extend its current
partial truth assignment with the xor-implied literals.
In order to facilitate conflict-driven backjumping and clause learning in the CNF
solver part, the xor-reasoning module has to provide a clausal explanation for each
xor-conflict and xor-implied literal it reports. That is,
• if φxor ∧ l1 ∧ ...∧ lk is deduced to be unsatisfiable, then the module must report

a (possibly empty) clause (¬l′1 ∨ ... ∨ ¬l′m) such that (i) each l′i is an xor-
assumption or an xor-implied literal, and (ii) φxor ∧ l′1 ∧ ...∧ l′m is unsatisfiable
(i.e. φxor |= (¬l′1 ∨ ... ∨ ¬l′m)); and

• if it was deduced that φxor ∧ l1 ∧ ... ∧ lk |= l̂ for some l̂, then the module must
report a clause (¬l′1 ∨ ... ∨ ¬l′m ∨ l̂) such that (i) each l′i is an xor-assumption
or an xor-implied literal reported earlier, and (ii) φxor ∧ l′1 ∧ ... ∧ l′m |= l̂,
i.e. φxor |= (¬l′1 ∨ ... ∨ ¬l′m ∨ l̂).

– backtrack() retracts the latest xor-assumption and all the xor-implied literals de-
duced after it.

Naturally, variants of this interface are easily conceivable. For instance, a larger set of
xor-assumptions can be given with the assume method at once instead of only one.

For xor-reasoning modules based on equivalence reasoning, see [13,15]. The Gaus-
sian and Gauss-Jordan elimination processes in [12,14,23,18] can also be easily seen as
xor-reasoning modules.
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x ≡ � D

D [x/�]
x ≡ ⊥ D

D [x/⊥]
x⊕ y ≡ ⊥ D

D [x/y]

x⊕ y ≡ � D

D [x/y ⊕�]
⊕-Unit+ ⊕-Unit− ⊕-Eqv+ ⊕-Eqv−

Fig. 1. Inference rules of Subst; x and y are variables,D is an xor-constraint, and x occurs inD

x⊕ z ⊕ w ≡ ⊥

z ⊕ w ≡ �

x ≡ �

t ≡ ⊥

x⊕ y ⊕ z ≡ �

y ⊕ z ≡ ⊥

v8

cut W

y ⊕ w ⊕ t ≡ �

y ⊕ w ≡ �

x ⇒ ¬z ∨ ¬w
x ⇒ z ∨ w

x ⇒ y ∨ w
x ⇒ ¬y ∨ ¬w

y ∨ ¬w ∨ ¬t
¬y ∨ w ∨ ¬t
¬y ∨ ¬w ∨ t
y ∨ w ∨ t

¬x ∨ ¬z ∨ ¬w
x ∨ z ∨ ¬w
x ∨ ¬z ∨ w
¬x ∨ z ∨ w

x ⇒ w ∨ ¬t
x ⇒ ¬w ∨ ¬t

x ⇒ ¬t

x ⇒ y ∨ ¬z
x ⇒ ¬y ∨ z

x ∨ ¬y ∨ ¬z
¬x ∨ y ∨ ¬z
¬x ∨ ¬y ∨ z
x ∨ y ∨ z

cut W

(a) a Subst-derivation (b) the resolution derivation for an implicative
explanation (the dotted arrows)

Fig. 2. Subst-derivations and resolution

3 Equivalence Reasoning and Resolution

We know that there exist infinite families of xor-constraint conjunctions φxor whose
CNF translations

∧
D∈φxor

cnf(D) have no polynomial size resolution proofs [3]. On
the other hand, Gaussian elimination [14] can solve the satisfiability of xor-constraint
conjunctions in polynomial time (and Gauss-Jordan [23,18] can detect all xor-implied
literals as well). As these elimination procedures can be computationally heavy, more
light-weight “equivalence reasoning” systems have been proposed [6,10,13,15].

Here we study how the equivalence reasoning systems Subst [13] and EC [15] relate
to resolution. These systems are equally powerful in detecting unsatisfiability and xor-
implied literals (we’ll use Subst due to its notational simplicity); they are more powerful
than unit propagation but weaker than Gaussian/Gauss-Jordan elimination.

The Subst deduction system consists of the inference rules in Fig. 1. Given a con-
junction ψ of xor-constraints, a Subst-derivation on it is a vertex-labeled directed acyclic
graph G = 〈V,E, L〉 such that for each vertex v ∈ V it holds that (i) if v has no
incoming edges, then L(v) is an xor-constraint in ψ, and (ii) otherwise v has two in-
coming edges, say from v′ and v′′, and L(v) is obtained from L(v′) and L(v′′) by
applying one of the inference rules. As an example, Fig. 2(a) shows a Subst-derivation
on (x ⊕ y ⊕ z ≡ �) ∧ (x ⊕ z ⊕ w ≡ ⊥) ∧ (y ⊕ w ⊕ t ≡ �) ∧ (x), please ignore the
“Cut W ” line for now.

If we can derive an xor-constraint D with Subst, we can derive (in the CNF translated
instance) a CNF translation of D with resolution relatively compactly:

Theorem 1. Assume a Subst-derivation G = 〈V,E, L〉 on a conjunction ψ of xor-
constraints. There is a resolution derivation π on

∧
D∈ψ cnf(D) such that (i) if v ∈ V
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and L(v) 
= �, then the clauses cnf(L(v)) occur in π, and (ii) π has at most |V |2m−1

clauses, where m is the number of variables in the largest xor-constraint in ψ.

A similar result is already observed in [6] when restricted on binary and ternary xor-
constraints. Recalling that for each xor-constraint D the CNF translation cnf(D) is
exponentially large in the number of variables in D, we can say that resolution simu-
lates Subst-derivations “pseudo-linearly”. Furthermore, the natural encodings in many
application domains (e.g. logical cryptanalysis) seem to employ xor-constraints with
only few (typically 3) variables only.

3.1 Implicative Explanations

In the DPLL(XOR) framework, the clausal explanations for the xor-implied literals and
xor-conflicts are vital for the CDCL solver when it performs its conflict analysis and
clause learning. We next show that the implicative explanation procedure described in
[13] can also be simulated with resolution, and discuss the consequence of this result.

Like the conflict resolution methods in modern CNF-level CDCL solvers, the expla-
nation method is based on taking certain cuts in derivations. Assume a Subst-derivation
G = 〈V,E, L〉 on φxor ∧ l1 ∧ ... ∧ lk, where φxor is a conjunction of xor-constraints and
l1, ..., lk are some xor-assumption literals. For a non-input vertex v ∈ V , a cut for v is a
partitioning (Va, Vb) of V such that (i) v ∈ Vb, and (ii) if v′ ∈ V is an input vertex and
there is a path from v′ to v, then v′ ∈ Va. As an example, the line “cut W ” shows a cut
for the vertex v8 in Fig. 2(a). The implicative explanation of the vertex v under the cut
W is the conjunction Expl(v,W ) = fW (v), there fW is recursively defined as:

E1 If u is an input vertex with L(u) ∈ φxor, then fW (u) = �.
E2 If u is an input vertex with L(u) ∈ {l1, ..., lk}, then fW (u) = L(u).
E3 If u is a non-input vertex in Va, then fW (u) = L(u).
E4 If u is a non-input vertex in Vb, then fW (u) = fW (u1) ∧ fW (u2), where u1 and

u2 are the source vertices of the two edges incoming to u.

If the cut is cnf-compatible, meaning that all the vertices in Va having an edge to a vertex
in Vb are either (i) xor-constraints in φxor or (ii) unary xor-constraints, then the expla-
nation Expl(v,W ) is a conjunction of literals and the clausal explanation of the xor-
implied literal L(v) returned to the CDCL part is Expl(v,W ) ⇒ L(v). As an example,
for the vertex v8 and cnf-compatible cut W in Fig. 2(a), we have Expl(v8,W ) = (x)
and the clausal explanation is thus x ⇒ ¬t, i.e., (¬x ∨ ¬t).

We now prove that all such clausal explanations can in fact be derived with resolution
from the CNF translation of the original xor-constraints φxor only, without the use of
xor-assumptions. To illustrate some parts of the construction, Fig. 2(b) shows how the
clausal explanation x ⇒ ¬t above can be derived.

Theorem 2. Assume a Subst-derivation G = 〈V,E, L〉 on φxor∧ l1∧· · ·∧ lk and a cnf-
compatible cut W = (Va, Vb). There is a resolution derivation π on

∧
D∈φxor

cnf(D)
such that (i) for each vertex v ∈ Vb with L(v) 
= �, π includes all the clauses in
{Expl(v,W ) ⇒ C | C ∈ cnf(L(v))}, and (ii) π has at most |V |2m−1 clauses, where
m is the number of variables in the largest xor-constraint in φxor.
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As modern CDCL solvers can be seen as resolution proof producing engines [24,25], a
DPLL(XOR) solver with Subst or EC as the xor-reasoning module can thus also be seen
as such engine: the clausal explanations used by the CDCL part can be first obtained
with resolution and then treated as normal clauses when producing the resolution proof
corresponding to the execution of the CDCL part. And, recalling that modern CDCL
solvers can polynomially simulate resolution [4], we have the following:

Corollary 1. For cnf-xor instances with fixed width xor-constraints, the underlying
proof system of a DPLL(XOR) solver using Subst or EC as the xor-reasoning mod-
ule is polynomially equivalent to resolution.

4 Parity Explanations and Gauss-Jordan Elimination

A key observation made in [16] was that the inference rules in Fig. 1 (and some others,
as explained in [16]) could not only be read as “the premises imply the consequence”
but also as “the linear combination of premises equals the consequence”. This led to the
introduction of an improved explanation method, called parity explanations, which can
produce (i) smaller clausal explanations, and (ii) new xor-constraints that are logical
consequences of the original ones. As shown in [16], even when applied on a very weak
deduction system UP, which only uses the unit propagation rules⊕-Unit+ and⊕-Unit−

in Fig. 1, the parity explanation method can quickly detect the unsatisfiability of some
instances whose CNF translations have no polynomial size resolution refutations [3].
We now strengthen this result and prove that parity explanations on UP-derivations can
in fact produce xor-constraints corresponding to the explanations produced by Gauss-
Jordan elimination, provided that one can make the xor-assumptions suitably and each
variable in the xor-constraint conjunction occurs at most three times (Thm. 3 below).

Formally, assume a UP-derivation G = 〈V,E, L〉 for φxor ∧ l1 ∧ ... ∧ lk. For each
non-input vertex v of G, and each cut W = (Va, Vb) of G for v, the parity explanation
of v under W is Expl⊕(v,W ) = fW (v), there fW is recursively defined as earlier for
Expl(v,W ) except that the case “E4” is replaced by

E4 If u is a non-input node in Vb, then fW (u) = fW (u1) + fW (u2), where u1 and u2

are the source nodes of the two edges incoming to u.

As shown in [16], φxor |= Expl⊕(v,W ) + L(v) and the clausal explanation for L(v)
can be obtained from cnf(Expl⊕(v,W )+L(v)). As an example, the parity explanation
Expl⊕(v8,W ) of the vertex v8 in Fig. 2(a) is (⊥ ≡ ⊥), i.e. �, and indeed (x⊕ y⊕ z ≡
�)∧ (x⊕ z ⊕w ≡ ⊥) ∧ (y ⊕w⊕ t ≡ �) |= (⊥ ≡ ⊥) +L(v8) = (t ≡ ⊥). Note that
x does not occur in the parity explanation or in the clausal explanation (¬t) returned.

For instances in which each variable occurs at most three times we can prove that,
by selecting the xor-assumptions appropriately, parity explanations can in fact produce
all prime implicate xor-constraints:

Theorem 3. Let φxor be a conjunction of xor-constraints such that each variable occurs
in at most three xor-constraints.

If φxor is unsatisfiable, then there is a UP-derivation on φxor ∧y1∧ ...∧ym with some
y1, ..., ym ∈ vars(φxor), a vertex v with L(v) = (⊥ ≡ �) in it, and a cut W for v such
that Expl⊕(v,W ) = (⊥ ≡ ⊥) and thus Expl⊕(v,W ) + L(v) = (⊥ ≡ �).
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If φxor is satisfiable and φxor |= (x1⊕ ...⊕xk ≡ p), then there is a UP-derivation on
φxor ∧ (x1 ≡ p1) ∧ ... ∧ (xk ≡ pk) ∧ y1 ∧ ... ∧ ym with some y1, ..., ym ∈ vars(φxor) \
{x1, ..., xk}, a vertex v with L(v) = (⊥ ≡ �) in it, and a cut W for v such that
Expl⊕(v,W ) + L(v) = (x′1 ⊕ ... ⊕ x′l ≡ p′) for some {x′1, ..., x′l} ⊆ {x1, ..., xk} and
p′ ∈ {⊥,�} such that φxor |= (x′1 ⊕ ... ⊕ x′l ≡ p′).

Now observe that the clausal explanations provided by the complete Gauss-Jordan
elimination propagation engine of [18] are based on prime implicate xor-constraints
(this follows from the fact that reduced row-echelon form matrices are used and the
explanations are derived from the rows of such matrices). As a consequence, for in-
stances in which each variable occurs at most three times, parity explanations on UP-
derivations can in theory simulate the complete Gauss-Jordan elimination propagation
engine [18] in the DPLL(XOR) framework if we allow unlimited restarts in the CDCL
part and xor-constraint learning [16]: we can first learn all the linear combinations that
the Gauss-Jordan engine would use to detect xor-implied literals and conflicts.

4.1 Experimental Evaluation

To evaluate the practical applicability of parity explanations further and to com-
pare it to the xor-reasoning module using incremental Gauss-Jordan elimination pre-
sented in [18], we used our prototype solver based on minisat [26] (version 2.0
core) extended with four different xor-reasoning modules: (i) UP deduction system
with implicative explanations, (ii) UP with parity explanations (UP+PEXP), (iii) UP
with parity explanations and xor-constraint learning (UP+PEXP+learn) as described
in [16], and (iv) incremental Gauss-Jordan elimination with biconnected compo-
nent decomposition (UP+Gauss-Jordan) as described in [18]. We ran the solver con-
figurations on two benchmark sets. The first benchmark set consists of instances
in “crafted” and “industrial/application” categories of the SAT Competitions 2005,
2007, and 2009 as well as all the instances in the SAT Competition 2011 (see
http://www.satcompetition.org/). We applied the xor-constraint extraction
algorithm described in [14] to these CNF instances and found a large number of in-
stances with xor-constraints. To get rid of some “trivial” xor-constraints, we eliminated
unary clauses and binary xor-constraints from each instance by unit propagation and
substitution, respectively. After this easy preprocessing, 474 instances (with some du-
plicates due to overlap in the competitions) having xor-constraints remained. In the
second benchmark set we focus on the domain of logical cryptanalysis by modeling
a “known cipher stream” attack on stream cipher Hitag2. The task is to recover the
full key when a small number of cipher stream bits (33-38 bits, 51 instances / stream
length) are given. In the attack, the IV and a number of cipher stream bits are given.
There are only a few more generated cipher stream bits than key bits, so a number of
keys probably produce the same prefix of the cipher stream.

The results for the SAT Competition benchmarks are shown in Fig. 3 and the re-
sults for Hitag2 in Fig. 4. The number of solved instances is shown in Fig. 5. For both
benchmark sets, parity explanations without learning do not seem to reduce the num-
ber of decisions nor the solving time. However, storing parity explanations as learned
xor-constraints results in a significant reduction in the number of decisions and this

http://www.satcompetition.org/


576 T. Laitinen, T. Junttila, and I. Niemelä
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Fig. 3. Comparing parity explanations and Gauss-Jordan elimination on SAT 05-11 instances
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Fig. 4. Comparing parity explanations and Gauss-Jordan elimination on Hitag2 instances

is also reflected in the solving time. Most variables have at most three occurrences
(98% of variables in Hitag2, and 97% in SAT instances), so in most cases a parity ex-
planation that is equivalent to the “Gauss-Jordan explanation” could be found using
nondeterministic unit propagation. The SAT competition benchmarks has 64 instances
consisting entirely of parity constraints which were of course solved without branching
by Gauss-Jordan elimination. The results of the other instances that require searching
on the CNF part illustrate that when parity explanations are learned, many instances can
be solved much faster than with Gauss-Jordan elimination. It remains open whether the
theoretical power of parity explanations could be exploited to an even higher degree by
employing different propagation heuristics.

SAT Competition Hitag2 Grain A5/1 Trivium
2005 2007 2009 2011 all

instances 123 100 140 111 474 301 357 640 1020
UP 79 66 82 41 268 264 305 605 879

UP+PEXP 78 70 85 48 281 257 301 610 867
UP+PEXP+learn 96 69 88 48 301 274 257 635 909

UP+Gauss-Jordan 97 61 82 39 279 115 84 640 880

Fig. 5. Number of instances solved within the time limit (3600s)
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We also evaluated the performance of the four xor-reasoning modules on three other
ciphers, Grain, A5/1, and Trivium, by encoding a similar “known cipher stream” attack
as with Hitag2 above. For Grain, the simplest method, plain unit propagation, works
the best. Gauss-Jordan elimination does not reduce the number of decisions enough to
compensate for the computational overhead of complete parity reasoning. Parity expla-
nations reduce the number of decisions slightly, but the small computational overhead
is still too much. For A5/1, the solver using Gauss-Jordan elimination works the best.
The solvers using parity explanations perform better than plain unit propagation, too,
but not as well as the solver with Gauss-Jordan elimination. For Trivium, the solver
using parity explanations with learning solves the most instances.

5 Simulating Stronger Parity Reasoning with Unit Propagation

An efficient translation for simulating equivalence reasoning with unit propagation has
been presented in our earlier work [17]. We now present a translation that adds re-
dundant xor-constraints and auxiliary variables in the problem guaranteeing that unit
propagation is enough to always deduce all xor-implied literals in the resulting xor-
constraint conjunction. The translation thus effectively simulates a complete parity rea-
soning engine based on incremental Gauss-Jordan elimination presented in [18,23]. The
translation can be seen as an arc-consistent encoding of the xor-reasoning theory (also
compare to the eager approach to SMT [22]). The translation is based on ensuring that
each relevant linear combination of original variables has a corresponding “alias” vari-
able, and adding xor-constraints that enable unit propagation to infer values of “alias”
variables when corresponding linear combinations are implied. The translation, which
is exponential in the worst-case, can be made polynomial by bounding the length of
linear combinations to consider. While unit propagation may not be able then to deduce
all xor-implied literals, the overall performance can be improved greatly.

The redundant xor-constraint conjunction, called a GE-simulation formula ψ, added
to φxor by the translation should satisfy the following: (i) the satisfying truth assign-
ments of φxor are exactly the ones of φxor∧ψ when projected to vars(φxor), and (ii) if φxor

is satisfiable and φxor∧l1∧· · ·∧lk |= l̂, then l̂ is UP-derivable from (φxor∧ψ)∧l1∧· · ·∧lk,
and (iii) if φxor is unsatisfiable, then (φxor ∧ ψ) $UP (⊥ ≡ �).

The translation k-Ge, presented in Fig. 7, where k stands for the maximum length of
linear combinations to consider, “eliminates” each variable of the xor-constraint con-
junction φxor at a time and adds xor-constraints produced by the subroutine transla-
tion ptable , presented in Fig. 6. Although the choice of variable to eliminate does
not affect the correctness of the translation, we employ a greedy heuristic to pick a
variable that shares xor-constraints with the fewest variables because the number of
xor-constraints produced in the subroutine ptable is then the smallest. The translation
ptable(Y, ψ, k) adds “alias” variables and at most O(22k) + |φxor| xor-constraints to ψ
with the aim to simulate Gauss-Jordan row operations involving at most k variables in
the xor-constraints of the eliminated variable (the set Y ) and no other variables. Pro-
vided that the maximum length of linear combinations to consider, the parameter k, is
high enough, the resulting xor-constraint conjunction ψ ∧ ptable(Y, ψ, k) has a UP-
propagation table for the set of variables Y ⊆ vars(φxor), meaning that the following
conditions hold for all Y ′, Y1, Y2 ⊆ Y :
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ptable(Y, φxor, k): start with φ′
xor = φxor

1. for each Y ′ ⊆ Y such that |Y ′| ≤ k and Y ′ 	= ∅
2. if there is no a ∈ vars(φ′

xor) such that (a⊕ Y ′ ≡ ⊥) is in φ′
xor

3. φ′
xor ← φ′

xor ∧ (a⊕ Y ′ ≡ ⊥) where a is a new “alias” variable for Y ′

4. if (Y ′ ≡ p) is in φ′
xor and (a ≡ p) is not in φ′

xor where p ∈ {⊥,�}
5. φ′

xor ← φ′
xor ∧ (a ≡ p)

6. for each pair of subsets Y1, Y2 ⊆ Y such that |Y1| ≤ k, |Y2| ≤ k, and Y1 	= Y2
7. if there is an “alias” variable a3 ∈ vars(φ′

xor) such that (a3 ⊕ (Y1 ⊕ Y2) ≡ ⊥) is in φ′
xor

8. a1 ← the “alias” variable v such that (v ⊕ Y1 ≡ ⊥) is in φ′
xor

9. a2 ← the “alias” variable v such that (v ⊕ Y2 ≡ ⊥) is in φ′
xor

10. if (a1 ⊕ a2 ⊕ a3 ≡ ⊥) is not in φ′
xor

11. φ′
xor ← φ′

xor ∧ (a1 ⊕ a2 ⊕ a3 ≡ ⊥)
12. return φ′

xor \ φxor

Fig. 6. The ptable translation

k-Ge(φxor): start with φ′
xor = φxor and V = vars(φxor)

1. while (V 	= ∅):
2. Let clauses(x, φ′

xor) = {D | D in φ′
xor and x ∈ vars(D)}

3. Let x be a variable in V minimizing | vars(clauses(x,φ′
xor)) ∩ V |

4. φ′
xor ← φ′

xor ∧ ptable(vars(clauses(x, φ′
xor)) ∩ V, φ′

xor, k)
5. Remove x from V
6. return φ′

xor\φxor

Fig. 7. The k-Ge translation

PT1: There is an “alias” variable for every non-empty subset of Y : if Y ′ is a non-empty
subset of Y , then there is a variable a ∈ vars(ψ) such that (a⊕ Y ′ ≡ ⊥) is in ψ,
where (a⊕ Y ′ ≡ ⊥) for Y ′ = {y′1, . . . , y′n} means (a⊕ y′1 ⊕ · · · ⊕ y′n ≡ ⊥).

PT2: There is an xor-constraint for propagating the symmetric difference of any two
subsets of Y : if Y1 ⊆ Y and Y2 ⊆ Y , then there are variables a1, a2, a3 ∈
vars(ψ) such that (a1 ⊕ Y1 ≡ ⊥), (a2 ⊕ Y2 ≡ ⊥), (a3 ⊕ (Y1 ⊕ Y2) ≡ ⊥), and
(a1 ⊕ a2 ⊕ a3 ≡ ⊥) are in ψ.

PT3: Alias variables of original xor-constraints having only variables of Y are as-
signed: if (Y ′ ≡ p) is an xor-constraint in ψ such that Y ′ ⊆ Y , then there is
a variable a ∈ vars(ψ) such that (a⊕ Y ′ ≡ ⊥) it holds that (a ≡ p) is in ψ

A UP-propagation table for a set of variables Y in ψ guarantees that if some alias
variables a1, . . . , an ∈ vars(ψ) binding the variable sets Y1, . . . , Yn ⊆ Y are assigned,
the alias variable a ∈ vars(ψ) bound to the linear combination (Y1 ⊕ · · · ⊕ Yn) is
UP-deducible: ψ ∧ (a1 ≡ p1) ∧ · · · ∧ (an ≡ pn) $UP (a ≡ p1 ⊕ · · · ⊕ pn).

Provided that sufficiently long linear combinations are considered (the parameter k),
UP-propagation tables added by the k-Ge enable unit propagation to always deduce all
xor-implied literals, and thus simulate a complete Gauss-Jordan propagation engine:

Theorem 4. If φxor is an xor-constraint conjunction, then k-Ge(φxor) is a GE-
simulation formula for φxor provided that k = | vars(φxor)|.
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Fig. 8. Constraint graph of an xor-constraint conjunction

Example 1. Consider the xor-constraint conjunction φ
(0)
xor = (x1 ⊕x6 ⊕x7 ≡ �) ∧

(x2 ⊕x3 ⊕x7 ≡ �)∧(x2 ⊕ x5⊕ x8 ≡ ⊥)∧(x3 ⊕x4 ⊕x5 ≡ �)∧(x4 ⊕ x6⊕ x8 ≡ ⊥)
illustrated in Fig. 8. It is clear that φxor |= (x1 ≡ �) and φxor 
$UP (x1 ≡ �).

With the elimination order (x1, x7, x4, x5, x2, x3, x6, x8) and k = 4, the translation

k-Ge first extends φxor to φ
(1)
xor with the xor-constraints in ptable({x1, x6, x7} , φxor, k).

These include (i) the “alias binding constraints” a1⊕x1 ≡ ⊥, a6,7⊕x6 ⊕x7 ≡ ⊥,
a1,6,7⊕ x1⊕ x6⊕ x7 ≡ ⊥, (ii) the “linear combination constraint” a1⊕ a6,7⊕ a1,6,7 ≡
⊥, and (iii) the “original constraint binder” a1,6,7 ≡ �, where ai,... is the alias for the
subset {xi, ...} of the original variables. After unit propagation, these constraints imply
the binary constraint a1⊕ a6,7 ≡ � allowing us to deduce x1 from the parity a6,7 of x6

and x7.
The translation next “eliminates” x7 and adds ptable({x2, x3, x6, x7} , φ

(1)
xor , k) in-

cluding the linear combination constraint a6,7⊕ a2,3,7⊕ a2,3,6 ≡ ⊥ and the original
constraint binder a2,3,7 ≡ �, propagating the binary constraint a6,7⊕ a2,3,6 ≡ � al-
lowing us to deduce the parity of {x6, x7} from the parity of {x2, x3, x6}.

Eliminating x4 adds ptable({x3, x4, x5, x6, x8} , φ
(2)
xor , k), including the constraints

a3,4,5⊕ a4,6,8⊕ a3,5,6,8 ≡ ⊥, a3,4,5 ≡ �, and a4,6,8 ≡ �, propagating a3,5,6,8 ≡ �.

Eliminating x5 adds ptable({x2, x3, x5, x6, x8} , φ
(3)
xor , k) (observe that x6 is in the

set as it occurs in the constraint a3,5,6,8⊕x3 ⊕x5 ⊕x6 ⊕x8 ≡ ⊥ added in the previous
step), including a2,5,8⊕ a2,3,6⊕ a3,5,6,8 ≡ ⊥ and a2,5,8 ≡ ⊥.

At this point we could already unit propagate x1 ≡ � (from a3,5,6,8 ≡ �, a2,5,8 ≡
⊥, and a2,5,8⊕ a2,3,6⊕ a3,5,6,8 ≡ ⊥ we get a2,3,6 ≡ � and from this then a6,7 ≡ ⊥
and finally a1 ≡ �, i.e. x1 ≡ �).

Note that the translation 3-Ge(φxor) is not a GE-simulation formula for φxor because
ptable does not add “alias” variables for any 4-subset of original variables and the
linear combination of any two original xor-constraints has at least four variables.

The translation ptable as presented in 6 for illustration purposes adds new “alias”
variables for all relevant linear combinations involving at most k original variables.
However, in an actual implementation, the original variables of the xor-constraint con-
junction can be used as “alias” variables. For example, the variable x1 in the xor-
constraint (x1 ⊕ x2 ⊕ x3 ≡ �) can be used as an “alias” variable for (x2 ⊕ x3 ≡ ⊥).

The translation k-Ge is a generalization of the translation Eq�, which simulates
equivalence reasoning with unit propagation, presented in [17]. Provided that original
variables are treated as “alias” variables as above and all xor-constraints have at most
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three variables, the translation 2-Ge, that considers only (in)equivalences between pairs
of variables, enables unit propagation to simulate equivalence reasoning.

The size of the GE-simulation formula for φxor may be reduced considerably if φxor

is partitioned into disjoint xor-constraint conjunctions φ1
xor ∧ · · · ∧φnxor according to the

connected components of the xor-constraint graph, and then combining the component-
wise GE-simulation formulas k1-Ge(φ1

xor)∧· · · ∧kn-Ge(φnxor). Efficient structural tests
for deciding whether unit propagation or equivalence reasoning is enough to achieve full
propagation in an xor-constraint conjunction, presented in [17], can indicate appropriate
values for some of the parameters k1, . . . , kn.

5.1 Propagation-Preserving Xor-Simplification

Some of the xor-constraints added by k-Ge can be redundant regarding unit prop-
agation. We now present a simplification method that preserves literals that can be
implied by unit propagation. There are two simplification rules, given a pair of xor-
constraint conjunctions 〈φa, φb〉 (initially 〈φxor, ∅〉): [S1] an xor-constraint D in φa
can be moved to φb, resulting in 〈φa \ {D} , φb ∪ {D}〉, and [S2] an xor-constraint
D in φa can be simplified with an xor-constraint D′ in φb to (D + D′) provided that
|vars(D′) ∩ vars(D)| ≥ |vars(D′)| − 1, resulting in 〈(φa \ {D}) ∪ {D + D′} , φb〉.
Theorem 5. If 〈φ′a, φ′b〉 is the result of applying one of the simplification rules to
〈φa, φb〉 and φa ∧ φb ∧ l1 ∧ · · · ∧ lk $UP l̂, then φ′a ∧ φ′b ∧ l1 ∧ · · · ∧ lk $UP l̂.

Example 2. The conjunction 3-Ge((x1 ⊕x2 ⊕x3 ⊕x4 ≡ ⊥)) contains the alias bind-
ing constraints D1 := (a1,2,3,4⊕x1 ⊕x2⊕ x3⊕ x4 ≡ ⊥), D2 := (a1,2⊕ x1⊕ x2 ≡
⊥), D3 := (a3,4⊕x3 ⊕x4 ≡ ⊥), as well as the linear combination constraint D4 :=
(a1,2⊕ a3,4⊕ a1,2,3,4 ≡ ⊥). The alias binding constraint D1 can in fact be eliminated
by first applying the rule S1 to the xor-constraints D2, D3, and D4. Then, by using the
rule S2, the xor-constraint D1 is simplified first with D2 to (a1,2,3,4⊕ a1,2⊕x3 ⊕x4 ≡
⊥) and then with D3 to (a1,2,3,4⊕ a1,2⊕ a3,4 ≡ ⊥), and finally with D4 to (⊥ ≡ ⊥).

5.2 Experimental Evaluation

To evaluate the translation k-Ge, we studied the benchmark instances in “crafted” and
“industrial/application” categories of the SAT Competitions 2005, 2007, 2009, and
2011. We ran cryptominisat 2.9.6, glucose 2.3, and zenn 0.1.0 on the same 474 SAT
Competition cnf-xor instances as in Section 4.1 with the translations k-Ge and Eq�. It
is intractable to simulate full Gauss-Jordan elimination for these instances, so we ad-
justed the k-value of each call to the subroutine ptable(Y, ψ, k) to limit the number of
additional xor-constraints. The translation was computed for each connected compo-
nent separately. We found good performance by (i) stopping when |Y | > 66, (ii) setting
k = 1 when it was detected that unit propagation deduces all xor-implied literals, (iii)
setting k = 2 when |Y | ∈ [10, 66] or when |Y | < 10 and it was detected that equiva-
lence reasoning deduces all xor-implied literals, (iv) setting k = 3 when |Y | ∈ [6, 9],
and (v) setting k = |Y | when |Y | ≤ 5. With these parameters, the worst-case number
of xor-constraints added by the subroutine ptable is 2145. Figure 9 shows the increase



Simulating Parity Reasoning 581

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10
 100

 1000
 10000

 100000
k-

G
e 

xo
r-

co
ns

tr
ai

nt
s

original xor-constraints

Fig. 9. Xor-constraints in SAT 05-11 instances

 10

 100

 1000

 10  100  1000

gl
uc

os
e 

w
ith

 k
-G

E

glucose

 10

 100

 1000

 10  100  1000

cr
yp

to
m

in
is

at
 w

ith
 k

-G
E

cryptominisat

 10

 100

 1000

 10  100  1000

ze
nn

 w
ith

 k
-G

E

zenn

Fig. 10. Comparison on solving time between the unmodified instance and k-Ge using glucose,
cryptominisat, and zenn

SAT Competition
2005 2007 2009 2011 all

instances 123 100 140 111 474
glucose 63 64 88 54 269

glucose, Eq� 64 59 89 52 264
glucose, Eq�, simp 66 63 90 52 271

glucose, k-Ge 61 50 86 45 242
glucose, k-Ge, simp 64 60 95 58 277

cryptominisat 74 70 92 52 288
cryptominisat,Eq� 73 65 91 49 278

cryptominisat, Eq�, simp 76 68 91 51 286
cryptominisat, k-Ge 68 53 83 46 250

cryptominisat, k-Ge, simp 71 65 94 64 294
zenn 62 62 91 49 264

zenn, Eq� 62 62 90 49 263
zenn, Eq�, simp 68 64 92 48 272

zenn, k-Ge 61 59 89 52 261
zenn, k-Ge, simp 65 61 93 54 273

Fig. 11. Number of instances solved within the time limit of 3600s
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in formula size by the translation k-Ge. Propagation-preserving xor-simplification was
used to simplify the instances reducing the formula size in 404 instances with the me-
dian reduction being 16%. The translation Eq�was computed in a similar way. The
results are shown in Fig. 11, including the time spent in computing the translations.
Using xor-simplification increases the number of solved instances for both translations.
The detailed solving time comparison in Fig. 10 shows that that the translation k-Ge
can incur some overhead, but also allows great speedupds, enabling the three solvers to
solve the highest number of instances for the whole benchmark set.

6 Conclusions

We have studied how stronger parity reasoning techniques in the DPLL(XOR) frame-
work can be simulated by simpler systems. We have shown that resolution simulates
equivalence reasoning efficiently. We have proven that parity explanations on nonde-
terministic unit propagation derivations can simulate Gauss-Jordan elimination on a
restricted yet practically relevant class of instances. We have shown that Gauss-Jordan
elimination can be simulated by unit propagation by adding additional xor-constraints.

Acknowledgments. This work has been financially supported by the Academy of Fin-
land under the Finnish Centre of Excellence in Computational Inference (COIN). We
acknowledge the computational resources provided by Aalto Science-IT project.
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Abstract. Herbrand and Skolemization theorems are obtained for a
broad family of first-order substructural logics. These logics typically
lack equivalent prenex forms, a deduction theorem, and reductions of
semantic consequence to satisfiability. The Herbrand and Skolemization
theorems therefore take various forms, applying either to the left or right
of the consequence relation, and to restricted classes of formulas.

1 Introduction

The aim of this paper is to provide Herbrand and Skolemization theorems for
a broad family of first-order substructural logics that encompasses first-order
fuzzy logics, intermediate logics, exponential-free linear logic, relevance logics,
and logics without contraction (see, e.g., [11,15,8,19,9]). Such logics are often un-
decidable, but their (decidable) fragments provide the foundations for knowledge
representation and reasoning methods such as non-classical logic programming
and description logics (see, e.g., [21,14,12,10]). One motivation for the work re-
ported here is to avoid a duplication of research effort by providing a general
approach to the development of automated reasoning techniques for first-order
substructural logics. Herbrand and Skolemization theorems play a pivotal role in
this development, reducing first-order problems to propositional problems. These
theorems are also helpful for addressing theoretical problems in particular cases
such as first-order �Lukasiewicz logic.

In classical first-order logic, questions of validity and semantic consequence
reduce to the satisfiability of a set of sentences; Skolemization and Herbrand
theorems then reduce these questions further to the satisfiability of a set of
propositional formulas (see, e.g., [5]). In first-order substructural logics, seman-
tic consequence does not (typically) reduce to satisfiability and in the absence of
quantifier shifts and a deduction theorem, non-prenex formulas should be con-
sidered on both sides of the consequence relation. The general Skolemization and
Herbrand theorems obtained here therefore take various forms, applying either
to the left or right of the consequence relation, and to restricted sets of formulas.
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The theorems cover first-order intuitionistic logic and t-norm based fuzzy logics,
studied already in [16,2,1,3], and other logics not previously considered.1 We
also obtain a new (topology-free) proof of the approximate Herbrand theorem
for first-order �Lukasiewicz logic (see [4]) via a Herbrand theorem for satisfiability
that may hold when the Herbrand theorems for consequence fail.

The logics investigated in this paper are defined based on arbitrary classes
of complete FLe-algebras and include logics defined as extensions of (multiple-
conclusion and hypersequent variants of) the full Lambek calculus with exchange
augmented with quantifier rules (see [9,18,17]). Herbrand and Skolemization the-
orems may often be established for such logics proof-theoretically (see [15]) via
mid(hyper)sequent theorems proved using permutations of rules tailored to the
case at hand. By contrast, the uniform approach described in this paper is purely
algebraic and applies also to many cases where no calculus has yet been defined.

2 Preliminaries

In first-order classical logic, predicates are interpreted as relations on a universe
S, or, equivalently, as functions from S to the two element Boolean algebra 2.
In the logics defined below, other algebras may take the place of 2. That is,
a predicate may take one of many values, which might represent, for example,
degrees of truth, belief, or confidence. For convenience, we restrict our atten-
tion here to FLe-algebras (algebras for the full Lambek calculus with exchange
and multiplicative additive intuitionistic linear logic without additive constants).
Broadening the scope to non-commutative (or even non-associative) algebras or
algebras with different operation symbols would lead to similar results, but com-
plicate the presentation without adding greatly to our stock of useful examples.

Definition 1. An FLe-algebra is an algebra A = 〈A,&,→,∧,∨, 0, 1〉 such that:

(a) 〈A,∧,∨〉 is a lattice with an order defined by x ≤ y iff x ∧ y = x.

(b) 〈A,&, 1〉 is a commutative monoid.

(c) → is the residuum of &; i.e., for all x, y, z ∈ A: x & y ≤ z iff x ≤ y → z.

The algebra A is complete if for all X ⊆ A, both
∨

X and
∧

X exists in A, and
A is an FLe-chain if for all x, y ∈ A, either x ≤ y or y ≤ x.

Example 1. Significant FLe-chains include the real unit interval [0, 1] with the
usual order, 0 = 0 and 1 = 1, and the monoidal operation & interpreted as the
�Lukasiewicz t-norm max(x+y−1, 0), the Gödel t-norm min(x, y), or the product
t-norm x ·y. More generally, let ∗ be any residuated uninorm: an associative and
commutative binary function ∗ on [0, 1] that is increasing in both arguments and

1 After submitting this paper, we discovered that Terui has independently obtained
related results for Herbrand theorems in substructural logics [20]. However, his ap-
proach is narrower and more algebraic in scope (e.g., Skolemization is not really
considered); his main result shows rather that algebras for a broad class of logics
admit suitable completions and that therefore these logics have a Herbrand theorem.
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has a unit e∗ and residuum →∗. Then 〈[0, 1], ∗,→∗,min,max, d, e∗〉 is an FLe-
chain for any d ∈ [0, 1]. Other examples of FLe-chains include the lattice-ordered
groups formed by the integers, rationals, or reals with the usual order, addition
as the monoidal operation (with subtraction as its residuum), and 0 = 1 = 0.

Example 2. The class FLe of FLe-algebras forms a variety and its subvarieties
provide algebraic semantics for a broad spectrum of substructural logics: in par-
ticular, extensions of the sequent calculus FLe. For example, FLew-algebras for
FLe with weakening are FLe-algebras satisfying 0 ≤ x ≤ 1, while FLewc-algebras
for intuitionistic logic (term-equivalent to Heyting algebras) are FLew-algebras
satisfying x&x = x. Other varieties consist of “involutive” FLe-algebras satis-
fying (x → 0) → 0 = x (corresponding to multiple-conclusion sequent calculi)
and “semilinear” FLe-algebras satisfying ((x → y) ∧ 1) ∨ ((y → x) ∧ 1) = 1
(corresponding to hypersequent calculi). In particular, semilinear FLe-algebras,
FLew-algebras, and FLewc-algebras provide algebraic semantics for, respectively,
uninorm logic, monoidal t-norm logic, and Gödel logic (see [7,9,15,6]).

Varieties of FLe-algebras may enjoy a useful property that allows us to restrict
attention to their complete members. Let A,B be FLe-algebras. An embedding
f : A → B is regular if f(

∨
C) =

∨
f [C] (whenever

∨
C exists) and f(

∧
D) =∧

f [D] (whenever
∧

D exists) for all C,D ⊆ A. A class K of FLe-algebras admits
regular completions if each A ∈ K regularly embeds into some complete B ∈ K.

Example 3. A family of varieties of FLe-algebras (including, e.g., the varieties of
FLe-algebras, FLew-algebras, and FLewc-algebras) is described in [6] that admit
regular completions if a corresponding sequent calculus admits a strong form
of cut elimination. It is not known, however, whether a proof system (of some
specified form) must always exist for classes of FLe-algebras admitting regular
completions. Varieties of FLe-algebras satisfying the prelinearity law do not in
general admit regular completions, but this may still be true for the class of
chains of such varieties. In particular, if a variety of FLe-algebras admits regular
completions, then the class of chains of this variety (which generates the variety
of semilinear members of the variety) also admits regular completions.

A (countable) predicate language P is a triple 〈P,F, ar〉 where P and F are
non-empty countable sets of predicate and function symbols, respectively, and
ar is a function assigning to each predicate and function symbol � an arity
ar(�) = n ∈ N (� is called n-ary). The function symbols f for which ar(f) = 0
are called object constants and we will assume without loss of generality in
this paper that every predicate language has at least one object constant. For
convenience, we also call predicate symbols P for which ar(P ) = 0, propositional
atoms, and a language P containing only propositional atoms, propositional.

Given a fixed countably infinite set OV of object variables x, y, . . . , P-terms
s, t, . . . , and (atomic) P-formulas ϕ, ψ, χ, . . . are defined as in classical logic using
quantifiers ∀ and ∃, but with binary connectives &,→,∧,∨, logical constants 0, 1,
and derived connectives ¬ϕ defined as ϕ → 0 and ϕ ↔ ψ as (ϕ → ψ)∧ (ψ → ϕ).

The notions of bound and free variables, closed terms, sentences, and sub-
stitutability are also defined in the standard way. Instead of ξ1, . . . , ξn (where



Herbrand Theorems for Substructural Logics 587

ξi’s are terms or formulas and n is arbitrary or fixed by the context) we will
sometimes write just ξ. Unless stated otherwise, by the notation ϕ(z) we signify
that all free variables of ϕ are among those in the list of pairwise different object
variables z. If ϕ(x1, . . . , xn, z) is a formula and we replace all free occurrences
of xi’s in ϕ by terms ti, we denote the resulting formula in the context simply by
ϕ(t1, . . . , tn, z). We write χ[ϕ] for a formula χ with a distinguished subformula
ϕ and understand χ[ψ] as the result of replacing ϕ in χ with the formula ψ. A
P-theory T is just a set of P-formulas.

The usual classical notions of structure, evaluation, and truth definition may
be generalized relative to a complete FLe-algebra A as follows, assuming from
now on that K is an arbitrary class of complete FLe-algebras.

2 As usual for
substructural logics, a formula ϕ will be “true” in a structure based on an FLe-

algebra A if it always takes value greater than or equal to 1
A
.

Definition 2. A P-structure S = 〈A,S〉 consists of a complete FLe-algebra A
and a triple S = 〈S,

〈
PS
〉
P∈P ,

〈
fS
〉
f∈F〉 where S is a non-empty set, PS is a

function Sn → A for each n-ary predicate symbol P ∈ P, and fS : Sn → S is a
function for each n-ary function symbol f ∈ F. An S-evaluation is a mapping
v : OV → S. By v[x→a] we denote the S-evaluation where v[x→a](x) = a and
v[x→a](y) = v(y) for each object variable y 
= x.

We interpret terms and evaluate formulas in S as follows:

‖x‖Sv = v(x)

‖f(t1, . . . , tn)‖Sv = fS(‖t1‖Sv , . . . , ‖tn‖Sv ) for f ∈ F

‖P (t1, . . . , tn)‖Sv = PS(‖t1‖Sv , . . . , ‖tn‖Sv ) for P ∈ P

‖ϕ ◦ ψ‖Sv = ‖ϕ‖Sv ◦A ‖ψ‖Sv for ◦ ∈ {&,→,∧,∨}
‖c‖Sv = cA for c ∈ {0, 1}

‖(∀x)ϕ‖Sv = inf≤A{‖ϕ‖
S
v[x→a] | a ∈ S}

‖(∃x)ϕ‖Sv = sup≤A
{‖ϕ‖Sv[x→a] | a ∈ S}.

A P-structure M = 〈A,M〉 is a P-K-model of a P-theory T , written M |= T ,

if A ∈ K and for each ϕ ∈ T and M-evaluation v, ‖ϕ‖Mv ≥ 1
A

.

To simplify notation, for a formula ϕ(x1, . . . , xn) and an S-evaluation v with

v(xi) = ai, we write ‖ϕ(a1, . . . , an)‖S instead of ‖ϕ(x1, . . . , xn)‖Sv . Note that, as

2 First-order logics can be defined based on arbitrary classes of FLe-algebras by requir-
ing only that necessary suprema and infima exist for a particular structure. Indeed,
this more general semantics is needed for certain axiomatization results: e.g., for
first-order logics based on the classes of all MV-chains or BL-chains [11,8] (inter-
estingly, axiomatizability is lost if we restrict to complete MV-chains or complete
BL-chains). On the other hand, for classes of algebras admitting regular completions
(see Example 3), the general definition gives exactly the consequence relation for the
complete members of the class, and we can use the mentioned axiomatization re-
sults. Moreover, since our Skolemization and Herbrand theorems apply only to these
classes, we may simplify our presentation here without limiting its scope.
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in classical logic, the truth value of a sentence does not depend on an evaluation.
Also, M |= ϕ → ψ iff for each evaluation v, ‖ϕ‖Mv ≤ ‖ψ‖Mv , and M |= ϕ ↔ ψ iff

for each evaluation v, ‖ϕ‖Mv = ‖ψ‖Mv .

Definition 3. A P-formula ϕ is a semantic consequence of a P-theory T in K,
written T |=PK ϕ, if for each P-K-model M of T , also M |= ϕ.

Both in the definition of model and semantic consequence, the language plays
a minor role. Indeed, for any P-theory T ∪ {ϕ}, T |=PK ϕ iff T |=P′

K ϕ for any
P ′ ⊇ P . We omit the prefixes for the class K or language P when known from
the context.

The next lemma collects together some useful facts for FLe-algebras.

Lemma 1 ([8,15,18]). Given formulas ϕ, ψ, χ, a variable x not free in χ, and
a term t substitutable for x in ϕ:

1. |=K (∀x)ϕ(x) → ϕ(t) 8. |=K (∃x)(ϕ → χ) → ((∀x)ϕ → χ)
2. |=K ϕ(t) → (∃x)ϕ(x) 9. |=K (χ & (∃x)ϕ) ↔ (∃x)(χ & ϕ)
3. |=K (∀x)(χ → ϕ) ↔ (χ → (∀x)ϕ) 10. |=K (χ & (∀x)ϕ) → (∀x)(χ & ϕ)
4. |=K (∀x)(ϕ → χ) ↔ ((∃x)ϕ → χ) 11. |=K (∃x)(ϕ ∨ ψ) ↔ ((∃x)ϕ ∨ (∃x)ψ)
5. {ϕ, ϕ → ψ} |=K ψ 12. |=K (χ ∨ (∀x)ϕ) → (∀x)(χ ∨ ϕ)
6. {ϕ} |=K (∀x)ϕ 13. |=K ((∀x)ϕ ∧ (∀x)ψ) ↔ (∀x)(ϕ ∧ ψ)
7. |=K (∃x)(χ → ϕ) → (χ → (∃x)ϕ) 14. |=K (∃x)(χ ∧ ϕ) → (χ ∧ (∃x)ϕ).

Moreover, if K is a class of complete FLe-chains:

15. |=K (∀x)(χ ∨ ϕ) ↔ χ ∨ (∀x)ϕ 16. |=K (∃x)(χ ∧ ϕ) ↔ χ ∧ (∃x)ϕ.

Notice that certain quantifier shifts (7–14) are available for every choice of K,
and two more (15–16) if K consists of FLe-chains, but that, in general, the
formulas (χ → (∃x)ϕ) → (∃x)(χ → ϕ), ((∀x)ϕ → χ) → (∃x)(ϕ → χ), and
(∀x)(χ&ϕ) → (χ& (∀x)ϕ) (where x is not free in χ) are not valid (see e.g. [8]).

A description of propositional substructural logics is implicit in our definitions.
Let P0 be a propositional language (in the sense described above) consisting of
countably infinitely many propositional atoms. Then clearly any P0-formula ψ
is equivalent to a quantifier-free formula ψ′; i.e., |=K ψ ↔ ψ′. Hence we can
identify |=P0

K
with the propositional logic of K. In particular, the propositional

logic of all complete FLe-algebras is the finitely axiomatizable logic FLe and
other well-known propositional substructural logics are axiomatized by adding
finitely many additional (propositional) axioms.

Consider a variety V of FLe-algebras and suppose that either V or the class of
chains in V admits regular completions. Let K be the class of complete members
of V or the class of complete chains of V, respectively. Then the first-order logic
|=PK is axiomatized by extending an axiomatization of |=P0

K
(where all proposi-

tional atoms are replaced by arbitrary P-formulas) with the deduction rules 5
and 6 of modus ponens and generalization and axioms 1–4 plus axiom 15 if K
consists only of FLe-chains (see [8]).
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3 Skolemization

In this section, we provide two quite general Skolemization theorems for first-
order substructural logics. Unlike first-order classical logic, we cannot assume the
existence of equivalent prenex formulas or reductions of semantic consequence to
satisfiability. We therefore obtain separate Skolemization theorems for formulas
of a restricted form on the right and left of the consequence relation, where the
latter is established only for certain cases.

Recall that K is an arbitrary class of complete FLe-algebras.

Theorem 1 (Skolemization Right). For each P-theory T ∪{ϕ(x,y), ψ} and
function symbols fϕ 
∈ P of the same arity as y:

T |=K ψ → (∃y)(∀x)ϕ(x,y) iff T |=K ψ → (∃y)ϕ(fϕ(y),y)

T |=K (∀y)(∃x)ϕ(x,y) → ψ iff T |=K (∀y)ϕ(fϕ(y),y) → ψ.

Proof. The left-to-right directions of both claims are straightforward; just note
that |=K (∀x)ϕ(x,y) → ϕ(fϕ(y),y) and |=K ϕ(fϕ(y),y) → (∃x)ϕ(x,y).

We prove the right-to-left directions contrapositively, assuming without loss
of generality (see Lemma 1) that T ∪{ψ} consists of P-sentences. Let us consider
just the first equivalence, the proof of the second being very similar. Suppose
that T 
|=K ψ → (∃y)(∀x)ϕ(x,y). So there is a model M = 〈A,M〉 of T such that
V = ‖(∃y)(∀x)ϕ(x,y)‖M 
≥ ‖ψ‖M. I.e., V < V ∨‖ψ‖M. Clearly, for eachm ∈ M ,
‖(∀x)ϕ(x,m)‖ ≤ V . We show that there exists r ∈ A satisfying V ≤ r < V ∨
‖ψ‖M such that for each m ∈ M , there is a d ∈ M satisfying ‖ϕ(d,m)‖M ≤ r.
This is obviously the case if there exists r ∈ A such that V < r < V ∨ ‖ψ‖M.
Otherwise, we can take r = V : in this case, ‖(∀x)ϕ(x,m)‖ ≤ V implies that
there exists d ∈ M such that ‖ϕ(d,m)‖M ≤ V . Finally, define (using the axiom
of choice) fϕ(m) = d with ‖ϕ(d,m)‖M ≤ r and note that ‖(∃y)ϕ(fϕ(y),y)‖M ≤
r < V ∨ ‖ψ‖M. Thus ‖(∃y)ϕ(fϕ(y),y)‖M 
≥ ‖ψ‖M. 
�

Theorem 2 (Skolemization Left). Suppose that one of the following holds:

(a) K is the class of complete members of a variety of FLewc-algebras (Heyting
algebras) admitting regular completions.

(b) K is the class of complete chains of a variety of FLe-algebras whose class
of chains admits regular completions.

(c) max{V ∈ A | V < 1
A} exists for all A ∈ K (e.g., if each A ∈ K is finite).

(d) K consists of the standard �Lukasiewicz algebra [0, 1]Ł (see Example 1).

Then for each P-theory T ∪ {ϕ(x,y), ψ} and any function symbol fϕ 
∈ P of the
same arity as y:

T ∪ {(∀y)(∃x)ϕ(x,y)} |=K ψ iff T ∪ {(∀y)ϕ(fϕ(y),y)} |=K ψ.

Proof. We consider just the right-to-left direction of the above equivalence. The
other direction always holds, using |=K ϕ(fϕ(y),y) → (∃x)ϕ(x,y).
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For (a), note first that |=K can be axiomatized as an axiomatic extension of
first-order intuitionistic logic and therefore admits the deduction theorem. Hence
T ∪ {(∀y)(∃x)ϕ(x,y)} |=K ψ implies T |=K (∀y)(∃x)ϕ(x,y) → ψ and then, by
Theorem 1, T |=K (∀y)ϕ(fϕ(y),y) → ψ. So by the deduction theorem again,
T ∪ {(∀y)ϕ(fϕ(y),y)} |=K ψ.

For (b), we apply [8, Theorem 4.5.7] which establishes that the above equiv-
alence holds if it holds in the special case where y is empty. Suppose then that
T ∪ {(∃x)ϕ(x)} |=K ψ. By the local deduction theorem for first-order substruc-
tural logics (see [15, Theorem 8.9]), T |=K (((∃x)ϕ(x))∧1)n → ψ for some n ∈ N
(where χ0 = 1 and χn+1 = χn & χ for n ∈ N). Because K consists of chains,
also T |=K (∃x)(ϕ(x) ∧ 1)n → ψ for some n ∈ N (see [8, Proposition 4.3.2]). But
then, by Theorem 1, T |=K (ϕ(cϕ) ∧ 1)n → ψ for some n ∈ N and new constant
cϕ. So finally, by the local deduction theorem again, T ∪ {ϕ(cϕ)} |=K ψ.

For (c) and (d), we prove that the Skolemization property is implied by the
following condition: whenever T 
|=K ϕ, there is aK-modelM = 〈A,M〉 of T such

that M 
|= ϕ and for each formula (∃x)χ(x,y) and a ∈ M , ‖(∃x)χ(x,a)‖M ≥ 1
A

implies ‖χ(w,a)‖M ≥ 1
A

for some w ∈ M .
Suppose that T ∪ {(∀y)(∃x)ϕ(x,y)} 
|=K ψ. By assumption, there is a model

M of T ∪ {(∀y)(∃x)ϕ(x,y)} such that M 
|= ψ and for each a ∈ M , since
‖(∃x)ϕ(x,a)‖M ≥ 1, there is w ∈ M such that ‖ϕ(w,a)‖M ≥ 1. But then (by
the axiom of choice), we can define a function fϕ and expand the model M into

a model M ′ such that ‖ϕ(fϕ(a),a)‖M
′ ≥ 1 and ‖χ(b)‖M = ‖χ(b)‖M′

for each
P-formula χ and b ∈ M . So M′ is a model of T ∪{(∀y)ϕ(fϕ(y),y)} and M′ 
|= ψ.

(c) follows almost immediately. For (d), assume that T 
|=[0,1]Ł ϕ and let M
be a [0, 1]Ł-model of T such that T 
|= ϕ. Without loss of generality, we may
assume that T ∪ {ϕ} consists of sentences. Then using [12, Lemma 3] we obtain
a [0, 1]Ł-model M′ satisfying: (1) there is an embedding f : [0, 1]Ł → [0, 1]Ł such
that for each sentence χ: f(‖χ‖M) = ‖χ‖M′

; (2) for each formula χ(x,y) and
a ∈ M ′, there is w ∈ M ′ such that ‖(∃x)χ(x,a)‖M′

= ‖χ(w,a)‖M′
. Clearly this

is the desired model. 
�

The Skolemization left property described in Theorem 2 fails for many other
choices of K, even when y is empty. For example, let K be the class of complete
FLe-algebras and consider a language P with a single unary relation symbol P ,
extended with a new constant symbol c. Clearly {P (c)} |=K P (c) & P (c), so

{P (c)} |=K (∃x)(P (x) & P (x)).

Consider, however, an FLe-algebra A with A = {0, a1, a2, 1}, 0 < a1, a2 < 1, a1

and a2 incomparable, 1 & x = x & 1 = x, and x & y = 0 for x, y ∈ {0, a, b}, and
let M = 〈A,M〉 be a model with M = {d1, d2} and ‖P (di)‖M = ai for i = 1, 2.
Then M is a model of (∃x)P (x), but not of (∃x)(P (x) & P (x)), so

{(∃x)P (x)} 
|=K (∃x)(P (x) & P (x)).
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4 An Expansion Lemma

A standard semantic proof of the Herbrand theorem for first-order classical logic
consists of two steps. First it is shown that a universal formula is satisfiable iff
the (typically infinite) set of its ground instances is satisfiable. Then by com-
pactness, this set of ground instances is satisfiable iff each of its finite subsets is
satisfiable. In this section, we establish an analogue of the first step for all first-
order substructural logics considered in this paper: an “expansion lemma” that
replaces universally quantified formulas on the left of the consequence relation
with their instances. We then extend applications of this lemma to a wider class
of semantic consequences.

In first-order classical logic, it can be assumed (using Skolemization and quan-
tifier shifts) that only universal formulas appear on the left and existential for-
mulas on the right of the consequence relation. Indeed we may even consider,
using the deduction theorem, only existential formulas on the right, or, using
also the double negation law, only universal formulas on the left. In general, for
first-order substructural logics, formulas are not equivalent to prenex formulas
and the deduction theorem and double negation law fail. Nevertheless, we can
establish Herbrand theorems of the same scope using formulas that are classi-
cally equivalent to universal and existential formulas. Such formulas are defined
using BNF as follows, denoting quantifier-free formulas (for a given language)
by Δ0:

g-universal formulas P ::= Δ0 | P ∧ P | P ∨ P | P & P | (∀x)P | N → P

g-existential formulas N ::= Δ0 | N ∧N | N ∨N | N & N | (∃x)N | P → N.

We refer to theories containing only (g-)universal and (g-)existential formulas as
(g-)-universal and (g-)existential theories, respectively.

The key ingredient for the expansion lemma is the behaviour of g-universal
and g-existential sentences under taking substructures.

Definition 4. A P-structure M1 = 〈A,M1〉 is a substructure of a P-structure
M2 = 〈A,M2〉 if M1 ⊆ M2 and ∗M1(a) = ∗M2(a) for each predicate and
function symbol ∗ of P and each a ∈ M1.

Proposition 1. For any substructure M′ of a P-structure M:

1. M |= ϕ iff M′ |= ϕ whenever ϕ is a quantifier-free P-sentence.

2. M |= ϕ implies M′ |= ϕ whenever ϕ is a g-universal P-formula.

3. M′ |= ϕ implies M |= ϕ whenever ϕ is g-existential P-formula.

Proof. The proposition is an easy corollary of the following two claims, proved
jointly for any M′-evaluation e by induction on the definition of χ:

(i) ‖χ‖M′
e ≥ ‖χ‖Me for any g-universal P-formula χ

(ii) ‖χ‖M′
e ≤ ‖χ‖Me for any g-existential P-formula χ.
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If χ is quantifier-free, then clearly ‖χ‖M′
e = ‖χ‖Me . For the induction step we

prove two cases, other cases being very similar. If χ = (∀x)ϕ for some g-universal
formula ϕ, then for each a ∈ M :

‖ϕ‖M
′

e[x→a] ≥ ‖ϕ‖Me[x→a] ≥ inf{‖ϕ‖Me[x→b] | b ∈ M} = ‖(∀x)ϕ‖Me .

Thus also

‖(∀x)ϕ‖Me ≤ inf{‖ϕ‖M
′

e[x→a] | a ∈ M ′} = ‖(∀x)ϕ‖M
′

e .

If χ = ϕ → ψ for some g-existential formula ϕ and g-universal formula ψ, then
by the induction hypothesis:

‖ϕ‖M′
e ≤ ‖ϕ‖Me and ‖ψ‖M′

e ≥ ‖ψ‖Me .

So by the monotonicity of the operations and the definition of truth:

‖ϕ → ψ‖Me = ‖ϕ‖Me → ‖ψ‖Me ≤ ‖ϕ‖M′
e → ‖ψ‖Me

≤ ‖ϕ‖M
′

e → ‖ψ‖M
′

e

= ‖ϕ → ψ‖M′
e . 
�

For any predicate language P , the Herbrand universe U(P) is the set of closed
P-terms, recalling that, by assumption, every predicate language contains at
least one object constant and hence U(P) 
= ∅.

Lemma 2 (Expansion Lemma). For each g-existential P-formula ψ and each
g-universal P-theory T ∪R:

T ∪{(∀x)ϕ(x) | ϕ(x) ∈ R} |=K ψ iff T ∪{ϕ(t) | ϕ(x) ∈ R, t ∈ U(P)} |=K ψ.

Proof. The right-to-left direction is straightforward since |=K (∀x)ϕ(x) → ϕ(t).
We prove the converse direction contrapositively. Let S = T ∪ {ϕ(t) | ϕ(x) ∈ R,
t ∈ U(P)} and suppose that there is a modelM = 〈A,M〉 of S such thatM 
|= ψ.
Consider the substructure M′ = 〈A,M′〉 with domain M ′ = {‖t‖M | t ∈ U(P)}.
Then by Proposition 1,M′ is a model of S such thatM′ 
|= ψ. Consider ϕ(x) ∈ R.
For each b ∈ M ′ there is t ∈ U(P) such that b = tM and we have M′ |= ϕ(t).
So M′ |= (∀x)ϕi. Hence T ∪ {(∀x)ϕ(x) | ϕ(x) ∈ R} 
|=K ψ. 
�

In the remainder of this section, we show that the expansion lemma applies
to a wider class of consequences. We show (in Corollary 1 and Lemma 5) that
although g-universal and g-existential formulas are not equivalent to univer-
sal and existential formulas, checking semantic consequence between g-universal
formulas on the left and g-existential formulas on the right may be reduced to
checking semantic consequence between universal formulas on the left and exis-
tential formulas on the right. To prove this we first state two technical lemmata:
one concerning montonicity properties for g-universal and g-existential formulas
and the other concerning predicate substitutions.
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Lemma 3.

1. {ϕ → ψ} |=K χ[ϕ] → χ[ψ] for any g-universal formula χ[(∀x)α].
2. {ϕ → ψ} |=K χ[ψ] → χ[ϕ] for any g-existential formula χ[(∀x)α].
3. {ϕ → ψ} |=K χ[ψ] → χ[ϕ] for any g-universal formula χ[(∃x)α].
4. {ϕ → ψ} |=K χ[ϕ] → χ[ψ] for any g-existential formula χ[(∃x)α].

Proof. We prove 1 and 2 together by induction on the definition of the g-universal
or g-existential formula χ[(∀x)α]; the proofs of 3 and 4 are analogous. The base
case where χ = (∀x)α or (∀x)α does not occur in χ is immediate (note that the
first option could not happen in case 2). For the induction step, we have one of
the following cases:

– χ = χ1[(∀x)α] ◦ χ2 or χ = χ1 ◦ χ2[(∀x)α] for ◦ ∈ {∧,∨,&}.
– χ = χ1[(∀x)α] → χ2 or χ = χ1 → χ2[(∀x)α].
– χ = (∀y)χ1[(∀x)α] or χ = (∃y)χ1[(∀x)α].

In the first two cases we use the induction hypothesis and derivability of useful
consequences. For example, suppose that χ = χ1[(∀x)α] → χ2. If χ is a g-
universal formula, then χ1[(∀x)α] is a g-existential formula and by the induction
hypothesis {ϕ → ψ} |=K χ1[ψ] → χ1[ϕ] and so

{ϕ → ψ} |=K (χ1[ϕ] → χ2) → (χ1[ψ] → χ2).

If χ is a g-existential formula, then χ1[(∀x)α] is a g-universal formula and by
the induction hypothesis: {ϕ → ψ} |=K χ1[ϕ] → χ1[ψ] and so

{ϕ → ψ} |=K (χ1[ψ] → χ2) → (χ1[ϕ] → χ2).

For the last case, suppose that χ = (∀y)χ1[(∀x)α]. By the induction hypothesis

{ϕ → ψ} |=K χ1[ϕ] → χ1[ψ]

and the result follows using properties of |=K given in Lemma 1. 
�

Lemma 4. A predicate substitution σ is any mapping assigning to each n-ary
predicate symbol P ∈ P a P-formula σ(P ) of n free variables. The substitution
is extended to arbitrary P-formulas by substituting each atomic predicate P (t)
with a P-formula σ(P )(t). Then for any P-theory T ∪ {ϕ}:

T |=K ϕ implies σ[T ] |=K σ(ϕ).

Moreover, the converse direction holds when the only predicates in T ∪ {ϕ} are
propositional atoms and σ restricted to the set of propositional atoms is a one-
one mapping into the set of closed atomic formulas.



594 P. Cintula and G. Metcalfe

Proof. We proceed by contraposition. If σ[T ] 
|=K σ(ϕ), then there is a model
M′ with of σ[T ] such that M′ 
|= σ(ϕ). We construct a model M with the same
domain as M′ where fM = fM′

and PM(a) = ‖σ(P )(a)‖M′
. Thus for every

formula ψ we can easily show by induction:

‖ψ(a)‖M = ‖σ(ψ)(a)‖M
′
.

Then M is indeed a model of T such that M′ 
|= ϕ.
For the converse direction, we can assume without loss of generality that there

are no quantifiers in T ∪{ϕ}. Assume further that we have a model M = 〈A,M〉
of T such that M 
|= ϕ. We define a model M′ = 〈A,M′〉 with the domain
consisting of closed terms, functional symbols interpreted in the obvious way,
and predicate symbols interpreted by:

PM′
(t) =

{
‖P‖M if there is some prop. atom P ∈ P such that σP = P (t)

1
A

otherwise.

Note that the definition is sound because σ is a one-one mapping. To complete
the proof we observe that for each χ ∈ T ∪ {ϕ}, we have ‖σχ‖M′

= ‖χ‖M. 
�

Corollary 1. Let T be a P-theory, ϕ a P-sentence, and P /∈ P. Then

T |=K ϕ iff T ∪ {ϕ → P} |=K P.

Proof. Immediate, using the previous lemma for the right-to-left direction and
the soundness of modus ponens for the left-to-right direction. 
�

Lemma 5. For any g-universal formula ϕ, there is a finite set F (ϕ) of universal
sentences such that for each theory T ∪ {χ}:

T ∪ {ϕ} |=K χ iff T ∪ F (ϕ) |=K χ.

Proof. We prove the claim by induction on the number of quantifiers in ϕ. The
base case, where ϕ is already a universal formula, is immediate; we just let F (ϕ)
consist of the universal closure of ϕ. Suppose that ϕ has a proper universal
subformula; i.e., ϕ = ϕ[(∀x)ψ(x,y)] for some quantifier-free formula ψ(x,y).
Given a new predicate symbol Pψ of an appropriate arity (the length of y), it
suffice to show that

T ∪ {ϕ} |=K χ iff T ∪ {(∀x)(∀y)(Pψ(y) → ψ(x,y)), ϕ[Pψ(y)]} |=K χ,

since then we can apply the induction hypothesis. The left-to-right direction
follows using Lemma 3 to obtain {Pψ(y) → (∀x)ψ(x,y)} |=K ϕ[Pψ(y)] → ϕ and
then Lemma 1. The converse direction follows from Lemma 4 using a substitution
σ that is the identity except for σ(Pψ) = (∀x)ψ(x,y). The case where ϕ has an
existential subformula is very similar. 
�
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5 Herbrand Theorems

The expansion lemma reduces semantic consequence involving certain first-order
formulas to propositional consequence. To obtain Herbrand theorems involving
finite sets of formulas, we require a further crucial ingredient. Let us say that K
is finitary if for each propositional language P and P-theory T ∪ {ϕ}:

T |=PK ϕ iff there is a finite T ′ ⊆ T such that T ′ |=PK ϕ.

In particular, any class K satisfying one of the following conditions is finitary
(this follows from the fact that in these cases there is a finitary axiomatization
of |=P

K
for every propositional language P ; see the end of Section 2):

– The class of complete algebras of a variety admitting regular completions;
this is the case, e.g., if the variety is axiomatized relative to the class of FLe

by so-called N2 identities (see [6]).

– The class of complete chains of a variety whose class of chains admits regular
completions; this is the case, e.g., if the variety is axiomatized relative to the
class of FLew by so-called P3 identities.

– A finite class of finite algebras.

The next lemma shows that finitarity at the propositional level extends to a
more general first-order setting (even without axiomatization results).

Lemma 6. If K is finitary, then for each g-universal P-theory T and g-
existential P-formula χ:

T |=K χ iff there is a finite T ′ ⊆ T such that T ′ |=K χ.

Proof. Note that we may assume without loss of generality that T ∪{χ} consists
of sentences. We show first that it is sufficient to give the proof for the case where
χ is a propositional atom. If T |=K χ, then by Corollary 1, T ∪ {χ → P} |=K P
for some new propositional atom P . But then if T ′ ∪ {χ → P} |=K P for some
finite T ′ ⊆ T , by Corollary 1 again, T ′ |=K χ.

Suppose now that T |=K P . Using Lemma 5, we obtain for each ϕ ∈ T , a
finite universal theory F (ϕ) such that⋃

ϕ∈T
F (ϕ) |=K P.

Using Lemma 2 we obtain⋃
ϕ∈T

{ψ(t) | (∀x)ψ(x) ∈ F (ϕ) and t ∈ U(P)} |=K P.

All the formulas in this semantic consequence are quantifier-free sentences. Hence
using Lemma 4 and the finitarity of K, for some finite T ′ ⊆ T⋃

ϕ∈T ′
{ψ(t) | (∀x)ψ(x) ∈ F (ϕ) and t ∈ U(P)} |=K P.

But then by Lemma 2,
⋃

ϕ∈T ′
F (ϕ) |=K P , and Lemma 5 completes the proof. 
�
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Now putting together the expansion lemma and Lemma 6, we obtain:

Corollary 2. If K is finitary, then for each g-universal P-theory T∪{(∀x)ϕ(x)}
and g-existential P-formula ψ:

T ∪{(∀x)ϕ(x)} |=K ψ iff T ∪{ϕ(t) | t ∈ H} |=K ψ for some finite H ⊆ U(P).

We now extend Corollary 2 to obtain Herbrand theorems on both sides of the
consequence relation with g-universal formulas on the left and a g-existential
formula on the right. The P-Herbrand expansion E(ϕ) of a P-formula ϕ consists
of all formulas obtained by applying the following two steps repeatedly, starting
with ϕ, until no quantifiers remain:

I Replace ψ[(∀x)χ(x,y)] where χ is quantifier-free with ψ[
∧

t∈H χ(t,y)] for
some finite H ⊆ U(P).

II Replace ψ[(∃x)χ(x,y)] where χ is quantifier-free with ψ[
∨

t∈H χ(t,y)] for
some finite H ⊆ U(P).

Notice that if ϕ is a sentence, then so are all formulas in E(ϕ). Moreover,
a simple induction making use of Lemma 3 together with |=K (∀x)χ(x,y) →∧

t∈H χ(t,y) and |=K

∨
t∈H χ(t,y) → (∃x)χ(x,y) establishes:

Lemma 7. Let ϕ be a P-formula and ϕ′ ∈ E(ϕ). Then |=K ϕ → ϕ′ if ϕ is
g-universal, and |=K ϕ′ → ϕ if ϕ is g-existential.

We are now able to establish Herbrand theorems for the left and right sides
of the consequence relation, obtaining an equivalence for the left side.

Theorem 3 (Herbrand Left). The following are equivalent:

(1) K is finitary.

(2) For every g-universal theory T ∪ {ϕ} and g-existential P-formula χ:

T ∪ {ϕ} |=K χ iff there exists ϕ′ ∈ E(ϕ) such that T ∪ {ϕ′} |=K χ.

Proof. (1) ⇒ (2) The right-to-left direction follows directly using Lemma 7. For
the left-to-right direction, it is sufficient to use Lemma 5 to obtain a finite set
of universal formulas F (ϕ) and then apply Corollary 2. However, to see that we
obtain exactly the formulas we need, we consider again the induction step of the
proof of Lemma 5.

Recall that we proceed by induction on the number of quantifiers in ϕ. For the
induction step, we suppose that ϕ has a proper universal subformula (∀x)ψ(x,y)
i.e., ϕ = ϕ[(∀x)ψ(x,y)] (if it has no such subformula, then ϕ has an existential
subformula (∃x)ψ(x,y) and the proof is analogous). Recall that a new predicate
symbol Pψ of an appropriate arity (the length of y) is introduced such that

T ∪ {ϕ[Pψ(y)]} ∪ {(∀x)(∀y)(Pψ(y) → ψ(x,y))} |=K χ.
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Now we can use Corollary 2 for T ∪{ϕ[Pψ(y)]} and (∀x)(∀y)(Pψ(y) → ψ(x,y))
to obtain a finite H ⊆ U(P) such that

T ∪ {ϕ[Pψ(y)]} ∪ {(∀y)(Pψ(y) → ψ(t,y)) | t ∈ H} |=K χ.

So also using the properties of ∧:

T ∪ {ϕ[Pψ(y)], (∀y)(Pψ(y) →
∧
t∈H

ψ(t,y))} |=K χ.

By Lemma 4, using a substitution σ that satisfies σ(Pψ) =
∧

t∈H ψ(t,y) and is
the identity otherwise:

T ∪ {σ(ϕ[Pψ(y)])} |=K χ.

To complete the proof, note that the induction hypothesis can be applied to
σ(ϕ[Pψ(y)]) = ϕ[

∧
t∈H ψ(t,y)]. Crucially, by repeating this process until we

obtain a quantifier-free formula, we obtain the appropriate element of E(ϕ).
(2)⇒ (1) Let P0 be a propositional language and P a predicate language with

a unary predicate symbol P such that U(P) is countably infinite. We enumerate
the elements of U(P) as ti (n ∈ N), and the elements of P0 as Pi (without loss
of generality we can assume that P0 is also infinite). Let {ϕi | i ∈ N} ∪ {ψ} be
a set of propositional formulas such that

{ϕi | i ∈ N} |=P0

K
ψ.

Then because {(∀x)P (x), P (ti) → ϕi} |=K ϕi, we obtain

{(∀x)P (x)} ∪ {P (ti) → ϕi | i ∈ N} |=K ψ.

Then by (2), without loss of generality, we obtain for some n ∈ N:

{
∧
i≤n

P (ti)} ∪ {P (ti) → ϕi | i ∈ N} |=K ψ.

We define a P0 ∪P-substitution σ that satisfies σP2k = P (tk) and σP2k+1 = Pk

and is the identity otherwise, and, using the second part of Lemma 4, obtain

{
∧
i≤n

P2i} ∪ {P2i → ϕ̄i | i ≤ n} |=K ψ,

where ϕ̄i is the formula resulting from ϕi by replacing propositional atoms Pk by
P2k+1. Finally, we use the first part of Lemma 4 and the substitution σP2k = ϕk

and σP2k+1 = Pk to obtain {ϕi | i ≤ n} |=K ψ. Hence {ϕi | i ≤ n} |=P0

K
ψ. 
�

Theorem 4 (Herbrand Right). If K is finitary, then for every g-universal
P-theory T and g-existential P-formula ψ:

T |=K ψ iff there is ψ′ ∈ E(ψ) such that T |=K ψ′.
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Proof. The left-to-right direction follows directly using Lemma 7. For the right-
to-left direction, we use Corollary 1 to obtain T ∪ {ψ → P} |=K P (for a new
propositional atom P ). Using Theorem 3, we obtain ψ′ ∈ E(ψ) such that T ∪
{ψ′ → P} |=K P , and we use Corollary 1 again to complete the proof. 
�

We show finally that finitarity and the Herbrand theorems fail for any logic
admitting quantifier shifts that is defined by a class of FLe-algebras with arbi-
trarily large chains (for example, logics based on classes of finite FLe-algebras
containing chains of increasing size).

Proposition 2. Suppose that:

(a) {(∀x)ϕ → ψ} |=K (∃x)(ϕ → ψ) where x is not free in ψ.

(b) For each n ∈ N, there is an FLe-chain A ∈ K such that |A| ≥ n.

Then K is not finitary and |=K does not admit the left or right Herbrand theorem.

Proof. Consider a language with a unary predicate symbol P and a constant
symbol c. Since |=K (∀x)P (x) → (∀y)P (y), by (a) and Lemma 1, also |=K

(∃x)(∀y)(P (x) → P (y)). So by Theorem 2, |=K (∃x)(P (x) → P (f(x))). Suppose
that the right Herband theorem holds, noting that this is implied by the left Her-
brand theorem or finitarity. Then we have |=K

∨
i≤n(P (f i(c)) → P (f i+1(c)))

for some n ∈ N. Consider, however, a model M over the chain A with a de-
scending sequence of elements a1, . . . , an+1 whose domain is the Herbrand uni-
verse and predicate P defined such that PM(f i(c)) = ai for i ≤ n + 1 and

PM(t) = a1 otherwise. Then ‖P (f i(c)) → P (f i+1(c))‖M = ai → ai+1 < 1
A

and
so M 
|=

∨
i≤n(P (f i(c)) → P (f i+1(c))), a contradiction. 
�

6 A Herbrand Theorem for Satisfiability

The Herbrand theorem for first-order classical logic may be stated in terms
of satisfiability rather than semantic consequence. As remarked already, this is
not generally the case for first-order substructural logics. Indeed there are cases
where K is not finitary and the left and right Herbrand theorems fail, but a
Herbrand theorem for satisfiability holds.

A P-theory T is K-satisfiable if it has a P-K-model. Let us say that K is
compact if for each propositional language P : a P-theory T is K-satisfiable iff
each finite T ′ ⊆ T is K-satisfiable. Then by adjusting the proof of Theorem 3
(and corresponding necessary lemmata) to deal with satisfiability rather than
consequence and using compactness rather than finitarity, we obtain:

Theorem 5. If K is compact, then for every g-universal theory T ∪ {ϕ}:

T ∪ {ϕ} is K-satisfiable iff T ∪ {ϕ′} is K-satisfiable for every ϕ′ ∈ E(ϕ).

For example, the classes consisting of just the standard algebra of �Lukasiewicz
logic or product logic (see Example 1) are compact but not finitary. For product
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logic, satisfiability coincides with classical satisfiability. For �Lukasiewicz logic,
compactness is proved in [11, Theorem 5.4.24] and the failure of finitarity is
folklore, see e.g. [11, Remark 3.2.15]. Indeed, the failure of finitarity and the left
and right Herbrand theorems for this logic also follow from Proposition 2.

We show that the previous theorem can be used to obtain a new topology-
free proof of an “approximate” Herbrand theorem treated in a slightly weaker
form in [4]. First we introduce a useful notion of approximate validity for [0, 1]Ł,
defining for each r ∈ [0, 1] ∩Q:

T |=Ł r < ψ iff for every [0, 1]Ł-model M of T , r < ‖ψ‖M.

Lemma 8. For any r ∈ [0, 1] ∩ Q, there exists a quantifier-free formula χP
r

containing just one propositional atom P such that for any theory T ∪ {ψ} in
which P does not occur:

T |=Ł r < ψ iff T ∪ {ψ → χP
r } is [0, 1]Ł-unsatisfiable.

In particular, let r = n
n+1 for n ∈ N. Then χP

r = (P ∧ ¬Pn) has this property.

Proof. By McNaughton’s theorem [13], for each r ∈ [0, 1] ∩Q, there is a propo-
sitional formula χr of one variable p such that χr(

1
2 ) = r and χr(d) ≤ r for all

d ∈ [0, 1]. We define χP
r to be the result of replacing p with a nullary predicate

symbol P in χr. To prove the above claim, we proceed contrapositively. Suppose
that T 
|=Ł r < ψ. Then there is a [0, 1]Ł-model M of T such that ‖ψ‖M ≤ r. Ex-
pand this model by setting ‖P‖M = 1

2 and we obtain a [0, 1]Ł-model of ψ → χP
r .

I.e., T ∪ {ψ → χP
r } is [0, 1]Ł-satisfiable. Conversely, suppose that M is a [0, 1]Ł-

model of T ∪ {ψ → χP
r }. Then ‖ψ‖M ≤ ‖χP

r |M ≤ r as required. 
�

It follows that the approximate consequence relation for r ∈ [0, 1] ∩ N can be
defined in terms of the standard consequence relation |=[0,1]Ł .

The following proposition and approximate Herbrand theorem for �Lukasiewicz
logic are now immediate consequences of Lemma 8 and Theorem 5.

Proposition 3. For each g-universal theory T ∪ {ϕ}, g-existential formula ψ,
and r ∈ [0, 1] ∩Q:

T |=Ł r < ψ iff T |=Ł r < ψ′ for some ψ′ ∈ E(ψ)

T ∪ {ϕ} |=Ł r < ψ iff T ∪ {ϕ′} |=Ł r < ψ for some ϕ′ ∈ E(ϕ).

Theorem 6. For each g-universal theory T ∪ {ϕ} and g-existential formula ψ:

T |=[0,1]Ł ψ iff for all n ∈ N, T |=Ł
n

n+1 < ψ′ for some ψ′ ∈ E(ψ)

T ∪ {ϕ} |=[0,1]Ł ψ iff for all n ∈ N, T ∪ {ϕ′} |=Ł
n

n+1 < ψ for some ϕ′ ∈ E(ϕ).
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Abstract. Parity games are a powerful formalism for the automatic
synthesis and verification of reactive systems. They are closely related
to alternating ω-automata and emerge as a natural method for the so-
lution of the μ-calculus model checking problem. Due to these strict
connections, parity games are a well-established environment to describe
liveness properties such as “every request that occurs infinitely often is
eventually responded”. Unfortunately, the classical form of such a con-
dition suffers from the strong drawback that there is no bound on the
effective time that separates a request from its response, i.e., responses
are not promptly provided. Recently, to overcome this limitation, several
parity game variants have been proposed, in which quantitative require-
ments are added to the classic qualitative ones.
In this paper, we make a general study of the concept of promptness

in parity games that allows to put under a unique theoretical framework
several of the cited variants along with new ones. Also, we describe simple
polynomial reductions from all these conditions to either Büchi or parity
games, which simplify all previous known procedures. In particular, they
improve the complexity results of cost and bounded-cost parity games.
Indeed, we provide solution algorithms showing that determining the
winner of these games lies in UPTime ∩ CoUPTime.

1 Introduction

Parity games [13,24] are abstract infinite-duration two-player turn-based games,
which represent a powerful mathematical framework to analyze several problems
in computer science and mathematics. Their importance is deeply related to the
strict connection with other games of infinite duration, in particular, mean, dis-
counted payoff, stochastic and multi-agent games [6,7,9,10]. In the basic setting,
parity games are played on directed graphs whose nodes are labeled with prior-
ities (namely, colors) and players have perfect information about the adversary
moves. The two players, player ∃ and player ∀, move in turns a token along the
edges of the graph starting from a designated initial node. Thus, a play induces
an infinite path and player ∃ wins the play if the greatest priority that is visited
infinitely often is even, otherwise, player ∀ wins the play. The problem of finding a
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winning strategy in parity games is in UPTime ∩ CoUPTime [16] and the ques-
tion whether or not a polynomial time solution exists is a long-standing open
one.

In formal system design and verification [11,12,21,23], parity games arise as a
natural evaluation machinery for the automatic synthesis and verification of dis-
tributed and reactive systems [3–5, 20]. Specifically, in model-checking, one can
check the correctness of a system with respect to a desired behavior, by checking
whether a model of the system, that is, a Kripke structure, is correct with respect
to a formal specification of its behavior, usually described in terms of a modal
logic formula. In case the specification is given as a μ-calculus formula [17], the
model checking question can be polynomially rephrased as a parity game [13].

Parity games can express several important system requirements such as safety
and liveness properties. Along an infinite play, safety requirements are used to
ensure that nothing “bad” will ever happen, while liveness properties ensure that
something “good” eventually happens [2]. Often, safety and liveness properties
alone are simple to satisfy, while it becomes a very challenging task when prop-
erties of this kind need to be satisfied simultaneously. As an example, assume
we want to check the correctness of a printer scheduler that serves two users
in which it is required that, whenever a user sends a job to the printer, it is
eventually printed out (liveness property) and that two jobs are never printed
simultaneously (safety property). The above liveness property can be written as
the Ltl [22] formula G(req → Fgrant), where G and F stand for the classic tem-
poral operators “always” and “eventually”, respectively. This kind of question is
also known in literature as a request-response condition [15]. As explained above,
in a parity game, this requirement is interpreted over an infinite path generated
by the interplay of the two players. From a theoretical viewpoint, on checking
whether a request is eventually granted, there is no bound on the “waiting time”,
namely the time elapsed until the job is printed out. In other words, it is enough
to check that the system “can” grant the request, while we do not care when it
happens. In a real industry scenario, instead, the request is more concrete, that
is, the job must be printed in a reasonable time bound.

Lately, several works have focused on the above timing aspect in system spec-
ification. In [19], it has been addressed by forcing Ltl to express “prompt” re-
quirements, by means of a prompt operator Fp added to the logic. In [1] the
automata-theoretic counterpart of the Fp operator has been studied. In partic-
ular, prompt-Büchi automata are introduced and it has been showed that their
intersection with ω-regular languages is equivalent to co-Büchi. Successively, the
prompt semantics has been lifted to ω-regular games, under the parity winning
condition [8], by introducing finitary parity games. There, the concept of “dis-
tance” between positions in a play has been introduced and referred as the
number of edges traversed to reach a node from a given one. Then, winning
positions of the game are restricted to those occurring bounded. To give few
more details, first consider that, as in classic parity games, arenas have vertexes
equipped with natural number priorities and in a play every odd number met is
seen as a pending “request” that, to be satisfied, requires to meet a bigger even
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number afterwards along the play, which is therefore seen as a “response”. Then,
player ∃ wins the game if almost all requests are responded within a bounded
distance. It has been shown in [8] that the problem of determining the winner
in a finitary parity game is in PTime.

Recently, the work [8] has been generalized in [14] to deal with more involved
prompt parity conditions. For this reason, arenas are further equipped with two
kinds of edges, i-edges and ε-edges, which indicate whether there is or not a time-
unit consumption while traversing an edge, respectively. Then, the cost of a path
is determined by the number of its i-edges. In some way, the cost of traversing
a path can be seen as the consumption of resources. Therefore, in such a game,
player ∃ aims to achieve its goal with a bounded resource, while player ∀ tries to
avoid it. In particular, player ∃ wins a play if there is a bound b such that all re-
quests, except at most a finite number, have a cost bounded by b and all requests,
except at most a finite number, are responded. Since we now have an explicit cost
associated to every path, the corresponding condition has been named cost par-
ity (CP). Note that in cost parity games a finite number of unanswered requests
with unbounded cost is also allowed. By disallowing this, in [14], a strengthening
of the cost parity condition has been introduced and named bounded-cost parity
(BCP) condition. There, it has been shown that the winner of both cost parity
and bounded-cost parity can be decided in NPTime ∩ CoNPTime.

In this article we keep working on two-player parity games, under the prompt
semantics, over colored (vertexes) arenas with or without weights over edges. In
the sequel, we refer to the latter as colored arenas and to the former as weighted
arenas. Our aim is twofold. On one side, we give a clear picture of all differ-
ent extended parity conditions introduced in the literature working under the
prompt assumption. In particular, we analyze their main intrinsic peculiarities
and possibly improve the complexity results related to the game solutions. On
the other side, we introduce new parity conditions to work on both colored and
weighted arenas and study their relation with the known ones. For a complete
list of all the conditions we address in the sequel of this article, see Table 1.

In order to make our reasoning more clear, we first introduce the concept
of non-full, semi-full and full acceptance parity condition. To understand their
meaning, first consider again the cost parity condition. By definition, it is a
conjunction of two properties and in both of them a finite number of requests
(possibly different) can be ignored. For this reason, we call this condition “non-
full”. Consider now the bounded-cost parity condition. By definition, it is still
a conjunction of two properties, but now only in one of them a finite number
of requests can be ignored. For this reason, we call this condition “semi-full”.
Finally, a parity condition is named “full” if none of the requests can be ignored.
Note that the full concept has been already addressed in [8] on classic arenas.
We also refer to [8] for further motivations and examples.

As a main contribution in this work, we introduce and study three new parity
conditions named full parity (FP), prompt parity (PP) and full-prompt parity
(FPP), respectively. The full parity condition is defined over colored arenas and,
in accordance to the full semantics, it simply requires that all requests must be
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responded. Clearly, it has no meaning to talk about a semi-full parity condition,
since there is just one property to verify. Also, the non-full parity condition
corresponds to the classic parity one. See Table 2 for a schematic view of this
argument. We prove that the complexity of checking whether player ∃ wins un-
der the full parity condition is in PTime. This result is obtained by a quadratic
translation to classic Büchi games. The prompt parity condition, which we con-
sider on both colored and weighted arenas, requires that almost all requests are
responded within a bounded cost, which we name here delay. The full-prompt
parity condition is defined accordingly. Observe that the main difference between
the cost parity and the prompt parity conditions is that the former is a conjunc-
tion of two properties, in each of which a possibly different set of finite requests
can be ignored, while in the latter we indicate only one set of finite requests
to be used in two different properties. Nevertheless, since the quantifications of
the winning conditions range on co-finite sets, we are able to prove that prompt
and cost parity conditions are semantically equivalent. We also prove that the
complexity of checking whether player ∃ wins the game under the prompt parity
condition isUPTime ∩ CoUPTime, in the case of weighted arenas. So, the same
result holds for cost parity games and this improves the previously known re-
sults. The statement is obtained by a quartic translation to classic parity games.
Our algorithm always reduces the original problem to a unique parity game,
which is the core of how we gain a better result w.r.t. the time complexity point
of view. Obviously, this is different from what is done in [14] as the algorithm
there performs several calls to a parity game solver. Observe that, on colored
arenas prompt and full-prompt parity conditions correspond to the finitary and
bounded-finitary parity conditions [8], respectively. Hence, both the correspond-
ing games can be decided in PTime. We prove that for full-prompt parity games
the PTime complexity holds even in the case the arenas are weighted. Finally, by
means of a cubic translation to classic parity games, we prove that bounded-cost
parity over weighted arenas is in UPTime ∩ CoUPTime, which also improves
the previously known result about this condition.

Due to the lack of space, proofs are omitted and reported in the full version.

2 Preliminaries

In this section, we give the concepts of two-player turn-based arena, payoff-arena,
and game. As they are common definitions, an expert reader can skip this part.

Arenas. An arena is a tuple A � 〈Ps∃,Ps∀, Mv 〉, where Ps∃ and Ps∀ are the
disjoint sets of existential and universal positions and Mv ⊆ Ps× Ps is the left-
total move relation on Ps � Ps∃∪Ps∀. The order ofA is the number |A| � |Ps| of
its positions. An arena is finite iff it has finite order. A path (resp., history) in A
is an infinite (resp., finite non-empty) sequence of vertexes π ∈ Pth ⊆ Psω (resp.,
ρ ∈ Hst ⊆ Ps+) compatible with the move relation, i.e., (πi, πi+1) ∈ Mv (resp.,
(ρi, ρi+1) ∈ Mv), for all i ∈ N (resp., i ∈ [0, |ρ| − 1[), where Pth (resp., Hst)
denotes the set of all paths (resp., histories). Intuitively, histories and paths are
legal sequences of reachable positions that can be seen, respectively, as partial
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and complete descriptions of possible outcomes obtainable by following the rules
of the game modeled by the arena. An existential (resp., universal) history in
A is just a history ρ ∈ Hst∃ ⊆ Hst (resp., ρ ∈ Hst∀ ⊆ Hst) ending in an
existential (resp., universal) position, i.e., lst(ρ) ∈ Ps∃ (resp., lst(ρ) ∈ Ps∀). An
existential (resp., universal) strategy on A is a function σ∃ ∈ Str∃ ⊆ Hst∃ → Ps
(resp., σ∀ ∈ Str∀ ⊆ Hst∀ → Ps) mapping each existential (resp., universal)
history ρ ∈ Hst∃ (resp., ρ ∈ Hst∀) to a position compatible with the move
relation, i.e., (lst(ρ), σ∃(ρ)) ∈ Mv (resp., (lst(ρ), σ∀(ρ)) ∈ Mv ), where Str∃ (resp.,
Str∀) denotes the set of all existential (resp., universal) strategies. Intuitively, a
strategy is a high-level plan for a player to achieve his own goal, which contains
the choice of moves as a function of the histories of the current outcome. A path
π ∈ Pth(v) starting at a position v ∈ Ps is the play in A w.r.t. a pair of strategies
(σ∃, σ∀) ∈ Str∃×Str∀ (((σ∃, σ∀), v)-play, for short) iff, for all i ∈ N, it holds that
if πi ∈ Ps∃ then πi+1 = σ∃(π≤i) else πi+1 = σ∀(π≤i). Intuitively, a play is the
unique outcome of the game given by the player strategies. The play function
play : Ps × (Str∃ × Str∀) → Pth returns, for each position v ∈ Ps and pair of
strategies (σ∃, σ∀) ∈ Str∃ × Str∀, the ((σ∃, σ∀), v)-play play(v, (σ∃, σ∀)).

Payoff Arenas. A payoff arena is a tuple Â � 〈A,Pf , pf 〉, where A is the
underlying arena, Pf is the non-empty set of payoff values, and pf : Pth → Pf
is the payoff function mapping each path to a value. The order of Â is the
order of its underlying arena A. A payoff arena is finite iff it has finite order.
The overloading of the payoff function pf from the set of paths to the sets of
positions and pairs of existential and universal strategies induces the function
pf : Ps× (Str∃×Str∀) → Pf mapping each position v ∈ Ps and pair of strategies
(σ∃, σ∀) ∈ Str∃×Str∀ to the payoff value pf(v, (σ∃, σ∀)) � pf(play(v, (σ∃, σ∀))) of
the corresponding ((σ∃, σ∀), v)-play.

Games. A (extensive-form) game is a tuple � � 〈Â,Wn, v0〉, where Â = 〈A,Pf ,
pf 〉 is the underlying payoff arena,Wn ⊆ Pf is the winning payoff set, and v0 ∈ Ps
is the designated initial position. The order of G is the order of its underlying
payoff arena Â. A game is finite iff it has finite order. The existential (resp.,
universal) player ∃ (resp., ∀) wins the game � iff there exists an existential (resp.,
universal) strategy σ∃ ∈ Str∃ (resp., σ∀ ∈ Str∀) such that, for all universal (resp.,
existential) strategies σ∀ ∈ Str∀ (resp., σ∃ ∈ Str∀), it holds that pf(σ∃, σ∀) ∈ Wn
(resp., pf(σ∃, σ∀) 
∈ Wn).

3 Parity Conditions

In this section, we give an overview about all different parity conditions we con-
sider in this article, which are variants of classical parity games that will be
investigated over both classic colored arenas (i.e., with unweighted edges) and
weighted arenas. Specifically, along with the known Parity (P), Cost Parity (CP),
and Bounded-Cost Parity (BCP) conditions, we introduce three new winning
conditions, namely Full Parity (FP), Prompt Parity (PP), and Full-Prompt
Parity (FPP).
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Before continuing, we introduce some notation to formally define all addressed
winning conditions. A colored arena is a tuple Ã � 〈A,Cl, cl〉, where A is the
underlying arena, Cl ⊆ N is the non-empty sets of colors, and cl : Ps → Cl is the
coloring function mapping each position to a color. Similarly, a (colored) weighted
arena is a tuple A � 〈A,Cl, cl,Wg,wg〉, where 〈A,Cl, cl〉 is the underlying col-
ored arena, Wg ⊆ N is the non-empty sets of weights, and wg : Mv → Wg is the
weighting functions mapping each move to a weight. The overloading of the color-
ing (resp., weighting) function from the set of positions (resp., moves) to the set
of paths induces the function cl : Pth → Clω (resp., wg : Pth → Wgω) mapping
each path π ∈ Pth to the infinite sequence of colors cl(π) ∈ Clω (resp. weights
wg(π) ∈ Wgω) such that (cl(π))i = cl(πi) (resp., (wg(π))i = wg((πi, πi+1))), for

all i ∈ N. Every colored (resp., weighted) arena Ã � 〈A,Cl, cl〉 (resp., A � 〈A,

Cl, cl,Wg,wg〉) induces a canonical payoff arena Â � 〈A,Pf , pf 〉, where Pf �
Clω (resp., Pf � Clω ×Wgω) and pf(π) � cl(π) (resp., pf(π) � (cl(π),wg(π))).

Along a play, we interpret the occurrence of an odd priority as a “request”
and the occurrence of the first bigger even priority at a later position as a
“response”. Then, we distinguish between prompt and not-prompt requests. In
the not-prompt case, a request is responded independently from the elapsed time
between its occurrence and response. Conversely, in the prompt case, the time
within a request is responded has an important role. It is for this reason that we
consider weighted arenas. So, a delay over a play is the sum of the weights over
of all the edges crossed from a request to its response. We now formalize these
concepts. Let c ∈ Clω be an infinite sequence of colors. Then, Rq(c) � {i ∈ N
: ci ≡ 1 (mod 2)} denotes the set of all requests in c and rs(c, i) � min{j ∈ N :
i ≤ j ∧ ci ≤ cj ∧ cj ≡ 0 (mod 2)} represents the response to the requests i ∈ Rs,

where by convention we set min ∅ � ω. Moreover, Rs(c) � {i ∈ Rq(c) : rs(c, i) <
ω} denotes the subset of all requests for which a response is provided. Now, let

w ∈ Wgω be an infinite sequence of weights. Then, dl((c, w), i) �
∑rs(c,i)−1

k=i wk

denotes the delay w.r.t. w with which a request i ∈ Rq(c) is responded. Also,
dl((c, w),R) � supi∈R dl((c, w), i) is the supremum of all delays of the requests
contained in R ⊆ Rq(c).

Table 1. Prompt/non-prompt conditions under the full/semi-
full/non-full constraints

Non-Prompt Prompt

Non-Full Parity (P) Prompt Parity (PP) ≡ Cost Parity (CP)

Semi-Full − Bounded Cost Parity (BCP)

Full Full Parity (FP) Full Prompt Parity (FPP)

As usual, all con-
ditions we consider
are given on in-
finite plays. Then,
the winning of the
game can be defined
with respect to how
often the character-
izing properties of the winning condition are satisfied along each play. For ex-
ample, we may require that all requests have to be responded along a play,
which we denote as a full behavior of the acceptance condition. Also, we may
require that the condition (given as a unique or a conjunction of properties)
holds almost everywhere along the play (i.e., a finite number of places along the
play can be ignored), which we denote as a not-full behavior of the acceptance
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condition. More in general, we may have conditions, given as a conjunction of
several properties, to be satisfied in a mixed way, that is, some of them have to be
satisfied almost everywhere and the remaining ones, over all the play. We denote
the latter as a semi-full behavior of the acceptance condition. Table 1 reports
the combination of the full, not-full, and semi-full behaviors with the known
conditions of parity, cost-parity and bounded cost-parity and the new condition
of prompt-parity we introduce. As it will be clear in the following, bounded cost-
parity has intrinsically a semi-full behavior on weighted arenas, but it has no
meaning on (unweighted) colored arenas. Also, over colored arenas, the parity
condition has an intrinsic not-full behavior. Note that, as far as we known, some
of these combinations have never been studied previously on colored arenas (full
parity) and weighted arenas (prompt parity and full-prompt parity).

3.1 Non-prompt Conditions

The non-prompt conditions relate only to the satisfaction of a request (i.e., its
response), without taking into account the elapsing of time before the response is
provided (i.e., its delay). As reported in Table 1, here we consider as non-prompt

conditions, those ones of parity and full parity. To do this, let � � 〈Â,Wn, v0〉 be
a game, where the payoff arena Â is induced by a colored arena Ã = 〈A,Cl, cl〉.

v0
1

v1
0

v2
2

Fig. 1. Colored Arena Ã1

Parity condition (P) � is a parity game iff it is
played under a parity condition, which requires
that all requests, except at most a finite number,
are responded. Formally, for all c = Clω, we have
that c ∈ Wn iff there exists a finite set R ⊆ Rq(c)
such that Rq(c) \ R ⊆ Rs(c), i.e., c is a win-
ning payoff iff almost all requests in Rq(c) are

responded. Consider for example the colored arena Ã1 depicted in Figure 1,
where all positions are universal, and let α + β be the regular expression de-
scribing all possible plays starting at v0, where α = (v0 · v∗1 · v2) · v0 · vω1 and
β = (v0 · v∗1 · v2)ω. Now, keep a path π ∈ α and let cα � pf(π) ∈ (1 · 0∗ · 2) · 1 · 0ω
be its payoff. Then, cπ ∈ Wn, since the parity condition is satisfied by putting
in R the last index in which the color 1 occurs in cπ. Again, keep a path π ∈ β
and let cπ � pf(π) ∈ (1 · 0∗ · 2)ω be its payoff. Then, cπ ∈ Wn, since the parity
condition is satisfied by simply choosing R � ∅. In the following, as a special
case, we also consider parity games played over arenas colored only with the two
priorities 1 and 2, to which we refer as Büchi games (B).

v0
1

v1
2

Fig. 2. Colored Arena Ã2

Full Parity condition (FP) � is a full parity game
iff it is played under a full parity condition, which
requires that all requests are responded. Formally,
for all c ∈ Clω, we have that c ∈ Wn iff Rq(c) =
Rs(c) i.e., c is a winning payoff iff all requests in
Rq(c) are responded. Consider for example the col-

ored arena Ã2 in Figure 2, where all positions are
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existential. There is a unique path π = (v0 · v1)ω starting at v0 having payoff
cπ � pf(π) = (1 · 2)ω and set of requests Rq(cπ) = {2n : n ∈ N}. Then, cπ ∈ Wn,
since the full parity condition is satisfied as all requests are responded by the
color 2 at the odd indexes.

3.2 Prompt Conditions

The prompt conditions take into account, in addition to the satisfaction of a
request, also the delay before it occurs. As reported in Table 1, here we consider
as prompt conditions, those ones of prompt parity, full-prompt parity, cost parity,
and bounded-cost parity. To do this, let � � 〈Â,Wn, v0〉 be a game, where the

payoff arena Â is induced by a (colored) weighted arena A = 〈A,Cl, cl,Wg,wg〉.

v0
3

v1
1

v2
22

1

0

Fig. 3. Weighted Arena A3

Prompt Parity condition (PP) � is a prompt
parity game iff it is played under a prompt par-
ity condition, which requires that all requests,
except at most a finite number of them, are re-
sponded with a bounded delay. Formally, for all
(c, w) ∈ Clω×Wgω , we have that (c, w) ∈ Wn iff
there exists a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there exists
a bound b ∈ N for which dl((c, w),Rq(c) \ R) ≤ b holds, i.e., (c, w) is a winning
payoff iff almost all requests in Rq(c) are responded with a delay bounded by
an a priori number b. Consider for example the weighted arena A3 depicted in
Figure 3. There is a unique path π = v0 · (v1 · v2)ω starting at v0 having payoff
cπ � pf(π) = (c, w), where c = 3 · (1 · 2)ω and w = 2 · (1 · 0)ω, and set of re-
quests Rq(c) = {0} ∪ {2n+ 1 : n ∈ N}. Then, cπ ∈ Wn, since the prompt parity
condition is satisfied by choosing R = {0} and b = 1.

v0
3

v1
4

v2
1

2 0

0 1

Fig. 4. Weighted Arena A4

Full-Prompt Parity condition (FPP) � is a full-
prompt parity game iff it is played under a full-
prompt parity condition, which requires that all
requests are responded with a bounded delay.
Formally, for all (c, w) ∈ Clω × Wgω, we have
that (c, w) ∈ Wn iff Rq(c) = Rs(c) and there
exists a bound b ∈ N for which dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a win-
ning payoff iff all requests in Rq(c) are responded with a delay bounded by an
a priori number b. Consider for example the weighted arena A4 depicted in Fig-
ure 4. Now, take a path π ∈ v0 · v1 · ((v0 · v1)∗ · (v2 · v1)∗)ω starting at v0 and
let cπ � pf(π) = (c, w) be its payoff, with c ∈ 3 · 4 · ((3 · 4)∗ · (1 · 4)∗)ω and
w ∈ 2 · ((0 ·2)∗ · (0 ·1)∗)ω. Then, cπ ∈ Wn, since the full-prompt parity condition
is satisfied as all requests are responded by color 4 with a delay bound b = 2.

Remark 1. As a special case, the prompt and the full-prompt parity conditions
can be analyzed on simply colored arenas, by considering each edge as having
weight 1. Then, the above two cases just analyzed correspond to the finitary
parity and bounded parity conditions studied in [8].
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v0
1
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00

1

Fig. 5. Weighted Arena A5

Cost Parity condition (CP) [14] � is a cost par-
ity game iff it is played under a cost parity con-
dition, which requires that all requests, except at
most a finite number of them, are responded and
all requests, except at most a finite number of them
(possibly different from the previous ones) have a
bounded delay. Formally, for all (c, w) ∈ Clω ×Wgω, we have that (c, w) ∈ Wn
iff there is a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there exist a
finite set R′ ⊆ Rq(c) and a bound b ∈ N for which dl((c, w),Rq(c)\R′) ≤ b holds,
i.e., (c, w) is a winning payoff iff almost all requests in Rq(c) are responded and
almost all have a delay bounded by an a priori number b. Consider for example
the weighted arena A5 in Figure 5. There is a unique path π = v0 · v1ω starting

at v0 having payoff cπ � pf(π) = (c, w), where c = 1 · 0ω and w = 0 · 1ω, and set
of requests Rq(c) = {0}. Then, cπ ∈ Wn, since the prompt parity condition is
satisfied with R = R′ = {0} and b = 0.

v0
1

v1
01

0

Fig. 6. Weighted Arena A6

Bounded-Cost Parity condition (BCP) [14] � is a
bounded-cost parity game iff it is played under a
bounded-cost parity condition, which requires that
all requests, except at most a finite number, are
responded and all have a bounded delay. Formally,
for all (c, w) ∈ Clω ×Wgω, we have that (c, w) ∈
Wn iff there exists a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and
there exists a bound b ∈ N for which dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a
winning payoff iff almost all requests in Rq(c) are responded and all have a delay
bounded by an a priori number b. Consider for example the weighted arena A6

depicted in Figure 6. There is a unique path π = v0 · v1ω starting at v0 having
payoff cπ � pf(π) = (c, w), where c = 1 · 0ω, and set of requests Rq(c) = {0}.
Then, cπ ∈ Wn, since the prompt parity condition is satisfied with R = {0} and
b = 1.

Table 2. Summary of all winning condition (Wn) definitions

Wn Formal definitions

P ∀c∈Clω. c∈Wn iff ∃R ⊆ Rq(c), |R| < ω. Rq(c) \R ⊆ Rs(c)
FP Rq(c) = Rs(c)

PP

∀(c, w)∈Clω ×Wgω.
(c, w)∈Wn iff

∃R ⊆ Rq(c), |R| < ω. Rq(c) \R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \R) ≤ b

FPP
Rq(c) = Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c)) ≤ b

CP
∃R ⊆ Rq(c), |R| < ω.
∃R′ ⊆ Rq(c), |R′| < ω.

Rq(c) \R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \R′) ≤ b

BCP
∃R ⊆ Rq(c), |R| < ω. Rq(c) \R ⊆ Rs(c) ∧

∃b ∈ N . dl((c, w),Rq(c)) ≤ b

In Table 2, we list all winning conditions (Wn) introduced above, along with
their respective formal definitions. For the sake of readability, given a game
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� = 〈Â,Wn, v0〉, we sometimes use the winning condition acronym name in
place of Wn, as well as we refer to � as a Wn game. For example, if � is a parity
game, we also say that it is a P game, as well as write � = 〈Â,P, v0〉.

4 Equivalences and Implications

We now study the relationships among all parity conditions given above.

4.1 Positive Relationships

P

FP

PP

FPP

CP

BCP

[1]

[3]

[2a]
[4a]

[2b]

[4b]

[4c]

[4d]

[5]

[4e]

Fig. 7. Implication Schema

We now prove all positive relationships among
the given conditions and report them in Fig-
ure 7, where an arrow from a condition Wn1
to another one Wn2 means that the former
implies the latter. Namely, if player ∃ wins a
game under Wn1 condition, then it also wins
the game under the one Wn2, over the same
arena. The label on the edges indicates next theorem’s item in which the result
is proved. In particular, we show that prompt parity and cost parity are semanti-
cally equivalent. The same holds for full parity and full-prompt parity over finite
arenas and for full-prompt parity and bounded-cost parity on positive weighted
arenas. Also, as one may expect, fullness implies not-fullness under every condi-
tion and all conditions imply the parity one. Observe that, in the following, we
refer to Â, Ã, A indicating, respectively the payoff, colored and weighted arenas.

Theorem 1. Let �1 = 〈Â1,Wn1, v0〉 and �2 = 〈Â2,Wn2, v0〉 be two games de-

fined on arenas Â1 and Â2 having the same underlying arena A. Then, player ∃
wins �2 if it wins �1 under the following constraints:

1. Â1 = Â2 are induced by an arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) =
(FP,P);

2. Â1 and Â2 are induced, respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and one among (a) (Wn1,Wn2) =
(PP,P) and (b) (Wn1,Wn2) = (FPP,FP) hold.

3. Â2 and Â1 are finite and induced, respectively, by an arena A = 〈A,Cl,

cl,Wg,wg〉 and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) =
(FP,FPP);

4. Â1 = Â2 are induced by an arena A = 〈A,Cl, cl,Wg,wg〉 and one among
(a) (Wn1,Wn2)=(PP,CP), (b) (Wn1,Wn2)=(FPP,PP), (c) (Wn1,Wn2)=
(FPP,BCP),(d) (Wn1,Wn2)=(CP,PP), (e) (Wn1,Wn2)=(BCP,CP) hold.

5. Â1 = Â2 are induced by an arena A = 〈A,Cl, cl,Wg,wg〉, with wg(v) > 0
for all v ∈ Ps, and (Wn1,Wn2) = (BCP,FPP).

The following three corollaries follow as immediate consequences of, respectively,
Items 2b and 3, 4a and 4d, and 4c and 5 of the previous theorem.
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Corollary 1. Let �FPP = 〈ÂFPP,FPP, v0〉 be an FPP game and �FP = 〈ÂFP,

FP, v0〉 an FP one defined on the two finite arenas ÂFPP and ÂFP induced,

respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉 and its underlying arena Ã =
〈A,Cl, cl〉. Then, player ∃ wins �FPP if it wins �FP.

Corollary 2. Let �CP=〈Â,CP, v0〉 be a CP game and �PP=〈Â,PP, v0〉 a PP

one defined on the arena Â induced by an arena A=〈A,Cl, cl,Wg,wg〉. Then,
player ∃ wins �CP if it wins �PP.

Corollary 3. Let �BCP = 〈Â,BCP, v0〉 be a BCP game and �FPP = 〈Â,FPP,

v0〉 an FPP one defined on the arena Â induced by an arena A = 〈A,Cl, cl,
Wg,wg〉, where wg(v) > 0, for all v ∈ Ps. Then, player ∃ wins �BCP if it wins
�FPP.

4.2 Negative Relationships

P

FP

PP

BCP

[1]

[2]

[3]

[4]
[5]

[6]

Fig. 8. Counterexample Schema

We, now, show a list of counterexamples to
point out that some winning conditions are not
equivalent to other ones and report the cor-
responding results in Figure 8, where an ar-
row from a condition Wn1 to another condition
Wn2 means that there is an arena on which
player ∃ wins a Wn1 game while it loses a Wn2
one. The label on the edges indicates the item of the next theorem in which
the result is proved. Moreover, the following list of counter-implications, non re-
ported in the figure, can be simply obtained by the listed ones together with the
implication results of Theorem 1: (P, FPP), (P, CP), (P, BCP), (FP, FPP),
(FP, CP), (FP, BCP), (PP, FPP), (CP, FP), (CP, FPP), (CP, BCP), and
(BCP, FPP).

Theorem 2. There exist two games �1 = 〈Â1,Wn1, v0〉 and �2 = 〈Â2,Wn2,

v0〉, defined on the two arenas Â1 and Â2 having the same underlying arena A,
such that player ∃ wins �1 while it loses �2 under the following constraints:

1. Â1 = Â2 are induced by an arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) =
(P,FP);

2. Â2 and Â1 are induced, respectively, by an arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) = (P,PP);

3. Â2 and Â1 are infinite and induced, respectively, by A = 〈A,Cl, cl,Wg,wg〉
and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) = (FP,PP);

4. Â1 and Â2 are induced, respectively, by an arena A=〈A,Cl, cl,Wg,wg〉 and

its underlying arena Ã=〈A,Cl, cl〉 and (Wn1,Wn2)=(PP,FP);

5. Â1=Â2 are induced by A=〈A,Cl, cl,Wg,wg〉 and (Wn1,Wn2)=(PP,BCP);

6. Â1 and Â2 are induced, resp., by A = 〈A,Cl, cl,Wg,wg〉, with wg(v) = 0,

for v ∈ Ps, and its underlying arena Ã = 〈A,Cl, cl〉 and (Wn1,Wn2) =
(BCP,FP).
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5 Polynomial Reductions

In this section, we face the computational complexity of solving FP, PP, and
BCP games. Then, due to the relationships among the winning conditions
described above, we extend the achieved results to the other conditions as well.
The technique we adopt is to solve a given game through the construction of
a new game over an enriched arena, on which we play with a simpler winning
condition. Intuitively, the built game encapsulates in the states of its arena some
information regarding the satisfaction of the original condition. To this aim, we
introduce the concepts of transition table and its product with an arena. A transi-
tion table is an automaton without acceptance condition. It is used to represent
the information of the winning condition mentioned above. Then, the product
operation allows to pass this information to the new arena. In general, our con-
structions are pseudo-polynomial, but if we restrict to the case of having only 0
and 1 as weights over the edges, then they become polynomial, due to the fact
that the threshold is bounded by the number of edges in the arena. Moreover,
since a game with arbitrary weights can be easily transformed into one with
weights 0 and 1, we overall get a polynomial reduction for all the cases. Note
that to check whether a value is positive or zero can be done in linear time in
the number of its bits and, therefore, it is linear in the description of its weights.

In the following, for a given set of colors Cl ⊆ N, we assume ⊥ < i, for all
i ∈ Cl. Intuitively, ⊥ is a special symbol that can be seen as lower bound over
color priorities. Moreover, we define R � {c ∈ Cl : c ≡ 1(mod 2)} to be the set
of all possible request values in Cl with R⊥ � {⊥} ∪ R.

5.1 Transition Tables

A transition table is a tuple T � 〈Sm, StD, St∃, tr〉, where Sm is the set of symbols,
StD and St∃ with St � StD∪St∃ are disjoint sets of deterministic and existential
states, and tr : (StD×Sm → St)∪(St∃ → 2St) is the transition function mapping
either pairs of deterministic states and symbols to states or existential states to
sets of states. The order (resp., size) of T is |T | � |St| (resp., ‖T ‖ � |tr|). A
transition table is finite iff it has finite order.

Let Ã = 〈A,Cl, cl〉 be a colored arena with A = 〈Ps∃,Ps∀, Mv 〉 and T � 〈Cl,
StD, St∃, tr〉 a transition table. Then, Ãr ⊗ T � 〈Ps�∃,Ps�∀, Mv�〉 is the product
arena defined as follows:

– Ps�∃ � Ps∃ × StD ∪ Ps× St∃ and Ps�∀ � Ps∀ × StD;

– for (v1, v2) ∈ Mv and s ∈ StD, it holds that ((v1, s), (v2, tr(s, cl(v1)))) ∈ Mv�;

– for v∈Ps, s1∈St∃, and s2∈St, then, ((v, s1), (v, s2))∈Mv � iff s2∈tr(s1).

Similarly, let A = 〈A,Cl, cl,Wg,wg〉 be a weighted arena with A = 〈Ps∃,Ps∀,
Mv 〉 and T � 〈Cl×Wg, StD, St∃, tr〉 a transition table. Then, Ar⊗T � 〈Ps�∃,Ps�∀,
Mv�〉 is the product arena as before, except for all moves (v1, v2) ∈ Mv and states
s ∈ StD, where we have that ((v1, s), (v2, tr(s, (cl(v1),wg((v1, v2)))))) ∈ Mv�.
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5.2 From Full Parity to Büchi

In this section, we show a reduction from full parity games to Büchi ones. This is
done by constructing an ad-hoc transition table T that maintains basic informa-
tions of the parity condition. Then, the Büchi game uses as an arena an enriched
version of the original one, which is obtained as its product with T . Intuitively,
T keeps track, along every play, the value of the biggest unanswered request.
When such a request is satisfied, this value is set to the special symbol ⊥. To
this aim, T uses as states ⊥ and all possible request values, and its transition
function is defined as follows: if a request is satisfied, then T moves to state
⊥, otherwise, it moves to the state representing the maximum between the new
request it reads and the previous memorized one (kept into the current state).

Consider now the arena A� built as the product of the original arena with T
and use as colors the values 1 and 2, assigned as follows: if a position contains
⊥, color it with 2, otherwise, color it with 1. By definition of full parity and
Büchi games, we have that a Büchi game is won over A� if and only if the full
parity game is won over the original arena. Indeed, over a play of A�, meeting
⊥ infinitely often means that all requests found over the corresponding play of
the old arena are satisfied. The formal construction of T and the A� follow. For
a given FP game � � 〈Â,FP, v0〉 induced by a colored arena Ã = 〈A,Cl, cl〉,
we construct a deterministic transition table T � 〈Cl, St, tr〉, with set of states
St � R⊥ and transition function defined as follows:

– tr(r, c) �
{
⊥, if r < c and c ≡ 0(mod 2);

max{r, c}, otherwise.

Now, let A� = Ã⊗T be the product arena of Ã and T and consider the colored
arena Ã� � 〈A�, {1, 2}, cl�〉 such that, for all positions (v, r) ∈ Ps�, if r = ⊥
then cl�((v, r)) = 2 else cl�((v, r)) = 1. Then, the B game �� = 〈Â�,B, (v0,⊥)〉
induced by Ã� is such that player ∃ wins � iff it wins ��.

Theorem 3. For every FP game � with k ∈ N priorities, there is a B game
��, with order |��| = O(|�| · k), such that player ∃ wins � iff it wins ��.

5.3 From Bounded-Cost Parity to Parity

We now show a construction that allows to reduce a bounded-cost parity game
to a parity game. The approach we propose extends the one given in the previous
section by further equipping the transition table T with a counter that keeps
track of the delay accumulated since an unanswered request has been issued. Such
a counter is bounded in the sense that if the delay exceeds the sum of weights of
all moves in the original arena, then it is set to the special symbol �. The idea is
that if in a game such a bound has been exceeded then the adversarial player has
taken at least twice a move with a positive weight. So, he can do this an arbitrary
number of times and delay longer and longer the satisfaction of a request that
therefore becomes not prompt. Thus, we use as states in T , together with �, a
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finite set of pairs of numbers, where the first component, as above, represents a
finite request, while the second one is its delay. As first state component we also
allow ⊥ and (⊥, 0) indicates that there are not unanswered requests up to the
current position. Then, the transition function of T is defined as follows. If a
request is not satisfied within a bounded delay, then it goes and remains forever
in state �. Otherwise, if the request is satisfied, then it goes to (⊥, 0), else it
moves to a state that contains, as first component, the maximum between the
last request not responded and the read color and, as second component, the
one present in the current state plus the weight of the traversed edge.

Now, consider the product arena A� of T with the original arena and color
its positions as follows: unanswered request positions, with delay exceeding the
bound, are colored with 1, while the remaining ones are colored as in the original
arena. Clearly, in A�, a parity game is won if and only if the bounded-cost parity
game is won on the original arena. The formal construction of T and A� follow.

For a given BCP game � � 〈Â,BCP, v0〉 induced by a weighted arena A =
〈A,Cl, cl,Wg,wg〉, we construct a deterministic transition table T � 〈Cl ×
Wg, St, tr〉, with set of states St � {�} ∪ R⊥ × [0, s], where we assume s �∑

m∈Mv wg(m) to be the sum of all weights of moves inA, and transition function

defined as follows: tr(�, (c, w)) � � and, additionally,

– tr((r, k), (c, w)) �

⎧⎪⎨⎪⎩
(⊥, 0), if r < c and c ≡ 0(mod 2);

�, if k + w > s;

(max{r, c}, k + w), otherwise.

Let A� = Ã ⊗ T be the product arena of Ã and T and Ã� � 〈A�,Cl, cl�〉 be
the colored arena such that � is colored with 1, and all other states are colored
as in the original arena (w.r.t. the first component). Then, the P game �� = 〈Â�,

P, (v0, (⊥, 0))〉 induced by Ã� is such that player ∃ wins � iff it wins ��.

Theorem 4. For every BCP game � with k ∈ N priorities and sum of weights
s ∈ N, there is a P game ��, with order |��| = O(|�| · k · s), such that player ∃
wins � iff it wins ��.

5.4 From Prompt Parity to Parity and Büchi

Finally, we show a construction that reduces a prompt parity game to a parity
game. In particular, when the underlying weighted arena of the original game
has only positive weights, then the construction returns a Büchi game. Our ap-
proach extends the one proposed for the above BCP case, by further allowing
the transition table T to guess a request value that is not meet anymore along a
play. This is done to accomplish the second part of the prompt parity condition,
in which a finite number of requests can be excluded from the delay computa-
tion. To do this, first we allow T to be nondeterministic and label its states with
a flag α ∈ {D, ∃} to identify, respectively, deterministic and existential states.
Then, we enrich the states by means of a new component d ∈ [0, h], where



On Promptness in Parity Games 615

h � |{v ∈ Ps : cl(v) ≡ 1(mod 2)}| is the maximum number of positions having
odd priorities. So, d represents the counter of the forgotten priority and it is used
to later check the guess states. As first state we have the tuple ((⊥, 0, D), 0)) in-
dicating that there are not unanswered and forgotten requests up to the current
deterministic position. The transition function over a deterministic state is de-
fined as follows. If a request is not satisfied in a bounded delay, then it goes and
remains forever in state �; if the request is satisfied then it goes to ((⊥, d,D), 0);
otherwise it moves to an existential state that contains, as first component, the
triple having the maximum between the last request not responded and the read
color, the counter of forgotten priority, and a flag indicating that the state is
existential. Moreover, as a second component, there is a number that is the one
present in the current state plus the weight of the traversed edge. The transi-
tion function over an existential state is defined as follows. If d is equal to the
maximum allowable number of positions having an odd priority (h), then the
computation remains in the same (deterministic) state; otherwise, the computa-
tion moves to a state in which the second component is incremented by 1. Note
that the guess part is similar to that one performed to translate a nonderministic
co-Büchi automaton into a Büchi one [18]. Finally, we color the obtained arena
as we did for the above BCP case. In case the weighted arena of the original
game has only positive weights, then one can exclude a priory the fact that there
are unanswered requests with bounded delays. So, all these kind of requests can
be forgotten in order to win the game. Thus, in this case, it is enough to satisfy
only the remaining ones, which corresponds to visit infinitely often a position
containing as second component the symbol ⊥. So it is enough to color these
positions with 2, all the remaining ones with 1, and play on this arena a Büchi
condition. The formal construction of the transition table and the enriched arena
follow.

For a PP game � � 〈Â,PP, v0〉 induced by an arena A = 〈A,Cl, cl,Wg,wg〉,
we build a transition table T � 〈Cl×Wg, StD, St∃, tr〉, with sets of states StD �
{�}∪ZD× [0, s] and St∃ � Z∃× [0, s] (where we assume s �

∑
m∈Mv wg(m) to

be the sum of all weights of moves in the original arena and Zα � R⊥× [0, h]×α)
and its transition function defined as follows: tr(�, (c, w)) � � and, additionally:

– tr(((r, d,D), k), (c, w)) �

⎧⎪⎨⎪⎩
((⊥, d,D), 0), if r<c ∧ c≡0(mod 2);

�, if k + w > s;

((max{r, c}, d, ∃), k + w), otherwise.

– tr(((r, d, ∃), k)) �
{
{((r, d,D), k)}, if d = h;

{((r, d,D), k), ((⊥, d + 1, D), 0)}, otherwise.

Observe that, the set Zα is the Cartesian product of the biggest unanswered
request, the counter of the forgotten priority and, a flag indicating whether the
state is deterministic or existential.

Let A� = A ⊗ T be the product arena of A and T and consider the col-
ored arena Ã� � 〈A�,Cl, cl�〉 such that, for all positions (v, t) ∈ Ps�, if t = �
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then cl�((v, t)) = 1 else cl�((v, t)) = cl(v). Then, the P game �� = 〈Â�,P,

(v0, ((⊥, 0, D), 0))〉 induced by Ã� is such that player ∃ wins � iff it wins ��.

Theorem 5. For every PP game � with k ∈ N priorities and sum of weights
s ∈ N, there is a P game ��, with order |��| = O(|�|2 · k · s), such that player ∃
wins � iff it wins ��.

Observe that the estimation on the size of �� is quite coarse since several type
of states can not be reached by the initial position.

In case the weighted arena A is positive, i.e., wg(v) > 0 for all v ∈ Ps, we can

improve the above construction as follows. Consider the colored arena Ã� � 〈A�,
{1, 2}, cl�〉 such that, for all positions (v, t) ∈ Ps�, if t = ((⊥, d,D), 0) for some

d ∈ [0, h] then cl�((v, t)) = 2 else cl�((v, t)) = 1. Then, the B game �� = 〈Â�,B,

(v0, ((⊥, 0, D), 0))〉 induced by Ã� is such that player ∃ wins � iff it wins ��.

Theorem 6. For every PP game � with k ∈ N priorities and sum of weights
s ∈ N defined on a positive weighted arena, there is a B game ��, with order
|��| = O(|�|2 · k · s), such that player ∃ wins � iff it wins ��.

6 Conclusion

Recently, promptness reasonings have received large attention in system design
and verification. This is due to the fact that, while from a theoretical point
of view questions like “a specific state is eventually reached in a computation”
have a clear meaning and application in formal verification, in a practical sce-
nario, such a question results useless if there is no bound over the time the
required state occurs. This is the case, for example, when we deal with liveness
and safety properties. The question becomes even more involved in the case of
reactive systems, well modeled as two-player games, in which the response can
be procrastinated later and later due to an adversarial behavior.

In this work, we studied several variants of two-player parity games working
under a prompt semantics. In particular, we gave a general and clean setting to
formally describe and unify most of such games introduced in the literature, as
well as to address new ones. Our framework helped us to investigate peculiarities
and relationships among the addressed games. In particular, it helped us to come
up with solution algorithms that have as core engine and main complexity the
solution of a parity or a Büchi game. This makes the proposed algorithms very
efficient.

As games already addressed in literature, we studied cost parity and bounded-
cost parity and, for both of them, we provided algorithms that improve their
known complexity. As new parity games, we investigated full parity, full-prompt
parity, and prompt parity. We showed that full parity is in PTime, prompt
parity and cost parity are equivalent and both in UPTime ∩ CoUPTime. The
latter improves the known complexity result to solve cost parity games because
our algorithm reduce the original problem to a unique parity game while their
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one performs “several calls” to a parity games solver. Tables 1 and 2 report the
formal definition of all conditions addressed in the paper along with the full/not-
full/semi-full behavior. Tables 3 summarizes the achieved results. In particular,
we use the special arrow ←↩ to indicate that the result is trivial or an easy
consequence of another one.

Table 3. Summary of all winning condition complexities

Conditions Colored Arena (Colored) Weighted arena

Parity (P) UPTime ∩ CoUPTime [16] ←↩
Full Parity (FP) PTime [Thm 3] ←↩
Prompt Parity (PP) PTime [Thm 6] UPTime ∩ CoUPTime [Thm 5]

Full Prompt Parity (FPP) ←↩ PTime [FP + Cor 1]

Cost Parity (CP) PTime [PP + Cor 2] UPTime ∩ CoUPTime [PP + Cor 2]

Bounded Cost Parity (BCP) PTime [FPP + Cor 3] UPTime ∩ CoUPTime [Thm 4]
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Abstract. Formally specifying privacy goals is not trivial. The most
widely used approach in formal methods is based on the static equiv-
alence of frames in the applied pi-calculus, basically asking whether or
not the intruder is able to distinguish two given worlds. A subtle ques-
tion is how we can be sure that we have specified all pairs of worlds to
properly reflect our intuitive privacy goal. To address this problem, we
introduce in this paper a novel and declarative way to specify privacy
goals, called α-β privacy, and relate it to static equivalence. This new
approach is based on specifying two formulae α and β in first-order logic
with Herbrand universes, where α reflects the intentionally released infor-
mation and β includes the actual cryptographic (“technical”) messages
the intruder can see. Then α-β privacy means that the intruder cannot
derive any “non-technical” statement from β that he cannot derive from
α already. We describe by a variety of examples how this notion can
be used in practice. Even though α-β privacy does not directly contain
a notion of distinguishing between worlds, there is a close relationship
to static equivalence of frames that we investigate formally. This allows
us to justify (and criticize) the specifications that are currently used in
verification tools, and obtain partial tool support for α-β privacy.

1 Introduction

Context and Motivation. Several formal notions of privacy have been pro-
posed over the last decade, e.g., [1, 3, 5–7, 9, 13, 17]. Although these notions
are quite different, we can probably agree that defining privacy is actually quite
subtle and not as easy as it is supposed to be. One of the main reasons is that
classical secrecy notions do not apply for data that are not themselves secrets,
e.g., a vote is not itself a secret value like a private key. Rather, the information
we would like to protect is the relation between the (usually non-secret) values,
e.g., which voter has cast what vote.

For this reason, the vast majority of the popular approaches to formalizing
privacy is based not on the question of what the intruder can deduce from a set of
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known messages, but rather whether he can distinguish two different worlds.1 An
interesting follow-up question is thus: what is the “right” set of distinguishability
questions to define privacy? For instance, in a voting protocol where each user
can just vote yes or no, we may check that the intruder cannot distinguish the
world where a given voter voted yes from the one where this voter voted no.
However, this is not enough: even if the intruder cannot determine the votes, he
should also not be able to tell whether two voters have voted the same.

When we look at privacy-friendly identity management, we have even more
different kinds of data and possible relations between them, such as date of birth,
home address, or different uses of the same credentials. So, how can we ever be
confident that a given set of distinguishability questions is sufficient for privacy,
i.e., that we have not overlooked some possible connection the intruder could
make that we prefer him not to be able to make?

Contributions. In this paper, we take a step back and approach the problem
from a different angle. Our main goal is to find a formal description that reflects
the idea of privacy in a “natural” and less technical way and that can then be
related to the existing privacy notions, supporting or criticizing them. In fact,
ultimately we want to use the existing results in this field, but we take the
scientific liberty to first think in a slightly different direction.

More specifically, in this paper, we introduce a novel, simple and declarative
approach to specify privacy goals, called α-β privacy, which is based on speci-
fying two formulae α and β in First-Order Logic with Herbrand Universes [12].

α formalizes the intentionally released information, i.e., the information that
we can legitimately give to the intruder, which we also refer to as payload. For
instance, in a privacy-friendly zero-knowledge credential system (such as IBM’s
Idemix [13]) a user may prove that she is a female older than 18 years (accord-
ing to an electronic passport she owns), without releasing any more information,
such as her name or the precise date of birth. Hence, we have an immediate spec-
ification of the data that the user deliberately released, i.e., the statement proved
in the zero-knowledge proof, and it is intuitive that we then have a violation of
privacy whenever the server who verified the zero-knowledge proof can derive
more about the user than the user deliberately released by the proof. Of course,
we must exclude from this definition everything that is already entailed by the
proved statement, e.g., the fact that the user is also over 15 years old is entailed
by the proved statement, so that is not a violation of privacy, but if the server
is able to derive that the user is actually over 21 years, then there is a violation.
It is thus quite natural to formalize such statements as formulae in some logic
and to define privacy as the inability of the intruder to derive statements that
are not entailed by what the users have released.

As a counterpart to the “ideal knowledge” provided by the payload α, we
also need the technical information β, which represents the “actual knowledge”

1 This is not unlike the earlier paradigm shift in cryptographic definitions from de-
ducibility questions (such as: can the intruder obtain the plaintext of an encrypted
message?) to distinguishability questions (such as: can the intruder distinguish the
encryption of different chosen values?).
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that the intruder has, describing the information (e.g., names, keys ...) that he
initially knows, which actual cryptographic messages he has observed and what
he knows about these messages. For instance, he may be unable to decrypt a
message but anyway know that it has a certain format and contains certain
(protected) information, like a vote.

α-β privacy then means that the intruder cannot derive any “non-technical”
statement from β that he cannot derive from α already. We believe that this
is indeed a simple way to define privacy, and is a more declarative way to talk
about privacy than distinguishability of frames. Essentially, the modeler should
not think about what technical information the intruder could exploit, but rather
what information he is fine to release (α) and what messages are actually ex-
changed (β).

Another interesting and very declarative feature of our approach is that it
is straightforward to model what happens when two intruders collaborate and
share their knowledge. α-β privacy allows us to formalize this simply by taking
the logical conjunction of the formulae describing the knowledge that the two in-
truders have, reflecting in a natural way what we can ask the system to provide:
The best technology cannot prevent dishonest agents from pooling all the infor-
mation that they were intentionally given and deriving all possible conclusions
from that—but we can ask that they cannot derive more than that.

We describe by a variety of examples how α-β-privacy can be used in prac-
tice, and define transition systems based on it. Even though α-β privacy does
not directly contain a notion of distinguishing between worlds, there is a close
relationship to static equivalence of frames that we investigate formally. This
allows us to justify (and criticize) the specifications that are currently used in
verification tools and obtain partial tool support for α-β privacy (but we do
not discuss these two issues in full detail in this paper). We also prove several
results that help in reasoning about α-β privacy in general and give a decision
procedure for a fragment of it.

Organization. §2 provides the basis for our approach: we discuss First-Order
Logic with Herbrand Universes, messages and frames. In §3, we formalize α-β-
privacy and consider some concrete examples. In §4, we discuss automation and
the relation of α-β privacy to static equivalence and in §5, we draw conclusions.
In the accompanying technical report [14], we provide additional examples of how
α-β privacy may be employed to model randomized and deterministic encryp-
tion, non-determinism, strong secrecy, guessing attacks, anonymous credential
systems and pooling of knowledge.

We introduce primitives of our new α-β privacy approach step by step, where
Table 1 gives an overview of where they are introduced.

2 Preliminaries

2.1 Herbrand Logic

To formalize our approach, we need to choose an appropriate logic. An obvious
candidate is first-order logic (FOL), but this has one difficulty when it comes
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Table 1. Roadmap of the primitives introduced

Σ ,V,
TΣ(V)

§2.1/p.621 Finite alphabet, disjoint set of variables, and terms of our Her-
brand Logic (FOL with Herbrand Universes)


i §2.3/p.625 Frame (as in static equivalence), adapted to Herbrand Logic
mi §2.3/p.625 Memory location i, storing a piece of intruder knowledge
α §3/p.626 Payload, information that the intruder may legitimately obtain,

over V0 ⊆ V and Σ0 ⊆ Σ
β §3/p.626 Technical information of and about observed protocol messages,

over V and Σ
concr §2.3/p.625 Encoding of concrete intruder knowledge, ground terms from TΣ
eval §3.2/p.628 Encoding of structural intruder knowledge, terms from TΣ(V)
φaxiom Table 3 Axioms for generable terms, concrete and structural knowledge

to the interpretation of the constants and the cryptographic operators. As it
is standard in security protocol verification, we would like to interpret these
operators either in the free algebra or in the initial algebra induced by a set of
algebraic equations; we also call this the Herbrand Universe.2 In general, we can-
not enforce the desired interpretation by axioms in FOL (see, e.g., Example 2).
There are some work-arounds for this, e.g., [4, 11, 16, 18] use first-order Horn
theories that are inconsistent (in standard FOL) iff there is an attack in the least
Herbrand model, but this construction is not possible for our work because we
want to talk about deductions that hold in all Herbrand models of a formula
(which does not necessarily have a unique least Herbrand model).

As proposed in [12], FOL with Herbrand universes, or Herbrand Logic for
short, can be seen as a logic in its own right—as justified, e.g., by Example 2
below. We define Herbrand Logic as follows (discussing differences with respect
to the definition of [12] below).

Definition 1 (Syntax of Herbrand Logic). Let Σ = Σf #Σi #Σr be an al-
phabet that consists of a set Σf of free function symbols, a set Σi of interpreted
function symbols and a set Σr of relation symbols, all with their arities.

We write f(t1, . . . , tn) when f ∈ Σf and f [t1, . . . , tn] when f ∈ Σi, and we
denote the set of considered cryptographic operators by the subset Σop ⊆ Σf .
Constants are the special case of free function symbols with arity 0.

Let V be a countable set of variable symbols, disjoint from Σ. We denote
with TΣ(V) the set of all terms that can be built from the function symbols in Σ
and the variables in V. We simply write TΣ when V = ∅, and call its elements
ground terms (over signature Σ).

We define the set LΣ(V) of formulae over the alphabet Σ and the vari-
ables V as usual: relations and equality of terms are atomic formulae, and
composed formulae are built using conjunction ∧, negation ¬, and existential
quantification ∃.

2 Note that it is common to define the Herbrand Universe as the free term algebra but
for our purposes it is crucial to also include algebraic properties of the operators, as
illustrated in Example 1.
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We employ the standard syntactic sugar and write, for example, ∀x. φ for
¬∃x.¬φ. We also write x ∈ {t1, . . . , tn} to abbreviate x = t1 ∨ . . . ∨ x = tn. The
function fv returns the set of free variables of a formula as expected.

Definition 2 (Herbrand Universe and Algebra). Formulae in Herbrand
logic are always interpreted with respect to a given fixed set Σf of free symbols
(since this set may contain symbols that do not occur in the formulae) and a
congruence relation ≈ on TΣf

. We may annotate all notions of the semantics
with Σf and ≈ when it is not clear from the context.

We write [t]≈ = {t′ ∈ TΣf
| t ≈ t′} to denote the equivalence class of a term

t ∈ TΣf
with respect to ≈. Further, let U = {[t]≈ | t ∈ TΣf

} be the set of all
equivalence classes. We call U the Herbrand universe (since it is freely generated
by the function symbols of Σf modulo ≈). Based on U , we define a Σf -algebra
A that interprets every n-ary function symbol f ∈ Σf as a function fA : Un → U
in the following standard way. fA([t1]≈, . . . , [tn]≈) = [f(t1, . . . , tn)]≈, where the
choice of the representatives t1, . . . , tn of the equivalence classes is irrelevant
because ≈ is congruent. A is sometimes also called the quotient algebra (in the
literature sometimes denoted with TΣf

/ ≈).

Example 1. As an example, suppose the congruence relation ≈ is given by a
set of equations like ∀x, y. x+y ≈ y+x for some binary function symbols + and
− in Σf . Then we have in the quotient algebra 5+3 ≈ 3+5 but still 3+5 
≈
(7−4)+5. Thus, the quotient algebra is the finest (or “free-est”) interpretation
still compatible with the given algebraic properties. �

Definition 3 (Semantics of Herbrand Logic). An interpretation I maps
every interpreted function symbol f ∈ Σi of arity n to a function I(f) : Un → U
on the Herbrand universe, every relation symbol r ∈ Σr of arity n to a relation
I(r) ⊆ Un on the Herbrand universe, and every variable x ∈ V to an element
of U .

We extend I to a function on TΣ(V) : I(f(t1, . . . , tn)) = fA(I(t1), . . . , I(tn))
for f ∈ Σf and I(f[t1, . . . , tn]) = I(f)(I(t1), . . . , I(tn)).

We define that I is a model of formula φ, in symbols I |= φ, as follows:

I |= s = t iff I(s) = I(t)
I |= r(t1, . . . , tn) iff (I(t1), . . . , I(tn)) ∈ I(r)
I |= φ ∧ ψ iff I |= φ and I |= ψ
I |= ¬φ iff not I |= φ
I |= ∃x.φ iff there is a c ∈ U such that I[x �→ c] |= φ

where I[x �→ c] denotes the interpretation that is identical to I except that x
is mapped to c. Entailment φ |= ψ is defined as I |= φ implies I |= ψ for all
interpretations I. We write φ ≡ ψ when both φ |= ψ and ψ |= φ. We also use ≡
in the definitions of formulae.

Example 2. Similar to [12], we can axiomatize arithmetic in Herbrand logic;
simply let Σf = {z/0, s/1}, representing 0 and (+1), let ≈ be syntactic equality
on TΣf

, and let Σi = {add/2, mult/2} and Σr = {<} with the following formula:
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Table 2. Example set Σop : standard cryptographic constructors, destructors, verifiers

Constructors Destructors Verifiers Meaning

crypt(k, r, t) dcrypt(k, t) vcrypt(k, t) Asymmetric encryption of t with pub-
lic key k and randomness r. Decryption
with private key k.

scrypt(k, r, t) dscrypt(k, t) vscrypt(k, t) Symmetric encryption of t with secret
key k and randomness r.

sign(k, t) retrieve(t) vsig(k, t) Signature of t with private key k; verifi-
cation with public key k.

pub(s),priv(s) Asymmetric key pair generated from
seed s.

pair(t1, t2) proji(t) vpair(t) Concatenation of messages t1 and t2.
h(t) Hash of message t.

φ ≡ ∀x, y. add [z, y] = y ∧ add [s(x), y] = add [x, s(y)] ∧ mult [z, y] = z ∧
mult [s(x), y] = add [y, mult [x, y]] ∧ x < s(x) ∧ x < y =⇒ x < s(y). Then
φ |= ψ iff ψ is a true arithmetic statement. It is well-known that (as a consequence
of Löwenheim-Skolem’s theorem or of Gödel’s incompleteness theorem, see [10])
an equivalent axiomatization cannot be achieved in standard FOL. �

We note the following three differences with respect to the definition of Her-
brand logic in [12]. First, in [12] and as is standard, the Herbrand universe is
the free term algebra, forbidding one to model algebraic properties of the free
operators. Our definition is a generalization to equivalence classes modulo the ≈
relation (and ≈ can simply be set to be the syntactic equality on TΣf

to get the
free algebra). Second, the logic in [12] treats free variables as implicitly univer-
sally quantified, which is quite non-standard. In our definition, an interpretation
of a formula includes the interpretation of the free variables as is standard. This
is, of course, without loss of expressiveness since one can quantify variables when
this is what one wants to express. Third, the logic in [12] does not have inter-
preted functions and, in fact, these are syntactic sugar: an interpreted n-ary
function symbol f can be modeled by an n+1-ary relation Rf symbol with the
axiom ∀x1, . . . , xn.∃y.Rf(x1, . . . , xn, y) ∧ ∀y′. Rf (x1, . . . , xn, y′) =⇒ y = y′.

2.2 Messages, Operators and Algebraic Properties

We adopt the common black-box (“Dolev-Yao style” [8]) algebraic model of the
cryptographic operations. We consider, in this paper, the example set Σop of
standard operators given, together with their intuitive meanings, in Table 2. Let
≈ be the smallest relation so that for all terms s, r, t, t1, t2 in TΣf

and for
i ∈ {1, 2}:

dcrypt(priv(s), crypt(pub(s), r, t)) ≈ t vcrypt(priv(s), crypt(pub(s), r, t)) ≈ yes
retrieve(sign(priv(s), t)) ≈ t vsig(pub(s), sign(priv(s), t)) ≈ yes
dscrypt(k, scrypt(k, r, t)) ≈ t vscrypt(k, scrypt(k, r, t)) ≈ yes
proji(pair(t1, t2)) ≈ ti vpair(pair(t1, t2)) ≈ yes
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The equations induce a congruence relation ≈ on terms, and we interpret all
functions in the Herbrand universe modulo this congruence as explained above,
i.e., two terms are equal iff that is a consequence of ≈ with respect to Σop .

2.3 Frames

Frames and the notion of their static equivalence are a standard way to formalize
privacy goals in formal methods, e.g., [5–7]. We define them here in a slightly
non-standard way that is more convenient to directly formalize them in Herbrand
logic and later relate them to our concept of α-β privacy (we point the reader to
[14] for a detailed discussion on the differences between the standard definition
of frames and the one we consider here). Frames are written as


 = {m1 �→ t1, . . . ,ml �→ tl}

where the mi are distinguished constants and the ti are ground terms that do
not contain any mi. This frame represents that the intruder knows l messages
t1, . . . , tl that he can “refer to” as m1, . . . ,ml. In contrast to the standard Dolev-
Yao intruders, we thus do not model the intruder knowledge by a set of messages
{t1, . . . , tl}, but we give each message a unique label mi. This allows us to talk
about checks that the intruder can make, e.g., whether hashing the value at m1

gives the same value as the one stored at m2. We may thus refer to the mi as
memory locations in the intruder’s memory.

We define the terms that the intruder can generate from his knowledge as
the least set that contains m1, . . . ,ml and is closed under all the cryptographic
operators that the intruder can employ. For the example operators of Σop shown
in Table 2, we can formalize this in Herbrand Logic with a formula φgen(l), which
uses a new predicate gen(t) to represent that the intruder can generate t. Hence,
in contrast to the standard Dolev-Yao definition, the intruder does not directly
compose the terms he knows but rather he builds what is sometimes called
recipes by applying operators to the memory locations he has.

The axiom φgen(l) is shown in Table 3, together with the other axioms that
we will employ in α-β privacy. For a different set Σop of cryptographic operators
the definition is analogous: using semi-formal notation, φgen(l) would have the
form

φgen(l) ≡ ∀x. gen(x) ⇐⇒ (x ∈ {m1, . . . ,ml} ∨∨
f∈Σop

∃x1 . . . xn. x = f(x1, . . . , xn) ∧ gen(x1) . . . gen(xn))

The axiom φFr(
) in Table 3 allows us to encode the frame 
 = {m1 �→
t1, . . . ,ml �→ tl} into Herbrand logic using an interpreted function symbol concr [·]
that yields the concrete message stored for a memory location, and the axiom
φconcr extends the definition of concr [·] congruently for the application of crypto-
graphic operators, so that concr [t] is determined for all terms t that the intruder
can generate.

In the following, we use examples with two frames 
0 and 
1, both with
the same length l. We use functions concr0[t] and concr1[t] for their respective
encodings (and denote the above axiom as φconcr0 and φconcr1 as expected).
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Table 3. Axioms used in α-β privacy (for the example set Σop)

φgen(l) ≡ ∀x. gen(x) ⇐⇒ (x ∈ {m1, . . . ,ml} ∨
(∃x1, x2, x3. x = crypt(x1, x2, x3) ∧ gen(x1) ∧ gen(x2) ∧ gen(x3)) ∨
(∃x1, x2. x = dcrypt(x1, x2) ∧ gen(x1) ∧ gen(x2)) ∨ . . .∨
(∃x1. x = h(x1) ∧ gen(x1))) for a length l

φFr(�) ≡ concr [m1] = t1 ∧ . . . ∧ concr [ml] = tl for a frame � of length l
φconcr ≡ ∀x1, x2, x3, y1, y2, y3. (concr[x1] = y1 ∧ concr [x2] = y2 ∧ concr [x3] = y3) =⇒

(concr[crypt(x1, x2, x3)] = crypt(y1, y2, y3) ∧
concr [dcrypt(x1, x2)] = dcrypt(y1, y2) ∧ . . . ∧ concr[h(x1)] = h(y1))

φeval ≡ ∀x1, x2, x3, y1, y2, y3. (eval[x1] = y1 ∧ eval[x2] = y2 ∧ eval[x3] = y3) =⇒
(eval[crypt(x1, x2, x3)] = crypt(y1, y2, y3) ∧
eval[dcrypt(x1, x2)] = dcrypt(y1, y2) ∧ . . . ∧ eval[h(x1)] = h(y1))

φstruct ≡ ∀x, y. (concr [x] = concr [y] ⇐⇒ eval[x] = eval[y])

Example 3. Consider the frame (from [6]): 
0 = {m1 �→ scrypt(k, r1, n1),m2 �→
pair(n1, n2),m3 �→ k}. We have, for instance, that the intruder can obtain n1. Let
Φ ≡ φFr(
0) ∧ φconcr0

∧ φgen(3). Then we have, e.g., Φ |= gen(dscrypt(m3,m1))∧
concr0[dscrypt(m3, m1)] = n1. Note that we have Φ |= concr0[dscrypt(m3,m1)] =
concr0[proj1(m2)], i.e., the intruder can check that the decrypted term is equal
to the first component of m2. 
�

Definition 4 (Static Equivalence of Frames). Two frames 
0 and 
1 of
the same length l are statically equivalent (in symbols, 
0 ∼ 
1) iff for any pair
of generable terms either both frames give the same result or both frames give a
different result. Formally, 
0 ∼ 
1 iff

φgen(l) ∧ φFr(
0) ∧ φFr(
1) ∧ φconcr0 ∧ φconcr1 |=
∀x, y. (gen(x) ∧ gen(y)) =⇒ (concr0[x] = concr0[y] ⇐⇒ concr1[x] = concr 1[y])

Example 4. We can distinguish 
0 of Example 3 from the frame 
1 = {m1 �→
scrypt(k, r1, n3),m2 �→ pair(n1, n2),m3 �→ k} since the check concr1[dscrypt(m3,
m1)] = concr1[proj1(m2)] fails, whereas it succeeds for concr0. 
�

3 A New Privacy Model: α-β Privacy

We introduce α-β privacy step by step. In §3.1 we introduce the distinction
between payload formulae α and technical formulae β as well as the notion of
interesting derivation from β. In §3.2, we establish the methodology to reason
over such formulae, introducing a further function eval [·] similar to concr [·] that
represents the structural information the intruder has about his knowledge. In
§3.3 we extend the privacy notion to transition systems, and, finally, in §3.4 we
discuss further examples of α-β privacy.
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3.1 Payload and Technical Information

Our model is inspired by zero-knowledge proofs for privacy (as they are used, e.g.,
in IBM’s Idemix [13]). The following points are characteristic for such proofs:

– The prover (intentionally) conveys some information to the verifier, i.e., the
statement being proved to the verifier. We call this statement the payload α.

– The participants also (inevitably) convey some cryptographic information
(e.g., commitments, challenges, and responses) that, if the scheme is secure,
do not reveal anything “interesting” besides α; this, of course, is the very
reason why such a scheme is called zero-knowledge. We call this kind of
information the technical information β.

Here the term “interesting” is often defined in the cryptographic world by the fact
that it is computationally easy to produce a fake transcript of zero-knowledge
proofs that is statistically indistinguishable from a real transcript. Hence, what-
ever information could possibly be obtained from β one may have created oneself.
This kind of definition is, however, quite unhandy in logical reasoning, and it
applies only to (some types of) zero-knowledge proofs.

We show that it is fortunately possible to define the term “interesting” on a
logical basis that makes sense for many actual situations in which we want to
talk about privacy. The key idea is that the payload α may be formulated over
a restricted alphabet Σ0 � Σ, whereas the technical information β may talk
about the full alphabet Σ (e.g., all cryptographic operators are part of Σ \Σ0).

Definition 5. Let Σ0 � Σ. Given a payload formula α ∈ LΣ0(V) and a technical
formula β ∈ LΣ(V), where β |= α and fv(α) = fv (β) and both α and β are
consistent, we say that a statement α′ ∈ LΣ0(fv (α)) is an interesting derivation
from β (with respect to α) if β |= α′ but α 
|= α′. We say that β respects the
privacy of α if the intruder cannot derive any interesting statement from β, and
that β violates the privacy of α otherwise.

We have defined the notion of an interesting derivation α′ as anything the
intruder may be able to derive from his observations β as long as it is a non-
technical statement (i.e., of LΣ0) and it does not follow from α alone, i.e., from
what he is permitted to know anyway. This allows us to capture that the intruder
may well see a few technical details, e.g., that two messages come from the same
IP address, but that in itself is not very interesting as long as he cannot tie that
to a relevant information α′.

Another aspect of this definition is that by the information α that we gave
out, also all information that can be derived from α is given out, because the best
cryptographic systems cannot protect us from the intruder drawing conclusions.
In general, the weaker α is (i.e., the less information we deliberately release to
the intruder) and the stronger β is (i.e., the more information we assume the
intruder might actually have), the stronger is the notion of privacy. So, as a
rule of thumb, when a modeler is in doubt, one should be restrictive on α and
generous on β.
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3.2 Privacy on Messages

We look at a fixed state of a complex system and ask whether the intruder can
violate privacy in this state. Let us start with an example:

Example 5. Let the payload alphabet be Σ0 = {a, b, c} and let us model that
users choose values x from Σ0. This is the only information we want to give
the intruder. Suppose there is a protocol in place where each user sends out a
message h(pair(n, x)) that the intruder can observe, that is, a hash of the choice
x and a fixed number n (that is a secret from Σ \ Σ0). Obviously, using such
a fixed number, even though secret from the intruder, is a risk for “guessing
attacks”. Suppose further that the intruder has previously observed the message
h(pair(n, a)) and thus that he knows that the choice in this case was a. Let us
finally assume that a user has chosen x = b and thus sent out h(pair(n, b)). 
�

We want to reflect that, in this example, the intruder knows not only the con-
crete message h(pair(n, b)), but also the structural information that this message
has the form h(pair(n, x)) where x is the choice we are interested in.

For this reason, we use the concr function as before to represent concrete
knowledge and further introduce, as a fundamental part of α-β privacy, an in-
terpreted unary function symbol eval that works similar to concr and maps
memory locations to the structural information that the intruder has about the
terms in his knowledge. Here is one possible way to model Example 5 in Herbrand
logic:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ φgen(5) ∧ φconcr ∧ φeval ∧ φstruct ∧ concr [m1] = eval [m1] = a ∧

concr [m2] = eval [m2] = b ∧ concr [m3] = eval [m3] = c ∧
concr [m4] = eval [m4] = h(pair(n, a)) ∧ concr [m5] = h(pair(n, b)) ∧
eval [m5] = h(pair(n,x))

where the axioms φeval and φstruct are as defined in Table 3 (we will explain
them in detail below).

For most part, the structural information is identical to the concrete infor-
mation, only for the field m5 we have a difference between eval and concr . This
is indeed a major point for our model: for the choice x = b (i.e., “what re-
ally happened”), and only for this choice, we have that concr [m5] = eval [m5]
but the intruder a priori has no way to check that. However, the axiom φeval

allows him to derive the structure of terms he can generate, and most impor-
tantly φstruct tells us that two generable terms have the same concrete value
iff they have the same structure. In this example, we can exploit φstruct : from
concr [m4] 
= concr [m5] (recall that all terms are interpreted in the Herbrand uni-
verse) we have eval [m4] 
= eval [m5], so that h(pair(n, a)) 
= h(pair(n, x)) and thus
x 
= a (again since terms are interpreted in the Herbrand universe). Hence, the
intruder can derive from β the Σ0-formula α′ ≡ x ∈ {b, c} that does not follow
from α. Thus, in this example, β does not respect the privacy of α. Note that
the intruder cannot derive more, which is—very declaratively—because β has
both a model in which x = b, and one where x = c, so the intruder was not even
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able to determine the choice x, he was only able to exclude one interpretation,
namely x = a.

Message Analysis. The form of α and β that we have used for Example 5 is
at the core of many specifications, namely, when the intruder has observed a set
of messages and knows their structure. For this reason, we define a particular
fragment of α-β privacy (for which we give some decidability results in §4.2) that
deals only with combinatoric α and only with the analysis of messages similar
to the previous example.3

Definition 6. We call α ∈ LΣ0(V) combinatoric if Σ0 is finite and consists only
of free constants. Let α be combinatoric and σ a substitution of the free variables
of α to elements of Σ0 so that σ(α) is consistent. We say that β is a message-
analysis problem (with respect to α and σ) iff there are t1, . . . , tl ∈ TΣ(fv(α))
such that

β ≡ α ∧ φgen(l) ∧ φconcr ∧ φeval ∧ φstruct ∧
∧l

i=1 concr [mi] = σ(ti) ∧ eval [mi] = ti

In general, such a β allows us to model a system where messages ti have
been exchanged that depend on some payload values fv(α) and the intruder has
seen the concrete instantiations σ(ti) of these messages. Typically, the intruder
knowledge will contain all the values of Σ0 but he does not know the substitution
σ, i.e., how the payload variables were actually chosen from Σ0. What he knows,
however, is the structure of the terms, i.e., where these variables occur in the
ti, because this structural information is usually part of a publicly available
protocol description. He can try to exploit comparisons (φstruct ) with the actual
terms σ(ti) and their compositions (φconcr and φeval).

Some Variants of Example 5. One may, of course, consider a similar use of
variables for non-payload secrets, like the value n in Example 5. However, since
we require that α and β have the same set of free variables, one would then
existentially quantify that value; for instance, for Example 5:

β ≡ ∃y. . . . concr [m4] = h(pair(n, a)) ∧ eval [m4] = h(pair(y, a)) ∧
concr [m5] = h(pair(n, b)) ∧ eval [m5] = h(pair(y, x))

Without the existential quantifier (if y were left free), the intruder could derive,
e.g., that y 
= a (by generating h(pair(m1,m1)) and comparing the result with
m4). The ∃ thus intuitively says that we are not interested in the concrete value
of y—the goal is not the protection of the nonces in the hash-values, so if they
are found out, then it is not in itself a violation of privacy (but may lead to one).

Let us briefly also consider three variants of the example. First, if the intruder
also knows n, say, concr [m6] = eval [m6] = n, then he can indeed derive x = b,
because he can verify that h(pair(m6,m2)) gives the same concrete value as m4.

3 We could consider other forms of “combinatoric” α, e.g., such that Σ0 may contain
infinitely many free constants and function symbols as long as α admits only finitely
many models (up to isomorphism). We leave a detailed investigation to future work.
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Second, if users use different nonces that the intruder does not know, i.e.,
β ≡ . . . concr [m4] = eval [m4] = h(pair(n1, a)) ∧ concr [m5] = h(pair(n2, b)) ∧
eval [m5] = h(pair(n2, x)), then β indeed preserves the privacy of α. To see this,
note that β has models with x = a, with x = b, and with x = c. Thus, every
Σ0-formula α′ that follows β also follows from α.

Third, we have so far seen the message in m4 as a message that was sent
previously by some agent and we are not interested in protecting that, and,
in fact, we had assumed that the intruder already knows that it contained the
choice a. We can now also model that we are interested in protecting both choices
as follows:

α ≡ x1 ∈ {a, b, c} ∧ x2 ∈ {a, b, c}
β ≡ . . . concr [m4] = h(pair(n1, a)) ∧ eval [m4] = h(pair(n1, x1)) ∧

concr [m5] = h(pair(n2, b) ∧ eval [m5] = h(pair(n2, x2))

Here again β respects the privacy of α because we can find a model for each
combination of values for x1, x2 ∈ {a, b, c}. In contrast, if we had used the
same nonce (replacing both n1 and n2 with n), we would have that concr [m4] 
=
concr [m5] and thus x1 
= x2, which does not follow from α. Again the intruder
does not find out x1 or x2 but only that the two users voted differently. The
crucial point here (and the strength of α-β privacy) is that we do not have to
specify checks for all the different things that the intruder may be able to figure
out, or even think about them, but simply just specify a formula α that describes
what he is cleared to know and a formula β containing all information that may
be available to him.

3.3 α-β-Privacy in Transition Systems

We now show how we can extend α-β-privacy to transition systems. The key
idea is that we can define an α-β state as the pair (α, β) of formulae and privacy
as reachability in the resulting transition system. Formally, with Σ, Σ0 ⊆ Σ, V
and ≈ as before:

Definition 7. An α-β state is a pair (α, β) of formulae where α ∈ LΣ0(V) and
β ∈ LΣ(V). Let S denote the set of all α-β-states. An α-β transition system is
a pair (I, R) where I ∈ S and R ⊆ S × S. As is standard, the set of reachable
states is the smallest set that contains I and that is closed under R, i.e.: if S
is reachable and (S, S′) ∈ R, then also S′ is reachable. We say that an α-β-
transition system satisfies privacy iff in every reachable state (α, β), β respects
the privacy of α.

As an example of privacy as reachability, consider a simple transition system
with an initial state that has no information, and four successor states Si,j with
i, j ∈ {0, 1} depending on two independent choices i and j of the user. In all four
states, we have α ≡ x ∈ {0, 1}. Let now βi,j ≡ α ∧ φgen(2) ∧ φconcr ∧ φeval ∧
φstruct ∧ concr [m1] = scrypt(kj, rj , i)∧eval [m1] = scrypt(kj, rj , x) ∧ concr [m2] =
eval [m2] = k1, where kj and rj are new constants. In the states with j = 0, the
intruder cannot deduce anything interesting as he does not have the key needed
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for decryption, but in the states with j = 1 we have βi,0 |= x = i. So, there are
reachable states in which the intruder can find out more than he is supposed to.

3.4 Modeling Further Example Scenarios

We chose the following three major areas to model further examples of α-β
privacy, which are discussed in [14]: randomized vs. non-randomized encryption
including non-determinism and the notion of strong secrecy, guessing attacks
(in which we discuss different approaches to encode passwords and guessing in
α-β privacy and show unique features of our logic), and privacy-friendly identity
management including pooling of knowledge.

In particular, in [14], we discuss in detail an example of how to model anony-
mous credential systems, which highlights two interesting aspects of our ap-
proach: (i) we can have formulae α that talk also about relations between data
(e.g., y < 1996 to specify that a user if at least 18 years old), and (ii) we can
easily model that two dishonest agents collaborate and pool their knowledge.
To that end, suppose we have individual privacy specifications α1 and α2 (i.e.,
the information that was deliberately given to the two agents individually) and
their actual knowledge is β1 and β2, respectively, where we further assume that
all free variables that occur in both α1 and α2 actually refer to the same values.
Then, in α-β privacy, we simply use logical conjunction and ask whether β1∧β2

respects the privacy of α1 ∧α2. The rationale is that two agents can always pool
their actual knowledge and draw conclusions from it, i.e., we should consider
β1 ∧ β2 to be available to them, and even the best credential system cannot
prevent that they can derive everything that can be derived from what we gave
them individually, i.e., we have to at least allow them to derive α1 ∧ α2.

4 Automation and the Relation to Static Equivalence

The concept of α-β-privacy is very expressive, because Herbrand logic is. Consid-
ering Example 2, we recall that we can axiomatize arithmetic (of natural num-
bers) by a Herbrand formula α so that α |= γ iff γ is a true sentence of arithmetic.
Let valid be a further nullary relation symbol in Σ0 and β ≡ α∧ (γ =⇒ valid);
then β respects the privacy of α iff γ is a true sentence of arithmetic. Thus, in
general, α-β privacy (or its complement) is not even semi-decidable.

We see this expressive power as a feature, because it allows us to think about
privacy without the tight corset imposed by automated methods. In this section,
we explore a decidable fragment and the relation to static equivalence of frames
for which many decidability results already exist. Because of its expressive power,
it is no surprise that α-β-privacy subsumes static equivalence of frames:

Theorem 1. Let 
0 and 
1 be two frames, Σ0 consist of the nullary relation
symbol neq, α ≡ true and β ≡ α ∧ φgen(l) ∧ φFr(
0) ∧ φFr(
1) ∧ φconcr0 ∧
φconcr1

∧ (¬neq =⇒ (∀x, y. (gen(x)∧gen(y)) =⇒ (concr 0[x] = concr0[y] ⇐⇒
concr1[x] = concr1[y]))). Then, β respects the privacy of α iff 
0 ∼ 
1.
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Proof. From the definition of ∼ in Herbrand logic it follows that neq is derivable
from β iff the frames are not statically equivalent. If neq is not derivable, there
is no Σ0-formula that follows from β and not from α. 
�

The simple argument of this theorem may seem a bit unfair towards static
equivalence of frames, since we are not truly using α for the high-level payload
information available to the intruder, but rather considering everything as tech-
nical, and then just exploit the expressive power of Herbrand logic. In addition,
we show in [14] that a large fragment of the static-equivalence problem for frames
can be encoded into the message-analysis fragment of α-β privacy (cf. Def. 6).

Let’s look deeper at the two concepts. Static equivalence of frames is essen-
tially the question whether the intruder can distinguish two concrete worlds.
For instance, the frames 
0 and 
1 in Examples 3 and 4 represent two concrete
worlds that the intruder can distinguish: 
0 
∼ 
1. In contrast, α-β privacy ex-
presses with α all possible worlds (there may be more than two) and with β one
concrete world, asking whether the intruder can exclude some of the worlds of α.
This, in particular, requires a distinction between high-level payload information
and low-level technical information that frames do not have.

4.1 Limiting the Interesting Derivations

In order to show that many α-β-privacy problems can indeed be reduced to
static equivalence of frames, we need to overcome one obstacle: α-β-privacy asks
for any Σ0-formula α′ that can be derived from β but not from α. In general,
there is a (countably) infinite choice for α′ to consider. Recall that we call α
combinatoric if Σ0 is a finite set of free constants. Then the Herbrand Universe
for α is finite and so there are finitely many possible different interpretations of
the free variables of α. We can use this to limit the number of α′ we need to
consider:

Theorem 2. Consider an (α, β) pair where α is combinatoric and consistent.
Then, there is a finite number n > 0 of satisfying interpretations of the free
variables of α, and we can give N = 2n − 2 formulae α′1, . . . , α

′
N ∈ LΣ0(fv(α))

such that α 
|= α′i for all i ∈ {1, . . . , N} and β violates the privacy of α iff β |= α′i
for some i ∈ {1, . . . , N}.

Before we prove Theorem 2, let us recall that when α is combinatoric, then
Σ0 is a finite set of free constants, so that the Herbrand Universe for α is finite
and thus there are finitely many possible different interpretations of the free
variables of α. The key observation is that we can use this to limit the number
of α′ we need to consider. For example, if α ≡ x ∈ {0, 1, 2} then it obviously
suffices to check the following six candidates for α′: α′1 ≡ x = 0, α′2 ≡ x = 1,
α′3 ≡ x = 2, α′4 ≡ x ∈ {0, 1}, α′5 ≡ x ∈ {0, 2} and α′6 ≡ x ∈ {1, 2}.

In other words, any of the proper, non-empty subsets of the original choice
{0, 1, 2} are candidates to check—the empty set is excluded because x must be
one of the values, and the whole choice {0, 1, 2} is excluded because that already
follows from α. In fact, all other possible α′ that one could come up with (with
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the same set of free variables) must be equivalent to one of the above candidates,
e.g., α′ ≡ x ∈ {0, 1} =⇒ x /∈ {0} is equivalent to α′6.

Proof (Theorem 2). The Herbrand universe for α is simply Σ0, so every model
of α must map the free variables of α to elements of Σ0, which gives us a finite
set of choices since Σ0 is finite. In fact, this set of choices can be effectively
be computed, since α can only consists of variables, constants of Σ0, equality,
Boolean connectives and quantifiers (so, basically, Quantified Boolean Logic).
We can effectively write each model in the form γ ≡ x1 = ci1 ∧ . . . ∧ xk = cik .
Let G = {γ1, . . . , γn} be the set of all possible models that satisfy α, i.e., α ≡
γ1 ∨ . . . ∨ γn. Consider the set GP = {G0 | ∅ 
⊂ G0 � G} of proper, non-empty
subsets of G. GP has N = 2n−2 elements {g1, . . . , gN}. Define now the α′i to be
the disjunction of all formulae in gi for each i ∈ {1, . . . , N}, i.e., α′i =

∨
φ∈gi gi.

For any i ∈ {1, . . . , N}, α 
|= α′i since one of the possible valuations of the free
variables of α is not satisfied (since we chose only proper subsets of G; note that
we could exclude the empty set as at least one valuation will true).

Suppose now that β violates the privacy of α. Then, there is a formula α′ ∈
LΣ0(fv (α)) such that β |= α′ and α 
|= α′. From Definition 5, it follows that
fv(α′) ⊆ fv (β): suppose x ∈ fv (α′) \ fv(β), then β |= ∀x. α′ and still α 
|= ∀x. α′.
Since α 
|= α′ there is a valuation γi of the free variables of α so that γi |= α but
γi 
|= α′. Also there must be some γj with γj |= α and, since β |= γ, also γj |= α′.
Thus, the set of models of α′ is a proper, non-empty subset of the G, so some
gi ∈ GP describes exactly the models of α′, and therefore, finally, α′i ≡ α′. 
�

4.2 Reduction to Frames and Decidability

We now reduce message-analysis problems (cf. Def. 6) to finitely many static
equivalence problems of frames. Note that α in a message-analysis problem is by
definition combinatoric, and thus, by Theorem 2, there are finitely many satis-
fying interpretations of the free variables of α (and nothing else is to interpret
since Σ0 does not contain non-constant function or relation symbols). We denote
these models simply as substitutions σi (that map from fv (α) to Σ0).

Theorem 3. Consider (α, β) in the message-analysis problem fragment of α-β
privacy (i.e., according to Def. 6), with terms t1, . . . , tl. Let {σ1, . . . , σn} be the
models of α, and define 
i = {m1 �→ σi(t1), . . . , ml �→ σi(tl)}. Then, β respects
the privacy of α iff 
1 ∼ 
2 ∼ . . . ∼ Fn.

Proof. We prove that β respects the privacy of α iff ∀i.
i ∼ 
1, which is
equivalent as ∼ is an equivalence relation. Let eq([x1 �→ t1, . . . , xj �→ tj ]) for
some j denote the formula x1 = t1 ∧ . . . ∧ xj = tj . Then α ≡

∨n
i=1 eq(σi). Let

α′ ≡
∨
{i|�i∼�1} eq(σi), and αi ≡ eq(σi) ∨ eq(σ1), i.e., the restriction of α to

the choice between σ1 and σi. It follows, for every i ∈ {1, . . . , n}, that 
i ∼ 
1

iff β respects the privacy of αi (see [14] for a proof of this claim). Therefore,
β |= α′. The conjunction of α′ has at least one element, since φi ∼ φ1 at least
for i = 1. There are then two possible cases: (i) If there is also at least one
i ∈ {2, . . . , n} such that 
i 
∼ 
1, then α 
|= α′, and thus β violates the privacy
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of α. (ii) Otherwise (note: trivially α |= α′ in this case), by Theorem 2, there is
no α′ that follows from β but not from α, thus β respects the privacy of α. 
�

Since this result is independent of the considered set Σop of cryptographic
operations and algebraic theory, we immediately have that if we can decide
static equivalence for a given theory (e.g., [2, 5]), then we can decide the message-
analysis problem fragment of α-β privacy for that theory.

Note that, instead of relying on static equivalence, we could have also given a
direct decision procedure for our example theory, without an enumeration of all
models. In a nutshell, the key idea of such a proof is that in the restricted form
of α and β considered in the message-analysis problem, we can find a violation
of α-β privacy iff we can make use of the axiom concr [s] = concr [t] ⇐⇒
eval [s] = eval [t]. Then, we can show that there is a violation of α-β privacy iff
β has a witness, i.e., there are terms s, t ∈ TΣ such that concr and eval are
defined for s and t, and concr [s] = concr [t] while eval [s] 
= eval [t]. Then, we
can remove all analysis steps (i.e., decryptions and decompositions) from β by
encoding them in additional memory positions. The resulting β′ preserves the
privacy of α iff β does, and has a witness iff it has one in the free algebra,
for which it is straightforward to find witness or to prove their absence, and
thus conclude the proof. This argument is, of course, similar to what one does
to decide static equivalence in frames. However, static equivalence looks at the
more basic problem to compare a pair of frames, while α-β privacy asks to look
at all models of α (as did the above reduction).

5 Concluding Remarks

We have introduced α-β privacy as, we believe, a simple and declarative way
to specify privacy goals: the intruder should not be able to derive any “non-
technical” statement from the technical information β that he cannot derive
from the intentionally released information α already. We have given a variety of
examples that describe how α-β privacy can be used in practice and investigated
formally its close relationship to static equivalence of frames, which allows to use
existing methods for deciding a fragment of α-β privacy.

α-β privacy bears some similarities with the non-interference approach (e.g.,
[15]) since it also distinguishes (at least) two levels of information, usually low-
level and high-variables. These are, however, fundamentally different from our
payload α and technical information β since they are formulae that express
relations between values (rather than directly being public or private values). We
actually do not mind that the intruder gets hold of (some) technical information
as long as he cannot use it to obtain anything interesting besides the payload.

There are also privacy notions building on database abstractions. The two pre-
dominant notions are the k-anonymity family [17], asking whether an intruder is
unable to reduce the anonymity set below a threshold of k users, and differential
privacy [9], asking whether an intruder can detect significant changes in a proba-
bility distribution on statistical data released by a curator on data sets differing
in one element. For k-anonymity, we observe that the property that α has at
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least k models, and that the intruder cannot deduce an α′ with less choices, is
encodable in α-β privacy and will be part of future work. As differential privacy
is a property established on the information release function of the curator, a
relation to our notion is not straightforward.

We have mentioned above and in the previous sections a few directions for
future work. In addition to these, we have already started to consider further
examples, to formalize a language for specifying α-β transition systems, and to
generalize our decidability results to larger fragments of α-β privacy.
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14. Mödersheim, S., Groß, T., Viganò, L.: Defining Privacy is Supposed to be Easy

(Extended Version). Technical Report 2013-21, DTU Compute, Denmark (2013)
15. Ryan, P., Schneider, S.: Process algebra and non-interference. In: CSFW. IEEE

CS (1999)
16. Selinger, P.: Models for an Adversary-Centric Protocol Logic. ENTCS 55 (2003)
17. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)
18. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-

Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp.
314–328. Springer, Heidelberg (1999)

http://logic.stanford.edu/reports/LG-2006-02.pdf


Reachability Modules for the Description Logic

SRIQ

Riku Nortje, Katarina Britz, and Thomas Meyer

Center for Artificial Intelligence Research, University of KwaZulu-Natal and CSIR
Meraka Institute, South Africa

{rnortje,abritz,tmeyer}@csir.co.za

Abstract. In this paper we investigate module extraction for the De-
scription Logic SRIQ. We formulate modules in terms of the reachabil-
ity problem for directed hypergraphs. Using inseparability relations, we
investigate the module-theoretic properties of reachability modules and
show by means of an empirical evaluation that these modules have the
potential of being substantially smaller than syntactic locality modules.

1 Introduction

Description Logics (DLs) are widely used in ontological modeling. They form
a family of knowledge representation languages that are mostly decidable frag-
ments of first-order logic. Their formal semantics not only allow for the exchange
of DL ontologies but provide support for reasoning — the computation of addi-
tional logical inferences from the facts stated explicitly in an ontology.

There are many different DLs, each differing in the expressivity of the lan-
guage and the complexity of reasoning. In general, the more expressive a DL the
more complex the reasoning associated with it. This allows the ontology mod-
eller to choose, for the intended application, the best balance between language
expressivity on the one hand and reasoning complexity on the other. The DL
SRIQ is an expressive language and is a subset SROIQ, the W3C OWL DL
Web Ontology language.

Modularization plays an important part in the design and maintenance of
large scale ontologies. Modules are loosely defined as subsets of ontologies that
cover some topic of interest, where the topic of interest is defined by a set of
symbols. Extracting minimal modules is computationally expensive and even
undecidable for expressive DLs [4,5]. Therefore, the use of approximation tech-
niques and heuristics play an important role in the efficient design of algorithms.

Syntactic locality [4,5], because of its excellent model-theoretic properties,
has become an ideal heuristic and is widely used in a diverse set of algorithms
[19,3,6]. Suntisrivaraporn [19] showed that, for the DL EL+, ⊥-locality mod-
ule extraction is equivalent to the reachability problem in directed hypergraphs.
Nortjé et al. [14,15] extended the reachability problem to include �-locality and
introduced bidirectional reachability modules as a subset of ⊥�∗-locality mod-
ules. This work was further extended to the DL SROIQ by Nortje et al. [16]
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who showed that extracting ⊥�∗-reachability modules is equivalent to extract-
ing frontier graphs in hypergraphs. Reachability modules are not only of impor-
tance in hypergraph-based reasoning support for CBoxes [16], but are potentially
smaller than syntactic locality modules.

In this paper we investigate the module-theoretic properties of reachability
modules for the DL SRIQ. We show that these modules are not self-contained
or depleting but they are robust under vocabulary restrictions, vocabulary ex-
tensions, replacement and joins. By showing that reachability modules preserve
all justifications for entailments, we show that depleting modules are sufficient
for preserving all justifications but not necessary. This paper is an extended
version of the paper presented at DL2013 [17].

In Section 2 we give a brief introduction to the DL SRIQ, hypergraphs
and modularization as defined by inseparability relations. Section 3 introduces
a normal form for SRIQ CBoxes as well as the rules necessary to transform
any such CBox to normal form. In Section 4 we introduce both ⊥- and �-
reachability modules and investigate all their module theoretic properties in
terms of inseparability relations. In Section 5 we show the results of an empirical
evaluation of these modules. Lastly in Section 6 we conclude this paper with a
short summary of the results.

2 Background

In Section 2.1 we give a brief introduction to DLs and modularization with
specific focus on the DL SRIQ [9]. In Section 2.2 we give a brief introduction
to modules and module theoretic properties.

2.1 The DL SRIQ
The syntax and semantics of SRIQ is listed in Table 1. NC and NR denote
disjoint sets of atomic concept names and role names. The set NR includes the
universal role whilst NC excludes the� and⊥ concepts. For a complete definition
of SRIQ, refer to Horrocks et al. [9], and for Description Logics refer to [2].

In order to ensure decidability in SRIQ there are some restrictions on the
use of roles. R1 ◦ . . . ◦Rn " R, where n � 1 and Ri, R ∈ NR, is a role inclusion
axiom (RIA). A role hierarchy is a finite set of RIAs. Here R1 ◦ . . . ◦Rn denotes
a composition of roles where R,Ri may also be an inverse role R−. A role R is
simple if (i) it does not appear on the right-hand side of a RIA, or (ii) is the
inverse of a simple role, or (iii) appears on the right-hand side of a RIA only if
the left-hand side is a simple role. Ref(R), Irr(R) and Dis(R,S), where R, S
are roles other than U , are role assertions. A set of role assertions is simple w.r.t.
a role-hierarchy H if each assertion Irr(R) and Dis(R,S) uses only simple roles
w.r.t. H .

A strict partial order ≺ on NR is a regular order if, and only if, for all roles
R and S: S ≺ R iff S− ≺ R. Let ≺ be a regular order on roles. A RIA w " R is
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Table 1. Syntax and semantics of SRIQ

Constructs Syntax Semantics

atomic concept C CI ∈ ΔI , C ∈ NC

role R RI ⊆ ΔI ×ΔI , R ∈ NR

inverse role R− R−I = {(y, x) | (x, y) ∈ RI}, R ∈ NR

universal role U UI = ΔI ×ΔI

role composition R1 ◦ . . . ◦ Rn {(x, z) | (x, y1) ∈ RI
1 ∧ (y1, y2) ∈ RI

2 ∧ . . .
∧(yn, z) ∈ RI

n, n ≥ 2, Ri ∈ NR}
top � �I = ΔI

bottom ⊥ ⊥I = ∅
negation ¬C (¬C)I = ΔI \ CI

conjunction C1 , C2 (C1 , C2)
I = CI

1 ∩ CI
2

disjunction C1 * C2 (C1 * C2)
I = CI

1 ∪ CI
2

exist restriction ∃R.C {x | (∃y)[(x, y) ∈ RI ∧ y ∈ CI ]}
value restriction ∀R.C {x | (∀y)[(x, y) ∈ RI → y ∈ CI ]}
self restriction ∃R.Self {x | (x, x) ∈ RI}
atmost restriction � nR.C {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} � n}
atleast restriction � nR.C {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} � n}
Axiom Syntax Semantics

concept inclusion C1 + C2 CI
1 ⊆ CI

2

role inclusion R1 ◦ . . . ◦ Rn + Rn+1 (R1 ◦ . . . ◦Rn)
I ⊆ RI , n ≥ 1

reflexivity Ref(R) {(x, x) | x ∈ ΔI} ⊆ RI

irreflexivity Irr(R) {(x, x) | x ∈ ΔI} ∩RI = ∅
disjointness Dis(R,S) SI ∩RI = ∅

≺-regular if, and only if, R ∈ NR and w has one of the following forms: R ◦ R;
R−; S1 ◦ . . . ◦ Sn, where each Si ≺ R; R ◦ S1 ◦ . . . ◦ Sn, where each Si ≺ R
or S1 ◦ . . . ◦ Sn ◦ R, where each Si ≺ R. A role hierarchy H is regular if there
exists a regular order ≺ such that each RIA in H is ≺-regular. An RBox is a
finite, regular role hierarchy H together with a finite set of role assertions simple
w.r.t. H.

The set of SRIQ concept descriptions is the smallest set such that:

1. ⊥,�, and each C ∈ NC is a concept description.
2. If C is a concept description, then ¬C is a concept description.
3. If C and D are concept descriptions, R is a role, S is a simple role, and n is

a non-negative integer, then the following are all concept descriptions:

(C 
D), (C �D), ∃R.C, ∀R.C, � nS.C, � nS.C, ∃S.Self

If C and D are concept description then C " D is a general concept inclusion
(GCI) axiom. A TBox is a finite set of GCIs. If C is a concept description,
a,B ∈ NI , R,S ∈ NR with S a simple role, then C(a), R(a, b), ¬S(a, b), and
a 
= b, are individual assertions. An SRIQ ABox is a finite set of individual
assertions. All GCIs, RIAs, role assertions, and individual assertions are referred
to as axioms. A SRIQ-KB base is the union of a TBox, RBox and ABox. Given
a SRIQ TBox T and RBox R we define a SRIQ CBox C as T ∪ R.
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2.2 Modules and Their Properties

Module extraction is the process of extracting subsets of axioms from CBoxes
that are self contained with respect to some criteria. These sets of axioms, called
modules, may be used for various purposes such as reuse, optimization and error
pinpointing amongst others [5,19].

Definition 1. (Module for the arbitrary DL L [11,12]) Let L be an arbi-
trary description language, O an L ontology, and σ a statement formulated in
L. Then, O′ ⊆ O is a module for σ in O(a σ-module in O) whenever: O |= σ if
and only if O′ |= σ.

Definition 1 is sufficiently general so that any subset of an ontology preserving
a statement of interest is considered a module, the entire ontology is therefore a
module in itself.

Different use cases usually result in different notions of what the definition
and characteristics of a module should be. Modules are often defined via the
notion of conservative extensions. Given some signature (a set of concept and
role names) and a set of axioms, a conservative extension of this set is simply
one that implies all the same consequences over the signature. More formally:

Definition 2. (Conservative extension [1,7]) Let C and C1 be two CBoxes
such that C1 ⊆ C, and let Σ be a signature. Then

– C is a Σ-conservative extension of C1 if, for every α with Sig(α) ⊆ Σ, we
have C |= α iff C1 |= α.

– C is a conservative extension of C1 if C is a Σ-conservative extension of C1

for Σ = Sig(C1).

Given that both sets of axioms imply the same consequences for a given
signature we may then use the smaller set whenever we wish to reason over
this signature. A closely related notion to conservative extensions is that of
inseparability.

Definition 3. [18] C1 and C2 are Σ-concept name inseparable, written C1 ≡c
Σ

C2, if for all Σ- concept names C,D, it holds that C1 |= C " D if and only if
C2 |= C " D.

Definition 4. [18] C1 and C2 are Σ-subsumption inseparable, written C1 ≡s
Σ C2,

if for all terms X,Y that are concepts or roles over Σ, it holds that C1 |= X " Y
if and only if C2 |= X " Y .

Definition 5. [11,12,18] Let C be a CBox, M ⊆ C, S an inseparability relation
and Σ a signature. We call M

– an SΣ-module of T if M ≡S
Σ C.

– a self-contained SΣ-module of C if M≡S
Σ∪Sig(M) C.

– a depleting SΣ-module of C if ∅ ≡S
Σ∪Sig(M) C \M.
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Modules may therefore be characterized by some inseparability criteria. It is
of interest how modules defined this way would behave under different use case
scenarios. For this purpose, several properties of inseparability relations [10]
have been investigated in the literature, which allows us to compare different
definitions of modules. Given a CBox C and a module M ⊆ C for a signature Σ,
we are interested in the following inseparability properties:

– Robustness under vocabulary restrictions implies that when we wish to re-
strict the symbols from Σ further we do not need to import a different
module and may continue to use M.

– Robustness under vocabulary extension implies that should we wish to add
new symbols to Σ that do not appear in C we do not need to use a different
module but may use M.

– Robustness under replacement ensures that the result of importing M into a
CBox C1 is a module of the result of importing C into C1. This is also called
module coverage and refers to the fact that importing a module does not
affect its property of being a module.

– Robustness under joins implies that if C and C1 are inseparable w.r.t. Σ and
all the terms they share are from Σ, then each of them are inseparable with
their union w.r.t. Σ.

More formally:

Definition 6. [10,11,12] The inseparability relation S is called

– robust under vocabulary restrictions if, for all CBoxes C1, C2 and all signa-
tures Σ, Σ′ with Σ ⊆ Σ′, the following holds: if C1 ≡S

Σ′ C2, then C1 ≡S
Σ C2.

– robust under vocabulary extensions if, for all CBoxes C1, C2 and all sig-
natures Σ, Σ′ with Σ′ ∩ (Sig(C1) ∪ Sig(C2)) ⊆ Σ, the following holds: if
C1 ≡S

Σ C2, then C1 ≡S
Σ′ C2.

– robust under replacement if, for all CBoxes C1, C2 and all signatures Σ and
every CBox C with Sig(C)∩ (Sig(C1)∪Sig(C2)) ⊆ Σ, the following holds: if
C1 ≡S

Σ C2 then C1 ∪ C ≡S
Σ C2 ∪ C.

– robust under joins if, for all CBoxes C1, C2 and all signatures Σ with Sig(C)∩
Sig(C2) ⊆ Σ, if C1 ≡S

Σ C2 then Ci ≡S
Σ C1 ∪ C2, for i = 1, 2.

Deciding conservative extensions has been shown to be computationally ex-
pensive or even undecidable for relatively inexpressive DLs. Therefore, an ap-
proximation of these modules, based on syntax, called syntactic locality mod-
ules has been introduced [5]. Syntactic locality modules possess all the module-
theoretic properties discussed in this section and have become one of the most
widely used definitions of modules. We will give a definition of a normalized
version of syntactic locality once we have introduced a normal form for SRIQ.

3 Normal Form

In this section we introduce a normal form for SRIQ CBoxes. We utilize nor-
malization in order to simplify the definitions, to ease the understanding of the
work that follows, as well as to simplify the presentation of proofs.
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Definition 7. Given Bi ∈ (NC ∪ {�}), Ci ∈ (NC ∪ {⊥}), D ∈ {∃R.B, ≥
nR.B, ∃R.Self}, with R,S,Ri, Si role names from NR or their inverses and
n � 1, a SRIQ CBox C is in normal form if every axiom α ∈ C is in one of
the following forms:

α1: B1 
 . . . 
Bn " C1 � . . . � Cm α2: D " C1 � . . . � Cm

α3: B1 
 . . . 
Bn " D α4: R1 ◦ . . . ◦Rn " Rn+1

α5: R1 " R2 α6: D1 " D2

α7: Dis(R1, R2)

In order to normalize a SRIQ CBox C we repeatedly apply the normalization
rules from Table 2. Each application of a rule rewrites an axiom into its equivalent
normal form. It is easy to see that the application of every rule ensures that the
normalized CBox is a conservative extension of the original. We note that the
SRIQ axiom Ref(R) is represented by its equivalent � " ∃R.Self and Irr(R)
by ∃R.Self " ⊥ [2].

Table 2. SRIQ normalization rules

NR1 B̂ , ¬Ĉ2 + Ĉ1 � B̂ + Ĉ1 * Ĉ2

NR2 B̂1 + Ĉ * ¬B̂2 � B̂1 , B̂2 + Ĉ
NR3 B̂ , D̂ + Ĉ � B̂ ,A + Ĉ, D̂ + A, A + D̂
NR4 B̂ + Ĉ * D̂ � B̂ + Ĉ *A, D̂ + A, A + D̂
NR5 B̂ + Ĉ1 , Ĉ2 � B̂ + Ĉ1, B̂ + Ĉ2

NR6 B̂1 * B̂2 + Ĉ � B̂1 + Ĉ, B̂2 + Ĉ
NR7 . . .∀R.Ĉ . . . � . . .¬∃R.A . . ., A , Ĉ + ⊥, � + A * Ĉ
NR8 . . .∃R.D̂ . . . � . . .∃R.A . . ., D̂ + A, A + D̂
NR9 . . . � nR.D̂ . . . � . . . � nR.A . . ., D̂ + A, A + D̂
NR10 . . . � nR.Ĉ . . . � . . .¬(� (n+ 1)R.Ĉ) . . .
NR11 B̂ ≡ Ĉ � B̂ + Ĉ,Ĉ + B̂
NR12 � 0R.B + Ĉ � � + Ĉ
NR13 B̂ + ∃R.⊥ � B̂ + ⊥
NR14 B̂ +� nR.⊥ � B̂ + ⊥
NR15 B̂ +� 0R.B �
NR16 � nR.⊥ + Ĉ �
NR17 ∃R.⊥ + Ĉ �
NR18 B̂ , ⊥ + Ĉ �
NR19 ⊥ + Ĉ �
NR20 B̂ + Ĉ * � �
NR21 B̂ + � �
Above A is a new concept name not in NC , B̂i and Ĉi are possibly complex concept

descriptions and D̂ a complex concept description. R ∈ NR or it’s inverse, n � 0

Theorem 1. Exhaustively applying the rules from Table 2 to any SRIQ CBox
C results in a SRIQ CBox C′ in normal form. The normalization process can
be completed in linear time in the number of axioms.
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Proof Sketch: We show that normalization is linear in the number of axioms
by applying normalization rules in the following order: ≡-elimination (NR11), ∀-
elimination (NR7), �-elimination (NR10), Complex role-filler elimination (NR8,
NR9), ¬-elimination and simplification by iteration of rules NR1, NR3, NR6 and
NR2, NR4, NR5. Lastly rules NR12 through NR21 are applied. �

Example 1. Let α1 = B " ¬C, and α2 = ¬A " B. Then, α1 may be normalized
by application of rule NR2 to αN

1 = B 
C " ⊥ since ¬C = ¬C �⊥. α2 may be
normalized by application of rule NR1 to αN

2 = � " B ∪A since ¬A = ¬A
�.

We will discuss the importance of normalization in the context of this paper
in more detail in the next section.

4 Reachability Modules

Syntactic locality is a widely used approximation to deciding conservative ex-
tensions. Given a normalized CBox C, the definition of syntactic locality can be
simplified to the following:

Definition 8. (Normalized Syntactic Locality) Let Σ be a signature and C

a normalized SRIQ CBox. An axiom α is ⊥-local w.r.t. Σ (�-local w.r.t Σ) if
α ∈ Ax(Σ)⊥ (α ∈ Ax(Σ)$), as defined in the grammar:

⊥-Locality

Ax(Σ)⊥ ::= C⊥ " C | w⊥ " R | Dis(S⊥, S) | Dis(S, S⊥)
Con⊥(Σ) ::= A⊥ | C⊥ 
C | C 
C⊥ | ∃R⊥.C | ∃R.C⊥ | ∃R⊥.Self |

� nR⊥.C |� nR.C⊥

�-Locality

Ax(Σ)$ ::= C " C$ | w " R$

Con$(Σ) ::= A$ | C$ �C | C �C$ | ∃R$.C$ |� nR$.C$ |
∃R$.Self

In the grammar, we have that A⊥, A$ 
∈ Σ is an atomic concept, R⊥ (resp.
S⊥) is either an atomic role (resp. a simple atomic role) not in Σ or the inverse
of an atomic role (resp. of a simple atomic role) not in Σ, C is any concept, R
is any role, S is any simple role, and C⊥ ∈ Con⊥(Σ), C$ ∈ Con$(Σ). We also
denote by w⊥ a role chain w = R1 ◦ . . .◦Rn such that for some i with 1 ≤ i ≤ n,
we have that Ri is (possibly inverse of) an atomic role not in Σ. A CBox C is
⊥-local (�-local) w.r.t. Σ if α is ⊥-local (�-local) w.r.t. Σ for all α ∈ C.

For a complete overview of locality modules as well as algorithms for extract-
ing such we refer the interested reader to Cuenca Grau et al [5].

A variant of ⊥-syntactic locality modules called ⊥-reachability based modules
[19] is based on the reachability problem in directed hypergraphs. Hypergraphs
[13,20] are a generalization of graphs and have been studied extensively since the
1970s as a powerful tool for modeling many problems in Discrete Mathematics.
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We extend the work done by Nortje et al.[15] and define reachability for SRIQ
CBoxes. We then continue to show that these modules share all the robustness
properties of locality modules and therefore is well suited to be used in the
ontology reuse scenario.

Definition 9. (⊥-Reachability) Let C be a SRIQ CBox in normal form and
Σ ⊆ Sig(C) a signature. The set of ⊥-reachable names in C w.r.t. Σ, denoted by
Σ←⊥

C , is defined inductively as follows:

– For every x ∈ (Σ ∪ {�}) we have x ∈ Σ←⊥
C .

– For every inclusion axiom (αL " αR) ∈ C, if Sig(αL) ⊆ Σ←⊥
C then every

y ∈ Sig(αR) is also in Σ←⊥
C .

Every axiom α := αL " αR such that Sig(αL) ⊆ Σ←⊥
C we call Σ←⊥

C -reachable.
Axioms of the form Dis(R,S) ∈ C are Σ←⊥

C -reachable whenever {R,S} ⊆ Σ←⊥
C .

The set of all Σ←⊥
C -reachable axioms is denoted by C←⊥Σ and is called the ⊥-

reachability module for C over Σ.

It is self-evident from Definition 8 that an axiom is ⊥-reachable w.r.t Σ exactly
when it is not ⊥-local w.r.t. Σ. Similarly we define an axiom to be �-reachable
exactly when it is not �-local.

Definition 10. (�-Reachability) Let C be a SRIQ CBox in normal form and
Σ ⊆ Sig(C) a signature. The set of �-reachable names in C w.r.t. Σ, denoted by
Σ←$

C , is defined inductively as follows:

– For every x ∈ (Σ ∪ {⊥}) we have that x ∈ Σ←$
C .

– For all inclusion axioms (αL " αR) ∈ C, if

• αR = ⊥, or

• αR is of the form A1 � . . . �An and all Ai ∈ Σ←$
C , or

• αR has any other form and there exists some x ∈ Sig(αR) ∩Σ←$
C

then every y ∈ Sig(αL) is also in Σ←$
C .

Every axiom α := αL " αR such that, αR = ⊥, or αR is of the form A1 � . . . �
An and all Ai ∈ Σ←$

C , or αR has any other form and there exists some x ∈
Sig(αR) ∩Σ←$

C , we call Σ←$
C -reachable. All axioms of the form Dis(R,S) ∈ C

are always Σ←$
C -reachable and {R,S} ⊆ Σ←$

C . The set of all Σ←$
C -reachable

axioms is denoted by C←$Σ and is called the �-reachability module for C over Σ.

Given the appropriate mapping of axioms to hyperedges [16], ⊥-Reachability
can be shown to be equivalent to B-reachability in hypergraphs and �-reachab-
ility to hypergraph F-reachability. The ⊥-reachability module for a signature S
is equivalent to the set of all B-hyperpaths for the set of nodes corresponding to
S and the �-reachability module equivalent to the set of all F-hyperpaths.

It is easy to show that ⊥-reachability modules are equivalent to ⊥-locality
modules. However, by the definition of �-reachability we observe that these are
not equivalent to �-locality modules.
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Example 2. Let C be a CBox such that C = {α1, α2, α3, α4}, with α1 := A "
∃r.D1, α2 := B "≥ 3r.D2, α3 := ∃r.� " C,α4 := D1 " D2 and let Σ =
{C}. Then C←$Σ = {α1, α2, α3} but the �-locality module for C w.r.t. Σ is
{α1, α2, α3, α4}.

The difference stems from the fact that in α1 and α2 the �-reachability of
r does not ensure the �-reachability of D1 and D2 respectively. This occurs
because, given an axiom α = αL " αR, �-locality ensure that if α is �-local
then so are all of the symbols in Sig(α), whereas �-reachability is defined such
that the �-reachability of α only guarantees that all symbols of αL and only some
symbols of αR will be �-reachable. Thus �-reachability based modules are at
most the size of �-locality modules but in general could be substantially smaller.
Similar to ⊥�∗-locality modules we note that reachability module extraction
may also be alternated until a fixpoint is reached. These modules are denoted
by C←⊥$

∗
Σ .

Normalization plays an important role in the definition of reachability as the
algorithm for determining �-reachability of an axiom is different from the al-
gorithm for determining �-locality of an axiom. Not only does normalization
simplify the definition of reachability considerably, it also allows us to deter-
mine exactly which symbols to exclude from our signature when adding new
�-reachable axioms. This can be seen in Example 2 where the symbol D2 is
excluded when adding Sig(α) to our signature. We note that a separate nor-
malization phase is not strictly necessary, and that on-the-fly normalization can
be done on an axiom during a reachability check. It is also possible to denor-
malize a normalized ontology by adding extra bookkeeping and labeling to the
normalization process.

In order to investigate the module-theoretic properties of reachability mod-
ules, we follow a similar approach to Sattler et al. [18] and define inseparability
different from that of conservative extensions. We say that C1 and C2 are insep-
arable if their modules are equivalent, that is, a module extraction algorithm
returns the same output for each of them. We define the following inseparability
relations for reachability modules:

Definition 11. Let C1 and C2 be CBoxes and Σ a signature. Then C1 and C2

are:

– Σ −� reachability inseparable, denoted by C1 ≡$Σ C2, if C1
←$
Σ = C2

←$
Σ ;

– Σ −⊥ reachability inseparable, denoted by C1 ≡⊥Σ C2, if C1
←⊥
Σ = C2

←⊥
Σ ;

– Σ − ⊥�∗ reachability inseparable, denoted by C1 ≡⊥$∗
Σ C2, if C1

←⊥$∗
Σ =

C2
←⊥$∗
Σ .

Firstly we show that �-reachability modules are subsumption inseparable.
Concept inseparability follows as a special case of subsumption inseparability.

Lemma 1. Let C be a SRIQ CBox, and Σ ⊆ Sig(C) a signature.Let C, D be
arbitrary SRIQ concept descriptions such that Sig(C) ∪ Sig(D) ⊆ Σ. Then
C |= C " D if and only if C←$Σ |= C " D.
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Proof: We have to prove two parts. First: If C←$Σ |= C " D then C |= C " D.
This follows directly from the fact that C←$Σ ⊆ C and that SRIQ is monotonic.

Conversely, we show that, if C |= C " D then C←$Σ |= C " D. Assume
C |= C " D with I1 a model for C. Then there must exist an interpretation I
such that |ΔI | ≥ |ΔI1 | and an individual w ∈ ΔI such that I is a model of C←$Σ

and w ∈ CI \ DI . Modify I to I ′ by setting xI
′
:= ΔI for all concept names

x ∈ Sig(C) \ Σ←$
C , and rI

′
:= ΔI × ΔI for all roles names r ∈ Sig(C)\ Σ←$

and leaving everything else unchanged. We show that I ′ is a model of C←$Σ . For
all α := αL " αR, with α ∈ C←$Σ , we have that:

– If αR is such that Sig(αR) ⊆ Σ←$
C we have that (αR)

I = (αR)
I′

since it
does not change the interpretation of any symbols.

– If αR is an existential restriction of the form ∃r.A with y ∈ Sig(αR) \Σ←$
C ,

then (y)I
′
= ΔI or (y)I

′
= ΔI × ΔI depending on whether y is a role or

concept name. In both cases we have that (αR)
I ⊆ (αR)

I′
.

– If αR is an at-least restriction of the form ≥ nr.A with y ∈ Sig(αR) \Σ←$
C ,

then (y)I
′
= ΔI or (y)I

′
= ΔI × ΔI depending on whether y is a role or

concept name. In both cases we have that (αR)
I ⊆ (αR)

I′
.

– If αR is of the form ∃R.Self with R ∈ Σ←$
C we have that (αR)

I = (αR)
I′

since it does not change the interpretation of the symbol R.
– If α is of the form Dis(R,S) then by definition it is always in C←$Σ , thus

R,S ∈ Σ←$
C . Therefore, the interpretation of alpha does not change.

In all cases (αL)
I = (αL)

I′
since α ∈ C←$Σ and Sig(αL) ⊆ Σ←$

C and thus

(αL)
I′ ⊆ (αR)

I′
. Thus, I ′ is a model for C←$Σ . Now for every α = (αL " αR) ∈

C \ C←$Σ we have:

– αR is a concept name and αI
′

R = ΔI , or
– αR is a role name and αI

′
R = ΔI ×ΔI , or

– αR is a disjunction of the form A1 � . . . � An with at least one Ai 
∈ Σ←$
C ,

thus AI
′

i = ΔI and αI
′

R = AI1 ∪ . . . ∪ΔI ∪ . . . ∪ AIn = ΔI , or

– αR is an existential restriction ∃r.A1, thus rI
′
= ΔI ×ΔI and AI

′
1 = ΔI so

that (∃r.A1)
I′

= ΔI , or
– αR is ∃r.Self , thus rI

′
= ΔI ×ΔI so that (∃r.Self)I

′
= ΔI , or

– αR is an atleast restriction ≥ nr.A2, thus rI
′
= ΔI × ΔI , AI

′
2 = ΔI and

|ΔI | ≥ n so that (≥ nr.A2)
I′

= ΔI . This follows from the fact that |ΔI | ≥
|ΔI1 | and for any concept description ≥ nr.A, |ΔI | ≥ |(r.A)I | ≥ n for it to
be satisfiable.

Since for all cases αI
′

L ⊆ αI
′

R , we conclude that I ′ is a model for C. But I and
I ′ correspond on all symbols y ∈ (Sig(D)∪ Sig(C)) ⊆ Σ ⊆ Σ←$

C and therefore

DI′
= DI and CI′

= CI . Now since CI = CI′
and w ∈ CI we have that

w ∈ CI′ \DI′
and hence C 
|= C " D, contradicting the assumption. �

Corollary 1. Let C be a normalized SRIQ CBox, Σ ⊆ Sig(C) a signature and
S an inseparability relation from Definitions 3 and 4. Then C←$Σ ≡S

Σ C. C←$Σ is
therefore a SΣ-module of C.
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We show by way of counter example that C←$Σ is not a self-contained or
depleting SΣ module of C when Σ←$

C 
= Sig(C←$Σ ).

Example 3. Let C be a CBox such that C = {α1 = A " ∃r.D1, α2 = B "≥
nr.D2, α3 = ∃r.� " C,α4 = D1 " D2}, and let Σ = {C}. Then C←$Σ =
{α1, α2, α3}, δ = Σ ∪ Sig(C←$Σ ) = {A,B,C, r,D1, D2} 
= Σ←$

C . But C |= D1 "
D2 and C←$Σ 
|= D1 " D2. Therefore C←$Σ is not a self-contained cΣ-module of
C. Similarly, C \ C←$Σ |= α4 
= ∅ with Σ = D1, D2 and D1, D2 ∈ δ. Therefore,
C←$Σ is not a depleting cΣ-module of C.

Before investigating the robustness properties of reachability modules we in-
troduce some lemmas to aid us in the proofs that follow.

Lemma 2. Let α be an axiom, Σ and Σ′ be signatures, x ∈ {�,⊥} and C a
SRIQ CBox. Then:

1. If Σ ⊆ Σ′ and α is not Σ′←x
C reachable, then α is not Σ←x

C reachable.
2. If Σ′ ∩ Sig(α) ⊆ Σ and α is not Σ reachable then α is not Σ′ reachable.

Proof:

1. By the inductive definition of x-reachability if Σ ⊆ Σ′ then Σ←x
C ⊆ Σ′←x

C .
Thus if α is not Σ′←x

C reachable it can also not be Σ←x
C -reachable.

2. Assume that α is not Σ reachable but it is Σ′ reachable. Then there is at
least one symbol y ∈ Sig(α) such that y 
∈ Σ and α is Σ ∪ {y} reachable. α
is Σ′ reachable so it must be the case that y ∈ Σ′. But this contradicts our
assumption that Σ′ ∩ Sig(α) ⊆ Σ. Thus, α is not Σ′ reachable.

Lemma 3. Let α be an axiom, Σ and Σ′ be signatures, x ∈ {�,⊥} and C, C′

SRIQ CBoxes. Then:

1. Given C1 = C←x
Σ′ , if Σ ⊆ Σ′ then C←x

Σ = C1
←x
Σ . In particular C←x

Σ ⊆ C←x
Σ′ .

2. If Σ′ ∩ Sig(C) ⊆ Σ, then C←x
Σ′ ⊆ C←x

Σ .
3. If C ⊆ C′, then C←x

Σ ⊆ C′
←x
Σ .

Proof:

1. Assume that there is some axiom α ∈ C←x
Σ such that α 
∈ C←x

Σ′ . Therefore,
we have that α is not Σ′←x

C reachable but that it is Σ←x
C reachable. But this

is a contradiction by Lemma 2.1 since Σ ⊆ Σ′. Thus, C←x
Σ ⊆ C←x

Σ′ . A similar
argument is used to show that C←x

Σ ⊆ C1
←x
Σ and C1

←x
Σ ⊆ C←x

Σ .
2. For every α ∈ C we have that Σ′ ∩ Sig(α) ⊆ Σ. Therefore, from Lemma 2.2

we have that whenever α ∈ C is not Σ reachable it is also not Σ′ reachable
and we have that C←x

Σ′ contains at most all those axioms in C←x
Σ . Thus,

C←x
Σ′ ⊆ C←x

Σ .
3. Let δ = Σ←x

C , δ′ = Σ←x
C1

and α ∈ (C ∩ C1). Assume α is δ reachable but not
δ′ reachable. Since C ⊆ C1 and Sig(C) ⊆ Sig(C1) we have by the inductive
definition of x reachability that δ ⊆ δ′. But by Lemma 2.1 we have that
whenever α is not δ′ reachable then it is also not δ reachable. Therefore,
C←x
Σ contains at most all those axioms in C1

←x
Σ . Thus, C←x

Σ ⊆ C1
←x
Σ .
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Lemma 4. Let Σ be a signature, C1 and C2 be SRIQ CBoxes with Sig(C1) ∩
Sig(C2) ⊆ Σ and x ∈ {�,⊥}. Then (C1 ∪ C2)

←x
Σ = C1

←x
Σ ∪ C2

←x
Σ .

Proof: LetM = (C1 ∪ C2)
←x
Σ ,M1 = C1

←x
Σ ,M2 = C2

←x
Σ . Now C1 ⊆ C1∪C2 thus

by Lemma 3.3 we have thatM1 ⊆ M. Similarly M2 ⊆M and thus M1∪M2 ⊆
M∪M which gives us M1∪M2 ⊆M. Let Σ′ = Σ∪Σ←x

C1
∪Σ←x

C2
. To show that

M ⊆M1∪M2 we note that, when extracting these modules, the order in which
axioms are extracted are irrelevant. We therefore assume that any algorithm first
extracts axioms inM1∪M2 then tests all other axioms for Σ′←x

C1∪C2
-reachability.

Consider any axiom α ∈ (C1∪C2)\ (M1 ∪M2). If α ∈ C1 then α ∈ C1 \M1 and
α is not Σ←x

C1
∪ Σ reachable. Now precondition Sig(C2) ∩ Sig(C1) ⊆ Σ implies

Σ←x
C2

∩ Sig(α) ⊆ Σ, taken that α is not Σ←x
C1

∪Σ reachable we manipulate this
statement to derive (Σ ∪ Σ←x

C2
∪ Σ←x

C1
) ∩ Sig(α) ⊆ Σ ∪ Σ←x

C1
. Thus by Lemma

2.2 we have that α is not Σ ∪Σ←x
C2

∪Σ←x
C1

reachable. The case where α ∈ C2 is
treated analogously. �

Proposition 1. For x ∈ {�,⊥}, x-reachability is robust under replacement.

Proposition 2. For x ∈ {�,⊥}, x-reachability is robust under vocabulary
extensions.

Proposition 3. For x ∈ {�,⊥}, x-reachability is robust under vocabulary
restrictions.

Proposition 4. For x ∈ {�,⊥}, x-reachability is robust under joins.

The proofs to show that reachability modules including C←⊥$
∗

Σ modules share
all the robustness properties of locality modules follow from the above lemmas
and follow the proofs for locality modules by Sattler, et al. [18].

Reachability modules therefore share all the robustness properties listed. How-
ever, we have seen that these modules are neither depleting nor self-contained
modules. Amongst other things, the depleting and self-contained nature of mod-
ules are utilised in order to find all justifications for an entailment [8].

Definition 12. Let C be a SRIQ CBox and M ⊆ C. M is a justification
for C |= C " D if M |= C " D and there exists no M1 ⊂ M such that
M1 |= C " D.

We show that although our modules do not share these properties they do
contain all justifications for a given signature.

Theorem 2. Let C be a normalized SRIQ CBox and Σ a signature such that
Σ ⊆ Sig(C). Then for arbitrary concept descriptions C,D, such that C |= C " D
and Sig(C) ∪ Sig(D) ⊆ Σ←$

C we have that C←$Σ contains all justifications for
C |= C " D.

Proof: Assume that C |= C " D for some Sig(C) ∪ Sig(D) ⊆ Σ←$
C , but there

is a justification M for C |= C " D that is not contained in C←$Σ . If C " D is a
tautology then M must be empty withM ⊆ C←$Σ . Thus, we assume that C " D
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is not a tautology. Since M 
⊆ C←$Σ , there must be an axiom α ∈ M \ C←$Σ .
Define M1 := M∩ C←$Σ . M1 is a strict subset of M since α 
∈ M1. There are
two cases, either M1 = ∅ or it contains at least one axiom.

In the case where M1 = ∅, define C1 = C \ C←$Σ with M ⊆ C1. Now since
M |= C " D we have by monotinocity that C1 |= C " D. Since C1 ⊆ C we have
by Lemma 3.3 that C1

←$
Σ ⊆ C←$Σ and thus that C1

←$
Σ = ∅. But by Lemma 1

we have that C1
←$
Σ |= C " D if, and only if, C1 |= C " D. Since C " D is not

a tautology we have that C1
←$
Σ 
|= C " D and thus that M 
|= C " D.

In the case where M1 
= ∅ we claim that M1 |= C " D, which contradicts
the fact that M is a justification for C |= C " D.

We use proof by contraposition to show this. Assume that M1 
|= C " D, i.e.,
there is a model I1 of M1 such that CI1 
⊆ DI1 . We modify I1 to I by setting
yI := ΔI1 for all concept names y ∈ Sig(C) \Σ←$

C , and rI := ΔI1 ×ΔI1 for all
roles names r ∈ Sig(C) \ Σ←$

C . We have DI = DI1 since Sig(D) ⊆ Σ←$
C , and

CI = CI1 since Sig(C) ⊆ Σ←$
C . It follows that CI 
⊆ DI . It remains to be shown

that I is indeed a model of M, and therefore satisfies all axioms β = (βL " βR)
in M, including α. If β = Dis(Rr, R2) then by definition Sig(β) ⊆ Σ←$

C so that

(β)I = (β)I
1

. Otherwise there are two possibilities:

– β ∈ M1. Since M1 ⊆ C←$Σ , all symbols in Sig(βL) are also in Σ←$
C and

possibly some symbols of Sig(βR) may not be in Σ←$
C . Consequently, I1 and

I coincide on the names occurring in βL and since I1 is a model of M1, we
have that (βL)

I = (βL)
I1 and (βR)

I1 ⊆ (βR)
I . Therefore (βL)

I ⊆ (βR)
I .

– β 
∈ M1. Since β ∈ M, we have that β 
∈ C←$Σ , and hence β is not Σ←$
C -

reachable. Thus,
• βR is a concept name and βI

′
R = ΔI , or

• βR is a role name and βI
′

R = ΔI ×ΔI , or
• βR is a disjunction of the form A1� . . .�An with at least one Ai 
∈ Σ←$

C ,

thus AI
′

i = ΔI and βI
′

R = AI1 ∪ . . . ∪ΔI ∪ . . . ∪ AIn = ΔI , or
• βR is an existential restriction ∃r.A1, thus rI

′
= ΔI×ΔI and AI

′
1 = ΔI

so that (∃r.A1)
I′

= ΔI , or
• βR is ∃r.Self , thus rI

′
= ΔI ×ΔI so that (∃r.Self)I

′
= ΔI , or

• βR is an atleast restriction ≥ nr.A2, thus rI
′
= ΔI × ΔI , AI

′
2 = ΔI

and |ΔI | ≥ n so that (≥ nr.A2)
I′

= ΔI . This follows from the fact that
for any concept description ≥ nr.A, |ΔI | ≥ |(r.A)I | ≥ n for it to be
satisfiable.

By definition of I, (βR)I = ΔI1 . Hence (βL)
I ⊆ (βR)

I .

Therefore I is a model for M. But since CI 
⊆ DI we have that M 
|= C " D
proving the contrapositive. �

5 Empirical Evaluation

From Example 2 we see that reachability modules have the potential of being
smaller than locality modules. In this section we show the results of tests con-
ducted to determine the extent of the difference in size between reachability and
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locality modules across a range of real world ontologies. The criteria used to
select the target ontologies were size and expressivity. In terms of size we tried
to find ontologies that range from a few thousand to tens of thousands of CBox
axioms. In terms of expressivity we chose ontologies that range from the rela-
tively inexpressive DL EL up to and including SRIQ. For ontologies containing
nominals we simple removed all axioms containing nominals from the test on-
tology. In Table 3 we provide a non-exhaustive list of DL metrics for each of the
ontologies1 in the test set.

Table 3. DL Metrics

C
h
e
b
i

F
l
y
A
n
a
t
o
m
y

G
e
n
e

G
e
o
S
k
i
l
l
s

G
a
l
e
n

c
t
o
n

s
o
-
x
p

S
o
f
t
w
a
r
e

Expressivity EL++ EL++ EL++ ALCHOIN (D) ALEHF+ SHF SHI ALCHIQ(D)
Axioms 34387 10471 42656 14861 4735 33203 1943 3347

Concepts 19360 6222 26225 603 2748 17033 1660 735

Roles 8 2 4 23 413 43 22 15

C + D 34387 10467 42650 686 3237 33062 1709 2077

C ≡ D 0 2 0 6 0 86 198 7

C ,D + ⊥ 0 0 2 19 0 8 21 0

Trans(R) 0 2 1 0 26 18 5 0

R + S 0 0 2 4 416 25 6 1

R− 0 0 0 1 207 0 0 3

Ran(R) 0 0 0 15 0 0 0 4

Dom(R) 0 0 0 16 0 0 0 3

Sym(R) 0 0 0 1 0 0 4 0

Test were structured in such a way that we could determine the difference in
module sizes across a range of different input signature sizes. For each of the
test ontologies Oi we chose a random signature as a percentage of Sig(Oi). The
input signature size was divided into eight groups namely 0.1%, 0.2%, 0.5%,
1.0%, 2.0%, 5.0%, 10.0% and 20.0% of Sig(Oi). For each of these input sizes
we extracted one thousand ⊥��-reachability and locality modules, each module
based on a random selection of symbols from Sig(Oi) to act as input signature
S. The average difference in size between reachability and locality modules were
then calculated by the formula Avg((Localj(Sj)−Reachj(Sj))∗100/(Localj(Sj))
for 1 ≤ j ≤ 1000.

Figure 1 represents the reduction in size of reachability modules versus locality
modules. The x-axis represents the signature size whereas the y-axis represents
percentage reduction of reachability modules over that of locality modules. From

1 Obtained from the TONES repository 15 July 2013
(http://owl.cs.manchester.ac.uk/repository/browser).

(http://owl.cs.manchester.ac.uk/repository/browser).
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Fig. 1. Reachability v.s. Locality Modules

Fig. 2. Reachability module v.s. Ontology

this graph we see that there is a drastic difference between the results for different
ontologies. For relatively small signature sizes in the Chebi ontology reachability
modules can be up to 90% smaller than locality modules for the same input
signature, whereas for the galen ontology there is less than 1% difference. For
the so-xp, cton and software ontologies, not listed here, the results are very
similar to that of galen.
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Figure 2 represents the ratio between the size of the reachability module v.s.
the size of the whole ontology. The x-axes represents the signature size and the
y-axis represents the reachability module size as a percentage of the ontology
size.

From the results we see that reachability modules are potentially smaller than
locality modules. The drastic difference in the results further demonstrate that
reachability modules may be of better use where the input signature is relatively
small. For the current set of results we have not attempted to deduce the reasons
why certain ontologies perform better than others.

6 Conclusion

We have investigated the module-theoretic properties of reachability modules
for SRIQ CBoxes. Reachability modules differ from syntactic locality modules
in that they are not self-contained or depleting. One application of the self-
contained and depleting nature of locality modules is to find all justifications
for entailments. However, in terms of finding justifications, by showing that
reachability modules do preserve all justifications for entailments, we have shown
that these properties are sufficient but that they are not necessary.

We did an empirical evaluation into the size difference between locality and
reachability modules. We extracted a random sample of 1000 modules from each
of the ontologies listed in Table 3. Reachability modules were between 0% and
90% smaller than locality modules with a relatively small input signature. This
difference diminishes when the signature size reaches over 20% of the signature
size of the ontology.

Our focus for future research is to extend these results to SROIQ and to
investigate the relationship between other hypergraph based problems and DL
reasoning problems more closely.

Acknowledgments. This work is based upon research supported in part by the
National Research Foundation of South Africa (UID 85482, IFR2011032700018).
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Abstract. We give a new true-concurrent model for probabilistic
concurrent Kleene algebra. The model is based on probabilistic event
structures, which combines ideas from Katoen’s work on probabilistic
concurrency and Varacca’s probabilistic prime event structures. The
event structures are compared with a true-concurrent version of Segala’s
probabilistic simulation. Finally, the algebraic properties of the model
are summarised to the extent that they can be used to derive techniques
such as probabilistic rely/guarantee inference rules.

1 Introduction

The use of probability in concurrent systems has provided solutions to many
problems where non-probabilistic techniques would fail [1]. However, the combi-
nation of probability and concurrency increases the complexity of any formal tool
powerful enough to ensure the correctness of a system involving both features. It
is then imperative that such a framework should be as simple as possible and the
use of algebras in formal verifications is indeed a step in that direction. In this
paper, we follow an algebraic approach in the style of Hoare et al’s concurrent
Kleene algebra (CKA) that is sound under a true-concurrent interpretation [2].
The algebraic laws model the interactions between probability, nondeterminism,
concurrency and finite iteration operators. The structure produces an algebra
which is an important mathematical tool for carrying out complex verification
tasks and can be used to give robust proofs of concurrent systems, and in par-
ticular for verification techniques such as Jones rely/guarantee rules [2,3].

We have previously developed an interleaving model for probabilistic concur-
rent Kleene algebra (pCKA) that aims to combine probability and concurrency
in a single algebraic setting [4]. Starting from the same set of axioms, we present
a novel true-concurrent model based on bundle event structures (BES) [5,6].
Our motivation is that the concurrency operator of event structures provides a
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more faithful interpretation of concurrency found in physical systems. In con-
trast, the parallel composition of automata fails to capture some fundamental
properties such as refinement of actions [7]. Indeed, we show that our seman-
tics distinguishes processes that are equal in the interleaving case. Event struc-
tures were introduced by Winskel [8] and have been studied extensively by oth-
ers [5,6,9,10], refined to bundle event structures by Langerak [6] and extended to
account for probabilistic specifications by Katoen [5]. Katoen concentrated on
event structures for probabilistic process algebras but did not provide the frame-
work needed to compare different event structures. In contrast, Varacca studied
the semantics of probabilistic prime event structures (pPES) using valuations
on the set of configurations [11]. It is well known that prime event structures
are not rich enough to express the right factorisation of sequential composition
through nondeterminism. Our true-concurrent model for pCKA requires a bun-
dle event structure framework extended with probabilistic simulations over the
“configuration-trees”.

Our main contribution is the development of a new model for pCKA endowed
with a true-concurrent version of Segala’s probabilistic simulation [12]. To the
best of our knowledge, this is the first extension of probabilistic simulation to
the true-concurrent setting though non probabilistic versions do exist in the
literature [13,14]. We also define an adequate weakening of Katoen’s techniques
for pBES so that they reduce to Varacca’s definitions for PES.

The paper is organised as follows. In Section 2, we provide the necessary
background for bundle event structures. The algebraic operators are defined in
Section 3 where a particular care is needed for the construction of the binary
Kleene star. Without probability, we argue that bundle event structures endowed
with these operators and quotiented with the pomset language equivalence forms
a concrete model for CKA. In Section 4, we set out the necessary tools for
constructing pBES. In Section 5, we define the notion of probabilistic simulation
on pBES. Section 6 is devoted to showing that the set of pBES endowed with the
defined algebraic operators modulo probabilistic simulation satisfies the axioms
of pCKA. All incomplete proofs are given in complete version of this paper [15].

2 Bundle Event Structures

Event structures provide a truly concurrent denotation for processes where an
event is labelled by an action from a set Σ. An event e may enable another
event f , that is, f cannot happen unless e has already happened. This relation,
denoted by �→, is useful for sequential dependency. It is also possible that two
events cannot happen simultaneously in a single run which usually occurs when
there is a nondeterministic choice of events. This second relation is denoted by
# and is extended to sets of events x, y ⊆ E such that x#y iff for all e ∈ x and
f ∈ y, if e 
= f then e#f . Formally, we have the following definition.

Definition 1 ([6]). A bundle event structure E is a tuple (E,#, �→, λ, Φ) such
that E is a set of events, # ⊆ E × E is an irreflexive and symmetric binary
relation (the conflict relation), �→⊆ P(E)× E is called a bundle relation where
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∀x ⊆ E ∀e ∈ E : x �→ e ⇒ x#x,

λ : E → Σ is a labelling (partial) function and Φ ⊆ E is a set of events such
that Φ#Φ. Elements of Φ are called final events and P(E) is the powerset of E.

In the bundle x �→ e, x is referred to as a bundle set and the event e is pointed
by x. Since x#x holds for every x such that x �→ e, it follows that exactly one
event in x must enable e and such a unique event is required for each bundle
set pointing to e before it can happen. Given a set of events x ⊆ E, we denote
by cfl(x) = {e ∈ E | ∃e′ ∈ x : e#e′} the set of events that are in conflict with
some event in x. A set x is called conflict free if cfl(x)∩x = ∅. Unlabelled events
happen without any noticeable internal nor external observable outputs. They
are only used as “delimiters”.

A (finite) sequence of events e1e2 · · · en from E is called an event trace if for
every i ≥ 1 and every bundle relation y �→ ei, there exists j < i such that ej ∈ y
and ei /∈ cfl({e1, . . . , ei−1}) ∪ {e1, . . . , ei−1}.

Definition 2 ([6]). A configuration is a subset x ⊆ E such that x = {e1, . . . , en}
for some event trace e1 · · · en referred to as a linearisation of x. The set of all
configurations (reps. traces) of E is denoted by C(E) (resp. T (E)).

In the sequel we will need to describe the causal dependencies between events
in more detail. To do this we associate a partial order with each configuration.

A labelled partial order (lposet) is a tuple (x,5, λ) where (x,5) is a poset
and λ : x → Σ. Unlabelled events of a lposet u = (x,5, λ) can be removed to
obtain the sub-lposet û = (x̂,5|x̂, λ|x̂) such that x̂ = {e ∈ x | λ(e) is defined}
and where 5|x̂ and λ|x̂ are the respective restrictions of 5 and λ to the set x̂. A
lposet u = (x,5x, λx) implements another lposet v = (y,5y, λy) if there exists
a label-preserving monotonic bijection f : ŷ → x̂ and we write u "s v or simply
x "s y if no confusion arises (s stands for subsumption [16]).

Given an event trace e1 · · · en of a BES E , we denote by 5e1···en the reflexive
transitive closure of the order 5 of events in that sequence i.e. e1 5 e2, e2 5
e3, . . . , en−1 5 en. The tuple ({e1, . . . , en},5e1···en , λ|{e1,...,en}) is a lposet. Let
x ∈ C(E). We generate a lposet (x,5, λ) where

5=
⋂

x={e1,...,en}∧e1···en∈T (E)
5e1···en

and λ is restricted to x. Intuitively, two events are incomparable iff neither has
to happen before the other.

The set of lposets of E is denoted L(E), that is, L(E) = {(x,5, λ) | x ∈ C(E)}.
Given two bundle event structures E and F , it is well known that C(E) = C(F)
iff T (E) = T (F) iff L(E) = L(F) [5,6]. We say that (x,5x, λx) is a prefix
of (y,5y, λy), written (x,5x, λx) � (y,5y, λy), if x ⊆ y and λy |x = λx and
e 5y e′∧e′ ∈ x ⇒ e ∈ x∧e 5x e′. The next proposition shows that configurations
inclusion characterises prefixing.
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Proposition 1. Let E be a BES. If x, y ∈ C(E) and x ⊆ y then (x,5x, λx) �
(y,5y, λy).

3 Basic Operations on Bundle Event Structures

A concurrent quantale is a particular kind of concurrent Kleene algebra [2]. It
is composed of two quantales that interact via the interchange law (21). In this
section, we show that the set BES of bundle event structures endowed with the
following operators and partial order forms a concurrent quantale. This model
is extended to capture probability in Section 4.

Basic BES: we start by defining the basic BES corresponding to Deadlock,
Skip and one step action.

– Deadlock is denoted by 0 and is associated with the BES (∅, ∅, ∅, ∅, ∅).
– Skip is denoted by 1 and is associated with ({e}, ∅, ∅, ∅, {e}).
– Each a ∈ Σ is associated with ({ea}, ∅, ∅, λ(ea) = a, {ea}), denoted by a.

We fix two BES E = (E,#E , �→E , λE , ΦE) and F = (F,#F , �→F , λF , ΦF ) such
that E ∩ F = ∅. This ensures that the disjoint union of two labelling functions
is again a function. We define the set in(E) ⊆ E such that e ∈ in(E) iff there is
no x ⊆ E such that x �→ e. Events in in(E) are called initial events.

Concurrency, sequential composition and nondeterminism [5] are de-
fined in Fig. 1. The concurrent composition E‖F is the disjoint union of E and
F delimited by fresh ineffectual events. Notice there is no synchronisation in ‖,
this is because we are mainly interested in lock-free concurrencies in the style
of [2,3,17,18]. A special event can however be introduced to force synchronisa-
tion [5,7] and most of the algebraic laws remain valid. For the sequential com-
position, new bundles of the form ΦE �→ e for every e ∈ in(F) are added to
make sure that all events of E precede all events of F . For nondeterminism, the
property in(E)#in(F) is imposed so that the occurrence of any initial event of
E will block every events of F from happening (and symmetrically). The choice
is resolved as soon as one event from E or F happens.

The Kleene star is defined by constructing a complete partial order on the set
of BES. We define the order E � F , which is the sub-BES relation, such that

E ⊆ F

#E = #F ∩ (E × E)

�→E ⊆ �→F

x �→F e ∧ e ∈ E ⇒ x ⊆ E ∧ x �→E e

λE = λF |E
ΦE = ΦF ∩ E



An Event Structure Model for Probabilistic Concurrent Kleene Algebra 657

Concurrency E‖F :

– set of events: E ∪ F ∪ {e, f},
– conflicts: #E ∪#F ,
– bundles: �→E ∪ �→F ∪{{e} �→
e′ | e′ ∈ in(E) ∪ in(F)} ∪ {ΦE �→
f, ΦF �→ f},

– labelling: λ ∪ λ′,
– final events: ΦE‖F = {f}.

where e, f /∈ E ∪ F .

Sequential composition E · F :

– set of events: E ∪ F ,
– conflicts: #E ∪#F ,
– bundles: �→E ∪ �→F ∪{ΦE �→ e | e ∈

in(F)},
– labelling : λ ∪ λ′,
– final events: ΦE·F = ΦF .

Nondeterminism E + F :

– set of events: E ∪ F ,
– conflicts: #E ∪#F ∪ sym(in(E)× in(F)) ∪ sym(ΦE × ΦF ),
– bundles: �→E ∪ �→F ,
– labelling: λ ∪ λ′,
– final events: ΦE+F = ΦE ∪ ΦF .

where sym(x× y) = (x× y) ∪ (y × x) is the symmetric closure.

Fig. 1. Definitions of E‖F , E · F and E + F

We use the following binding precedence: ∗, ·, ‖,+. The probabilistic choice
⊕α (defined later) and + are unordered and are parsed using brackets.

Proposition 2. (BES,�) is an ω-complete partially ordered set, that is, any
countable ascending chain has a least upper bound in BES.

Proof (Sketch). The proof that � is a partial order amounts to checking reflex-
ivity, antisymmetry and transitivity which is clear. As for ω-completeness, given
a countable increasing sequence of BES E0 � E1 � E2 � · · · , we construct a
BES E = (∪iEi,∪i#i,∪i �→i,∪iλi,∪Φi). We can show that E is indeed the least
upper bound w.r.t � of the countable sequence (Ei)i. 
�

Let E ,F be two BES. The Kleene product of E by F , denoted by E ∗F , is the
limit of the �-increasing sequence of BES

F � F + E · F � F + E · (F + E · F) � · · ·

where adequate events renaming are needed to ensure that the sequence of BES
are syntactically similar (see Fig. 2 for a concrete example). Equivalently, E ∗ F
is the least fixed point of λX.F + E · X in (BES,�). The unary Kleene star
is obtained as usual by E∗ = E ∗ 1. The main reason behind the use of the
binary Kleene star [19] is that the unary version introduces unwanted sequential
compositions. For instance, in normal Kleene algebras, a while loop with body
E is encoded as (eg · E)∗ · e¬g where eg (resp. e¬g) is the event associated with
the guard. Hence by the interchange law (21), ((eg · E)∗ · e¬g)‖a can behave as
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f0 � f0 # e0�

��
f1

� f0 # e0�

��

�

���
��

��
��

�

f1 # e1

��
f2

An arrow �→ denotes a bundle relation and # is the conflict relation. The events fi
are labelled by b while the eis are labelled by a.

Fig. 2. The first three terms in the construction of a ∗ b

(eg · E)∗ · a · e¬g but we would assume that each eg and the corresponding e¬g
are checked simultaneously. Hence, we interpret a while loop as (eg · E) ∗ e¬g.

For convenience, we denote each component of the above sequence by E ∗≤0

F = F , E ∗≤1 F = F + E · F , E ∗≤2 F = F + E · (F + E · F),. . . . The following
proposition ensures that these operators are well defined.

Proposition 3. Let E ,F be BES. Then for every • ∈ {+, ·, ‖, ∗} ΦE•F#ΦE•F .

Proof. We have ΦE+F = ΦE ∪ ΦF and since ΦE × ΦF ⊆ #E+F , it follows that
ΦE+F#E+FΦE+F . The result is clear for the case of E · F and E‖F because
ΦE·F = ΦF and ΦE‖F = {f} where f is the fresh final event in the construction
of E‖F . For the Kleene star, we have ΦE∗F = ∪iΦE∗≤iF (increasing union).
Therefore, any pair of events (e, e′) ∈ ΦE∗≤iF ×ΦE∗≤jF are mutually conflicting
with respect to the conflict relation of E ∗≤max(i,j) F . 
�

We end this section by observing that (BES,+, ·, ‖, 0, 1) is a concurrent quan-
tale where the operator • ∈ {·, ‖} is redefined so that E •0 = 0•E = 0. Following
Gischer [16], we define an order relation based on pomset language subsump-
tion. Recall that a pomset is an equivalence class of lposets w.r.t the equivalence
relation generated by "s. For finite lposets u and v, we have u "s v and v "s u
iff û is isomorphic to v̂; hence our definition coincides with Gischer’s. The equiv-
alence class of a lposet u is denoted by the totally labelled lposet û. The pomset
language of a BES E is defined by

{v̂ | ∃u ∈ L(E) : v "s u ∧ v is a lposet}.

When a BES is considered modulo pomset language equivalence, we show that
(BES,+, ·, 0, 1) and (BES,+, ‖, 0, 1) are quantales, i.e., each structure is an
idempotent semiring, a complete lattice under the natural order E ≤ E iff E+F =
F and the operator • ∈ {·, ‖} distributes over arbitrary suprema and infinima.
The interchange law (21) is ensured by the subsumption property. The following
proposition essentially follows from Gischer’s results [16]. In fact, Gischer proves
that the axioms of CKA without the Kleene star completely axiomatise the
pomset language equivalence.

Proposition 4. For each • ∈ {·, ‖}, the structure (BES,+, •, 0, 1) is a quantale
under the pomset language equivalence.
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4 Probabilistic Bundle Event Structures

In this section, we adapt Katoen’s and Varacca’s works on probabilistic event
structures [5,11]. In particular, we refine the notions of cluster and confusion
freeness which are necessary for the definition of probabilistic bundle event struc-
tures (pBES). We use the standard transformation of prime event structures into
BES to ensure that our definitions properly generalise Varacca’s.

4.1 Immediate Conflict, Clusters and Confusion Free BES

The key idea of probabilistic event structures is to use probability as a mechanism
to resolve conflicts. However, not all conflicts can be resolved probabilistically [5].
The cases where this occurs are referred to as confusions. A typical example of
confusion is depicted by the first three events e1, e2 and e3 of Fig 3 where e1#e2,
e2#e3 and ¬e1#e3 hold allowing e1 and e3 to occur simultaneously in a single
configuration. However, if the conflict e1#e2 is resolved with a coin flip and if
the result is e2, then e2#e3 cannot be resolved probabilistically because it may
produce e3. Following Varacca [11], we start by characterising conflicts that may
be resolved probabilistically.

Definition 3. Given a BES E, two events e, e′ ∈ E are in immediate conflict if
e#e′ and there exists a configuration x such that x ∪ {e} and x ∪ {e′} are again
configurations. We write e#μe

′ when e and e′ are in immediate conflict.

Example 1. In the BES of Fig. 3, e4 and e5 are in immediate conflict because
{e1, e3, e4} and {e1, e3, e5} are configurations. In fact, every conflicts in that BES
are immediate. Notice that the conflict e4#e5 is resolved when e2 occurs.

e1

���
��

��
��

�
#μ e2

��

#μ e3�

��
e4 #μ e5

In this BES, the bundles are {e1, e2} �→ e4 and {e3} �→ e5. The conflict relation is
e1#e2 and e2#e3. Therefore, e1 and e3 are concurrent. An arrow → represents some
part of a bundle (i.e. {e1, e2} �→ e4 is the completed bundle) and �→ represents a bundle.

Fig. 3. Immediate conflict in a BES

Events can be grouped into clusters of events that are pairwise in immediate
conflict. More precisely, we define a cluster as follow.

Definition 4. A partial cluster is a set of events K ⊆ E satisfying

∀e, e′ ∈ K : e 
= e′ ⇒ e#μe
′ and

∀e, e′ ∈ K,x ⊆ E : x �→ e ⇒ x �→ e′

A cluster is a maximal partial cluster (w.r.t inclusion).
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Given an event e ∈ E, the singleton {e} is a partial cluster. Therefore, there
is always at least one cluster (i.e. maximal) containing e and we write 〈e〉 the
intersection of all clusters containing e.

Example 2. In Fig. 3, {e1, e2} and {e2, e3} are clusters and 〈e2〉 = {e2}.

Proposition 5. A partial cluster K is maximal (i.e. a cluster) iff

∀e ∈ E : (∀e′ ∈ K : e#μe
′ ∧ ∀x ⊆ E : x �→ e ⇔ x �→ e′) ⇒ e ∈ K

Proof. The forward implication follows from Definition 4 and maximality of K.
Conversely, assume that K is a partial cluster satisfying the above property. Let
H be a partial cluster such that K ⊆ H and e ∈ H . Then, for all e′ ∈ K, e#μe

′

and
∀z ⊆ E : x �→ e ⇔ x �→ e′

because H is a partial cluster. By the hypothesis, e ∈ K and hence H = K. 
�

As in Katoen’s and Varacca’s works, clusters are used to carry probability
and they can be intuitively seen as providing a choice between events where the
chosen event happens instantaneously. Notice that our notion of cluster is weaker
than Katoen’s original definition [5]: the BES in Fig. 4 contains three clusters
{e1, e2}, {e3} and {e4, e5} and only {e1, e2} satisfies Katoen’s definition.

e1�

��

#μ e2	

��












�

��

e4

# #μ

e3 # e5

Fig. 4. A BES where {e1, e2}, {e3} and {e4, e5} are clusters

Definition 5. A BES E is confusion free if for all events e, e′ ∈ E,

– if e#μe
′ then e ∈ 〈e′〉, and

– if 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E) for some configuration x ∈ C(E), then
x ∪ {e′′} ∈ C(E) for all events e′′ ∈ 〈e〉.

The first property implies that 〈e〉 contains all events in immediate conflict with
e and hence the confusion introduced by e1, e2 and e3 in Fig. 3 is avoided. The
second property says that once one event in 〈e〉 is enabled then all events in 〈e〉
are also enabled. Hence, confusion freeness ensures that all conflicts in 〈e〉 can
be resolved probabilistically regardless of the history. The proof of the following
proposition is the same as for prime event structures [11].
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Proposition 6. For a confusion free BES E, the set {〈e〉 | e ∈ E} defines a
partition of E. That is, the reflexive closure of #μ is an equivalence relation and
the equivalence classes are of the form 〈e〉.

The second property of Definition 5 is usually hard to check. We give a static
and simpler sufficient condition for confusion freeness.

Proposition 7. If a BES E satisfies

∀e, e′ ∈ E : (e#μe
′ ⇒ e ∈ 〈e′〉) ∧ (〈e〉 ∩ cfl(e′) 
= ∅ ⇒ 〈e〉 ⊆ cfl(e′))

then it is confusion free.

The second argument of the conjunction says that if some event in 〈e〉 is in
conflict with an event e′ then all events in 〈e〉 are in conflict with e′.

Proof. Let e ∈ E and x ∈ C(E) such that 〈e〉 ∩ x = ∅ and x ∪ {e} ∈ C(E). Let
e′ ∈ 〈e〉 and z �→ e′ be a bundle of E . We need to show that x ∪ {e′} ∈ C(E). By
Definition 4, z �→ e is also a bundle and since x and x ∪ {e} are configurations,
e1 · · · ene is again a linearisation of x ∪ {e} for every linearisation e1 · · · en of x.
Therefore, z ∩ {e1, . . . , en} 
= ∅. If e′ ∈ cfl(ei) for some i, then 〈e〉 ⊆ cfl(ei) by
the hypothesis and hence e ∈ cfl(ei), which is impossible because x ∪ {e} is a
configuration. Hence e1 · · · ene′ is an event trace, that is, x ∪ {e′} ∈ C(E). 
�

Example 3. Fig. 4 depicts a confusion free BES that satisfies Proposition 7.

With confusion freeness, we are now able to define probability distributions
supported by clusters. Recall that a probability distribution on the set E is a
function p : E → [0, 1] such that

∑
e∈E p.e = 1. We say that p is a probability

distribution on E if supp(p) ⊆ 〈e〉 for some event e.

Definition 6. A probabilistic BES is a tuple (E , π) where E is a confusion free
BES and π is a set of probability distribution on E such that for every e ∈ E,
there exists p ∈ π such that e ∈ supp(p).

The intuition behind this definition is simple: if there is no p ∈ π such that
e ∈ supp(p) then e is an impossible event and it can be removed (this may affect
any event e′ such that e 5x e′ for some x ∈ C(E)). Our approach differs from both
Varacca’s [11] and Katoen’s [5] in that nondeterminism is modelled concretely
as a set of probabilistic choices. This approach will mainly contribute to the
definition of the probabilistic choice operator ⊕α of Section 6. For instance, the
expression a+ (b ⊕α c) does not have any meaning in Katoen’s pBES, however,
it will have a precise semantics in our case.

5 Probabilistic Simulation on pBES

The weakest interpretation of " on pBES is the configuration distribution equiv-
alence [11]. However, as in the interleaving case, that is not a congruence [12].
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We use probabilistic simulations which are based on the notion of lifting from [20].
We denote by D(X) the set of (discrete) probability distributions over the set
X . Given x ∈ X , we denote by δx the point distribution concentrated at x.

Let S ⊆ X×D(Y ) be a relation. The lifting of S is a relation S ⊆ D(X)×D(Y )
such that (Δ,Θ) ∈ S iff

– Δ =
∑

i αiδxi where
∑

i αi = 1,
– for every xi, there exists Θi ∈ D(Y ) such that (xi, Θi) ∈ S,
– Θ =

∑
i αiΘi.

Notice that the decomposition of Δ may not be unique. The main properties
of lifting are summarised in the following proposition.

Proposition 8 ([20]). Let S ⊆ X × D(Y ) be a relation and
∑

i αi = 1. We
have

– if (Δi, Θi) ∈ S then (
∑

i αiΔi,
∑

i αiΘi) ∈ S,
– if (

∑
i αiΔi, Θ) ∈ S then there exists a collection of distributions Θi such

that (Δi, Θi) ∈ S and Θ =
∑

i αiΘi.

Since the notion of configuration for a pBES (E , π) is independent of π, we
keep the notation C(E) for the set of all finite configurations. An example of
relation on C(E) × D(C(E)) is given by the probabilistic prefixing. We say that
x ∈ C(E) is a prefix of Δ ∈ D(C(E)), denoted (again) by x � Δ, if there exists
p ∈ π such that supp(p) ∩ x = ∅ and Δ =

∑
e∈supp(p)(p.e)δx∪{e}. In particular,

if 〈e〉 = {e}, e /∈ x and x ∪ {e} ∈ C(E) then x � δx∪{e}.
The relation � is lifted to � ⊆ D(C(E))×D(C(E)) and the reflexive transitive

closure of the lifted relation is denoted by �∗. Probabilistic prefixing allows us to
construct a configuration-tree for every pBES. An example is depicted in Fig. 5.

To simplify the presentation, we restrict ourselves to BES satisfying Φ∩x = ∅
for every bundle x �→ e, that is, no event is enabled by a final event. This allows
a simpler presentation of the preservation of final events by a simulation. Notice
that all BES constructed from the operators defined in this paper satisfy that
property.

Definition 7. A (probabilistic) simulation from (E , π) to (F , ρ) is a relation
S ⊆ C(E)× D(C(F)) such that

– (∅, δ∅) ∈ S,
– if (x,Θ) ∈ S then for every y ∈ supp(Θ), x "s y,
– if (x,Θ) ∈ S and x � Δ′ then there exists Θ′ ∈ D(C(F)) such that Θ�∗Θ′

and (Δ′, Θ′) ∈ S.
– if (x,Θ) ∈ S and x∩ΦE 
= ∅ then for every y ∈ supp(Θ) we have y∩ΦF 
= ∅.

We write (E , π) " (F , ρ) if there is a simulation from (E , π) to (F , ρ).

Indeed, Definition 7 is akin to probabilistic forward simulation on automata. The
main difference is the use of the implementation relation x "s y which holds iff
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∅

��
{e}

��

0.2

��

0.8

��
{e, e2}

��

{e, e1}

0.8

��

0.2

��

{e, e3}

��
{e, e1, e2}

��

{e, e1, e3}

��
{e, e1, e2, f} {e, e1, e3, f}

The dotted arrows with common source are parts of a probabilistic prefix relation (e.g.
{e} � 0.8δ{e,e2} + 0.2δ{e,e3}). The events e, f are the delimiters introduced by ‖.

Fig. 5. The configurations-tree of the pBES e1‖(e2 ⊕0.2 e3) ( ⊕0.2 is defined later)

there exists a label preserving monotonic bijection from (ŷ,5y, λy) to (x̂,5x

, λx). The implementation relation compares partially ordered configurations
rather than totally ordered traces, hence, interferences between incomparable
or concurrent events are allowed. Another consequence of this definition is that
concurrent events can be linearised while preserving simulation.

Proposition 9. " is a preorder.

The proof is the same as in [20], hence, we provide only a sketch.

Proof (Sketch). Reflexivity is clear by considering the relation {(x, δx) | x ∈
C(E)} which is indeed a simulation. If R,S are probabilistic simulations from
(E , π) to (F , ρ) and (F , ρ) to (G, r) respectively then we can show, using Propo-
sition 8 and a similar proof as in the interleaving case, that R◦S is a probabilistic
simulation from (E , π) to (G, r). 
�

A major difference from our previous work [4] is that the event structure
approach provides a truly concurrent interpretation of pCKA. The most notable
benefit of using a true-concurrent model is substitution [7,16] where a single step
event can be refined with another event structure after a concurrency operator
has been applied. In the automata model, such a substitution must occur before
the application of the concurrency operator to obtain the correct behaviour.
Moreover, in interleaving, concurrency is related to the nondeterministic choice
whereas here the two operators are orthogonal.

Example 4. In Fig. 6, it is shown that a · b + b · a " a‖b but the converse does
not hold.
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{e, fa, fb}

��
{e, fa, fb, f}

Since {e, fa, fb, f} 	+s {ea - eb} nor {e, fa, fb, f} 	+s {e′b - e′a}, it is impossible to find
a simulation from a‖b to a · b+ b · a. In the configuration tree on the left, the order -
is made explicit and primes are introduced for disjointness.

Fig. 6. A simulation from a · b+ b · a to a‖b

6 Probabilistic Concurrent Kleene Algebra

In this section, we show that the set pBES endowed with a nondeterministic
choice (+), a probabilistic choice (⊕α ), a sequential composition (·), a concurrent
composition (‖) and the binary Kleene star (∗) satisfy the axioms of Fig. 7. These
axioms are a combination of the basic algebraic laws of CKA [2] and pKA [21].

We generate the pBES (0, ∅), (1, {δe}) and (a, {δea}) from the basic BES. To
simplify the notations, these basic pBES are again denoted by 0, 1 and a. The
other operators are defined as follows:

(E , π) + (F , ρ) = (E + F , π ∪ ρ)

(E , π) · (F , ρ) = (E · F , π ∪ ρ)

(E , π)‖(F , ρ) = (E‖F , π ∪ ρ ∪ {δe, δf})

where e and f are the fresh events delimiting E‖F . Recall that E and F are
assumed to be disjoint in these definitions. The probabilistic choice that chooses
E with probability 1− α and F with probability α is

(E , π) ⊕α (F , ρ) = (E + F , π ⊕α ρ)

where r ∈ π ⊕α ρ iff:

– if supp(r) ⊆ in(E)∪ in(F) then r = (1−α)p+αq for some p ∈ π and q ∈ ρ,
– else r ∈ π ∪ ρ.

Intuitively, nondeterminism is resolved first by choosing a probability distri-
bution, then a probabilistic choice is resolved based on that distribution. Indeed,
the nondeterministic and probabilisic choices introduce clusters.
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E + E ≡ E (1)

E + F ≡ F + E (2)

E + (F + G) ≡ (E + F) + G (3)

E + 0 ≡ E (4)

E ≡ E ⊕α E (5)

E ⊕α F ≡ F ⊕1−α E (6)

E ⊕α (F ⊕β G) ≡ (E ⊕α(1−β)
1−αβ

F) ⊕αβ G (7)

(E ⊕α F) · G ≡ E · G ⊕α F · G (8)

E · (F · G) ≡ (E · F) · G (9)

E · 1 ≡ E (10)

1 · E ≡ E (11)

0 · E ≡ 0 (12)

1‖E ≡ E (13)

E‖F ≡ F‖E (14)

E‖(F‖G) ≡ (E‖F)‖G (15)

(E + F) · G ≡ E · G + F · G (16)

E · F + E · G + E · (F + G) (17)

E · (F ⊕α G) + E · F ⊕α E · G (18)

E‖F + E‖G + E‖(F + G) (19)

E‖(F ⊕α G) + E‖F ⊕α E‖G (20)

(E‖F) · (E ′‖F ′) + (E · E ′)‖(F · F ′) (21)

F + E · (E ∗ F) ≡ (E ∗ F) (22)

G + E · F + F ⇒ E ∗ G + F (23)

Fig. 7. Axioms of pCKA satisfied by pBES modulo probabilistic simulation. Here, we
write a pBES simply with E instead of the tuple (E , π) and αβ < 1 in Equation (7)
(the case αβ = 1 being a simplification of the left hand side).

Example 5. The BES a‖(b ⊕0.2 c) contains four clusters 〈e〉, 〈eb, ec〉, 〈ea〉 and 〈f〉
where e, f are the delimiter events. It has a set of probability distributions
{0.8δeb + 0.2δec , δea , δe, δf}. In contrast, the event structure a + (b ⊕0.2 c) has a
single cluster 〈ea, eb, ec〉 with set of probability distributions {0.8δeb+0.2δec , δea}.

To construct the binary Kleene star, we need the following partial order

(E , π) � (F , ρ) iff E � F ∧ π = {p ∈ ρ | supp(p) ⊆ E}.

The proof that � is indeed ω-complete is essentially the same as in the standard
case (Section 3). Hence the Kleene product (E , π) ∗ (F , ρ) is again the limit of
the increasing sequence of pBES:

(F , ρ) � (F , ρ) + (E , π) · (F , ρ) � (F , ρ) + (E , π) · ((F , ρ) + (E , π)) � · · · .

More precisely, (E , π) ∗ (F , ρ) = (E ∗ F , π ∗ ρ) where π ∗ ρ = ∪iπ ∗≤i ρ and each
set π ∗≤i ρ is obtained from the construction of E ∗≤i F .

A BES is regular if it is inductively defined with the operators of Section 3.

Proposition 10. A Regular BES is confusion free.

Proof (Sketch). By induction on the structure of the BES.
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Proposition 11. The order " is a precongruence i.e. for every pBES (E , π),
(F , ρ) and (G, η), if (E , π) " (F , ρ) then (E , π) • (G, η) " (F , ρ) • (G, η) (and
symmetrically) for every • ∈ {+, ·, ‖, ∗}.

Proof (Sketch). Let (E , π) " (F , ρ) be witnessed by a simulation S ⊆ C(E) ×
D(C(F)) and (G, η) be any pBES. The congruence properties are proven by
extending the simulation S to the events of G. For instance, That (E , π)+(G, η) "
(F , ρ) + (G, η) is deduced by showing that S ∪ {(x, δx) | x ∈ C(G)} is indeed a
simulation.


�
The axioms (1-12) and (14-16) are proven using simulations akin to the in-

terleaving case [4,20]. The existence of simulations that establishes axiom (13)
is clear from the definition of ‖ and 1. It follows from the axioms of + and
Proposition 11 that (E , π) " (F , ρ) if and only if (E , π) + (F , ρ) ≡ (F , ρ).

Proposition 12. The axioms (17,18) and (19,20) and the interchange law (21)
hold on pBES modulo probabilistic simulation.

Proof (Sketch). These equations are proven by the usual simulation construc-
tions. 
�
Proposition 13. The binary Kleene star satisfies the axioms (22) and (23).

Proof (Sketch). The first equation is proven using the standard simulation con-
struction. For the second one, let S ⊆ C(E · F) × D(C(F)) be a probabilistic
simulation from (E , π) · (F , ρ) to (F , π). By monotonicity of · and +, there exists
a simulation S(i) ⊆ C(E ∗≤i F) × D(C(F)) from (E , π) ∗≤i (F , ρ) to (F , ρ), for
every i ∈ N. Moreover, we can find a family of simulations such that S(i−1) is
the restriction of S(i) to (E , π) ∗≤i−1 (F , ρ). Thus, we can consider the reunion
S = ∪iS

(i) and show that it is indeed a simulation from (E , π) ∗ (F , ρ) to (F , ρ).
Hence, Equation (23) holds. 
�
Theorem 1. The set pBES modulo probabilistic simulation forms a probabilis-
tic concurrent Kleene algebra with a binary Kleene star.

7 Conclusion

We have constructed a truly concurrent model for probabilistic concurrent Kleene
algebra using pBES. In the process, we also set out a notion of probabilistic sim-
ulation for these event structures. The semantics of pBES was defined by con-
structing the configuration-trees using prefixing and probabilistic simulations
are exhibited when possible. Since the simulation distinguishes between concur-
rency and interleaving, we believe that it provides a suitable combination of
nondeterminism, probability and true-concurrency.

Our main result is the soundness of pCKA axioms. The completeness of such
an axiom system is still open. We believe that other axioms such as guarded tail
recursion are needed to achieve a complete characterisation as in [22]. Another
interesting specialisation of this work is the labelling of events with one-step
probabilistic programs. These however require further studies.
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Abstract. The automata-theoretic approach for the verification of lin-
ear time properties involves checking the emptiness of a Büchi automa-
ton. However generalized Büchi automata, with multiple acceptance sets,
are preferred when verifying under weak fairness hypotheses. Existing
emptiness checks for which the complexity is independent of the number
of acceptance sets are all based on the enumeration of Strongly Con-
nected Components (SCCs).
In this paper, we review the state of the art SCC enumeration al-

gorithms to study how they can be turned into emptiness checks. This
leads us to define two new emptiness check algorithms (one of them
based on the Union-Find data structure), introduce new optimizations,
and show that one of these can be of benefit to a classic SCCs enu-
meration algorithm. We have implemented all these variants to compare
their relative performances and the overhead induced by the emptiness
check compared to the corresponding SCCs enumeration algorithm. Our
experiments shows that these three algorithms are comparable.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores the
product between two ω-automata: one automaton that represents the system,
and the other that represents (the negation of) the property to check on this
system. This product corresponds to the intersection between the executions of
the system and the behaviors disallowed by the property. The property is verified
by the system if this product is empty.

Usually, a Büchi automaton is used to represent the property, and a Kripke
structure represents the model. However, it is possible to use generalized Büchi
automata (with several acceptance sets) to represent the property in a more
concise way, and such generalized acceptance condition can also be used on
the model to express weak fairness hypotheses on the system. In this work, we
further generalize the above approach using Transition-based Generalized Büchi
Automata (TGBA).

An emptiness check is an algorithm deciding whether such an automaton is
empty. A Büchi automaton is non-empty if it accepts an infinite word, i.e., if it
contains a lasso-shaped run: a finite prefix followed by an accepting cycle. Most

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 668–682, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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explicit emptiness checks are based on a DFS exploration of the automaton;
they can be classified in two families. Nested Depth First Search algorithms [3]
use a second DFS to detect the accepting cycle: if the automaton has multiple
acceptance sets, this approach requires either a degeneralization, or multiple
nested DFS. The second family are algorithms based on the enumeration of
Strongly Connected Components (SCC), to find SCCs that contain accepting
cycles. In these algorithms the number of times a state or transitions is visited
is independent on the number of acceptance sets.

In this paper, we review the existing SCC enumeration algorithms to study
how they can be adapted to become emptiness checks. To be of practical use in
a model checker, we would like such emptiness checks to:
– support generalized Büchi acceptance [5, 12] (without requiring a degener-

alization, or multiple passes on the automaton),

– support an on-the-fly construction of the automaton so that we do not need
to construct unexplored parts of the product,

– be compatible with the bit-state hashing [15] and state-space caching [13]
techniques to deal cases where memory is a critical resource.

We focus on three SCC algorithms which we shall refer to as Tarjan [19],
Dijkstra [6], Gabow [8]. Tarjan is the most well-known algorithm to compute
SCC and it has been extended by Geldenhuys and Valmari [11] to check the
emptiness of (non-generalized) Büchi automata. Dijkstra’s SCC-enumeration al-
gorithm is a little less known, but has served as the base for several generalized
emptiness checks [12, 5, 1, 10]. Essentially, both these algorithms partition the
set of states according to the SCCs, and have a complexity that is linear with
respect to the size of the graph. An efficient data structure to deal with the
construction of a partition is the Union-Find [20] and Gabow [8] has suggested
an algorithm to label the SCCs of a graph using such a data structure; in this
context the number of Union-Find operations is linear in the size of the graph,
and the amortized time-complexity of these operations is quasi-constant (related
to the inverse of the Ackermann function) in the worst case. To our knowledge,
this suggested algorithm, which we call Gabow1, has never been experimented
to compute SCCs, let alone to perform an emptiness check.

Our contributions are as follows. (1) We show how to adapt Tarjan’s algo-
rithm to perform a generalized emptiness check. (2) We suggest an optimization
of Dijkstra’s algorithm that also benefits all the emptiness checks based on this
algorithm. (3) We extend Gabow’s idea to implement a Union-Find-based empti-
ness check. (4) Moreover we show how to adjust all these algorithms to support
bit-state hashing and state-space caching.

While our experiments shows that there is no algorithm that clearly outper-
forms the others, we believe that having the choice between these three differ-
ents schemes might prove useful to devise new extensions (such as parallel model
checking).

1 Beware! The main algorithm of Gabow’s paper [8] is a reinvention of Dijkstra’s al-
gorithm. Cf. http://www.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html.
What we call Gabow’s algorithm here is the idea evoked on page 109 of that paper.

http://www.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html
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This paper is organized as follows. Section 2 defines TGBAs and introduces
our notations. Sections 3–5 successively present Tarjan’s, Dijkstra’s, and Gabow’s
algorithms and discuss how that can be extended to perform emptiness checks.
Section 6 discusses the compatibility of these algorithms with the bit-state hash-
ing and state-space caching techniques. Finally Section 7 provides experimental
data to compare all these algorithms.

2 Preliminaries

Let G = 〈Q, q0, δ〉 be a directed graph with Q the set of states, q0 the initial
state, and δ ⊆ Q ×Q the set of transitions.

A path of length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence of
edges ρ = (s1, s2)(s2, s3) . . . (sn, sn+1) with s1 = q and sn+1 = q′. We denote the
existence of such a path by q � q′. When q = q′ the path is a cycle.

A non-empty set S ⊆ Q is a Strongly Connected Component (SCC) iff ∀s, s′ ∈
S, s 
= s′ ⇒ s � s′ and S is maximal w.r.t. inclusion. A trivial SCC is a state
without self-loop.

A TGBA is a tuple A = 〈Q, q0, δ,F , f〉 where F is a finite set of acceptance
marks and f : δ �→ 2F labels each transition of the directed graph 〈Q, q0, δ〉 by a
set of acceptance marks. Let us note that in a real model checker, transitions (or
states) of the automata would be labeled by atomic propositions, but we omit
this information as it is not pertinent to emptiness check algorithms.

A degeneralization process can transform any TGBA with n states and m
acceptances marks into an equivalent TGBA with one acceptance mark and at
most nm states.

An SCC S ⊆ Q is accepting iff
⋃

t∈(S×S)∩δ{f(t)} = F . A TGBA is non-empty

iff there is a path from q0 to an accepting SCC.
All the algorithms we consider are based on a DFS of a TGBA and we can

present them by specializing the generic DFS algorithm of Algo. 1. This algo-
rithm is slightly more complex than the average DFS, as we will use it in various
settings. The dfs variable is the stack of the DFS algorithm and stores: a set acc
of acceptance marks labeling the transition leading to the state pos , and set succ
of the unexplored successors of this state. The state pos is actually represented
by a Position , which shall be defined differently in each algorithm.

Each state is either LIVE, DEAD, or UNKNOWN. A state is UNKNOWN
until it has been explored by the DFS, then it becomes LIVE. A state may
only become DEAD after all the successors of the SCC it belongs to have been
visited. Maintaining this status will be done by each algorithm by implementing
the following methods:
– GET STATUS: returns the status of a state;
– PUSH: called for any newly visited state, it should mark that state as LIVE;
– UPDATE: called every time a back-edge (i.e., a transition leading to a LIVE

state) is found, this function detects a transition closing a cycle;
– POP: called every time the DFS backtracks a state. When the last state of an

SCC is being popped, all the states in its SCC must be marked as DEAD



Three SCC-Based Emptiness Checks for Generalized Büchi Automata 671

Algorithm 1. Generic DFS

1 Input: A TGBA A = 〈Q, q0, δ,F , f〉

2 struct Step {acc: 2F , pos : Position , succ: 2δ}
3 struct Transition {src: Q, dst : Q}
4 dfs : stack of 〈Step〉

5 Position pos ← PUSH(q0)
6 dfs .push( 〈 ∅, pos , successors(q0)〉 )
7 while ¬ dfs .isEmpty()
8 Step step ← dfs.top()
9 if step.succ 	= ∅

10 Transition t ← pick one from step .succ
11 switch GET STATUS(t .dst) do
12 case DEAD
13 skip

14 case LIVE
15 UPDATE(f(t), t .dst)

16 case UNKNOWN
17 pos ← PUSH(t .dst)
18 dfs.push( 〈f(t), pos , successors(t .dst)〉 )

19 else
20 dfs.pop()
21 POP(step)

by POP. We call such a last state the root of the SCC (notice that this root
may depend on the order in which the transitions are visited).

3 Tarjan-Based Algorithm

3.1 SCC Computation

In Tarjan’s original algorithm [19], each state is associated to two numbers: a
DFS number (indicating the order in which the states has been visited by the
DFS), and a lowlink . Initially, this lowlink is equal to the DFS number, but each
time a transition is backtracked (i.e., during UPDATE or POP) the lowlink of the
source is updated to the DFS number (for UPDATE) or to the lowlink (for POP)
of the destination if it is smaller. An SCC root is detected during POP as a state
whose lowlink is equal to the DFS number.

A usual optimization of POP is based on the fact that when a root is popped,
the (outside) states that are successors of this SCC have already been marked
as DEAD. Consequently, if the set of LIVE states is stored as a stack, then all
the states of the current SCC are on this stack between the position of the root
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Algorithm 2. Tarjan’s Algorithm.

1 struct P {lowlink : int; acc: 2F }
2 live: hstack of 〈Q 〉
3 dead : store of 〈Q 〉
4 dstack : stack of 〈P 〉

5 GET STATUS(q ∈ Q) → Status
6 if live.get(q) 	= -1
7 return LIVE

8 else if dead .has(q)
9 return DEAD

10 else
11 return UNKNOWN

12 UPDATE(acc ∈ 2F , d ∈ Q)
13 dstack .top().lowlink ←
14 min(dstack .top().lowlink ,
15 live.get(d))
16 dstack .top().acc ← acc ∪
17 dstack .top().acc
18 if dstack .top().acc = F
19 report counterexample found

Algorithm.

20 PUSH(q ∈ Q) → Position
21 Position p ← live.size()
22 live.push(〈q〉)
23 dstack .push(〈 p , ∅ 〉)
24 return p

25 POP(s ∈ Step)
26 〈ll , acc 〉 ← dstack .pop()
27 if ll = s.pos
28 // An SCC has been found.
29 while live.size() > s.pos
30 〈q〉 ← live.pop()
31 dead .add(q)

32 else
33 dstack .top().lowlink ←
34 min(dstack .top().lowlink ,ll)
35 dstack .top().acc ← s.acc ∪
36 dstack .top().acc ∪ acc
37 if dstack .top().acc = F
38 report counterexample found

and the top of the stack. They can therefore be marked as DEAD by unwinding
this stack, without exploring the graph.

Because a lowlink is only useful for states on dfs , it seems judicious to store
it into a dedicated stack denoted dstack . This stack stores elements of the form
〈lowlink , acc〉 where acc is only useful when doing an emptiness check.

As the states on dfs are LIVE, they are simply identified by their position on
live. We use this position instead of the DFS number when initializing lowlink .

To implement this live stack, we introduce a data structure hstack that stores
all LIVE states and can be manipulated like a stack (with push and pop). To
find the status of a state, we need to check whether it belongs to this hstack,
therefore this structure is equipped with a get method that looks up a hash
table to return the position associated to a given state, or −1 for missing states.

The set of DEAD states are represented by a separate data structure that
support the following two operations: add and has with obvious semantics. As
we shall discuss in Section 6, bit-state hashing and state-space caching can be
implemented by redefining these operations.

Algorithm 2 presents our refactoring of the original Tarjan’s algorithm to fit in
the framework of Algorithm 1. The blue dashed boxes should be ignored on first
read: they represent the parts to add to turn this SCC-enumeration algorithm
into an emptiness check for TGBA.
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Because LIVE and DEAD states are respectively stored in live and dead ,
GET STATUS can easily report all other states as UNKNOWN.

As explained previously, the lowlinks are updated everytime a transition is
backtracked, i.e., at lines 12–15 when backtracking a back-edge, and at 32–34
when backtracking a forward-edge inside an SCC. When POP detects the root of
an SCC (line 27), it simply unwind live to mark all the SCC’s states as DEAD.

3.2 Emptiness Check

Adding the blue dashed boxes will turn the SCC enumeration algorithm into an
emptiness check algorithm. Each LIVE state on dfs is now associated to an empty
set of acceptance mark at line 1. This set is updated each time an edge intern to
an SCC is backtracked, at lines 16–17 and 35–36. These backtracking updates
will ultimately propagate to the root, the set of all acceptance marks present in
the SCC. Therefore, in the worse case, an accepting SCC will be detected when
the root is popped, but it may happens earlier if one of the intermediate set is
equal to F (hence the tests on lines 18 and 38).

To our knowledge, the only existing emptiness check based on Tarjan’s al-
gorithm has been proposed by Geldenhuys and Valmari [11]. Their algorithm
targets only degeneralized Büchi automata (one acceptance mark), so they may
have to explore a larger automaton that we do. However their algorithm works
quite differently from this one: they maintain the lowlink for each LIVE state
and a stack of LIVE accepting states (it would work for transition-based accep-
tance too) and they are therefore able to report a counterexample as soon as
they close an accepting cycle, while our algorithm would have to wait for an
accepting transition to be popped. This detection could be done earlier by asso-
ciating an acceptance set to each element of live. As we target memory efficience
this solution has not been retained.

4 Dijkstra-Based Algorithms

4.1 SCC Computation

Intuitively, Dijkstra’s algorithm [6] maintains a stack of SCCs of the subgraph
that has been explored. Everytime a back-edge is found, closing a cycle, the
SCCs forming that cycle are merged.

In practice, Algorithm 3 (without the green dotted boxes) actually manages
three stacks: live, the set of LIVE states; dfs , the subset of live that are on
the DFS search path, represented—as in the previous section—by a stack of
positions in live ; and roots , the stack of SCC roots, stored as positions in the
dfs stack. When given two consecutive roots, roots [i] and roots[i + 1], the set
of states belonging to the SCC rooted in roots[i], are the states at positions
dfs [roots[i]].pos , . . . , dfs [roots [i + 1]].pos − 1 in live. This representation makes
several operations efficient. Merging consecutive SCCs can be done by simply re-
moving elements from roots (lines 18 and 21). Also, it possible to decide whether
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Algorithm 3. Dijkstra’s Algorithm.

1 live: hstack of 〈Q 〉
2 dead : store of 〈Q 〉
3 roots : rstack of 〈 root : int, acc: 2F 〉

4 GET STATUS(q ∈ Q) → Status
5 if live.get(q) 	= -1
6 return LIVE

7 else if dead .has(q)
8 return DEAD

9 else
10 return UNKNOWN

11 PUSH(q ∈ Q) → Position
12 Position p ← live.size()
13 live.push(q)
14 roots .push trivial(dfs .size())
15 return p

16 UPDATE(acc ∈ 2F , d ∈ Q)
17 dpos ← live.get(d)
18 〈r , a 〉 ← roots .pop()
19 a ← a ∪ acc
20 while dpos < dfs[r ].pos
21 〈r , la 〉 ← roots .pop()
22 a ← a ∪ dfs[r ].acc ∪ la

23 roots .push non trivial( a ,r ,
24 dfs.size() - 1)
25 if a = F
26 report counterexample found

27 POP(s ∈ Step)
28 if dfs .size() = roots .top root()

29 // An SCC has been found.

30 roots .pop()
31 while live.size() > s.pos
32 q ← live.pop()
33 dead .add(q)

Algorithm 4. Gabow’s Algorithm.

1 uf : union find of
〈Q ∪ {DeadState} 〉

2 roots : rstack of 〈 root : int, acc: 2F 〉
3 uf .make set(DeadState)

4 GET STATUS(q ∈ Q) → Status
5 if uf .ufcontains(q)
6 if uf .same set(q , DeadState)
7 return DEAD

8 else
9 return LIVE

10 else
11 return UNKNOWN

12 PUSH(q ∈ Q) → Position
13 uf .make set(q)
14 roots .push trivial(dfs .size())
15 return q

16 UPDATE(acc ∈ 2F , d ∈ Q)
17 〈r , a 〉 ← roots .pop()
18 a ← a ∪ acc
19 while ¬uf .same set(dfs [r ].pos , d)
20 uf .unite(dfs [r ].pos , d)
21 〈r , la 〉 ← roots .pop()
22 a ← a ∪ dfs[r ].acc ∪ la

23 roots .push non trivial( a , r ,
24 dfs.size() - 1)
25 if a= F
26 report counterexample found

27 POP(s ∈ Step)
28 if dfs.size()= roots .top root()

29 // An SCC has been found.

30 roots .pop()
31 uf .unite(s.pos , DeadState)

a state is a root of an SCC during POP: when the position pointed to by the top
of the roots stack is equal to the size of dfs (line 28) it means the state that has
already been popped by the main DFS algorithm was a root.
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1 2 3 4 5 6 7 8

States on dfs LIVE states DEAD states

Back-edge Visited transitions Not visited transitions

Before visiting back-edge

roots 1 3 4 5 7 8 position 1 3 4 5
∅ ∅ ∅ ∅ ∅ ∅ acc ∅ ∅ ∅

roots 2 4 6 8 position 2 4 8
(compressed) ∅ ∅ ∅ ∅ acc ∅ ∅

× 
 × 
 trivial? × 
 ×

After visiting back-edge

Fig. 1. Stack compression in action where numbers corresponds to DFS positions

The roots stack is implemented with a structure called rstack that supports
three operations: pop(), push trivial(begin) and push non trivial(begin,end).
The latter two distinguish whether the SCC being pushed is trivial or not. They
can be implemented as a normal push(begin), but in Section 4.2 we will see how
to use these to compress the stack. Initially, any newly visited state constitutes
a trivial SCC (line 14) with respect to the explored part of the automaton;
non-trivial SCCs are only created when merging SCCs because of a back-edge
(line 24).

DEAD states are stored in a dead store as in the previous algorithm, and for
the same reason.

4.2 Compressing the roots Stack

The roots stack represents two kinds of SCCs: trivial and non-trivial. We suggest
to compress this stack by representing ranges of consecutive trivial SCCs in
a single entry. Each stack entry should have an additional Boolean indicating
whether it represents of range of trivial SCCs or a non-trivial SCC, and should
store the position of the last state seen before moving to the next entry. Figure 1
shows the effect of this compression.

In the worst case, it appears that we are simply adding one extra bit per
entry, but as we shall see in our experiments, merging consecutive trivial SCCs
is really effective.
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4.3 Emptiness Checks

Dijkstra’s algorithm can be turned into a emptiness check by adding the green
dotted boxes. Each SCC is associated to a set of acceptance marks that have been
seen inside this SCC. When some SCCs are merged, their acceptance marks are
merged along with the marks of the transitions between these SCCs (line 25–26).
A counterexample can be reported as soon as this union is F .

Several authors have devised emptiness-check algorithms using this princi-
ple [1, 5, 12, 14, 10]. In this scheme, the main DFS can also be adjusted to chose
the next transition to visit among all the non-visited outgoing transitions of the
topmost SCC [1, 5, 14].

The algorithm proposed by Couvreur [4] is sometimes considered as a Dijkstra-
based algorithm [12]: it replaces the live stack by a simple hash map (save a tiny
bit of memory) and consequently has to rediscover the states that need to be
marked DEAD during POP (loosing time). Nevertheless it fit perfectly into the
generic canvas of Algorithm 1 and can easily be mixed with bitstate hashing and
state space caching by using a dead store.

5 Gabow-Based Algorithms

The POP operation of previous algorithms is costly because it has to visit all the
states in top SCC to mark them as DEAD.

If we regard Dijkstra’s algorithm as partitioning of the set of states, each (live)
SCC corresponds to a class in this partition, and an additional class stores all
DEAD states. Merging SCCs maps to unions of LIVE classes in this partition,
while popping an SCCs should incur a union with the class of dead states.

This observation is the base of Gabow’s suggestion [8] to use the Union-Find
data structure [20] to discover the SCCs of a graph. In this data structure, a
union operation can be achieved in near constant-time (or even constant-time
for this particular application [9]), without enumerating all its states.

The Union-Find structure partitions the set Q′ = Q ∪ {DeadState} where
DeadState represent an extra artificial DEAD state, and offers the following
methods: make set(s ∈ Q′) creates a new class containing the state s; unite(s1 ∈
Q′, s2 ∈ Q′) makes the union between two classes given by their representatives
s1 and s2; and same set(s1 ∈ Q′, s2 ∈ Q′) checks whether two states are in the
same class.

Algorithm 4 follows the same schema as Algorithm 3, except that we have re-
placed live and dead , by the Union-Find structure uf , and that Positions stored
in dfs are now pointers to states. When the root of an SCC is popped (line 28),
its class is merged with that of the artificial DeadState (line 31). GET STATUS has
to be updated to check deadness using this DeadState as well. UPDATE is done
easily by uniting all classes representing the SCCs on the cycle.

The main difference with Dijkstra’s algorithm is therefore that the use of
unite in function POP dispenses from enumerating all states in the SCC. This
approach remains compatible with the compression of the roots stack presented
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in Sec. 4.2, and can be turned into an emptiness check in the same way as
Dijkstra (adding purple boxes).

As-is, this algorithm is neither compatible with bit-state hashing nor state-
space caching, because there is no dead store. Compatibility with these tech-
niques is possible, but tricky. We discuss it in the next Section.

6 Bit-State Hashing and State-Space Caching
Compatibility

Bit-state hashing [15] and state-space caching [13] are two techniques to save
memory. In bit-state hashing, collisions in the hash table storing dead states
are ignored, turning the algorithm into a semi-decision procedure. In state-space
caching, dead state can be removed from the store at any moment, causing the
algorithm to possibly revisit a state several times.

On Tarjan-based and Dijkstra-based algorithms, these techniques can be im-
plemented by replacing the has and addmethods of the dead store, implemented
as a hash table. Note that for bit-state hashing, it is important to check the
membership to live before the membership to dead in GET STATUS.

When compatibility with these techniques is not required, we can forgot the
use of this extra hash table, and actually store LIVE and DEAD states in the
same table, using a extra bit to distinguish LIVE from DEAD. This saves a table
lookup in GET STATUS.

For Gabow’s algorithm, compatibility with bit-state hashing and state-space
caching is more tricky to achieve and we only give the intuition. First, the Union-
Find data structure, which stores states in a vector, has to be made aware of
what a DEAD state is: let us assume that the unite of line 31 is changed to
make dead. The first time make dead is called, the states to be marked as DEAD
are all at the end of the vector. The trick is to remember the frontier between
LIVE and DEAD states in that vector. Then, every time a new singleton class
is created with the make set operation, we can reuse the slot of the first DEAD
state (right after the frontier), and move that DEAD state to the DEAD store.
GET STATUS has to be updated as well.

Note that in this approach, the set of DEAD states is distributed in two
structures: the end of the Union-Find vector, and the DEAD store, but only this
store can be subject to bit-state hashing or state-space caching. However this
approach still avoids the enumeration of states to mark them DEAD.

7 Implementation Issues and Benchmarks

All these approaches have been implemented in Spot [7]. The Union-Find struc-
ture of Gabow’s algorithm uses common optimizations: “Immediate Parent Com-
pression”, “Link by Rank”, “Path Compression”, and “Memory Smart” [17].

When dead does not use bit-state hashing nor state-space caching techniques,
an optimization consists in marking states as DEAD inside the live structure
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Fig. 2. Overhead of the emptiness checks over the SCC computations on 448 empty
products. A total of 2.5×109 states, 17.3×109 transitions, and 109 SCCs were visited.

rather than transferring it into dead during a POP. This optimization only re-
quires a special value to tag a state DEAD. Its use is denoted by -ds in tables,
while the use of a dedicated dead store (as presented previously) is denoted
by +ds. Similarly, +cs and -cs indicate whether the roots stack optimization
(Sec. 4.2) is enabled or disabled.

The models we use come from the BEEM benchmark [18]. We generate the
corresponding system automata using a version of DiVinE 2.4 patched by the
LTSmin team.2 Because there are too few LTL formulas supplied by the BEEM
benchmark, we opted to generate random formulas for each model. We computed
a total number of 860 formulas.3

A formula and a model generate a product that may be either empty (the
formula is verified) or non-empty (a counterexample exists). To decide that a
product is empty, any emptiness check has to explore all the reachable states
of the product. Conversely, a non-empty product can be reported as soon as an
accepting SCC is detected, avoiding the need to explore the entire product. In
our implementation, all algorithms use the same generic DFS traversal and thus
visit transitions in the same order.

Among our formulas, 412 result in non-empty product with the model. The
remaining 448 formulas, associated to empty products, were selected so that the
emptiness check algorithms would take at least 10 seconds on an Intel(R) 64-bit
Xeon(R) @2.00GHz with 64GB of RAM.

2 http://fmt.cs.utwente.nl/tools/ltsmin/#divine
3 For a detailed description of our setup, including selected models and formulas, see
http://move.lip6.fr/~Etienne.Renault/benchs/LPAR-2013/results_scc.html.

http://fmt.cs.utwente.nl/tools/ltsmin/#divine
http://move.lip6.fr/~Etienne.Renault/benchs/LPAR-2013/results_scc.html
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Figure 2 shows the execution time of all the emptiness check variants pre-
sented in this paper (with or without dead store, with or without compressed
roots stack). To measure the overhead of the emptiness check over the SCC
computation, we only focus on empty products.

For each bar the lower part represents the SCC computation time while the
upper part corresponds to the overhead induced by the emptiness check. The
total execution time is indicated atop the bar. The 5 rightmost bars show the
emptiness check with a dead store enabled (+ds) while the 5 leftmost bars have
it disabled (-ds).

For the same +ds/-ds setting, all execution times are very close, and the
emptiness check overhead is 3% on the average.

When the dead store is disabled, Tarjan is slightly better than Dijkstra, which
is itself slightly better than Gabow. Activating the dead store generate an over-
head of about 15%, and is more favorable to Gabow. This latter point is due to
the fact that our handling of the dead store for Gabow’s algorithm, described in
Section 6, will transfer less states from live to dead ; this reduces the overhead
to 10% only.

Table 1 reports the memory consumption, based on the size of the data struc-
tures used. As for time measurement, these experiments only focuses on verified
formulas. The second column gives the formula that computes memory consump-
tion at any time. The third column shows the peak we observed while running
our experiments.

From that figure it appears that Dijkstra is the most memory efficient al-
gorithm. Indeed the stack used by Dijkstra is a subset of the dfs stack while
the dstack of Tarjan, storing a lowlink and an acceptance set for each element,
follows the variations of dfs . Gabow’s algorithm requires more memory than the
two others since it has to maintain the whole structure of the Union-Find. The
use of a dead store significantly reduces memory consumption (up to 17%).

When bit-state hashing or state-space caching are used, the size of |dead | can
be fixed arbitrarily, allowing an even greater reduction.

Table 2 reports the the cumulated number of transitions, states and SCC
visited by each algorithm for the 412-non empty products. We use this table to
compare how quickly each algorithm reports a counterexample.

Gabow’s and Dijkstra’s algorithms have identical results since they both re-
port a counterexample when a cycle is closed during UPDATE, while Tarjan’s
algorithm may delay the report of a counterexample to a later POP and visit sev-
eral states until then. Nonetheless this difference is very small in our experiment:
less than 1% additional states, transitions or SCCs have been visited. This neg-
ligible difference justifies our decision not to store an additional acceptance set
in each element of live to report counterexamples earlier in Tarjan’s algorithm,
as discussed at the end of Sec. 3.2.

Table 3 presents the impact of the lazy transfer into dead proposed for Gabow’s
algorithm. We observe that only half the states are transferred to dead ; this
means that the remaining states have been preserved in the DEAD part of the
Union-Find structure. This explains the gain observed from Fig. 2.
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Table 1. Comparison of memory consumption for emptiness check algorithms on the
448 empty products. |roots | (resp. |uf |, |dstack |, |dead |) denotes the number of elements
in rstack (resp. uf , dstack , dead). As rstack elements are pairs (root , acc), we count the
memory consumption as 2|roots | words. The additional bit required for each element of
the compressed stack is not accounted for. Since live is constructed using an hashmap
and a stack , we distinguish these sizes with |livestack | and |livehash |: they differ when
no dead store is used.

Algorithm Memory consumption (words) Observed peak

Dijkstra-cs-ds
2|roots |+ |livestack |+ 2|livehash |

6 225 414 223

Dijkstra+cs-ds 6 225 411 039

Gabow-cs-ds
2|roots |+ 3|uf | 7 364 856 119

Gabow+cs-ds 7 364 854 033

Tarjan-ds 2|dstack |+ |livestack |+ 2|livehash | 6 325 991 684

Dijkstra-cs+ds
2|roots |+ |livestack |+ 2|livehash |+ |dead |

5 160 440 344

Dijkstra+cs+ds 5 160 435 523

Gabow-cs+ds
2|roots |+ 4|uf |+ |dead| 6 608 486 024

Gabow+cs+ds 6 608 482 885

Tarjan+ds 2|dstack |+ |livestack |+ 2|livehash |+ |dead | 5 265 484 149

Table 2. Cumulated States, transitions, and SCCs visited by each emptiness check on
the 412 non-empty products

Transitions States SCCs

Tarjan 534 471 068 67 230 381 34 622 772
Dijkstra/Gabow 534 338 119 67 187 854 34 582 459

Table 3. Impact of the dead strategy of Gabow’s algorithm on the 448 empty products

Max. Cumulated
dead peak dead peak

Tarjan/Dijkstra (+ds) 29 098 013 2 454 950 318
Gabow (+ds) 21 430 297 1 070 440 670

Table 4. Impact of the compressed roots stack on the 448 empty products

Max. Cumulated
roots peak roots peak

Dijkstra/Gabow (-cs) 456 98322
Dijkstra/Gabow (+cs) 119 8188

This observation also suggests that a similar optimization could be applied
to Tarjan’s and Dijkstra’s algorithms: each time the live stack is reduced, the
residual space (the free list) can be reused to store DEAD states temporarily.
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Table 4 shows the impacts of the compression technique proposed in Sec. 4.2.
It allows a tenfold memory reduction without run-time overhead according to
Fig. 2. Note that such a compression technique is independent of the emptiness
check layer, but may apply to Dijkstra’s and Gabow’s SCC computations.

In Sec. 5, we suggested that using Union-Find was an efficient way to mark
all states of an SCC as DEAD in a single operation. Unfortunately, Fig. 2 re-
veals that these gains are offset by the inherent cost of maintaining the Union-
Find structure. Our implementation of the Union-Find uses classical optimiza-
tions [17] but we have yet to investiguate wether performances could be improved
by the use of a data structure dedicated to the case where each union only con-
cern the last SCCs [9].

8 Conclusion

This paper proposed an overview of existing SCC enumeration algorithms and
proposed a generic canvas to transform them into emptiness checks for TGBA.

This lead us to define two new emptiness checks. One is based on Tarjan; it
differs from [11] in that it is more memory efficient and generalized. Another
one is based on Gabow’s suggestion to use the Union-Find data structure: our
results with that data structure are mixed, but as far as we know, this is the
first time this data structure is used for emptiness check.

We also introduced a couple of optimizations. For Dijkstra’s and Gabow’s
emptiness checks we suggest to compress the roots stack to save some memory.
Additionally, we discussed a strategy to transfer DEAD state from the Union-
Find structure to the dead store lazily, resulting in an important gain of time,
and this strategy could also be applied to the other algorithms.

We have several leads for future work. One would be to devise a compression
technique for the stack of lowlink (dstack ) used by Tarjan’s algorithm to make
it more competitive to Dijkstra’s algorithm (currently more memory-efficient).
Furthermore, the compaction of the live stack suggested by Nuutila and Soisalon-
Soininen [16] for Tarjan’s algorithm could be adapted to Dijkstra’s algorithm and
(with a more work) to Gabow’s. Another idea would be to study the various
ways to extract counterexamples from these algorithms; the procedure suggested
by Couvreur et al. [5] would work for Dijkstra and Gabow but should not be
difficult to adapt to Tarjan. Finally, we would like to investigate the possibility to
parallelize these emptiness checks. There are very few parallel emptiness checks
based on SCC computations [2], however as Tarjan and Dijkstra use different
data structure than Gabow, may be one of them will be more favorable to a
parallel setup.
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Abstract. Propositional interpolation is widely used as a means of over-
approximation to achieve efficient SAT-based symbolic model checking.
Different verification applications exploit interpolants for different pur-
poses; it is unlikely that a single interpolation procedure could provide
interpolants fit for all cases. This paper describes the PeRIPLO frame-
work, an interpolating SAT-solver that implements a set of techniques
to generate and manipulate interpolants for different model checking
tasks. We demonstrate the flexibility of the framework in two software
bounded model checking applications: verification of a given source code
incrementally with respect to various properties, and verification of soft-
ware upgrades with respect to a fixed set of properties. Both applications
use interpolation for generating function summaries. Our systematic ex-
perimental investigation shows that size and logical strength of inter-
polants significantly affect verification, that these characteristics depend
on the role played by interpolants, and that therefore techniques for tun-
ing size and strength can be used to customize interpolants in different
applications.

1 Introduction

A common approach for verifying a program is to express its behavior in a
symbolic form and to check such representation against a given specification.
One of the most appreciated techniques based on symbolic reasoning is SAT-
based symbolic model checking [1], where both the program and the specification
are encoded as an instance of the propositional satisfiability problem (SAT),
and a SAT-solver is used to determine whether the specification is satisfied or
violated. The SAT-based approach allows bit-level reasoning, important both in
software and hardware applications, e.g., when dealing with pointer arithmetic
and overflow. Successful tools exist for SAT-based verification include CBMC,
SATABS, and CPAchecker.

In the last years, Craig interpolation [2] has been widely adopted as a means
for abstraction in symbolic model checking [3]. Interpolants are usually com-
puted from resolution refutations; several interpolation algorithms exist in the
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literature [3,4,5] and different interpolants can be generated from the same refu-
tation. While interpolation-based verification is critically affected by the quality
of the generated interpolants, it is still not clear what makes an interpolant good
in a particular framework. Two characteristics that have shown promise are log-
ical strength and size: [5,6] suggest that weaker or stronger interpolants might
be more appropriate for different applications, while [7] provides evidence that
compact interpolants are beneficial in hardware model checking.

This paper addresses the problem of generating effective interpolants in the
context of SAT-based Bounded Model Checking (BMC) [8] for software, and
studies the impact of size and strength in verification. Specifically, we present
the PeRIPLO1 framework and discuss its ability to drive interpolation by pro-
viding routines that act on complementary levels: (i) manipulation (including
compression) of the resolution refutations generated by a SAT-solver, from which
interpolants are computed, and (ii) systematic variation of the strength of the
interpolants, as allowed by the Labeled Interpolation Systems [5].

As case studies we consider two applications of BMC: verification of a C
program incrementally with respect to a number of different properties (as in
the FunFrog tool [9]), and incremental verification of different versions of a C
program with respect to a fixed set of properties (as in the eVolCheck tool [10]).
Both applications rely on interpolation to generate abstractions of the behavior
of function calls (function summaries); the goal of summarization is to store
and reuse information about already analyzed portions of a program, to make
subsequent verification checks more efficient. If summaries (i.e. interpolants) are
fit, a remarkable performance improvement is usually achieved; if spurious errors
have been introduced due to over-approximation, (some of) the summaries need
to be refined, which might be resource-consuming. The challenge we address is
to use PeRIPLO to drive the generation of interpolants so as to obtain effective
summaries.

The novelty of our work lies in the following contributions:

– An interpolation framework, PeRIPLO, able to generate individual inter-
polants and collections of interpolants satisfying particular properties.
PeRIPLO offers a set of tunable techniques to manipulate refutations and
to obtain interpolants of different strength from them; it can be integrated
in any SAT-based verification framework which makes use of interpolants.

– Solid experimental evidence that compact interpolants improve performance
in the context of software BMC. To the best of our knowledge, the only
previous work to concretely assess the impact of the size of interpolants
is [7], which addresses the use of interpolants in hardware model checking.

– A first systematic evaluation of the impact of interpolant strength in a spe-
cific verification domain. We target function summarization in software BMC
and show that interpolants of different strength are beneficial to different
applications; in particular, stronger and weaker interpolants are respectively
suitable for the FunFrog and eVolCheck approaches. These results match the
intuition behind the use of interpolants as function summaries.

1 PeRIPLO can be found at http://verify.inf.unisi.ch/periplo.html

http://verify.inf.unisi.ch/periplo.html
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2 Interpolation

Craig interpolation [2] has found successful application in the context of model
checking and it is at the base of techniques like predicate abstraction [6], coun-
terexample guided abstraction refinement [11], interpolation-based function sum-
marization [9], upgrade checking [10], and lazy abstraction with interpolants [12].
Formally, given an unsatisfiable conjunction A∧B, an interpolant I is a formula
implied by A (A → I), unsatisfiable with B (i.e., B ∧ I → ⊥) and defined on the
common symbols of A and B. In other words an interpolant can be seen as an
over-approximation of A that is still unsatisfiable with B.

Several algorithms are available to construct different interpolants for an un-
satisfiable conjunction A ∧ B; yet, it is still an open problem to identify what
characteristics make some interpolants better than others in a particular veri-
fication framework. In this paper we target two features which are intuitively
relevant to model checking and for which preliminary evidence has been provided
in the recent literature: logical strength [6,5] and structural size [7] (intended as
the number of logical connectives in a formula).

Strength. A formula φ is said to be stronger than ψ if φ → ψ (resp. ψ is weaker
than φ). Interpolants are inherently over-approximations, thus a stronger or
weaker interpolant is expected to drive verification in terms of a finer or coarser
approximation. [5] offers an adequate framework to conduct an investigation of
interpolant strength: it in fact presents the Labeled Interpolation Systems (LISs)
for systematically building propositional interpolants of different strength from
a single resolution refutation, generalizing the algorithms previously introduced
by Pudlák [4] and McMillan [13]. A LIS is a procedure that, given a refutation
of A∧B and a labeling function, outputs an interpolant for A∧B. The authors
define a partial order over the labeling functions and relate the corresponding
interpolants by strength; [5] proves that the collection of systems represents a
complete lattice, where McMillan’s system M is the greatest element (i.e., it
generates the strongest interpolant), the system M ′ dual to McMillan’s is the
least (i.e., it generates the weakest interpolant) and Pudlák’s P is in between.

Size. Besides semantic features like strength, syntactic features like interpolant
size are also likely to affect the verification performance: generating, storing and
using smaller and less redundant formulae require fewer computational resources.
Supporting evidence is given by [7], where compact interpolants prove beneficial
in the context of hardware unbounded model checking. The usefulness of small
interpolants is also intuitively clear for the function summarization based ap-
proaches considered in this paper, where interpolants correspond to summaries
that are used multiple times in subsequent verification attempts.

Reduction of the interpolant size can be achieved both in an indirect and in
a direct manner. Interpolants are computed from refutations, and their size is
linear in the number of nodes of the DAGs representing the refutations. A simple
indirect way to obtain a smaller interpolant is to first compress the refutation
and then to apply an interpolation procedure; several compression algorithms
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exist in the literature, ranging from structural hashing to partial regulariza-
tion [14,15,16,17,18]. A second way, complementary to proof compression, is to
view interpolants as Boolean circuits and address them directly by means of
logic synthesis techniques, including BDD sweeping, functional reduction and
multi-level structural and functional hashing [19,7].

3 PeRIPLO

PeRIPLO (Proof tRansformer and Interpolator for Propositional LOgic) is an
open-source SAT solver, built on MiniSAT 2.2.0 [20], that provides proof logging,
proof manipulation routines and propositional interpolation. It can be used as a
standalone tool or as a library; its routines are accessible via configuration file
or API. Figure 1 illustrates the tool architecture.

PeRIPLO receives as input a propositional formula φ from the verification
environment, and passes it to the SAT solver, that checks satisfiability while
performing proof logging. If the formula is unsatisfiable, a resolution refutation
Π is built in form of a directed acyclic graph.

Π can be further processed by the proof transformer, for example it can be
compressed or manipulated as a preliminary step to interpolation.

Once Π is available, the environment can ask the interpolator for the gener-
ation of an individual or a collection of interpolants {Ii} by means of an inter-
polation system Itp, providing a subdivision of φ into A ∧ B; if the collection
is related to some interpolation property P , then an additional checking phase
can be enabled to ensure that P is satisfied.

           SAT solver

      Proof Transformer            Interpolator

Verification Environment

PeRIPLO

SAT/
UNSAT

φ {Ii}
A ∧B

Π

Itp

P

Fig. 1. PeRIPLO architecture
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Interpolant Strength. PeRIPLO realizes the Labeled Interpolation Systems of [5]
and allows to systematically vary the strength of the interpolants. It is able to
produce both individual interpolants and collections of interpolants, w.r.t. var-
ious interpolation properties (e.g., tree interpolation, see §5) and in accordance
with the constraints posed by the properties on the LISs [21,22].

Proof Compression. PeRIPLO allows to compress refutations by means of the
following techniques, which target different kinds of redundancies in proofs:
(i) the RecyclePivotsWithIntersection (RPI) algorithm of [16,15], (ii) the
LowerUnits (LU) algorithm of [16], (iii) a structural hashing based approach
(SH) similar to that of [14], (iv) the local rewriting rules of [17,18,23]. Some ma-
nipulation routines are available depending on the LIS chosen: for example, in
case of McMillan’s LIS M it is possible to perform a fast transformation of the
refutation to achieve a partial CNFization of the interpolant [6,18]. The local
rewriting rules can also be applied to further strengthen or weaken the inter-
polant with respect to a given LIS [6]. PeRIPLO does not implement techniques
to directly minimize the interpolants after their generation (as, e.g., in [7]); nev-
ertheless, structural hashing is performed while building formulae, for a more
efficient representation in memory.

4 Function Summaries in Bounded Model Checking

SAT-based BMC is one of the most successful approaches to software verifica-
tion. It checks a program w.r.t. a property by 1) unwinding loops and recursive
function calls up to a given bound, 2) encoding program and negated property
into a propositional BMC formula, and 3) using a SAT-solver to check the BMC
formula. If the formula is unsatisfiable, the program is safe w.r.t. the bound; oth-
erwise, a satisfying assignment identifies a behavior that violates the property.

We describe in the following two BMC applications which employ interpola-
tion-based function summaries as over-approximations of function calls. These
applications, respectively implemented in the FunFrog [24] and eVolCheck [25]
tools, prove particularly suitable to PeRIPLO, due to the impact size and
strength of interpolants can have on verification.

FunFrog. In [9], Sery et al. present a framework to perform incremental veri-
fication of a set of properties. Summaries are used to store information about
the already analyzed portions of the program, which helps to check subsequent
properties more efficiently.

A summary If for a function f is an interpolant constructed from an unsat-
isfiable BMC formula φ ≡ Af ∧ Bπ, where Af encodes f and its nested calls,
Bπ the rest of the program and the negated property π (which holds for the
program). While checking the program w.r.t. another property π′, the BMC for-
mula changes to Af ∧ Bπ′ ; If is used in place of f : if If ∧ Bπ′ turns out to
be unsatisfiable, then the summary is still valid and π′ is proved to hold in the
program. If instead If ∧ Bπ′ is satisfiable, satisfiability could be caused by the
overapproximation due to If : If is replaced by the precise encoding of f and
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the check is repeated. If Af ∧ Bπ′ is satisfiable, the error is real; if Af ∧ Bπ′ is
unsatisfiable, then the error is spurious and If is refined to a new I ′f .

The ability to reuse summaries depends on their quality. According to our
intuition, accurate summaries (i.e. strong interpolants) are effective in FunFrog:
a summary in fact over-approximates the behavior of a function call w.r.t. an
assertion; the more precise the summary is, the more closely it reflects the be-
havior of the corresponding function and the more likely it is to be employed in
the verification of subsequent assertions.

eVolCheck. The upgrade checking algorithm of [10] uses function summarization
for BMC in a different way. Verification is done simultaneously w.r.t. a fixed
set of properties, but for a program that undergoes modifications. Summaries
{Ii} are computed for the function calls {Afi} of the original version of the
program, and applied to perform local incremental checks of the new version.
If the old summaries are general enough to over-approximate the new behavior
of the modified functions {Af ′

j
} (i.e. Af ′

j
→ Ij) then the new version is safe.

Otherwise, the summaries of the caller functions of the {Af ′
j
} are checked in the

same way. If the check succeeds, new summaries {I ′j} are generated that refine
the old {Ij}. This process continues up to the call tree root. If in the end the
summary of the main function is proven invalid, then the new version is buggy.

In contrast with FunFrog, coarse summaries (i.e. weak interpolants) are more
suitable for eVolCheck; the underlying intuition is that weaker interpolants rep-
resent abstractions which are more “tolerant” and are more likely to remain
valid when the functions are updated.

Compact summaries are expected to yield a more efficient verification both
in the FunFrog and eVolCheck frameworks: on one hand, storing and reusing
smaller formulae is less expensive, on the other hand, summary reduction via
proof compression allows to remove redundancies while keeping the relevant
information; in the FunFrog approach, additionally, new summaries are built
when possible from refutations involving previously computed summaries.

5 Experimental Evaluation

We evaluated FunFrog and eVolCheck on a collection of 50 crafted C benchmarks
characterized by a non trivial call tree structure reflecting the structure of real
C programs used in previous experimentation [24,25]. The benchmarks contain
assertions distributed on different levels of the tree, which makes them partic-
ularly suitable for summary-based verification. FunFrog and eVolCheck employ
PeRIPLO for symbolic reasoning and interpolation; they provide as input BMC
formulae and receive as output interpolants, specifying a LIS depending on the
desired interpolant strength. Proof compression techniques can also be applied
in order to produce smaller summaries. The experiments were carried out on a
64-bit Ubuntu server featuring a Quad-Core 4GHz Xeon CPU, with a memory
threshold of 13GB2.

2 Tools and data are available at http://verify.inf.unisi.ch/files/LPAR.tar.gz

http://verify.inf.unisi.ch/files/LPAR.tar.gz
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FunFrog. In a first phase, FunFrog was run to check the assertions of each
benchmark incrementally w.r.t. the call tree, with the goal of maximizing the
reuse of summaries. Consider a program with the following chain of nested calls:

main(){ f(){ g(){ h(){}Assertg}Assertf}Assertmain}

where Assertx denotes an assertion in the body of a function x. In a successful
scenario, (i) Assertg is checked and a summary Ih for h is created; (ii) Assertf
is efficiently verified by exploiting Ih (Ig is then built over Ih) and (iii) so is
Assertmain by means of Ig. Each benchmark was tested in different configu-
rations: with/without performing proof compression before interpolation and
choosing one among M,P,M ′ to compute all the interpolants. Compression con-
sisted of a sequential run of LU,SH,RPI (see §3); this particular combination is
effective in reducing proofs, as shown in [18].

eVolCheck. In a second phase, new versions of the benchmarks were created,
modifying syntax/semantics of the original programs. First eVolCheck was run
to check all assertions at once, yielding a collection of function summaries; then
the new program versions were verified w.r.t. the same assertions by using the
summaries. As discussed in [10], while performing upgrade checking the inter-
polants need to satisfy a property known as tree interpolation. In [22] it is proved
that tree interpolation is satisfied by M,P but not by M ′; for this reason we only
took into account M and P for experimentation. Compression was performed as
in FunFrog.

Experimental Results. Small interpolants indeed have a strong impact on the
performance in both frameworks. Figure 2 compares the verification times for
the benchmarks in FunFrog (a) and eVolCheck (b), with and without performing
proof compression before interpolation. Table 1 provides additional statistics for
the individual interpolation systems: #Refinements denotes the total amount of
summary refinements in FunFrog, while #Invalid summaries the total number
of summaries that in eVolCheck were made invalid because of program updates;
Avg|I| and Time(s) indicate the average size of interpolants and the average ver-
ification time over all the benchmarks; TimeC/TimeV ratio is the ratio between
the time spent for proof compression and the verification time.

Figure 2 and Table 1 show the remarkable performance improvement achieved
by exploiting proof compression; FunFrog, e.g., obtains a reduction in the average
interpolants size Avg|I| up to 95% and a speedup up to 54%. Note also in Figure 2
that the effect of compression increases with the complexity of the benchmark;
the overhead due to applying compression techniques becomes in fact less and
less significant as the benchmark verification time grows.

According to the intuitions discussed in §4, strong interpolants prove beneficial
in FunFrog, while weak interpolants are more suitable for eVolCheck; this is
represented in Table 1 by a smaller amount of summary refinements in FunFrog
and of invalidated summaries in eVolCheck.

The results show that the size of interpolants seems to have definitely an
overall greater impact than interpolant strength. Verification time, in fact, is
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Fig. 2. Proof compression effect on verification time

principally determined by the size of the summaries, so that, even in presence
of a larger amount of refinements or invalidated summaries, smaller summaries
tend to lead to a better performance.

It is important to remark that both size and strength are dependent on the
features of the refutations from which the interpolants are produced, as well as
on the specific interpolation algorithms, and that these aspects cannot be con-
sidered separately. For example, in our experimentation we found considerable
differences in the size of the interpolants generated by the three LISs, and in the
effect of proof compression: interpolants generated with M ′ in FunFrog were on
average twice as big as those generated with M , but they benefited the most
from compression.

Moreover, among all existing refutations for a certain unsatisfiable formula
(including those obtained via compression), there might be some which are of
better “quality” w.r.t. interpolation by means of LISs. A good refutation could
be characterized by a large logical “distance” between the interpolant I yielded
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Table 1. Verification statistics for FunFrog and eVolCheck

(a) FunFrog

No Compression M P M ′

#Refinements 290 298 308

Avg |I | 38886.62 39372.07 72994.08

Time(s) 4568.08 4929.93 6805.81

Compression M P M ′

#Refinements 293 293 294

Avg |I | 4336.21 3402.58 3255.69

Time(s) 3327.56 3450.17 3201.72

TimeC/TimeV ratio 0.32 0.33 0.32

(b) eVolCheck

No Compression M P

#Invalid summaries 65 63

Avg |I | 334554.64 377903.11

Time(s) 4322.57 4402.00

Compression M P

#Invalid summaries 63 62

Avg |I | 12579.89 12929.82

Time(s) 2073.79 2057.34

TimeC/TimeV ratio 0.19 0.19

by M and I ′ yielded by M ′, where the distance between I and I ′ — remember
that I → I ′ — is defined as the number of models of I ′ that are not models of
I. A large distance in this sense would allow for a higher degree of variation in
the coarseness of summaries, with direct impact on verification.

6 Conclusions

Craig interpolation is a standard means for abstraction in symbolic model check-
ing, but it is still not clear what makes interpolants good in a particular verifi-
cation framework. We addressed the problem of generating effective interpolants
by evaluating the impact of size and logical strength in the context of software
SAT-based BMC. To this end, we introduced PeRIPLO, a novel framework that
drives interpolation by providing routines for manipulation of the resolution refu-
tations from which the interpolants are computed and for systematic variation
of the interpolants strength. As case studies we considered two BMC applica-
tions which use interpolation to generate function summaries: (i) verification of
a C program incrementally with respect to a number of different properties, and
(ii) incremental verification of different versions of a C program with respect to
the fixed set of properties. We provided solid experimental evidence that com-
pact interpolants improve the verification performance in the two applications.
We also carried out a first systematic evaluation of the impact of strength in
a specific verification domain, showing that different applications benefit from
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interpolants of different strength: specifically, stronger and weaker interpolants
are respectively desirable in (i) and (ii).
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Abstract. We foster a novel implementation technique for logic program up-
dates, which exploits incremental tabling in logic programming – using XSB
Prolog to that effect. Propagation of updates of fluents is controlled by initially
keeping any fluent updates pending in the database. And, on the initiative of
queries, making active just those updates up to the timestamp of an actual query,
by performing incremental assertions of the pending ones. These assertions, in
turn, automatically trigger system-implemented incremental bottom-up tabling of
other fluents (or their negated complements), with respect to a predefined overall
upper time limit, in order to avoid runaway iteration. The frame problem can then
be dealt with by inspecting a table for the latest time a fluent is known to be as-
suredly true, i.e., the latest time it is not supervened by its negated complement,
relative to the given query time. To do so, we adopt the dual program transfor-
mation for defining and helping propagate, also incrementally and bottom-up, the
negated complement of a fluent, in order to establish whether a fluent is still true
at some time point, or rather if its complement is. The use of incremental tabling
in this approach affords us a form of controlled, but automatic, system level truth-
maintenance, up to some actual query time. Consequently, propagation of update
side-effects need not employ top-down recursion or bottom-up iteration through
a logically defined frame axiom, but can be dealt with by the mechanics of the
underlying world. Our approach thus reconciles high-level top-down deliberative
reasoning about a query, with autonomous low-level bottom-up world reactivity
to ongoing updates, and it might be adopted elsewhere for reasoning in logic.

Keywords: logic program updates, updates propagation, incremental tabling,
dual program transformation, XSB Prolog.

1 Introduction

The tabled logic programming paradigm, i.e., logic programming (LP) with tabling
mechanisms, is supported by a number of Prolog systems, to different extent. Tabling
affords solutions reuse, rather than recomputing them, by keeping in tables subgoals and
their answers obtained by query evaluation. Incremental tabling, available in XSB Pro-
log [23], is an advanced recent tabling feature that ensures the consistency of answers in
a table with all dynamic clauses on which the table depends. It does so by incrementally
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maintaining the table, rather than by recomputing answers in the table from scratch to
keep it updated. The applications of incremental tabling in LP have been demonstrated
in pointer analyses of C programs in the context of incremental program analyses [18],
data flow analyses [19], static analyses [6], incremental validation of XML documents
and push down model checking [17]. This range of applications suggests that incre-
mental tabling lends itself to dynamic environments and evolving systems, including
notably logic program updates, as we proceed to show.

In [20], an approach to logic program updates, termed EVOLP/R, theoretically based
on Evolving Logic Programs (EVOLP) [1], is proposed. It simplifies EVOLP by re-
stricting updates to fluents only. Rule updates are nevertheless achieved by attaching
to each rule, in its body, a name fluent that uniquely identifies that rule (cf. [16]). Up-
dating such a rule name fluent, via its assertion or retraction, permits time-activation
or deactivation of the corresponding rule, respectively. Its implementation preliminar-
ily exploits incremental tabling, plus another tabling feature: answer subsumption [22].
Incremental tabling of fluents is employed to automatically maintain the consistency of
program states due to assertion and retraction of fluents, whether obtained as updated
facts or concluded by rules. On the other hand, answer subsumption of fluents allows to
address the frame problem, by automatically keeping track of the latest assertion or re-
traction of fluents with respect to a given query time. The combined use of incremental
tabling and answer subsumption is realized in the tabled predicate fluent(F,Ht,Qt):
given query time Qt, it looks for dynamic definitions of fluent F , and returns Ht, the
latest time fluent F is true. Predicate fluent/3 depends on dynamic fluent definitions
of F , and this dependency indicates that fluent/3 is tabled incrementally, to avoid
abolishing the table each time a Prolog assertion is made and then recomputing from
scratch. Moreover, since fluent/3 aims at returning only the latest time F is true (with
respect to a given Qt), fluent/3 can be tabled using answer subsumption on its second
argument. While answer subsumption is shown useful in this approach to avoid recurs-
ing through the frame axiom by allowing direct access to the latest time when a fluent
is true, it requires fluent/3 to have query time Qt as its argument. Consequently, it
may hinder reuse of tabled answers of fluent/3 by similar goals which differ only in
their query time. In truth, the state of a fluent in time depends solely on the changes
made to the world, and not on whether that world is being queried. For instance, sup-
pose fluent(a, 2, 4) is already tabled, and fluent a is inertially true till it is supervened
by its negated complement, say at time T = 7. When a new goal fluent(a,Ht, 5) is
posed, it cannot reuse the tabled answer fluent(a, 2, 4), as they differ in their query
time. Instead, fluent(a,Ht, 5) unnecessarily recomputes the same solution Ht = 2
(recall that fluent a is only retracted at T = 7), and subsequently tables fluent(a, 2, 5)
as a new answer. A similar situation occurs when fluent(a,Ht, 6) is queried, where
fluent(a, 2, 6) is eventually added into the table. This is clearly superfluous, as ex-
isting tabled answers could actually be reused and such redundancies avoided, if the
tabled answers are independent of query time. However, in XSB answer subsumption
on argument Ht cannot be made to ignore argument Qt, by its very design.

In this paper we address the aforementioned issue by fostering further incremen-
tal tabling, but leaving out the problematic use of the answer subsumption feature by
reconceptualizing the issue at hand. The main idea, which was not captured in [20], is



696 A. Saptawijaya and L.M. Pereira

the perspective that knowledge updates (either self or world wrought changes) occur
whether or not they are queried, i.e., the former take place independently of the latter.
That is, when a fluent is true at Ht, its truth lingers on independently of query time: Qt
no longer becomes an argument of the tabled fluent predicate, i.e., we now have just
fluent(F,Ht). Being independent of query time Qt, fluent/2 consequently permits
better and more general reuse of its tabled answers than that of [20].

In the present approach, fluent updates are initially kept pending in the database, and
on the initiative of top-goal queries, i.e., by need only, incremental assertions make these
pending updates active (if not already so), but only those with timestamps up to an actual
query time. Such assertions automatically trigger system level incremental upwards
propagation and tabling of fluent updates. In order to delimit answers in the table, which
in some cases may lead to iterative non-termination, the propagation is bounded by a
predefined upper global time limit. Though foregoing answer subsumption, recursion
through the frame axiom can thus still be avoided, and a direct access to the latest
time a fluent is true is made possible via system table inspection predicates. Benefiting
from the automatic upwards propagation of fluent updates, the program transformation
in the present approach becomes simpler than our previous one, in [20]. Moreover, it
demonstrates how the dual program transformation, initially introduced in the context
of abduction [3], is employed for helping propagate the dual negation complement of
a fluent incrementally, to establish whether the fluent is still true at some time point or
rather if its complement is. Keeping both a fluent and its complement tabled will permit
in future to address paraconsistency and counterfactuals.

The paper is organized as follows. Section 2 recaps the EVOLP/R language, and
reviews the dual transformation and incremental tabling. We detail the implementation
technique in Section 3, discuss related work in Section 4, and conclude in Section 5.

2 Preliminaries

We begin by recapitulating the theoretical basis of our logic program updates.

2.1 The EVOLP/R Language

The syntax of EVOLP/R is simply adapted from that of EVOLP [1], by restricting
updates to fluents only. Let K be an arbitrary set of propositional variables and K̃ be the
extension of K, defined as K̃ = {A : A ∈ K} ∪ {∼A : A ∈ K}. Atoms A ∈ K and
∼A are called positive fluents and negative fluents, respectively. As in EVOLP, program
updates are enacted by having the reserved predicate assert/1 in the head of a rule.

Definition 1. Let K̃ be the extension of a set K of propositional variables. The EVOLP/
R language L is defined inductively as follows:

1. All propositional atoms in K̃ are propositional atoms in L.
2. If A is a propositional atom in L, then assert(A) is a propositional atom in L.
3. If A is a propositional atom in L, then ∼assert(A) is a propositional atom in L.
4. Nothing else is a propositional atom in L.
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5. If A0 is a propositional atom in L and A1, . . . , An, with n ≥ 0, are literals in L
(i.e. a propositional atom A, or its default negation not A), then A0 ← A1, . . . , An

is a rule in L.
6. Nothing else is a rule in L.

An EVOLP/R program over a language L is a (possibly infinite) set of rules in L.

We extend the notion of positive and negative fluents in K̃ to propositional atoms
A and ∼A in L, respectively. They are said to be complement each other. When it is
clear from the context, we refer both of them as fluents. Retraction of fluent A (or ∼A),
making it false, is achieved by asserting its complement ∼A (or A, respectively). I.e.,
no reserved predicate for retraction is needed. Non-monotonicity of a fluent can thus be
admitted by asserting its complement, so as to let the latter supervene the former. Ob-
serve that the syntax permits embedded assertions of literals, e.g., assert(assert(a)),
∼assert(assert(a)); the latter being the complement of the former.

In [1], the semantics of EVOLP is given by a set of evolution stable models, each
of which is a sequence of interpretations or states. Each evolution stable model de-
scribes some possible self-evolution of one initial program after a given number of
evolution steps, where each self-evolution is represented by a sequence of generalized
logic programs (i.e. programs that allow default negation in their heads). By Definition
1, EVOLP/R programs are not generalized logic programs, but they nevertheless permit
negative fluents in the rules’ heads. Indeed, one may view negative fluents as explicit
negations, and due to the coherence principle [2], that states explicit negation entails
default negation, negative fluents obey the principle. Therefore, the two forms of rules’
heads, i.e. assert(not A) in EVOLP and assert(∼A) in EVOLP/R, can be treated
equivalently. This justification allows the semantics of EVOLP/R to be safely based on
that of EVOLP, as long as the paraconsistency of simultaneously having A and ∼A is
duly detected and user-defined handled, say with integrity constraints or preferences.

In EVOLP, the most recent rule instances are put in force, and the previous rule in-
stances are valid (by inertia) as far as possible, i.e., they are kept for as long as they
do not conflict with more recent ones. Though EVOLP/R restricts updates to fluents
only, rule updates (like in EVOLP) can nevertheless be achieved, via the mechanism
of rule name fluents, placed in rules’ bodies, allowing to turn rules on or off, through
assertions or retractions of their corresponding unique name fluents. That said, the re-
striction amounts to saying that all rules are to be known at the start, so that their rule
names can be manipulated. Conceivably however, new internally learnt or externally
given rules could be associated at such time with corresponding new names, and the
association recorded by an update.

We now review the semantics of EVOLP and adapt it for EVOLP/R, restricting up-
dates to fluents only. In the following definitions,

⊕
P , where P = {Pi | 1 ≤ i ≤ n},

denotes a sequence of EVOLP/R programs P1⊕· · ·⊕Pn; each program corresponding
to a state s ∈ S.

Definition 2. Let
⊕
{Pi : i ∈ S} be an EVOLP/R program over language L, s ∈ S,

and M be a set of propositional atoms of L. Then:

Defaults(M) = {not A |
 ∃A ← Body ∈ Pi(1 ≤ i ≤ s) : M |= Body}
Rejects(M) = {A ← Body ∈ Pi | ∃ ∼A ← Body′ ∈ Pj , i < j ≤ s ∧M |= Body′}
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where ∼A denotes the fluent complement of A, and both Body and Body′ are conjunc-
tions of literals.

Definition 3. Let P =
⊕

{Pi : i ∈ S} be an EVOLP/R program over language L. A
set M of propositional atoms of L is a stable model of P at state s ∈ S iff:

M ′ = least
([⋃

i≤s
Pi −Rejects(M)

]
∪Defaults(M)

)
where M ′ = M∪{not A | A 
∈ M}, and least(.) denotes the least model of the definite
program obtained from the argument program by replacing every default negated literal
not A by a new atom not A.

Definition 4. An evolution interpretation of length n of an EVOLP/R program P over
L is a finite sequence I = 〈I1, . . . , In〉 of sets of propositional atoms of L. The evo-
lution trace associated with an evolution interpretation I is the sequence of programs
〈P1, . . . , Pn〉 where P1 = P and Pi = {A | assert(A) ∈ Ii−1}, for 2 ≤ i ≤ n.

Definition 5. Let M = 〈I1, . . . , In〉 be an evolution interpretation of an EVOLP/R
program P and 〈P1, . . . , Pn〉 be its evolution trace. M is an evolution stable model of
P iff for every i (1 ≤ i ≤ n), Ii is a stable model of

⊕
{P1, . . . , Pi} at state i .

Like EVOLP, besides the self-evolution of a program, EVOLP/R also allows influ-
ence from the outside, either as an observation of fluents that are perceived at some state,
or assertion orders about fluents on the evolving program. Different from EVOLP, the
outside influence in EVOLP/R, referred as external updates, persist by inertia as long as
they do not conflict with the more recent values for them. Nevertheless, we may easily
define external updates that do not persist by inertia, called events in EVOLP, by defin-
ing for every atomic event E the rule: assert(∼E) ← E, i.e., if event E is imposed at
some state i, then it is no longer assumed from the next state, i.e., (i + 1), onwards. In
other words, E holds momentarily at state i only.

Definition 6. Let Ei, for 1 ≤ i ≤ k, be a set of propositional atoms in L. An evolution
interpretation 〈I1, . . . , In〉, with evolution trace 〈P1, . . . , Pn〉, is an evolution stable
model of P given an external updates sequence 〈E1, . . . , Ek〉 iff for every i (1 ≤ i ≤ n),
Ii is a stable model at state i of (P1 ∪ E1)⊕ · · · ⊕ (Pi ∪ Ei).

The very idea of the paper is to show how an innovative use of tabling in LP, partic-
ularly of incremental tabling, may benefit program updates. Our implementation tech-
nique, as detailed Section 3, is realized on top of XSB Prolog, which is based on the
well-founded semantics (WFS) [25]. Note that in principle, semantics (with a fixpoint
definition) other than stable models can be employed in EVOLP/R. For example, it may
alternatively be based on WFS, cf. [4]. Currently, EVOLP/R considers only stratified
programs, i.e., programs with no loops over negation. The semantics of EVOLP/R for
such programs therefore consists of only one evolution stable model, which is also the
well-founded model. This is deliberately so, at this point, because we are concentrating
rather on the incremental tabling aspects and usage. Indeed, incremental tabling in the
current release of XSB Prolog also supports 3-valued WFS. Its use for non-stratified
programs in EVOLP/R, i.e., for updating conditional answers and for reasoning with
abduction, is a future line of work, as expressed in the Conclusion section.
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2.2 The Dual Program Transformation

The dual program transformation is initially introduced in the context of abduction [3]
to abduce explanations under negative goals. It is summarized here and adapted to the
EVOLP/R language.

The dual program transformation defines for each atom A and its set of rules R in
an EVOLP/R program P , a set of dual rules whose head ∼A is true if and only if A is
false by R in the employed semantics of P . It relies on the following definition.

Definition 7. Let L be a literal in EVOLP/R (cf. Definition 1). The conjugate conj(L)
of L is defined as follows:

conj(L) =

{
A , if L = not A or L = ∼A
∼A , if L = A

Example 1 illustrates the main idea of the dual transformation in EVOLP/R.

Example 1. Consider the following program: a ← ∼b. a ← c, not d.
The dual transformation creates a set of dual rules for fluent a which falsify a with re-
spect to its two rules, i.e., by falsifying both the first rule and the second rule, expressed
below by predicate a∗1 and a∗2, respectively:

∼a ← a∗1, a∗2.
This single rule is named as the first layer of the dual transformation. The second layer
contains the definitions of a∗1 and a∗2, where a∗1 and a∗2 are defined by falsifying
the body of a’s first rule and second rule, respectively; i.e., by taking the conjugate of
literals in the body. In case of a∗1, the only way the first rule of a can be falsified is by
taking the conjugate of ∼b. Therefore, we have:

a∗1 ← b.
In case of a∗2, the second rule of p is falsified by alternatively failing one subgoal in its
body at a time, i.e., by taking the conjugate of c or alternatively, that of not d.

a∗2 ← ∼c. a∗2 ← d.

Note that, if there is only one definition of a, then the first layer dual rule is defined as
∼a ← a∗1. In this case, it is preferable to simply unfold a∗1’s definitions in the first
layer. For instance, if a in Example 1 is defined only by the second rule, the dual rules
∼a can be directly defined as:

∼a ← ∼c. ∼a ← d.
Dual rules can be added to rules expressing falsity in their heads. This means the use
of the dual is what actually enables us to incrementally propagate falsity, as well as
truth. The reader is referred to [3] for theoretical details, and to [21] for our tabled
implementation. Note that use of the dual program transformation does not preclude
undefined fluents, and that incremental tabling is compatible with the WFS of XSB.

2.3 Incremental Tabling

Whenever a tabled predicate depends on dynamic predicates and the latter are updated
(with Prolog’s assert or retract predicates), these updates are not immediately reflected
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in the table, i.e., the table becomes out of date. This problem is known as the view
maintenance problem in databases and the truth maintenance problem in artificial in-
telligence. In “classical” tabling, a typical solution to this problem is to rely on the
user to explicitly abolish the table whenever a dynamic predicate, on which the table
depends, is updated. As several updates may take place on a dynamic predicate, such
explicit table abolishment is rather inconvenient and also leads to inefficiency. To over-
come this problem, XSB allows maintaining particular tables incrementally, known as
incremental tabling, i.e., the answers in these tables are ensured to be consistent with
all dynamic facts and rules upon which they depend. In XSB, this requires both tabled
predicates and the dynamic predicates they depend on to be declared as incremental.
For example, if the tabled predicate r/2 depends on the dynamic predicate s/2, then
they are declared as :- table r/2 as incremental and :- dynamic s/2
as incremental, respectively. To update the table of r/2 incrementally by a sin-
gle change to s/2, a call such as incr assert(s(a, 3)) or incr retract(s(a, 3)) can be
issued, in which case the table of r/2 and other tables that depend on r/2 and s/2 are
updated after such a call. Bulk changes are also supported. The reader is referred to [24]
for the further options, examples, and details of incremental tabling.

3 Query-Driven Updates Propagation with Incremental Tabling

Since changes by incremental assertions or retractions in incremental tabling update the
tables that depend on them, and only those sought – possibly in a chain of dependencies
between tabled predicates – this feature can be exploited for automatically propagating
the appropriate fluent updates. The use of the frame axiom, with its recursive nature,
is thereby avoided. The “world” manages its own consequences, so to speak, and the
system provides its history only to the extent needed by queries.

3.1 The Idea

We start with a very simple example to illustrate the basic idea.

Example 2. Consider program P : b ← a. c ← b.
Given the sequence of external updates 〈E1, E2, E3〉, where E1 = {a}, E2 = ∅, and
E3 = {∼a}, the evolution of P in EVOLP/R (cf. definitions in Section 2) is as follows:
P1 = P with I1 = {a, b, c}, P2 = ∅ with I2 = {a, b, c}, and P3 = ∅ with I3 = ∅.

Observe that a is an external fluent update at state i = 1, which propagates to updates
of fluents b (by the first rule) and c (by the second rule), making the three fluents true
at state i = 1. Incremental tabling itself realizes such propagations. A tabled predicate,
say fluent(F, T ), to record incremental updates of fluent F at state (or time) T is in-
troduced. That is, it depends directly on fluent literals (treated as dynamic incremental
predicates), whether extensional or intensional. The external update of fluent a at i = 1
is therefore accomplished by an incremental assertion, via incr assert/1 system predi-
cate, i.e., incr assert(a(1)) to say that fluent a is incrementally asserted at i = 1. Such
an incremental assertion results in having entry fluent(a, 1) in the table. Furthermore,
due to the dependencies of the three fluents, as defined by the two rules in P , the incre-
mental assertion of a propagates to fluents b and c, leading to tabling fluent(b, 1) and
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fluent(c, 1). We thus have fluent(a, 1), fluent(b, 1), and fluent(c, 1), confirming
that the three fluents are true at i = 1 (cf. I1).

As there is no update in state i = 2, the truths of the three fluents persist by inertia
at i = 2. From the tabling viewpoint, the previous entries fluent(a, 1), fluent(b, 1),
and fluent(c, 1) linger in the table, and a simple check can be performed to verify that
the truths of these fluents are not supervened by their complements at i = 2. That is,
whether there are no fluent(∼a, 2), fluent(∼b, 2), and fluent(∼c, 2) entries in the
table, which is indeed the case, and consequently confirms that the three fluents (a, b,
and c) are inertially true at i = 2 (cf. I2).

A subsequent update of fluent ∼a at i = 3 via incr assert(∼a(3)) results in tabling
fluent(∼a, 3). That means, we still have all previous tabled entries, viz., fluent(a, 1),
fluent(b, 1), and fluent(c, 1), plus now fluent(∼a, 3), and a simple state comparison
(fluent a at i = 1 is supervened by its complement ∼a at a later state i = 3) concludes
that fluent a is no longer true. Different from before, there is no propagation to fluents
∼b nor ∼c by this incremental assertion, i.e., no fluent(∼b, 3) and fluent(∼c, 3) in the
table. Indeed, there are no corresponding rules in P for ∼b and ∼c; thus failing to con-
clude that both fluents are also false at i = 3 (cf. I3). We adopt the dual transformation
(cf. Section 2.2) to provide rules for ∼b and ∼c from definitions of b and c:

∼b ← ∼a. ∼c ← ∼b.
The introduced dual rules now allow the propagations from ∼a to ∼b and then to ∼c,

resulting in having fluent(∼b, 3) and fluent(∼c, 3) in the table. By having the latter
two entries in the table, using the same previous reasoning, it can be concluded that
fluents b and c are also false at i = 3, confirming I3.

The automatic system level updates propagation, by means of incremental tabling,
is driven by a query at a particular state, known as a query time. Such a query trig-
gers incremental assertions up to the given query time. Indeed, any updates have been
kept pending, and only those up to the query time are made actual, if not already
so. This mechanism affords us a form of controlled but automatic system level truth-
maintenance, up to the given query time. It can be viewed as reconciling a high-level
top-down deliberative reasoning (about a query) with low-level bottom-up world reac-
tivity to updates; the latter is relegated to the system enacted incremental tabling feature.

3.2 Implementation

The idea is implemented by a compiled program transformation plus a library of re-
served predicates.

Transformation. The transformation adds information and rules to program clauses:

1. Timestamp that corresponds to state and serves as the only extra argument of fluents.
It denotes the time when a fluent is true (known as holds time in [20]). Compared
to [20], there is no longer the need to carry the query time as an extra argument of
fluents. Conceptually, the state of a fluent in time depends solely on the changes
made to the world, and is independent of whether that world is being queried.

2. Rule name as a special fluent $rule(p/n, idi), which identifies a rule of predicate
p with arity n by its unique name identity idi, and is introduced in its body, for
checking that the rule is still active.
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3. Dual rules that are obtained using the dual transformation for each atom with defi-
nitions in the input program.

The transformation technique is illustrated by Example 3, with the extra informa-
tion and rules figuring in the transform ($r and as in the sequel stand for predicates
$rule and assert, respectively). In EVOLP/R, the initial timestamp is set at 1, when a
program is inserted. Fluent predicates can be defined as facts (extensional) or by rules
(intensional) or both. In Example 3, both fluents b and as(∼a) are defined intension-
ally. For such rule regulated intensional fluent instances, unique rule name fluents, i.e.,
$r(b/0, id1) and $r(as(∼a/0), id1) for the first and the second rules, respectively, are
introduced. They are extensional fluent instances, and like any other extensional fluent
instances, such a rule name fluent is translated (cf. line 1) by adding an extra argument
(the third one) that corresponds to its holds time; in this case, each rule name fluent is
true at the initial time 1, i.e., the time when its corresponding rule is inserted.

Line 2 shows the translation of rule b ← a of the input program. The single extra
argument in its head is its holds time, H . Call to the goal a in the body is translated into
calls to the reserved predicate fluent/2 (defined later), that provides their holds time.
The subgoal calls fluent($r(b/0, id1), Hr) and fluent(a,Ha) reflect the propagation
of the unique rule name fluent $r(b/0, id1) and fluent a, respectively, from the body
to the head (i.e., fluent b). The holds time H of fluent b in the head is thus determined
by which inertial fluent in its body holds latest, via the latest/2 reserved predicate
(detailed later), assuring that no fluents in the body were subsequently supervened by
their complements at some time before H . Note the inclusion of the unique rule name
fluent (i.e., the call fluent($r(b/0, id1), Hr)) in the body, whose purpose is to switch
the corresponding rule on or off.

The other rule of the input program, viz., as(∼a) ← b, transforms into two rules: the
transform in line 5 is similar to that of rule b ← a, whereas the one in line 8 is derived
as the effect of asserting ∼a. That is, the truth of ∼a is determined solely by the propa-
gation of fluent as(∼a), indicated by the call fluent(as(∼a), Has). The holds time H
of ∼a is thus determined by Has + 1 (rather than Has, because ∼a is actually asserted
one time step after the time at which as(∼a) holds). This transform (line 8) is simpler
compared to the one in [20] (cf. line 7 of Example 1 in [20]), because no extra reasoning
with respect to query time is needed here (due to independence of the transform from
query time). Such a simpler transformation consequently corresponds to less computa-
tion time: indeed, the extra reasoning with respect to query time Qt, in [20], requires
recursively generating timestamps T < Qt, and checking via backtracking whether
assert(∼a) holds at T .

Finally, lines 3 and 4 show the dual rules for b. Line 3 expresses how the conjugate
∼$r(b/0, id1) of rule name fluent $r(b/0, id1) propagates to fluent ∼b, whereas line
4 expresses the other alternative: how the conjugate ∼a of a propagates to fluent ∼b.
Observe that the dual rules are directly defined by unfolding b∗1, because b in the input
program has only one definition (cf. the last paragraph of Section 2.2). With similar
reasoning, lines 6 and 7 define the dual rules for as(∼a). Recall that dual rules are
defined for each atom with definitions in the input program. Therefore, rules in the
transform derived from another rule with assert/1 in the head, e.g., rule ∼a/1 in line
8 with no definition in the input program, do not have dual rules. From the semantics
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viewpoint, once ∼a is asserted, its truth remains intact by inertia till superseded, even if
assert(∼a) is retracted at a later time.

Since every fluent occurring in the program is subject to updates, all fluents and
their complements should be declared as dynamic and incremental (due to incremen-
tal tabling), e.g., :- dynamic a/1,‘∼a’/1 as incremental (the same for
fluents b, as(∼a), $r(b/0, id1, 1), $r(as(∼a/0), id1, 1), as well as their complements).

Example 3. Program: b ← a. as(∼a) ← b. transforms into:

1. $r(b/0, id1, 1). $r(as(∼a/0), id1, 1).
2. b(H) ← fluent($r(b/0, id1), Hr), f luent(a,Ha),

latest([($r(b/0, id1), Hr), (a,Ha)], H).
3. ∼b(H) ← fluent(∼$r(b/0, id1), H).
4. ∼b(H) ← fluent(∼a,H).
5. as(∼a,H) ← fluent($r(as(∼a/0), id1), Hr), f luent(b,Hb),

latest([($r(as(∼a/0), id1), Hr), (b,Hb)], H).
6. ∼as(∼a,H) ← fluent(∼$r(as(∼a/0), id1), H).
7. ∼as(∼a,H) ← fluent(∼b,H).
8. ∼a(H) ← fluent(as(∼a), Has), H is Has + 1.

Example 4 focuses on the transformation of a rule with a default negation in its
body. Apart from the usual rule name fluent in the body, the goal not a with default
negation translates into a call to reserved predicate fluent not/2 (defined later), i.e.,
fluent not(a,Ha); cf. line 2. Lines 3 and 4 are the dual rules for fluent b.

Example 4. Program: b ← not a. transforms into:

1. $r(b/0, id1, 1).
2. b(H) ← fluent($r(b/0, id1), Hr), f luent not(a,Ha),

latest([($r(b/0, id1), Hr), (a,Ha)], H).
3. ∼b(H) ← fluent(∼$r(b/0, id1), H).
4. ∼b(H) ← fluent(a,H).

Reserved Predicates. Predicate fluent/2 used in the transformation is a tabled one,
as described in Section 3.1. It depends on fluent definitions of F (which are dynamic
incremental), and this dependency indicates that fluent/2 is tabled incrementally. It is
declared as :- table fluent/2 as incremental, and defined as follows:

fluent(F, T )← upper time(Lim), extend(F, [T ], F ′), call(F ′), T ≤ Lim.

where extend(F,Args, F ′) extends the arguments of fluent F with those in list Args
to obtain F ′. The definition requires a predefined upper time limit Lim, which is used
to delimit updates propagation, i.e., to delimit answers in the fluent/2 table. The mo-
tivation for such an upper time limit was explained before, plus illustrated in the sequel.

For updates propagation to take place, initial calls fluent(F, ), for every fluent
F , have to be made in order to initially create the table. Once created, the table is
incrementally updated after every incr assert/1 call by propagating updates on which
it depends. Updates propagation are controlled in two innovative ways:
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1. Activating pending updates till some query time.
In Section 3.1 we mentioned that updates propagation by incremental tabling is
query-driven, within some query time of interest. This means we can use the given
query time to control updates propagation by keeping the sequence of updates pend-
ing, say in the database, and then making active, through incremental assertions,
only those with the states up to the actual query time (if they have not yet been so
made already by queries of a later time stamp). For so doing, we may introduce a
dynamic predicate pending(F, T ) to indicate that update of fluent F at state T is
still pending, and use Prolog assert/1 predicate, i.e., assert(pending(F, T )) to
assert such a pending fluent update into the Prolog database. Activating pending
updates (up to the given query time Qt), as shown by the code below, can thus
be done by calling all pending(F, T ) facts with T ≤ Qt from the database and
actually asserting them incrementally using the system incr assert/1 predicate:

activate pending(Qt)← pending(F, T ), T ≤ Qt, extend(F, [T ], F ′),
incr assert(F ′), retract(pending(F, T )), fail.

activate pending( ).

Note that a quasi forward-chaining approach [24] of incremental update through the
use of incr assert/1 is employed, as opposed to the use of incr assert inval/1
system predicate of eager and lazy incremental update approaches [24]. Never-
theless, since pending updates are only made active on the initiative of top-goal
queries, only those with timestamps up to an actual query time are actually as-
serted, i.e., by need only. Lazy evaluation by itself would not suffice to delimit
actual updates to query time ceilings, and hence the need for pending updates.

2. Limiting updates propagation to a predefined upper time limit.
Activating pending updates up to some query time does not guarantee termination
of updates propagation, as Example 5 illustrates.

Example 5. Consider program P : as(∼a) ← a. as(a) ← ∼a.
Given an external update 〈E1〉, where E1 = {a}, the evolution of P in EVOLP/R
is as follows: P1 = P with I1 = {a, assert(∼a)}, P2 = {∼a} with I2 =
{∼a, assert(a)}, P3 = {a} with I3 = {a, assert(∼a)}, P4 = {∼a} with I4 =
{∼a, assert(a)}, . . . etc. (the evolution continues indefinitely)

In this example the external update of a at state i = 1 leads to non-terminating
propagation. From the incremental tabling viewpoint, it indicates that a predefined
upper time limit is required to limit updates propagation, thereby avoiding infinite
number of answers in the fluent/2 table. This requirement is realistic, as our view
into the future may be bounded by some time horizon, comparable to bounded ra-
tionality. For this purpose, a dynamic predicate upper time(Lim) is introduced
to indicate the predefined upper time limit Lim, and used in the above fluent/2
definition to time-delimit their tabled answers. In the case of Example 5, by set-
ting, e.g., upper time(4), the fluent/2 table contains a finite number of answers:
fluent(a, 1), fluent(∼a, 2), fluent(a, 3), and fluent(∼a, 4).

We have seen predicate latest([(F1, H1), . . . , (Fn, Hn)], H) in the transformation,
which appears in the body of a rule transform, say of fluent F . This reserved predicate
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is responsible for obtaining the latest holds time H of F amongst fluents F1, . . . , Fn in
the body, while also assuring that none of them were subsequently supervened by their
complements at some time up to H . It is defined as:

latest(Fs,H)← greatest(Fs,H), not supervened(Fs,H).

where greatest(Fs,H) extracts from list Fs, of (Fi, Hi) pairs with 1 ≤ i ≤ n, the
greatest holds time H among the Hi’s, and predicate not supervened(Fs,H) subse-
quently checks, by means of table inspection, that there is no fluent complement F ′

i

(with holds time H ′
i) of Fi in Fs, such that Hi < H ′

i ≤ H .
Recall now Example 4. There, reserved predicate fluent not/2 is introduced. Its

definition is given below:

(1) fluent not(F, T ) ← compl(F, F ′), f luent(F ′, T ).
(2) fluent not(F, T ) ← nonvar(T ), !, fail.
(3) fluent not( , 0).

where compl(F, F ′) obtains the fluent complement F ′ from F . Rule (1) captures the
coherence principle [2], that states explicit negation entails default negation; in our case,
negative fluents are treated as explicit negations, therefore they obey the principle. Rules
(2) and (3) are the standard definition of default negation. Note that rule (3) artificially
sets the timestamp to T = 0 for all fluents; for none are by then (before the “Big Bang”
of the starting program update, which initially starts at T = 1) known to be true.

Given that an upper time limit has been set, and that the initial calls fluent(F, )
for every fluent F have been made, and that some pending updates may be available,
the EVOLP/R system is ready for a top-goal query. The top-goal query holds(F,Qt)
verifies whether fluent F is true at query time Qt within the bounded time horizon
(otherwise it is undefined). It does so by first activating pending updates up to Qt and
then inspecting fluent/2 table to answer the query:

(1) holds( , Qt) ← upper time(Lim), (Qt > Lim ; Qt ≤ 0), !, undefined.
(2) holds(not F,Qt) ← !, not holds(F,Qt).
(3) holds(F,Qt) ← activate pending(Qt), compl(F, F ′), inspect(F,H,Qt),

(H 
= 0 → (inspect(F ′, H ′, Qt), H ≥ H ′) ; fail).

where inspect(F,H,Qt) inspects the fluent/2 table and looks for entries of fluent F
with the highest timestamp H ≤ Qt. XSB provides various table inspection predicates,
e.g., get returns for call/2 may be used. If there is no such fluent F in the table,
H = 0 is returned, making holds(F,Qt) fail, due to the last conditional subgoal in the
body. Otherwise, this conditional goal exercises the table inspection of its complement
fluent F ′ to obtain its highest timestamp H ′, and succeeds only if H ≥ H ′, i.e., checks
that fluent F is not supervened at a later time by its complement F ′. Note that this
allows for paraconsistency (case H = H ′), to be dealt by the user as desired, e.g., by
integrity constraints or preferences, but this matter is beyond the scope of the paper.

Example 6. Recall Example 3, which is loaded initially at time 1. Suppose that the
upper time limit is set to upper limit(5), and calls fluent(F, ) and fluent(F ′, ),
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where F ′ is the complement of F , have been made for every fluent F in the transform,
i.e., F = {a, b, as(∼a), $r(b/0, id1, 1), $r(as(∼a/0), id1, 1)}. Note that, because rule
name fluents are already inserted (as fluent facts) in the program (cf. line 1 of Ex-
ample 3), these fluent/2 calls result in having entries fluent($r(b/0, id1), 1) and
fluent($r(as(∼a/0), id1), 1) in the table. Now, assume further that two pending ex-
ternal updates are available, viz., pending(a, 1) and pending(b, 4), that correspond to
external updates of fluent a at i = 1 and fluent b at i = 4, respectively. In other words,
〈E1, E2, E3, E4〉 is the external updates sequence with E1 = {a}, E2 = E3 = ∅,
and E4 = {b}. The following queries show that their answers conform to the evolution
model of the program given the above external updates sequence:

1. When holds(b, 1) is queried, it first activates pending updates up to Qt = 1,
via subgoal activate pending(1), thereby incrementally asserting a(1) only, and
keeping pending(b, 4) still intact. The incremental assertion of a(1) results in hav-
ing fluent(a, 1) in the table, and henceforth propagates to update fluents b (by
rule 2), as(∼a) (by rule 5), ∼a (by rule 8), ∼b (by rule 4), and ∼as(∼a) (by rule
7). These make fluent(b, 1), fluent(as(∼a), 1), fluent(∼a, 2), fluent(∼b, 2),
and fluent(∼as(∼a), 2) added into the table. When subgoal inspect(b,H, 1) of
holds(b, 1) is called, it returns H = 1, and since H 
= 0, call inspect(∼b,H ′, 1)
is subsequently made, in which case H ′ = 0 is returned (no fluent(∼b,H ′) with
H ′ ≤ 1 in the table). This eventually makes holds(b, 1) succeed, because condition
H ≥ H ′ in the definition of holds/2 is satisfied.

2. A similar reasoning applies when holds(b, 2) is queried, but now no more pending
updates up to Qt = 2 are available. The subgoal calls inspect(b,H, 2) returns H =
1 and inspect(∼b,H ′, 2) returns H ′ = 2, in which case the condition H ≥ H ′ is
unsatisfied, and therefore holds(a, 2) fails, i.e., fluent a does not hold at state i = 2.

3. It is easy to confirm, that query holds(b, 3) still fails. Indeed, it persists by inertia.
4. Finally, when holds(b, 4) is queried, the only pending update pending(b, 4) is

made active by incrementally asserting b(4) and tabling fluent(b, 4). This prop-
agates to adding several entries into the table: fluent(as(∼a), 4), fluent(∼a, 5),
fluent(∼b, 5), and fluent(∼as(∼a), 5). Therefore, subgoal call inspect(b,H, 4)
now returns H = 4, call inspect(∼b,H ′, 2) still returns H ′ = 2, and H ≥ H ′ is
satisfied, making holds(b, 4) succeed.

5. With the current entries in the fluent/2 table, one may verify that holds(b, 5) fails.

4 Related Work

Many Prolog systems are nowadays adopting tabling, though none has gone as far as
XSB Prolog, namely in allowing tabling over default negation, and providing together
answer subsumption, incremental tabling, and threads with shared tables. Consequently,
there are also limited applications of these features, particularly of incremental tabling.
Known applications are in pointer analyses of C programs in the context of incremental
program analyses [18], data flow analyses [19], static analyses [6], incremental valida-
tion of XML documents and push down model checking [17]. But we are not aware of
any work on employing incremental tabling for logic program updates as we do here.
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Updates propagation has been well studied in the field of deductive databases, e.g.,
[5, 7, 13]. Similar to what we do here, updates propagation in these works aims at com-
puting implicit changes of derived relations caused by explicit updates of extensional
facts. Methods in updates propagation consist of bottom-up and top-down approaches.
In [5], both approaches are combined, sharing the same basic idea with ours, i.e., to con-
trol bottom-up propagation with a top-down evaluation strategy. But different from ours,
it does not use any Prolog tabling features, particularly incremental tabling, but employs
instead the Magic Sets approach. Others, like [13], employ a purely top-down approach
by querying the relevant portion of the database, whereas [7] focuses on bottom-up
methods of updates propagation.

Logic-based Production System (LPS) with abduction [11] is a distinct but somewhat
similar and complementary approach to ours. It aims at defining a new logic-based
framework for knowledge representation and reasoning, relying on the fundamental
role of state transition systems in computing, and involving fluent updates by destructive
assignment. It is implemented in LPA Prolog [14] but no details are given about that.
Their approach differs from ours in that it defines a new language and an operational
semantics, rather than taking an existing one, and implements it on a commercial system
(LPA Prolog) with no underlying tabling mechanisms. Moreover, in our work fluent
updates are not managed by destructive database assignments, but rather tabled, thereby
allowing to inspect their truths at a particular time, e.g., querying the past. Furthermore,
full knowledge about each fluent in each state is not presupposed, so that only those
fluents are updated for which changes are known about. Subsequent knowledge, say
about updates on the world by another agent, or by yet unmeasured world processes,
may change the picture of the world to a more complete one. In any case, the emergence
and propagation of changes prepare the way for the wider topic of teleo-reactive systems
[12, 15].

Regarding other related work, the use of incremental tabling in this paper is very
strongly related to the (also incremental, and also tabling-based) algorithms employed
in the compile-time analyses of logic programs (e.g., [10] and other connected papers).
It could be interesting to compare the algorithms in incremental analysis and our work
(which relies on the underlying incremental tabling algorithms of XSB), because some
techniques used in incremental analyses might be useful in the context of incremen-
tal tabling (and vice-versa). Incremental analyses also table answers (like answers of
fluent/2 in our work) and include algorithms to incrementally add, delete or mod-
ify a clause of a predicate. Furthermore, there exist several specific optimizations and
techniques used in these incremental analysis algorithms which may be beneficial in
the context of the tabling procedure proposed here, namely: (1) Being cautious about
changes in the database that only affect a small subset of it (called local change in
Section 5.1 of [10]); (2) Whereas we present in Example 5 a case in which propaga-
tion does not terminate, and solve such cases by delimiting propagation to a predefined
upper time limit, it may be opportune to consider operators similar to the widening op-
erator of abstract interpretation, which lose precision on the tabling (possibly leading to
answers being recomputed), but ensure termination.

Our approach to limit updates propagation, using a predefined time limit as a bound,
has the same overall purpose as XSB’s recent tabling feature: answer abstraction [8],
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i.e., to guarantee termination in tabling by ensuring that only a finite number of answers
are generated by a query. In answer abstraction, this is achieved via a form of bounded
rationality, viz., radial restraint, and is realized by bounding the depth of an answer.

5 Conclusion

We have propounded in detail an implementation technique to logic program updates by
further exploiting incremental tabling in logic programming (available in XSB Prolog),
which enriches the applicability of the incremental tabling feature to dynamic envi-
ronments and evolving systems, and that might be adopted elsewhere for reasoning in
logic. The implementation technique proposed much refines our previous approach by
leaving out the answer subsumption feature that was heretofore employed to address
the frame problem. Instead, we rely fully on incremental tabling by separating knowl-
edge updates from queries on them; the former takes place independently from the
latter. Incremental tabling allows updates propagation, which is controlled by initially
keeping updates pending and making active only those with timestamp up to an actual
query time, on the initiative of queries. Possible non-terminating updates propagation
is avoided by setting a predefined upper time limit for queries, and the direct access to
the latest time a fluent is true is achieved by table inspection predicates. Moreover, we
adopt the dual transformation from abduction and adapt it for helping propagate also
the complement of fluents incrementally. In summary, our approach affords us a form
of controlled (i.e., query-driven) but automatic system level truth-maintenance (i.e., au-
tomatic updates propagation via incremental tabling), up to actual query time.

Our future work consists of integrating tabled abduction [21] with EVOLP/R, so as
to jointly afford abduction and updating in one integrated XSB system. We intend to
apply the system to abductive moral reasoning [9], with updating and argumentation,
as a sequel to our ongoing approach to using logic for reasoning.
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13. Küchenhoff, V.: On the efficient computation of the difference between consecutive database
states. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991. LNCS, vol. 566, pp.
478–502. Springer, Heidelberg (1991)

14. Logic Programming Associates Ltd. LPA prolog, http://www.lpa.co.uk/
15. Nilsson, N.: Teleo-reactive programs for agent control. Journal of Artificial Intelligence Re-

search 1, 139–158 (1994)
16. Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47

(1988)
17. Saha, D.: Incremental Evaluation of Tabled Logic Programs. PhD thesis, SUNY Stony Brook

(2006)
18. Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analysis using logic

programming. In: ACM PPDP 2005, pp. 117–128. ACM (2005)
19. Saha, D., Ramakrishnan, C.R.: A local algorithm for incremental evaluation of tabled logic
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performance. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 300–
312. Springer, Heidelberg (2010)

23. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming. Theory and
Practice of Logic Programming 12(1-2), 157–187 (2012)

24. Swift, T., Warren, D.S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro,
L., Marques, R.F., Saha, D., Dawson, S., Kifer, M.: The XSB System Version 3.3.x, vol. 1.
Programmer’s Manual (2012)

25. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. Journal of ACM 38(3), 620–650 (1991)

http://www.lpa.co.uk/
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Abstract. Type systems hide data that is captured by function closures
in function types. In most cases this is a beneficial design that enables
simplicity and compositionality. However, some applications require ex-
plicit information about the data that is captured in closures.
This paper introduces open closure types, that is, function types that

are decorated with type contexts. They are used to track data-flow from
the environment into the function closure. A simply-typed lambda cal-
culus is used to study the properties of the type theory of open closure
types. A distinctive feature of this type theory is that an open closure
type of a function can vary in different type contexts. To present an ap-
plication of the type theory, it is shown that a type derivation establishes
a simple non-interference property in the sense of information-flow the-
ory. A publicly available prototype implementation of the system can be
used to experiment with type derivations for example programs.

Keywords: Type Systems, Closure Types, Information Flow.

1 Introduction

Function types in traditional type systems only provide information about the
arguments and return values of the functions but not about the data that is
captured in function closures. Such function types naturally lead to simple and
compositional type systems.

Recently, syntax-directed type systems have been increasingly used to stati-
cally verify strong program properties such as resource usage [8,7,6], information
flow [5,15], and termination [1,3,2]. In such type systems, it is sometimes nec-
essary and natural to include information in the function types about the data
that is captured by closures. To see why, assume that we want to design a type
system to verify resource usage. Now consider for example the curried append
function for integer lists which has the following type in OCaml.

append : int list → int list → int list

At first glance, we might say that the time complexity of append is O(n) if n
is the length of the first argument. But a closer inspection of the definition of
append reveals that this is a gross simplification. In fact, the complexity of the
partial function call app par = append � is constant. Moreover, the complexity
of the function app par is linear—not in the length of the argument but in the
length of the list � that is captured in the function closure.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 710–726, 2013.
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In general, we have to describe the resource consumption of a curried function
f : A1 → · · · → An → A with n expressions ci(a1, . . . , ai) such that ci describes
the complexity of the computation that takes place after f is applied to i argu-
ments a1, . . . , ai. We are not aware of any existing type system that can verify
a statement of this form.

To express the aforementioned statement in a type system, we have to decorate
the function types with additional information about the data that is captured in
a function closure. It is however not sufficient to directly describe the complexity
of a closure in terms of its arguments and the data captured in the closure.
Admittedly, this would work to accurately describe the resource usage in our
example function append because the first argument is directly captured in the
closure. But in general, the data captured in a closure fa1 · · · ai can be any
data that is computed from the arguments a1, . . . , ai (and from the data in the
environment). To reference this data in the types would not only be meaningless
for a user, it would also hamper the compositionality of the type system. It is
for instance unclear how to define subtyping for closures that capture different
data (which is, e.g., needed in the two branches of a conditional.)

To preserve the compositionality of traditional type systems, we propose to
describe the resource usage of a closure as a function of its argument and the
data that is visible in the current environment. To this end we introduce open
closure types, function types that refer to their arguments and to the data in the
current environment.

More formally, consider a typing judgment of the form Γ $ e : σ, in a type
system that tracks fine-grained intensional properties characterizing not only
the shape of values, but the behavior of the reduction of e into a value (e.g.,
resource usage). A typing rule for open closure types, Γ,Δ $ e : [Γ ′](x:σ) → τ ,
captures the idea that, under a weak reduction semantics, the computation of
the closure itself, and later the computation of the closure application, will have
very different behaviors, captured by two different typing environments Γ and
Γ ′ of the same domain, the free variables of e. To describe the complexity of
append, we might for instance have a statement

�:int list $ append � : [�:int list ](y:int list) → int list .

This puts us in a position to use type annotations to describe the resource usage
of append � as a function of � and the future argument y. For example, using
type-based amortized analysis [6], we can express a bound on the number of
created list notes in append with the following open closure type.

append : [](x:int list0) → [x:int list1](y:int list0) → int list0 .

The intuitive meaning of this type for append is as follows. To pay for the cons
operations in the evaluation of append �1 we need 0·|�1| resource units and to pay
for the cons operations in the evaluation of append �1 �2 we need 0·|�1| + 1·|�2|
resource units.

The development of a type system for open closure types entails some inter-
esting technical challenges: term variables now appear in types, which requires
mechanisms for scope management not unlike dependent type theories. If x
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appears in σ, the context Γ, x:τ, y:σ is not exchangeable with Γ, y:σ, x:τ . Simi-
larly, the judgment Γ, x:τ $ e2 : σ will not entail Γ $ letx = e1 in e2 : σ, as the
return type σ may contain open closures scoping over x, so we need to substitute
variables in types.

The main contribution of this paper is a type theory of open closure types
and the proof of its main properties. We start from the simply-typed lambda
calculus, and consider the simple intensional property of data-flow tracking, an-
notating each simply-typed lambda-calculus type with a single boolean vari-
able. This allows us to study the metatheory of open closure types in clean and
straightforward way. This is the first important step for using such types in more
sophisticated type systems for resource usage and termination.

Our type system for data-flow tracking captures higher-order data-flow infor-
mation. As a byproduct, we get our secondary contribution, a non-interference
property in the sense of information flow theory: high-level inputs do not influ-
ence the (low-level) results of computations.

To experiment with of our type system, we implemented a software prototype
in OCaml (see Section 5). A full version of this article, containing the full proofs
and additional details and discussion, is available online.1

Related Work. In our type system we maintain the invariant that open closure
types only refer to variables that are present in the current typing context. This
is a feature that distinguishes open closure types from existing formalisms for
closure types.

For example, while our function type [ΓΦ](x:σ1) → σ2 superficially resembles
a contextual arrow type [Ψ ](σ1 → σ2) of contextual type theory[12,14,16], we
are not aware of any actual connection in application or metatheory with these
systems. In particular, the variable in our captured context ΓΦ are bound oc-
currences of the ambient typing context, while the context Ψ of a contextual
type [Ψ ]T binds metavariables to be used to construct inhabitants. As such a
binding can make sense in any context, our substitution judgment has no coun-
terpart in contextual type theory, or other modal type theories for multi-stage
programming ([11,17]).

Having closure types carry a set of captured variables has been done in the
literature, as for example in Leroy [9], which use closure types to keep track of
of dangerous type variables that can not be generalized without breaking type
safety, or in the higher-order lifetime analysis of Hannan et al. [4], where variable
sets denote variables that must be kept in memory. However, these works have
no need to vary function types in different typing contexts and subtyping can be
defined using set inclusion, which makes the metatheory significantly simpler. On
the contrary, our scoping mechanism allows to study more complex properties,
such as value dependencies and non-interference.

The classical way to understand value capture in closures in a typed way
is through the typed closure conversion of Minamide et al. [10]. They use ex-
istential types to account for hidden data in function closures without losing

1 http://hal.inria.fr/INRIA-RRRT/hal-00851658

http://hal.inria.fr/INRIA-RRRT/hal-00851658
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compositionality, by abstracting over the difference between functions capturing
from different environments. Our system retains this compositionality, albeit in
a less apparent way: we get finer-grained information about the dependency of
a closure on the ambient typing environment. Typed closure conversion is still
possible, and could be typed in a more precise way, abstracting only over values
that are outside the lexical context.

Petricek et al. [13] study coeffects systems with judgments of the form CrΓ $
e : τ and function types Csσ → τ , where r and s are coeffect annotations over
an indexed comonad C. Their work is orthogonal to the present one. They study
comonadic semantics and algebraic structure of effect indices. These indices are
simply booleans in our work but we focus on the syntactic scoping rules that
arise from tracking each variable of the context separately.

The non-interference property that we prove is different from the usual treat-
ment in type systems for information flow like the SLam Calculus [5]. In SLam,
the information flow into closure is accounted for at abstraction time. In contrast,
we account for the information flow into the closure at application time.

2 A Type System for Open Closures

We define a type system for the simplest problem domain that exhibits a need
for open closure types. Our goal is to determine statically, for an open term e,
on which variables of the environment the value of e depends.

We are interested in weak reduction, and assume a call-by-value reduction
strategy. In this context, an abstraction λx.e is already a value, so reducing
it does not depend on the environment at all. More generally, for a term e
evaluating to a function (closure), we make a distinction between the part of the
environment the reduction of e depends on, and the part that will be used when
the resulting closure will be applied. For example, the term (y, λx.z) depends
on the variable y at evaluation time, but will not need the variable z until the
closure in the right pair component is applied.

This is where we need open closure types. Our function types are of the form
[ΓΦ](x:σφ) → τ , where the mapping Φ from variables to Booleans indicates
on which variables the evaluation depends at application time. The Boolean φ
indicates whether the argument x is used in the function body. We call Φ the
dependency annotation of Γ . Our previous example would for instance be typed
as follows.

y:σ1, z:τ0 $ (y, λx.z) : σ ∗ ([y:σ0, z:τ1](x:ρ0) → τ)

The typing expresses that the result of the computation depends on the variable
y but not on the variable z. Moreover, result of the function in the second
component of the pair depends on z but not on y.

In general, types are defined by the following grammar.

Types 6 σ, τ, ρ ::= types
| α atoms
| τ1 ∗ τ2 products
| [ΓΦ](x:σφ) → τ closures
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Scope-Context-Nil

∅ �

Scope-Context

Γ � σ
Γ, x:σ �

Scope-Atom

Γ �
Γ � α

Scope-Product

Γ � τ1 Γ � τ2
Γ � τ1 ∗ τ2

Scope-Closure

Γ0, Γ1 � Γ0 � σ Γ0, x:σ � τ
Γ0, Γ1 � [ΓΦ

0 ](x:σ
φ)→ τ

Fig. 1. Well-scoping of types and contexts

The closure type [ΓΦ](x:σφ) → τ binds the new argument variable x, but not
the variables occurring in Γ which are reference variables bound in the current
typing context. Such a type is well-scoped only when all the variables it closes
over are actually present in the current context. In particular, it has no meaning
in an empty context, unless Γ is itself empty.

We define well-scoping judgments on contexts (Γ $) and types (Γ $ σ). The
judgments are defined simultaneously in Figure 1 and refer to each another. They
use non-annotated contexts: the dependency annotations characterize data-flow
information of terms, and are not needed to state the well-formedness of static
types and contexts.

Notice that the closure contexts appearing in the return type of a closure,
τ in our rule Scope-Closure, may capture the variable x corresponding to the
function argument, which is why we chose the dependent-arrow–like notation
(x:σ) → τ rather than only σ → τ . There is no dependency of types on terms in
this system, this is only used for scope tracking.

Note that Γ $ σ implies Γ $ (as proved by direct induction until an atom or
a function closure is reached). Note also that a context type [Γ0](x:σ) → τ is
well-scoped in any larger environment Γ0, Γ1: the context information may only
mention variables existing in the typing context, but it need not mention all of
them. As a result, well-scoping is preserved by context extension: if Γ0 $ σ and
Γ0, Γ1 $, then Γ0, Γ1 $ σ.

A Term Language, and a Naive Attempt at a Type System. Our term
language, is the lambda calculus with pairs, let bindings and fixpoints. This
language is sufficient to discuss the most interesting problems that arise in an
application of closure types in a more realistic language.

Terms 6 t, u, e ::= terms
| x variables
| (e1, e2) pairs
| πi(e) projections (i ∈ {1, 2})
| λx.e lambda abstractions
| t u applications
| letx = e1 in e2 let declarations

For didactic purposes, we start with an intuitive type system presented in
Figure 2. The judgment ΓΦ $ e : σ means that the expression e has type σ, in
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Var

Γ, x:σ,Δ �
Γ 0, x:σ1,Δ0 � x : σ

Product

ΓΦ1 � e1 : τ1 ΓΦ2 � e2 : τ2
ΓΦ1+Φ2 � (e1, e2) : τ1 ∗ τ2

Proj

ΓΦ � e : τ1 ∗ τ2
ΓΦ � πi(e) : τi

Lam

ΓΦ, x:σφ � t : τ
Γ 0 � λx.t : [ΓΦ](x:σφ)→ τ

Let-Tmp

ΓΦdef � e1 : σ ΓΦbody , x:σφ � e2 : τ
Γ φ.Φdef+Φbody � let x = e1 in e2 : τ

App-Tmp

(Γ0, Γ1)
Φfun � t : [ΓΦclos

0 ](x:σφ)→ τ (Γ0, Γ1)
Φarg � u : σ

(Γ0, Γ1)
Φfun+Φclos+φ.Φarg � t u : τ

Fig. 2. Naive rules for the type system

the context Γ carrying the intensional information Φ. Context variable mapped
to 0 in Φ are not used during the reduction of e to a value. We will show that
the rules App-Tmp and Let-Tmp are not correct, and introduce a new judgment
to develop correct versions of the rules.

In a judgment Γ 0 $ λx.t : [ΓΦ](x:σ0) → τ , Γ is bound only in one place (the
context), and α-renaming any of its variable necessitates a mirroring change in
its right-hand-side occurrences (ΓΦ but also in σ and τ), while x is independently
bound in the term and in the type, so the aforementioned type is equivalent to
[ΓΦ](y:σ) → τ [y/x]. In particular, variables occurring in types do not reveal
implementation details of the underlying term.

The syntax φ.Φ used in the App-Tmp and Let-Tmp rules is a product, or
conjunction, of the single boolean dependency annotation φ, and of the vector
dependency annotation Φ. The sum Φ1 + Φ2 is the disjunction. In the Let-Tmp

rule for example, if the typing of e2 determines that the evaluation of e2 does not
depend on the definition x = e1 (φ is 0), then φ.Φdef will mark all the variables
used by e1 as not needed as well (all 0), and only the variables needed by e2 will
be marked in the result annotation φ.Φdef + Φbody.

In the scoping judgment Γ $ [ΓΦ](x:σ) → τ , the repetition of the judgment
Γ is redundant. We could simply write [Φ](x:σ) → τ ; – because in our simplified
setting the intensional information Φ can be easily separated from the rest of
the typing information, corresponding to simply-typed types. However, we found
out that such a reformulation made technical developments harder to follow; the
ΓΦ form allows one to keep track precisely of the domain of the dependency
annotation, and domain changes are precisely the difficult technical aspect of
open closure types. For a more detailed discussion of this design point, see the
full version of this article.

Maintaining Closure Contexts. As pointed out before, the rules App-Tmp

and Let-Tmp of the system above are wrong (hence the “temporary” name):
the left-hand-side of the rule App-Tmp assumes that the closure captures the
same environment Γ that it is computed in. This property is initially true in the
closure of the rule Lam, but is not preserved by Let-Tmp (for the body type) or
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Subst-Context-Nil

Γ, y:ρ, ∅ y\Ψ� Γ

Subst-Context

Γ, y:ρ,Δ � σ y\Ψ� Γ,Δ′ � τ

Γ, y:ρ,Δ, x:σ
y\Ψ� Γ,Δ′, x:τ

Subst-Atom

Γ, y:ρ,Δ
y\Ψ� Γ,Δ′

Γ, y:ρ,Δ � α y\Ψ� Γ,Δ′ � α

Subst-Product

Γ, y:ρ,Δ � σ1
y\Ψ� Γ,Δ′ � τ1 Γ, y:ρ,Δ � σ2

y\Ψ� Γ,Δ′ � τ2

Γ, y:ρ,Δ � σ1 ∗ σ2
y\Ψ� Γ,Δ′ � τ1 ∗ τ2

Subst-Closure-Notin

Γ0, Γ1, y:ρ,Δ
y\Ψ� Γ0, Γ1,Δ

′

Γ0, Γ1, y:ρ,Δ � [ΓΦ
0 ](x:σ

φ
1 )→ σ2

y\Ψ� Γ0, Γ1,Δ
′ � [ΓΦ

0 ](x:σ
φ
1 )→ σ2

Subst-Closure

Γ, y:ρ,Δ, Γ1
y\Ψ� Γ,Δ′, Γ ′

1

Γ, y:ρ,Δ � σ1
y\Ψ� Γ,Δ′ � σ1 Γ, y:ρ,Δ, x:σ1 � σ2

y\Ψ� Γ,Δ′, x:σ1 � τ2

Γ, y:ρ,Δ, Γ1 � [ΓΦ1 , y:ρχ,ΔΦ2 ](x:σφ
1 )→ σ2

y\Ψ� Γ,Δ′, Γ ′
1 � [ΓΦ1+χ.Ψ ,Δ′Φ2 ](x:σφ

1 )→ τ2

Fig. 3. Type substitution

App-Tmp (for the return type). This means that the intensional information in a
type may become stale, mentioning variables that have been removed from the
context. We will now fix the type system to never mention unbound variables.

We need a closure substitution mechanism to explain the closure type τf =
[ΓΦ, y:ρχ](x:σφ) → τψ of a closure f in the smaller environment Γ , given de-
pendency information for y in Γ . Assume for example that y was bound in a
let binding let y = e . . . and that the type τf leaves the scope of y. Then we
have to adapt the type rules to express the following. “If f depends on y (at
application time) then f depends on the variables of Γ that e depends on.”

We define in Figure 3 the judgment Γ, y:ρ,Δ $ σ
y\Ψ� Γ,Δ′ $ τ . Assuming

that the variable y in the context Γ, y:ρ,Δ was let-bound to an definition with
usage information ΓΨ , this judgment transforms any type σ in this context in a
type τ in a context Γ,Δ′ that does not mention y anymore. Note that Δ and Δ′

have the same domain, only their intensional information changed: any mention
of y in a closure type of Δ was removed in Δ′. Also note that Γ, y:ρ,Δ and Γ,Δ′,
or σ and τ , are not annotated with dependency annotations themselves: this is
only a scoping transformation that depends on the dependency annotations of
y in the closures of σ and Δ.

As for the scope-checking judgment, we simultaneously define the substitu-

tions on contexts themselves Γ, y:ρ,Δ
y\Ψ� Γ,Δ′. There are two rules for substi-

tuting a closure type. If the variable being substituted is not part of the closure
type context (rule Subst-Closure-Notin), this closure type is unchanged. Oth-
erwise (rule Subst-Closure) the substitution is performed in the closure type,
and the neededness annotation for y is reported to its definition context Γ0.



Tracking Data-Flow with Open Closure Types 717

The following lemma verifies that this substitution preserves well-scoping of
contexts and types.

Lemma 1 (Substitution and scoping). If Γ, y:ρ,Δ $ and Γ, y:ρ,Δ
y\Ψ�

Γ,Δ′ then Γ,Δ′ $. If Γ, y:ρ,Δ $ σ and Γ, y:ρ,Δ $ σ
y\Ψ� Γ,Δ′ $ τ then

Γ,Δ′ $ τ .

We can now give the correct rules for binders:

Let

ΓΦdef $ e1 : σ ΓΦbody , x:σφ $ e2 : τ Γ, x:σ $ τ
x\Φdef� Γ $ τ ′

Γφ.Φdef+Φbody $ letx = e1 in e2 : τ ′

App

(Γ0, Γ1)
Φfun $ t : [ΓΦclos

0 ](x:σφ) → τ

(Γ0, Γ1)
Φarg $ u : σ Γ0, Γ1, x:σ $ τ

x\Φarg� Γ0, Γ1 $ τ ′

(Γ0, Γ1)
Φfun+Φclos+φ.Φarg $ t u : τ ′

Lemma 2 (Typing respects scoping). If Γ $ t : σ holds, then Γ $ σ holds.

This lemma guarantees that we fixed the problem of stale intensional infor-
mation: types appearing in the typing judgment are always well-scoped.

It is handy to introduce a convenient derived notation ΓΦ $ τ
y\Ψ� Γ ′Φ

′ $ τ ′

that is defined below. This substitution relation does not only remove y from
the open closure types in Γ , it also updates the dependency annotation on Γ to
add the dependency Ψ , corresponding to all the variables that y depended on –
if it is itself marked as needed.

Γ, y:ρ,Δ $ τ
y\Ψ� Γ,Δ′ $ τ ′

ΓΦ1 , y:ρχ, ΔΦ2 $ τ
y\Ψ� ΓΦ1+χ.Ψ , Δ′Φ2 $ τ ′

3 A Big-Step Operational Semantics

In this section, we will define an operational semantics for our term language, and
use it to prove the soundness of the type system (Theorem 1). Our semantics is
equivalent to the usual call-by-value big-step reduction semantics for the lambda-
calculus in the sense that computation happens at the same time. There is
however a notable difference.

Function closures are not built in the same way as they are in classical big-step
semantics. Usually, we have a rule of the form V $ λx.t =⇒ (V, λx.t) where the
closure for λx.t is a pair of the value environment V (possibly restricted to its
subset appearing in t) and the function code. In contrast, we capture no values
at closure creation time in our semantics: V $ λx.t =⇒ (∅, λx.t). The captured
values will be added to the closure incrementally, during the reduction of binding
forms that introduced them in the context.
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Consider for example the following two derivations; one in the classic big-step
reduction, and the other in our alternative system.

Classic-Red-Let

x:v $ x
c

=⇒ v x:v, y:v $ λz.y
c

=⇒ ((x �→ v, y �→ v), λz.y)

x:v $ let y = x in λz.y
c

=⇒ ((x �→ v, y �→ v), λz.y)

Our-Red-Let

x:v $ x =⇒ v

x:v, y:v $ λz.y =⇒ ([x, y], ∅, λz.y) (∅, λz.y)
y\v� ([x], y �→ v, λz.y)

x:v $ let y = x in λz.y =⇒ ([x], y �→ v, λz.y)

Rather than capturing the whole environment in a closure, we store none at
all at the beginning (merely record their names), and add values incrementally,
just before they get popped from the environment. This is done by the value

substitution judgment w
x\v� w′ that we will define in this section. The reason for

this choice is that this closely corresponds to our typing rules, value substitution

being a runtime counterpart to substitution in types Γ $ σ
x\Φ� Γ ′ $ σ′; this

common structure is essential to prove of the type soundness (Theorem 1).
Note that derivations in this modified system and in the original one are

in one-to-one mapping. It should not be considered a new dynamic semantics,
rather a reformulation that is convenient for our proofs as it mirrors our static
judgment structure.

Values and Value Substitution. Values are defined as follows.

Val 6 v, w ::= values
| vα value of atomic type
| (v, w) value tuples
| ([xj ]j∈J , (xi �→ vi)i∈I , λx.t) function closures

The set of variables bound in a closure is split into an ordered mapping (xi �→
vi)i∈I for variables that have been substituted to their value, and a simple list
[xj ]j∈J of variables whose value has not yet been captured. They are both binding
occurrences of variables bound in t; α-renaming them is correct as long as t is
updated as well.

To formulate our type soundness result, we define a typing judgment on values
Γ $ v : σ in Figure 4. An intuition for the rule Value-Closure is the following.
Internally, the term t has a dependency ΓΦ on the ambient context, but also
dependencies (τψi

i ) on the captured variables. But externally, the type may not

mention the captured variables, so it reports a different dependency ΓΦ′
that

corresponds to the internal dependency ΓΦ, combined with the dependencies
(Ψi) of the captured values. Both families (ψi)i∈I and (Ψi)i∈I are existentially
quantified in this rule.

In the judgment rule, the notation (xj : τj)j<i is meant to define the envi-
ronment of each (xi : τi) as ΓΦ, plus all the (xj : τj) that come before xi in the
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Value-Atom

Γ �
Γ � vα : α

Value-Product

Γ � v1 : τ1 Γ � v2 : τ2
Γ � (v1, v2) : τ1 ∗ τ2

Value-Closure

Γ, Γ1 � ∀i ∈ I, Γ, (xj :τj)j<i � vi : τi
ΓΦ, (xi:τ

ψi
i )i∈I , x:σ

φ � t : τ ΓΦ, (xi:τ
ψi
i )i∈I , x:σ

φ � τ (xi)\(Ψi)� ΓΦ′
, x:σφ � τ ′

Γ, Γ1 � (domΓ, (xi �→ vi)i∈I , λx.t) : [Γ
Φ′
](x:σφ)→ τ ′

Fig. 4. Value typing

Subst-Value-Atom

vα
y\v� vα

Subst-Value-Product

w1
y\v� w′

1 w2
y\v� w′

2

(w1, w2)
y\v� (w′

1, w
′
2)

Subst-Value-Closure

([xj1 , . . . , xjn , y], (xi �→ wi)i∈I , t)
y\v� ([xj1 , . . . , xjn ], (y �→ v)(xi �→ wi)i, t)

Subst-Value-Closure-Notin

y /∈ (xj)j∈J

([xj ]j∈J , (xi �→ wi)i∈I , t)
y\v� ([xj ]j∈J , (xi �→ wi)i∈I , t)

Fig. 5. Value substitution

typing judgment ΓΦ, (xi : τi)i∈I , x : σφ $ t. The notation . . .
(xi)\(Ψi)� . . . denotes

the sequence of substitutions for all (xi, Ψi), with the rightmost variable (intro-
duced last) substituted first: in our dynamic semantics, values are captured by
the closure in the LIFO order in which their binding variables enter and leave
the lexical scope.

Substituting Values. The value substitution judgment, define in Figure 5, is
an operational counterpart to the substitution of variables in closures types.

Lemma 3 (Value substitution preserves typing). If (Γ $ v : ρ), (Γ, y:ρ $
w : σ), (Γ, y:ρ $ σ

y\Ψ� Γ $ τ) and (w
y\v� w′) hold, then (Γ $ w′ : τ) holds.

The Big-Step Reduction Relation. We are now equipped to define in Fig-
ure 6 the big-step reduction relation on well-typed terms V $ e =⇒ v, where
V is a mapping from the variables to values that is assumed to contain at least

all the free variables of e. The notation w
V2� w′ denotes the sequence of sub-

stitutions for each (variable, value) pair in V2, from the last one introduced in
the context to the first; the intermediate values are unnamed and existentially
quantified.
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Red-Var

V � x =⇒ V (x)
Red-Lam

V � λx.t =⇒ (domV, ∅, λx.t)

Red-Pair

V � e1 =⇒ v1 V � e2 =⇒ v2

V � (e1, e2) =⇒ (v1, v2)

Red-Proj

V � e =⇒ (v1, v2)

V � πi(e) =⇒ vi

Red-Let

V � e1 =⇒ v1 V, (x �→ v1) � e2 =⇒ v2 v2
x\v1� v′2

V � letx = e1 in e2 =⇒ v′2

Red-App

V, V1 � t =⇒ (domV, V2, λy.t
′)

V, V1 � u =⇒ varg V, V1, V2, y �→ varg � t′ =⇒ w w
y\varg� w′ V2� w′′

V, V1 � t u =⇒ w′′

Fig. 6. Big-step reduction rules

Classic-Red-Lam

W � λx.t c
=⇒ (W,λx.t)

Classic-Red-Let

W � e1 c
=⇒ w1 W,x �→ w1 � e2 c

=⇒ w2

W � let x = e1 in e2
c
=⇒ w2

Classic-Red-App

W � t c
=⇒ (W ′, λy.t′) W � u c

=⇒ warg W ′, y �→ warg � t′ c
=⇒ w

W � t u c
=⇒ w

Fig. 7. Classic big-step reduction rules

We write V : Γ $ if the context valuation V , mapping free variables to values,
is well-typed according to the context Γ . The definition of this judgment is given
in the full version.

Theorem 1 (Type soundness). If ΓΦ $ t : σ, V : Γ $ and V $ t =⇒ v then
Γ $ v : σ.

Finally, we recall the usual big-step semantics for the call-by-value calculus
with environments, in Figure 7, and state its equivalence with our utilitarian
semantics. Due to space restriction we will only mention the rules that differ,
and elide the equivalence proof, but the long version contains all the details.

There is a close correspondence between judgments of both semantics, but as
the value differ slightly, in the general cases the value bindings of the environment
will also differ. We state the theorem only for closed terms, but the proof will
proceed by induction on a stronger induction hypothesis using an equivalence
between non-empty contexts.

Theorem 2 (Semantic equivalence). Our reduction relation is equivalent

with the classic one on closed terms: ∅ $ t =⇒ v holds if and only if ∅ $ t
c

=⇒ v
also holds.

To formulate our induction hypothesis, we define the equivalence judgment

V $ v = W
c

$ w; on each side of the equal sign there is a context and a value,
the right-hand side being considered in the classical semantics.
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∅ � = ∅
c

�
V � =W

c

� V � v =W
c

� w

V, x �→ v � =W,x �→ w
c

�

V � =W
c

�

V � vα =W
c

� vα

V � v1 = W
c

� w1 V � v2 =W
c

� w2

V � (v1, v2) =W
c

� (w1, w2)

V � =W
c

� V, xi �→ vi � =W ′ c

�

V � ((xi �→ vi)i∈I , λx.t) =W
c

� (W ′, λx.t)

Fig. 8. Equivalence of semantic judgements

The stronger version of the theorem becomes the following: if V $ = W
c

$
and V $ t =⇒ v and W $ t

c
=⇒ w, then V $ v = W

c

$ w.

4 Dependency Information as Non-interference

We can formulate our dependency information as a non-interference property.
Two valuations V and V ′ are Φ-equivalent, noted V =Φ V ′, if they agree on
all variables on which they depend according to Φ. We say that e respects non-
interference for Φ when, whenever V $ e =⇒ v holds, then for any V ′ such
that V =Φ V ′ we have that V ′ $ e =⇒ v also holds. This corresponds to the
information-flow security idea that variables marked 1 are low-security, while
variables marked 0 are high-security and should not influence the output result.

This non-interference statement requires that the two evaluations of e return
the same value v. This raises the question of what is the right notion of equality
on values. Values of atomic types have a well-defined equality, but picking the
right notion of equality for function types is more difficult. While we can state a
non-interference result on atomic values only, the inductive subcases would need
to handle higher-order cases as well.

Syntactic equality (even modulo α-equivalence) is not the right notion of
equality for closure values. Consider the following example: x:τ0 $ let y =
x in λz.z : [x:τ0](z : σ1) → σ. This term contains an occurrence of the variable
x, but its result does not depend on it. However, evaluating it under two different
contexts x:v and x:v′, with v 
= v′, returns distinct closures: (x �→ v, λz.z) on
one hand, and (x �→ v′, λz.z) on the other. These closures are not structurally
equal, but their difference is not essential since they are indistinguishable in any
context. Logical relations are the common technique to ignore those internal
differences and get a more observational equality on functional values. They
involve, however, a fair amount of metatheoretical effort that we would like to
avoid.

Consider a different example: x:τ0 $ λy.x : [x:τ1](y:σ0) → τ . Again, we could
use two contexts x:v and x:v′ with v 
= v′, and we would get as a result two
closures: x:v $ λy.x =⇒ (x �→ v, λy.x) and x:v′ $ λy.x =⇒ (x �→ v′, λy.x).
Interestingly, these two closures are not equivalent under all contexts: any con-
text applying the function will be able to observe the different results. However,
our notion of interference requires that they can be considered equal. This is
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Equiv-Atom

Γ � vα =Φ0 vα : α

Equiv-Pair

Γ � v1 =Φ0 v
′
1 : σ1 Γ � v2 =Φ0 v

′
2 : σ2

Γ � (v1, v2) =Φ0 (v
′
1, v

′
2) : σ1 ∗ σ2

Equiv-Closure

∀i ∈ I, Γ, (xj :τj)j<i � vi : τi ΓΦ, (xi:τ
ψi
i )i∈I , x:σ

φ � t : τ
ΓΦ, (xi:τ

ψi
i )i∈I , x:σ

φ � τ (xi)\(Ψi)� ΓΦ′
, x:σφ � τ ′ ∀i ∈ I, Ψi ⊆ Φ0 =⇒ vi =Φ0 v

′
i

Γ � ((xi �→ vi)i∈I , λy.t) =Φ0 ((xi �→ v′i)i∈I , λy.t) : [Γ
Φ′
](x:σ)→ τ ′

Fig. 9. Value equivalence

motivated by real-world programming languages that only output a pointer to
a closure in a program that returns a function.

While the aforementioned closures are not equal in any context, they are in
fact equivalent from the point of view of the particular dependency annotation for
which we study non-interference, namely x:τ0. To observe the difference between
those closures, we would need to apply the closure of type [x:τ1](y : σ) → τ , so
would be in the different context x:τ1.

This insight leads us to our formulation of value equivalence in Figure 9.
Instead of being as modular and general as a logical-relation definition, we fix
a global dependency Φ0 that restricts which terms can be used to differentiate
values.

Our notion of value equivalence, Γ $ v =Φ0 v′ : σ is typed and includes
structural equality. In the rule Equiv-Closure, we check that the two closures
values are well-typed, and only compare captured values whose dependencies
are included in those of the global context Φ0, as we know that the others will
not be used. This equality is tailored to the need of the non-interference result,
which only compares values resulting from the evaluation of the same subterm
– in distinct contexts.

Theorem 3 (Non-interference). If ΓΦ0 $ e : σ holds, then for any contexts
V, V ′ such that V =Φ0 V ′ and values v, v′ such that V $ e =⇒ v and V ′ $
e =⇒ v′, we have Γ $ v =Φ0 v′ : σ. In particular, if σ is an atomic type, then
v = v′ holds.

5 Prototype Implementation

To experiment with our type system, we implemented a software prototype in
OCaml. At around one thousand lines, the implementation mainly contains two
parts.

1. For each judgement in this paper, a definition of corresponding set of infer-
ence rules along with functions for building and checking derivations.

2. A (rudimentary) command-line interface that is based on a lexer, a parser,
and a pretty-printer for the expressions, types, judgments and derivations of
our system.
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For the scope checking judgments for context and types, the implementation
checks well-scoping of the given contexts and types. It either builds a derivation
using the well-scoping rules or fails to do so because of ill-scoped input.

For the typing judgment, the implementation performs some inference. Given
a type context Γ and an expression e, it returns Φ, σ, and a derivation ΓΦ $ e : σ
if such a derivation exists. Otherwise it fails. The substitution and reduction
judgments are deterministic and computational in nature. Our implementation
takes the left-hand side a judgement (with additional parameters) and computes
the right-hand-side of the judgment along with a derivation.

Below is an example of interaction with the prototype interface:

% make

% ./closures.byte -str "let y = (y1, y2) in (y, \(x:\sigma) z)"

Parsed expression: let y = (y1, y2) in (y, λ(x:σ) z)

The variables (y1, y2, z) were unbound; we add them to the default

environment with dummy types (ty_y1, ty_y2, ty_z) and values

(val_y1, val_y2, val_z).

Inferred typing:

y1:ty_y11,y2:ty_y21,z:ty_z0 �
let y = (y1, y2) in (y, λ(x:σ) z)

: ((ty_y1 * ty_y2) * [y1:ty_y10,y2:ty_y20,z:ty_z1](x:σ0) → ty_z)

Result value:

((val_y1, val_y2), ([y1,y2,z], ((y �→ (val_y1, val_y2))), λ(x) z))

In this example, adapted from the starting example of the article, y:σ1, z:τ0 $
(y, λx.z), one can observe that the value z is marked as non-needed by the
global value judgment, but needed in the type of the closure λx.z. Besides, the
computed value closure has captured the local variable y, but still references the
variables y1, y2, and z of the outer context.

The prototype can also produce ASCII rendering of the typing and reduction
derivations, when passed --typing-derivation or --reduction-derivation.
This can be useful in particular in the case of typing or reduction errors, as a
way to locate the erroneous sub-derivation.

The complete source code of the prototype is available at the following URL:
http://gallium.inria.fr/~scherer/research/open_closure_types

6 Discussion

Before we conclude, we highlight three technical points that deserve a more
in-depth discussion and that are helpful link our work to existing and future
work.

Typed Closure Conversion. It is interesting to relate our open closure types
and typed closure conversion of Minamide et al. [10]. In the classical semantics,
a λ-term Γ $ λx.e : σ1 → σ2 evaluates under the value binding W to a pair

http://gallium.inria.fr/~scherer/research/open_closure_types
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(W,λx.e), which can be given the type (Γ ∗ (Γ → σ1 → σ2)) (writing Γ for the
product of all types in the context). To combine closures of the same observ-
able type that capture different environments, one needs to abstract away the
environment type by using the existential type ∃ρ.(ρ ∗ (ρ → σ → τ)).

In our specific semantics, a closure that was originally defined in the environ-
ment Γ,Δ but is then seen in the environment Γ , only captures the values of
variables in Δ. Typed closure conversion is still possible, but we would need to
give it the less abstract type ∀Γ.∃ρ(ρ ∗ (Γ → ρ → σ1 → σ2)). This reflects how
our open closure types allow closure types to contain static information about
variables of the current lexical context, while still allowing free composition of
closures that were initially defined in distinct environments. Our closure types
evolve from a very open type, at the closure construction point, into the usual
“closure conversion” type that is completely abstract in captured values, in the
empty environment.

Subtyping and Conservativity. As mentioned, our type system is not con-
servative over the simply-typed lambda-calculus because of the restriction on
substitution of function types (domain types must be preserved by substitu-
tion). This is not a surprise as our types provide more fine-grained information
without giving a way to forget some of this more precise information. Regaining
conservativity is very simple. One needs a notion of subtyping allowing to hide
variables present in closure types (eg., [Γ,Δ](x : σ1) → σ2 ≤ [Γ ](x : σ1) → σ2

whenever σ1, σ2 are well-scoped under Γ alone). Systematically coercing all func-
tions into closures capturing the empty environment then gives us exactly the
simply-typed lambda-calculus.

Polymorphism. We feel the two previous points could easily be formally in-
tegrated in our work. A more important difference between our prototypical
system and a realistic framework for program analysis is the lack of polymor-
phism. This could require significantly more work and is left for future work.
We conjecture that adding abstraction on type variables (and their annotation
φ) is direct, but a more interesting question is the abstraction over annotated
contexts ΓΦ. For example, we could want to write the following, where κ is a
formal context variable:

$ λf.λx.λy.fyx : ∀καβγ.([κ](x:α) → [κ](y:β) → γ)→ ([κ](y:β) → [κ](x:α) → γ)

Polymorphism seems to allow greater flexibility in the analysis of functions tak-
ing functions as parameters. This use of polymorphism is related to the “resource
polymorphism” of [7], which serves the same purpose of leaving freedom to input
functions. Open closure types on the other hand, are motivated by expressions
that return function closures; the flip side of the higher-order coin.

7 Conclusion

We have introduced open closure types and their type theory. The technical
novelty of the type system is the ability to track intensional properties of function
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application in function closures types. To maintain this information,we have to
update function types when they escape to a smaller context. This update is
performed by a novel non-trivial substitution operation. We have proved the
soundness of this substitution and the type theory for a simply-typed lambda
calculus with pairs and let bindings.

To demonstrate how our open closure types can be used in program verifica-
tion we have applied this technique to track data-flow information and to ensure
non-interference in the sense of information-flow theory. We envision open clo-
sure types to be applied in the context of type systems for strong intensional
properties of higher-order programs, and this simple system to serve as a guide-
line for more advanced applications.

We already have preliminary results from an application of open closure types
in amortized resource analysis [7,6]. Using them, we were for the first time able to
express a linear resource bound for the curried append function (see Section 1).
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Abstract. We present the first implementation of Newton’s method
for solving systems of equations over ω-continuous semirings (based on
[5,11]). For instance, such equation systems arise naturally in the analysis
of interprocedural programs or the provenance computation for Datalog.
Our implementation provides an attractive alternative for computing
their exact least solution in some cases where the ascending chain con-
dition is not met and hence, standard fixed-point iteration needs to be
combined with some over-approximation (e.g., widening techniques) to
terminate. We present a generic C++ library along with the main algo-
rithms and analyze their complexity. Furthermore, we describe our im-
plementation of the counting semiring based on semilinear sets. Finally,
we discuss motivating examples as well as performance benchmarks.

1 Introduction

Given a system composed of several components (e.g. the procedures of a re-
cursive program), the interaction of the components can be naturally described
by a system of equations where for every component we have a variable Xi and
an equation Xi = Fi(X) which is formulated over some algebraic structure.
The behavior of the complete system, or some particular aspect of it, can then
be obtained as a solution of this system of equations. Especially the problem of
finding the least or the greatest solution arises often in applications like program
analysis, formal languages, or database theory [5,7,11]

When the algebraic structure exhibits a complete partial order (with least
element 0), and F is continuous, then fixed-point iteration yields a monotonically
increasing sequence (ω-chain) 0, F (0), F (F (0)), . . . which converges to the least
solution. However, in order to guarantee termination in general, one either needs
to require that every ω-chain is eventually constant (ascending-chain condition)
or resort to over-approximation e.g. by using a widening operator.

� This work was partially funded by the DFG project “Polynomial Systems on
Semirings: Foundations, Algorithms, Applications” and MT-LAB (http://www.mt-
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Recently, Newton’s method – the standard method to approximate the roots
of nonlinear functions over the reals – was generalized to systems of equations
over so called ω-continuous semirings (see e.g. [5]). In this particular setting it
was shown that (1) Newton’s method starting from 0 always converges to the
least solution (in contrast to the reals where it is usually non-trivial to find a
suitable initial approximation), (2) it converges at least as fast as the standard
fixed-point iteration, and (3) it converges within a finite number of iterations for
several interesting instances of ω-continuous semirings, e.g., commutative and
idempotent semirings, for which fixed-point iteration does not reach the fixed-
point in a finite number of steps. Thus, Newton’s method allows to compute
precise solutions of equation systems over many domains where the standard
fixed-point iteration does not terminate.

Contributions, Features. We present here the first implementation of Newton’s
method for ω-continuous semirings; it is freely available from https://github.

com/mschlund/newton. Our library is implemented in C++ and leverages tem-
plates to offer a very flexible interface to instantiate Newton’s method for a con-
crete semiring. To this end, all algorithms and data structures (e.g. the generic
Newton solver, polynomials, matrices) are parametrized, for instance by the
semiring (in case of polynomials) or the method to solve linear equations (for
the generic Newton solver). Hence, the library can be easily extended (without
changing the main algorithms) by user-defined semirings, linear solvers, etc.—of
course, it also features a set of predefined ones and some generic constructions
like product and matrix semirings to build complex semirings from simpler ones.
To handle systems efficiently that are very large but sparse, our implementation
offers the option to preprocess systems by decomposing them into strongly con-
nected components (cf. [6,5]). The library can be accessed by its API, but also
includes a stand-alone solver together with a parser for equations over a number
of predefined semirings (e.g. the counting semiring, non-negative reals, commu-
tative regular expressions).

2 Preliminaries

We briefly recall some facts on semirings, for details see e.g. [3]. A semiring
〈S,+, ·, 0, 1〉 consists of a commutative, additively written monoid 〈S,+, 0〉 and
a (not necessarily commutative) monoid 〈S, ·, 1〉 written multiplicatively where
multiplication distributes over addition from both sides, and for all a ∈ S we have
0 ·a = a ·0 = 0. The semiring is commutative resp. idempotent if multiplication is
commutative (i.e. a ·b = b ·a) resp. addition is idempotent (i.e. a+a = a). In the
following we will only consider ω-continuous semirings: these come equipped with
a complete partial order " with 0 the least element, and both multiplication and
addition are continuous in both arguments. Further, the sum of any countable
sequence is well-defined and behaves as absolutely convergent series do over the
reals. In particular, the Kleene star is defined by a∗ :=

∑
i∈N ai.

https://github.com/mschlund/newton
https://github.com/mschlund/newton
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An algebraic system X = F (X) over a semiring 〈S,+, ·, 0, 1〉 is a system of
equations where the right-hand sides Fi are polynomials, i.e. finite terms con-
structed from +, ·, the semiring elements and the variables. Let n denote the
number of variables occurring in a given algebraic system. Then F induces a
continuous map over Sn, and the least solution of X = F (X) is the least fixed-
point μF of this map which is the limit of the sequence obtained by standard
fixed-point iteration. As shown in [5], μF is also the limit of the sequence ν(k)

defined by

ν(k+1) = ν(k) + Δ(k) with Δ(k) := JF |∗ν(k) · δ(k) and ν(0) := 0 (1)

where JF denotes the Jacobian of F (suitably generalized to the setting of semi-
rings) and δ(k) denotes any element satisfying ν(k) + δ(k) = F (ν(k)). This itera-
tion scheme is the generalization 1 of Newton’s method to algebraic systems over
ω-continuous semirings, and it usually converges much faster to μF then the
standard fixed-point iteration. In the next section, we present the implementa-
tion of this definition, i.e. how to compute δ(k) and Δ(k).

3 Algorithms and Data Structures

Once the semiring is fixed the central computational problems for implement-
ing Newton’s method (Eq. 1) are (1) the computation of δ(k), (2) the efficient
computation of the Kleene star of the Jacobian JF |ν(k) based on the Kleene star
provided by the underlying semiring, and (3) the efficient representation of the
semiring and its elements. We will discuss (1) and (2) in general in the following.
As (3) depends on the actual semiring, we will discuss these topics for the special
case of the counting semiring; we deem this semiring particularly interesting as
Newton’s method reaches μF within a finite number of steps.

3.1 Computing δ(k)

Recently, it was shown that δ(k) is computable for general (also non-commutative)
semirings since it corresponds to one part of an unfolding of the equation system
[11]. In the special case of idempotent semirings, one can set δ(k) := F (0) in ev-
ery iteration (and even simplify the whole definition to ν(k+1) = JF |∗ν(k)F (ν(0)))
as shown in [4]. If the semiring is commutative we can collect common terms and
express the j-th component of δ(k) succinctly using higher-order derivatives:

δ
(k)
j =

∑
‖i‖1≥2

1

i!

(
∂

∂X i
Fj

) ∣∣∣
ν(k−1)

·X i
∣∣
Δ(k−1) .

Note that i ∈ Nn is a multi-index, so we sum over all derivatives of at least second
order evaluated at the previous Newton approximation. The crucial point when
implementing this equation is to avoid generating unnecessary multi-indices i

1 Over R≥0 it coincides with the standard definition of Newton’s method.
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(those for which the derivative will be zero anyways) like a naive implementation
which generates (deg(Fj))

n many vectors. Note that the derivative is a linear

operator, so we only need to focus on the case where Fj = aXd1
1 · · ·Xdn

n is a
monomial of degree D =

∑
k dk. Any element from the set {(i1, . . . , in) ∈ Nn :

∀kik ≤ dk ∧ 2 ≤
∑

k ik ≤ D} constitutes a valid multi-index. This set contains

less than
∏

k(dk+1) ≤
(
1 + D

n

)n ≤ eD elements and can be enumerated without
repetition leading to an implementation in ≤ |Mj | · eD many steps where Mj

is the set of monomials of Fj .

3.2 Solving Linear Equation Systems

We have implemented two main variants of the Kleene star computation: one
is the well-known Floyd-Warshall algorithm [2] and another one is a recursive
divide-and-conquer algorithm [10,1]. This algorithm can be seen as an imple-
mentation of a star identity from [3]. We take a subdivision of our input matrix
M, and compute M∗ recursively:

M =

[
A B
C D

]
M∗ =

[
F αG∗

G∗β G∗

]
with

α = A∗B
β = CA∗

G = D+Cα
F = αG∗β +A∗

.

c a b d

∗

·

·

+

∗

·

Fig. 1. Succinctly repre-
senting a∗b(ca∗b + d)∗by
sharing subexpressions

Both algorithms need Θ(n3) semiring operations
(which is optimal for general semirings if only + and ·
are allowed [8]), but create slightly different semiring
expressions during computation and thus the optimal
choice between them depends on the semiring in ques-
tion.

We also included the option to solve the system
only once symbolically and then in each iteration sub-
stitute the values ν(k−1) into this symbolic solution.
Symbolic solving can be understood as interpreting
the linear system over the free semiring and comput-
ing the Kleene star there. Of course, this does not
change the asymptotic complexity of the procedure,
but allows us to detect common subexpressions (see
Fig. 1 for an illustration) and thus greatly reduces the
number of semiring operations required to compute

the solution. Sharing can reduce this number by 70–90% which is significant
for semirings where each operation is expensive, e.g., for the counting semiring
presented in Sec. 3.3.

3.3 Implementation of the Counting Semiring

The counting semiring C =
〈
2|Σ|,∪, ·, ∅, {0}

〉
, consisting of the Parikh images

of the formal languages over Σ, is a prime example of an ω-continuous semi-
ring which admits infinite ascending chains. It is known that Newton’s method
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reaches μF on this semiring in at most n steps and that all ν(i) are rational
[4]. Thus, it suffices to give effective definitions of the operations on the rational
subsets Crat. Our implementation follows these definitions closely.

Operations. A subset L ⊆ Nk is called linear, if L = v0 + Nv1 + · · · + Nvn for
vi ∈ Nk. A set S is called semilinear if it is a finite union of linear sets (i.e. a
finite sets of linear sets in our implementation). Let us denote the semilinear sets
of Nk by S. We represent linear sets L as pairs (v0, G) with v0 the offset and
G := {v1, . . . ,vn} the generators of L.

Crat is the (commutative, idempotent) semiring Crat := 〈S,∪, ·, ∅, {0}〉. Mul-
tiplication is defined by S1 · S2 := {L1 · L2 | L1 ∈ S1, L2 ∈ S2} where
(v,G) · (w,H) := (v + w,G ∪ H) for two linear sets. The Kleene star over
Crat can be computed inductively by: S∗ := if S = ∅ then {0} else L∗ · (S \
{L})∗ (where L ∈ S) having the star of a linear set L = (v, G) defined by
(v, G)∗ = {0} ∪ (v, {v} ∪ G). It should be clear that the space complexity of
the Kleene star for Crat is exponential. All these definitions can be regarded
as implementations of well-known identities that hold over any commutative,
idempotent semiring (cf. [3])

Optimizations. Due to the complexity of · and (−)
∗
a practical implementation

of semilinear sets is challenging and usually requires exponential space (e.g. in
the number of Newton steps). Since explicit representations of the Parikh im-
age of a CFG can be exponential in the size of the grammar, some exponential
blowup is essentially unavoidable (cf. [9] for a detailed analysis). However, the
representation of the Newton approximations exhibits a lot of redundancy, e.g.,
often linear sets subsume each other and generators can be linearly combined
(with coefficients in N) from others. Therefore, we implemented several opti-
mizations: We use extensive sharing and store only one copy of each vector and
linear set in memory. Furthermore, we try to determine whether a generator can
be combined from other generators, and similarly try to simplify the linear sets.
Despite the fact that the latter two “simplification” steps require to solve an
NP-complete problem (essentially subset-sum [2]), our implementation based on
memoization performs very well since the vectors usually contain small numbers.

These simplifications are necessary to get concise solutions for most equation
systems and their impact is illustrated in Table 1 in Sec. 4.

Approximations. Finally, we have developed two approaches to over-approximate
semilinear sets. These significantly improve the performance of the semilinear
sets and still yield valuable information in many cases. For a simple example,
both preserve finiteness and emptiness.

One of the ideas is to to “collapse” a semilinear set into a pair two sets — one
of offsets and the other one of generators. We call this structure a multilinear
set. The intuition behind it is that we can choose any of the offsets and then
use the generators as in the case of linear sets. This approximation is precise
if the generator sets attached at different offsets are the same. Otherwise this
approximation still keeps “asymptotic upper/lower” bounds on the relationship
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of different components (i.e. when the offsets are negligible). Consider a semilin-
ear set consisting of two linear ones: (v1, {v2}) and (v′1, {v′2}), the corresponding
abstraction would be ({v1, v′1}, {v2, v′2}). Clearly (unless v2 = v′2) we add some
“spurious” points by additionally admitting, e.g., v1 + Nv′2.

Another idea is to divide every generator v by the greatest common divisor
of its elements to obtain a (shorter) vector ṽ. For a generator v the set Nv ⊆
Nk describes a one dimensional discrete “line with gaps”. Our approximation
corresponds to filling these gaps with more integer points but does not change
the direction of the generators, i.e. Nv ⊆ Nṽ ⊆ Qv ∩ Nk.

4 Experiments

One of the potential applications for counting analyses is to analyze the use of
certain resources in a program. For instance, a reentrant lock should be released
the same number of times that it has been acquired. Below is a simple example
of a recursive program that will obey these rules.

proc AcquireRelease
Lock ! ( ) ;
i f
: : t rue => AcquireRelease ( )
: : t rue => sk ip
f i ;
Re lease ( )

end

proc Release
i f
: : t rue => Unlock ! ( )
: : t rue => Release ( )
f i

end

proc main
AcquireRelease ( )

end

However, it is using the stack to ensure that it acquires and releases the lock the
same number of times. Even though the stack is unbounded, our solver can verify
that — the result of counting the Lock and Unlock actions is: {(〈1, 1〉, {〈1, 1〉})}.
In other words, the behavior is characterized by a linear set with offset 〈1, 1〉
(there is at least one Lock and one Unlock action) and generator 〈1, 1〉 (the
number of those actions can be arbitrarily large, but equal in number).

Next we show the behavior of our implementation on two sets of examples
over different semirings. We compiled the tool using gcc 4.7 with optimizations
(-O2) and ran it on a machine with an Intel 2.7 GHz CPU and 8 GB RAM.

For the first benchmark we computed the Parikh images of all 1,932 gram-
mars provided with the tool cfg-analyzer from http://www2.tcs.ifi.lmu.de/~

mlange/cfganalyzer/. We simply interpret the grammars as equation systems
over the counting semiring and solve them. The grammars are quite simple—at
most three terminal, and less than ten nonterminal symbols. We used a timeout
of 15 seconds, but for most examples computation took only a few milliseconds
(see Tab. 1). In all but the timeout-cases, memory usage was negligible (less
than 1MB). Since the Parikh image can be viewed as an overapproximation,
this could be used as an (incomplete) method to check for non-equivalence of
context-free grammars in some cases.

http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
http://www2.tcs.ifi.lmu.de/~mlange/cfganalyzer/
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Table 1. Parikh image computation for the cfg-analyzer benchmarks; Number of in-
stances solved in the respective times for semi- resp. multilinear sets with and without
the optimizations from Sec.3.3.

> 15s (timeout) (0.01s, 5s) ≤ 0.01s

Exact

{
sl-sets, w/o simp 55 35 1842

sl-sets, simp 0 30 1902

Approx.

{
ml-sets, w/o simp 2 0 1930

ml-sets, simp 0 0 1932
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Fig. 2. Approximating the solution (doing 10 Newton steps) of n quadratic equations
over R≥0 with ε

(
n
2

)
monomials in each equation. Left: Average solving time (taken over

5 runs) in milliseconds. Right: Numbers from the left divided by n3.

The second benchmark studies a problem that is important in natural lan-
guage processing and the study of branching processes. The task is to compute
the extinction probabilities for stochastic context-free grammars, i.e. the proba-
bility for each non-terminal to derive the empty word [6]. To solve this problem
we just have to change the semiring in our implementation. This setting also
allows us to demonstrate the scalability of our generic algorithms and to show
that our implementation faithfully implements all algorithms with a running
time that matches the theoretical analysis. To this end, we randomly generated
quadratic equations over [0, 1] and record the running time needed to solve the
equations. 2 As we are only interested how the performance varies with the size
of the system we fixed the number of Newton iterations to 10. Each equation has
ε
(
n
2

)
monomials and we vary the “density” ε from 0.1 to 0.5—note that these

systems are rather dense and large (e.g. the textual description of the system
with 100 variables and density 0.5 needs 7.6 MB). For these systems we expect
a cubic runtime which is well supported by the data (cf. Fig. 2).

2 These benchmarks are available at https://github.com/mschlund/newton/tree/

master/c/test/grammars/float-random .

https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random
https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random
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5 Conclusions and Future Work

In this paper we have presented the first implementation of the Newton’s method
generalized to ω-continuous semirings [5]. We have briefly described the main
algorithms behind our library as well as the implementation of the counting
semiring based on semilinear sets. One of our goals was to make the library
generic and flexible—new semirings can be defined and used without changing
the main algorithms. Furthermore, we have implemented and discussed various
optimizations such as common subexpression elimination during Kleene star
computation or simplification of semilinear sets. We have provided motivating
applications and discussed initial benchmarks of our library.

Concerning future work, computing the Kleene star for matrices is a problem
well suited for parallelization [1] and a generic parallel implementation for general
semirings would be useful but does not exist yet to the best of our knowledge.
Furthermore, there are well-known symbolic representations of semilinear sets
described in the literature, e.g., NDDs or Presburger formulae which we plan to
integrate into our library. The main challenge there is to compute the Kleene star
efficiently which has not yet been addressed for these representations. Finally,
we plan on using our library to solve more involved program analysis problems
like pointer may-alias analysis.

Acknowledgments. We would like to thank Michael Kerscher for his help with
the implementation and Javier Esparza for helpful comments and suggestions.
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Abstract. E is a theorem prover for full first-order logic with equal-
ity. It reduces first-order problems to clause normal form and employs
a saturation algorithm based on the equational superposition calculus.
E is built on shared terms with cached rewriting, and employs several
innovations for efficient clause indexing. Major strengths of the system
are automatic problem analysis and highly flexible search heuristics. The
prover can provide verifiable proof objects and answer substitutions with
very little overhead. E performs well, solving more than 69% of TPTP-
5.4.0 FOF and CNF problems in automatic mode.

1 Introduction

E is a theorem prover for full first-order logic with equality, built around a fully
equational implementation of the superposition calculus. For the last 12 years
the prover has been one of the major participants at the CADE ATP System
Competition in the MIX, CNF, FOF, UEQ and LTB categories, usually finishing
among the top systems in all these categories. E is available as Free Software
under the GNU GPL. It is implemented in C, widely portable, and has been
used, in whole or part, as a component in many other systems.

Fig. 1 shows the high-level functional decomposition of the theorem prover,
and the data flow between the components. A proof problem is read into main
memory, and is passed through several different processing stages:

– The problem is parsed and converted into a set of clauses and formulas by
a simple but efficient recursive descent parser. The parser supports E-LOP,
and the TPTP CNF/FOF syntax [13].

– In the next stage, Relevancy Pruning, the problem is optionally simplified by
discarding clauses and formulas deemed unlikely to contribute to a proof. E
implements both strict relevancy pruning and a configurable variant of the
SInE algorithm [4].

– The third stage, Clausification, converts the problem from full first-order
logic to clausal form. Clausification uses a slightly simplified version of the
algorithm presented by Nonnengart and Weidenbach [8]. The implementa-
tion takes advantage of E’s shared term/shared formula representation

– The resulting clause set can be pre-processed. Preprocessing removes redun-
dant literals and tautologies, and optionally expands equational definitions.
If requested, preprocessing can also perform complete interreduction of the
problem specification.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 735–743, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Relevancy Pruning

Clausification

Clausal Preprocessing

Saturation

Proof Extraction

Raw Analysis

CNF Analysis

User
clauses/formulas
control information

Dashed parts are optional

Parser
full first-order 
specification

(pruned) first-oder
specification

clausal version of
(pruned) specification

(preprocessed)
clause set

saturated clause
set (with derivation

history)

proof/saturation

problem/solution 
communicated

Fig. 1. Decomposition of E and major data flows

– After preprocessing, the clause set is passed to the main saturation algo-
rithm. This is realized as an instance of the DISCOUNT variant of the
given-clause algorithm and implements a variant of the superposition cal-
culus with a number of contraction techniques. The saturation ends when
the empty clause has been derived, the set is saturated, or a user-defined
resource limit is reached.

– The prover can store enough information to generate a checkable proof ob-
ject. In the final (optional) step, this information is collected into a proof
tree (or saturation derivation), which can be printed in E’s original PCL-2
or TPTP-3/TSTP syntax.

Various aspects of the process are controlled by parameters that are either
provided by the user or heuristically determined by the automatic mode of the
prover.
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2 Saturation

The core of the prover is a saturation procedure that tries to show the incon-
sistency of a set of clauses (the search state). New clauses are deduced using
generating inference rules, and existing clauses are simplified or discarded using
contraction rules. The algorithm terminates either when it has derived the empty
clause as an explicit witness of inconsistency, or if all non-redundant inferences
have been computed. In this case, the resulting saturated set describes a model
of the clause set.

2.1 Calculus

E implements an instance of the superposition calculus with negative literal
selection, as originally described by Bachmair and Ganzinger [2]. It uses the
rules equality resolution (ER), equality factoring (EF), and superposition into
positive and negative literals, (SP) and (SN). Alternatively, the latter two rules
can be replaced by simultaneous superposition (SSP and SSN), which often re-
sults in slightly better search behaviour and hence is the default. Simultaneous
superposition is inspired by simultaneous paramodulation [3], and maintains
completeness1.

Contraction is critical for practical performance. E implements deletion of du-
plicate and resolved literals (DD, DR), syntactic and semantic tautology deletion
(TD1, TD2, SD), destructive equality resolution (DR), unconditional rewriting
(RP, RN), equational literal cutting (PS, NS), subsumption (CS, ES), contex-
tual literal cutting (CLC), condensing (CD), AC-tautology deletion (ACD) and
AC-simplification (ACS). The last two rules handle associative and commutative
function symbols as suggested in [1].

2.2 Implementation

Fig. 2 sketches the proof procedure. The algorithm maintains the invariant that
the set P of unprocessed clauses is interreduced, and that all generating infer-
ences between clauses from P have been performed. Derivations are fair if no
clause remains unprocessed forever.

The implementation is built around perfectly shared terms. Each distinct
term is represented exactly once in a term bank. Unconditional rewriting is
cached. Whenever a possible simplification is detected, it is recorded in the term
bank. Future simplifications simply follow these rewrite links before trying new
equations.

Indexing enables the prover to quickly find inference partners for a given
premise. E indexes the set P of processed clauses. It uses Perfect Discrimination
Trees [7] with size- and age-constraints for forward rewriting (finding positive

1 On the ground level, a simultaneous superposition inference can be simulated by a
single conventional superposition step, followed by a series of (simplifying) condi-
tional rewrite steps.
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Search state: U ∪ P
U contains unprocessed clauses, P contains processed clauses.
Initially, all clauses are in U , P is empty.
The given clause is denoted by g.

while U 	= {}
g = delete best(U)
g = simplify(g, P )
if g == �
SUCCESS, Proof found

if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P )
P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g, P )
foreach c ∈ T
c = cheap simplify(c, P )
if c is not trivial
U = U ∪ {c}

SUCCESS, original U is satisfiable

Remarks: delete best(U) finds and extracts the clause with the best heuristic eval-
uation (see 3.3) from U . generate(g, P ) performs all generating inferences using g
as one premise, and clauses from P as additional premises. It uses inference rules
(SP) or (SSP), (SN) or (SSN), (ER) and (EF).
simplify(c, S) applies all simplification inferences in which the main (simplified)
premise is c and all the other premises are clauses from S. This typically includes
full rewriting, (CD) and (CLC). cheap simplify(c, S) works similarly, but only ap-
plies inference rules with a particularly low cost implementation, usually including
rewriting with orientable units, but not (CLC). The exact set of contraction rules
used is configurable in either case.

Fig. 2. Saturation procedure of E

unit clauses that can rewrite new clauses), Fingerprint Indexing [10] for back-
ward rewriting (finding clauses in P that can be rewritten with the given clause)
and superposition, and Feature Vector Indexing [11] for subsumption and con-
textual literal cutting.

Term orderings (LPO and KBO) are implemented using the elegant and effi-
cient reformulations presented by Löchner [5,6].

3 Search Control

Proof search depends on a number of different parameters. The three major
choice points are the selection of a term ordering, the (optional) selection of
inference literals, and the order in which clauses from U are picked for processing.
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3.1 Term Orderings

E supports KBO and LPO. Both orderings are parameterized. KBO uses a weight
function assigning weights to individual function symbols (and a fixed weight to
all variables), and both orderings use a precedence on the function symbols.
E currently supports about a dozen precedence generation schemes, and more
than two dozen weight generation schemes. Orderings showing the best perfor-
mance use the frequency of symbols in the specification, making terms with rarer
symbols larger in the ordering.

3.2 Literal Selection

Literal selection is a major strength of E. Even quite naive approaches (always
select the largest negative literal, if any) lead to a significant improvement over
the plain superposition calculus. Good literal selection strategies seem to prefer
ground literals, literals that are large in the term ordering, and to avoid literals
that contain little structure, e.g. literals of the form p(X,Y, Z).

3.3 Clause Evaluation

The given-clause algorithm selects clauses according to a heuristic evaluation.
In the simplest case, this is a single value, representing the number of symbols
in the clause (smaller is better). E generalizes this concept and allows the user
to specify an arbitrary number of priority queues and a weighted round-robin
scheme that determines how many clauses are picked from each queue. A major
feature is the use of goal-directed evaluation functions. These give a lower weight
to symbols that occur in the goal, and a higher weight to other symbols, thus
preferring clauses which a likely connection to the conjecture. As an alternative,
E can also learn good clause evaluations from previous proof experience [9].

3.4 Automatic Prover Configuration

Performance of first-order theorem provers critically depends on the search strat-
egy and heuristics. Finding good heuristics for a given problem is challenging
even for an experienced user. E supports a number of automatic modes that
analyze the problem and apply either a single strategy or a schedule of several
strategies. The selection of strategies and generation of schedules for each class
of problems is determined automatically by analyzing previous performance of
the prover on similar problems.

4 Proofs and Answers

4.1 Proofs

E 1.8 can internally record all necessary information for proof output. It makes
use of the DISCOUNT loop property that only processed clauses (usually a
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small subset of all clauses in the search state) can ever participate in generating
inferences or be used to simplify other clauses. For each clause, the system stores
its origin (usually a generating inference and the parents), and a history of
simplifications (inference rules and side premises). A processed clause is archived
and replaced by a simplified copy (pointing to the original as the parent) only
if it itself is back-simplified.

When the empty clause has been derived and hence a proof concluded, the
proof tree is extracted by tracing the recorded dependencies. Proof steps are
topologically sorted, ensuring that all dependencies of a step are listed before
the step itself. The linearized proof can then be printed.

Recording of the derivation history does not systematically change the search
behaviour. However, changes in memory usage and layout can cause some opera-
tions (e.g. iteration over a set) to be performed differently, potentially disturbing
the proof search. Fig. 3 shows the run times of the prover in automatic mode
with and without proof generation over TPTP 5.4.0, for both the majority of
problems where both versions performed the same search and the small number
with differing search behaviour. Performing a simple linear regression over the
problems with the same search suggests an overhead of only 0.24% for proof
generation.

4.2 Answers

The system supports the proposed TPTP standard for answers [14]. An answer is
an instantiation for an existential conjecture (or query) that makes the conjecture
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true. In practice, E supplies bindings for the outermost existentially quantified
variables in a TPTP formula with type question.

The implementation is straightforward. The query is extended by adding the
atomic formula ~$answer(new_fun(<varlist>)), where new_fun is a previously
unused function symbol, and <varlist> is the list of outermost existentially
quantified variables. This atom is carried through clausification and ends up
as a positive literal in the CNF. The literal ordering is automatically chosen so
that the answer literal never participates in inferences. Semantically, the $answer
predicate always evaluates to false. It is evaluated only in clauses where all re-
maining literals are answer literals. Answers are extracted and printed in tuple
form at the time of the evaluation. Consider the following example:

Specification

fof(greeks, axiom, (philosopher(socrates)|philosopher(plato))).

fof(scot, axiom, (philosopher(hume))).

fof(phils_wise, axiom, (![X]:(philosopher(X) => wise(X)))).

fof(is_there_wisdom, question, (?[X]:wise(X))).

Answers (eprover --tptp3-format -s --answers)

# SZS status Theorem

# SZS answers Tuple [[hume]|_]

# SZS answers Tuple [([socrates]|[plato])|_]

# Proof found!

The system correctly handles disjunctive answers (at least one of socrates
or plato is a philosopher and hence wise, but the theory does not allow us
to decide who is). While the example has been kept intentionally simple, the
system also supports complex terms and variables as parts of answers, in that
case representing the set of all instances.

5 Performance

Table 1 lists the performance of E for 4 different search regimens and different
classes of problems. Tests were run on the University of Miami Pegasus cluster.
Each node of the cluster is equipped with 8 Intel Xeon cores, running at 2.5 GHz,
and 16 GB of RAM. Test runs were done with a CPU time limit of 300 seconds
per job, a memory limit of 1024 MB per job, and with 8 jobs scheduled per node.
All 15560 untyped first-order problems (including CNF, FOF and UEQ) from
TPTP 5.4.0 were used as test examples.

Best is the currently strongest single strategy known. SatAuto analyses the
input problem and picks an appropriate strategy based on the performance on
similar problems. Auto additionally performs problem pruning, potentially losing
completeness, but improving behaviour on very large problems. Finally, Auto-
Scheduling runs up to 5 complementary strategies for each problem class.

Search performance over time is visualized in Fig. 4 for all 15560 problems.
In all cases, the first 7000 solutions are found within less than 1 second. Of the
10783 solutions found by AutoScheduling, 1000 are saturations, 9783 are proofs.
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Table 1. Number of proofs/models found within 300 seconds CPU limit

Strategy UEQ CNE CEQ FNE FEQ All
Class size (1179) (2352) (5867) (1713) (5867) (15560)

Best 764 1642 3211 1251 3211 9305
. . . with proof object 764 1648 3210 1251 3210 9301

SatAuto 800 1833 3671 1418 3671 10334
. . . with proof object 799 1833 3664 1421 3664 10326

Auto 801 1834 3758 1424 3758 10432
. . . with proof object 799 1834 3749 1424 3749 10415

Auto-Scheduling 824 1867 3939 1430 3939 10783
. . . with proof object 823 1864 3936 1430 3936 10776

UEQ: Unit equational problems, CNE: (non-unit) CNF problems without equality, CEQ: CNF problems
with equality, FNE: Full first-order problems without equality, FEQ: Full first-order problems with
equality
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6 Conclusion

E has reached good maturity for untyped first-order logic. It is stable, reliable,
and has improved usability with strong automatic search, proof object generation
and answer substitutions.

Future planned changes include support for simply typed first-order logic with
arithmetic as defined in [12], improved support for repetitive queries against large
axiom sets, and the use of new data-driven methods for search control.
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Abstract. Algebraic techniques based on Laplace transform are widely
used for solving differential equations and evaluating transfer of sig-
nals while analyzing physical aspects of many safety-critical systems.
To facilitate formal analysis of these systems, we present the formal-
ization of Laplace transform using the multivariable calculus theories
of HOL-Light. In particular, we use integral, differential, transcenden-
tal and topological theories of multivariable calculus to formally define
Laplace transform in higher-order logic and reason about the correctness
of Laplace transform properties, such as existence, linearity, frequency
shifting and differentiation and integration in time domain. In order to
demonstrate the practical effectiveness of this formalization, we use it to
formally verify the transfer function of Linear Transfer Converter (LTC)
circuit, which is a commonly used electrical circuit.

1 Introduction

Laplace transform [12] is an integral transform method that is used to con-
vert the time varying functions to their corresponding s-domain representations,
where s represents the angular frequency [1]. This transformation provides a
very compact representation of the overall behavior of the given time varying
function and is frequently used for analyzing systems that exhibit a determin-
istic relationship between continuously changing quantities and their rates of
change. Laplace transform theory allows us to solve linear Ordinary Differential
Equations (ODEs) [19] using simple algebraic techniques since the transforma-
tion allows us to convert the integration and differentiation functions from the
time-domain to multiplication and division functions in the s-domain. Moreover,
the s-domain representations of ODEs are also used for transfer function analysis
of the corresponding systems. Due to these unique features, Laplace transform
theory has been an integral part of engineering and physical system analysis
and is widely used in the design and analysis of electrical networks, control sys-
tems, communication systems, optical systems, analogue filters and mechanical
networks.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 744–758, 2013.
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Mathematically, Laplace transform is a complex function defined for a func-
tion f , which can be either real or complex-valued, as follows

F (s) =

∫ ∞

0

f(t)e−stdt, s ∈ � (1)

The first step in analyzing differential equations using Laplace transform is to
take the Laplace transform of the given equation on both sides. Next, the cor-
responding s-domain equation is simplified using various properties of Laplace
transform, such as existence, linearity, Laplace of a differential and Laplace of an
integral. The objective is to either solve the differential equation to obtain values
for the variable s or obtain the transfer function of the system corresponding to
the given differential equation.

Traditionally, the above mentioned Laplace transform based analysis is per-
formed using computer based numerical techniques or symbolic methods. How-
ever, both of these techniques cannot guarantee accurate analysis. Numerical
methods cannot ascertain an accurate value of the improper integral of Equa-
tion (1) as there is always a limited number of iterations allowed depending on
the available memory and computation resources. The round-off errors due to
the usage of computer arithmetics also introduce some inaccuracies in the re-
sults. Symbolic methods, provided by Symbolic Math Toolbox of Matlab and
other computer algebra systems like Maple and Mathematica, are based on al-
gorithms that consider the improper integral of Equation (1) as the continuous
analog of the power series, i.e., the integral is discretized to summation and
the complex exponentials are sampled. Moreover, the presence of huge symbolic
manipulation algorithms, which are usually unverified, in the core of computer
algebra systems also makes the accuracy of their analysis results questionable.
For-instance, a couple of examples for using Matlab or Maple for control and
electrical engineering systems can be found in [3,16]. However, the results of these
analyses cannot be termed as 100% accurate. Therefore, these traditional tech-
niques should not be relied upon for the analysis of systems using the Laplace
transform method, especially when they are used in safety-critical areas, such
as medicine and transportation, where inaccuracies in the analysis could result
in system design bugs that in turn may even lead to the loss of human lives in
worst cases.

To overcome the above mentioned inaccuracy limitations, we propose to per-
form the Laplace transform based analysis using a higher-order-logic theorem
prover. The main idea is to leverage upon the high expressiveness of higher-
order logic to formalize Equation (1) and use it to verify the classical properties
of Laplace transform within a theorem prover. These foundations can be built
upon to reason about the exact solution of a differential equation or its transfer
function within the sound core of a theorem prover. In particular, the paper
presents the formal verification of existence, linearity and scaling properties of
Laplace transform. It also presents the formal verification of the Laplace trans-
forms of an arbitrary order differential and integral functions. The main advan-
tage of these results is that they greatly minimize the user intervention for formal
reasoning about the correctness of many properties of physical systems. In order
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to illustrate the practical effectiveness and utilization of this formalization, we
use it to verify the transfer function of a Linear Transfer Converter (LTC) circuit,
which is commonly used analog circuit. Formal verification of analog circuits is
of utmost importance [8]. However, to the best of our knowledge, all the existing
formal verification approaches work with abstracted discretized models of ana-
log circuits (e.g., [4],[2]). This is mainly because of the inability to model and
analyze the properties of differential equations in their true continuous form by
the existing formal methods. The formalization of Laplace transform, presented
in this paper, overcomes this limitation and we have been able to formally verify
the transfer function of the LTC circuit using its differential equation.

The work described in this paper is done using the HOL-Light theorem prover
[6], which supports formal reasoning about higher-order logic. The main moti-
vation behind this choice is the availability of reasoning support about multi-
variable integral, differential, transcendental and topological theories [7], which
are the foremost foundations required for the formalization of Laplace transform
theory.

The rest of the paper is organized as follows: We provide a brief introduc-
tion about the multivariable calculus theories of HOL-Light in Section 2. The
formalization of the Laplace transform function is provided in Section 3. We
utilize this formalization to formally verify the classical properties of Laplace
transform in Section 4. The formal verification of the LTC circuit is given in
Section 5. Finally, Section 6 concludes the paper.

2 Multivariable Calculus Theories in HOL-Light

HOL-Light is a higher-order-logic theorem prover that belongs to the HOL fam-
ily of theorem provers. Its unique features include an efficient set of inference
rules and the usage of Objective CAML (OCaml) language [6], which is a variant
of the strongly-typed functional programming language ML [11], for its develop-
ment and interaction. HOL-Light provides formal reasoning support for many
mathematical theories, including sets, natural numbers, real analysis, complex
analysis and vector calculus, and has been particularly successful in verifying
many challenging mathematical theorems. The main motivation behind choos-
ing HOL-Light for the formalization of Laplace transform theory in this paper
is the availability of a rich set of formalized multivariable calculus theories on
the Euclidean space [7].

In HOL-Light, a n-dimensional vector is represented as a �n column ma-
trix with individual elements as real numbers. All of the vector operations are
then handled as matrix manipulations. This way, complex numbers can be repre-
sented by the data-type �2, i.e, a column matrix having two elements. Similarly,
pure real numbers can be represented by two different data-types, i.e., by a 1-
dimensional vector �1 or a number on the real line �. All the vector algebraic
theorems have been formally verified using HOL-Light for arbitrary functions
with a flexible data-type �n → �m. For the formalization of Laplace trans-
form, we have utilized several vector algebraic theorems for complex functions
(�2 → �

2) and complex-valued functions (�1 → �
2).
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In order to facilitate the understanding of the rest of the paper, some of the
frequently used functions of the HOL-Light Multivariable calculus libraries [7]
are described below:

Definition 1: Cx

$ ∀ a. Cx a = complex(a,&0)

The function Cx accepts a real number and return its corresponding complex
number with the imaginary part as zero. It uses the function complex, which
accepts a pair of real numbers and returns the corresponding complex number
such that the real part of the complex number is equal to the first element of the
given pair and the imaginary part of the complex number is the second element
of the given pair. The operator & maps a natural number to its corresponding
real number.

Definition 2: Re and Im

$ ∀ z. Re z = z$1

$ ∀ z. Im z = z$2

The functions Re and Im accept a complex number and return its real and
imaginary parts, respectively. The notation z$n represents the nth component
of a vector z.

Definition 3: drop and lift

$ ∀ x. drop x = x$1

$ ∀ x. lift x = (lambda i. x)

The function drop accepts a 1-dimensional vector and returns its single compo-
nent as a real number. The function lift maps a real number to a 1-dimensional
vector with its single component equal to the given real number.

Definition 4: Exponential Functions

$ ∀ x. exp x = Re(cexp (Cx x))

The functions exp and cexp represent the real and complex exponential functions
in HOL-Light with data-types �→ � and �2 → �2, respectively.

Definition 5: Limit of a function

$ ∀ f net. lim net f = (@l. (f→l) net)

The function lim is defined using the Hilbert choice operator @ in the functional
form. It accepts a net with elements of arbitrary data-type A and a function f ,
of data-type A → �m, and returns l : �m, i.e., the value to which f converges
at the given net. To formalize the improper integral of Equation (1), we will use
the at posinfinity, which models positive infinity, as our net,

Definition 6: Integral

$ ∀ f i. integral i f = (@y.(f has integral y) i)

$ ∀ f i. real integral i f = (@y.(f has real integral y) i)
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The function integral accepts an integrand function f : �n → �m and a
vector-space i : �n → �, which defines the region of integration. Here, � repre-
sents boolean data-type. It returns a vector of data-type �m, which represents
the integral of f over i. The function has integral defines the same relationship
in the relational form. In a similar way, the function real integral represents
the integral of a function f : � → �, over a set of real numbers i : � → �.
The regions of integration, for both of the above integrals, can be defined to
be bounded by a vector interval [a, b] or real interval [a, b] using the HOL-Light
functions interval [a,b] and real interval [a,b], respectively.

Definition 7: Derivative

$ ∀ f net. vector derivative f net =

(@f’.(f has vector derivative f’) net)

The function vector derivative accepts a function f : �1 → �m, which needs
to be differentiated, and a net of data-type �1 → �, that defines the point at
which f has to be differentiated. It returns a vector of data-type �m, which
represents the differential of f at net. The function has vector derivative

defines the same relationship in the relational form.
We will build upon the above mentioned foundational definitions to formalize

the Laplace transform function in the next section.

3 Formalization of Laplace Transform

Based on the theory of improper integrals [18], Equation (1) can be alternatively
expressed as follows:

F (s) = lim
b→∞

∫ b

0

f(t)e−stdt (2)

This definition holds under the conditions that the integral

f(b) =

∫ b

0

f(t)e−stdt (3)

exists for every b > 0 and the limit also exists as b approaches positive infinity.
Now, the Laplace transform function can be formalized in HOL-Light as fol-

lows:

Definition 8: Laplace Transform

$ ∀ s f. laplace f s =

lim at posinfinity (λb. integral (interval [lift(&0),lift(b)])

(λt. cexp (-(s * Cx(drop t))) * f t))

The function laplace accepts a complex number s and a complex-valued func-
tion f : �1 → �2. It returns a complex number that represents the laplace
transform of f according to Equation (2). The complex exponential function
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cexp: �2 → �2 is used in this definition because the data-type for f(t) is �2.
Similarly, in order to multiply variable t : �1 with the complex number s, it is
first converted to � by using the function drop and then converted to data-type
�2 by using Cx. Then, we use the vector integration function integral to inte-
grate the expression f(t)e−st over the interval [0, b] since the return type of this
expression is �2. The limit of the upper interval b of this integral is then taken
at positive infinity using the lim function with the at posinfinity net. Based
on the definition of at posinfinity, the variable b must have a data-type �.
However, the region of integration of the vector integral function must be a vec-
tor space. Therefore, for data-type consistency, we lift the value 0 and variable
b in the interval of the integral to the data-type �1 using the function lift.

The Laplace transform of a function f exists, i.e., the integral of Equation (3)
is integrable and the limit of Equation (2) is convergent, if f is piecewise smooth
and of exponential order on the positive real axis [1]. A function is said to be
piecewise smooth on an interval if it is piecewise differentiable on that interval.
Similarly, a causal function f : � → � is of exponential order if there exist
constants α ∈ � and M>0 such that |f(t)| ≤ Meαt for all t ≥ 0. We formalize
the Laplace transform existence conditions in HOL-Light as follows:

Definition 9: Laplace Exists

$ ∀ s f. laplace exists f s ⇔
(∀ b. f piecewise differentiable on interval [lift (&0),lift b] )

∧ (∃ M a. Re s > drop a ∧ exp order f M a)

The first conjunct in the above predicate ensures that f is piecewise differentiable
on the positive real axis. The second conjunct expresses the exponential order
condition of f for α < Re s using the following predicate:

Definition 10: Exponential Order Function

$ ∀ f M a. exp order f M a ⇔ &0 < M ∧
(∀ t. &0 ≤ t ⇒ norm (f (lift t)) ≤ M * exp (drop a * t))

The function exp order accepts a function f : �1 → �2, a real number M
and a complex number s and returns a True if M is positive and f is bounded
by Meat for all 0 < t.

4 Formal Verification of Laplace Transform Properties

In this section, we use Definition 8 to verify some of the classical properties
of Laplace transform in HOL-Light. The formal verification of these properties
not only ensures the correctness of our definition but also plays a vital role in
minimizing the user intervention in reasoning about Laplace transform based
analysis of systems, as will be depicted in Section 5 of this paper.

4.1 Limit Existence of the Improper Integral

According to the limit existence of the improper integral of Laplace transform
property, if the given function f : �→ � fulfills the conditions for the existence



750 S.H. Taqdees and O. Hasan

of its Laplace transform, i.e., it is of exponential order and piecewise smooth,
then there will certainly exists a complex number l, to which the complex-valued
integral of Equation (3) converges at positive infinity [1]. This property can be
formalized based on Definitions 8 and 9 as follows:

Theorem 1: Limit Existence of Integral of Laplace Transform

$ ∀ f s. laplace exists f s ⇒
(∃l. ((λb. integral (interval [lift (&0),lift b])

(λt. cexp (-(s * Cx (drop t))) * f t)) → l) at posinfinity)

We proceed with the verification of the above theorem by first splitting the
complex-valued integrand, i.e., f(t)e−st, into its corresponding real and imagi-
nary parts. Now using the linearity property of integral, the conclusion of the
theorem can be expressed in terms of two integrals as follows:

∃l.( (λb. integral (interval [lift (&0),lift b])

(λt. Cx (Re (cexp (-(s * Cx (drop t))) * f t))) +

ii * integral (interval [lift (&0),lift b])

(λt. Cx (Im (cexp (-(s * Cx (drop t))) * f t)))) → l)

at posinfinity

where, ii represents the constant value
√
−1 that is multiplied with the imag-

inary part of a complex number. Next, we verified the following two lemmas
that allow us to break the above subgoal into two subgoals involving the limit
existence of two real-valued integrals.

Lemma 1: Relationship between the Real and Complex Integral

$ ∀ f s t l. (f has real integral l) (real interval [&0,t]) ⇒
((λt. Cx (f (drop t))) has integral Cx l)

(interval [lift (&0),lift t])

Lemma 2: Limit of a Complex-Valued Function

$ ∀ f L1 L2.

((λt. Re (f t)) ⇒ L1) at posinfinity ∧
((λt. Im (f t)) ⇒ L2) at posinfinity ⇒
(f → complex (L1,L2)) at posinfinity

The subgoal for the limit existence of the first real-valued integral is as follows:

laplace exists f s ⇒
∃k. ((λb. real integral (real interval [&0,b])

(λx. abs (Re (cexp (-s * Cx (x)) * f(lift x))))) → k)

at posinfinity

The proof of the above subgoal is primarily based on the Comparison Test for
Improper Integrals [18], which has been formally verified as part of our develop-
ment as follows:
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Lemma 3: Comparison Test for Improper Integrals

$ ∀ f g a. (&0 ≤ a) ∧ (∀x. a ≤ x ⇒ &0 ≤ f x ∧ f x ≤ g x) ∧
(∀ b. g real integrable on real interval [a,b]) ∧
(∀ b. f real integrable on real interval [a,b]) ∧
(∃ k.((λb. real integral (real interval [a,b]) g)⇒ k)

at posinfinity) ⇒
(∃ k.((λb. real integral (real interval [a,b]) f) ⇒ k)

at posinfinity)

The laplace exists f s assumption of Theorem 1 ensures that the integrand
fe−st, of our subgoal, is upper bounded by Me−(Re(s)−α)t, which in turn can also
be verified to be integrable and having a convergent integral for Re s > α as the
upper limit of integration approaches positive infinity. Moreover, the piecewise
differentiability condition in the predicate laplace exists f s ensures the in-
tegrability of f . These results allow us to fulfill the assumptions of Lemma 3 and
thus conclude the limit existence subgoal for the real-valued integral of the real
part. The proof of the subgoal for the limit existence of the real-valued integral
corresponding to the imaginary part is very similar and its verification concludes
the proof of Theorem 1.

4.2 Linearity

The linearity of Laplace transform can be expressed mathematically for two
functions f and g and two complex numbers α and β as follows [1]:(

L αf(x) + βg(x)
)
(s) = α(Lf)(s) + β(Lg)(s) (4)

We verified this property as the following theorem:

Theorem 2: Linearity of Laplace Transform

$ ∀ f g s a b. laplace exists f s ∧ laplace exists g s ⇒
laplace (λx. a * f x + b * g x) s =

a * laplace f s + b * laplace g s

The proof is based on Theorem 1 and the linearity properties of integration and
limit.

4.3 Frequency Shifting

The Frequency shifting property of Laplace transform deals with the case when
the Laplace transform of the composition of a function f with the exponential
function is required [1]. (

L ebtf(t)
)
(s) = (Lf)(s − b) (5)

These type of functions, called the damping functions, frequently occur in the
analysis of many natural systems like harmonic oscillators. Frequency shifting
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property is used to analyze and measure the damping effects on the systems
in the corresponding s-domain [17]. We verified the property as the following
theorem:

Theorem 3: Frequency Shifting

$ ∀ f s b. laplace exists f s ⇒
laplace (λt. cexp (b * Cx (drop t)) * f t) s = laplace f (s - b)

4.4 Integration in Time Domain

The Laplace transform of an integral of a continuous function can be evaluated
using the integration in time domain property(

L
∫ t

0

f(τ)dτ
)
(s) =

1

s
(Lf)(s) (6)

where Re s > 0 [1]. Such type of functions extensively occur in control and
electrical systems and their s-domain analysis is greatly simplified by using the
above relation [10]. This property has been verified in HOL-Light as follows:

Theorem 4: Integration in Time Domain

$ ∀ f s. (&0 < Re s) ∧ laplace exists f s ∧
laplace exists (λx. integral (interval [lift (&0),x]) f) s ∧
(∀x. f continuous on interval [lift (&0),x]) ⇒
laplace (λx. integral (interval [lift (&0),x]) f) s =

inv(s) * laplace f s

where the function inv represents the reciprocal of a given vector. The proof
of the above theorem is primarily based on the Integration-by-parts property,
which was verified as part of the reported development as follows:

Lemma 4: Integration by Parts

$ ∀ f g f’ g’ a b. (drop a ≤ drop b) ∧
(∀ x. (f has vector derivative f’ x)

(at x within interval [a,b])) ∧
(∀ x. (g has vector derivative g’ x)

(at x within interval [a,b])) ∧
(λx. f’ x * g x) integrable on interval [a,b] ∧
(λx. f x * g’ x) integrable on interval [a,b] ⇒
integral (interval [a,b]) (λx. f x * g’ x) =

f b * g b - f a * g a - integral (interval [a,b])

(λx. f’ x * g x)

where the function integrable on formally represents the integrability of a vec-
tor function on a vector space. The integrand of Theorem 4, which is the product
of a complex exponential and the function

∫ t
0 f(τ) dτ , can be simplified using

Lemma 4 to obtain the following subgoal:
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(&0 < Re s) ⇒
lim at posinfinity (λb. integral (interval [lift &0,lift b]) f *

-inv s * cexp (-(s * Cx (drop (lift b))))) -

lim at posinfinity (λb. integral (interval [lift &0,lift b])

(λx. f x * -inv s * cexp (-(s * Cx (drop x))))) =

inv s * lim at posinfinity (λb. integral

(interval[lift &0,lift b])(λt. cexp (-(s * Cx(drop t))) * f t))

The first term on the left-hand-side of the above subgoal can be verified to ap-
proach zero at positive infinity since, based on the existence of Laplace transform
condition, f(t) grows more slowly than an exponential. The remaining two terms
can then verified to be equivalent based on simple arithmetic reasoning.

4.5 First Order Differentiation in Time Domain

The Laplace of a differential of a continuous function f is given as follows [1]:(
L df

dx

)
(s) = s(Lf)(s)− f(0) (7)

We verified it as the following theorem:

Theorem 5: First Order Differentiation in Time Domain

$ ∀ f s. laplace exists f s ∧
laplace exists (λx. vector derivative f (at x)) s ∧
(∀ x. f differentiable at x) ⇒
laplace (λx. vector derivative f (at x)) s =

s * laplace f s - f (lift (&0))

using Theorem 1, Lemma 4 and the fact that f(t)e−st|∞0 = [0− f(0)].

4.6 Higher Order Differentiation in Time Domain

The Laplace of a n-times continuously differentiable function f is given as the
following mathematical relation [1]:(

Ldnf

dxn

)
(s) = sn(Lf)(s)−

n∑
k=1

sk−1 dn−kf(0)

dxn−k
(8)

This property forms the foremost foundation for analyzing higher-order differ-
ential equations based on Laplace transform and is verified as follows:

Theorem 6: Higher Order Differentiation in Time Domain

$ ∀ f s n. laplace exists higher derivative n f s ∧
(∀x. higher derivative differentiable n f x) ⇒
laplace (λx. higher order derivative n f x) s =

s pow n * laplace f s - vsum (1..n) (λx. s pow (x-1) *

higher order derivative (n-x) f (lift (&0)))
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The first assumption ensures the Laplace existence of f and its first n higher-
order derivatives. Similarly, the second assumption ensures the differentiabil-
ity of f and its first n higher-order derivatives on x ∈ �. The expressions
higher order derivative n f x and vsum (1..n) f recursively model the
nth order derivative of f with respect to x and the vector summation of the
n terms from 1 to n of function f , respectively. The proof of Theorem 6 is based
on induction on variable n. The proof of the base case is based on simple arith-
metic reasoning and the step case is discharged using Theorem 5 and summation
properties along with some arithmetic reasoning.

The formalization, presented in this section, had to be done in an interactive
way due to the undecidable nature of higher-order logic and took around 5000
lines of HOL-Light code and approximately 800 man-hours. One of the major
challenges faced during this formalization is the non-availability of detailed proof
steps for Laplace transform properties in the literature. The mathematical texts
on Laplace transform properties provide very abstract proof steps and often
ignore the subtle reasoning details. For instance, all the mathematical texts that
we came across (e.g. [1,14]) provide the exponential order condition as the only
condition for the limit existence of the improper integral of Laplace transform.
However, as described in Section 4.1, the actual formal proof is based on splitting
the complex-valued integrand into the corresponding real and imaginary parts
and using the Integral comparison test and we had to find this reasoning on our
own. Similarly, in verifying the integration in time property (Theorem 4), the

exact reasoning about the convergence of the term e−st
∫ t
0 f(τ) dτ to zero, which

was the main bottleneck in the proof, could not be found in any mathematical
text on Laplace transform.

Other time-consuming factors, associated with our formalization, include the
formal verification many multivariable calculus related theorems, which were
required in our formalization but were not available in the current HOL-Light
distribution. These generic results can be very useful for other similar formaliza-
tions and some of the ones of common interest are given below and others can
be found in our proof script [15].

Lemma 5: Upper Bound of Monotonically Increasing and Convergent f

$ ∀ f n k. (&0 ≤ n) ∧ (∀n m. n ≤ m ⇒ f n ≤ f m) ∧
((f → k) at posinfinity) ⇒ f n ≤ k

Lemma 6: Limit at Positive Infinity of f implies Limit of abs(f)

$ ∀ f l. (f → l) at posinfinity ⇔
((λi. f (abs i)) → l ) at posinfinity

Lemma 7: Relationship between Real and Vector Derivative

$ ∀ f f’ x s. ((f has real derivative f’) (atreal x within s)) ⇒
((Cx o f o drop has vector derivative Cx f’)

(at (lift x) within IMAGE lift s) )

Lemma 8: Chain Rule of Differentiation for Complex-valued Functions

$ ∀ f g f’ g’ x s.((f has vector derivative f’) (at x within s)) ∧
((g has complex derivative g’) (at (f x) within IMAGE f s) ) ⇔
((g o f has vector derivative f’ * g’) (at x within s) )
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The main advantage of the formal verification of Laplace transform properties
is that our proof script, available for download at [15], can be built upon to
facilitate formal reasoning about the Laplace transform based analysis of safety-
critical systems, as depicted in the next section.

5 Application: Linear Transfer Converter (LTC) circuit

As an illustrative example of our work, we formally verify the transfer function
of a Linear Transfer Converter (LTC) circuit, depicted in Figure (1), which is
widely used for converting the voltage and current levels in power electronics
systems [13]. The functional correctness of power systems mainly depends on
the design and stability of LTCs and thus the accuracy of LTC analysis is of dire
need. Standard design techniques of LTCs are based on the transfer function
analysis, i.e., the differential equation of a LTC circuit is first converted into
its corresponding s-domain equivalent, and then depending upon the required
stability requirements, the values of circuit components, like resistors and in-
ductors are calculated [9]. We perform this analysis using our formalization of
Laplace transform within the sound core of HOL-Light theorem prover in this
paper. The behavior of the LTC circuit, with input complex voltage u(t) across

Fig. 1. Linear Transfer Converter Circuit

the voltage generator, and the output complex voltage y(t), across the resistor
R, can be expressed using the following differential equation [1]:

d2y

dt2
− 2

RC

dy

dt
+

1

LC
y =

d2u

dt2
− 1

LC
u (9)

The corresponding transfer function of this given circuit is as follows [1]:

Y (s)

U(s)
=

s2 − 1
LC

s2 − 2s
RC + 1

LC

(10)

The objective of this section is to verify this transfer function using Equation (9).
In order to be able to formally express Equation (9), we formalized the following
function to model an n-order differential equation in HOL-Light:
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Definition 11: Differential Equation

$ ∀ n A f x. diff eq n A f x ⇔
vsum (0..n) (λt. EL t L x * higher order derivative t f x)

The function diff eq accepts the order of the differential equation n, a list of
coefficients A, differentiable function f and the differentiation variable x. It uti-
lizes the functions vsum n f and EL m L, which return the vector summation
(
∑n

i=0 fi) and the mth element of a list L, respectively, to generate the differen-
tial equation corresponding to the given parameters. Now, Equation (9) can be
formalized as follows:

Definition 12: Differential Equation of LTC

$ ∀ y u x L C R. diff eq LTC y u x L C R ⇔
diff eq 2 [ Cx (&1 / L * C); --Cx (&2 / R * C); Cx (&1)] y x =

diff eq 2 [ --Cx (&1 / L * C ); Cx (&0); Cx (&1)] u x

The function diff eq LTC accepts the output voltage function y : �1 → �2, the
input voltage function u : �1 → �2, the resistance R : �, the inductance L : �
and the capacitance C : � being the capacitance and x : �1 being time. It then
returns Equation (9) in the summation form.

Now, the transfer function of the given LTC circuit, given in Equation (10),
can be verified as the following theorem in HOL-Light.

Theorem 7: Transfer function of LTC

$ ∀ y u s R L C. (&0 < R) ∧ (&0 < L) ∧ (&0 < C) ∧
(zero initial conditions 1 u) ∧ ( zero initial conditions 1 y) ∧
(∀x. higher derivative differentiable 2 y x) ∧
(∀x. higher derivative differentiable 2 u x) ∧
(higher derivative laplace exists 2 y s) ∧
(higher derivative laplace exists 2 u s) ∧
(∀t. diff eq LTC y u t L C R) ∧ ∼(laplace u s = Cx(&0)) ∧
∼((Cx(&1/(L*C)) - Cx(&2/(R*C))*s) + s pow 2 = Cx(&0) ) ⇒
(laplace y s / laplace u s =

(s pow 2 - Cx(&1/(L*C))) / ((Cx(&1/(L*C)) -

Cx(&2/(R*C))*s) + s pow 2))

The first three assumptions ensure the positive values for resistor, inductor and
capacitor, respectively. The predicate zero initial conditions is used to de-
fine the initial conditions, i.e., to assign a value 0 to the given function and
its n derivatives at time equal to zero. In our case, we need zero initial con-
ditions for the functions u and y up to the first-order derivative, which are
modeled using the fourth and fifth assumptions. The next four assumptions en-
sure that the functions y and u are differentiable up to the second-order and the
Laplace transform exists up to the second order derivatives of these functions.
The next assumption represents the formalization of Equation (9), the next two
assumptions provide some interesting design related relationships, which must
hold for constructing a reliable LTC, and the conclusion of the theorem repre-
sents Equation (10). The reasoning about the correctness of Theorem 7 is very
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straightforward and is primarily based on Definition 8 and Theorem 6 and some
simple arithmetic reasoning. The proof script consists of approximately 650 lines
of HOL-Light code [15] and the proof process took just a couple of hours, which
clearly indicates the usefulness of our work in conducting the formal analysis of
real-world applications using the Laplace transform method.

6 Conclusion

This paper advocates the usage of higher-order-logic theorem proving for con-
ducting Laplace transform based analysis, which is an essential design step for
almost all physical systems. Due to the high expressiveness of the underlying
logic, we can formally model the differential equation depicting the behaviour
of the given physical system in its true form, i.e., without compromising on the
precision of the model. The Laplace transform method can then be used in a
theorem prover to deduce interesting design parameters from this equation. The
inherent soundness of theorem proving guarantees correctness of this analysis
and ensures the availability of all pre-conditions of the analysis as assumptions
of the formally verified theorems. To the best of our knowledge, these features are
not shared by any other existing computerized Laplace transform based analysis
technique and thus the proposed approach can be very useful for the analysis of
physical systems used in safety-critical domains.

The main challenge in the proposed approach is the enormous amount of user
intervention required due to the undecidable nature of the higher-order logic.
We propose to overcome this limitation by formalizing Laplace transform theory
in higher-order logic and thus minimizing the user guidance in the reasoning
process by building upon the already available results. As a first step towards
this direction, this paper presents the formalization of Laplace transform and the
formal verification of some of its classical properties, such as existence, linearity,
frequency shifting and differentiation and integration in time domain, using the
multivariable calculus theories of HOL-Light. Based on this work, we are able to
conduct the formal analysis of a Linear Transfer Converter (LTC) circuit, which
is commonly used electronic circuit in a very straightforward way.

This paper opens the doors towards a novel and promising usage of theorem
proving. The formalization of Laplace transform foundations, presented in this
paper, can be directly used to reason about the transfer functions of many sys-
tems used in the domains of control engineering and analog and mixed signal
(AMS) circuits, where the usage of formal verification is a dire need given their
safety-critical nature. Our formalization can also be built upon to formalize the
inverse Laplace transform function and its associated properties, which can be
very useful in analyzing the behavior of engineering systems in the time-domain
[1]. Our formalization can also be used to formalize other mathematical trans-
forms. For instance, Fourier transform [5], which is a foundational mathematical
theory for analyzing digital signal processing applications, can be easily formal-
ized by restricting the variable s of the Laplace transform definition to acquire
pure imaginary values only.
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Abstract. Abduction is a type of logical inference that can be success-
fully combined with probabilistic reasoning. However, the role of integrity
constraints has not received much attention when performing logical-
probabilistic inference. The contribution of our paper is a probabilistic
abductive framework based on the distribution semantics for normal logic
programs that handles negation as failure and integrity constraints in the
form of denials. Integrity constraints are treated as evidence from the per-
spective of probabilistic inference. An implementation is provided that
computes alternative (non-minimal) abductive solutions, using an appro-
priately modified abductive system, and generates the probability of a
query, for given solutions. An example application of the framework is
given, where gene network topologies are abduced according to biological
expert knowledge, to probabilistically explain observed gene expressions.
The example shows the practical utility of the proposed framework.

Keywords: abductive logic programming, probabilistic abduction, dis-
tribution semantics.

1 Introduction

Abductive reasoning is a method of logical inference which explains observations
(or queries) by making assumptions on possible facts, called abducible atoms.
Abduction has been used in various applications [13], e.g. diagnosis, high-level
vision, natural language understanding, planning, knowledge assimilation, etc.
The choice of the assumptions is often filtered through integrity constraints,
i.e. rules which eliminate certain solutions. A solution of an abductive task is
therefore a set of abducible atoms that do not violate the integrity constraints
and that if true make the query valid. Abductive solutions are hypotheses and as
such are inherently uncertain. For a given abductive task there may be multiple
solutions which may be ranked according to some notion of plausibility.

In a model governed by uncertainty, it is reasonable to consider a probability
distribution over the truth values of each (ground) abducible. This probabilistic
perspective provides a method of quantitatively estimating the quality of the
abductive solutions, and, consequently, that of the solved query. Introducing
probability in abduction essentially redefines the notion of abductive solutions
as no longer the minimal but the most preferred (possibly non minimal) assump-
tions, based on their probability, needed to explain a given query. Most existing
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work in probabilistic abduction (cf. Section 5) does not discuss minimality, nor
the role of integrity constraints. In this paper, we treat integrity constraints as
evidence from the perspective of probabilistic inference (i.e. the goal is to com-
pute P (Q|E), where Q is the query, and E the evidence). Typically, the query
is a set of random variables, and the evidence is a set of random variables whose
outcome is observed. We extend this notion of evidence to a set of constraints
imposed on the model, expressed as a logical formula. To motivate the main fea-
tures of our probabilistic abductive approach, including dropping the minimality
requirement, consider the following example of an abductive task:

Example 1. In the rules below the abducible atoms are rained last night and
sprinkler was on.

grass is wet ← rained last night

grass is wet ← sprinkler was on

shoes are wet ← grass is wet

The explanations of the observation that the shoes are wet are that either it
rained last night or the sprinkler was on.

In the above example, the explanation that it rained last night and the
sprinkler was on is non-minimal. We argue that if abduction is augmented with
probability using the distribution semantics, non-minimal solutions contribute to
the probability of the query, and thus cannot be discarded. Suppose that we know
that there is a probability 0.6 that it rained last night (with the complementary
probability if the abducible is false), and 0.7 that the sprinkler was on (with the
same remark). One might be tempted to choose the latter explanation, based
on its higher probability. However, if rained last night and sprinkler was on
are independent random events, the joint probability of rained last night and
sprinkler was on is computed as shown in Table 1. Under this assumption, the
most probable scenario is that it rained last night and the sprinkler was on. So
the explanation with highest probability is not necessarily the minimal one.

Table 1. Joint probability on the abducibles in Example 1

rained last night sprinkler was on P(rained last night, sprinkler was on)

false false 0.12

false true 0.28

true false 0.18

true true 0.42

Furthermore, most semantics for abduction would interpret the explanation
rained last night as rained last night is true and sprinkler was on is false, and
similarly for the explanation sprinkler was on, i.e. all the abducibles in the expla-
nation are true, and all that are not in it are false. The probability of the observa-
tion shoes are wet is 0.88 (i.e. sum of the join probabilities in the last three rows)
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as in the last three interpretations in Table 1 shoes are wet is true. Computing
this probability means, therefore, asking the probability that shoes are wet is
true under any explanation. This implies that choosing one explanation over
another is no longer arbitrary, or according to minimality or other criteria (e.g.
Example 2.1 in [13]). Instead, each explanation contributes with a probability
mass towards the probability of the observation and all possible explanations
should be considered. If a choice of particular explanations is required, then the
one with the highest probability should be preferred.

Example 1 shows also that to compute the correct probability of a given obser-
vation or query, the closed world assumption (CWA) on abducibles is insufficient.
In Table 1, the last interpretation would not be covered by the CWA over min-
imal explanations. In our approach, we propose an open world interpretation of
abducibles (cf. Section 3).

Let us now assume Example 1 to be extended with the integrity constraint
← sprinkler was on., expressing the statement that the sprinkler was off. This
implies that the only explanation will be rained last night. Treating integrity
constraints as evidence means computing the probabilistic inference P (Q|IC).

In our example Q = {shoes are wet} and the conditional probability P (Q,IC)
P (IC)

is, in this case, given by 0.18
0.18+0.12 = 0.6, which is indeed the expected result

of the probability of rained last night. If we, instead, extend Example 1 with
the integrity constraint ← not rained last night., meaning that we know that
it rained last night, then the probability of shoes are wet is 0.18+0.42

0.18+0.42 = 1. In
summary, the contributions of this papers are:

1. a probabilistic abductive framework, based on the distribution semantics for
normal logic programs [20,22], that handles negation as failure and integrity
constraints in the form of denials, and provides an open world interpretation
of abducibles;

2. a procedure for logical-probabilistic inference, based on the ASystem [14,17];
3. a practical application in the context of gene networks.

The paper is organized as follows. Section 2 introduces our framework and
define our probability model by adapting the distribution semantics for normal
logic programs under Fitting semantics [22]. In Section 3 we provide an imple-
mentation of our framework that uses an existing state-of-the-art abductive sys-
tem, appropriately modified in order to support the computation of non-minimal
abductive solutions. Section 4 illustrates the applicability of our framework to
the real world problem of gene network inference from observed data. Networks
are abduced as directed graphs with probabilistic edges to explain observed gene
expressions.We learn the probabilities of the edges (gene interactions) that would
maximize the probability of a given query and interpret the results. Section 5
discusses related work. In Section 6 we present future work and conclude.

2 Distribution Semantics for an Abductive Framework

An abductive framework is a tuple 〈P,AB, IC〉, where P is a normal logic pro-
gram, AB is a possibly infinite set of ground atoms called abducibles, and IC is a
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set of integrity constraints expressed as denials, each having the form ∀X ← Γ.,
where Γ is a set of literals and X is a set of variables. A query Q is a conjunction
of existentially quantified literals and denials. An abductive solution for a query
Q is a set of abducibles Δ, such that the ground instantiations of Δ, denoted
ground(Δ) are elements in AB and:

– comp3(P ∪Δ) |= Q.

– comp3(P ∪Δ) |= IC.

– comp3(P ∪Δ) |= CET

where CET denotes the Clark Equality Theory axioms [2], and comp3(Π) the
Fitting three-valued completion of a program Π [9].

We define our probabilistic abductive framework by integrating distribution
semantics [22] into the above notion of an abductive framework. Informally,
distribution semantics defines a probability distribution over the set of inter-
pretations over a set of facts F and extends it to a probability distribution
over interpretations of a program Π by applying the Fitting fixpoint operator
[9]. This extension implies that the probability of an interpretation of the facts
I ⊆ F will have the same value as the probability of an interpretation IΠ of
Π , given that IΠ is the fixpoint of I according to the rules in Π . In a similar
fashion, we consider a two-valued interpretation over abducibles I ⊆ AB and
extend it to interpretations IΠ of the Herbrand base of the whole program Π .
The interpretation IΠ is in general three-valued, however we impose the restric-
tion that IΠ is two-valued, and in what follows we will treat it as such. We
then consider a probability distribution PAB with the sample space the set of
all ground interpretations of abducibles (i.e. the powerset of AB) and we extend
PAB to a probability distribution PΠ with the sample space the set of all the
ground interpretations of the Herbrand base of Π . To compute PAB, we assume
that the assignments of truth values to an abducible are independent events, and
that all abducibles are basic, i.e. they do not appear in the heads of the rules in
Π [13]. If each abducible δ ∈ AB has a probability P (δ) of being true (and a
probability 1− P (δ) of being false), then PAB is computed as:

PAB(I) =
∏
δ∈I

P (δ)
∏
δ/∈I

(1− P (δ))

PAB is then extended to a probability distribution PΠ by applying Fitting’s
fixpoint operator ΦΠ to reach the fixpoint Φ∞Π [9].

PΠ(IΠ) =

{
PAB(I) if IΠ = Φ∞Π (I)

0 otherwise
(1)

Given the above probability distribution, it is possible to compute the proba-
bility of a two-valued interpretation IB of a set B of ground atoms in Π by
marginalization:
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PΠ(IB) =
∑

IΠ s.t. IB⊆IΠ

PΠ(IΠ)

For a single atom a, we write PΠ(a) with the meaning PΠ({a}) and PΠ(¬a)
with the meaning PΠ(∅).

In Example 1, PAB is the last column of Table 1, and the sample space is
given by the other columns. PΠ is obtained by extending PAB over grass is wet
and shoes are wet, with the appropriate truth values, i.e. the or function of
rained last night and sprinkler was on. For all other interpretations, PΠ is 0
(Equation 1).

The probability of a query Q given evidence expressed as integrity constraints
IC is then:

PΠ(Q|IC) =
PΠ(Q, IC)

PΠ(IC)
(2)

PΠ(Q, IC) =
∑

IΠ s.t. Q⊆IΠ
IΠ |=IC

PΠ(IΠ) (3)

PΠ(IC) =
∑

IΠ |=IC

PΠ(IΠ) (4)

Informally, PΠ(Q|IC) is the ratio of the probability of the interpretations that
agree with Q and do not violate the integrity constraints (Equation 3) over the
probability of the interpretations that do not violate the integrity constraints
(Equation 4).

The novel aspect of our approach is the definition of evidence as a set of in-
tegrity constraints, inspired by Markov Logic Networks [7] where the notions of
query and evidence are generalized to first-order formulae. This is more expres-
sive than traditional definitions of evidence (i.e. conjunction of random variables
taking particular values), because denials can express statements like “random
variables X and Y cannot take values x, respectively y at the same time”.

In the following section, we describe a logical-probabilistic procedure based
on the ASystem [14,17] which can be used for the inference of PΠ(Q|IC).

3 A Probabilistic Abductive System

This section describes the implementation of our probabilistic abductive frame-
work. It builds upon an existing abductive system, called ASystem [14,17], briefly
described in Section 3.1, and adapts it in Section 3.2 to allow non minimal ab-
ductive solutions. Section 3.3 shows how the abductive answers are used for
probabilistic inference.
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3.1 A Brief Description of the ASystem

The proof procedure of the ASystem [14,17] can be viewed as a state rewrit-
ing process, where each state rewrite is driven by the application of inference
rules. The latter handle also finite domain and real constraints using a constraint
solver. The system can compute non-ground answers and uses constructive nega-
tion, instead of standard negation as failure. Its development was inspired by
other abductive systems such as SLDNFA [6], ACLP [12], IFF [10]. The seman-
tics used in the ASystem is the three-valued completion semantics (comp3) [9]:
an interpretation of the abducibles is implicitly two-valued, whereas the inter-
pretation of the predicates in P is three-valued. The proof procedure can be
viewed as a tree, where the nodes are ASystem states and each node generates
children nodes according to a set of inference rules and a selection strategy. The
root of the tree is the initial state, and the leaves are failure states or success
states.

Definition 1 (ASystem state). An ASystem state S is a tuple (G,ST ).

– G is a set of goals where each goal can be a literal or a denial. All the
variables except the ones universally quantified in the denials are existentially
quantified.

– ST is a tuple (Δ,N , E , C) of four stores: Δ is the abducible store, a set of
(non-ground) abducible atoms, N is the denial store, a set of denials (or
dynamic integrity constraints), E is a set of (in)equalities, C is a set of finite
domain or real constraints.

A selection strategy Ξ has a two-fold role: it selects a goal Gi from the set G,
and if the goal is a denial ∀Y ← Γ. it further selects a literal from Γ . A selection
strategy is called safe if, in a failure goal, it never selects a negative literal
or a constraint literal, if the arguments of the predicate include a universally
quantified variable. If a failure goal contains only universally quantified negative
literals and universally quantified constraint literals, the derivation using a safe
selection strategy flounders and fails.

Definition 2 (Meaning of an ASystem state). The meaning of an ASystem
state M(S), S = (G, (Δ,N , E , C)) is the first-order formula:

M(S) = ∃X(
∧
g∈G

g ∧
∧
δ∈Δ

δ ∧
∧

∀YΓ←Γ∈N

(∀YΓ ← Γ.) ∧
∧
e∈E

e ∧
∧
c∈C

c)

YΓ is the set of the universally quantified variables in the denial body Γ , and X
is the set of all the other variables in M(S).

Definition 3 (ASystem derivation tree). Given an abductive framework 〈P ,
AB, IC〉, a query Q and a selection strategy Ξ, an ASystem derivation tree is
a tree such that:

– every node of the tree is an ASystem state.
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– children nodes are generated by selecting a goal (and if the goal is a denial,
further selecting a literal in the denial) according to Ξ, and then applying
the inference rules on the selected goal.

– the initial state is S0 = 〈Q ∪ IC,ST 0〉, and ST 0 = (∅, ∅, ∅, ∅).
– a success state is one in which G = ∅, and ST is consistent. If ST is incon-

sistent or the derivation flounders, then that state is a failure state. A state
is a leaf of the tree iff it is either a success or failure state.

Details of the inference rules and soundness and completeness results are de-
scribed in [16].

3.2 A Richer Set of Interpretations

According to the definition of our probabilistic semantics (cf. Section 2), every
interpretation of abducibles I ⊆ AB has a probability value. This implies that
the minimality of abductive solutions, as defined in [13], is no longer a desired
property. Since the ASystem incorporates minimality through its rules and inter-
pretations of abducibles, it needs to be modified in order to lift this restriction.
To achieve this goal, we will propose an open world interpretation of abducibles
via consistent extended interpretations (CEIs). Additionally, since probabilistic
inference is currently performed using ground predicates, the ASystem must also
be modified such that its success states contain only abducibles, since these are
groundable.

The latter modification will be realized using a new safe selection strategy. In
order to discuss it, we need to introduce the concept of ASystem types.

Definition 4 (ASystem types). We distinguish the following types of atoms
in the abductive context of the ASystem: (i) abducibles (ii) defined predicates and
(iii) constraints. The constraint predicates are of the form X = Y and X 
= Y
for in/equality constraints, and X = Y , X > Y , X < Y , . . . for real constraints.

Given a denial ∀Y ← Γ , the set Γ of body literals is split into three disjoint
sets Γ = ABL ∪ NGL ∪ OL. The set ABL contains abducible literals. NGL
contains negative non-ground defined predicates and non-ground constraint lit-
erals. OL consists of the remaining literals: positive defined literals, negative
ground defined literals, and ground constraint literals. Let Y NGL denote the set
of variables appearing in the elements of NGL and Y ABL the set of variables in
the elements of ABL.

Definition 5 (Unfolding Safe Selection Strategy). An unfolding safe se-
lection strategy ξ is a safe selection strategy that given the current goal G =
G− ∪ {∀Y ← Γ} and the selected denial ∀Y ← Γ , safely selects a literal from Γ
in the following manner:

– if OL 
= ∅, select an element from it.
– else, if Y NGL ∩ Y ABL 
= ∅, (i) ground all the abducibles containing at

least a variable from Y NGL ∩ Y ABL; (ii) set the new goal to be G+ =
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G− ∪ {ground(∀Y ← Γ )}, where ground(∀Y ← Γ ) is the grounding of
the selected denial goal with respect to Y NGL ∩ Y ABL and the non-ground
negative abducible literals in NGL, (iii) apply the unfolding safe selection
strategy to the new goal G+.

– else (OL = ∅ and Y NGL ∩ Y ABL = ∅), if ABL 
= ∅, select an element from
ABL. If the selected literal is negative and non-ground, we ground it and
apply the unfolding safe selection strategy to the newly generated goal.

– else fail.

The new safe selection strategy allows us to prove assumptions on what the
denial store N of any state would contain (see Proposition 1).

Proposition 1. Given an unfolding safe selection strategy ξ, the denial store in
a derivation tree is either empty or its denials have in their body only literals of
the following types: abducibles, universally quantified constraints or universally
quantified negative literals. Furthermore, for all denials ∀Y ← Γ in the denial
store it holds that there are no common variables between the abducible literals
and the negative non-ground literals and positive non-ground constraint literals
(Y NGL ∩ Y ABL = ∅).

Example 2. Consider an abductive task with the empty program P , integrity
constraints IC = {∀X,Y ← a(X), not p(X), not b(Y ).} where p is a defined
predicate, a is an abducible with domain {1, 2} and b/1 an abducible with domain
{3, 4}. Applying our system with an empty goal yields a success state in which
the denial is moved to the denial store, and nothing is abduced. Given our
abducible types and the unfolding selection strategy, our approach first grounds
the shared variable X , generating the new goal:

{∀Y ← a(1), not p(1), not b(Y )., ∀Y ← a(2), not p(2), not b(Y ).}
Let us assume that the first denial is selected as current denial goal1. The literal
not p(1) is selected, and since the predicate p has not definition not p(1) succeeds,
reducing the goal to ∀Y ← a(1), not b(Y ). In this new goal, we can either select
a(1), completing the proof with the denial store {∀Y ← a(1), not b(Y ).}, or
we can ground not b(Y ) to generate the goal {∀Y ← a(1), not b(3)., ∀Y ←
a(1), not b(4).}.

The unfolding safe selection strategy imposes an important restriction on the
denials: the variables that appear both in abducible and non-abducible atoms
have a finite domain, according to the domains of the abducible atoms. If one
were to lift this restriction, then the denial ← a(X), not p(X). would always fail,
assuming that a(X) is an abducible and p(X) is a defined predicate.

Our goal is to have only states whose meanings are (groundable) formulae
containing only abducible predicates, since the success states and the probability
of the abducibles will be used for inference. The unfolding safe selection strategy
allows us to remove from the denial store any non-abducible, i.e. according to

1 The second one is handled similarly.
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Proposition 1, universally quantified constraints or negative literals. This is pos-
sible due to the second property stated by the proposition claiming that there
are no common variables between abducibles and non-abducibles. For example,
in a denial such as ∀Y ← a, not p(Y )., where a is an abducible and p(Y ) is
a defined predicate, p(Y ) cannot be failed for all Y , so not p(Y ) is true, and
the denial is equivalent to: ∀Y ← a. The same holds for universally quantified
constraints in denials. From now on, we assume the denial stores of all states
contain only abducibles.

The ASystem interpretations of a success state S = (∅, (Δ,N , E , C)) is simply:
ground(Δ), i.e. all the abducibles in ground(Δ) are true, and the rest are false.
We propose a different understanding of an abductive solution corresponding to
a success state, while assuming the use of an unfolding safe selection strategy.
The reason we introduce this concept is that the definition of an open world
interpretation of abducibles is necessary for correct inference in our probabilistic
semantics.

Definition 6 (Consistent Extended Interpretations (CEIs)). Let S be a
success state in the proof of a query Q using an unfolding safe selection strategy
and M(S) the meaning of that success state, a ground formula containing only
abducibles. The consistent extended interpretations (CEIs) of S, denoted by IS
is the set of models of M(S). Since Δ is part of the conjunction in M(S), all
CEIs make the abducibles in Δ true. However, there may be other abducibles
which are true in a CEI, hence the title extended. These extensions are not
arbitrary, instead they must not violate the integrity constraints, encoded in the
denial store N , which is part of M(S), hence the title consistent.

For a query Q, the CEIs IQ are simply the union of the all success states,

or equivalently, the models of

n∨
i=1

M(Si), assuming Si, i = 1, . . . , n are all the

success states for Q.

Changing the perspective on how interpretations of abductive solutions are
constructed requires a theoretical justification. Theorem 1 shows that a CEI
corresponds to an ASystem interpretation of a success state for an extended
query. The extended query is the original query plus the extended part of the
CEI, i.e. the abducibles that are true, but not in the abducible store.

Theorem 1. Consider an abductive framework 〈P , AB, IC〉 with query Q.
Let Δi, i = 1, . . . , n be the abductive solutions. Let IQ be the set of consis-
tent extended interpretations of Q. For every Δ∗

i ⊆ AB \ ground(Δi) let I =

ground(Δi) ∪ Δ∗
i be a interpretation for the abductive solution to query Q

′
=

Q ∪Δ∗
i and let IΔ∗ be the set of all of all such interpretations.

Then IQ = IΔ∗ .

Due to Theorem 1, it is not difficult to extend and prove the notions of
soundness and completeness to CEIs.

Theorem 2 (Soundness for CEIs). Given an abductive framework 〈P , AB,
IC〉 with query Q, and the set IQ of consistent extended interpretations, then
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∀I ∈ IQ, comp3(P ∪ I) |= Q, and comp3(P ∪ I) is consistent.

Theorem 3 (Completeness for CEIs). Given an abductive framework 〈P ,
AB, IC〉 with query Q, and the set IQ of consistent extended interpretations.
(1) If IQ = ∅, then comp3(P ) |= ∀X(¬Q); and
(2) If comp3(P ∪ ∃X(Q)) is satisfiable, then IQ 
= ∅.

Example 3. We illustrate the concept of CEIs through the example of “Friends
and Smokers” social network analysis, in the variant presented in the ProbLog
2 tutorial2, using the standard Prolog syntax. Suppose there are 4 people:
person(i), ∀i = 1, . . . , 4 in a social network:

{friend(i,j)|(i, j) ∈ {(1, 2), (2, 1), (2, 4), (3, 2), (4, 2)}

Furthermore, people smoke either because they are stressed, or they are in-
fluenced by a friend who smokes, and smoking may cause asthma. We encode
this in Prolog as:

smokes(X) :- smokes(X, [X]).

smokes(X, _L) :- stress(X).

smokes(X, L) :-

friend(X,Y),

\+ member(Y,L),

influences(Y,X),

smokes(Y, [Y|L]).

asthma(X) :- smokes(X), smoke_asthma(X).

The abducibles in this problem are: stress/1, influences/2, and smoke asthma/1,
where the arguments are of type person.

Assume the query is asthma(1), and the evidence is:
{← not smokes(2).,← influences(4, 2).}. This means we are interested if person
1 has asthma, having observed that person 2 smokes, and person 4 has no in-
fluence on person 2. The proof procedure returns four success states, as possible
explanations for the query, with the following abducible and denial stores:
Δ1 = {stress(1), influences(1,2), smoke asthma(1), stress(2), influences(2,1)}
N1 = {← influences(4,2)}
Δ2 = {smoke asthma(1), stress(2), influences(2,1)}
N2 = {← influences(4,2)}
Δ3 = {smoke asthma(1), stress(1), influences(1,2)}
N3 = {← influences(4,2)}
Δ4 = {smoke asthma(1), stress(1), stress(2)}
N4 = {← influences(4,2)}

The CEIs for the second success state are the models of the meaning of the
state:

smoke asthma(1) ∧ stress(2) ∧ influences(2,1) ∧ ¬influences(4,2)
2 http://dtai.cs.kuleuven.be/problog/v2/tutorial.html#tut_part1_smokers

http://dtai.cs.kuleuven.be/problog/v2/tutorial.html#tut_part1_smokers
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instead of the single interpretation Δ2. The same holds for the other success
states, and the CEIs for the query are the models of the disjunction of all the
formulae. This allows the correct inference of the probability of the query, as
shown in the next section.

3.3 Probabilistic Inference

The previous subsection has presented the appropriate modification to the ASys-
tem to enable the computation of consistent extended interpretations (CEIs) for
a particular success state as the models of the meaning of that success state,
and, consequently, for an arbitrary query. The CEIs will be used to compute the
probability of a query, given the evidence as integrity constraints. The definition
of this quantity is given in Equation 2, Section2. At a first glance, it seems two
proofs are necessary, one in order to compute the numerator, using as initial goal
the query and the integrity constraints (Q ∪ IC) and one for the denominator,
using as initial goal just the integrity constraints. However, in this manner we
prove the integrity constraints twice. To avoid this redundancy, we refine the
unfolding safe selection strategy, such that the initial goals and the following
subgoals generated by the integrity constraints are solved before the goals and
subgoals obtained processing the query3.

The inference is divided into two parts. The initial goal is Q∪IC and we stop
expanding the proof tree once the integrity constraints are solved. This process
ends in pseudo-success states of the form: (Q, (Δ,N , E , C)). To compute the CEIs

needed for the denominator in Equation 2, we use the models of
∨
j

M(S′j), where

S′j = (∅, (Δj ,Nj , Ej, Cj)) is constructed from the pseudo-success state indexed j
by eliminating the query Q from the goal.

The second part of the proof, which is needed to compute Equation 3, resumes
the application of the inference rules on the partially developed tree from the
pseudo-success states (the other leaves are failure states). Finally, we obtain the
needed CEIs from the (true) success states.

We discuss the exact probability computation from the meaning of the success
states. In our current implementation, we use the idea of ProbLog I [15,4]: we

compile

n∨
i=1

M(Si) (and similarly for M(S′j) in the case of pseudo-success states)

to a BDD, and compute the probability of the BDD.

Example 4. Extending Example 3, suppose that there is 0.3 probability that a
person is stressed, 0.4 probability that smoke causes asthma, and 0.2 probability
that one friend influences another. Compiling the disjunction of the meaning of
the states in a BDD and computing its probability yields the value: 0.2035 as
the probability that person 1 has asthma under any explanation.

3 Note that this refinement concerns the goal selection rather than selecting a literal
from a denial, the main feature of an unfolding safe selection strategy.
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Furthermore, we can extend the example with more complex forms of evi-
dence. If one observes that in the studied social network, people with asthma
don’t influence other people to smoke, we can encode this as:
← asthma(X), influences(X,Y ).

Running the same query after adding this integrity constraint to the program
yields a probability of 0.0677, which, as expected, is lower than the probability
of person 1 having asthma without this observation. This can be explained also
by examining the two success states, with the abducible stores:
Δ1 = {smoke asthma(1), stress(2), influences(2,1)}
Δ2 = {stress(1), smoke asthma(1), stress(2)}

These solutions correspond to the second and fourth success states in Ex-
ample 3. The other two are no longer inferred since in both solutions person 1
influences person 2, and person 1 has asthma, thus violating the newly intro-
duced integrity constraint.

In principle, we could use different approaches to compile and evaluate the
ground formulae, such as weighted model counting on DNNFs used in ProbLog
2 [8], or, for approximate inference, the MaxWalkSAT procedure used in Markov
logic networks [7].

Probabilistic inference assumes that the probabilities of the abducibles are
known. Nevertheless, in many situations, these are not known. Instead, queries
or explanations are observed, and the probabilities of the abducibles are learned
to maximize the likelihood of the observed data. Based on the encoding of the
ground formulae, we can use existing algorithms for parameter learning, e.g. in
Section 4 we use the EM algorithm for BDDs proposed in [11] to rank abductive
solutions.

4 Evaluation

4.1 Friends and Smokers

In order to scale Examples 3 and 4, we simulate synthetic social networks by
generating power law random graphs using Python Web Graph Generator4. We
vary the maximum nodes from 5 to 200 with a step of 5, and the maximum
edges are double the maximum nodes. The obtained graphs are then parsed
into appropriate input files for our system, and for ProbLog 2. The initial files
contain only one random query atom with predicate asthma, which we enrich
with 10 random evidence literals, 5 with the smokers predicate name, and 5 with
smokers. We then run the abduction (without BDD compilation and evaluation)
and compare our performance with the ProbLog 2 counterpart, the grounding
step5.

4 http://pywebgraph.sourceforge.net/
5 ProbLog 2 has four steps: grounding, CNF conversion, compilation and evaluation,
and our modified ASystem can be used as an alternative to the first step. We run
ProbLog 2 with default parameters.

http://pywebgraph.sourceforge.net/
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Without evidence, our probabilistic abductive system slightly outperforms
grounding on large graphs. This result is expected since our top-down proof
grounds only what is needed in the proof of the query, rather than the whole
program. In the presence of evidence, however, our current prototype implemen-
tation suffers from the lack of tabling, and the time for the proof of the denials
increases exponentially in the number of denials. The grounding step of ProbLog
2 has the same complexity when incorporating evidence as in the previous case,
since the evidence is treated in a different way6.

In future work, we plan to improve the runtime of handling integrity con-
straints by either developing a tabling mechanism for abduction, or solving each
integrity constraint separately and assembling the final ground formula as a
conjunction of the formulae of the query, resp. of each integrity constraint.

4.2 Gene Interaction

We further evaluate our probabilistic abductive system on the problem of find-
ing network structures in the context of gene interaction networks based on
observed data and constraints determined by biological expertise. Our appli-
cation is motivated by the availability of high-throughput data. The task of
analysing such complex data requires computational tools to automatically infer
networks from data. Key challenges in network inference include incomplete and
noisy input, detection of complex network structures that capture fundamen-
tal properties (e.g., robustness oscillations, bistability) of biological systems and
computational complexity. An abductive framework caters for constraint checks
and prior knowledge incorporation, thus partially dealing with the problems [18].

Our probabilistic abductive system has been used to generate a network of
11 genes, shaped by the nature of the interactions between genes. The differ-
ent types of interactions between any pair of genes represent our abducibles:
compatible regulator(G1,G2, E) and overpowered regulator(G2,G2, E2) (abbrevi-
ated to r(G1, G2, E) and or(G1, G2, E)). The first two arguments of these ab-
ducibles are genes, whereas the third argument E is a binary variable over the
set {1,−1} denoting the causal effect of the interaction between two genes. For
example, r(g1, g2, 1) (resp. r(g1, g2,−1)) means that gene g1 activates (resp.
inhibits) gene g2. Compatible regulators represent regulators that satisfy the
sign consistency principle which postulates that the state of a target gene G2 is
directly related to the state of an activator G1 and inversely related to the state
of an inhibitor. Overpowered regulators are regulators that are overpowered by
a compatible regulator acting on the same target and thus are inconsistent with
the sign consistency principle. The probability of the abducibles can be inter-
preted as the the strength of the knowledge that led to this link being present.
The higher the probability the higher the chance that the link is true.

Our perspective on probabilistic abduction as requiring non-minimal solutions
is reflected in this experiment as biologists are interested in maximal networks

6 If our understanding is correct, the truth values of the atoms are propagated in the
ground program.



772 C.-R. Turliuc et al.

Fig. 1. Normal (resp. dashed) edges are r (resp. or) abducibles. Normal (resp. inverted)
arrow heads are activation (resp. inhibition).

to distinguish between interactions that are allowed and interactions which are
not biologically justified. During the inference process many different instances of
the abducibles can be generated and constraints expressing expert knowledge are
required to restrict the computation to possible biologically plausible networks.
For instance, abducibles have to satisfy existing knowledge of sets of potential
gene interactions:

← r(X,Y,E), not interactive potential(Y,X).
← or(X,Y,E), not interactive potential(Y,X).

It is also important to guarantee that a gene is not assumed to be at the same
time a compatible and an overpowered regulator of another gene, and that for
each overpowered regulator, there is at least one compatible regulator that can
overpower it. These are captured in our model by the constraints: ←
r(X,Y,E), or(X,Y,E).

← or(X,Y,E), not exists overpowered(X,Y ).
← or(X,Y,E), overpowered(Z,X, Y ), not r(Z, Y,W ).

The biological problem in hand has also insufficient known biological data to
provide reliable probabilities on the gene interactions. So instead of applying
direct inference, we have used the BDD-based expectation maximization (EM)
learning algorithm [11]. Using our probabilistic abductive system we obtain 36
plausible networks. Learning the probabilities of the interaction is done in order
to maximize the probability of each network (i.e. the success probability), and
this allows the ranking of the networks in terms of their likelihood. We initial-
ize the probabilities to 0.5 and the learning algorithm takes 135 iterations to
converge. In the abduced networks the compatible regulator links appear more
frequently than overpowered regulator, which is reflected in the learned parame-
ters and, consequently, the ranking of the networks. For example, the top ranked
network contains only compatible regulator links. Figure 1 shows a network vali-
dated by biological experiments.

A probabilistic abductive framework such as the one proposed in this paper
extends the benefits of abductive inference to capturing noise in the input data
and dealing with the problem of model selection. Given the number of variables
involved, there are a vast number of possible network topologies, and the problem
of model selection is combinatorial. Validating each of them would far exceed
practical resources. Our probabilistic approach provides preference measures over
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links within a network and over networks, thus helping in the design of follow
up experiments to discriminate between models.

5 Related Work

Logical-probabilistic reasoning has been defined in the context of deduction,
induction and abduction. In this section, we compare our approach to existing
work that focuses on probabilistic abduction or uses distribution semantics.

Probabilistic Horn abduction, later developed into the independent choice
logic (ICL) [19], is one of the first probabilistic abduction frameworks. ICL ac-
cepts as input normal logic programs, but does not support integrity constraints.
PRiSM [21] is a system created by the authors of distribution semantics that
allows negation as failure, yet probabilistic abduction in PRiSM does not handle
integrity constraints, and explanations are required to be mutually exclusive.
ProbLog [5,15] is defined in a deductive setting, so it does not feature integrity
constraints, and furthermore, the use of negation is limited to probabilistic facts
or predicates which are not defined based on probabilistic facts. The latter issue
has been addressed in ProbLog 2 [8], a system which, similarly to answer set
programming, relies on grounding. Our system postpones grounding as much as
possible, and the defined predicates in the program are not required to be ground-
able. Probabilistic abduction has also been defined in the context of constraint-
handling rules (CHR) systems [1] where clauses are definite, and the integrity
constraints can contain only abducibles. A probabilistic abduction method for
classical negation which allows the encoding of integrity constraints is introduced
in [11], but does not propose a probabilistic semantics in an abductive setting.

Markov logic networks (MLNs) [7] provide a different framework for combining
probabilistic and logical reasoning. Markov networks are used as a probabilistic
model and first-order theories encode the knowledge. Our approach is signifi-
cantly different in the sense that it is based on abductive logic programming
and the distribution semantics. In a MLN all formulas are treated as soft con-
straints, while in our approach we clearly distinguish between the rules in the
logic program and the integrity constraints expressed as denials. Furthermore,
we treat the integrity constraints as hard constraints: the consistent extended
interpretations never violate the constraints. The possibility of viewing denials
as soft constraints is a direction we wish to pursue in future work.

6 Conclusions

In this paper, we have proposed a method for applying distribution semantics in
an abductive framework and provided an implementation based on the abductive
procedure ASystem, showing how it can be adapted for probabilistic inference
by removing the requirement that an abductive solution should be minimal. We
have formally shown that our framework is correct with respect to distribution
semantics. Advantages of our approach include the ability to handle negation
as failure and integrity constraints as denials, as well as numerical constraints



774 C.-R. Turliuc et al.

and term (in-)equality. We have evaluated our implementation by applying it to
the task of finding biologically plausible networks describing gene interactions,
which requires discovering non-minimal solutions.

Future work includes making probabilistic inference in our system feasible
for larger problems through improved efficiency by tabling mechanisms. Due to
the similarity between abduction and induction, the former can be used as an
inference mechanism in inductive logic programming (ILP). We plan to integrate
our probabilistic abduction framework in a probabilistic ILP context, building
on results in [3] where the ASystem is used to explore the hypothesis space in
order to find solutions to an ILP task.

References

1. Christiansen, H.: Implementing Probabilistic Abductive Logic Programming with
Constraint Handling Rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Han-
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Abstract. We present a prototype refactoring framework based on
graph rewriting and bidirectional transformations that is designed to
be generic, extensible, and declarative. Our approach uses a language-
independent graph meta-model to represent proof developments in a
generic way. We use graph rewriting to enrich the meta-model with de-
pendency information and to perform refactorings, which are written as
declarative rewrite rules. Our framework, called Polar, is implemented
in the GrGen rewriting engine.

1 Introduction

Interactive theorem proving (ITP) is the science and art of constructing formal
proofs on a computer, using a formal logical language to state properties and
a proof language to construct the proof, with the assistance of a human guide.
ITP is maturing rapidly. Recent work on operating system kernel verification
has seen the size of the largest development leap past 500,000 lines of proof
[18], [6] and Gonthier and his team recently announced the completion of their
formalisation of the famous Feit-Thompson theorem, which weighs in at 170,000
lines and contains 4,300 theorems [14], [13]. The original informal proof was part
of the categorisation of finite simple groups in which Aschbacher quipped that
‘the probability of an error in the proof is one’ [2], which makes a fully verified
version of this proof all the more important. Furthermore, Tom Hales’ Flyspeck
project to formally prove Kepler’s famous conjecture about sphere packing is in
the final stages and may become the largest formal proof yet [16].

As proofs grow ever larger and more ambitious, the need for tool support
to aid development becomes more important. However, while software engineers
have a wide variety of tools at their disposal, budding proof engineers have had to
‘make do’ with basic environments that are akin to those used for programming
in the 80’s. Over thirty years of research into Software Engineering has resulted
in a wide variety of tools and techniques to support the software life-cycle. Large
proof developments have a similar life-cycle, but it is not yet well-supported. This
paper takes a modest step towards developing the tools of the trade for Proof
Engineering by adapting the popular technique of refactoring.

The term refactoring was coined by Opdyke in his seminal thesis to describe
behaviour preserving transformations that improve the readability, maintainabil-
ity, and efficiency of software [20]. Many refactorings, such as rename method

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 776–791, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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and delete method, are integrated into modern IDEs, and a refactoring engine is
seen as a crucial tool as programs regularly reach many thousands of lines.

Similarly, there is an urgent need to support proof refactoring in proof de-
velopment environments [6], [12]. In previous work, we have shown that proof
refactoring is feasible and given it a firm theoretical grounding, [24], [25]. With
the work reported here, we take a further step and provide a prototype tool for
refactoring called Polar (PrOof LAnguage Refactoring)1. In designing Polar,
we had four key requirements:
(i) With many ITP systems that each have a reasonably small userbase, we

wished it to be as widely applicable as possible.
(ii) It’s infeasible to implement all refactorings that may be required. Therefore,

we wished proof engineers to be able to implement custom refactorings.
(iii) We wanted to provide guarantees that the tool will not cause unexpected

semantic changes to the proof development.
(iv) Finally, refactorings should be specified in a natural way, so simple refac-

torings should require only a few lines to implement.
Based on the observation that many refactorings (e.g., those described in [24])
simply traverse through the abstract syntax to find the appropriate part to
refactor (and backed by recent programming language refactoring research [19]),
we based our approach on graph rewriting, where declarative rules can directly
match the location to refactor. We transform a theory to a graph representation
where unnecessary details are abstracted away, then declarative rewrite rules are
used to transform the graph. Finally, a bidirectional transformation mechanism
allows us to regain a refactored theory. By providing a graph meta-model, we
ensure our approach is generic: attaching a new proof language involves writing
an appropriate translation to the graph model. Furthermore, we have built Po-
lar on top of the GrGen graph rewriting engine, which provides a robust and
efficient basis. Furthermore, additional refactorings can be implemented using
GrGen’s DSL for writing transformations. The result is a refactoring framework
that is generic, extensible, and declarative. Specifically, we identify the following
contributions:
(1) The design and implementation of a prototype framework for refactoring

proof. Polar currently supports two proof languages and ten refactorings.
(2) Furthermore, Polar is extensible in two directions: new proof languages

and new refactorings can be added.
(3) We believe our framework is the only approach in the refactoring community

to combine abstraction of irrelevant details with a bidirectional transforma-
tion mechanism for obtaining a refactored source theory.

A more detailed presentation of Polar can be found in the second author’s PhD
thesis [24, Chapter 11].

Outline of paper In the next section (Section 2), we introduce refactoring by an
example. Then, Section 3 gives an overview of our approach. The full details of

1 Our prototype tool is available at
http://homepages.inf.ed.ac.uk/s0569509/refactoring.html

http://homepages.inf.ed.ac.uk/s0569509/refactoring.html
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Polar are given in Section 4. Finally, we sketch related and future work and
conclude in Section 5.

2 Introducing Refactoring

Polar is connected to two proof languages: Hiscript, as described in White-
side’s PhD thesis [24]; and, Ωscript, as described in Dietrich’s PhD thesis [9].
Throughout this paper, we use a simple theory in these languages as a running
example. The running example for Hiscript and Ωscript is shown in Figs. 1
and 2 respectively.

The languages are similar, being both based on Isar [23], but have some mi-
nor differences: (1) The syntax differs: backward steps, for example, are handled
in Hiscript using the show command; however, in Ωscript the command is
subgoal. (2) Hiscript is a generic proof language, which we instantiate with a
sequent style notation to describe the proof context. Ωscript uses a natural de-
duction style syntax to describe changes of the proof context. Thus, the number
of available proof commands differ; Ωscript, for example, allows assumptions to
be named and used directly but this is not possible in Hiscript. (3) In Hiscript,
theory items, such as tactics and lemmas, are annotated with a visibility. Only
public items are exported. In Ωscript, all items are exported.

theory set
begin
public tac intro := ⊆−def | ∩−def | id

public lemma comm: A ∩ B ⊆ B ∩ A
proof( intro )
show x ∈ A ∩ B � x ∈ B ∩ A
proof( intro )
show B: x ∈ A ∩ B � x ∈ B

by ∩−elim ; ax
show A: x ∈ A ∩ B � x ∈ A

by ∩−elim ; ax
qed
qed
end

Fig. 1. Hiscript running example

theory set
strategy intro := ⊆−def | ∩−def | Id

lemma comm: A ∩ B ⊆ B ∩ A
proof( intro )
assume hyp: x ∈ A ∩ B
subgoal x ∈ B ∩ A
proof ( intro )
subgoal x ∈ B from hyp
by auto
subgoal x ∈ A from hyp
by auto

qed
qed
end

Fig. 2. Ωscript running example

The Hiscript theory, for example, introduces a single tactic definition called
intro, which attempts to apply either the definition of subset or intersection; if
both fail, the identity tactic is applied, leaving the goal unchanged. The lemma
is proved in a backwards fashion, using a familiar declarative-style inside a proof
block, which operates on a single goal, applying the initial rule before solving the
resulting subgoals by the statements inside it.
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Example Refactorings. A proof refactoring is a behaviour preserving trans-
formation of a theory. Following [25], we say it preserves behaviour if at least
the same lemmas are proved before and after the refactoring. We observe that
in this (albeit contrived) example theory, the pattern intro: ‘try an introduction
rule and if it fails, do nothing’ is quite general. In fact, ‘try a tactic and if it fails,
do nothing’ is exactly the LCF TRY tactical [15]. Rather than (a) leave things
as they are (bad design); or, (b) manually generalise and change all occurrences
(tedious and error-prone) a refactoring called generalise tactic could be used to
make a structured, automated change to the theory.

Generalising a tactic requires the proof engineer to supply a sub-expression to
generalise over (⊆−def | ∩−def in this case); and a fresh name for the generalised
tactic (try). The result is a new, parameterised tactic and the replacement of the
body of the original tactic with a call to the more general tactic. Now, however,
the name intro is (slightly) inconsistent, so we decide to use rename tactic to
change it to tryintro. This refactoring will rename intro and any uses of it later
in the theory. The result of applying these refactorings on our running examples
are shown in Figs. 3 and 4.

theory set
begin
private tac try (X) := X | id
public tac tryintro := try(⊆−def |

∩−def)

public lemma comm: A ∩ B ⊆ B ∩ A
proof( tryintro )
show x ∈ A ∩ B � x ∈ B ∩ A
proof( tryintro )
show B: x ∈ A ∩ B � x ∈ B

by ∩−elim ; ax
show A: x ∈ A ∩ B � x ∈ A

by ∩−elim ; ax
qed
qed
end

Fig. 3. Refactored Hiscript theory

theory set
strategy try (X) := X | id
strategy tryintro := try(⊆−def |

∩−def)

lemma comm: A ∩ B ⊆ B ∩ A
proof( tryintro )
assume xinAB: x ∈ A ∩ B
subgoal x ∈ B ∩ A
proof ( tryintro )
subgoal x ∈ B from hyp
by auto

subgoal x ∈ A from hyp
by auto

qed
qed
end

Fig. 4. Refactored Ωscript theory

These examples exhibit the general structure of a refactoring. A set of pa-
rameters provide information about the object to refactor and any additional
information. Preconditions restrict applicability to ensure behaviour is preserved.
Finally, a transformation is applied to make the required change. In our frame-
work, parameters for refactorings are simply parameters of the rewrite rules, and
preconditions and transformations are written uniformly as rewrite rules.
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3 Approach

Our approach is based on graph rewriting and bidirectional transformation. We
provide a graph meta-model into which proofs from different languages can be
mapped. We then allow the specification of abstraction rules to create an ab-
stract view that includes only details relevant to a particular refactoring. This
abstracted graph can be enriched with semantic information, such as dependen-
cies and it is to this annotated, abstract graph that refactorings, specified as
rewrite rules, can be applied. An experimental transformation mechanism pro-
vides a means to propagate changes back from the abstract representation to the
concrete graph and finally to the syntax. Our meta-model is expressive enough
to allow many different proof languages to be mapped to it, thus making our
approach generic. Furthermore, the combination of abstraction and the use of
graph rewrite rules makes our refactoring specifications compact and declarative.

D A V ∼= G G+

D′ A′ V ′ ∼= G′ G′+

p Δϕ s

π

ΔV

ΔV �� Δφp−1

Δr r

Fig. 5. Overall workflow of our approach

The details of our approach are best described by the workflow in Fig. 5, which
consists of the following steps:
(1) A theory D is parsed to obtain the abstract syntax tree (AST), A.
(2) A user-defined abstraction function ϕ computes the view V of the theory.

We denote the difference between A and V by Δϕ.
(3) The view V is translated to an isomorphic unordered attributed graph repre-

sentation G that is used by the graph rewriting tool by making the ordering
relations among children explicit as shown in Fig. 6.

(4) Using a proof language-specific function s, G is enriched by semantic informa-
tion, such as dependencies, resulting in a semantic view G+. This enrichment
of the view is an important part of our approach and allows, e.g., edges to be
added between references to lemmas and their definition. These edges can
then be followed in a renaming refactoring.

r

. . .c1 cn

r

. . .c1 cn

ast ast

next next

Fig. 6. Representation of ordered trees as directed graphs
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(5) G+ is refactored, resulting in a modified view G′+. The refactoring performed
is selected by the proof engineer and may require additional information, e.g.,
a renaming refactoring would require the new name to be supplied.

(6) Apply the syntactic projection function π to obtain the modified view V ′.
(7) The modifications ΔV �� Δφ between V and V ′ are propagated back to

obtain a modified abstract syntax tree A′. The information from Δφ is used
to transform the ΔV so that modifications to the view are transformed to
modifications of the AST A.

(8) A′ is printed to obtain a modified theory D′.
The problem of propagating back the modified view (our step 7) to the source
is the well-known view-update problem [7].

Thus, our approach to refactoring combines two techniques: (i) graph rewrit-
ing and (ii) a bidirectional transformation mechanism. The main advantages
of (i) are the use of a formal language to describe refactorings in a language
independent format, and the existence of efficient tools. The advantages of (ii)
are independence of the actual syntax of the proof language and the support of
information hiding, resulting in a lightweight graph representation.

4 The Polar Framework

4.1 Graph Meta-model

Our graph model provides a source-language independent format, such that dif-
ferent languages can be connected to the refactoring framework. Formally, we
use attributed, typed graphs with inheritance (see [8] for a formal definition).
Attributes that can be attached to nodes and edges to store primitive types such
as integers or strings. The inheritance on node and edge types allows us to define
classes of nodes to simplify analysis and rewriting.

An example graph. Before describing the formalities of our graph, we provide
an example instance for the Hiscript theory in Fig. 1. A particular view of the
graph obtained from the example theory is given in Fig. 7. It is clear that the
constructed graph is similar to an abstract syntax tree for the theory; however,
there are some notable differences. We store the names of objects in the the-
ory as attributes in their corresponding node. Additionally, we abstract away
individual formula representations and visibility annotations. The motivation
behind this is to only present required details for a refactoring. In this graph we
see the node types for Lemmas’s, Tacdef’s and Theory’s. What is not visible is
the inheritance structure of types. We have a type ThyItem, of which Lemma,
Tactic, Definition , Axiom, etc are subtypes. We write Lemma < TheoryItem to
represent this relationship. Thus, a rewrite rule to match theory items can be
written uniformly.

Fig. 8 represents the proof block solving the goal x ∈ A ∩B $ x ∈ B ∩A. The
proof block subgraph introduces two additional elements of the graph structure.
Firstly, the proof block introduction tactic (in this case intro) is represented
as a subgraph. The Def node type represents defined tactics in the language.
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Tactic definition 
subgraph 

Proof subgraph 

ast 

next 

ast 

ast ast 

Fig. 7. The proof graph of Fig. 1

ast ast
ast ast ast 

next next next 

Proof subgraphs 

ast ast 
ast 

ast 

Fig. 8. The graph representation of a block

Secondly, in order to represent named references—to assumptions, tactics, other
lemmas etc.—we use the node type Uref, with a lab attribute.

Graph Model. The allowable structure of a graph is captured in the form of an
attributed type graph. The type graph restricts the node and edge types that can
occur and link together in the graph, and describes the attributes for each node
together with their types. Thus, it describes the structure of all its instances in
an abstract way and allows us to study relations between different languages.
Given a proof language L and a type graph t, we call an abstraction function
ϕ admissible wrt. t and L iff for all ASTs l ∈ L the abstraction ϕ(l) satisfies
the requirements imposed by the type graph (formally, the existence of a total
graph morphism into a type graph [8]).

Fig. 9 shows an excerpt of our type graph. In the figure, a � b indicates that

a is a subtype of b and inherits all the attributes of b, whereas a
type−→ b indicates

that edges of type type are allowed between nodes of type a to type b. This

lab:String
id:Int

Fig. 9. Type Graph
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graph shows the main type graph structure for a theory and its containing items
as well as the type graph structure for proofs of lemmas. We elide the type graph
corresponding to tactic expressions, but it is similar. The graph model is based
on an abstract node type NamedItem which has two attributes: a label that
represents its name and an identifier that is used internally to uniquely identify
a node. It then introduces nodes according to the structure of a typical proof
development: a node for theories, tactics, proofs and proof steps. Additionally, a
node of type Impact is introduced, which is used to attach additional information
to the nodes, e.g., failures that are detected by the dependency analysis. We
finally point out that we do not consider the current meta-model to be a ‘final’
representation. We expect that the process of writing more refactorings and
connecting additional languages will induce changes.

4.2 Abstraction and Back Translation

Since we allow different mappings to the meta-model for each language, we
provide a generic abstraction mechanism to perform simple manipulations on the
original AST, such as hiding specific subtrees. This allows us to experiment with
different graph representations for different refactorings—in particular, to work
with small and human-readable graphs—but it also requires a more sophisticated
change model that propagates back the changes made by a refactoring on the
abstract graph representation to the original AST. We first describe the process
by which we transform an AST into the view, then from the view to the graph,
and finally describe the back translation process.

Obtaining the View. ASTs are transformed to their view by the application of
abstraction rules, which operate on the AST of a well-formed theory and result
in an attributed tree. Abstraction functions are specified by a list of rewrite
rules. For example, the rule:

(TAC visib label tac arg?) −> (TACDEF (AT ”lab” label) tac arg?)

is used to abstract tactic definitions in a theory. We read this rule as matching
a tree rooted with the lexer type TAC and at least three subtrees: one for the
visibility, one for the name of the tactic, and one for the tactic definition itself.
There is also an optional subtree for any parameter for the tactic, matched with
the optional ? attribute. The special symbol AT is used to introduce an attribute
“lab” with value label. To illustrate the abstraction process, Fig. 10 shows a small
portion of the full AST corresponding to the tactic definition and Fig. 11 shows
the view resulting from applying the rule above. This abstraction rule performs
three changes:
(1) It performs a renaming of the lexer type TAC to TACDEF, which is the type

of the equivalent node in the graph model.
(2) It deletes the visibility subtree from the AST.
(3) Finally, it introduces an attribute for the name of the tactic being defined.
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Tac(24)

Public(25) Intro(26) |(16)

|(8)

Htatom(4)

Subsetelim(5)

Htatom(11)

Capelim(12)

Identity(19)

Fig. 10. AST of a tactic definition

Tacdef(24)

At(129)

lab(130) Intro(26)

|(16)

|(8)

Htatom(4)

Subsetelim(5)

Htatom(11)

Capelim(12)

Identity(19)

Fig. 11. AST after applying rule

The view is obtained by traversing the list of abstraction rules top-down. The
full set of abstraction rules for Hiscript can be seen in [24, Chap. 11], alongside
the full and the abstracted ASTs for Fig. 1.

View to the Graph. The view is then translated to an isomorphic graph rep-
resentation. This transformation simply involves translating any subtrees rooted
with an AT to attributes and making ordering explicit, cf. Fig. 6.

Back Translation: From the View to Concrete. Assuming we have already
refactored our abstracted graph, the changes in the abstract representation must
be propagated back to the AST and finally back to the theory. The key problem
for propagating the modified view back to its source is that the abstraction is not
one-to-one, meaning that some information is lost: the formulae, for example.

In general, given a proof node to be translated, there are two possibilities: (i)
the proof node existed already in the original graph. In this case, the abstracted
information can be reconstructed from the original graph; and, (ii) the proof
node was added by the refactoring operation. In this case, we ensure that, if
necessary, a default value is provided to keep the theory well-formed.

Our solution is based on the computation of differences using an edit script :

Definition 1 (edit operation, edit script). An edit script is a sequence of
the following basic edit operations that convert one tree into another
(1) delete(m) deletes the tree rooted in node m, where m is not the root node.
(2) insert(n, k,m) inserts the tree rooted by m to be the kth child of the node n.
(3) insert-after(n, k,m) inserts the tree rooted by m to be the right sibling of k

with parent n.
(4) move-before(n, k,m) moves the tree rooted by m to be the left sibling of k

with parent n.
(5) move-after(n, k,m) moves the tree rooted by m to be the right sibling of k

with parent n.
(6) update(m,n, v), which changes the attribute n of node m to v.

In our approach, two edit scripts are generated: one between the concrete AST
and the view (written Δϕ)—obtained by the abstraction—and the other between
the view and the modified view (written ΔV )—obtained by the refactoring.
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As a simple example, the edit script generated by the abstraction rule for
tactic definitions is shown:

delete(25) Delete node 25: the public node
insert(24, 0, 129) Insert node 129 as the zeroth child of node 24
update(24, con, Tacdef) Update the attribute of node 24 to ‘Tacdef’
moveAfter(129, 130, 26) Move the tree rooted at 26 to be the right sibling

of node 130, with parent 129. This moves the name
to the value position of the attribute.

This edit script transforms the AST in Fig. 10 to the view in Fig. 11. The
refactoring process constructs its own edit script. The complexity of the back
propagation process lies in the fact that the refactoring process induces changes
in the edit script Δϕ. To compute the differences efficiently, we use persistent
identifiers for nodes. These identifiers are used to track the origins of the nodes,
i.e. the changes of the theory. Within our implementation, the identifiers corre-
spond to the internal identifiers that are constructed during the parsing of the
theory and are never touched by the user (see, e.g. Fig. 10). To translate the
modified view back to the source level, we proceed by the following steps: (i)
deletes and updates on the view are applied to the source. (ii) Moves of the view
are translated to moves of the source; child positions are adapted based on the
diff computed by the abstraction function. (iii) Inserts on the view are propa-
gated to inserts on the source, child positions are adapted as well. (iv) Finally,
attributes are translated back to name nodes.

Our back-translation approach is experimental and we plan to further de-
velop the theory and practice behind the approach, but has been sufficient for
the refactorings that we have implemented for both the Hiscript and Ωscript

languages. In particular, we wish to compare our approach with the approaches
used in the field of bidirectional transformations, for example, [21,17,4].

4.3 Dependency Analysis

At this point in the Polar framework, we have abstracted a theory into its
view and translated that view to the isomorphic graph representation that was
described in Section 4.1. The next step is to enrich the graph with semantic
dependencies before applying the refactoring. Both these tasks are performed
by graph rewriting. This section describes the dependency analysis and the next
describes the refactorings themselves.

Types of Dependencies. Within a theory, there are many dependencies be-
tween the statements that need to be respected when applying a behaviour-
preserving transformation. For example, changing a name of a variable at some
place might require to change it at another place as well. Dependency analysis
aims to make dependencies due to interconnections between statements explicit.
Usually, these dependencies are statically identified using control flow and data
flow analysis, which can be performed based on a program dependency graph
(see [10]). A systematic review of existing solutions can be found in [1]. We fol-
low this common approach of static analysis, and enrich the syntactic graph by
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semantic edges, resulting in an abstract semantic graph. These edges are used
to check whether a refactoring can be applied, and to propagate changes.

We distinguish two kinds of dependencies: explicit and implicit dependencies.
Explicit dependencies hold between two objects and can thus be represented in
the graph by an edge. Implicit dependencies hold between several other items,
such as the requirement that each label must be unique inside its context. Such
dependencies are not explicitly introduced into the graph but are realised by
graph patterns inside our refactoring specifications.

Dependency Analysis in Polar. We enrich the graph by performing graph
rewrites to add edges of type res (for resolve) from the reference to the definition.
To illustrate the result, Fig. 12 shows a part of the enriched graph from our
running example. The graph shows the top level of the theory and part of the first
proof block of the lemma, including the intro tactic. The dependency analysis has
added an edge of type res linking the Uref node to the Tacdef node. Furthermore,
the analysis adds a second reference from the nested proof block.

ast 

next 

ast 

ast 

ast 
next 

ast 

ast 

ast ast 

ast

n

t

extex

ast ast

next next

next 

ast

res 

res 

Proof subgraph Tactic definition 
subgraph 

Fig. 12. Partial enriched graph

rule PLAnalysisHiscript {
modify {
exec (PLResolveRefsThy∗);
exec (PLResolveRefsFrom∗);
exec (PLResolveRefsTacVar∗);

}
}

Fig. 13. Top-level analysis rule

We represent the dependency analysis as rewrite rules. Fig. 13 shows the top-level
analysis function for Hiscript. The syntax we use is that of GrGen, the graph
rewriting tool that Polar is built on top of [11]. Rules in GrGen typically have
two sections: a pattern to match, which forms the precondition of the rewrite
rule and binds variables to graph elements; and a modify part that performs
the rewriting. The rule PLAnalysisHiscript has no preconditions, so we omit the
pattern in this case. The modifications are then performed sequentially and the
∗ operator means apply the rule until it fails. Thus, this rewrite rule will:
(1) Apply the PLResolveRefsThy rule as often as possible. This rewrite rule

matches references to theory items, such as lemmas and tactic definitions
and then recurses through the graph to find the definition. Its behaviour is
general in three ways: (a) It operates on the body of tactic definitions and in
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proofs; (b) It resolves references to both tactics and lemmas; (c) It resolves
references to locally defined tactics and lemmas.

(2) Then, apply the PLResolveRefsFrom rule as often as possible, which resolves
dependencies introduced by from statements.

(3) Finally, the PLResolveRefsTacVar rule analyses the local dependencies be-
tween tactic variables and their parameters. In the definition below, for
example, it adds res edges between the formal parameter X and its uses.
public tac ALL(X) := X ⊗ ALL(X) | 〈〉

Since Hiscript has a single namespace—tactics and lemmas can’t have the same
names—the rule PLResolveRefsThy is suitable for all theory items. We say that
analysis rules are proof language specific because this may not always be the
case and a separate namespace will require different analysis rules; furthermore,
a language with different scoping rules may need its own analysis rules. The
genericity in our approach stems from the fact that once these dependencies are
calculated, the same refactoring should be applicable to different languages.

4.4 Refactoring

To this enriched graph, we apply the refactorings. To illustrate the approach, we
describe the rename item refactoring. The full details of generalise tactic can be
seen in [24, Chap. 11].

Rename an Item. The refactoring rewrite rule, again in the GrGen syntax,
is shown in Fig. 14. The rule takes two parameters: the item to rename, as
a reference to a graph node, and the new name that has been supplied. The
rule itself contains two negative conditions that express the precondition for
this refactoring: that no object already exists with the supplied name. There is
one rule for searching above the item and the second for searching above the
item. Then, the rewriting part of the rule first matches every instance of a res
dependency edge to a reference and renames the reference using the iterated
language construct. Finally, the name of the definition is itself changed.

The refactoring definition itself is a bit of an anti-climax: the power of graph
matching and rewriting means the actual transformation is only about four lines
and clearly describes the transformation. Furthermore this refactoring is ap-
plicable to renaming many different items. The most complicated part of this
refactoring is checking the implicit dependency on name-freshness, but this is a
common precondition check and is often reused. Other refactorings that we have
implemented are similarly compact; for example, the move item refactoring is
based on repetition of a swap items refactoring that is written in one line. Some
refactorings that perform complicated changes to the graph, such as generalise
tactic require a larger rewrite rule, but the complexity is usually low.

5 Conclusion and Future Work

In this paper, we presented a concrete framework for refactoring formal proof de-
velopments in a generic, formal, and declarative way. The genericity is achieved
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rule PLRenameLabel(item:NamedItem, var newname:string)
{
negative {
defnode:NamedItem;
:SearchContextAbove(item, newname, defnode);

}
negative {
defnode:NamedItem;
:SearchContextBelow(item, newname, defnode);

}
iterated {
item <−:res− uref:Uref;
modify { eval { uref .name = newname; }}

}
modify { eval { item.name = newname; }}

}

Fig. 14. Rename item refactoring rewrite rule

by relying on a proof language independent graph meta-model and proof
language-dependent dependencies that are available in the preconditions of a
refactoring. Thus, to add a proof language, one simply needs to define abstrac-
tions into the meta-model and analysis functions for the dependencies.

To study the feasibility of the approach, we have implemented translations for
the proof languages Ωscript and Hiscript and implemented several non-trivial
refactorings. To keep the graph representation clean and tidy, our approach
allows for information hiding. The tool is also extensible as users can implement
their own refactorings in an intuitive way using a declarative language and the
graph representation allows for succinct presentations of many refactorings.

5.1 Related Work

In the domain of programming languages, Mens has shown that graph rewriting
provides a suitable framework to express refactorings [19]. Our approach is simi-
lar, but focuses on genericity, which is achieved by a language-independent graph
meta-model. Proof language-specific semantic dependencies are explicitly repre-
sented in the graph, similar to [5] which introduces abstract semantic graphs.
However, in contrast to existing approaches, we explicitly allow for information
hiding by abstraction, based on bidirectional transformation [21]. To our best
knowledge, this combination has not yet been explored in the literature. More-
over, due to the restricted complexity of proof languages, refactorings can be
proved to be correct. Closely related to our work is a domain-specific program-
ming language called JunGL, designed to enable a programmer to write their
own refactorings [22]. This approach is similar to ours as the language is also
generic. Where we use graph rewriting to perform the refactorings, JunGL has
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a number of built in language constructs for adding, removing and modifying
edges making the refactorings arguably less understandable. In joint work with
Autexier et al, Dietrich employed similar ideas in the SmartTies system for man-
agement of change in informal documents [3]. The SmartTies system was also
based on GrGen, and utilised graph rewriting to analyse dependencies between
documents.

5.2 Future Work

Besides expanding the number of implemented refactorings and proof languages
that are supported by our framework, future work will include a dynamic con-
nection to the theorem prover. This would allow us to attempt to close gaps
introduced by refactorings such as add a constructor. Furthermore, we would
like to establish a connection between the abstract proof language and the re-
sulting proof terms (e.g. to see whether a referenced label is indeed needed).
Moreover, we plan to provide a means to automatically refactor a theory ac-
cording to a specified style. We would also like to further investigate how we
could use our graph meta-model. One possibility is to use it as a bridge between
different proof languages allowing us to transform proofs in one language into
another language. Whilst the meta-model is suitable for declarative and proce-
dural proof languages, we would like to see if it holds tight for a language like
SSReflect, which facilitates a very different type of proof style.
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Niemelä, Ilkka 568
Nortje, Riku 636
Nunes, Isabel 243

Parigot, Michel 340
Pellitta, Giulio 258
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