Ken McMillan

Aart Middeldorp
Andrei Voronkov (Eds.)

ARCoSS

Logic for Programming,
Artificial Intelligence,
and Reasoning

LNCS 8312

19th International Conference, LPAR-19
Stellenbosch, South Africa, December 2013
Proceedings

- .- —

Lecture Notes in Computer Science 8312

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

Alfred Kobsa, USA Friedemann Mattern, Switzerland
John C. Mitchell, USA Moni Naor, Israel

Oscar Nierstrasz, Switzerland C. Pandu Rangan, India
Bernhard Steffen, Germany Madhu Sudan, USA

Demetri Terzopoulos, USA Doug Tygar, USA

Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Madhu Sudan, Microsoft Research, Cambridge, MA, USA
Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Ken McMillan Aart Middeldorp
Andrei Voronkov (Eds.)

Logic for Programming,
Artificial Intelligence,
and Reasoning

19th International Conference, LPAR-19
Stellenbosch, South Africa, December 14-19,2013

Proceedings

@ Springer

Volume Editors

Ken McMillan
Microsoft Research, Redmond, WA, USA
E-mail: kenmcml @microsoft.com

Aart Middeldorp
University of Innsbruck, Austria
E-mail: aart.middeldorp @uibk.ac.at

Andrei Voronkov
University of Manchester, UK
E-mail: andrei.voronkov @manchester.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-45220-8 e-ISBN 978-3-642-45221-5
DOI 10.1007/978-3-642-45221-5

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954674
CR Subject Classification (1998): F.3,1.2, D.2, F4.1, D.3, H4, L5

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 19th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-19),
held during December 14-19, 2013, in Stellenbosch, South Africa.

Following the call for papers, LPAR-19 received a record number of 152 sub-
missions, materializing in 136 submissions with authors representing 31 different
countries. Each submission was reviewed by at least three of the 37 Program
Committee (PC) members. The PC was assisted by 174 additional reviewers and
decided to accept 44 regular papers and eight tool descriptions and experimental
papers. Once again the EasyChair system provided an indispensable platform
for all matters related to the reviewing process, production of these proceedings,
program and Web page generation, and registration of participants.

A record number of workshops were collocated with LPAR-19. The Interna-
tional Workshop on Algebraic Logic in Computer Science was organized by Clint
van Alten of the University of the Witwatersrand and Petr Cintula and Carles
Noguera of the Academy of Sciences of the Czech Republic. The 2nd Workshop
on Automata, Logic, Formal languages, and Algebra (ALFA 2013) was organized
by Volker Diekert, Manfred Kufleitner, and Michael Matthiesen of the Univer-
sity of Stuttgart. The 7th International Workshop on Analytic Proof Systems
(APS-7) was organized by Matthias Baaz and Christian Fermiiller of the Vienna
University of Technology. The 10th International Workshop on the Implementa-
tion of Logics (IWIL-10) was organized by Stephan Schulz of the TU Miinchen,
Geoff Sutcliffe of the University of Miami, and Boris Konev of the University of
Liverpool. The First Workshop on Logics and Reasoning for Conceptual Models
was organized by Maria Keet of the University of KwaZulu-Natal, Diego Cal-
vanese of the Free University of Bolzano, and Szymon Klarman and Arina Britz
of the CSIR-Meraka Institute in Pretoria. We were fortunate in having Laura
Kovacs (Chalmers University of Technology) again as the LPAR-19 workshop
chair.

Another key person in the LPAR community is Geoff Sutcliffe. This year, in
his 5th LPAR organization, he teamed up with Bernd Fischer of the University
of Stellenbosch. We thank them for the excellent organization.

LPAR-19 is greatful for the generous support by Microsoft Research, IBM
South Africa, and VAS Tech.

October 2013 Ken Mcmillan
Aart Middeldorp
Andrei Voronkov

Program Committee

Franz Baader

Christel Baier

Josh Berdine

Armin Biere

Nikolaj Bjorner
Sandrine Blazy
Krishnendu Chatterjee
Thierry Coquand
Joerg Endrullis
Alberto Griggio

Kim Guldstrand Larsen
John Harrison

Manuel Hermenegildo
Stefan Hetzl

Nao Hirokawa

Martin Hofmann
Gerwin Klein
Michael Kohlhase
Laura Kovacs

Orna Kupferman
Temur Kutsia
Marta Kwiatkowska
P. Madhusudan

Rupak Majumdar
Ken Mcmillan
Aart Middeldorp
Albert Oliveras
Axel Polleres
Norbert Preining

Grigore Rosu

Philipp Ruemmer
Natarajan Shankar

Organization

Technical University of Dresden, Germany

Technical University of Dresden, Germany

Microsoft Research

Johannes Kepler University Linz, Austria

Microsoft Research

IRISA - Université Rennes 1, France

IST Austria

University of Gothenburg, Sweden

Vrije Universiteit Amsterdam, The Netherlands

FBK-ICT IRST, Italy

Aalborg University, Denmark

Intel Corporation

IMDEA Software Institute, Spain

Vienna University of Technology, Austria

Japan Advanced Institute of Science and
Technology

LMU Munich, Germany

NICTA and UNSW, Australia

Jacobs University, Germany

Chalmers University of Technology, Sweden

Hebrew University, Israel

Johannes Kepler University Linz, Austria

University of Oxford, UK

University of Illinois at Urbana-Champaign,
USA

Max Planck Institute for Software Systems,
Germany

Microsoft Research

University of Innsbruck, Austria

Technical University of Catalonia, Spain

Vienna University of Economics and Business,
Austria

Japan Advanced Institute of Science and
Technology

University of Illinois at Urbana-Champaign,
USA

Uppsala University, Sweden

SRI International

VIII Organization

Geoff Sutcliffe
Naoyuki Tamura
Helmut Veith

Andrei Voronkov
Christoph Weidenbach

Additional Reviewers

A. Zonouz, Saman
Abio, Ignasi

Adams, Michael
Almagor, Shaull
Aminof, Benjamin
Andronick, June

Aoto, Takahito
Aravantinos, Vincent
Armas Romero, Ana
Asin Aché, Roberto Javier
Avanzini, Martin
Bacci, Giorgio

Bacci, Giovanni

Baelde, David

Banbara, Mutsunori
Baumgartner, Alexander
Beek, Wouter
Benzmueller, Christoph
Berardi, Stefano

Boker, Udi
Bonakdarpour, Borzoo
Bonatti, Piero
Borgwardt, Stefan
Boyton, Andrew
Brewka, Gerhard
Bruscoli, Paola
Chmelik, Martin
Ciobaca, Stefan
Cirstea, Horatiu
Classen, Jens

Cruanes, Simon
Cuenca Grau, Bernardo
Dalsgaard, Andreas Engelbredt
De Nivelle, Hans
Delahaye, Benoit
Dimitrova, Rayna
Dragan, Ioan

University of Miami, USA

Kobe University, Japan

Vienna University of Technology, Austria
University of Manchester, UK

Max Planck Institute for Informatics, Germany

Drager, Klaus
Eberhard, Sebastian
Emmi, Michael
Falke, Stephan
Fernandez Gil, Oliver
Fontaine, Pascal
Forejt, Vojtech
Fuhs, Carsten
Gammie, Peter
Gario, Marco
Gascén, Adria
Gebler, Daniel
Gelfond, Michael
Gimenez, Stéphane
Gmeiner, Karl
Godo, Lluis

Gore, Rajeev
Greenaway, David
Guerrini, Stefano
Gundersen, Tom
Gupta, Ashustosh
Gurfinkel, Arie
Harrison, Amelia
Heule, Marijn
Hoder, Krystof
Hojjat, Hossein
Holzmann, Gerard
Horbach, Matthias
Hose, Katja
Hutter, Dieter
Holldobler, Steffen
Tancu, Mihnea
Jacquemard, Florent
Jovanovic, Dejan
Kakas, Antonis
Kaliszyk, Cezary
Kaminski, Mark

Kiefer, Stefan

Kifer, Michael

Kim, Jin Hyun
Klein, Joachim
Kloos, Johannes
Koenighofer, Robert
Konev, Boris

Kosta, Marek
Krause, Christian
Krennwallner, Thomas
Kuehlwein, Daniel
Lal, Akash

Leitsch, Alexander
Li, Wenchao
Lombardi, Carlos
Lopes, Nuno
Ludwig, Michel
Mainland, Geoffrey
Martins, Ruben
Matichuk, Daniel
Mereacre, Alexandru
Michaliszyn, Jakub
Micheli, Andrea
Montano Rivas, Omar
Moore, Brandon
Morales, Jose F.
Mosca, Alessandro
Murano, Aniello
Murray, Toby
Nabeshima, Hidetomo
Narizzano, Massimo
Nishida, Naoki
Noguera, Carles
Oikarinen, Emilia
Olesen, Mads Chr.
Oliva, Paulo

Ono, Hiroakira
Otop, Jan

Owre, Sam

Pagani, Michele
Palikareva, Hristina
Pan, Jeff Z.

Peltier, Nicolas
Polonsky, Andrew
Popescu, Andrei

Organization

Pozzato, Gian Luca
Piihrer, Jorg

Qu, Hongyang
Rabe, Florian
Ranise, Silvio

Redl, Christoph
Reinecke, Philipp
Rubin, Sasha
Ryabokon, Anna
Rybalchenko, Andrey
Schaafsma, Bas
Schaub, Torsten
Schneider, Michael
Sebastiani, Roberto
Seidl, Martina,
Serafini, Luciano
Serbanuta, Traian Florin
Serrano, Alejandro
Sewell, Thomas
Sheinvald, Sarai
Silva, Alexandra
Simaitis, Aistis
Simari, Guillermo
Simon, Laurent
Soh, Takehide
Stefanescu, Andrei
Stepanova, Dascha
Sternagel, Christian
Strassburger, Lutz
Stuckenschmidt, Heiner
Subotic, Pavle
Suda, Martin

Swift, Terrance
Thost, Veronica
Tompits, Hans
Tonetta, Stefano
Velner, Yaron
Vrgoc, Domagoj
Walsh, Toby
Wandelt, Sebastian
Weller, Daniel
Wenzel, Makarius
Williams, David
Wiltsche, Clemens
Wintersteiger, Christoph M.

IX

X Organization

Wojtczak, Dominik
Worrell, James
Xue, Bingtian
Yap, Roland
Zalinescu, Eugen

Zantema, Hans

Zelji¢, Aleksandar
Zimmermann, Antoine
Zuleger, Florian
Zwirchmayr, Jakob

Table of Contents

An Algorithm for Enumerating Maximal Models of Horn Theories

with an Application to Modal Logicsccoiiiiiiin... 1
Luca Aceto, Dario Della Monica, Anna Ingdlfsdottir,
Angelo Montanari, and Guido Sciavicco

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 18
Elvira Albert, Samir Genaim, and Enrique Martin-Martin

The Complexity of Clausal Fragments of LTL 35
Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev

A Semantic Basis for Proof Queries and Transformations.............. 53
David Aspinall, Ewen Denney, and Christoph Liith

Expressive Path Queries on Graphs with Data 71
Pablo Barcels, Gaelle Fontaine, and Anthony Widjaja Lin

Proving Infinite Satisfiability i 86
Peter Baumgartner and Joshua Bax

SAT-Based Preprocessing for MaxSAT 96
Anton Belov, Anténio Morgado, and Joao Marques-Silva

Dynamic and Static Symmetry Breaking in Answer Set
Programming. 112
Belaid Benhamou

HOL Based First-Order Modal Logic Provers........................ 127
Christoph Benzmiiller and Thomas Raths

Resourceful Reachability as HORN-LA 137
Josh Berdine, Nikolaj Bjorner, Samin Ishtiaq, Jael E. Kriener, and
Christoph M. Wintersteiger

A Seligman-Style Tableau System 147
Patrick Blackburn, Thomas Bolander, Torben Bratner, and
Klaus Frovin Jorgensen

Comparison of LTL to Deterministic Rabin Automata Translators 164
Frantisek Blahoudek, Mojmir Kretinsky, and Jan Strejcek

XII Table of Contents

Tree Interpolation in Vampire i ..
Régis Blanc, Ashutosh Gupta, Laura Kovdcs, and Bernhard Kragl

Polarizing Double-Negation Translations
Mélanie Boudard and Olivier Hermant

Revisiting the Equivalence of Shininess and Politeness
Filipe Casal and Joao Rasga

Towards Rational Closure for Fuzzy Logic: The Case of Propositional
GOdel LOGIC - . vt
Giovanni Casini and Umberto Straccia

Multi-objective Discounted Reward Verification in Graphs
and MDPso
Krishnendu Chatterjee, Vojtéch Forejt, and Dominik Wojtczak

Description Logics, Rules and Multi-context Systems
Luis Cruz-Filipe, Rita Henriques, and Isabel Nunes

Complexity Analysis in Presence of Control Operators and Higher-Order
Functions
Ugo Dal Lago and Giulio Pellitta

Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction

Modulo
David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre
Halmagrand, and Olivier Hermant

Long-Distance Resolution: Proof Generation and Strategy Extraction
in Search-Based QBF Solving........ i
Uwe Egly, Florian Lonsing, and Magdalena Widl

Verifying Temporal Properties in Real Models
Tim French, John McCabe-Dansted, and Mark Reynolds

A Graphical Language for Proof Strategies
Gudmund Grov, Aleks Kissinger, and Yuhui Lin

A Proof of Strong Normalisation of the Typed Atomic
Lambda-Calculus
Tom Gundersen, Willem Heijltjes, and Michel Parigot

Relaxing Synchronization Constraints in Behavioral Programs
David Harel, Amir Kantor, and Guy Katz

Characterizing Subset Spaces as Bi-topological Structures
Bernhard Heinemann

Table of Contents

Proof-Pattern Recognition and Lemma Discovery in ACL2
Jonathan Heras, Fkaterina Komendantskaya, Moa Johansson, and
Ewen Maclean

Semantic A-translations and Super-Consistency Entail Classical Cut
Elimination
Lisa Allali and Olivier Hermant

Blocked Clause Decomposition.,
Marijn J.H. Heule and Armin Biere

Maximal Falsifiability: Definitions, Algorithms, and Applications
Alezey Ignatiev, Antonio Morgado, Jordi Planes, and
Joao Marques-Silva

Solving Geometry Problems Using a Combination of Symbolic
and Numerical Reasoning i
Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv

On QBF Proofs and Preprocessing oo,
Mikolds Janota, Radu Grigore, and Joao Marques-Silva

Partial Backtracking in CDCL Solvers o ..
Chuan Jiang and Ting Zhang

Lemma Mining over HOL Lighto o oL,
Cezary Kaliszyk and Josef Urban

On Module-Based Abstraction and Repair of Behavioral Programs
Guy Katz

Prediction and Explanation over DL-Lite Data Streams...............
Szymon Klarman and Thomas Meyer

Forgetting Concept and Role Symbols in ALCH-Ontologies
Patrick Koopmann and Renate A. Schmidt

Simulating Parity Reasoning L.
Tero Laitinen, Tommi Junttila, and Ilkka Niemela

Herbrand Theorems for Substructural Logics
Petr Cintula and George Metcalfe

On Promptness in Parity Games i
Fabio Mogavero, Aniello Murano, and Loredana Sorrentino

Defining Privacy Is Supposed to Be Easy............
Sebastian A. Mdédersheim, Thomas Grof, and Luca Vigano

Reachability Modules for the Description Logic SRZQ................
Riku Nortje, Katarina Britz, and Thomas Meyer

X1V Table of Contents

An Event Structure Model for Probabilistic Concurrent Kleene
Algebra . ..o
Annabelle Mclver, Tahiry Rabehaja, and Georg Struth

Three SCC-Based Emptiness Checks for Generalized Bchi

Automata e
Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, and
Denis Poitrenaud

PeRIPLO: A Framework for Producing Effective Interpolants

in SAT-Based Software Verification.................
Simone Fulvio Rollini, Leonardo Alt, Grigory Fedyukovich,
Antti E.J. Hyvdarinen, and Natasha Sharygina

Incremental Tabling for Query-Driven Propagation of Logic Program
Updates . ..ot
Ari Saptawijaya and Luis Moniz Pereira

Tracking Data-Flow with Open Closure Types
Gabriel Scherer and Jan Hoffmann

Putting Newton into Practice: A Solver for Polynomial Equations over
SEIMUTINGS .« o . vttt
Mazximilian Schlund, Michat Terepeta, and Michael Luttenberger

System Description: E 1.8
Stephan Schulz

Formalization of Laplace Transform Using the Multivariable Calculus
Theory of HOL-Light o e
Syeda Hira Taqdees and Osman Hasan

On Minimality and Integrity Constraints in Probabilistic Abduction
Calin-Rares Turliuc, Nataly Maimari, Alessandra Russo, and
Krysia Broda

POLAR: A Framework for Proof Refactoring
Dominik Dietrich, Iain Whiteside, and David Aspinall

Author Index

An Algorithm for Enumerating Maximal Models
of Horn Theories with an Application
to Modal Logics*

Luca Aceto!, Dario Della Monica!, Anna Ingélfsdottir?,
Angelo Montanari?, and Guido Sciavicco?

1 ICE-TCS, School of Computer Science

Reykjavik University, Reykjavik, Iceland
{luca,dariodm,annai}@ru.is

2 Department of Mathematics and Computer Science
University of Udine, Udine, Italy
angelo.montanari@uniud.it
3 Department of Information, Engineering and Communications
University of Murcia, Murcia, Spain
guido@um.es

Abstract. The fragment of propositional logic known as Horn theories
plays a central role in automated reasoning. The problem of enumerating
the maximal models of a Horn theory (MAXMoD) has been proved to be
computationally hard, unless P = NP. To the best of our knowledge, the
only algorithm available for it is the one based on a brute-force approach.
In this paper, we provide an algorithm for the problem of enumerating
the maximal subsets of facts that do not entail a distinguished atomic
proposition in a definite Horn theory (MAXNOENTAIL). We show that
MaxMob is polynomially reducible to MAXNOENTAIL (and vice versa),
making it possible to solve also the former problem using the proposed
algorithm. Addressing MAXMobD via MAXNOENTAIL opens, inter alia,
the possibility of benefiting from the monotonicity of the notion of entail-
ment. (The notion of model does not enjoy such a property.) We also dis-
cuss an application of MAXNOENTAIL to expressiveness issues for modal
logics, which reveals the effectiveness of the proposed algorithm.

Keywords: Horn theory, entailment, satisfiability, enumeration prob-
lems, modal logics.

* The authors acknowledge the support from the Spanish fellowship program ‘Ra-
mon y Cajal’ RYC-2011-07821 and the Spanish MEC project TIN2009-14372-C03-
01 (G. Sciavicco), the project Processes and Modal Logics (project nr. 100048021)
of the Icelandic Research Fund (L. Aceto, D. Della Monica, and A. Ingdlfsdottir),
the project Decidability and Exzpressiveness for Interval Temporal Logics (project
nr. 130802-051) of the Icelandic Research Fund (D. Della Monica), and the Italian
GNCS project Extended Game Logics (A. Montanari).

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 1 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 L. Aceto et al.

1 Introduction

Propositional logic is the most basic tool in computer science and artificial in-
telligence. Despite its limited expressive power, it allows one to formalize several
interesting scenarios. In particular, the fragment of propositional logic known as
Horn theories [I] plays a central role in the search for efficient reasoning meth-
ods thanks to its good computational properties: the entailment problem can be
solved in linear time [2I3], while it is NP-complete for full propositional logic.
A Horn theory is a conjunction of clauses (that is, disjunctions of literals) such
that every clause has, at most, one positive literal.

Horn theories can be applied to a number of different fields, such as plan-
ning [4], case based reasoning [5], or diagnosis [6]. A common problem is that
of enumerating the models of a given theory with a particular property, e.g.,
maximality or minimality. As an example, the concepts of propositional circum-
scription and minimal/maximal diagnosis are related to this problem [7|§]. A
model of a Horn theory is a truth assignment for all its atomic propositions that
satisfies the theory. A model is maximal if extending its set of true propositions
has the effect of losing the property of being a model. The problem of enumerat-
ing the maximal models of a given Horn theory, called here MAXMOD, has been
studied in [9]. Since the problem has, in general, an output whose dimension
(number of solutions returned) is exponential in the size of the input, one can
hope, at best, to have an output-polynomial algorithm, that is, an algorithm
whose complexity is polynomial in the size of both input and output. (A survey
on the relationship between the output complexity hierarchy and the classical
complexity hierarchy can be found in [I0/I1].) In [9], it has been proved that,
unless P=NP, no output-polynomial algorithm can be devised for MAXMOD.
This discouraged further investigation in the search for efficient algorithms for
MAXMoOD. As a consequence, to the best of our knowledge, the only algorithm
available for it is the one based on a brute-force approach. It explores the space
of truth assignments over the set of atomic propositions searching for maximal
models. The trivial way to do so is in two steps: first, by identifying those as-
signments that are models, and then by checking them for maximality. Since the
number of assignments is the size of the powerset of the set of propositions, the
algorithm runs in exponential time.

In this paper, we establish a connection between MAXMOD and the problem
of enumerating all maximal subsets of atomic propositions (facts) that do not
entail a distinguished proposition in a given definite Horn theory (a theory where
all clauses contain exactly one positive literal). The outcome of the latter prob-
lem, called here MAXNOENTAIL, can be intuitively interpreted as follows: all
maximal sets of facts that do not have atomic proposition X as a consequence.
We show that MAXMOD and MAXNOENTAIL are polynomially equivalent; thus,
every algorithm for MAXNOENTAIL is also an algorithm for MAXMoOD. It is
worth noticing that the notion of entailment is monotone: if a set of facts entails
a proposition, also each of its extensions does. Consequently, in order to check
the maximality of a set F' of facts that do not entail a given proposition X in
a definite Horn theory, it is enough to check that every extension obtained by

On Enumerating Maximal Models of Horn Theories 3

adding a single new proposition to F' does entail X. On the other hand, the
notion of model (and thus the notion of non-model) does not enjoy a similar
property and thus, in order to verify the maximality of a model M of a Horn
theory, it is necessary to verify that all the valuations extending M (i.e., the
valuations for which the set of true propositions is an extension of the set of
true propositions of M) are not models of the theory. Thanks to the mono-
tonicity of entailment, the brute-force algorithm for MAXNOENTAIL performs
better than the brute-force approach for MAXMOD. Thus, reducing MAXMoOD
to MAXNOENTAIL immediately gives us a faster, yet trivial, solution to MAX-
Mob. Furthermore, we present an alternative algorithm for MAXNOENTAIL that
performs better than the brute-force approach, as it minimizes the number of
candidate solutions that are tested before producing the next solution.

Another benefit resulting from approaching MAXMOD via MAXNOENTAIL is
that the latter problem is closely related to expressiveness issues for modal logics
[12]. Indeed, such a relation between Horn theories and modal logics motivated
this study in the first place [I3J14]. A major issue in modal logic is that of finding
out which modalities can be expressed in terms of others, in order to classify
all expressively different sub-logics with respect to, e.g., expressive power or
complexity of the satisfiability problem. A common approach to this problem
consists of two steps: first, identifying as many inter-definabilities as possible,
and then trying to prove completeness of such a set of inter-definabilities. The
second step has two possible outcomes: either one is able to prove completeness,
or the failure in proving it might suggest new inter-definabilities, giving rise
to a new, extended set of inter-definabilities to be checked for completeness.
In any case, the second step requires the identification of all maximal subsets
of modalities that, within the current set of known inter-definabilities, do not
express a specific modality. Since a set of inter-definabilities between modalities
can be thought of as a definite Horn theory (where atomic propositions play the
role of the modalities), identifying such maximal subsets of modalities amounts
to solving MAXNOENTAIL. We provide empirical evidence that the proposed
algorithm for MAXNOENTAIL is particularly efficient when applied to the study
of the expressive power of modal logics, as described above, allowing us to solve
instances that were intractable with the brute-force approach.

The paper is organized as follows. In Section 2] we give the preliminaries.
In Section Bl we prove that MAXMoD and MAXNOENTAIL are polynomially
equivalent. We also present there the brute-force algorithm for MAXNOENTAIL,
that gives us a more efficient solution for MAXMoD. In Section @l we present
an alternative algorithm for MAXNOENTAIL and we prove its correctness. In
Section [l we give evidence of the effectiveness of the proposed method when
applied to expressiveness issues for modal logics. Finally, in Section Bl we give
an assessment of the work and outline future research directions.

2 Preliminaries

Throughout the paper, P denotes a finite, non-empty set of atomic propositions.
A Boolean expression over P is a formula built using propositions from P and

4 L. Aceto et al.

the classic Boolean operators of negation, conjunction, and disjunction. Every
Boolean expression can be transformed into an equivalent formula in conjunctive
normal form (CNF), where the outermost operator is the conjunction and each
conjunct is a disjunction of literals, that is, atomic propositions (positive literals)
or their negation (negative literals). A Horn theory (or Horn expression) over P is
a Boolean expression over P in CNF whose conjuncts have at most one positive
literal. Conjuncts of a Horn theory are referred to as clauses. It is common
practice to think of a Horn theory K as the set {d1,...,d;} of its clauses. The
atomic propositions occurring negated in a clause are called antecedents of the
clause; the positive literal, if any, is called consequent of the clause. A clause
6 = —AL V...V ALV A of a Horn theory can be seen as the implication of
the consequent by the antecedents, written as A%, ... ,Aim = A’. A clause with
exactly one literal is a fact. A clause —Abv.. .\/—\Ajn1 with no positive literal can
be seen as Aj,..., A, = L. Thus, it is useful to think of L as a distinguished
atomic proposition in P, whose truth value is 0 in each truth assignment (see
below for a formal definition of the notion of assignment). A theory in which
every clause contains exactly one positive literal is said to be definite. Given a
clause §, we denote by ants its set of antecedents, and by conss the singleton
containing the consequent. Finally, by HTp (resp., DHTp), we denote the set
of all (resp., definite) Horn theories over the set of atomic propositions P.

An assignment M over P is defined as a function M : P — {0, 1}, assigning
a truth value to every proposition in P. An assignment M over P is a model of
a Horn theory K € HTp, denoted by M = K, if and only if it satisfies all the
clauses of K. A Horn theory is satisfiable if and only if there exists a model for it.
Moreover, we say that IC entails a literal I, denoted =i [, if and only if LU {-l}
is not satisfiable. Here, we are mainly interested in entailment of positive literals.
Given a Horn theory K € HTp, a subset of P is also referred to as a fragment
(of P). Thus, a fragment is a set of positive literals. Given a fragment F of P,
a positive literal X € P, and a Horn theory K € HTp, we say that F' entails
X in K, denoted by F x X, if and only if K U F U {—=X} is unsatisfiable,
that is, every model M of L U F' is such that M (X) = 1. Given an assignment
M over P, we define the fragment induced by M, denoted by n(M), as the one
containing exactly the propositions that are true in M. On the other hand, given
a fragment F' of P, the assignment induced by F, denoted by u(F), is obtained
by setting to 1 the propositions in F', and to 0 the ones in P \ F. It obviously
holds that F' = n(u(F)) and M = p(n(M)), for each fragment F' of P and for
each assignment M over P. The notion of entailment can now be extended from
fragments to assignments: M entails X in K, denoted by M |=x X, if and only
if n(M) =k X . Similarly, the order over fragments induced by the set inclusion
operation C can be extended to assignments as follows: M < M’ if and only
if n(M) C n(M"). Notice also that entailment is monotonic: if F' =x X (resp.,
M Ex X) holds for some fragment F' (resp., model M), then F’' =x X (resp.,
M’ =k X) holds for every F” such that F' C F’ (resp., M’ such that M < M").

Given a Horn theory K, a model M of K is mazimal if and only if M’ }~= K for
every assignment M’ such that M < M’. A fragment F is X -incomplete in K if

On Enumerating Maximal Models of Horn Theories 5

proc BrRuTeForceEMAaxMob (P, K)

S+ 0
for each assignment M over P proc BRUTEFoRCEMAXNoOENTAIL (P, K, X)
do S« 0
if M =K for F C P
{ then § + SU{M} do
for M € S if F e X
do then
if AIM' €S st. M < M’ if VA € P\ F it holds F U {A} = X
then S «+ S\ {M} then S + SU{F}
return S return S

Fig.1. The brute-force algorithm for MaxMobD (left-hand side), and the one, more
efficient, for MAXNOENTAIL (right-hand side)

and only if F £ X, and it is mazimally X -incomplete in K if and only if it is
X -incomplete in K and F’ =x X for every fragment F” such that FF C F’'. We
will sometimes omit the specification of the Horn theory if it is clear from the
context. Clearly, the monotonicity of entailment implies the monotonicity of X-
incompleteness (if F' is X-incomplete, then each of its subsets is X-incomplete,
as well). Therefore, the notion of maximal incompleteness can be rephrased in
the following equivalent way: F' is maximally X-incomplete if and only if it is X-
incomplete and F'U {A} = X for each A € P\ F. On the contrary, the notion
of model of a generic theory does not enjoy such a property. As an example,
consider the theory K, featuring the only clause A, B = C" the assignment M,
which sets all the propositions to 0, is a model of IC; the assignment M’ which
extends the set of true propositions of M by setting A and B to 1, is not a model
of K; the assignment M”, which in turn extends the set of true propositions of
M’ by setting also C to 1, is another model of K.

We are now ready to formally define the enumeration problems MAXMOD
and MAXNOENTAIL, that are the aim of this study.

Definition 1. Given a set of atomic propositions P and a Horn theory K €
HTp, the problem MAXMOD is defined as the problem of enumerating all and
only the assignments over P that are mazximal models of KC. Similarly, given a
set of atomic propositions P, a definite Horn theory K € DHTp, and a distin-
guished atomic proposition X € P, the problem MAXNOENTAIL is defined as the
problem of enumerating all and only the fragments F of P that are mazimally
X -incomplete in K.

For the sake of completeness, before concluding the section we provide, in
Fig. [left-hand side, the pseudo-code of a trivial, brute-force algorithm for
MAXMoOD. It is clear that the algorithm described there is highly inefficient,
and obviously not output-polynomial (in [9] it is proven that, unless P=NP, no
output-polynomial algorithm exists for this problem): even if the set of solutions
is small, or even empty, the algorithm requires an exponential number of steps.
Moreover, the algorithm performs two iterations: the one on the space of the val-
uations over P, whose size is exponential in the one of the input, and the other on

6 L. Aceto et al.

the space of the models of the Horn theory I, whose size is possibly exponential
in the one of the input, as well. In what follows, we first present a brute-force
algorithm for MAXNOENTAIL (see Fig.[I] right-hand side) that, thanks to the
monotonicity of entailment, avoids the second iteration step, thus having bet-
ter performance than the one for MAXMOD. Then, we propose a more efficient
solution for MAXNOENTAIL. Since, as we will show, MAXMOD is polynomially
reducible to MAXNOENTAIL, the proposed algorithms for MAXNOENTAIL apply
to MAaxMob, too.

3 Solving MAXMoOD through MAXNOENTAIL

In this section, we provide a polynomial reduction from MAXMOD to MAX-
NOENTAIL, and the other way around. This allows us to employ the brute-force
algorithm for MAXNOENTAIL, depicted in Fig. [l (right-hand side), to solve M AX-
MoD, thus obtaining a more efficient, yet trivial, solution for it that benefits from
the monotonicity of entailment. A MAXMOD instance is a pair (P,K), where
P is a set of propositions and K € HTp. A MAXNOENTAIL instance is a triple
(P,K,X), where P is a set of propositions, K € DHTp, and X € P. In what
follows, we define the functions 7 and ~ that are used to transform MAXMOoOD
instances into MAXNOENTAIL ones, and vice versa.

Definition 2. 7 : HTp — DHTpy(x), where X is a distinguished atomic
proposition not belonging to P, is defined as follows: for each Horn theory K €
HTp, 7(K) is the smallest theory such that: (i) for each clause 6 € KC that con-
tains one positive literal, 6 belongs to T(K), and (ii) for each clause § € K of the
type ants = L (i.e., § does not contain positive literals), the clause ants = X
belongs to 7(K). v: DHTp x P — HTp is defined as follows: for each definite
Horn theory K € DHTp and proposition X € P, v(K,X) =K U {=X}.

Our goal is to show that, for every MAXMOD instance (P, K), with X ¢ P,
the set of solutions of MAXMoOD on (P, K) coincides with the set of solutions
of MAXNOENTAIL on (P U {X},7(K), X), and that, for every MAXNOENTAIL
instance (P, K, X), the set of solutions of MAXNOENTAIL on (P, K, X) coin-
cides with the set of solutions of MAXMOD on (P, (K, X)). Let us give, first, a
technical lemma.

Lemma 1. Let K € HTp and A € P. The following results hold.

(a) Let F be a fragment of P that is mazimally X -incomplete in K. Then, A € F
if and only if F Ex A.
(b) Let M be a model of K. Then, M(A) =1 if and only if M |=x A.

Proof. (@) Let F' be a fragment of P that is maximally X-incomplete in K.
If A € F, then F U {-A} is unsatisfiable, and therefore F' = A follows by
the definition of entailment. To prove the converse implication, let us suppose,
for the sake of contradiction, that F' =x A and A ¢ F. By the definition of
entailment, it follows that KX U F'U {—A} is unsatisfiable, that is, every model

On Enumerating Maximal Models of Horn Theories 7

M of KU F is such that M (A) = 1. Since F is X-incomplete, F' f~x X holds,
which means that K U F U {—X} is satisfiable. Now, consider a model M that
satisfies £ U F'U {—=X}. Clearly, it satisfies L U F, as well. Thus, we have that
M(A) = 1. Then, CUFU{A}U{—X} is satisfiable, which implies FU{A} £k X,
contradicting the assumption that F' is maximally X-incomplete.

(@) Let M be a model of K. If M(A) = 1, then A € (M), which, in turn,
implies n(M) =k A, and thus M =x A. To prove the converse implication, let
us assume that M =i A. By the definition of entailment, n(M) UK U {-A} is
unsatisfiable. This means that each model of K Un(M) is such that M (A) = 1.
Since M is a model of IC (by our assumption) and M is a model of n(M) (by
the definition of n(M)), it follows that M (A) = 1, which was to be shown. O

Let us denote by M p k) the set of solutions for MAXMOD on the generic
instance (P, K) and by Zip x x) the set of solutions for MAXNOENTAIL on the
generic instance (P, IC, X). In the following two lemmas, we prove that MAXxMoD
is reducible to MAXNOENTAIL (Lemma [2) and vice versa (Lemma [)).

Lemma 2. Let (P,K) be a generic instance of MAXMOD, with X ¢ P. Then,
Mp ey = {u(F) | F € Lipuixyri).x) -

Proof. We proceed in two steps: first, we show that u(F) € M p k), for each
F € Tipugxy,r(x),x); then, we prove that, for each model M € M p k), there
exists a fragment F' € Zpux},-(k),x) such that u(F) = M.

To prove the former claim, let us assume F' € Zipy(x},r(k),x), Which means
that F' is maximally X-incomplete in 7(K). We want to show that u(F') belongs
to Mp k), that is, u4(F) is a maximal model for K.

— To prove that p(F') is a model of K, i.e., u(F) = K, let § be a clause of K.
We shall argue show that p(F') satisfies 6. We distinguish two cases.

e § is of the form ants = A, for some A € P.If u(F') does not satisfy ants,
then we are done. Assume that u(F) does satisfy ants. We shall show
that pu(F)(A) = 1. Since u(F) satisfies ants, we have that ants C F.
This means that {0} U F'U {-A} is unsatisfiable and thus F' =) A
holds, because § is also a clause of 7(KC), by construction. By Lemma
@), A € F and therefore pu(F)(A) = 1, as claimed.

e 0 is of the form ants = 1. We claim that p(F) does not satisfy ants.
To see this, let us assume, towards a contradiction, that u(F) satisfies
ants. Then, ants C F. By construction of 7(K), the clause ants = X
belongs to 7(K). Now, we have that {0} U F U {-X} is unsatisfiable and
thus F' |=; (k) X holds, contradicting the X-incompleteness of F.

Since p(F') satisfies each clause of IC, we have that u(F') |= K holds.

— To prove the maximality of u(F), let us assume, towards a contradiction,
that there exists a model M of K such that u(F) < M. By the definition
of n(-), this implies F C n(M). We claim that n(M) is X-incomplete in
7(K), thus obtaining a contradiction with the fact that F' is maximally X-
incomplete. Indeed, since M is a model of K, it does not satisfy any of the
sets ants, where 6 € K is of the form ants = L. Thus, n(M) < ants, for

8 L. Aceto et al.

every 6 € 7(K) of the form ants = X, which yields n(M) W X. This,
in turn, means that n(M) is X-incomplete in 7(K), which contradicts the
maximality of F.

To complete the proof, let us consider a model M € M p k), that is, M is
a maximal model of K. Our aim is to show that there exists a fragment F' €
I(PU{X},T(IC),X} such that /,(,(F) = M. We claim that U(M) S I(PU{X},T(IC),X>~
Since u(n(M)) = M, the thesis follows from this claim. First, we prove that n(M)
is X-incomplete in 7(K), i.e., n(M) =, k) X. To this end, let M’ be the valuation
over P U {X} obtained from M as follows: M'(Y) = M(Y) for each Y € P and
M'(X) = 0. It is easy to see that M’ is a model for 7(K) U n(M) U {-X}.
Thus, 7(K) Un(M) U{-X} is satisfiable, which implies 7(M) ;) X. Now,
in order to prove that n(M) is maximally X-incomplete, we have to show that
n(M)U{A} Frkc) X, foreach A € (PU{X})\n(M).If A = X, the thesis trivially
follows from the definition of entailment. Otherwise, let us suppose, towards a
contradiction, that n(M) U {A} &, x) X, for some A € (PU{X})\n(M), with
A # X. This means that 7(K) Un(M) U {A} U {-X} is satisfiable. Let M’ be a
model for it. Since M’ is a model of 7(K) and M'(X) = 0, it is also a model of
K (by construction of 7(K), X syntactically replaces the symbol L). Moreover,
it is easy to convince oneself that n(M’) D n(M) U {A}. Thus M’ is a model
of I such that M < M’, contradicting the maximality of M. Hence n(M) is
maximally X-incomplete in 7(K), and the thesis follows. O

Lemma 3. Let (P,K,X) be a generic instance of MAXNOENTAIL. Then,
Zip,xy ={nM) | M € Mp xc,x)}-

Proof. We prove the statement in two steps: first, we show that n(M) € Zip k. x),
for each M € M p . (x,x)); then, we show that, for each fragment F' € Zip x x,
there exists a model M € M p i, x)y such that n(M) = F.

To prove the former claim, let us assume M € M p ,(x x)), which means
that M is a maximal model of v(K, X). As a preliminary step, we observe that,
by construction of (K, X), every model of (K, X) is also a model of K. We
want to show that n(M) belongs to Zip x xy, that is, n(M) is maximally X-
incomplete in K. First, we show that n(M) is X-incomplete in K, and then that
it is maximally X-incomplete in K. To show the X-incompleteness of n(M),
suppose, towards a contradiction, that n(M) Ex X. This means that M Ex X
and, by Lemma [Ii[D) and by the fact that M is also a model of K, it follows that
M(X) = 1, which implies that M is not a model of v(X, X). This contradicts
the assumption that M € M p (x,x))- So, we have that n(M) is X-incomplete
in K. Now, suppose, towards a contradiction, that n(M) is not maximally X-
incomplete. Thus, n(M)U{A} Fx X holds, for some A € P\ n(M). This means
that KUn(M)U{A} U{-X} is satisfiable. Let M’ be a model for it. Since M’
satisfies K and {-X}, it is also a model of (K, X). Moreover, it is easy to see
that n(M) C n(M’). Thus, M’ is a model of v(K, X) such that M < M’, which
contradicts the maximality of M.

To complete the proof, let us consider a fragment F' € Zip x x), that is, F'
is maximally X-incomplete in K. Our goal is to show that there exists a model

On Enumerating Maximal Models of Horn Theories 9

M € Mp .k, x) such that n(M) = F. We claim that u(F) € Mp ik, x))-
Since n(u(F')) = F, the thesis follows from this claim. First, we show that u(F')
is a model of v(K, X). By construction, y(K, X) = KU{—-X}. By Lemmal[Il@) and
by the assumption that F' is maximally X-incomplete, it follows X ¢ F', which
means that p(F)(X) = 0. Thus, u(F') satisfies { X }. Now, let us show that pu(F')
also satisfies K. Let § be a generic clause in . It is of the form A4,..., A, = A.
We distinguish two cases. If A; ¢ F for some ¢ € {1,...,m}, then u(F)(A;) =0,
which means that ¢ is satisfied by u(F'). Otherwise, {A41,..., A} C F, which
means that F' x A. Therefore, by Lemma [i@), A € F, which implies that
w(F)(A) = 1. So, u(F) = d and, since ¢ was chosen arbitrarily, u(F') is a model
of K. Since we showed that it is also a model of {—X}, we have that u(F) is a
model of v(K, X). To prove the maximality of u(F'), let us suppose, towards a
contradiction, that there exists a model M’ of (K, X), such that u(F) < M’,
which means F' C n(M’). Since M’ is a model of (X, X), it is both a model
of K and {—X}. In particular, the latter implies M’(X) = 0. By Lemma [I}(0),
M’ £k X holds, which means n(M’) e X. Thus, n(M’) is a fragment that is
X-incomplete in K such that F' C n(M’). This contradicts the assumption that
F' is maximally X-incomplete. Hence, u(F') is a maximal model of v(K, X). O

The following theorem follows from Lemma 2] Lemma [3, and Definition 2
Theorem 1. MAXMOD and MAXNOENTAIL are polynomially equivalent.

Thanks to the above reduction, it is possible to use the brute-force algo-
rithm for MAXNOENTAIL, depicted in Fig. [l right-hand side, to solve MAX-
MobD. While it is still based on a brute-force approach, such an algorithm turns
out to be much more effective than the one described in Fig. [l left-hand side.
Indeed, in searching for fragments that are maximally X-incomplete in the given
theory, one can easily verify the maximality of a candidate (i.e., an X-incomplete
fragment) by checking if adding exactly one element to it preserves its incom-
pleteness. This allows us to avoid a second pass on the set of potential results.

4 An Algorithm for MAXNOENTAIL

In this section we present an alternative algorithm for MAXNOENTAIL, called
AlgMaxzNoEn (see Fig. [2). We prove that our algorithm is correct and, in the
next section, we give experimental evidence of its effectiveness when applied to
expressiveness issues for modal logics (see the discussion in Sections [[and ().
We begin by giving some definitions that will be useful in what follows. Since
only definite Horn theories occur in MAXNOENTAIL instances, throughout the
section we assume that all Horn theories are definite, unless otherwise specified.

Definition 3. Let K € DHTp be a Horn theory, § be a clause, and F be a
fragment of P, with A € F. We say that: (i) A deactivates § if A belongs to
ants; (ii) A is (F,d)-useful if A deactivates § and no other proposition in F
does; (ii) A is (F,K)-useful if A is (F,d")-useful for some ¢’ € K; (i) F is
K-useful if B is (F, K)-useful for every B € F.

L. Aceto et al.

proc ALcMAXNOEN (P, K, X)
L0

P+ P\{X}

N« (0,P)
AlgMazxNoEnR(N, L, P, K, X)
return £

proc compPUTILITYVEC (K, F)
F«F
for i=1to k
{u[i] < null
for i=1to k

let §; be the 7th clause of K
{if [F'Nants,| =1

then u[i] - F Nants,

for i=1to k
{F + F\ uli]
if =0

then return true

else return false

proc ALGMAXNOENR (N = (F, V), L, P, K, X)

if compUtilityVec(K, F) = false
then return ‘non-maximally incomplete’
if (P\ (FUV)) Ex X
then return ‘no solution’
if (P\ F) Fx X
then
if AAc€ F st. (P\F)U{A}) kx X
then
L+ LU{P\F}
return ‘solution found’
else return ‘non-maximally incomplete’
// Here, F UV is X-incomplete but F is not, thus V # 0
flagSol <+ false
flagNoMaz < false
keep < true
while V # 0 and keep
let Y be an element of V'
V+— V\{Y}
F' + Fu{Y}
N’ « (F', V)
AddChild(N,N7)
ret < AlgMaxNoEnR(N', L, P, K, X)
if ret = ‘solution found’
then flagSol + true
if ret = ‘non-maximally incomplete’
then flagNoMax < true
if ret = ‘no solution’
then keep < false
if flagSol
then return ‘solution found’
if flagNoMax
then return ‘non-maximally incomplete’
return ‘no solution’

Fig. 2. Pseudo-code for the algorithms AlgMazNoEn (left-hand side, top), comp Utili-
tyVec (left-hand side, bottom), and AlgMazNoEnR (right-hand side)

Notice that, for a given clause § and fragment F', there can be at most one
proposition in F' that is (F), d)-useful. More precisely, such a proposition exists
if and only if |F'Nants| = 1. In what follows, we will simply say that F' is useful
(in place of K-useful) when the theory is clear from the context. The important
property relating the notions of maximal X-incompleteness and usefulness is
stated by the following lemma.

Lemma 4. If a fragment F of P is mazximally X -incomplete in IC, then its
complement P\ F is useful.

Notice that the the converse does not necessarily hold. Indeed, if F' is X-
incomplete and its complement is useful, then F' is not necessarily maximally
X-incomplete. As an example, consider the theory K = {A,B = X,C = A}
The fragment A is X-incomplete and its complement BC' is useful, but A is not
maximally X-incomplete, as AC is X-incomplete, as well. Moreover, observe
that, if a fragment F' is not useful, then any fragment F” such that F' C F’ is
not useful, either. This follows from the fact that if a proposition A € F is not
(F, K)-useful, then it is not (F”’, K)-useful for any F” such that F C F”.

On Enumerating Maximal Models of Horn Theories 11

Definition 4. Given a Horn theory K = {d1,...,0k} and a fragment F, the
utility vector of F' in KC, usually denoted by w, is a vector of size k such that, for
each index i, uli] is equal to {A} if A is (F,d;)-useful, and it is equal to null if
|F'Nants,| # 1.

Intuitively, the utility vector is the tool used to detect that a fragment is not
useful: F' is useful if and only if all the propositions in F' occur in u.

We are now ready to describe the proposed algorithm AlgMazNoFEn (Fig.).
The intuitive idea of the algorithm is to produce candidate solutions (i.e., frag-
ments) and verify whether they are actual solutions, that is, if they are maximally
X-incomplete fragments. Candidate solutions are produced by incrementally re-
moving propositions from the set P, which from now on we assume does not
contain X (as X cannot occur in any solution). Once a proposition is removed,
the status of the resulting fragment is checked: if it is maximally X-incomplete,
then it is added to the solution set; otherwise, either the computation continues
by refining the candidate solution through the removal of another proposition
or, if refining this candidate is considered not promising (according to criteria
that will be defined later on), the analysis of this candidate ends and we focus
on a new candidate.

The process is carried out in a recursive fashion, AlgMaxNoEnR being the re-
cursive function and AlgMazNoEn being the wrapper function, which executes
the first call to AlgMazNoEnR (see Fig.[2l). The parameters of the recursion are
the fragment F', representing the propositions that have been already removed
(thus the candidate under analysis is its complement P \ F'), and the fragment
V', which is a (not necessarily strict) subset of P\ F' and represents the proposi-
tions that can still be removed to refine the current candidate. (The additional
parameters of AlgMazNoEnR can be thought of as global variables, as they are
not involved in the recursion process: L collects the solutions, while P, K, and X
represent the instance given as input to AlgMaxNoFEn.) Thus, a generic recursive
call on F' and V analyses, as a candidate, the complement of F', which can be
possibly refined, in successive recursive calls, through the removal of (some of)
the propositions in V. In this way, the recursive function searches for solutions
contained in the whole set of sub-fragment of P\ F.

Given an instance (P, K, X) of MAXNOENTAIL as input, the wrapper function
AlgMaxNoEn (Fig. 2] left-hand side, top) executes the first recursive call to
AlgMazNoEnR on the recursive parameters F' = () and V' = P. The function
AlgMazNoEnR recursively builds a tree isomorphic to its own recursion tree.
Such a structure is actually useless for the purposes of the algorithm, but it
will be handy for the correctness analysis. In what follows, nodes of the above-
mentioned tree are identified by the pair (F, V') of recursive parameters on which
the call is performed. Thus, there is a one-to-one correspondence between nodes
and calls to AlgMaxNoEnR. For the sake of simplicity, we will sometimes refer
to a call to AlgMaxNoEnR through its corresponding node, and vice versa. For
example, we will say that “a node N returns the exit-value r”, meaning that
the corresponding call returns r. A call to AlgMaxNoEnR may produce one of
three outcomes: ‘solution found’, ‘no solution’, or ‘non-maximally incomplete’.

12 L. Aceto et al.

(0,{A, B, C, D})

5 (A, {B,C,D}) (B,{C, D}) (C, {D})
— o/ X g Z
(AB,{C,D}) (AC,{D}) (AD, 0) Sol:ACD No Sol
No Max Sol.BD No Max

Fig. 3. Recursion tree of AlgMazNoEn on K

Intuitively, the value ‘solution found’ is returned by a node when a solution has
been found in its own sub-tree (i.e., in the sub-tree rooted at it); if this is the
case, we also say that the node sees a solution. Otherwise, if a fragment that is
maximally X-incomplete in I has been analysed in its own sub-tree, the value
‘non-maximally incomplete’ is returned. The value ‘no solution’ is returned when
none of the two cases above applies.

As a first step, the algorithm checks if one of the base-case conditions is met.
Clearly, if a base-case condition is met inside a call, then that call corresponds
to a leaf of the recursion tree. Base-case conditions allow the algorithm to end
the analysis of a candidate, with no further refinements (and thus avoiding the
exploration of the set of its sub-fragments), because either the candidate itself is
a solution or its refinement is not promising. The refinement of a solution P\ F by
removing propositions in V' is not promising when the corresponding node (F, V')
does not see any solution. Clearly, this is the case when P\ (FUV) =i X: if the
weakest fragment P\ (F'UV) of the set of sub-fragments of P\ F entails X, then,
due to the monotonicity of entailment, all the fragments of the set do, meaning
that none of them is X-incomplete. Another case in which refining a candidate
is not promising is when the candidate F' is X-incomplete but not maximally
X-incomplete: if F' is not maximally X-incomplete, then all its sub-fragments
are not, either. We are interested in detecting such non-promising situations as
soon as possible, to reduce the number of candidates analysed by the algorithm.
To this end, we use the above-mentioned property that the complement of a
maximally X-incomplete fragment is useful (Lemma Hl). This implies that, if a
fragment F' is not useful, that is, some of its propositions do not occur in its
utility vector, then neither P \ F nor any of its sub-fragments is a solution, and
thus the analysis of P\ F' ends with no further refinement. Thus, there are three
base-case conditions. (i) If compUtilityVec (see Fig. B left-hand side, bottom)
returns false, then F' is not useful, and the function returns ‘non-maximally
incomplete’. (1) If P\ (F U V) entails X, then refining P \ F' cannot lead to a
solution, and the function returns ‘no solution’. (%) If the complement of F is
X-incomplete, then it may be a solution. Its maximality is checked, exploiting
the monotonicity of entailment, and, depending on the result of this test, either it
is added to the solution set £ and ‘solution found’ is returned, or ‘non-maximally
incomplete’ is returned.

If none of the above base-case conditions is met, the refinement of the candi-
date is performed (while loop in AlgMazNoEnR, in Fig.[2)). At each iteration, an
element Y of V is selected. Each iteration corresponds to an attempt to extend F’

On Enumerating Maximal Models of Horn Theories 13

with the new proposition Y and the new node (FU{Y}, V\{Y}) (corresponding
to the recursive call on FU{Y} and V'\ {Y'}) is created as a child of the current
one. Depending on the value returned from a recursive call, the local variables
flagSol, flagNoMazx, and keep are suitably updated. Intuitively, FlagSol is true
if and only if the current node sees a solution. If the current node sees no solu-
tions, but at least one of the nodes in its own sub-tree returned ‘non-maximally
incomplete’, then flagNoMazx is true. Finally, keep is set to false as soon as
a call returns ‘no solution’. In this last case, thanks to the monotonicity of the
entailment, we can exit the current loop, as no other solution can be produced
by refining the current candidate P \ F'. The return value after the loop is then
returned depending on the values of flagSol and flagNoMazx.
In FigBl we provide the recursion tree for the algorithm applied to the Horn

theory

A, B=C

B=D

A C=D

B,C=X

]C:

The figure shows that the algorithm is able to produce the only two solutions
without exploring the whole space of fragments (only 7 fragments are processed
out of 2% = 16 possible ones).

In what follows, let 7 be the tree rooted at the node (§, P), as generated
by the first call to the recursive function AlgMaxNoFEn. The following theorem
states that the proposed algorithm is sound and complete.

Theorem 2. Let (P, K, X) be an instance of MAXNOENTAIL. Then, a fragment
1s included in the set of solutions returned by the algorithm AlgMaxNoEn on input
(P,K, X) if and only if it is maximally X -incomplete in K.

Proof. The soundness of AlgMaxNoFEn follows from the description of the algo-
rithm: a fragment is included in the set of solutions returned by AlgMaxNoEn
only if the test for its maximal X-incompleteness succeeds.

To prove the completeness of AlgMaxNoEn, let us consider a generic max-
imally X-incomplete fragment F. We show that a node N = (F,V), where
F =P\ F, is eventually created and processed, for some V C F. As F' is indeed
a maximally X-incomplete fragment, the corresponding base-case condition ap-
plies, and F' is added to the solution set. Let us consider the ordering over P
according to which the elements are selected inside the while loop of the al-
gorithm AlgMazNoEnR (see Fig. Q). Let A be the first occurrence in P of an
element of F' and let By,..., B be the elements preceding A in P (according to
the above-mentioned ordering). We have to show that the child Ny = ({A}, Va),
where V4 = (P\{A}) \ {B; | 1 < < s}, is eventually processed. Notice that
P\ (VaU{A}) C F holds, as FF C V4 U{A}. Thus, P\ (V4 U {4}) is X-
incomplete, as well (as F is and by monotonicity of the entailment). Suppose,
towards a contradiction, that A4 is never processed. Then, one of its left siblings
Ng, = {B;},Vg,), for somei € {1,...,s}, where Vg, = P\{B, | 1 < j < i}, has
returned ‘no solution’. Since P\ (V4 U{A}) is X-incomplete and V4 U{A} C Vp,

14 L. Aceto et al.

holds, there exists a path from Ap, to a leaf corresponding to a candidate that
is X-incomplete. Such a leaf returns either ‘solution found’ or ‘non-maximally
incomplete’, and thus Ap, does not return ‘no solution’, leading to contradic-
tion. As the same argument can be iterated for every other element of F', we can
conclude that N4 is processed, and we are done. a

5 Applications and Experimental Results

The algorithm for MAXNOENTAIL given in Section E] outperforms the brute-
force ones given in Fig.[Il Moreover, thanks to the reduction provided in Section
Bl it can also be exploited to solve MAXMoOoD. In this section, we show a further
application of AlgMaxNoFEn as a tool to compare the expressive power of modal
logics (see Section [).

Given a set of modalities, an inter-definability (among them) describes how
to define a modality in terms of others. An inter-definability can be thought of
as a clause of a definite Horn theory, where atomic propositions play the role of
the modalities (e.g., the fact that combining the modality <¢; with the modality
<9 makes it possible to define the modality <3 can be expressed by the Horn
clause &1, 09 = O3). Consequently, a set of inter-definabilities is nothing but
a definite Horn theory. Now, a major issue in modal logic is to determine the
complete set of inter-definabilities among a set of modalities (it is necessary, for
example, in order to classify a family of modal logics with respect to their relative
expressive power). As already pointed out in Section [I] the task of identifying
the maximal subsets of modalities that, within a given set of inter-definabilities,
do not express a specific modality is crucial in that respect. Since a set of inter-
definabilities can be seen as a definite Horn theory, it easy to convince oneself
that the latter task amounts to solving MAXNOENTAIL. Actually, it was this
very problem that motivated us to carry out this study, in the search for a
better solution than the one based on the brute-force approach. While in modal
logics with few operators and inter-definabilities, the above-mentioned task can
be easily carried out by hand (as it has been done, e.g., in [I4]), in modal logics
with many operators and several inter-definabilities, it may require a big and
error-prone effort. Even though most modal logics have a small set of modalities,
there are meaningful ones that feature tens of modalities (see, e.g., [I5/16]). In
[13], the authors proposed, and used, a naive, brute-force algorithm similar to
the ones presented in Fig. [l to perform the aforementioned task. Even if this
approach was efficient enough for the particular modal logic studied in [I3], it
turned out to be unsuitable to deal with logics with larger sets of modalities,
such as the one studied in [15], featuring more than 20 modalities. As shown by
our experimental results, the algorithm proposed here is efficient enough to deal
also with those logics.

We have carried out an experimental comparison of the efficiency of the algo-
rithm AlgMaxzNoEn vis-a-vis those given in Fig. [[l We summarize the outcomes

On Enumerating Maximal Models of Horn Theories 15

60

55 o AlgMaxNoEn

50 = BruteForceMaxNoEn
45 < BruteForceMaxMod

Time (in seconds)

0
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
n (size of P)

Fig. 4. Running times of the three algorithms on randomly-generated instances

of our experiments@ in Fig. @ For each pair of values n and k, ranging, re-
spectively, between 12 and 30 and between |[n/3] and n, the running times of
the three algorithms presented in this papers (i.e., BruteForceMaxMod, Brute-
ForceMazNoEntail, and AlgMaxNoEn) are compared with respect to a set of
seven randomly-generated Horn theories K over P, where |P| = n and |K| = k
(to be precise, BruteForceMazMod is run on randomly-generated instances of
the form (P, K), while BruteForceMaxNoEntail and AlgMazNoEn on instances
of the form (P U {X},7(K), X), obtained from the instances used for testing
BruteForceMaxMod through the reduction described in Section Bl). The chart in
Fig. @ reports the average running times of the three algorithms for the different
values of n (size of P). In spite of a similar, exponential trend exhibited by the
three algorithms (notice that such a behaviour is unavoidable as the problems
can produce outputs whose size is, in general, exponential in the size of the in-
put), our tests show that the two algorithms based on a brute-force approach
become inefficient already for instances over set of propositions of size 15 and
20, respectively, and are thus unable to deal, for instance, with the logic studied
in [I5]. On the other hand, AlgMaxNoEn can deal with all tested instances in
reasonable time.

6 Conclusions

In this paper we have studied the problem of enumerating the maximal models of
a Horn theory (MAXMoOD) and we established a connection between this problem
and the problem of enumerating the maximal subsets of facts that do not entail
a distinguished atomic proposition in a definite Horn theory (MAXNOENTAIL).
We first showed that the two problems are polynomially equivalent and then we
presented an algorithm for MAXNOENTAIL that performs better than the ones

L All the experiments were executed on a PC system with an Intel® Core™i3-

2120 CPU @ 3.30GHz x 4 and 7.7 GB of RAM, under Ubuntu Linux
12.04 (precise) 64-bit. On the web-page http://www.di.unisa.it/dottorandi/
dario.dellamonica/download/lpar13_code.zip| it is possible to download the
source code in C++.

http://www.di.unisa.it/dottorandi/dario.dellamonica/download/lpar13_code.zip
http://www.di.unisa.it/dottorandi/dario.dellamonica/download/lpar13_code.zip

16 L. Aceto et al.

based on a brute-force approach. As the problems can produce an output of
size, in general, exponential in the size of the input, it not possible to avoid the
exponential trend shown by the algorithms in Fig.dl Moreover, in [9], it has been
proved that, unless P=NP, no output-polynomial algorithm can be devised for
MaxXxMoD (and thus for MAXNOENTAIL), meaning that it is not even possible
to devise an algorithm that runs in polynomial time in terms of both the sizes of
input and output. Nevertheless, our approach is efficient enough to allow us to
deal with some expressiveness issues for modal logics that were intractable with
the brute-force approach, as shown by empirical evidence.

The proposed algorithm can be improved by conceiving suitable heuristics to
drive the construction of the candidate solution (e.g, heuristics for the choice of
the next atomic proposition to be removed from the fragment) and by suitably
reducing, on the fly, the Horn theory depending on the current candidate under
analysis. We plan to explore both such possibilities in future work. We also intend
to investigate the behaviour of the proposed algorithm on special instances of
MAXNOENTAIL, i.e., on Horn theories whose clauses have the same consequent.
Such a restriction makes the MAXNOENTAIL problem equivalent to the well-
known problem of finding the minimal hitting sets of a hyper-graph, for which
it is still an open question whether an output-polynomial algorithm exists.

References

1. Cook, S.: The complexity of theorem proving procedures. In: Proc. of the 3rd
Annual ACM Symposium on Theory of Computing, pp. 151-158 (1971)

2. Chang, C., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving, 1st edn.
Academic Press, Inc. (1997)

3. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)

4. Kautz, H., Mcallester, D., Selman, B.: Encoding plans in propositional logic. In:
Proc. of the 5th KR, pp. 374-384 (1996)

5. Riesbeck, C., Schank, R.: Inside Case-based Reasoning. Artificial intelligence series.
Lawrence Erlbaum (1989)

6. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc. (2004)

7. Brusoni, V., Console, L., Terenziani, P., Dupré, D.T.: Characterizing temporal
abductive diagnosis. In: Proc. of the 6th DX, pp. 34-40 (1995)

8. Cadoli, M.: The complexity of model checking for circumscriptive formulae. Infor-
mation Processing Letters 44, 113-118 (1992)

9. Kavvadias, D.J., Sideri, M., Stavropoulos, E.: Generating all maximal models of a
Boolean expression. Inf. Process. Lett. 74(3-4), 157-162 (2000)

10. Knuth, D.: The Art of Computer Programming: Combinatorial Algorithms, Part
1, 1st edn., vol. 4A. Addison-Wesley Professional (2011)

11. Schmidt, J.: Enumeration: Algorithms and complexity. Unpublished (2009)

12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2002)

13. Aceto, L., Della Monica, D., Ingoélfsdottir, A., Montanari, A., Sciavicco, G.: A
complete classification of the expressiveness of interval logics of Allen’s relations
over dense linear orders. In: Proc. of the 20th TIME (2013)

14.

15.

16.

On Enumerating Maximal Models of Horn Theories 17

Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of
the interval logics of Allen’s relations on the class of all linear orders: Complete
classification. In: Proc. of the 22nd IJCAI, pp. 845-850 (2011)

Balbiani, P., Goranko, V., Sciavicco, G.: Two-sorted point-interval temporal logics.
Electr. Notes Theor. Comput. Sci. 278, 31-45 (2011)

Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935-962 (1991)

May-Happen-in-Parallel Analysis
for Priority-Based Scheduling

Elvira Albert, Samir Genaim, and Enrique Martin-Martin

Complutense University of Madrid, Spain

Abstract. A may-happen-in-parallel (MHP) analysis infers the sets of
pairs of program points that may execute in parallel along a program’s
execution. This is an essential piece of information to detect data races,
and also to infer more complex properties of concurrent programs, e.g.,
deadlock freeness, termination and resource consumption analyses can
greatly benefit from the MHP relations to increase their accuracy. Previ-
ous MHP analyses have assumed a worst case scenario by adopting a sim-
plistic (non-deterministic) task scheduler which can select any available
task. While the results of the analysis for a non-deterministic scheduler
are obviously sound, they can lead to an overly pessimistic result. We
present an MHP analysis for an asynchronous language with prioritized
tasks buffers. Priority-based scheduling is arguably the most common
scheduling strategy adopted in the implementation of concurrent lan-
guages. The challenge is to be able to take task priorities into account
at static analysis time in order to filter out unfeasible MHP pairs.

1 Introduction

In asynchronous programming, programmers divide computations into shorter
tasks which may create additional tasks to be executed asynchronously. Each
task is placed into a task-buffer which can execute in parallel with other task-
buffers. The use of a synchronization mechanism enables that the execution of
a task is synchronized with the completion of another task. Synchronization can
be performed via shared-memory [9] or via future variables [I3l8]. Concurrent
interleavings in a buffer can occur if, while a task is awaiting for the completion of
another task, the processor is released such that another pending task can start
to execute. This programming model captures the essence of the concurrency
models in X10 [I3], ABS [12], Erlang [I] and Scala [II], and it is the basis of
actor-like concurrency [2I1T]. The most common strategy to schedule tasks is
undoubtedly priority-based scheduling. Each task has a priority level such that
when the active task executing in the buffer releases the processor, a highest
priority pending task is taken from its buffer and begins executing. Asynchronous
programming with prioritized tasks buffers has been used to model real-world
asynchronous software, e.g., Windows drivers, engines of modern web browsers,
Linux’s work queues, among others (see [9] and its references).

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 18-B4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 19

The higher level of abstraction that asynchronous programming provides,
when compared to lower-level mechanisms like the use of multi-threading and
locks, allows writing software which is more reliable and more amenable to be
analyzed. In spite of this, proving error-freeness of these programs is still quite
challenging. The difficulties are mostly related to: (1) Tasks interleavings, typ-
ically a programmer decomposes a task ¢ into subtasks t1,...,t,. Even if each
of the sub-tasks would execute serially, it can happen that a task k unrelated
to this computation interleaves its execution between t; and ¢;11. If this task
k changes the shared-memory, it can interfere with the computation in several
ways, e.g., leading to non-termination, to an unbounded resource consumption,
and to deadlocks. (2) Buffers parallelism, tasks executing across several task-
buffers can run in parallel, this could lead to deadlocks and data races.

In this paper, we present a may-happen-in-parallel (MHP) analysis which iden-
tifies pairs of statements that can execute in parallel and in an interleaved way
(see [I3I3]). MHP is a crucial analysis to later prove the properties mentioned
above. It directly allows ensuring absence of data races. Besides, MHP pairs al-
low us to greatly improve the accuracy of deadlock analysis [I6J10] as it discards
unfeasible deadlocks when the instructions involved in a possible deadlock cycle
cannot happen in parallel. Also, it improves the accuracy of termination and cost
analysis [0] since it allows discarding unfeasible interleavings. For instance, con-
sider a loop like while (1!'=null) {x=b.m(1l.data); await x?; 1=l.next;},
where x=b.m(e) posts an asynchronous task m(e) on buffer b, and the instruc-
tion await x? synchronizes with the completion of the asynchronous task by
means of the future variable x. If the asynchronous task is not completed (x is
not ready), the current task releases the processor and another task can take it.
This loop terminates provided no instruction that increases the length of the list
1 interleaves or executes in parallel with the body of this loop.

Existing MHP analyses [I3l3] assume a worst case scenario by adopting a
simplistic (non-deterministic) task scheduler which can select any available task.
While the results of the analysis for a non-deterministic scheduler are obviously
sound, they can lead to an overly pessimistic result and report false errors due
to unfeasible schedulings in the task order selection. For instance, consider two
buffers b1l and b2 and assume we are executing a task in b1l with the following
code “x=b1.m1(el); y=bl.m2(e2); await x7; b2.m3(e3);”.If the priority of
the task executing m1 is smaller than that of m2, then it is ensured that task
m2 and m3 will not execute in parallel even if the synchronization via await is
on the completion of m1. This is because at the await instruction, when the
processor is released, m2 will be selected by the priority-based scheduler before
ml. A non-deterministic scheduler would give this spurious parallelism.

Our starting point is the MHP analysis for non-deterministic scheduling of
[3], which distinguishes a local phase in which one inspects the code of each task
locally, and ignores transitive calls, and a global phase in which the results of
the local analysis are composed to build a global MHP-graph which captures the
parallelism with transitive calls and among multiple task-buffers. The contribu-
tion of this paper is an MHP analysis for a priority-based scheduling which takes

20 E. Albert, S. Genaim, and E. Martin-Martin

priorities into account both at the local and global levels of the analysis. As each
buffer has its own scheduler which is independent of other buffer’s schedulers,
priorities can be only applied to establish the order of execution among the tasks
executing on the same task-buffer (intra-buffer MHP pairs). Interestingly, even
by only using priorities at the intra-buffer level, we are also able to implicitly
eliminate unfeasible inter-buffer MHP pairs. We have implemented our analysis
in the MayPar system [4] and evaluated it on some challenging examples, includ-
ing some of the benchmarks used in [9]. The system can be used online through
a web interface where the benchmarks used are also available.

2 Language

We consider asynchronous programs with priority-levels and multiple tasks bu-
ffers. Tasks can be synchronized with the completion of other tasks (of the same
or of a different buffer) using futures. In this model, only highest-priority tasks
may be dispatched, and tasks from different task buffers execute in parallel. The
number of task buffers does not have to be known a priori and task buffers can
be dynamically created. We keep the concept of task-buffer disconnected from
physical entities, such as processes, threads, objects, processors, cores, etc. In [9],
particular mappings of task-buffers to such entities in real-world asynchronous
systems are described. Our model captures the essence of the concurrency and
distribution models used in X10 [I3] and in actor-languages (including ABS [12],
Erlang [I] and Scala [I1]). It also has many similarities with [9], the main differ-
ence being that the synchronization mechanism is by means of future variables
(instead of using the shared-memory for this purpose).

2.1 Syntax
Each program declares a sequence of global variables gq, ..., g, and a sequence
of methods named my, ..., m; (that may declare local variables) such that one

of the methods, named main, corresponds to the initial method which is never
posted or called and it is executing in a buffer with identifier 0. The grammar
below describes the syntax of our programs. Here, T are types, m procedure
names, e expressions, z can be global or local variables, buffer identifiers b are
local variables, f are future variables, and priority levels p are natural numbers.

M =T m(T z){s;return ¢; }
s un=ws;s|x =elif e then s else s | while ¢ do s |
await f? | b = newBuffer | f = b.m((€),p) | release

The notation T is used as a shorthand for 77, ...T},, and similarly for other names.
We use the special buffer identifier this to denote the current buffer. For the sake
of generality, the syntax of expressions is left free and also the set of types is not
specified. We assume that every method ends with a return instruction.

The concurrency model is as follows. Each buffer has a lock that is shared by
all tasks that belong to the buffer. Data synchronization is by means of future

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 21

variables as follows. An await y? instruction is used to synchronize with the
result of executing task y=b.m((z), p) such that await y? is executed only when
the future variable y is available (and hence the task executing m is finished).
In the meantime, the buffer’s lock can be released and some highest priority
pending task on that buffer can take it. The instruction release can be used to
unconditionally release the processor so that other pending task can take it.
Therefore, our concurrency model is cooperative as processor release points are
explicit in the code, in contrast to a preemptive model in which a higher priority
task can interrupt the execution of a lower priority task at any point (see Sec.[T]).
W.lo.g, we assume that all methods in a program have different names.

2.2 Semantics

A program state St = (g,Buf) is a mapping g from the global variables to their
values along with all created buffers Buf. Buf is of the form buffer, | ... | buffer,
denoting the parallel execution of the created task-buffers. Each buffer is a term
buffer(bid, lk, Q) where bid is the buffer identifier, [k is the identifier of the active
task that holds the buffer’s lock or L if the buffer’s lock is free, and Q is the
set of tasks in the buffer. Only one task can be active (running) in each buffer
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(tid, m,p,l,s) where tid
is a unique task identifier, m is the method name executing in the task, p is the
task priority level (the larger the number, the higher the priority), { is a mapping
from local (possibly future) variables to their values, and s is the sequence of
instructions to be executed or s = €(v) if the task has terminated and the return
value v is available. Created buffers and tasks never disappear from the state.
The execution of a program starts from an initial state where we have an
initial buffer with identifier 0 executing task 0 of the form Sy = (g, buffer(0,0,
{tsk(0, main, p, [, body(main))})). Here, g contains initial values for the global vari-
ables, [maps parameters to their initial values and local reference and future
variables to null (standard initialization), p is the priority given to main, and
body(m) refers to the sequence of instructions in the method m. The execu-
tion proceeds from Sy by selecting non-deterministically one of the buffers and
applying the semantic rules depicted in Fig. [l We omit the treatment of the
sequential instructions as it is standard, and we also omit the global memory g
from the state as it is only modified by the sequential instructions.
NEWBUFFER: an active task tid in buffer bid creates a buffer bid’ which is
introduced to the state with a free lock. PrioriTY: Function highestP returns a
highest-priority task that is not finished, and it obtains its buffer’s lock. Async:
A method call creates a new task (the initial state is created by buildLocals)
with a fresh task identifier ¢id; which is associated to the corresponding future
variable y in I’. We have assumed that bid # bidy, but the case bid = bid; is
analogous, the new task tid; is simply added to Q of bid. Awarrl: If the future
variable we are awaiting for points to a finished task, the await can be completed.
The finished task ¢; is looked up in all buffers in the current state (denoted Buf).
Awarr2: Otherwise, the task yields the lock so that any other task of the same

22 E. Albert, S. Genaim, and E. Martin-Martin

fresh(bid’) , I' = l[z — bid'], t = tsk(tid, m, p,l, (x = newBuffer; s))
(NEWBUFFER) buffer(bid, tid, {t} U Q) || B ~
buffer (bid, tid, {tsk(tid, m,p,l’,s)} U Q) || buffer(bid’, L,{}) || B

highestP(Q) = tid, t = tsk(tid, , , ,s) € Q, s # ¢(v)

(PRIORITY) buffer(bid, L, Q) || B ~ buffer(bid, tid, Q) || B

I(z) = bidy, fresh(tid1), I' = I[y — tid1], 11 = buildLocals(Z,m1)
buffer(bid, tid, {tsk(tid, m, p,l, (y = z.m1(z,p1); s)} U Q) || buffer(bid1, ,Q’) || B ~
buffer(bid, tid, {tsk(tid, m,p,1’,s)} U Q) ||
buffer(bid1, ,{tsk(tid1,m1,p1,l1,body(m1))}UQ’) | B

(asyne)

l(y) = tid1, tsk(tidi, , , ,s1) € Buf, s1 = €(v)
(AWAIT1) buffer(bid, tid, {tsk(tid, m,p,, (await y?;s))} U Q) || B ~
buffer (bid, tid, {tsk(tid, m,p,l,s)} U Q) || B

I(y) = tid1, tsk(tidi, , , ,s1) € Buf, s1 # €(v)
(AWAIT2) buffer(bid, tid, {tsk(tid, m,p,!, (await y?;s))} U Q) || B ~
buffer(bid, L, {tsk(tid, m,p,l, (await y7;s))} U Q) | B

(RELEASE) buffer(bid, tid, {tsk(tid, m,p,l, (release; s))} U Q) || B ~
buffer(bid, L, {tsk(tid,m,p,l,s)} UQ) || B

v=1(z)
(RETURN) buffer(bid, tid, {tsk(tid, m,p,l, (return z;))} U Q) || B ~
buffer(bid, L, {tsk(tid, m,p,l,e(v))} U Q) || B

Fig. 1. Summarized Semantics for a Priority-based Scheduling Async Language

buffer can take it. RELEASE: the current task frees the lock. RETURN: When return
is executed, the return value is stored in v so that it can be obtained by the future
variable that points to that task. Besides, the lock is released and will never be
taken again by that task. Consequently, that task is finished (marked by adding
the instruction €(v)) but it does not disappear from the state as its return value
may be needed later on in an await.

Example 1. Figure 2l shows some simple methods which will illustrate different
aspects of our analysis. In particular, non-termination of certain tasks and data
races can occur if priorities are not properly assigned by the programmer, and
later considered by the analysis. Our analysis will take the assigned priorities
into account in order to gather the necessary MHP information to be able to
guarantee termination and absence of data races. Let us by now only show some

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 23

1 // gl global variable 13 void m(){
2 // g2 global variable 14 while(gl < 0){ 25 // main has priority 0

3 void task(){ 15 gl =gl + 1; 26 main(){

4 g2 =g2 + 1; 16 release; 27 this.f(<>,10);

5} 17 } 28 Fut x = this.m(<>,5);
s void f(){ 18 } 29 await x7;

7 while(gl >0){ 19 void h(){ 30 thiS.h(<>,10);

8 gl =gl -1, 20 while(gl > 0){ 31 Buffer o=newbuffer;

9 g2 = g2 + 1; 21 gl =gl — 2 32 o.task(<>,0);

10 release; 22 release; 33

1 } 23 } 34 }

12 } 24 }

Fig. 2. Example for inter-buffer and intra-buffer may-happen-in-parallel relations

execution steps. The execution starts from a buffer 0 with a single task in which
we are executing the main method. Let us assume that such task has been given
the lowest priority 0. The global memory ¢ is assumed to be properly initialized.
Sto = (g, buffer(0, 0, {tsk(0, main, 0,1, body(main))})) =L

%
buf
})) new

St1 = (g, buffer (0,0, {tsk(0, ..), tsk(1, f, 10, ..)})) =%

Sta = (g, buffer(0, 0, {tsk(0, ..), tsk(1,..), tsk(2,m,5..)})) Lwatt,

Sts = (g, buffer(0, L, {tsk(0, .., await), tsk(1,..), tsk(2,m,5..)})) priority,

Sta = (g, buffer(0, 1, {tsk(0, .., await), tsk(1, ..), tsk(2,m,5..) })) =~

Sts = (g, buffer(0, 1, {tsk(0, .., await), tsk(1, .., return), tsk(2,m,5..)})) —— Teturn,
Ste = (g', buffer(0, L, {tsk(0, .., await), tsk(1,..,e(v)), tsk(2,m,5..)})) priority,
Stz = (g, buffer(0, 2, {tsk(0, .., await), tsk(1, .., e(v)), tsk(2,m,5..)}))

Sts = (g", buffer(0,0, {tsk(0,..), tsk(1, .., e(v)), tsk(2, .., e(v)), tsk(3..)})) —
Sto = (g”, buffer(0,0, {tsk(0..), tsk(1..), tsk(2..), tsk(3..)}), Ybuffer(1, L, {}) =5

St10 = (9", buffer(0,0, {tsk(0..), ..}), Ybuffer(1, L, {task(4..)}) h——)prw”ty
St11 = (g”, buffer(0,0, {tsk(0..),..}), Ybuffer(1,4, {task(4..)}) =>

At St1, we execute the instruction at Line 27] (L2 for short) that posts, in the
current buffer this, a new task (with identifier 1) that will execute method f with
priority 10. The next step Sto posts another task (with identifier 2) in the current
buffer with a lower priority (namely 5). At Sts, an await instruction (129 is used
to synchronize the execution with the completion of the task 2 spawned at L28
As the task executing f has higher priority than the one executing m, it will be
selected for execution at St4. After returning from the execution of task 1 in Sts,
the PRIORITY rule selects task 2 for execution in Stg. An interesting aspect is
that after creating buffer 1 at Stig, execution can non-deterministically choose
buffer 0 or 1 (in Sty; buffer 1 has been selected).

24 E. Albert, S. Genaim, and E. Martin-Martin

3 Definition of MHP

We first formally define the concrete property “MHP” that we want to approx-
imate using static analysis. In what follows, we assume that instructions are
labelled such that it is possible to obtain the corresponding program point iden-
tifiers. We also assume that program points are globally different. We use py;,
to refer to the entry program point of method m, and p,; to all program points
after its return instruction. The set of all program points of P is denoted by P, .
We write p € m to indicate that program point p belongs to method m. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier
associated with its first instruction and pp(e(v)) = py,.

Definition 1 (concrete MHP). Given a program P, its MHP is defined as
Ep=U{&s|Sp ~* S} where for S=(g,Buf), the set g is Eg = {(pp(s1), pp(s2)) |
buﬁer(bidl, ,Ql)EBuf, buﬁer(bidg, ,QQ)EBuf,tl = tski(tidl, y ,Sl)EQl,tQ =
tsk‘(tidg, . ,SQ)EQQ,tidl 7’5 tidg}.

The above definition considers the union of the pairs obtained from all deriva-
tions from Sy. This is because execution is non-deterministic in two dimensions:
(1) in the selection of the buffer that is chosen for execution, since the buffers
have access to the global memory different behaviours (and thus MHP pairs)
can be obtained depending on the execution order, and (2) when there is more
than one task with the highest priority, the selection is non-deterministic.

The MHP pairs can originate from direct or indirect task creation relation-
ships. For instance, the parallelism between the points of the tasks executing h
and task is indirect because they do not invoke one to the other directly, but
a third task main invokes both of them. However, the parallelism between the
points of the task main and those of task is direct because the first one invokes
directly the latter one. Def. [Il captures all these forms of parallelism.

Importantly, Ep includes both intra-buffer and inter-buffer MHP pairs, each
of which are relevant for different kinds of applications, as we explain below.

Intra-buffer MHP Pairs. Intra-buffer relations in Def. [l are pairs in which bid; =
bidy. We always have that the first instructions of all tasks which are pending
in the buffer’s queue may-happen-in-parallel among them, and also with the
instruction of the task which is currently active (has the buffer’s lock). This
piece of information allows approximating the tasks interleavings that we may
have in a considered buffer. In particular, when the execution is at a processor
release point, we use the MHP pairs to see the instructions that may execute
if the processor is released. Information about task interleavings is essential to
infer termination and resource consumption in any concurrent setting (see [5]).

Ezxample 2. Consider the execution trace in Ex. [we have the MHP pairs
@3p;) and @I p:m) since when the active task 0 is executing the await (point
29) in St4, we have that tasks 1 and 2 are pending at their entry points. The
following execution steps give rise to many other MHP pairs. The most relevant
point to note is that in Stg when the execution is at 130 and onwards, the tasks

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 25

(1) mp(y=this.m(z, p), M M[(y,0,Z,R)/(x,0,Z, R)] U{(y,t,m,p)}
(2) TP(y:x'm(jvp)vM MKyaOaZv R>/<*,O,Z, R>] U {<ya°7m7p>}
(3) 7p(release, M) = 7(release; ; releases, M)
(4) Tp(release;, M) = M[(Y,t,mh,p)/(Y,t,m,p)] where p > p
(5) Tp(releasez, M) = M[(Y, t,m,p)/(Y,t, m, p)] where p > p
(6) Tp(await y?, M) = M'[{y,O,m, R)/{y, O, m, R)]

where M’ = 7(releases; releasesz, M)
(7) Tp(return, M) = M[{Y,t,m, R)/{Y,t,m, R)]
(8) (b, M) =M otherwise

) =
)=
) =
) =
)=
) =

Fig. 3. Method-level MHP transfer function: 7, : s x B — B

1 and 2 are guaranteed to be at their exit program points p f and p,;,. Thus,
we will not have any MHP pair between the instructions that update the global
variable gl (I8 and 1T in tasks 1 and 2, resp.) and the release point at 1122]
of the task 3 executing h. This information is essential to prove the termination
of h, as the analysis needs to be sure that the loop counter cannot be modified
by instructions of other tasks that may execute in parallel with the body of this
loop. The information is also needed to obtain an upper bound on the number
of iterations of the loop and then infer the resource consumption of h.

Inter-buffer MHP Pairs. In addition to intra-buffer MHP relations, inter-buffer
MHP pairs happen when bidy # bids. In this case, we obtain the instructions
that may execute in parallel in different buffers. This information is relevant
at least for two purposes: (1) to detect data-races in the access to the global
memory and (2) to detect deadlocks and livelocks when one buffer is awaiting
for the completion of one task running in another buffer, while such other task
is awaiting for the completion of the current task, and the execution of these
(synchronization) instructions happens in parallel (or simultaneously). If the
language allows blocking the execution of the buffer such that no other pending
task can take it, we have a deadlock, otherwise we have a livelock.

Ezxample 3. Consider again the execution trace in Ex.[Il in Sti9 we have created
a new buffer 1 in which task 4 starts to execute at St1;. We will have the inter-
buffer pair (ZIHE) as we can have I2]] executing in buffer 0 and I1Hl executing
in buffer 1. Note that, if task had updated gl instead of updating g2, we would
have had a data race. Data races can lead to different types of errors, and static
analyses that detect them are of utmost importance.

4 Method-Level Analysis with Priorities

In this section, we present the local phase of our MHP analysis which assigns
to each program point, of a given method, an abstract state that describes the

26 E. Albert, S. Genaim, and E. Martin-Martin

status of the tasks that have been locally invoked so far. The status of a task
can be (1) pending, i.e., it is at the entry program point; (2) finished, i.e., it has
executed a return instruction already; or (3) active, i.e., it can be executing at
any program point (including the entry and the exit). The analysis uses MHP
atoms which are syntactic objects of the form (F, O, T, R) where

— F is either a valid future variable name or *. The value % indicates that the
task might not be associated with any future variable, either because there is
no need to synchronize with its result, or because the future has been reused
and thus the association lost (this does not happen in our example);

— O is the buffer name that can be t or o, which resp. indicate that the task
is executing on the same buffer or maybe on a different one;

— T can be m, m, or m where m is a method name. It indicates that the
corresponding task is an instance of method m, and its status can be pending,
active, or finished resp.;

— P is a natural number indicating the priority of the corresponding task.

Intuitively, an MHP atom (F,O,T, R) is read as follows: task 7" might be exe-
cuting (in some status) on buffer O with priority P, and one can wait for it to
finish using future variable F'. The set of all MHP atoms is denoted by .A.

Ezample 4. The MHP atom (x,t,m,5) indicates that there is an instance of
method m running in parallel, in the same buffer. This task is active (i.e., can
be at any program point), has priority 5, and is associated with the future z.
The MHP atom (%, o, task, 0) indicates that there is an instance of method task
running in parallel, maybe in a different buffer. This task is finished (i.e., has
executed return), has priority 0, and it is associated to any future variable.

An abstract state is a multiset of MHP atoms from A. The set of all multisets
over A is denoted by B. Given M € B, we write (a,7) € M to indicate that a
appears exactly ¢ > 0 times in M. We omit ¢ when it is 1. The local analysis
is applied on each method and, as a result, it assigns an abstract state from
B to each program point in the program. The analysis takes into account the
priority of the method being analyzed. Thus, since a method might be called with
different priorities py,...,p,,, the analysis should be repeated for each p,. For
the sake of simplifying the presentation, we assume that each method is always
called with the same priority. Handling several priorities is a context-sensitive
analysis problem that can be done by, e.g., cloning the corresponding code.

The analysis of a given method, with respect to priority p, abstractly executes
its code over abstract elements from 5. This execution uses a transfer function
Ty, depicted in Fig. B} to rewrite abstract states. Given an instruction b and an
abstract state M € B, 7,(b, M) computes a new abstract state that results from
abstractly executing b in state M. Note that the subscript p in 7, is the priority
of the method being analyzed. Let us explain the different cases of 7:

— (1) Posting a task on the same buffer adds a new MHP atom (y,t,h,p)
to the abstract state. It indicates that an instance of m is pending, with
priority p, on the same buffer as the analyzed method, and is associated

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 27

with future variable y. In addition, since y is assigned a new value, those
atoms in M that were associated with y should now be associated with *
in the new state. This is done by M[(y, O, Z, R)/(x, O, Z, R)] which replaces
each atom that matches (y, O, Z, R) in M by (x,0, Z, R);

— (2) It is similar to (1), the difference is that the new task might be posted on
a buffer different from that of the method being analyzed. Thus, its status
should be active since, unlike (1), it might start to execute immediately;

— (3)-(5) These cases highlight the use of priorities, and thus mark the main
differences wrt [3]. They state that when releasing the processor, only tasks
of equal or higher priorities are allowed to become active (simulated through
release;). Moreover, when taking the control back, any task with strictly
higher priority is guaranteed to have been finished (simulated through
release;). Importantly, the abstract element after release; is associated to
the program point of the release instruction, and that after release, is associ-
ated to the program point after the release instruction. These two auxiliary
instructions are introduced to simulate the implicit “loop” (in the semantics)
when the task is waiting at that point;

— (6) This instruction is similar to release, the only difference is that the status
of the tasks that are associated with future variable y become finished in the
following program point. Importantly, the abstract element after release; is
associated to the program point of the await y7;

— (7) Tt changes the status of every pending task executing on the same buffer
to active, this is because the processor is released. Note that we do not
consider priorities in this case, since the task is finished.

In addition to using the transfer function for abstractly executing basic instruc-
tions, the analysis merges the results of paths (in conditions, loops, etc) using a
join operator. We refer to [3] for formal definitions of the basic abstract interpre-
tations operators. In what follows, we assume that the result of the local phase
is given by means of a mapping £, :P,—B which maps each program point p
(including entry and exit points) to an abstract state £, (p) € B.

Ezxample 5. Applying the local analysis on main, results in the following abstract
states (initially the abstract state is 0):

28:{ (%, t,f,10)}

29:{(x,t,f,10), (x, t, m, 5)}

30:{ (%, t,f,10), (x, t,m,5)}

31:{ (%, t,f,10), (x, t,m,5), (,t,h, 10)}

32:{ (%, t,f,10), (x, t,m,5), (x,t,h, 10)}
33:{(x,t,f,10), (x, t,m,5), (%, t, h, 10), (x, o, task, 0) }

Note that in the abstract state at program point 30 we have both f and m finished,
this is because they have higher priority than main, and thus, while main is waiting
at program point 29 both f and m must have completed their execution before
main can proceed to the next instruction. If we ignore priorities, then we would
infer that f might be active at program point 30 (which is less precise).

28 E. Albert, S. Genaim, and E. Martin-Martin

5 MHP Graph for Priority-Based Scheduling

In this section we will construct a MHP graph relating program points and
methods in the program, that will be used to extract precise information on
which program points might globally run in parallel. In order to build this graph,
we use the local information computed in Sec. Ml which already takes priorities
into account. In Sec. B2l we explain how to use the MHP graph to infer the
MHP pairs in the program. Finally, in Sec. we compare the inference method
of MHP pairs using a priority-based scheduling with the technique introduced
in [3] for programs with a non-deterministic scheduling.

5.1 Construction of the MHP Graph with Priorities

The MHP graph has different types of nodes and different types of edges. There
are nodes that represent the status of methods (active, pending or finished) and
nodes that represent the program points. Outgoing edges from method nodes
are unweighted and unlabeled, they represent points of which at most one might
be executing. Outgoing edges from program point nodes are labeled, written —;
where the label [is a tuple (O, R) that contains a priority R and a buffer name
O. These edges represent tasks such that any of them might be running. Besides,
when two nodes are directly connected by ¢ > 1 edges, we connect them with
a single edge superscripted with weight i, written as —; where [is the label as
before.

Definition 2 (MHP graph with priorities). Given a program P, and its
method-level MHP analysis result L, , the MHP graph of P is a directed graph
G, = (V, E) with a set of nodes V and a set of edges E = F1 U Ey defined:

V = {m,m,m|me P, }UP,
Ey={m—p|me€P,,,p€P,,pem}U{m — pn,m—pn|meP,}
Ey ={p —=or z|p€ Py, ((,0,2,R),i) € L,(p)}

Ezxample 6. Fig. [depicts the relevant fragment of the MHP graph for our run-
ning example. The graph only shows selected program points, namely all points
of the main task and those points of the other tasks in which there is a release
instruction, or in which the global memory is updated. For each task, we have
three nodes which correspond to their possible status (except for h and task that
we have omitted status that do not have incoming edges). In order to avoid clut-
tering the graph, in edges from program points, the labels only show the priority.
The weight is omitted as it is always 1. The label corresponding to the buffer
name is depicted using different types of arrows: normal arrows correspond to
the buffer name o, while dashed arrows to t. From the pending (resp. finished)
nodes, we always have an edge to the task entry (resp. exit) point. From the
active nodes, we have edges to all program points in the corresponding method
body, meaning that only one of them can be executing. The key aspect of the

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 29

.7 e .7 - /5 e

e ’ A Y Ly o £10
LN gngn
oo @ & @

Fig. 4. MHP graph with priorities of the example

MHP graph is how we integrate the information gathered by the local analysis
(with priorities) to build the edges from the program points: we can observe
that node 28 has an edge to pending f, and at the await (node 29) the edges
go to active f and m. After await, in nodes 30 and the next ones, the edges go
to finished tasks. The remaining tasks only have edges to their program points
since they do not make calls to other tasks.

5.2 Inference of Priority-Based MHP Pairs

The inference of MHP pairs is based on the notion of intra-buffer path in the
MHP graph. A path from p; to ps is called intra-buffer if the program points
p1 and po are reachable only through tasks in the same buffer. A simple way
to ensure the intra-buffer condition is by checking that the buffer labels are
always of type t (more accurate alternatives are discussed later). Intuitively, two
program points p;,p2 € P, may run in parallel if one of the following conditions
hold:

1. there is a non-empty path in G, from p; to ps or vice-versa; or

2. there is a program point ps € P,, and non-empty intra-buffer paths from
p3 to p1 and from p3 to ps that are either different in the first edge, or they
share the first edge but it has weight ¢ > 1, and the minimum priority in
both paths is the same; or

3. there is a program point p3 € P,, and non-empty paths from p3 to p; and

from p3 to po that are either different in the first edge, or they share the first

edge but it has weight ¢ > 1, and at least one of the paths is not intra-buffer.

The first case corresponds to direct MHP scenarios in which, when a task is run-
ning at pp, there is another task running from which it is possible to transitively

30 E. Albert, S. Genaim, and E. Martin-Martin

reach ps, or vice-versa. For instance (B3] is a direct MHP resulting from the
direct call from main to task.

The second and third cases correspond to indirect MHP scenarios in which
a task is running at ps and there are two other tasks p; and ps executing in
parallel and both are reachable from p3. However, the second condition takes
advantage of the priority information in intra-buffer paths to discard potential
MHP pairs: if the minimum priority of path pt; = ps ~» p; is lower than the
minimum priority of pts = ps ~» ps, then we are sure that the task containing
the program point po will be finished before the task containing p; starts. For
instance, consider the two paths from 29 to 8 and from 29 to I8 which form
the potential MHP pair ([BII6). They are both intra-buffer (executing on buffer
0) and the minimum priority is not the same (the one to [[fl has lower priority).
Thus, ([I88) is not an MHP pair. The intuition is that the task with minimum
priority (m in this case) will be pending and will not start its execution until all
the tasks in the other path are finished. Similarly, we obtain that the potential
MHP pair (IQH) is not a real MHP pair. Knowing that (I0I5) and (I6R)
are not MHP pairs is important because this allows us to prove termination of
both tasks executing m and f. This is an improvement over the standard MHP
analysis in [3], where they are considered as MHP pairs—see Sect. 53] On the
other hand, when a path involves tasks running in several buffers (condition 3),
priorities cannot be taken into account, as the buffers (and their task schedulers)
work independently. Observe that, in the second and third conditions, the first
edge can only be shared if it has weight ¢ > 1 because it denotes that there might
be more than one instance of the same type of task running. For instance, if we
add the instruction o.task(<>,0) at 1I33] we will infer the pair ({lH]), reporting a
potential data race in the access to g2.

Let us formalize the inference of the priority-based MHP pairs. We write
p1 ~ p2 € G, to indicate that there is a path from p; to ps in G, such that the
sum of the edges weights is greater than or equal to 1, and p; —' 2 ~ p2 € G,
to mark that the path starts with an edge to = with weight 7. We will say that
a path p1 ~» pa € G, is intra-buffer if all the edges from program points to
methods have t labels. Similarly, we will say that p is the lowest priority of the
path p1 ~ p2 € G, written lowestP(p; ~» p2) = p, if p is the smallest priority
of all those that appear in edges from program points to methods in the path.
We now define the priority-based MHP pairs as follows.

Definition 3. Given a program P, we let ffp = DU Lintra U Linger where

D ={(p1,p2) | p1,p2 € Pp,p1 ~ p2 €Gp)} _
Lintra = {(p1,p2) | P1,P2,P3 € Pp,p3s —> 21~ p1 € G, p3 > T2~ p2 € G,
p3 — T1 ~> p1 s intra—buffer, lowestP (ps — x1 ~ p1) = pry,
p3 L o ~> po is intra—buffer, lowestP (ps KN RENN p2) = pro,
(xr1#z2V(T1=22AN0=7> 1)) Apry = pry}
Linter = {(p1,p2) | P1,D2,03 € Pp,p3 —> w1~ p1 € Gpyp3 > T2~ p2 € G,y

P3 — T1 ~> p1 OT p3 > Ta ~ pa are not intra—buffer,
ZE1§£$2\/(ZE1ZZE2/\7;:].>1)}

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 31

An interesting point is that even if priorities can only be taken into account at an
intra-buffer level, due to the inter-buffer synchronization operations, they allow
discarding unfeasible MHP pairs at an inter-buffer level. For instance, we can see
that ([@M), which would report an spurious data race, is not an MHP pair. Note
that @ and [execute in different buffers. Still, the priority-based local analysis
has allowed us to infer that after 29 task f will be finished and thus, it cannot
happen in parallel with the execution of task in buffer o. Thus, it is ensured that
there will not be a data-race in the access to g2 from the two different buffers.

The following theorem states the soundness of the analysis, namely, that Ep
is an over-approximation of £p—the proof appears in the extended version of
this paper [6]. Let £5°"~ %" be the MHP pairs obtained by [3].

Theorem 1 (soundness). Ep C Ep C ggfm—det'

As we have discussed above, a sufficient condition for ensuring the intra-buffer
condition of paths is to take priorities into account when all edges are labelled
with the t buffer. However, if buffers can be uniquely identified at analysis time
(as in the language of [9]), we can be more accurate. In particular, instead of
using o to refer to any buffer, we would use the proper buffer name in the labels
of the edges. Then, the intra-buffer condition will be ensured by checking that
the buffer name along the considered paths is always the same.

In our language, buffers can be dynamically created, i.e., the number of buffers
is not fixed a priori and one could have even an unbounded number of buffers
(e.g., using newBuffer inside a loop). The standard way to handle this situation
in static analysis is by incorporating points-to information [I7J15] which allows
us to over-approximate the buffers created. A well-known approximation is by
buffer creation site such that all buffers created at the same program point are
abstracted by a single abstract name. In this setting, we can take advantage of
the priorities (and apply case 2 in Def. B]) only if we are sure that an abstract
name is referring to a single concrete buffer. As the task scheduler of each buffer
works independently, we cannot use knowledge on the priorities to discard pairs
if the abstract buffer might correspond to several concrete buffers. The extension
of our framework to handle these cases is subject if future work.

5.3 Comparison with Non-priority MHP Graphs

The new MHP graphs with priority information (Sec. [51l), and the conditions
to infer MHP pairs (Sec. [1.2)), are extensions of the corresponding notions in [3].
The original MHP graphs were defined as in Def. 2 with the following differences:

— The edges in Ey do not contain the label (O,R) with the buffer name and
the priority, but only the weight.

— The method-level analysis £, (p) in [3] does not take priorities into account,
so after a release instruction, pending tasks are set to active. With the
method-level analysis in this paper (Sect. Hl), tasks with a higher priority
in the same buffer are set to finished after a release instruction—case (4) in
Fig. Bl This generates less paths in the resulting MHP graph with priorities
and therefore less MHP pairs.

32 E. Albert, S. Genaim, and E. Martin-Martin

— In [3], there is another type of nodes (future variable nodes) used to increase
the accuracy when the same future variable is re-used in several calls in
branching instructions. For the sake of simplicity we have not included future
nodes here as their treatment would be identical as in [3].

Regarding the conditions to infer MHP pairs, only two are considered in [3]:

1. there is a non-empty path in G, from p; to ps or vice-versa; or
2. there is a program point ps € P,, and non-empty paths from p3 to p; and

from p3 to po that are either different in the first edge, or they share the first
edge but it has weight ¢ > 1.

The first case is the same as the first condition in Sect The second case
corresponds to indirect MHP scenarios and is a generalization of conditions 2
and 3 in Sect without considering priorities and intra-buffer paths. With
these conditions, we have that the release point cannot happen in parallel
with the instructions that modify the value of the loop counter gl (namely Bl
and [T3)), because there is no direct or indirect path connecting them starting
from a program point. However, we have the indirect MHP pairs (IOIH) and
(I6R), meaning respectively that at the release point of f the counter gl can be
modified by an interleaved execution of m and that at the release point of m
the counter gl can be modified by an interleaved execution of f. Such spurious
interleavings prevent us from proving termination of the tasks executing f and m
and, as we have seen in Sec. .2 they are eliminated with the new MHP graphs
with priorities and the new conditions for inferring MHP pairs.

6 Implementation in the MayPar System

We have implemented our analysis in a tool called MayPar [4], which takes
as input a program written in the ABS language [12] extended with priority
annotations. ABS is based on the concurrency model in Sec. [and uses the
concept of concurrent object to realize the concept of task-buffer, such that
object creation corresponds to buffer creation, and a method call o.m() posts
a task executing m on the queue of object o. Currently the annotations are
provided at the level of methods, instead of at the level of tasks. This is because
we lacked the syntax in the ABS language to include annotations in the calls, but
the adaptation to calls will be straightforward once we have the parser extended.

We have made our implementation and a series of examples available online
at http://costa.ls.fi.upm.es/costabs/mhp. After selecting an example, the
analysis options allow: the selection of the entry method, enabling the option to
consider priorities in the analysis, and several other options related to the format
for displaying the analysis results and the verbosity level. After the analysis,
MayPar yields in the output the MHP pairs in textual format and also optionally
a graphical representation of the MHP graph. Besides, MayPar can be used in
an interactive way which allows the user to select a line and the tool highlights
all program points that may happen in parallel with it.

May-Happen-in-Parallel Analysis for Priority-Based Scheduling 33

The examples on the MayPar site that include priority annotations are within
the folder priorities. It is also possible to upload new examples by writing them
in the text area. In order to evaluate our proposal, we have included a series of
small examples that contain challenging patterns for priority-based MHP analy-
sis (including our running example) and we have also encoded the examples in the
second experiment of [9] and adapted them to our language (namely we use await
on futures instead of assume on heap values). MayPar with priority-scheduling
can successfully analyze all of them. Although these examples are rather small
programs, this is not due to scalability limits of MayPar. It is rather because of
the modeling overhead required to set up actual programs for static analysis.

7 Conclusions and Related Work

May-happen-in-parallel relations are of utmost importance to guarantee the
sound behaviour of concurrent and parallel programs. They are a basic compo-
nent of other analyses that prove termination, resource consumption boundness,
data-race and deadlock freeness. As our main contribution, we have leveraged
an existing MHP analysis developed for a simplistic scenario in which any task
could be selected for execution in order to take task-priorities into account. In-
terestingly, have succeeded to take priorities into account both at the intra-buffer
level and, indirectly, also at an inter-buffer level.

To the best of our knowledge, there is no previous MHP analysis for a priority-
based scheduling. Our starting point is the MHP analysis for concurrent objects
in [3]. Concurrent objects are almost identical to our multi-buffer asynchronous
programs. The main difference is that, instead of buffers, the concurrency units
are the objects. The language in [3] is data-race free because it is not allowed
to access an object field from a different object. Our main novelty w.r.t. [3]
is the integration of the priority-based scheduler in the framework. Although
we have considered a cooperative concurrency model in which processor release
points are explicit in the program, it is straightforward to handle a preemptive
scheduling at the intra-buffer level like in [9], by simply adding a release point
after posting a new task. If the posted task has higher priority, the active task will
be suspended and the posted task will become active. Thus, our analysis works
directly for this model as well. As regards analyses for Java-like languages [14/[7],
we have that a fundamental difference with our approach is that they do not
take thread-priorities into account nor consider any synchronization between the
threads as we do. To handle preemptive scheduling at the inter-buffer level, one
needs to assume processor release points at any instruction in the program, and
then the main ideas of our analysis would be applicable. However, we believe
that the loss of precision could be significant in this setting.

Acknowledgements. This work was funded partially by EU
project FPT7-ICT-610582 ENVISAGE: FEngineering Virtualized Services
(http://www.envisage-project.eu), by the Spanish projects TIN2008-
05624, TIN2012-38137, PRI-AIBDE-2011-0900 and by the Madrid Regional

34

E. Albert, S. Genaim, and E. Martin-Martin

Government project S2009TIC-1465. We also want to acknowledge Antonio
Flores-Montoya for his help and advice when implementing the analysis in the
MayPar system.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Ericsson, A.: Erlang Efficiency Guide, 5.8.5 edn. (October 2011),
http://www.erlang.org/doc/efficiency_guide/users_guide.html

Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 35-51. Springer, Heidelberg (2012)

Albert, E., Flores-Montoya, A., Genaim, S.: Maypar: a May-Happen-in-Parallel
Analyzer for Concurrent Objects. In: SIGSOFT/FSE 2012, pp. 1-4. ACM (2012)
Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: Termination and
Cost Analysis of Loops with Concurrent Interleavings. In: Van Hung, D., Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 349-364. Springer, Heidelberg (2013)
Albert, E., Genaim, S., Martin-Martin, E.: May-Happen-in-Parallel Analysis for
Priority-based Scheduling (Extended Version). Technical Report SIC 12/13. Univ.
Complutense de Madrid (2013)

Barik, R.: Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan,
P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 152-169. Springer, Heidelberg (2006)
de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316-330. Springer, Heidelberg
(2007)

Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. In: SIGSOFT FSE, p. 48. ACM (2012)

Flores-Montoya, A.E., Albert, E., Genaim, S.: May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE 2013. LNCS, vol. 7892, pp. 273-288. Springer, Heidelberg
2013)

%Ialler, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202-220 (2009)

Johnsen, E.B., Hahnle, R., Schafer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer,
Heidelberg (2011)

Lee, J.K., Palsberg, J.: Featherweight X10: A Core Calculus for Async-Finish Par-
allelism. In: Proc. of PPoPP 2010, pp. 25-36. ACM (2010)

Li, L., Verbrugge, C.: A practical mhp information analysis for concurrent java pro-
grams. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602,
pp. 194-208. Springer, Heidelberg (2005)

Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to and Side-effect Analyses for Java. In: ISSTA, pp. 1-11 (2002)

Naik, M., Park, C., Sen, K., Gay, D.: Effective static deadlock detection. In: Proc.
of ICSE, pp. 386-396. IEEE (2009)

Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131-144. ACM (2004)

http://www.erlang.org/doc/efficiency_guide/users_guide.html

The Complexity of Clausal Fragments of LTL

Alessandro Artale', Roman Kontchakov?, Vladislav Ryzhikov!,
and Michael Zakharyaschev?

! KRDB Research Centre

Free University of Bozen-Bolzano
1-39100 Bolzano, Italy
{artale,ryzhikov}@inf.unibz.it
2 Department of Computer Science and Information Systems
Birkbeck, University of London

London WC1E 7THX, UK

{roman,michael}@dcs.bbk.ac.uk

Abstract. We introduce and investigate a number of fragments of propo-
sitional temporal logic LTL over the flow of time (Z, <). The fragments
are defined in terms of the available temporal operators and the struc-
ture of the clausal normal form of the temporal formulas. We determine
the computational complexity of the satisfiability problem for each of the
fragments, which ranges from NLOGSPACE to PTIME, NP and PSPACE.

1 Introduction

We consider the (PSPACE-complete) propositional temporal logic LTL over the
flow of time (Z, <). Our aim is to investigate how the computational complexity
of the satisfiability problem for LTL-formulas depends on the form of their clausal
representation and the available temporal operators.

Sistla and Clarke [26] showed that satisfiability of LTL-formulas with all stan-
dard operators (‘next-time’, ‘always in the future’, ‘eventually’ and ‘until’) is
PSPACE-complete; see also [I8/T9]. Ono and Nakamura [22] proved that for for-
mulas with only ‘always in the future’ and ‘eventually’ the satisfiability problem
becomes NP-complete. Since then a number of fragments of LTL of different
complexity have been identified. For example, Chen and Lin [10] observed that
the complexity does not change if we restrict attention to temporal Horn formu-
las. Demri and Schnoebelen [I2] determined the complexity of fragments that
depend on three parameters: the available temporal operators, the number of
nested temporal operators, and the number of propositional variables in for-
mulas. Markey [2I] analysed fragments defined by the allowed set of temporal
operators, their nesting and the use of negation. Dixon et al. [I3] introduced a
XOR fragment of LTL and showed its tractability. Bauland et al. [7] systemati-
cally investigated the complexity of fragments given by both temporal operators
and Boolean connectives (using Post’s lattice of sets of Boolean functions).

In this paper, we classify temporal formulas according to their clausal normal
form. Recall [14] that any LTL-formula over (N, <) can be transformed into an
equisatisfiable formula in the so-called separated normal form that consists of

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 35-F2] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

36 A. Artale et al.

Table 1. The complexity of clausal fragments of LTL

temporal operators ®,Op, Op, O, Op &, Op, Op
a LTLE© LTLY LTL®
bool PSPACE (< [26]) NP (< 22) NP
horn PSpPACE (> [10]) PTIME [< Th.B] PTIME
krom NP [< Th.0 NP [> Th.[{] NLOGSPACE
core NP [> Th. NLOGSPACE [< Th.E] NLOGSPACE

initial clauses (setting conditions at moment 0), step clauses (defining transi-
tions between consecutive states), and eventuality clauses (defining the states
that must be reached infinitely often). Our clausal normal form is a slight gen-
eralisation of the separated normal form. The main building blocks are positive
temporal literals A given by the following grammar:

Au= L | p | OA | OeA | DA | TuA | BA (1)

where p is a propositional variable, Op and Op are the next- and previous-time
operators, and Oy, Op, B are the operators ‘always in the future, ‘always in the
past’ and ‘always.! We say that a temporal formula ¢ is in clausal normal form if

@ U=)\ ‘ _\)\ ‘ (_\)\1\/"'\/_\)\n\/)\n+1\/"'\/)\n+7n) ‘ @1/\@2. (2)

Conjunctions of positive and negative (—A) literals can be thought of as initial
clauses, while conjunctions of E-formulas generalise both step and eventuality
clauses of the separated normal form. Similarly to [I5] one can show that any
LTL-formula over (Z, <) is equisatisfiable to a formula in clausal normal form.
We consider twelve fragments of LTL that will be denoted by LTLS", LTLY
and LTL7 for a € {bool, horn, krom, core}. The superscript in the language name
indicates the temporal operators that can be used in its positive literals. Thus,
LTLS’O uses all types of positive literals, LTLE can only use the O-operators:

A u= L | p | O | DA | B
and LTL only the E-operator:
A= L | p | A
The subscript « in the language name refers to the form of the clauses
ALV VoAV At VeV i, (3)
(m,n > 0) that can be used in the formulas ¢:

— bool-clauses are arbitrary clauses of the form (3l),
— horn-clauses have at most one positive literal (that is, m < 1),

The Complexity of Clausal Fragments of LTL 37

— krom-clauses are binary (that is, n + m < 2),
— core-clauses are binary with at most one positive literal (n+m <2, m <1).

The tight complexity bounds in Table [I] show how the complexity of the sat-
isfiability problem for LTL-formulas depends on the form of clauses and the
available temporal operators. The PSPACE upper bound for LTLE(;OOZ is well-
known [I82612425]; the matching lower bound can be obtained already for
LTLE(’)?n without O and O, by a standard encoding of deterministic Turing
machines with polynomial tape [I0]. The NP upper bound for LTL?OO[is also
well-known [22], and the PT1ME and NLOGSPACE lower bounds for LTL}, ., and
LTL,,,. coincide with the complexity of the respective non-temporal languages.
The upper bounds for the LTL fragments can be obtained by embedding into
the the underlying propositional fragments; see the full paper [6] for details.

The main contributions of this paper are the remaining complexity results
in Table [l The complexity of the LTLE fragments matches the complexity of
the underlying non-temporal fragments except for the Krom case, where we can
use the clauses —p V —~0,q and ¢ V r to say that p — Opr (if p then eventually
r), which allows one to encode 3-colourability and results in NP-hardness. It is
known that the addition of the operators O and Op to the language with O, and
O, usually increases the complexity (note that the proofs of the lower bounds
for the LTLY'© fragments require only B and Oj). It is rather surprising that
this does not happen in the case of the Krom fragment, while the complexity of
the corresponding core fragment jumps from NLOGSPACE to NP.

We prove the upper bounds using two different techniques. The existence of
models for LTLS;OOm—formulas is checked in Section B by guessing a small number
of types and exponentially large distances between them (given in binary) and
then using unary automata (and the induced arithmetic progressions) to verify
correctness of the guess in polynomial time. In Section [l we design a calculus
for LTLY, . in which derivations can be thought of as paths in a graph over the

propositions labelled by moments of time. Thus, the existence of such derivations
is essentially the graph reachability problem and can be solved in NLOGSPACE.

2 The Clausal Normal Form for LTL

The propositional linear-time temporal logic LTL (see, e.g., [LOJ17] and references
therein) we consider in this paper is interpreted over the flow of time (Z, <).
LTL-formulas are built from propositional variables pg, p1, . . ., propositional con-
stants T and L, the Boolean connectives A, V, — and —, and two binary temporal
operators S (‘since’) and U (‘until’), which are assumed to be ‘strict. So, the other
temporal operators mentioned in the introduction can be defined via S and U as
follows:

Orp=L1lUp, Orp=TUp, Orp=-Cpp, ©p = CpOrop,
Opp =18, Cpp =TS o, Opp = Opmip, 0 = 0,0,0.

38 A. Artale et al.

A temporal interpretation, 9N, defines a truth-relation between moments of time
n € Z and propositional variables p;. We write 9%, n = p; to indicate that p; is
true at the moment n in the interpretation 9. This truth-relation is extended
to all LTL-formulas as follows (the Booleans are interpreted as expected):

M,n = U iff there is k > n with M, k = ¢ and M, m | ¢, for n <m <k,
M, n =Sy iff there is k < n with M, k = ¢ and M, m |= ¢, for k <m < n.

An LTL-formula ¢ is satisfiable if there is an interpretation 9t such that 91,0 = ;
in this case we call It a model of . We denote the length of ¢ by |o].

Recall that LTL-formulas of the form (2l were said to be in clausal normal
form, and the class of such formulas was denoted by LTL';;SZ. The clauses (3]

will often be represented as Ay A-+- A Xy, = Apy1 V-V Ay (where the empty
disjunction is | and the empty conjunction is T).

Lemma 1 (clausal normal form). For every LTL-formula, one can construct
an equisatisfiable LTLE'O’(?I -formula. The construction requires logarithmic space.

The proof of this lemma is similar to the proof of [15, Theorem 3.3.1] and uses
fixed-point unfolding and renaming [I5I23]. For example, we can replace every pos-
itive occurrence (that is, an occurrence in the scope of an even number of nega-
tions) of pU ¢ in a given formula ¢ with a fresh propositional variable r and add
the conjuncts B(r — Opq V Opp), B(r — Opq V Opr) and B(r — Opq) to ¢. The
result contains no positive occurrences of p U g and is equisatisfiable with ¢: the
first two conjuncts are the fixed-point unfolding (pU q) — OrqV (OrpAOr(pUQ)),
while the last conjunct ensures that the fixed-point is eventually reached.

The next lemma allows us to consider an even more restricted classes of for-
mulas. In what follows, we do not distinguish between a set of formulas and the
conjunction of its members, and we write B @ for the conjunction /\XG s B X.

Lemma 2. Let L be one of LTLE’O, LTLS, LTLE, for a € {bool, horn, krom, core}.
For any L-formula @, one can construct, in log-space, an equisatisfiable L-formula

oA B, (4)

where ¥ is a conjunction of propositional variables from @, and @ is a conjunc-
tion of clauses of the form [B) containing only Op, Op, Op for LTLE’O, only
Op, Op for LTLE, and only @ for LTL, in which the temporal operators are not
nested.

Proof. First, we take a fresh variable p and replace all the conjuncts of the form
A and =X in ¢ by B(=p V A) and E(-p V =), respectively; we set ¥ = p.
For an LTL.® or LTL]-formula, we replace the temporal literals B\ with
O-0:A. Then, for each Op\, we take a fresh variable, denoted Op\, replace
each occurrence of OpA with Op\ and add the conjuncts B(OrOpA — A) and
B(A — OrOpA) to the resulting formula. In a similar manner, we use fresh

The Complexity of Clausal Fragments of LTL 39

_‘DPpl _‘DFql
WO —p2—p1 —|E|Pp2 Vi v, !pi+1 !pgo —|E|Fq2 —q1q2 LDK
Q@ o—0——=0 e} O—0O0—"—0 O Oo—0—0 O oO—0—0O Q
3 1/ \V/ A
\\ 77777777777 4 Zp ZF\ 77777777777 -
Y, =¥ Uk =Y,
WZ,1 Wz @Z Lpz+1
-p p p p
—-—O—F— —O&—F— O0—F—0— —@—F—O—F+
“=lpp i —-UOrp —Upp Orp Orp Upp : Opp

Fig. 1. The structure of a model in Lemma [3]

propositional variables as abbreviations for nested temporal operators and obtain
the required equisatisfiable formula. Clearly, this can be done in logarithmic
space. a

We now characterise the structure of interpretations satisfying formulas ¢* of
the form (@) in a way similar to other known descriptions of temporal models;
see, e.g., [T6/T7]. This characterisation will be used in the upper bound proofs
of Theorems [and [Bl For each Opp in &, we take a fresh propositional variable,
Orp, and call it the surrogate of Opp; likewise, for each Opp in & we take its
surrogate O.p. Let @ be the result of replacing all the O-literals in @ with their
surrogates. By a type for @ we mean any set of literals that contains either p or
—p (but not both), for each variable p in @ (including the surrogates).

The proof of the following lemma is standard and can be found in [6]. The
reader may find useful Fig. [l illustrating the conditions of the lemma.

Lemma 3 (structure of models). Let ¢ be an LTL';;SI -formula of the form (@)
and K = |@| +4. Then ¢ is satisfiable iff there exist integers mo < my < -+- <
mpy and types Yo, ¥, ..., ¥k for @ such that:

(B()) mir1 —my; < 2|q§|, fOTO <i< K;
(B1) there exists £y, 0 < by < K, such that & C Wy,;

B2) Oepe¥;, = p,0p Wiy and Oep €1 \¥; = p ¢ ¥ (0<i< K),
Opp€W=p,UppeWy and Tppe¥ 1 \¥;=p¢¥,_; (0<i<K);
(B3) there exist {p, < K and €, > 0 such that
— Wy, =Yk and, for each ~Opp € ¥y, there is j > £r with —p € ¥},
— W, =¥ and, for each ~Opp € ¥y,,, there is j < {p with —p € ¥y

(By) the following formulas are consistent, for 0 < i < K:

mip1—m;—1

v, = ¥ A /\ OFk@Z AN O;’Li+1_miy7i+1 A HP
k=1

9

40 A. Artale et al.

where OFW is the result of attaching k operators Op to each literal in ¥ and

{p, Orp | Orp € Wz} U {_‘DFP | ~Orp € Wz} U
{p, Cop | Opp € i1} U {~0pp | ~Opp € ¥ipq}.

The intuition behind this lemma is as follows (see Fig. [l). If ¢ is satisfiable,
then it has a model 91 that consists of the initial fragments of models I; of
the formulas v;: namely, the types of the moments m;, ..., m;11 in 9 coincide
with the types of the moments 0, ..., (m;+1 — m;) in M;. By (By), we have
M, 0 = BP. Then (B1) makes sure that M, 0 = ¥. Conditions (Bz) and (B3)
guarantee that if Op.p € ¥; then p € ¥; for all types ¥; located to the right of ¥;
in Fig. [l and, conversely, if Oxp ¢ ¥, then —p € ¥;, for some ¥; to the right of
W;; and symmetrically for the Op-literals. It follows that 91,0 &= @ &.

3 Binary-Clause LTL and Arithmetic Progressions

In this section, we prove NP-completeness of the satisfiability problem for
LTLE;Sm and LTLCOSe The key ingredient of the proof of the upper bound is
an encoding of condition (By) for binary clauses by means of arithmetic pro-
gressions (via unary automata). The proof of the lower bound is by reduction of
the problem whether a given set of arithmetic progressions covers all the natural
numbers.

Let ¢ be an LTLkmm formula of the form (@]). By Lemma Bl to check sat-
isfiability of ¢ it suffices to guess K + 1 types for @ and K natural numbers
n; = m;41 —m;, for 0 < ¢ < K, whose binary representation, by (By), is polyno-
mial in |@|. Evidently, (B1)—(B3) can be checked in polynomial time. Our aim
now is to show that (B4) can also be verified in polynomial time, which will
give a nondeterministic polynomial-time algorithm for checking satisfiability of

LTL, ;Sm formulas.

Theorem 1. The satisfiability problem for LTLY:S -formulas is in NP.

kmm

Proof. In view of Lemma 2] we write O in place of Or. We denote propositional
literals (p or —p) by L and temporal literals (p, —p, Op or =Op) by D. We assume
that O—p is the same as =Op. We use 11 |= 12 as a shorthand for ‘O, 0 | 9
whenever 9, 0 = 11, for any interpretation 91.” Thus, the problem is as follows:
given a set @ of binary clauses of the form D; V Ds, types ¥ and ¥’ for @, a set
O of propositional literals and a number n > 0 (in binary), decide whether

VN /\ "ok A oM A B (5)
has a satisfying interpretation. For 0 < k < n, we set:

Fr(w :{L’\L/\HdilzokL’ for L € '},
Pi0)y={L|OFL' N8P L, for L' € V'}.

The Complexity of Clausal Fragments of LTL 41

Lemma 4. Formula [B) is satisfiable iff the following conditions hold:

(L) FSW) C W, Fy(¥) CW' and PYW') C W', Pp(0") C
(Le) —L ¢ FE(¥) and ~L ¢ Py *(W'), for all L € O and 0 < k < n.

Proof. Clearly, if (B is satisfiable then the above conditions hold. For the con-
verse direction, observe that if L’ € F¥(¥) then, since @ is a set of binary clauses,
there is a sequence of O-prefixed literals OF° Ly ~» O Ly ~» -+ ~» OFmL,,
such that kg = 0, Lo € ¥, k,, = k, L,, = L', each k; is between 0 and
n and the ~» relation is defined by taking OF L; ~» OFi+1L,,; just in one
of the three cases: k;y1 = k; and Ly, — L;41 € @ or kjy1 = k; + 1 and
L, - OLj41 € @ or kiy1 = k; — 1 and OL; — L,11 € & (we assume that,
for example, -¢ — —p € @ whenever ¢ contains p — ¢). So, suppose condi-
tions (L;)—(Lz2) hold. We construct an interpretation satisfying (@). By (Ly),
both ¥ AE @ and O"W’' A B & are consistent. So, let My and My be such that
My,0 = PABY and My, n | P AB P, respectively. Let 91 be an interpretation
that coincides with 2y for all moments k < 0 and with Mg for all & > n; for
the remaining k, 0 < k < n, it is defined as follows. First, for each p € © |, we
make p true at k and, for each —p € ©, we make p false at k; such an assignment
exists due to (Lg). Second, we extend the assignment by making L true at k
if L € FE(W)U Py~*(W'). Observe that we have {p, —p} ¢ FE(¥) U Py~ (w'):
for otherwise L A B ® = OFp and O" L' AB® = —p, for some L € ¥ and
L' € ¥, whence LA ®B® | O"=L', contrary to (L1). Also, by (Lz2), any as-
signment extension at this stage does not contradict the choices made due to ©.
Finally, all propositional variables not covered in the previous two cases get their
values from My (or My). We note that the last choice does not depend on the
assignment that is fixed by taking account of the consequences of B @ with ¥,
V' and © (because if the value of a variable depended on those sets of literals,

the respective literal would be among the logical consequences and would have
been fixed before). Q

Thus, it suffices to show that conditions (L;) and (Lg) can be checked in
polynomial time. First, we claim that there is a polynomial-time algorithm which,
given a set @ of binary clauses of the form D V D5, constructs a set @* of binary
clauses that is ‘sound and complete’ in the following sense:

(S1) BO* EBP;
(S2) if B |= B(L — OFLy) then either k =0 and L — Lo € &*, or k > 1 and
there are Lo, L1,...,Lr—1 with L = Lgand L; —» OL;y; € &*, for 0 <i < k.

Intuitively, the set @* makes explicit the consequences of B @ and can be con-
structed in time (2|®|)? (the number of temporal literals in &* is bounded by the
doubled length |®| of @ as each of its literal can only be prefixed by O). Indeed,
we start from @ and, at each step, add Dy V D5 to @ if it contains both Dy vV D
and —D V Dy; we also add Ly V Lo if @ contains OLq V OLs (and wvice versa).
This procedure is sound since we only add consequences of E @; completeness
follows from the completeness proof for temporal resolution [I5 Section 6.3].

42 A. Artale et al.

Our next step is to encode * by means of unary automata. Let L, L’ be
literals. Consider a nondeterministic finite automaton A, - over {0} such that
the literals of @* are its states, with L being the initial state and L’ the only
accepting state, and {(Ll,Lg) | L1 — OLs € 45*} is its transition relation.
By (S1) and (S2), for all £ > 0, we have

2.1 accepts 0F iff = B(L — oFL).
Then both FX(¥) and PE(¥’) can be defined in terms of the language of 2y, 1

Fy(W)={L'| AL, accepts 0F, for L € '},
Py(W') = {L| AL, 1 accepts 0, for L' € ¥'}

(recall that OFL’ — L is equivalent to =L — OF~L’). Note that the numbers
n and k in conditions (L;) and (Lg) are in general exponential in the length of
@ and, therefore, the automata 27, ;v do not immediately provide a polynomial-
time procedure for checking these conditions: although it can be shown that
if (Lg) does not hold then it fails for a polynomial number k, this is not the
case for (L1), which requires the accepting state to be reached in a fixed (expo-
nential) number of transitions. Instead, we use the Chrobak normal form [11] to
decompose the automata into a polynomial number of polynomial-sized arith-
metic progressions (which can have an exponential common period; cf. the proof
of Theorem [). In what follows, given a and b, we denote by a + bN the set
{a+ bm | m € N} (the arithmetic progression with initial term a and common
difference b).

It is known that every N-state unary automaton 2 can be converted (in
polynomial time) into an equivalent automaton in Chrobak normal form (e.g.,
by using Martinez’s algorithm [28]), which has O(IN?) states and gives rise to
M arithmetic progressions a1 + b1N, ..., aprr + basN such that

(A1) M <O(N?)and 0 < a;,b; < N, for 1 <i < M;
(A2) A accepts OF iff k € a; + b;N, for some 1 <i < M.

By construction, the number of arithmetic progressions is bounded by a quadratic
function in the length of ®.

We are now in a position to give a polynomial-time algorithm for checking (L1)
and (Lz), which requires solving Diophantine equations. In (Lz), for example,
to verify that, for each p € O, we have —p ¢ F&(¥), for all 0 < k < n, we take
the automata Ay, -, for L € ¥, and transform them into the Chrobak normal
form to obtain arithmetic progressions a; + b;N, for 1 < i < M. Then there is k,
0 < k < n, with —=p € FE(¥) iff one of the equations a; + b;m = k has an integer
solution, for some k, 0 < k < n. The latter can be verified by taking the integer
m = |—a;/b;] and checking whether either a; + b;m or a; + b;(m + 1) belongs to
the open interval (0,n), which can clearly be done in polynomial time.

This completes the proof of Theorem [l a

The matching lower bound for LTLE; -formulas, even without O, /0, can be

obtained using NP-hardness of deciding inequality of regular languages over a

The Complexity of Clausal Fragments of LTL 43

12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
21010101010 1 01 01 010101 0101 0101 O0
31 01 01 01 0 1 0 1 0 1 0 1 0 1 0 1 0
51 01 0 1 0 1 0 1 0 1 0

Fig. 2. Positive numbers encoding assignments for 3 variables p1, p2, ps (shaded)

unary alphabet [27]. In the proof of Theorem 2] we give a more direct reduction
of the NP-complete problem 3SAT and repeat the argument of [27, Theorem
6.1] to construct a small number of arithmetic progressions (each with a small
initial term and common difference) that give rise to models of exponential size.

Theorem 2. The satisfiability problem for LTLE:S -formulas is NP-hard.

core

Proof. The proof is by reduction of 3SAT. Let f = A\, C; be a 3CNF with vari-

ables p1,...,p, and clauses C1, ..., C,. By a propositional assignment for f we
understand a function o: {p1,...,pm} — {0,1}. We represent such assignments
by sets of positive natural numbers. More precisely, let P,..., Py, be the first

m prime numbers; it is known that P,, does not exceed O(m?) [1]. A natural
number k > 0 is said to represent an assignment o if k is equivalent to o(p;)
modulo P;, for all i, 1 < i < m. Clearly, not every natural number represents an
assignment since each element of

j+ P -N, forl<i<mand2<j<P, (6)

is equivalent to j modulo P; with j > 2. On the other hand, every natural
number that does not represent an assignment belongs to one of those arithmetic
progressions (see Fig. Q).

Let C; be a clause in f, say, C; = p;, V —pi, V piy. Consider

P'P)P. + P, P, P, -N. (7)

A natural number represents an assignment that makes C; true iff it does not
belong to the progressions () and (). In the same way we construct a progres-
sion of the form (7)) for every clause in f. Thus, a natural number k > 0 does not
belong to the constructed progressions of the form (@) and () iff k& represents a
satisfying assignment for f.

To complete the proof, we show that the defined progressions can be encoded
in LTLZ:©. Take a propositional variable d (it will be shared by all formulas

core*

below). Given an arithmetic progression a + bN (with ¢ > 0 and b > 0), let
a
Oap = up A /\j:1 B (uj—1 — Opuy) A
where ug, ..., u, and vy, ..., vy are fresh propositional variables. It is not hard to

see that, in every model of 6, s, if k£ belongs to a+bN, then d is true at moment k.
Thus, we take a conjunction ¢ of the 6, 5 for arithmetic progressions (@) and (7))

44 A. Artale et al.

_______ K minimal model of X, K o
AO——>O0——>+O---- -O—»o—»or‘
= ﬁ@
--O0—™O0—>O0——>O0—>0-----0 O O O O --
K K
Fig. 3. The minimal model of X, and R,

together with p AB(Opp — p) AB(p — d) NB(- 8 d), where p is a fresh variable
(the last formula makes both p and d true at all moments k < 0). The size of
the LTLY,~-formula ¢ is O(n - m®). It is readily checked that ¢ is satisfiable
iff f is satisfiable. a

4 Core and Horn Fragments without Next-Time

Let ¢ be an LTLme—formula. By applying Lemma 2] we can transform ¢ to the
form U AB T A B S, where ¥ is a set of propositional variables while &1 and
@~ are sets of positive and negative clauses of the form

AMAAXA A X1 — Ak and A VoA V-V oA, (8)

respectively. Trivially, ¥ A B ¢T is satisfiable. Since all clauses in &' have at
most one positive literal and are constructed from variables possibly prefixed by
Or or Op, the formula ¥ A E &+ has a canonical model £, defined by taking

RoonbEp iff Mnlp, for every model Mof U ANB P, neZ

(indeed, R,,0 = ¥ A B ST follows from the observation that £,,n | Opp iff
M,n | Opp, for every model M of ¥ A BPT; and similarly for Opp). If we
consider the canonical model £, in the context of Lemma [J] then, since the
language does not contain Op or Op, we have m;;1 —m; =1 for all ¢. Thus, K,
can be thought of as a sequence of (¢ — £, + 1)-many states, the first and last
of which repeat indefinitely. Let K = |p| + 4.

Obviously, ¢ is satisfiable iff there is no negative clause =A; V-V =g in &~
such that all the \; are true in £, at some moment n with |n| < K. This condition
can be encoded by means of propositional Horn clauses in the following way. For
each variable p, we take 2K + 1 variables p™, |n| < K, and, for each Opp and
Opp, we take 2K 41 variables, denoted (Opp)™ and (Opp)™, |n| < K, respectively.
Consider the following set X, of propositional Horn clauses, |n| < K:

(Hy) p%, ifpew,
(H1))\"/\"'/\)\21—))\2, if()\l/\'~'/\)\k_1—>)\k)€¢+,

(Hy) (Tpp)" — (Gpp)"t ifn < K, (Opp)™ = (Cpp)™ ™ ifn > —K,
(Hs) (Cep)" —p"*, (Cep)™ — p" 1,

(Hy) (Oep)" Ap” — (D p)"lifn> K, (Gpp)" Ap" = (Gpp)" T ifn < K,
(Hs) (Dpp)K (Cop) X = p7 5,

(He) (Gep) " o p7 X, (Tep)™ < p™

The Complexity of Clausal Fragments of LTL 45

Clearly, |X,| < O(|¢]?). It is readily seen that the minimal model of X, cor-
responds to the canonical model 8, as shown in Fig. Bl As propositional Horn
satisfiability is P TIME-complete, we obtain the following:

Theorem 3. The satisfiability problem for LTL) -formulas is in PTIME.

4.1 Temporal Derivations for LTL"

In LTL,,, -formulas, all clauses are binary: k = 2 in (§). Satisfiability of propo-
sitional binary clauses is known to be NLOGSPACE-complete. However, in the
reduction ¢ — X, above, the clauses (Hy) are ternary. In this section we show
how to modify the reduction to ensure membership in NLOGSPACE. More pre-
cisely, we define two types of derivation from WAE &+ a 0-derivation of (A, n) will
mean that R,,n = A, while a V-derivation of A from X that £,,0 BN — B
We then show that these derivations define £, and that satisfiability of ¢ can
be checked by a nondeterministic algorithm in logarithmic space.

Denote by —* the transitive and reflexive closure of the relation — over literals
given by the clauses of $T. We require the following derivation rules over the
pairs (A, n), where X\ is a positive temporal literal in ¢ and n € Z:

in NLogSpace

core

(R1) (A,n) = (A,n), if Ay =7 Ag,

(R2) (Gep,n) = (Cep,n+1), (Oop,n) = (pp,nfl)

(R3) (Gep,n) = (p,n+1), (Cep,n) = (p,n—1),

(Ry) (Tep,0) = (Cep,—1), (Tep,0) = (Ppyl), if p' =" p forp’ € ¥,
(Rs) (p,n) = (Cep,n—1), (p,n) = (Cep,n+1).

The rules in (R1)—(R4) mimic (Hy)-(H4) above ((H4) at moment 0 only) and
reflect the semantics of LTL in the sense that whenever (A, n) = (\,n/) and
Ry,n = X then R,,n' = N. For example, consider (R4). It only applies if p
follows (by —*) from the initial conditions in ¥, in which case £, 0 |= p, and so
£R,0 = Opp implies R, —1 |= Ozp. The rules in (Rs) are different: for instance,
we can only apply (p,n) = (Opp,n — 1) if we know that p holds at all m > n.

A sequence 0: (Ag,n0) = -+ = (Ag,ne), for £ > 0, is called a 0-derivation of
(Aeymp) if Ao € ¥, ng = 0 and all applications of (R5) are safe in the following
sense: for any (p,n;) = (r;) (Orp,ni — 1), there is \;j = Opq, for some ¢ and
0 < j < i; similarly, for any (p,n;) = (r,) (Cpp, i + 1), there is \; = Opq with
0 < j < i. In this case we write ¥ =0 (\;, ny). For example, consider

¢ = p A Blp—=0Opq) AN Blg—71) A Bp—r).

Evidently, R,, —1 |= Oxr. The following sequence is a 0-derivation of (Opr, —1)
because the application of (Rs) is safe due to Opg:

(pao) :>(R1) (DFQ7O) :>(R3) (qa 1) :>(R1) (Ta 1) :>(R5) (DFrv 0) :>(R4) (DFrv _1)

Intuitively, if we can derive (r,1) using (Org,0), then we can also derive (r,n)
for any n > 1, and so we must also have (Opr,0), which justifies the application
of (R5). This argument is formalised in the following lemma:

46 A. Artale et al.

0 1 Ny ne+1 +2
5 R D‘Fq ‘ time
Fq 2
- Orq
5) ji> Orq)\5+le %\
5 o4~ s+1 _ it2/g Orq
g Opr L oA 2 Ast1 o As+1
TR = T, !
g Ai \1{4\Ao Aifl /O
* UpT = Xit1 oA
3

Fig. 4. Removing applications of (R4) (left) and shifting a O-derivation by 2 (right):
dashed arrows show the original derivation and solid ones the resulting derivation

Lemma 5 (monotonicity). Let 0 be a 0-derivation of (Ag,ne) with a suffiz
5 (Opg, 1) = (Ast1,ns11) = - = (Mg, 1), 9)

where none of the \; contains Op. Then W =0 (\g,m), for all m > ny. Similarly,
if there is a suffiz beginning with some Opq then W =2 (\g,m), for all m < ny.
Moreover, these 0-derivations only contain the rules used in d and (R2).

Proof. We first remove all applications of (Ry4) in 5. Let (A, ni) = (ry) (Nit1, i41)
be the first one. By definition, n; = 0 and, since Opq is the last Op in 0, we have
ni+1 = land A; = \j11 = Opr, for some r. So we can begin s with (Opq, ns) = (R2)
(Org,ns+1) = Asq1,n541+1) = - = (Nyni+1) = (Nigo,niq2); see Fig. @
on the left-hand side. We repeatedly apply this operation to obtain a suffix s of
the form (@) that does not use (R4). We then replace s in d with (Orq, ns) = (Rr.)
S B (Ry) (Orq,nstk) = (Asy1,nsq1+k) = -+ = (A, netk), where k = m—ny;
see Fig. Ml on the right-hand side. a

However, 0-derivations are not enough to obtain all literals that are true in
- Indeed, consider the formula

o = r A Blr—=0q) A B(Oq—q A B(Opq— p).

Clearly, R,,n = p for all n € Z, but neither (p,n) nor (Opq,n) is 0-derivable.
On the other hand, for each n € Z, there is a 0-derivation of (g, n): for example,

(Ta 0) :>(R1) (DF(]aO) :>(R1) (q,O) :>(R5) (Dan 71) :>(R1) (Q> 71)

These 0-derivations correspond to R,,0 = & ¢, from which we can derive @ p by
means of the second type of derivations. A sequence ?: (Ag,n9) = -+ = (A\¢, ng)
is called a V-derivation of A¢ from Ag if it uses only (R;1)—(R3) and (Rs), whose
applications are not necessarily safe. So we write & =") if there is a V-derivation
of A from some ¢ such that ¥ = (¢,n), for all n € Z. In the example above,
(4,0) = (Rrs) (Orq, 1) =R,) (p,1) is a V-derivation of p from ¢, whence ¥ =7 p.

The Complexity of Clausal Fragments of LTL 47

Lemma 6 (soundness). If ¥ = (\,n) then f,,n = \. If ¥ =" X then
R,,0 B\,

Proof. By induction on the derivation length, using Lemma [H for (Rs). a
Lemma 7 (completeness). If &,,n = A then either ¥ =0 (\,n) or ¥ =Y .

Proof. Let M be an interpretation such that, for all pand n € Z, we have M, n = p
iff =9 (p,n) or ¥ =7 p. It suffices to show that 91,0 = ¥ A @&+, Indeed, if
we assume that there are p’ and n’ such that &,,n' |= p’ but neither ¥ =0 (p’, n’)
nor ¥ =" p’, we will obtain 9, n’ |= —p’ contrary to our assumption (other types
of literals are considered analogously).

Thus, we have to show that 91 is a model of ¥ A B $T. Suppose p € ¥. Then
trivially ¥ =9 (p,0), and so M, 0 |= p. Suppose A\; — Ay € &+ and M, n = A.
We consider three cases depending on the shape of A\; and show that 0, n = As.

A1 =p. If ¥ =Y p then, by (R1), ¥ =" \p. Otherwise, there is a O-derivation
of (p,n), and so ¥ =0 (A, n) =(R,) (A2, 7).
A1 = Oep. Then M, m = p for all m > n. Consider M, n+1 = p. If ¥ =Y p then,
by (Rs), (R1), ¥ =7 \y. Otherwise, there is a 0-derivation d of (p,n + 1).
(F) If Op occurs in 0 then ¥ =0 (p,n + 1) =(Rs) (Orp; 1) = (Rry) (A2,n).
(P) If O, occurs in ? then, by Lemma B ¥ = (p,m) for each m < n + 1.
Thus, ¥ =0 (p,m) for all m € Z, and so, by (Rs) and (R1), ¥ =" \,.
(0) If d contains neither Op nor O, then n = —1 and A —* p, for some
A€W (by (Ry)). As 9,1 = p and we assumed ¥ %" p, there is a
O-derivation ?’ of (p,1), which must contain Oz or Op. If ?’ contains Oy
then ¥ =0 (p,1) = (Rs) (DFp,O) = (Ry4) (DFp7—1) =(R1) (A, n). If Op
occurs in 0’ then, by the argument in (P), ¥ =Y \,.
A1 = Opp. The proof is symmetric.

In each of these cases, we have either ¥ =0 (\2,n) or ¥ =" X\y. Observe that
¥ =0 (\y,n) implies M, n = Ag. Indeed, this clearly holds for Ay = p. If Ay = O,p
then, by repetitive applications of (Rg) and an application of (Rg3), we obtain
v =0 (p,m), for all m > n, which means 9, n = Opp. The case Ao = Opp is
symmetric. If ¥ =7)\, then, independently of whether A, is p’, Opp’ or Opp/, we
have ¥ =Y p/, so M, m = p’ for all m € Z, whence, M, n = \s. a

Next, in Lemmas [and [@ we provide efficient criteria for checking the condi-
tions ¥ =0 (\,n) and ¥ =" X by restricting the range of numbers that can be
used in O-derivations (numbers in V-derivations can simply be ignored). Given a
O-derivation 0: (Ag,n0) = -+ = (Ar, ne), we define its reach as

r(0) = max{|n;| | 0 <1 < (}.

We say that 0 right-stutters, if there are v < w such that A, = Ay, 1y < 14 and
n; > 0, for all i, v < i < w (in particular, (R4) is not applied between v and
w). Symmetrically, 0 left-stutters if there are v < w such that A\, = Ay, 1y > 1y,
and n; <0, for all 7, v <i < w.

48 A. Artale et al.

m —lo|—1 nu

time

o

@

Z.

g

a8

o

= _ - o
w | - _a==T

2 S D
ke

w

Fig.5. Left-stuttering: n, and n, occur between —1 and —|¢| — 1 (shaded) and
the fragment of the derivation from n, to n, can be repeated any number of times
(including 0)

Lemma 8 (checking =°). ¥ =° (\ n) iff there exists a 0-derivation 0 of
(A, m) such that r(d) < 2|¢| and one of the following conditions holds:

(Cy1) m=mn;
(C2) 0 contains Op and either m < n or 0 left-stutters;
(Cs3) 0 contains Op and either m > n or 0 right-stutters.

Proof. (=) Let d: (Ao,n0) = -+ = (A\¢,n¢) be a O-derivation of (A\,n). If
r(d) < |p| then 0 satisfies (C1). Otherwise, we take the first O-literal in , say
At = Ogq (the case of Opq is symmetric). Clearly, |ns < 1. Let u > ¢ be the
smallest index with |n,| > |¢|. Since adjacent n; and n,1; differ by at most
1, the segment between (A;,n¢) and (\,,n,) contains a repeating literal: more
precisely, there exist v < w between ¢ and u such that A, = A, and

— either n, > n, and n; <0, for v <7 < w,
— Or Ny < Ny and n; > 0, for v < i < w.

In the former case 0 left-stutters, and we perform the following operations on
the suffix s: (Ay, nyw) = -+ = (A, ng) of 0. First, we eliminate all applications
of (Ry) in s: each suffix (Orq,0) =(r,) (Orq, —1) = (As,ns) = -+ = (A,)
is replaced by (Orq,0) = (As,ns +1) = -+ = (Ar,ne + 1); and similarly for
Op. If each time we eliminate the last application of (R4) then the result is
clearly a 0O-derivation. Second, we remove all duplicating literals: each suffix
Asyms) = -+ = Aeryny) = ()\Sz+1,ns/+1) = .- = (Ag,ng) with Ay = Ay is
replaced by (As,ns) = (Asr41, s 4+1+k) = ()\g ne+k), where k = ng—ng.
This will give us a left-stuttering 0- derlvatlon D’ of (A, m), for some m. Since there
are at most |p| distinct literals in s, we have r(?’) < 2|p], thus satisfying the
second option of (Cs); see Fig.

In the latter case 0 right-stutters, and we construct a 0-derivation ?’ of (p,n’)
by cutting out the segment (Ayt1,My4+1) = -+ = (Aw,Ny) from 0 and ‘shifting’
the tail using the construction above: eliminate applications of (R4) and then
decrease all numbers by n, — n, > 0. We then consider the obtained ?’ as the
original 0. As the length of the derivations decreases and n’ < n, by applying

The Complexity of Clausal Fragments of LTL 49

this procedure sufficiently many times, we shall finally construct a 0-derivation
of reach < 2|p| and satisfying either (Cy) or the first option of (Cg).
(<) is left to the reader. a

In a similar way we can show how to efficiently check the condition ¥ =Y p:

Lemma 9 (checking ="). ¥ =9 (\ n) holds for all n € Z iff there are 0-
derivations ® of (A\,m) and ?' of (A\,m') of reach at most 2|p| such that one of
the following conditions holds:

(C}) 0 contains Op, ' contains Op and m < m’ + 1;
(C4) o contains Op and left-stutters;
(C%) © contains Op and right-stutters.

Proof. (=) Take a 0-derivation of (¢, 2|¢|+1). By Lemmal[8 there is a derivation
g of (g,ng) with r(d9) < 2|¢| satisfying either (Cz) or (Cs). If 9y left- or right-
stutters then we have (C%) or (Cj), respectively. Otherwise, 99 contains O, and
we can construct a finite sequence of 0-derivations 09, 01,02, ...,0; of reach at
most 2|p|, where each 0; is a O-derivation of (g, n;) containing O, and such that
ng>mny >ng > - > Ng.

Suppose we have already constructed ;. Since ¥ = (¢, n), for all n, we have
v =0 (¢,n; — 1). By Lemma 8] there is a 0-derivation d of (g,n;41), for some
nit+1, with one of (C;)—(Cs). If (Cz) and d left-stutters or (Csz) and ? right-
stutters then we obtain (C5%) or (C%), respectively. If (Cz) and d contains O with
ni+1 < n; —1 then d becomes the next member 94 in the sequence. If (C3) and 0
contains Op with n; 1 > n;—1 then 9; and ? satisfy (C/). Otherwise, we have (Cy)
with n;4+1 = n; — 1 (recall that n; > —2|¢|). Consider three cases. If 9 contains
O then 0 becomes the next member 0,11 in the sequence. If 0 contains O, then
9, and 0 satisfy (C/). Otherwise, that is, if 0 contains neither O, nor Oy, we must
have n;.1 = 0 and p —* ¢, for some p € ¥. Then we have n; = 1 and, as 9;
contains Op, we can append (¢,1) = (r;) (Crq,0) = ®y) (Brq, —1) = (ry) (¢,0)
to to obtain the next member 9;,1 in the sequence.

(«=) is left to the reader. Qa

We are now in a position to prove the main result of this section.

Theorem 4. The satisfiability problem for LTLY _-formulas is in NLOGSPACE.

core

Proof. An LTLY,, -formula ¢ = W A B &+ A B @~ is unsatisfiable iff = contains
a clause =\ V=g such that £,,n = A1 A A2, for some n with |n| < K. For each
-1 V =)Ag in @7, our algorithm guesses such an n (in binary) and, for both A
and Mg, checks whether ¥ =9 ()\;,n) or ¥ =7);, which, by Lemmas § and [

requires only logarithmic space. a

The initial clauses of LTL, -formulas ¢ are propositional variables. If we
slightly extend the language to allow for initial core-clauses (without ®), then
the satisfiability problem becomes PTIME-hard. This can be shown by reduction

of satisfiability of propositional Horn formulas with clauses of the form p, —p and

50 A. Artale et al.

p A q — r, which is known to be PTIME-complete. Indeed, suppose f = A, C;
is such a formula. We define a temporal formula ¢; to be the conjunction of all
unary clauses of f with the following formulas, for each ternary clause C; of the
form pA g — rin f:

¢ci N BH(p—0Opg) A B(g— Ope) A (Be — 1),

where ¢; is a fresh variable. One can show that f is satisfiable iff ¢ is satisfiable.
We finish this section by an observation that if the language allows for non-
Horn clauses (e.g., p V q) then the satisfiability problem becomes NP-hard:

Theorem 5. The satisfiability problem for LTLEmm—formulas is NP-hard.

Proof. By reduction of graph 3-colourability. Given a graph G = (V, E), consider
the following LTLETom—formula pa with variables pg,...,ps and v;, for v; € V:

po A /\Ogigg(pi%DFpiJrl) A, oy B0 = Do) A

/\mEV : (p4 - ’UZ) A /\(m,vj)EE - (UZ v U])

Intuitively, the first four conjuncts of this formula choose, for each vertex v; of
the graph, a moment of time 1 < n; < 3; the last conjunct makes sure that
n; # n; in case v; and v; are connected by an edge in G. It can be easily shown
that ¢ is satisfiable iff G is 3-colourable. a

5 Conclusion

We have investigated the computational complexity of the satisfiability problem
for the fragments of LTL over (Z,<) given by the form of the clauses—bool,
horn, krom and core—in the clausal normal form and the temporal operators
available for constructing temporal literals. Apart from LTLE'O’SI, whose formulas
are equisatisfiable to formulas in the full LTL, only LTLS O’?n has PSPACE-complete
satisfiability. For all other fragments, the complexity varies from NLOGSPACE
to PTIME and NP.

The idea to consider sub-Boolean fragments of LTL comes from description
logic, where the DL-Lite family [93] of logics has been designed and investi-
gated with the aim of finding formalisms suitable for ontology-based data ac-
cess (OBDA). Tt transpired that, despite their low complexity, DL-Lite logics
were capable of representing basic conceptual data modelling constructs [8l2],
and gave rise to the W3C standard ontology language OWL 2 QL for OBDA.
One possible application of the results obtained in this paper lies in tempo-
ral conceptual modelling and temporal OBDA [5]. Temporal description logics
(and other many-dimensional logics) are notorious for their bad computational
properties [I7J20]. We believe, however, that efficient practical reasoning can
be achieved by considering sub-Boolean temporal extensions of DL-Lite logics;
see [4] for first promising results.

The Complexity of Clausal Fragments of LTL 51

References

. Apostol, T.: Introduction to Analytic Number Theory. Springer (1976)

2. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Reasoning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277-292. Springer, Heidelberg
(2007)

. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family

and relations. Journal of Artificial Intelligence Research 36, 1-69 (2009)

. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Past and future of

DL-Lite. In: Proc. of AAAI, pp. 243-248 (2010)

. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Complexity of rea-

soning over temporal data models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 174-187. Springer, Heidelberg
(2010)

. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The Complexity of

Clausal Fragments of LTL. CoRR abs/1306.5088 (2013)

. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity

of generalized satisfiability for linear temporal logic. Logical Methods in Computer
Science 5(1) (2009)

. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.

Artificial Intelligence 168(1-2), 70-118 (2005)

. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable

reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385-429 (2007)

Chen, C.-C., Lin, I.-P.: The computational complexity of satisfiability of temporal
Horn formulas in propositional linear-time temporal logic. Information Processing
Letters 45(3), 131-136 (1993)

Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-
ence 47(2), 149-158 (1986)

Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Information and Computation 174(1), 84-103 (2002)

Dixon, C., Fisher, M., Konev, B.: Tractable temporal reasoning. In: Proc. of IJCAI,
pp. 318-323 (2007)

Fisher, M.: A resolution method for temporal logic. In: Proc. of IJCAI, pp. 99-104.
Morgan Kaufmann (1991)

Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions
on Computational Logic 2(1), 12-56 (2001)

Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Founda-
tions and Computational Aspects, vol. 1. Oxford University Press (1994)

Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Elsevier (2003)

Halpern, J., Reif, J.: The propositional dynamic logic of deterministic, well-
structured programs. In: Proc. of FOCS, pp. 322-334. IEEE (1981)

Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196-218. Springer, Heidelberg (1985)
Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In:
Proc. of TIME, pp. 3-14. IEEE Comp. Society (2008)

Markey, N.: Past is for free: On the complexity of verifying linear temporal prop-
erties with past. Acta Informatica 40(6-7), 431-458 (2004)

52

22.

23.

24.

25.

26.

27.

28.

A. Artale et al.

Ono, H., Nakamura, A.: On the size of refutation Kripke models for some linear
modal and tense logics. Studia Logica 39, 325-333 (1980)

Plaisted, D.: A decision procedure for combinations of propositional temporal logic
and other specialized theories. Journal of Automated Reasoning 2, 171-190 (1986)
Rabinovich, A.: Temporal logics over linear time domains are in PSPACE. In:
Kucera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 29-50. Springer,
Heidelberg (2010)

Reynolds, M.: The complexity of decision problems for linear temporal logics. Jour-
nal of Studies in Logic 3(1), 19-50 (2010)

Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. In:
Proc. of STOC, pp. 159-168. ACM (1982)

Stockmeyer, L., Meyer, A.: Word problems requiring exponential time: Preliminary
report. In: Proc. of STOC, pp. 1-9. ACM (1973)

To, A.W.: Unary finite automata vs. arithmetic progressions. Information Process-
ing Letters 109(17), 1010-1014 (2009)

A Semantic Basis for Proof Queries
and Transformations

David Aspinall’**, Ewen Denney?**, and Christoph Liith***

L LFCS, School of Informatics, University of Edinburgh
Edinburgh EH8 9AB, Scotland
2 SGT, NASA Ames Research Center
Moffett Field, CA 94035, USA
3 Deutsches Forschungszentrum fiir Kiinstliche Intelligenz & Universitit Bremen
Bremen, Germany

Abstract. We add updates to the query language PrQL , designed for
inspecting machine representations of proofs. PrQL natively supports
hiproofs that express proof structure using hierarchically nested labelled
trees, which we claim is a natural way of taming the complexity of huge
proofs. Query-driven updates allow us to change this structure, in par-
ticular, to transform proofs produced by interactive theorem provers into
forms that are easier for humans to understand, or that could be con-
sumed by other tools. In this paper we motivate and define basic up-
date operations, using an abstract denotational semantics of hiproofs
and queries. This extends our previous semantics for queries based on
syntactic tree representations. We define update operations that add and
remove sub-proofs or manipulate the hierarchy to group and ungroup
nodes. We show that these basic operations are well-behaved and hence
can form a sound core for a hierarchical transformation language. Our
study here is firmly in language design and semantics; implementation
strategies and study of sub-languages of our query language with good
complexity will come later.

1 Introduction

We are interested in ways to exploit machine representations of proofs con-
structed by interactive or automated theorem provers. These proof representa-
tions are produced so that they can be independently checked or imported into
other systems. We believe that they can be exploited beyond this. For example,
system inputs such as proof scripts are rarely given at the lowest level of detail,
even with interactive theorem provers. Therefore it can be useful for proof de-
velopers to understand how the system has found a proof: which inference rules
have been used, which axioms, which instantiations for existential variables, and

* Research supported by EPSRC grant EP/J001058/1.
** Research supported by NASA contract NNA10DES3C.
*** Research supported by BMBF grant 01IW10002 (SHIP).

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 53-[(0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

54 D. Aspinall, E. Denney, and C. Liith

so on. More complex questions are also interesting. For example, whether a proof
contains unnecessary detours or replicated sub-proofs.

To this end, we recently introduced PrQL [3], a proof query language which
treats a large formal proof as an object that can be examined in a systematic
way. We are currently developing practical prototypes to experiment with proof
queries, so far based on exporting from Isabelle [3] and HOL Light [21]. But
it is clear already that as well asking questions, we also want to be able to
transform proofs to alter their structure in various ways. This may be used to
aid understanding (human or machine), by hiding certain kinds of details. Or it
could be used for optimisation or adaptation, to change proofs to more efficient
forms, or for consumption by different systems such as proof commentary tools
or machine learning tools. This paper is a study of a rigorous foundation for
such transformations, introducing update extensions for PrQL.

To study the foundations of updates, we need to have the right data model for
hiproofs and define operations that preserve the hiproof structure. Some trans-
formations may also preserve theoremhood of proved statements. This is why we
design our own query and transformation language, rather than immediately en-
coding our concepts into a more general graph or tree model (such as XML) with
an existing query and transformation language (such as XQuery Update [10] or
XDuce [20]) that could make arbitrary dissections and rearrangement.

When it comes to implementing our query and update language, it is obviously
desirable to reuse existing systems which have looser semantics but optimised
implementations for query language fragments in good complexity classes. We
may consider for example, graph databases, other tools in the “NoSQL” family
or perhaps even SPARQL. We are conducting some early experiments in parallel
with the work described here.

Contributions and Paper Outline. This paper contributes towards generic foun-
dational aspects of theorem proving systems, in particular, the novel aspects of
querying and transforming the proof objects which can be recorded by proof
tools. Moreover, we contribute to the study of a structured representation for
these objects. Sect. [2] introduces the idea of proof transformations that we are
studying, with some informal examples and motivations. Sect. Blrecaps the tech-
nical background of hiproofs and PrQL. Sect. H introduces a revised denota-
tional semantics for hiproofs; this extends previous work, connecting the syn-
tactic strand of [2] with the previous denotational semantics of [I4]. The new
extensions add explicit orderings among subtrees and the ability to model open,
i.e., incomplete, proofs. Sect. [l gives a new denotational semantics to our query
language. This interpretation provides two advances: (1) the ability to return
locations in the hiproof where a query is satisfied, and (2) a close connection to
a graph model that we can use to encode hiproofs. Sect. [6] builds on top of this
to define our four kinds of update operations. We show that these operations
are well-behaved and preserve proofs in certain senses. Finally, we give a more
detailed comparison to related work in the concluding Sect. [7

A Semantic Basis for Proof Queries and Transformations 55
2 Querying and Transforming Hierarchical Trees

We start from hiproofs [1412], which provide an abstract, generic notion of proof
tree with hierarchical structure. Hiproofs are composed from atomic rules of
inference from an unspecified underlying logic, but additionally provide a notion
of hierarchy, by allowing labelling and nesting of subtrees inside boxes. This
succinct notion of structuring in a proof can be used, for example, for noting
where a lemma was applied, or where a particular tactic or external proof tool
produced a subtree. The hierarchical structure of hiproofs and its interaction
with the proof-tree is more complex than the straightforward tree structure, in
particular because hiproofs allow nesting of partially completed proofs.

VYo inatdy.y <z +1

|

Induction Induction

Rule Rule Rule

@y<0+1\[]l/4y<lc+1]]y.y<k+2 / \ / \

Exintro(-1) Apply IH

Base Step

Base Step 2

Solver

Y<k+1l—Y<k+2 Trivial Rewrite

Rewrite

Saber ()
(b)

Rewrite

(a)

Fig. 1. Different hiproof structures on the same underlying proof

The picture shown in Fig. [[a) is an example hiproof, shown at a certain level
of abstraction. It corresponds with an ordinary (but upside-down) natural de-
duction style proof tree: the theorem being proved, Vx.3y.y < x + 1 is shown at
the top, and then the proof outline shows how the proof is achieved by decom-
posing the goal theorem into pieces. The labelled boxes correspond to tactics
which have been applied to do this. Notice how the Induction box encapsulates
an incomplete proof; it has the dangling edge which is passed into the Solver box.
We suppose that boxes such as Base may contain further details, perhaps right
down to atomic inferences in the underlying system; the diagram only hints at
the full hiproof. Fig. [[(a) shows the statements being proved along edges. In a
visualisation tool (such as the web-based HipCam [2I]) the goals may be shown
in pop-ups so as not to clutter the display, and boxes such as Base can be opened
and closed dynamically.

56 D. Aspinall, E. Denney, and C. Liith

Variations of hierarchy. Further right in Fig. Il we see some alternative structur-
ing of this simple inductive proof. Fig. [[[b) shows the complete step case being
enclosed by the induction box; whereas Fig. [(c) shows just the induction rule
itself being boxed. These pictures motivate our main kind of desirable trans-
formations: to alter and introduce hierarchical structure. For example, when an
inductive proof appears in the proof tree, we might like to give it the uniform
structure on the left so it can be easily picked apart. However, the proofs which
arise by a naive labelling of tactics in HOL Light without hiproof adaptation [21],
for example, have the form in Fig. [[{c).

Basic Transformations. Generally, the life cycle of data management is cap-
tured by functions to create, read, update, and delete. We already have mecha-
nisms to create proof objects: abstractly, via the syntax for hiproofs reviewed in
Sect. Bl and in practice by functions for exporting proof objects from systems
like Isabelle [3] and HOL Light [21I]. To inspect proof objects, PrQL provides a
language of structured queries, reviewed further below. To manipulate existing
hiproofs, we need to add update and delete operations. But we want to do this
in a way that respects the proof structure, rather than as arbitrary edits to a
tree or graph. This motivates the following four types of operation.

Introduce hierarchy is used moving from Fig. [[(c) to Fig.[Il(a): we introduce
a nested hiproof called Base for the two steps ExIntro and Trivial, which hides
the detail. We also push in the children of Rule into the Induction box.

Remove hierarchy is the opposite transformation. Visualisation tools perform
this reversibly under user control, but here we want to permanently trans-
form the underlying structure by pulling out individual pieces, such as when
moving from Fig[i(b) to Fig[l(a).

Remove subproof deletes part of a hiproof. This is a radical operation, and
will change what is being proved, popping out an unproved subgoal to the
top level. For example, if we remove the Solver tactic in Fig. [[[(a), the proof
is left unfinished with the subgoal Y < k+1 =Y < k + 2 remaining.

Complete subproof is the inverse operation, and grafts on a new subtree. This
can resolve a previously unproved subgoal, or generate new subgoals.

2.1 Finding Somewhere to Transform

First, to apply a transformation, we need to know where in a target hiproof it
should be applied. A natural way to find a transformation point is to search
for a node satisfying some properties: this is where queries enter the picture.
(Similarly, update languages that have been defined elsewhere for semistructured
data and graphs also use queries to position updates; see Sect. [11)

We have already designed PrQL, a query language for hiproofs, so it is nat-
ural to reuse it. PrQL is a structured query language which combines property
queries (that look at local properties on nodes) with structuring operations (that
combine queries across connected nodes, decomposing the tree). These can be

A Semantic Basis for Proof Queries and Transformations 57

defined with recursion and logical connectives, giving a powerful language that
can encode search in queries. For example, the PrQL query

somewhere (atomic ExIntro then atomic Trivial)

is satisfied by the hiproof in Fig. [[[c). The atomic operator examines a label
on a bottom-most nested node. The then operator decomposes the target graph
across the proof tree sequence. Similarly, we can decompose sibling hiproofs
with beside and nested hiproofs with inside, building up patterns. Patterns
may contain match variables that get instantiated with names of rules or box
labels. Using recursion we can define operators like somewhere (finds a match
in any subtree) and nearby (finds a match in any subtree at the same nesting
depth). See Sect. Bl for more details of PrQL.

However, so far there is not yet a notion of where a query is satisfied; we do
not have a way to describe where ExIntro or Trivial rules were actually found.
To pick out specific nodes in a hiproof, we extend the query language to return
positions: a new type of match variable standing for a (sub)hiproof where a query
is satisfied. We add the new query term “at X” which matches X against the
“currently examined” node in the tree. So

somewhere inside Induction nearby (at X A atomic Trivial)

returns locations X where Trivial appears immediately inside an Induction box.
Unlike labels for boxes and atomic rule names, nodes in our proof trees are
abstract: we do not need user-level syntax for writing their identities. So at can
only locate a position by properties; it cannot pick out a specific node concretely.
But the query language is precise enough that, for any specific node in the tree,
there is a query which picks out that node uniquely (see Prop.[dlin Sect. ().

2.2 Updating Proofs

Now we have a way to specify transformation points, we can show how our up-
date operations are written. Several language design choices are possible. We
have followed an SQL-like paradigm, matching positions then using one-shot
operations which can update a large proof in-place, based on the selected posi-
tions. A more ambitious choice would be to design a hybrid query and update
language, with looping and branching to build up complex transformations. But
we first want to understand the update combinators that are common to both.

As a first example, to turn Fig. [[[(c) into Fig. D(b) we use a transformation
which adds a box around a given subtree, called box:

box X to Y Z as Induction where (1)
(at X A atomic Rule) then (seq Y beside seq Z)

where the recursive query seq X picks out a sequence ending at X:

seq X af 1Q@. * then Q V (at X A —(x then %))

58 D. Aspinall, E. Denney, and C. Liith

Besides adding boxes, we can remove them with unbox:
unbox X where at X A inside Solver

which removes the Solver box around the result of an automatic tactic. Instead
we could rename it, simply writing: rename Solver as Auto.

So far, these operations have not changed what is proved in the hiproof. Other
updates change the underlying proof tree, but maintain its validity. For example,
maybe we are not interested in a particular subtree of a proof

deletetree X where inside Meson at X

then this removes the subtree generated by an automatic procedure, just leav-
ing the name of the procedure. In the hiproof structure, we do not forget that
something is unproved; the subtree leaves a dangling edge.

Dually, we can fill in a proof for such a dangling edge; this is a refinement
operation in the sense that it extends the proof:

refine X with s where at X A unproved vy

Here, s is a literal term in the syntax for hiproofs, which proves the goal ~.

Finally, it can be useful to use a more general replacement transformation
which is defined using deletetree then refine. For example, to find useless
detours in a proof tree, we use the query:

useless X ¥ % (at X A goal G) then nearby (at Y A goal G)

this identifies a path from X to Y where we hit the same goal G = ~. It might
even be a tactic which is worse than useless, in that it has transformed a goal ~
into several more goals to prove including v again. Now the replace update

replace X by Y where (useless X Y)

removes this detour.

3 Syntactic Hiproofs and PrQL Queries

This section introduces previous material as background. We are as concise as
possible and refer the reader to previous papers for more details [14/23].

Hiproofs add structure to an underlying derivation system, a simple kind of
logical framework. A derivation system is given by a set G of goals (intuitively:
possibly provable sequents or judgements), ranged over by ~, and a set of atomic
inference rules ranged over by a. Atomic rules are composed to give hiproofs,
which have a functional reading: a hiproof maps a finite list of input goals g1 =
[v1,---,7n] to a list of output subgoals g = [V, .., V5]

A Semantic Basis for Proof Queries and Transformations 59

Informally, we draw hiproofs as inverted trees with a nested structure. For-
mally, a hiproof is given by two forests on the same set of nodes, as explained in
Sect. [l Syntactically, a hiproof can be written as a term:

su=a |id atomic and identity
| [1]s]s:; labelling and sequencing
| O |s; ® 52 empty and tensor (juxtaposition)

where [€ L, an arbitrary set of names and a € A for some special subset
A C L. We think of labels as standing for names of tactics or proof rules, or
atomic steps; they have no semantic content. For example, the proofs in Fig. [I]
are written syntactically as

([Induction] Rule ; Base ® Step) ; [Solver] Rewrite (2)
[Induction] Rule ; Base ® (Step ; [Solver] Rewrite) (3)
Rule ; (ExIntro ; Trivial) ® (ApplylH ; Rewrite) (4)

3.1 Structured Queries in PrQL

The definition of PrQL starts with matches built from wildcards and match
variables, constants (atoms, sets and predicates) and negation (to construct the
complement of a match). Let Vary be a set of schematic variables standing for
names, ranged over by IV in general and A when we suggest an atomic rule name
or L a label name. Let Varg be a set of variables standing for lists of goals. The
name matches and goal matches are given by:

nmu=all|e||N|-nm gm =7 || G| -gm

where £ stands for a logic-dependent predicate on names, and ¥ stands for a
logic-dependent predicate on goals used to check some structural property of
the goal term. For example we might have a predicate that checks whether a
goal v is in the form of a horn clause, when ¢y, (y) holds. The special name o
is used to label unproved goals; the name *x = —e serves as a wildcard.

We use matches to build up queries, g, as below. The extension to PrQL to
locate vertices uses a set of match variables Vary, ranged over by X

q = % anything non-empty
| at X matches at node X
| atomic nm atomic rule match
| inside nm ¢ q satisfied inside box with label matching nm
| ¢1 then go q1 and ¢o satisfied by successive nodes
| ¢1 beside ¢o q1 and ¢o satisfied by adjacent nodes
| goal gm proved goal matches gm
| i1 A2 | 1V | —q compound queries
|

1Q.q recursive query

60 D. Aspinall, E. Denney, and C. Liith

Queries are built from schematic hiproof terms. They are posed against an im-
plicit hiproof subject, instantiating the match variables and testing goals. Com-
pound queries are built using logical connectives and recursion. This core lan-
guage allows many useful derived forms, like the search operator somewhere.
We can examine gaps in proofs too; to assert that the hiproof has v as an un-
solved goal we write:

unproved y = goal v A atomic e

This works because we model ‘dangling’ edges as empty boxes labelled with e.

4 Denotational Hiproofs

A hiproof consists of two forests on the same set of nodes, with a distinguished
root, satisfying some conditions [I4]. To relate to a derivation system (where
premises of inference rules have an ordering), we add a left-to-right ordering
among siblings. To relate to the syntax, we use a more general forest notion
first, then restrict to hiproofs. To model incomplete (partial) proofs, we add
nodes corresponding to unproved goals. Lastly, we extend labelling to attach to
each node the goal it validates, as shown on edges entering nodes in Fig. [I[a).

Given a forest I’ defined by a relation R on a set of vertices, we write
siblings p(v,v") if v and v’ are children of the same R-parent. Given a vertex
v, we write isrootgr(v) for the assertion that v is a root wrt R, ie., Vv'.v' R
v = v ="', and isleaf p(v) for the dual, i.e., Vv'.v Rv' = v =v'.

Definition 1 (Ordered Hiforest). An ordered hiforest H = (V, L, <;, =4,)
consists of a finite set of vertices V with a labelling function L : V — (LU{e})x G
and three relations on V' x V. The relations are an inclusion order <; (which
captures the nesting of vertices; >; is proper containment), a sequencing relation
—s (which captures the functional composition of nodes) and a child order <.
These are subject to the following conditions:

(V, <) and (V,—) each form forests; <; and < are partial orders.

arrows target outer nodes: v—sw and v’ >; w = v’ >; v.

arrows emanate from inner nodes: v—sw and v’ <;v = v =0,

inclusion € sequence are mutually exclusive: v <; w and v—s*w = v = w.
bozes have unique T00ts:

siblings < (v,v") Aisroot _, (v) A isroot, (V') = v ='.

5. children or top-level roots are totally ordered:

siblings_, (v,v") V (isroots,(v) A isroots,(v')) = v Sv' Vo' Sw.

s

6. only leaves (wrt. sequencing and inclusion) may have o label:
L(v) = (e,7) = leaf , 5, (v).

e~

Each node in a hiforest is given a name and a goal. The goal is the theorem
proved at that node. The unproved parts are the ‘dangling’ holes labelled by
e. An ordered hiforest proves a sequence of top-level goals, whereas a hiproof
proves just one.

A Semantic Basis for Proof Queries and Transformations 61

Definition 2 (Ordered Hiproof). An ordered hiproof is an ordered hiforest
which satisfies the additional constraint:

7. Top-level roots are unique: isroot_, U, (v) A isroot s, (V') = v ="7".
We are mainly interested in wvalid hiproofs, which are those corresponding to
a proof in the underlying derivation system.

Definition 3 (Validity). A hiforest H is valid if it corresponds to a sequence
of (possibly incomplete) proof trees in the underlying derivation system; we write
H = g1 — g2 if this holds and where g1 is the list of goals on the outermost
roots of H, and g2 is the list of unproved goals on the holes, as ordered by
extending < to the leaves of the tree.

A map between two hiforests is a map between the vertices and the labels
which preserves the orderings and the labelling. We say a hiforest Hy refines
to a hiforest Hy, Hi T Hs, if there is an inclusion from H; to Hs which also
preserves the roots wrt >;.

We now define some operations on the two dimensions of hiforests which will
form the semantic foundations of our transformations. For brevity, definitions
are given informally here, and made precise in the appendix. Given two hiforests
H; and Hy such that H; = g1 — g and Hy | g — g2, we define a com-
position operation graft(H;, Hz) that ‘grafts’ the roots of Hy into the dangling
goals of Hy, such that graft(Hy, Ha) |E g1 — g2; it can be characterised at the
smallest hiforest Hs which refines Hy, H; C Hs, for which there is a (necessarily
injective) map « : Ho — Hj. This is an instance of a more general opera-
tion graft(Hy, Ha,v1,...,vn) which grafts the m roots of Hy into the specified
danglers vy, . .., v, of Hy, where H; may contain more than m danglers.

Given a vertex v € V in hiforest H, we define cover(v, H) as the hiproof
containing the set of vertices in H reachable from v by >; or —, includ-
ing v itself. If H [g1 — g2 then cover(v,H) E v, — g, where
L(v) = (I,7,) and g2 = g5" g, " g5 (with” denoting list concatenation). The op-
eration chop (v, H) removes exactly these vertices, replacing them with a hole. So
chop(v, H) = g1 — g3 where g3 is the list g5 " [y,]" g4 . Together, these oper-
ations are inverse to grafting, i.e. graft(chop(v, H), cover(v, H),v) = H (modulo
some technical restrictions). The final operations are box(l, H) and unbox(H)
which add and remove ‘boxes’ around the roots of H, where a box is a node
(labelled 1) including all the other nodes (below that root). These are inverse as
well: unbox(box(l, H)) = H. These two operations preserve validity and input
and output goal lists.

5 Semantics for Queries

The query semantics we gave in [3] was based on querying syntax models di-
rectly. Since hiproofs are constructed syntactically, this is in a sense the most
direct approach. However, syntactic representations are not canonical, because

62 D. Aspinall, E. Denney, and C. Liith

a particular underlying tree structure can be denoted by many terms in the
syntax. E.g., the proof in Figllic) can be expressed as in (@) or as

Rule ; (ExIntro ® ApplylH) ; (Trivial ® Rewrite)

For the definition of boolean satisfaction of a query given in [3], this is not prob-
lematic as we can close under the syntactic equivalence given by the algebraic
structure of hiproofs. But to define updates it is more delicate, since we need a
firm notion of focus in the hiproof to anchor changes; e.g., example () does not
work with the syntactic form above. We could use normal forms for syntactic
terms, but the denotational model is more direct and also fits well with parallel
work on implementation using graph databases, building on [21].

The definition of query satisfaction in the denotational semantics uses a sub-
stitution to instantiate variables: o : (Vary — L)W (Varg — G)W (Varyg — V),
where V is the set of vertices of the hiproof being queried. The base case for
query satisfaction is for names and goals, treated very similarly:

n E, n iff n=n' v Ee v iff y=+
€ o n iff &(n) Yo v i Y(v)
N s n iff o(N)=n GEsn iff o(G)=x

(-N) Eo n iff 2(N o n) (2G) o v if (G =0 7)
For a relation R and distinct a,b, we write a R' b if @ R b and there is no
intermediate ¢ such that a R ¢ and ¢ R b.

Definition 4 (Query satisfaction). Let H be an ordered hiforest with vertices
V' and q a query. Satisfaction of q for H at a vertex v € V wrt a substitution o
is defined as the least relation v |=, q satisfying the following clauses:

E, * always

E, at X iff o(X)=w

E., goal gm iff gm E, v where L(v) = (I,v) for somel

E, inside nm ¢ when nm |=, [where (v) = (I,v) for some 7y
andVw.w <! v=w &, q

[SERES NS SN

v |E» q1 beside o when v =, q1 and Iw.v <P w withw =, go
v o q1 thenga when v =, q1 and Iw.v—lw withw =, g
v Ee 1 A g2 when v =5 q1 andv =5 @2

v e q1V Qe when v =y q1 orv F4 g2

v Ee g when —(v E4 q)

v Ee pQ.q when v o q[pQ.q/Q)

A query q is satisfied by a substitution o on a hiforest H, written H =, q, if it is
satisfied on each outermost root vertex of H, i.e., Yv.isroot_, s, (v) = v Es ¢.

Def. Ml works by navigating in a fixed hiproof h to find satisfying vertices v.
Because a vertex determines a sub-hiproof, this is equivalent to a structural
definition as given in [3], which works by decomposing the subject hiproof during
navigation, defining a relation s |, ¢. Note that in this model atomic is
defineable as an empty box: atomic nm = inside nm (—x).

A Semantic Basis for Proof Queries and Transformations 63

Definition 5 (Query interpretation). Let H be an ordered hiforest and g
a query. Then we define the interpretation of q in H as the set of satisfying
substitutions: [qlg ={o | H Es ¢}

Our language is expressive but queries can be expensive. In [3] we gave a
naive algorithm for [¢] using unification to instantiate variables, which is expo-
nential in the number of match variables. Recursion and match variable unifi-
cation unavoidably affect the data complexity of our queries (see basic results
e.g., [I2JI81]). For large proofs, we would want a fragment that is more feasible
but captures most desirable examples. The following proposition is the denota-
tional counterpart of a similar proposition in [3].

Proposition 1. Given a hiproof H, one of its vertices v and a variable X, there
is a query Q(v, X) which locates v at X, i.e., [Q(v, X)]g = {o} with o(X) = v.

6 Transformations and Their Semantics
We now introduce the core update operations formally. Note that we do not

want to allow arbitrary “tree surgery” of the hiproof structure; we want update
operations to preserve semantic validity. Updates have the syntax:

u:=box X, to X;...X,, asl add nested box around X, ... X1...X,,

unbox X unfold nested box at X

rename X as [change label on box at X

refine X with s add a new sub-hiproof at X
deletetree X delete subtree at X

replace X by Y replace subtree at X by that at Y

The box operation is the most interesting. It introduces a nested box, whose
contents are nodes in the partial subtree with X,. as root and X; ... X,, as leaves.
This allows us to gather to an arbitrary depth, using a query to select either end
of the path; this is useful to package up repeated applications of rules. The other
update operations are straightforward to understand. An update is applied by
combining with a query to instantiate node variables in a hiproof, written as
update u ¢. This matches ¢ to the root of the hiproof; a more common pattern
is to search the hiproof for matches, as seen in the examples in Sect. This
is written and defined as u where ¢ = update u (somewhere g).

6.1 Interpretation of Transformations

We can specify positions in a hiproof, but we still need to solve a well-known
problem with tree and graph updates. Suppose a query picks out several nodes
and a transformation changes the structure; then simultaneous updates may
overlap. The result may be ill-defined, or may depend on the execution order.
The semantics as given here is based on single-valued answers to queries; where
a query has several answers, there may be several update results, representing

64 D. Aspinall, E. Denney, and C. Liith

applying the operation to different positions in the tree. To have a global effect,
the update results may be merged if they do not conflict, or we may simply re-
peatedly apply a query and update. We are not yet investigating implementation
in detail, so making any such choices for PrQL could be premature; we prefer
to first pin down an accurate semantics. Later on, we plan to extend the lan-
guage to allow more efficient constructs, avoiding multiple passes and using type
systems to ensure safety; we will relate back to the present, intended semantics.
To interpret updates, we use the operations in Sect. @l and extra definitions:

(i) A combinator to transform a subforest of H with a function f:

at(H,v, f) = graft(chop(H,v), f(cover(H,v)),v)

(ii) The box operator specialised to box only down to vertices vy, ..., v,:
addbox (H,l,v1,...,v,) = graft(box(l, chop, (H,v1,...,v,)),
cover,(H,v1,...,0n),V1,...,0p)
where chop,,(H,v1,...,v,) and covery(H,vy,...,v,) are the obvious gen-

eralisations of chop and cover to n arguments.
(iii) To add or remove boxes at the subforest given by v,:
addbozat(H, vy, v1,...,v,) = at(H,v,, \H.addbox (H,l,vy,...,0,))
unbozat(H,v,) = at(H,v,, unbox)
(iv) To change the label of a vertex: let H = (V, L, <;, =, <), v € Vandl € L,
then L’ is defined as L'(v') = (I,7) for v = v, where L(v) = (I’,7) and
L'(v") = L(v) otherwise. Then relabel(l, H,v) = (V, L', <;, =4, <).

Definition 6 (Interpretation of transformations). Let H be a hiproof and

q[X1 ... X,] a query with match variables instantiated by o. The meaning of an

update wrt o is a partial function, defined when the RHS is defined:

[box X, to X;...X, as]y = addbozat(H,l,0(X,),0(X1),...,0(X,))
[unbox X]% = unbozat(H,o(X))

1% = relabel(H, o(X),1)

[refine X with s]% = graft(H, [s], o(X))

Iz

1%

[rename X as !

[deletetree X]% = chop(H,o(X))
[replace X; by X3]% = graft(chop(H,o(X1)), cover(H, o(X32)),0(X1))

[update u ¢]g = {[u]% | o € [¢)lu and [u]% is defined }

Def. [6l gives a non-deterministic semantics; the result may be empty (if opera-
tions are undefined) or there may be several results (for different instantiations).
We do not say anything here about how to combine several results into one,
as this may depend on the implementation; as hinted above, an implementa-
tion may encode our core operations using a more general update language. In
this setting, a better alternative would be to give criteria which guarantee a
deterministic result. For the same reason, we do not yet investigate complexity
results.

A Semantic Basis for Proof Queries and Transformations 65

7 Related Work and Conclusions

This paper introduced an update extension of PrQL, a query language for
hiproofs. We interpret queries and transformations using denotational seman-
tics of hiproofs, which are graph-like structures subject to well-formedness con-
straints. We showed that the basic operations are enough to capture desirable
transformations, and that they preserve well-formedness and the connection to
underlying proof trees.

Connections in Theorem Proving. As larger proof developments are being con-
structed, people are starting to explore ways to investigate them. Besides PrQL, a
query language has been proposed for OmDoc proofs [22]. The Proviola tool [23]
provides another means for proof understanding, by recording the output is-
sued by an interactive proof during its execution development; impressively, it
has been used to annotate source code of large proofs in both Coq (the Feit-
Thompson proof [I7]) and HOL Light (Hales’s Flyspeck proof [24]). However,
Proviola sheds no light on a proof that proceeds in a single tactic execution
step. A hiproof-based tool would allow more dynamic exploration, by zooming
into proof objects to look at the fine detail — although the practical details of
managing such large proof objects will be challenging. Other researchers have
used proof as the subject for search and machine learning (e.g., [25/19]). Again
this work might be usefully adapted to proof trees.

Conversely, we hope that our work can be adapted to transforming proof
scripts. Rather than altering the extracted proof trees for HOL Light, we might
want to impose the structural changes on the input proofs themselves, where
possible. Work has been started on tools and foundations for proof refactoring
towards this [BI27T5], but it is challenging: it requires understanding the meaning
of input proof scripts, and how to transform them. By contrast, it is much easier
to manipulate recorded output proof structures.

Update Languages for Structured Data. There is a large body of work from the
last decade on query and update languages for general forms of structured data.
PrQL was inspired by, among others, UnQL [7] and Graph Logic [9]; the latter
was extended to Context Logic to consider updates [§] and the former extended
to a language of functional transformations [11], in the setting of XML Update.
The approach taken by the W3C to extend XQuery [10] has a more SQL-like
flavour, similar to our approach.

Transformations and Hierarchy. To study PrQL updates and extensions fur-
ther, fundamental results on tree queries [I§], transformation operations [16]
and complexity [4] should be possible to adapt. However, without restricting our
language we are unlikely to improve on earlier complexity results [3], so instead
we want to focus on translation into an efficient underlying XML or graph-based
system. Having worked out the language design and semantics, we need to use
the right level of abstraction before translation, taking hierarchy as a native
construct. Hierarchical graphs have recently been studied in another setting, for

66 D. Aspinall, E. Denney, and C. Liith

structuring safety cases in a hierarchical way, providing a tool that performs
transformations like those studied here [I3]. Related ideas for managing hierar-
chy in understanding provenance have recently been proposed [6].

Future and Ongoing Work. Several extensions to our update language are desir-
able; at the least, to add constructs for composing and iterating transformations.
Before pursuing that, we want to extend our practical experiments to transfor-
mations. Taking the implementation of hiproofs in HOL Light [21], we can output
them in a form suitable for a graph database system such as Neo4j [26], which
can store and process very large structures on disk. Some of our queries and
transformations can be captured in Neodj’s query and update language Cipher,
although it remains to investigate how efficient the encoding is; alongside prac-
tical experiments, we need to give a further theoretical analysis.

Acknowledgements. The authors thank James Cheney and Domagoj Vrgoc
for helpful discussions.

References

1. Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. A. MIT Press, Cambridge (1990)

2. Aspinall, D., Denney, E., Liith, C.: Tactics for hierarchical proof. Mathematics in
Computer Science 3(3), 309-330 (2010)

3. Aspinall, D., Denney, E., Liith, C.: Querying proofs. In: Bjgrner, N., Voronkov, A.
(eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 92-106. Springer, Heidelberg (2012)

4. Flesca, S., Greco, S.: Querying graph databases. In: Zaniolo, C., Grust, T., Scholl,
M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 510-524. Springer,
Heidelberg (2000)

5. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in
managing large-scale proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis,
G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNATI), vol. 7362,
pp. 32-48. Springer, Heidelberg (2012)

6. Buneman, P., Cheney, J., Kostylev, E.V.: Hierarchical models of provenance. In:
Proceedings of the 4th USENIX Conference on Theory and Practice of Provenance,
p. 10 (2012)

7. Buneman, P., Fernandez, M., Suciu, D.: UnQL: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal 9(1), 76-110
(2000)

8. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 271-282. ACM, New York (2005)

9. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 597-610. Springer, Heidelberg (2002)

10. Chamberlin, D.D., et al.: XQuery update facility 1.0 (W3C recommendation)
(2011)
11. Cheney, J.: FLUX: functional updates for XML. SIGPLAN Not. 43(9), 3-14 (2008)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A Semantic Basis for Proof Queries and Transformations 67

Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. In: Larsen, K.G., Skou, A. (eds.) CAV 1991.
LNCS, vol. 575, pp. 48-58. Springer, Heidelberg (1992)

Denney, E., Pai, G., Whiteside, I.: Hierarchical safety cases. In: Brat, G., Rungta,
N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 478-483. Springer, Heidelberg
(2013)

Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
Electronic Notes in Theoretical Computer Science 155, 341-359 (2006)

Dietrich, D., Whiteside, 1., Aspinall, D.: POLAR: A framework for proof refactor-
ing. In: Logic for Programming, Artificial Intelligence, and Reasoning (2013)
Ehrig, H.: Fundamentals of algebraic graph transformation. Springer, Berlin (2006)
Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, 1., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
163-179. Springer, Heidelberg (2013)

Grohe, M., Schweikardt, N.: Comparing the succinctness of monadic query lan-
guages over finite trees. RAIRO - Theoretical Informatics and Applications 38(4),
343-373 (2004)

Heras, J., Komendantskaya, E.: ML4PG in computer algebra verification. In:
Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS (LNAI), vol. 7961, pp. 354-358. Springer, Heidelberg (2013)

Hosoya, H., Pierce, B.C.: XDuce: a statically typed XML processing language.
ACM Trans. Internet Technol. 3(2), 117-148 (2003)

Obua, S., Adams, M., Aspinall, D.: Capturing hiproofs in HOL light. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS
(LNAI), vol. 7961, pp. 184-199. Springer, Heidelberg (2013)

Rabe, F.: A query language for formal mathematical libraries. In: Jeuring, J.,
Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 143-158. Springer, Heidelberg (2012)
Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof
re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 440-454. Springer,
Heidelberg (2010)

Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display:
A wiki for flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 152-167. Springer, Heidelberg (2013)
Urban, J., Sutcliffe, G., Pudlak, P., Vyskoéil, J.: MaLLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441-456. Springer,
Heidelberg (2008)

Vicknair, C., et al.: A comparison of a graph database and a relational database:
a data provenance perspective. In: Proceedings of the 48th Annual Southeast Re-
gional Conference, pp. 42:1-42:6. ACM, New York (2010)

Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards formal proof script
refactoring. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 260-275. Springer,
Heidelberg (2011)

68 D. Aspinall, E. Denney, and C. Liith
A Additional Technical Details

Definition 7 (Grafting). Let H = (V, L, <;, —4, <) be a valid hiforest with
H = g1 — g. Let v1,...,v, be distinct vertices in 'V, with L(v;) = (e,;)
(and hence n < length(g)). Let H = (V' L', <!, =, <) be another hiforest

)~

with H = ¢ — g2, so it has n overall roots {v,1 ... v} € V' ordered by <’
with L(vy;) = (I3,7:). Suppose (wlog) VNV’ = (.
Then we can define a new hiforest by

graft(H,H',v1,...,vn) = (V —={v1... 00} UV', LIy _{0, .0,y UL, < =",)
The relations <!', =" and <’ are defined by:

v<iw A wé{vr... v}
v <!" w iff either v<lvg A v <jw

v<lw

v=sw A w & {vr... v}
v—s" w iff either V=50 A Upi—rs'w

v’ W

vSw A wg{vr...vn}
v <" w iff either wSv Avpg=w) V (v=v4 A v; I w)

~

v<w

If H has exactly n holes v1,...,vn (i.e., g =[71,.--,7n] and L(v;) = (8,7v;)),
then we write graft(H, H') as an abbreviation.

Definition 8 (Cover). Given a hiforest H = (V, L, <;, —¢, <) and vertex v €
V', we define the cover of v as all nodes below or inside v by V' = cover_,_ >, (v),
where the cover of a relation R is defined as coverg(x) = {y | R*y}. and the

labellings and orderings restricted accordingly:
cover(H,v) = (V', LIy, <ilvrxvr, =slvixv: S lvixvr)

When defining the chopping operation, we do not take out the node v, but
replace its label with e to make it a dangler:
Definition 9 (Chopping). Given a hiforest (or hiproof) H = (V, L, <;, =4, S)
and vertex v, then we define a new hiforest without nodes below or inside v by
setting V! = (V — cover_, U, (v)) U {v} and

chop(H,v) = (V', L|V—cover—>su>i Ufv e (e.7) | L(v) = (L)},
Silvixve, =slvixve, S lvexve)

We can generalise chop and cover to n arguments. Chopping n vertices re-
moves them sequentially from H, whereas the cover of n vertices is a hiforest

A Semantic Basis for Proof Queries and Transformations 69

Y1 Yn

, @ lIs an atomic inference skEy—yg

a b vy—[7,-,7] id - ~v—~ lls Fvy—g
s1Fg—g s2 F g— g2 s1 F g1 — g1 s2 F go — g

s1;8 F g1 — g2 s1®s2 F g1Ng2 — 91" g

Fig. 2. Validation of hiproof terms (the symbol " stands for list append)

with n roots:

chop,(H,v1) = chop(H,v1)

chop,,_1(chop(H,v1),v2,...,v5)

)
chop,,(H,v1,...,vp)
) =

covery(H, v, cover(H,vy)

cover,(H, v, ... ,v,) = cover(H,v1) U coverp_1(H,va,...,0,)

To avoid notational difficulties when dealing with more than one root simulta-
neously, we define boxing and unboxing only for hiproofs. The definitions extend
easily to hiforests by boxing reach root of the forest separately (although that is
not needed in this paper). Note how the danglers in H are not included in the
box introduced with boz (I, H).

Definition 10 (Boxing and Unboxing). Given a non-empty hiproof H =
(V, L, <i, =, <) with overall root vy, i.e., isroot_,_us,(v,), then the boxing of

~

H with a label | is defined as

box(l, H) = (VU {x}, LU {x — (I,7) | L(vr) = (',)},
SiU{(v %) [ve Vi L(v) = (L) AL# o}, =4, S UL(x, %))

The unboxing removes such a box (if it exists): let H = (V, L, <;, =5, <), then
we define

v {V —{r} dsroot_, us,(r),L(v) =({,y) ANl #e

1% otherwise

Then:
unbox(H) = (V', Lly/, <ilv+, —=¢, S lv)

By careful inspection of the operation definitions we can show that the re-
sulting hiforests indeed satisfy the conditions of Def. [[] and preserve semantic
validity as stated earlier.

Proposition 2 (Operations and validity). The semantic operations preserve
the hiforest conditions and moreover, preserve semantic validity of hiproofs with
the expected input-output goals.

The final part of justifying our definitions is to show that the interpretation
of updates is well-defined, when query results are given and refinement has the

70 D. Aspinall, E. Denney, and C. Liith

right shape. Specifically, refine X with s requires that when ¢(X) = v and the
subtree at v has validity chop(H,v) = g1 — g2, then the term given denotes
a hiforest with the same input-output shape.

For this we need to show that syntactic hiproof terms denote valid tree struc-
tures. This is shown together with the definition of [s]. Validity for syntactic
hiproof terms is written as s + g1 — g2, meaning that the hiproof s takes a
list of input (proven) goals g; to produce a list of output (unproved) goals g,
and is defined by the rules in Fig.

Definition 11 (Interpretation of hiproof terms). The definition of [s] is by
induction on the syntactic validity s & g1 — g2, defining [s] and establishing
at the same time that [s] E g1 — ga2. The cases are:

—at vy—[7,.--,v]. Then [a] is the n + 1 point hiforest with nodes
a,x1,...,&,. We set a—gzi, L(a) = (a,v) and each z; is a “dangler”, so
L(zi) = (o, [v])-

— id b v —> . Then [id] is the hiforest with one “dangler” node *, where
L(x) = (e, [7])-

— []s B v —>g2. Then [[l]s] = bozx(l,[s]) since [s] has a unique top-level
T00%.

— $1;82 b g1 —> g2. Then [s1; s2] = graft([si], [s2]). The premises of the
validity rule and the induction hypothesis ensure that the grafting operation
is well-defined.

— 51®82 F g1"ga — g1 N gh. Then [s1 ® sa] is the hiforest formed by dis-
joint union of [s1] and [s2], with the ordering relation < extended on the
roots and dangling nodes.

— (O F []—1]-1[0] is the empty hiforest.

Note that denotational hiproofs are unique only up to the choice of node set V;
two hiproofs which have the same structure and labelling but differ only on V'
are isomorphic [I4]. The definitions above work with particular hiproofs, but it
can be verified that the choice of node names (but not labels!) is unimportant.

Expressive Path Queries on Graphs with Data

Pablo Barcel6!, Gaelle Fontaine', and Anthony Widjaja Lin%3

! Dept. of Computer Science, University of Chile
2 Dept. of Computer Science, Oxford University
3 Academia Sinica, Taipei, Taiwan

Abstract. Graph data models have recently become popular owing to
their applications, e.g., in social networks, semantic web. Typical navi-
gational query languages over graph databases — such as Conjunctive
Regular Path Queries (CRPQs) — cannot express relevant properties
of the interaction between the underlying data and the topology. Two
languages have been recently proposed to overcome this problem: walk
logic (WL) and regular expressions with memory (REM). In this paper,
we begin by investigating fundamental properties of WL and REM, i.e.,
complexity of evaluation problems and expressive power. We first show
that the data complexity of WL is nonelementary, which rules out its
practicality. On the other hand, while REM has low data complexity,
we point out that many natural data/topology properties of graphs ex-
pressible in WL cannot be expressed in REM. To this end, we propose
register logic, an extension of REM, which we show to be able to express
many natural graph properties expressible in WL, while at the same
time preserving the elementariness of data complexity of REMs. It is
also incomparable in expressive power against WL.

1 Introduction

Graph databases have recently gained renewed interest due to applications, such
as the semantic web, social network analysis, crime detection networks, soft-
ware bug detection, biological networks, and others (e.g., see [I] for a survey).
Despite the importance of querying graph databases, no general agreement has
been reached to date about the kind of features a practical query language for
graph databases should support and about what can be considered a reasonable
computational cost of query evaluation for the aforementioned applications.
Typical navigational query languages for graph databases — including the
conjunctive regular path queries [6] and its many extensions [4] — suffer from a
common drawback: they are well-suited for expressing relevant properties about
the underlying topology of a graph database, but not about how it interacts
with the data. This drawback is shared by common specification languages for
verification [B] (e.g. CTL*), which are evaluated over a similar graph data model
(a.k.a. transition systems). Examples of important queries that combine graph
data and topology, but cannot be expressed in usual navigational languages for
graph databases, include the following [7UI1]: (Q1l) Find pairs of people in a
social network connected by professional links restricted to people of the same

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 71-B5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

72 P. Barcel, G. Fontaine, and A.W. Lin

age. (Q2) Find pairs of cities x and y in a transportation system, such that y
can be reached from x using only services operated by the same company. In each
one of these queries, the connectivity between two nodes (i.e., the topology) is
constrained by the data (from an infinite domain, e.g., N), in the sense that we
only consider paths in which all intermediate nodes satisfy a certain condition
(e.g. they are people of the same age).

Two languages, walk logic and regular expressions with memory, have recently
been proposed to overcome this problem. These languages aim at different goals:

(a) Walk logic (WL) was proposed by Hellings et al. [7] as a unifying
framework for understanding the expressive power of path queries over graph
databases. Its strength is on the expressiveness side. The underlying data model
of WL is that of (node or edge)-labeled directed graphs. In this context, WL can
be seen as a natural extension of FO with path quantification, plus the ability to
check whether positions p and p’ in paths m and 7/, respectively, have the same
data values. In their paper, they assume the restriction that each node carries a
distinct data value. However, as we shall see, this makes no difference in terms
of the results that we can obtain.

(b) Regular expressions with memory (REMs) were proposed by Libkin and
Vrgoc [9] as a formalism for comparing data values along a single path, while
retaining a reasonable complexity for query evaluation. The strength of this
language is on the side of efficiency. The data model of the class of REMs is that
of edge-labeled directed graphs, in which each node is assigned a data value from
an infinite domain. REMs define pairs of nodes in the graph database that are
linked by a path satisfying a given condition c¢. Each such condition ¢ is defined
in a formalism inspired by the class of register automata [§], allowing some data
values to be stored in the registers and then compared against other data values.
The evaluation problem for REMs is PSPACE-complete (same than for FO over
relational databases), and can be solved in polynomial time in data complexity
[9], i.e., assuming queries to be fixed [] This shows that the language is, in fact,
well-behaved in terms of the complexity of query evaluation.

The aim of this paper is to investigate the expressiveness and complexity
of query evaluation for WL and the class of REMs with the hope of finding a
navigational query language for data graphs that strikes a good balance between
these two important aspects of query languages.

Contributions. We start by considering WL, which is known to be a powerful
formalism in terms of expressiveness. Little is known about the cost of query eval-
uation for this language, save for the decidability of the evaluation problem and
NP-hardness of its data complexity. Our first main contribution is to pinpoint
the exact complexity of the evaluation problem for WL (and thus answering an
open problem from [7]): we prove that it is non-elementary, and that this holds
even in data complexity, which rules out the practicality of the language.

! Recall that data complexity is a reasonable measure of complexity in the database
scenario [I5], since queries are often much smaller than the underlying data.

Expressive Path Queries on Graphs with Data 73

We thus move to the class of REMs, which suffers from the opposite drawback:
Although the complexity of evaluation for queries in this class is reasonable, the
expressiveness of the language is too rudimentary for expressing some important
path properties due to its inability to (i) compare data values in different paths
and (ii) express branching properties of the graph database. An example of an
interesting query that is not expressible as an REM is the following: (Q) Find
pairs of nodes x and vy, such that there is a node z and a path © from x to y in
which each node is connected to z. Notice that this is the query that lies at the
basis of the queries (Q1) and (Q2) we presented before.

Our second contribution then is to identify a natural extension of this lan-
guage, called register logic (RL), that closes REMs under Boolean combinations
and existential quantification over nodes, paths and register assignments. The
latter allows the logic to express comparisons of data values appearing in differ-
ent paths, as well as branching properties of the data. This logic is incomparable
in expressive power to WL. Besides, many natural queries relating data and
topology in data graphs can be expressed in RL including: the query (Q), hamil-
tonicity, the existence of an Eulerian trail, bipartiteness, and complete graphs
with an even number of nodes. We then study the complexity of the problem of
query evaluation for RL, and show that it can be solved in elementary time (in
particular, that it is EXPSPACE-complete). This is in contrast to WL, for which
even the data complexity is non-elementary. With respect to data complexity,
we prove that RL is PSPACE-complete. We then identify a slight extension of its
existential-positive fragment, which is tractable (NLOGSPACE) in data complex-
ity and can express many queries of interest (including the query (Q)). The idea
behind this extension is that atomic REMs can be enriched with an existential
branching operator — in the style of the class of nested regular expressions [3] —
that increases expressiveness without affecting the cost of evaluation.

Organization of the Paper. Section] defines our data model. In Section [B]
we briefly recall the definition of walk logic and some basic results from [7]. In
Section M, we prove that the data complexity of WL is nonelementary. Section
contains our results concerning register logic. We conclude in Section [6] with
future work.

2 The Data Model

We start with a definition of our data model: data graphs.

Definition 1 (Data graph). Let X be a finite alphabet. A data graph G over
X is a tuple (V,E,K), where V is the finite set of nodes, E CV x X x V is
the set of directed edges labeled in X' (that is, each triple (v,a,v') € E is to be
understood as an edge from v to v' in G labeled a), and k : V — D is a function
that assigns a data value in D to each node in V.

This is the data model adopted by Libkin and Vrgo¢ [9] in their definition of
REMs. In the case of WL [7], the authors adopted graph databases as their data
model, i.e., data graphs G = (V, E, k) such that x is injective (i.e. each node

74 P. Barcel, G. Fontaine, and A.W. Lin

carries a different data value). We shall adopt the general model of [9] since
none of our complexity results are affected by the data model: upper bounds
hold for data graphs, while all lower bounds are proved in the more restrictive
setting of graph databases.

There is also the issue of node-labeled vs edge-labeled data graphs. Our data
model is edge-labeled, but the original one for WL is node-labeled [7]. We have
chosen to use the former because it is the standard in the literature [2]. Again,
this choice is inessential, since all the complexity results we present in the pa-
per continue being true if the logics are interpreted over node-labeled graph
databases or data graphs (applying the expected modifications to the syntax).

Finally, in several of our examples we use logical formulas to express properties
of undirected graphs. In each such case we assume that an undirected graph H
is represented as a graph database G = (V, E, k) over unary alphabet X = {a},
where V' is the set of nodes of H and F is a symmetric relation (i.e. (v,a,v") € E
iff (v/,a,v) € E).

3 Walk Logic

WL is an elegant and powerful formalism for defining properties of paths in
graph databases, that was originally proposed in [7] as a yardstick for measuring
the expressiveness of different path logics.

The syntax of WL is defined with respect to countably infinite sets IT of path
variables (that we denote m, 7y, m2,...) and T (n), for each m € II, of position
variables of sort m. We assume that position variables of different sort are differ-
ent. We denote position variables by t¢,t1,%s,..., and we write t™ when we need
to reinforce that position variable t is of sort 7.

Definition 2 (Walk logic (WL)). The set of formulas of WL over finite al-
phabet X is defined by the following grammar, where (i) a € X, (ii) t,t1,t2
are position variables of any sort, (iii) ™ is a path variable, and (iv) t7,t5 are
position variables of the same sort m:

¢, ¢ = Eo(t1,13) | 1] <t5 [ti~ta | 2¢ | V' | 3to | Ine
As usual, WL formulas without free variables are called Boolean.

To define the semantics of WL we need to introduce some terminology. A path
(a.k.a. walk in [7]) in the data graph G = (V, E, k) is a finite, nonempty sequence
P = V1Q1V2 -+ - Up—1ap—1Vp, such that (v;,a;,v,41) € F for each 1 < i < n. The
set of positions of p is {1,...,n}, and v; is the node in position i of p, for
1 < ¢ < n. The intuition behind the semantics of WL formulas is as follows.
Each path variable 7 is interpreted as a path p = via1v2 -+ - vp_1a,—1V, in the
data graph G, while each position variable ¢ of sort 7 is interpreted as a position
1 <i < nin p (that is, position variables of sort 7 are interpreted as positions
in the path that interprets m). The atomic formula E,(t7,t3) is true iff 7 is
interpreted as path p = viajvs - - - vy—1ay—1Vy, the position p, that interprets ¢y

Expressive Path Queries on Graphs with Data 75

in p is the successor of the position p; that interprets ¢, (i.e. p2 = p; + 1), and
node in position p; is linked in p by an a-labeled edge to node in position py (that
is, ap, = a). In the same way, ¢ < t3 holds iff in the path p that interprets 7 the
position that interprets ¢; is smaller than the one that interprets to. Furthermore,
t1 ~ to is the case iff the data value carried by the node in the position assigned
to t1 is the same than the data value carried by the node in the position assigned
to ta (possibly in different paths). We formalize the semantics of WL below.

Let G = (V,E, k) be a data graph and ¢ a WL formula. Assume that Sy is
the set that consists of (i) all position variables t™ and path variables 7 such
that t™ is a free variable of ¢, and (ii) all path variables 7 such that = is a free
variable of ¢. Intuitively, S, defines the set of (both path and position) variables
that are relevant to define the semantics of ¢ over G. An assignment « for ¢ over
G is a mapping that associates a path p = via1v2 -+ - v_16,—1v, in G with each
path variable m € Sy, and a position 1 < ¢ < n with each position variable of the
form ¢™ in Sy (notice that this is well-defined since m € Sy every time a position
variable of the form ¢™ is in Sy). As usual, we denote by aft — i] and a[r — p]
the assignments that are equal to o except that ¢ is now assigned position 7 and
7 the path p, respectively.

We say that G satisfies ¢ under a, denoted (G, @) = ¢, if one of the following
holds (we omit Boolean combinations which are standard):

— ¢ = E,(t7,t3), the path a(n) is v1a1v2 - Vp—1an—1v,, and it is the case
that a(t5) = a(tT) + 1 and a = aq 7).

— ¢ =1t7 <tf and a(tT) < a(t]).

— ¢ = (t1 ~ t2), t1 is of sort 7y, ta is of sort ma, and x(v1) = k(va), where v; is
the node in position «(t;) of a(m;), for i = 1,2.

— ¢ = 3t™p and there is a position ¢ in a(n) such that (G, a[t™ — i) = .

— ¢ = Imyp and there is a path p in G such that (G, a[r — p]) E 9.

Ezample 1. A simple example from [7] that shows that WL expresses
NP-complete properties is the following query that checks if a graph has a Hamil-
tonian path:

I (VETVES (6T # 5 — 7 £ t5) A VTV HE(AT ~15)).

In fact, this query expresses that there is a path 7 that does not repeat nodes
(because 7 satisfies VtTVtZ (t7 #F15 =] t7)), and every node belongs to such
path (because 7 satisfies Va'VtT 3t5 (tT ~ t7), and, thus, every node that occurs
in some path 7’ in the graph database also occurs in 7). O

4 WL Evaluation Is Non-elementary in Data Complexity

In this section we pinpoint the precise complexity of query evaluation for WL.
It was proven in [7] that this problem is decidable. Although the precise com-
plexity of this problem was left open in [7], one can prove that this is, in fact, a
non-elementary problem by an easy translation from the satisfiability problem

76 P. Barcel, G. Fontaine, and A.W. Lin

for FO formulas — which is known to be non-elementary [I3II4]. In databases,
however, one is often interested in a different measure of complexity — called
data complezity [15] — that assumes the formula ¢ to be fixed. This is a reason-
able assumption since databases are usually much bigger than formulas. Often
in the setting of data complexity the cost of evaluating queries is much smaller
than in the general setting in which formulas are part of the input. The main
result of this section is that the data complexity of evaluating WL formulas is
nonelementary even over graph databases, which rules out its practicality.

Theorem 1. The evaluation problem for WL is non-elementary in data com-
plexity. In particular, for each k € Zq, there is a finite alphabet X and a Boolean
formula ¢ over X, such that the problem EVAL(WL,p) of evaluating the WL for-
mula ¢ is k-EXPSPACE-hard. In addition, the latter holds even if the input is
restricted to the class of graph databases.

Proof (Sketch): We start by sketching the case & = 1 here, which provides
insightful technical details about the nature of the proof. There is a Turing
machine M such that the following problem is EXPSPACE-hard: given a word
w of size n, is there an accepting run of M over w using at most 2" cells? We
prove that there is a formula ¢ € WL of size polynomial in the size of M such
that for all words w of size n, we can compute a graph G,, such that

Gy F ¢ iff there is an accepting run of M over w using < 2" cells. (1)

The formula ¢ is of the form Jm)(7), where 9 is a formula that does not contain
any quantification over path variables. Given a word w of size n, the label of the
path 7 in the graph G,, will encode an accepting run of M over the word w in
the following way. Suppose that in a configuration C', the content of the tape is
the word a; ... agen, the head is scanning cell number jo and the state is gg. The
configuration C' is encoded by the word ec defined by

c(0)(8,a0) - - c(jo = 1)(8, ajo—1)c(Jo)(q0, ajo)e(Go +1)(8, @jo+1) - - c(2")(8, agen),

where ¢(j) is the binary representation of the number j. The pair ¢(j)(g;, a;)
(where ¢; = qo if j = jo and ¢; = $ otherwise) is the description of cell number
jin C. A run CypC ... is encoded as the word ec,ec, - - ..

We think of a path 7 encoding a run as consisting of two parts: the first part
contains the encoding ec, of the initial configuration and is a path through a
subgraph I,, of G,,, while the second part contains the encoding ec,ec, ... and
is a path through the subgraph H,, of G,,. If @Q is the set of states of M and I’
is the alphabet, we define H,, as the following graph

Expressive Path Queries on Graphs with Data 7

where {d; : 1 < j <[} = (QU{8}) x I' and the number of nodes with outgoing
edges with labels 0 and 1 is equal to cn. The label of a path 7’ from the “left-
most” node x to the “right-most” node z with only once occurrence of z is
exactly the description of a cell in a configuration: it is the binary encoding of
a number < 2¢" followed by a pair of the form (¢’,a). We can define a formula
¢c € WL such that for all paths 7 starting in and ending in z,

Hy, F ¢c(m) iff the label of 7 is the encoding of a configuration.

We do not give details; ¢¢ has to express that the first number encoded in binary
is 0, that the last number is 2°* and that the encoding of the description of cell
number j is followed by the description of cell number j 4+ 1. Using the formula
¢c, we can define a formula ¢; such that for all paths m,

Hy, E ¢1(m) iff the label of 7 is the encoding of an accepting run.

The formula ¢, has to ensure that if ecec: occurs in the label of 7, then C' and
C" are consecutive configurations according to M. Moreover, ¢; has to express
that eventually we reach the final state. In order to express ¢c and ¢, we
use the ability of WL to check whether two positions correspond to the same
node. For example, in order to define ¢, since we need to compare consecutive
configurations ec and ec, we need to be able to compare the content of a cell in
configuration C' and the content of that same cell in C’. In particular, we want
to be able to express whether two subpaths 7, and 7} of 7 starting in z and
ending in y correspond to the binary encoding of the same number. Since the
length of such subpaths depends on n, we cannot check node by node whether

the two subpaths are equal. However, it is sufficient to check that if tgo and]!
corresponds to the same node (¢3° ~ t7'), then their successors also correpond

to the same node (tg‘/) + 1 ~ ' + 1). Similarly, in the formula ¢¢c, we use
the operator ~ in order to express that two subpaths correspond to the binary
encodings of numbers that are successors of each other.

Similarly to the way we define the graph H,,, we can introduce a graph I,
and a formula ¢g(7) such that

L, E ¢o(m) iff the label of 7 is the encoding ec,,

where Cj is the initial configuration of the run of M over w. By adding an
“adequate edge” from I, to H,,, we construct a graph G, such that for all
paths 7, Gy E ¢o(m) A ¢1 () iff the label of 7 is the encoding of an accepting
run over w. Hence, the formula ¢ := Ir(¢go(m) A ¢1(m)) satisfies ().

For the case where k > 1, the problem to adapt the above proof is that
we have to consider runs using a number of cells that is bound by a tower of
exponentials of height k. If £ > 1, the binary representation of such a bound is
not polynomial. The trick is to represent such exponential towers by k-counters.
A 1-counter is the binary representation of a number. If & > 1, a k-counter
c is a word oolp ...0j,lj,, where l; is a (k — 1)-counter and o; € {0,1}. The

78 P. Barcel, G. Fontaine, and A.W. Lin
counter ¢ represents the number r(c) = ;‘;0 ojr(o;). In particular, a tower of
exponentials of height k is represented by a k-counter of polynomial size.

We can show that there are a graph Fj and a formula x(7) such that the
label of 7 is a k-counter iff Fy F xi (7). Using Fj and xx, we can then adapt the
above proof to the cases where k > 1. O

As a corollary to the proof of Theorem [I, we obtain that data complexity is
non-elementary even for simple WL formulas that talk about a single path in a
graph database.

Corollary 1. The evaluation problem for WL over graph databases is non-
elementary in data complexity, even if restricted to Boolean WL formulas of
the form 3Jmy, where ¥ uses mo path quantification and contains no position
variable of sort different that .

5 Register Logic

We saw in the previous section that WL is impractical due to its very high data
complexity. In this section, we start by recalling the notion of regular expres-
sions with memory (REM) and their basic results from [9]. The problem with
this logic though is its limitation in expressive power. For instance, the query
(Q) from the introduction cannot be expressed in REM. We then introduce an
extension of REM, called regular logic (RL), that remedies this limitation in
expressive power (in fact, it can express many natural examples of queries ex-
pressible in WL, e.g., those given in [7]) while retaining elementary complexity
of query evaluation. Finally, we study which fragments of RL are well-behaved
for database applications.

5.1 Regular Expressions with Memory

REMs define pairs of nodes in data graphs that are linked by a path that satisfies
a constraint in the way in which the topology interacts with the underlying data.
REMs allow to specify when data values are remembered and used. Data values
are stored in k registers r1,...,r,. At any point we can compare a data value
with one previously stored in the registers. As an example, consider the REM
Ir.a™[r=]. It can be read as follows: Store the current data value in register r,
and then check that after reading a word in a™ we see the same data value again
(condition [r=]). We formally define REM next.

Let r1,...,r be registers. The set of conditions ¢ over {r1,...,ry} is recur-
sively defined as: ¢ :=r> | cAc| ¢, for 1 <4 < k. Assume that D, is the
extension of the set D of data values with a new symbol L. Satisfaction of con-
ditions is defined with respect to a value d € D (the data value that is currently
being scanned) and a tuple 7 = (di,...,dx) € D¥ (the data values stored in the
registers, assuming that d; = L represents the fact that register r; has no value
assigned) as follows (Boolean combinations omitted): (d,7) |=r; iff d = d;.

Expressive Path Queries on Graphs with Data 79

Definition 3 (REMs). The class of REMs over X and {r1,...,ri} is defined
by the grammar:

e =c¢c¢lal|leUel|e-el|et|eld]|lre
where a ranges over symbols in X, ¢ over conditions over {ri,...,ri}, and
over tuples of elements in {r1,...,r}.

That is, REM extends the class of regular expressions e — which is a popular
mechanism for specifying topological properties of paths in graph databases (see,
e.g., [162]) — with expressions of the form e[c], for ¢ a condition, and | 7.e, for 7
a tuple of registers — that define how such topology interacts with the data.

Semantics: To define the evaluation e(G) of an REM e over a data graph G =
(V, E, k), we use a relation [e] ¢ that consists of tuples of the form (u, A, p, v, \'),
for u,v nodes in V', p a path in G from u to v, and A\, A two k-tuples over D, . The
intuition is the following: the tuple (u, A, p,v, \') belongs to [e]¢ if and only if
the data and topology of p can be parsed according to e, with A being the initial
assignment of the registers, in such a way that the final assignment is \'. We
then define e(() as the pairs (u, v) of nodes in G such that (u, L*, p,v, \) € [e]a,
for some path p in G from u to v and k-tuple A over D .

We inductively define relation [e] g below. We assume that A\r—q, for d € D,
is the tuple obtained from A by setting all registers in 7 to be d. Also, if p; =
V1G1V2 ¢ Vg—10k—1Vk and po = VgQxVg+1 - * - Up—10n—1Vy, are paths, then pjpo is
the path viajvg - - - vg—10—1VKAKVEL1 -+ - Vn—1Qp—1V,. Then:

— [ele = {(u,\, p,u, A) |u €V, p=u, A € Dk }.

— [ale = {(u, A\, p,v,\) | p=uav, A € D }.

— [er Uea]a = [ei]e U ez2] .

— [e1-e2]e = [e1]aolez]a, where [e1]co[ez]q is the set of tuples (u, A, p, v, X)
such that (u, A, p1,w,\") € [e1]e and (w, N, p2,v,N) € [ez2]q, for some
w €V, k-tuple A" over D, , and paths p1, p2 such that p = pypo.

= [e*]e = lelc U ([e]c o [elc) U ([e]c o [l o [ela) - --

— [eldle = {(u, A, p,v, X) € [e]a | (5(v),N) = c}.

= [r.ela = {(u, A, p,v, N) | (U, Apiequy, p, v, N') € [e]a}

For each REM e, we will use the shorthand notation e* to denote e Ue™.

Example 2. The REM X* - (L r.X*[r=]) - ¥* defines the pairs of nodes that
are linked by a path in which two nodes have the same data value. The REM
Ir.(a]=r=])" defines the pairs of nodes that are linked by a path p with label in
a™, such that the data value of the first node in the path is different from the
data value of all other nodes in p. |

The problem EVAL(REM) is, given a data graph G = (V, E, k), a pair (v1, v2)
of nodes in V, and an REM e, is (vi,v2) € e(G)? The data complexity of the
problem refers again to the case when ¢ is considered to be fixed. REMs are
tractable in data complexity and have no worst combined complexity than FO
over relational databases:

80 P. Barcel, G. Fontaine, and A.W. Lin

Proposition 1 ([9]). EVAL(REM) is PSPACE-complete, and in NLOGSPACE in
data complezity.

5.2 Register Logic

REM is well-behaved in terms of the complexity of evaluation, but its expressive
power is rather rudimentary for expressing several data/topology properties of
interest in data graphs. As an example, the query (Q) from the introduction
— which can be easily expressed in WL — cannot be expressed as an REM (we
actually prove a stronger result later). The main shortcomings of REM in terms
of its expressive power are its inability to (i) compare data values in different
paths and (ii) express branching properties of the data.

In this section, we propose register logic (RL) as a natural extension of REM
that makes up for this lack of expressiveness. We borrow ideas from the logic
CRPQ™, presented in [4], that closes the class of regular path queries [6] under
Boolean combinations and existential node and path quantification. In the case
of RL we start with REMs and close them not only under Boolean combinations
and node and path quantification — which allow to express arbitrary patterns
over the data — but also under register assignment quantification — which permits
to compare data values in different paths. We also prove that the complexity of
the evaluation problem for RL is elementary (EXPSPACE), and, thus, that in this
regard RL is in stark contrast with WL.

To define RL we assume the existence of countably infinite sets of node, path
and register assignment variables. Node variables are denoted x,v, z, ..., path
variables are denoted m, 7', 71,72, ..., and register assignment variables are de-
noted v, v, o, ...

Definition 4 (Register logic (RL)). We define the class of RL formulas ¢

over alphabet X and {r1,...,r} using the following grammar:
atom = z=y |7=7"|v=v |v=1| (2,7 y) | e(r vi,10)
¢ = atom | =6 | ¢V ¢ | Fao | Ire | o

Here x,y are node variables, @, 7' are path variables, v,V are register assignment
variables, and e is an REM over X and {r1,...,75}.

Intuitively, v = L holds iff v is the empty register assignment, (x, 7, y) checks
that 7 is a path from x to y, and e(m, v, V") checks that 7 can be parsed according
to e starting from register assignment v and finishing in register assignment v’.
The quantifier Jv is to be read “there exists an assignment of data values in the
data graph to the registers”.

Let G = (V, E,k) be a data graph over X and ¢ a RL formula over X and
{r1...,r,}. Assume that D is the set of data values that are mentioned in G,
ie., D ={k(v) | v € V}. An assignment « for ¢ over G is a mapping that assigns
(i) a node in V to each free node variable z in ¢, (ii) a path p in G to each free
path variable 7 in ¢, and (iii) a tuple A in (DU{L})* to each register variable v

Expressive Path Queries on Graphs with Data 81

that appears free in ¢. That is, for safety reasons we assume that «(v) can only
contain data values that appear in the underlying data graph. This represents
no restriction for the expressiveness of the logic.

We inductively define (G,a) | ¢, for G a data graph, ¢ a RL formula, and
a an assignment for ¢ over G, as follows (we omit equality atoms and Boolean
combinations since they are standard):

;o) Ev=1iff a(v) = L.

,a) | (z,m,y) iff a(n) is a path from a(z) to a(y) in G.

ya) Eoe(my, V) iff (v, a(v), a(r),v,a(t)) € [e]a, assuming a(w) goes
m node u to v.

,a) |= Jx¢ iff there is node v € V such that (G, a[z — v]) = ¢.

,a) |= 3¢ iff there is path p in G such that (G, o[t — p]) = ¢.

a) = 3vg iff there is tuple A in (DU{L})* such that (G,alv — A]) = ¢.

(
(
(
f
(
(
(

NANS AND

)

Thus, each REM e is expressible in RL using the formula:
Ir W (v =1 A e(m,v,V))).

Ezample 3. Recall query (Q) from the introduction: Find pairs of nodes x and
y in a graph database, such that there is a node z and a path w from x to y
in which each node is connected to z. This query can be expressed in RL over
¥ = {a} and a single register r as follows:

I ((z, 7, y) A F2Vv(er(m,v,v) = 32'30 (2, 7', 2) Aea(n', v, 1))),

where e := a*[r=] - a* is the REM that checks whether the node (i.e. data)
stored in register r appears in a path, and ey := g[r~] - a* is the REM that
checks if the first node of a path is the one that is stored in register 7.

In fact, this formula defines the pairs of nodes x and y such that there exists
a path 7 that goes from x to y and a node z for which the following holds: for
every register value v (i.e., for every node v) such that e;(m,v,v) (i.e. node v
is in), it is the case that there is a path 7’ from some node 2’ to z such that
ea(n’,v,v) (ie., 2/ = v and 7’ connects v to z). Notice that this uses the fact
that the underlying data model is that of graph databases, in which each node
is uniquely identified by its data value. O

Complexity of Evaluation for RL: The evaluation problem for RL, denoted
EvaL(RL), is as follows: Given a data graph G, a RL formula ¢, and an assign-
ment « for ¢ over G, is it the case that (G,«a) = ¢? As before, we denote by
EvAL(RL,¢) the evaluation problem for the fixed RL formula ¢.

We show next that, unlike WL, register logic RL can be evaluated in elemen-
tary time, and, actually, with only one exponential jump over the complexity of
evaluation of REMs:

Theorem 2. EVAL(RL) is EXPSPACE-complete. The lower bound holds even if
the input is restricted to graph databases.

82 P. Barcel, G. Fontaine, and A.W. Lin

Proof (Idea): For the upper bound, we adapt for RL the proof that CRPQ™
formulas can be evaluated in PSPACE [4]. This requires some care in the way
in which register values and atomic REM formulas are handled. The extra ex-
ponential blow up is produced by the fact that checking whether a path p in a
data graph G does not satisfy an REM e (i.e. whether it is not the case that
(u, L, p,v, \) € [e]q, for some register assignment)\, assuming that p goes from
u to v) requires exponential space. The lower bound is obtained by a reduction
from the acceptance problem for a Turing machine that works in EXPSPACE. O

The increase in expressiveness of RL over REM has an important cost in data
complexity, which becomes intractable:

Theorem 3. EVAL(RL) is in PSPACE in data complexity. Furthermore, there
is a finite alphabet X and a RL formula ¢ over X and a single register v, such
that EVAL(RL,9) is PSPACE-hard. In addition, the latter holds even if the input
1s restricted to graph databases.

In the next section we introduce an interesting language, based on a restriction
of RL, that is tractable in data complexity, and thus better suited for database
applications. This language is a proper extension of REM. But before, we make
some important remarks about the expresive power of RL.

Expressive Power of RL: We now look at the expressive power of the logic
RL. It was proven in [7] that CRPQ is not subsumed in WL. Since RL subsumes
CRPQ™, it follows that RL is not subsumed in WL. On the other hand, WL
is also not subsumed in RL due to Theorem [0l Theorem [, and the standard
time/space hierarchy theorem from complexity theory. Therefore, we have the
following proposition:

Proposition 2. The expressive powers of WL and RL are incomparable.

On the other hand, we shall argue now that many natural queries about the inter-
action between data and topology are also expressible in RL. The aforementioned
query (Q) is one such example. We shall now mention other examples: hamil-
tonicity (H), the existence of Eulerian trail (E), bipartiteness (B), and complete
graphs with even number of nodes (C2). The first two are expressible in WL,
while (B) and (C2) are not known to be expressible in WL. We conjecture that
they are not.

We now show how to express in RL the existence of a hamiltonian path in a
graph; the query (E) can be expressed in the same way but with two registers (to
remember edges, i.e., consisting of two nodes). This is done with the following
formula over X' = {a} and a single register r:

I (VAN =er (m, A, X)) A VA # L = ea(m, A, N)),

where e1 :=a* - (Jr.at[r~]) - a* is the REM that checks whether in a path some
node is repeated (i.e., that it is not a simple path), and ey := a*[r~]a* is the
REM that checks that the node stored in register r appears in a path. In fact,

Expressive Path Queries on Graphs with Data 83

this query expresses that there is a path 7 that it is simple (as expressed by the
formula VAYA —eq (m, A, X)), and every node of the graph database is mentioned
in 7 (as expressed by the formula VA(A # L — ea(m, A, N))).

We now show how to express in RL the property bipartiteness from graph
theory. An undirected G = (V, E) is bipartite if its set of nodes can be partitioned
into two sets S1 and Sz such that, for each edge (v,w) € E, either (i) v € Sy
and w € Sy, or (ii) v € Sp and w € Ss. It is well-known that a graph database is
bipartite iff it does not have cycles of odd length. The latter is expressible in RL
since the existence of an odd-length cycle can be expressed as IrIAIN e(m, A, \'),
where e =) r.a(aa)*[r=].

We now show how to express in RL that a graph database is a complete
graph with an even number of nodes. To this end, it is sufficient and necessary
to express the existence of a hamiltonian path 7 with an odd number of edges
in the graph. But this is a simple modification of our formula for expressing
hamiltonicity: we add the check that 7w has an odd number of edges by adding
the conjunct e(m, v, "), where e = aUa(aa)™, and close the entire formula under
existential quantification of v and v/.

5.3 Tractability in Data Complexity

Let RL™T be the positive fragment of RL (i.e. the logic obtained from RL by
forbidding negation and adding conjunctions). It is easy to prove that the data
complexity of the evaluation problem for RLT is tractable (NLOGSPACE). This
fragment contains the class of conjunctive REMs, that has been previously iden-
tified as tractable in data complexity [9]. However, the expressive power of RL™T
is limited as the following proposition shows.

Proposition 3. The query (Q) from the introduction is not expressible in RL™.

On the other hand, increasing the expressive power of RL™ with some simple
forms of negation leads to intractability of query evaluation in data complexity:

Proposition 4. There is a finite alphabet X and REMs e1, e, e3, eq over X and
a single register r, such that EVAL(RL,¢) is PSPACE-complete, where ¢ is either
IrIr-(er(m, L, A) Vea(m, L, L)) or InVA-(es(m, L, A) Veq(m, L, 1)).

In the case of basic navigational languages for graph databases, it is possible
to increase the expressive power — without affecting the cost of evaluation —
by extending formulas with a branching operator (in the style of the class of
nested regular expressions [3]). The same idea can be applied in our scenario,
by extending atomic REM formulas in RL* with such branching operator. The
resulting language is more expressive than RLT (in particular, this extension
can express query (Q)), yet remains tractable in data complexity. We formalize
this idea below.

The class of nested REMs (NREM) extends REM with a nesting operator (-)
defined as follows: If e is an NREM then (e) is also an NREM. Intuitively, the
formula (e) filters those nodes in a data graph that are the origin of a path that

84 P. Barcel, G. Fontaine, and A.W. Lin

can be parsed according to e. Formally, if e is an NREM over k registers and G
is a data graph, then [{€)]c consists of all tuples of the form (u, A, p = u,u, \)
such that (u, A, p’,v, X') € [e]q, for some node v in G, path p’ in G, and k-tuple
XN over D .

Let NRL™ be the logic that is obtained from RL™ by allowing atomic formulas
of the form e(m,v,v’), for e an NREM. Given a data graph G and an assignment
a for m, v and v’ over G, we write as before (G,) = e(m,v,v') if and only if a(7)
goes from u to v and (u,a(v),a(r),v,a(v')) € [e]e. The semantics of NRL™T
is thus obtained from the semantics of these atomic formulas in the expected
way. The following example shows that query (Q) is expressible in NRL™, and,
therefore, that NRL™ increases the expressiveness of RL™T.

Ezample 4. Over graph databases, the query (Q) from the introduction is ex-
pressible in NRL* using the following formula over X' = {a} and register r:

¢ = Hwﬂu((x,ﬁ,y) A 6(7T,V,I/)),

where e := ({e1)-a)*(e1), for ey = a*[r=]. Intuitively, e; checks in a path whether
its last node is precisely the node stored in register r, and thus e checks whether
every node in a path can reach the node stored in register r. Therefore, the
formula ¢ defines the set of pairs (z, y) of nodes, such that there is a path 7 that
goes from z to y and a register value v (i.e., a node v) that satisfy that every
node in 7 is connected to v. |

The extra expressive power of NRLT over RL™ does not affect the data com-
plexity of query evaluation:

Theorem 4. Evaluation of NRLT formulas can be solved in NLOGSPACE in
data complezity.

From the proof of Theorem M it also follows that NRL™ formulas can be
evaluated in PSPACE in combined complexity.

6 Conclusions and Future Work

We have proven that the data complexity of walk logic is nonelementary, which
rules out the practicality of the logic. We have proposed register logic, which is an
extension of regular expressions with memory. Our results in this paper suggest
that register logic is capable of expressing natural queries about interactions
between data and topology in data graphs, while still preserving the elementary
data complexity of query evaluation (PSPACE). Finally, we showed how to make
register logic more tractable in data complexity (NLOGSPACE) through the logic
NRLT, while at the same time preserving some level of expressiveness of RL.
We leave open several problems for future work. One interesting question is to
study the expressive power of extensions of walk logic, in comparison to RL and
ECRPQ™ from [4]. For example, we can consider extensions with regularity tests
(i.e. an atomic formula testing whether a path belongs to a regular language).

Expressive Path Queries on Graphs with Data 85

Even in this simple case, the expressive power of the resulting logic, compared
to RL and ECRPQ™, is already not obvious. Secondly, we do not know whether
NRLT is strictly more expressive than RL. Finally, we will also mention that
expressibility of bipartiteness in WL is still open (an open question from [7]).
We also leave open whether the query that a graph database is a complete graph
with an even number of nodes is expressible in WL.

Acknowledgements. We thank the reviewers for the useful comments. Barceld is
funded by Fondecyt grant 1130104, Fontaine by Fondecyt postdoctoral grant 3130491,
and Lin by EPSRC (EP/H026878/1). Part of this work was done when Lin visited
Barcelé funded by Fondecyt grant 1130104.

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1) (2008)

2. Barcel$, P.: Querying graph databases. In: PODS, pp. 175-188 (2013)

3. Barceld, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular ex-
pressions. In: AMW, pp. 180-195 (2012)

4. Barceld, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst. 37(4), 31 (2012)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2000)

6. Cruz, 1., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting
recursion. In: SIGMOD, pp. 323-330 (1987)

7. Hellings, J., Kuijpers, B., van den Bussche, J., Zhang, X.: Walk logic as a framework
for path query languages on graph databases. In: ICDT, pp. 117-128 (2013)

8. Kaminski, M., Francez, N.: Finite memory automata. TCS 134(2), 329-363 (1994)

9. Libkin, L., Vrgoé¢, D.: Regular path queries on graphs with data. In: ICDT 2012,
pp. 74-85 (2012)

10. Libkin, L., Vrgo¢, D.: Regular expressions for data words. In: Bjgrner, N., Voronkov,
A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 274-288. Springer, Heidelberg (2012)

11. Libkin, L., Reutter, J.L., Vrgoc, D.: Trial for RDF: adapting graph query languages
for RDF data. In: PODS, pp. 201-212 (2013)

12. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6), 1235-1258 (1995)

13. Robertson, L.E.: Structure of complexity in the weak monadic second-order theo-
ries of the natural numbers. In: STOC, pp. 161-171 (1974)

14. Stockmeyer, L.: The complexity of decision problems in automata theory and logic.
Ph.D. thesis. MIT (1974)

15. Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137-146
(1982)

16. Wood, P.T.: Query languages for graph databases. SIGMOD Record 41(1), 50-60
(2012)

Proving Infinite Satisfiability

Peter Baumgartner and Joshua Bax

NICTA* and Australian National University, Canberra, Australia
Firstname.Lastname@nicta.com.au

Abstract. We consider the problem of automatically disproving invalid conjec-
tures over data structures such as lists and arrays over integers, in the presence
of additional hypotheses over these data structures. We investigate a simple ap-
proach based on refutational theorem proving. We assume that the data structure
axioms are satisfiable and provide a template language for additional hypotheses
such that satisfiability is preserved. Then disproving is done by proving that the
negated conjecture follows. By means of examples we demonstrate that our tem-
plate language is reasonably expressive and that our approach works well with
current theorem provers (Z3, SPASS+T and Beagle).

1 Introduction

We consider the problem of automatically disproving invalid conjectures over data
structures such as lists and arrays over integers, in the presence of additional hypotheses
over these data structures. Such invalid conjectures come up frequently in applications
of automated reasoning to software verification and the analysis of data-rich state-based
systems, for example. More formally, the disproving problem is to show that AXUHYP
does not entail a sentence CON, where AX are list and/or array axioms and CON is the
conjecture in question. The obvious approach to disproving is to show satisfiability of
AXUHYP U {-CON} by means of a (complete) theorem prover. Unfortunately, current
theorem proving technology is of limited usefulness for that: finite model finders cannot
be used because the list axioms do not admit finite models, SMT-solvers are typically
incomplete on quantified formulas and face the same problem, and theorem provers
based on saturation often do not terminate on satisfiable input (let alone completeness
issues in presence of arithmetic background theories).

We propose a different, conceptually simple approach based on refutational theorem
proving. It consists in assuming that AX is satisfiable and providing templates for HYP
that are guaranteed to preserve satisfiability of AXUHYP. Then disproving is attempted
simply by proving that AX U HYP entails =CON, i.e., that AX U HYP U {CON} is
unsatisfiable.

The main point of this paper is to demonstrate the practical feasibility of our ap-
proach. By means of examples, we demonstrate that our template language covers use-
ful cases. We also report on our experiences disproving sample conjectures using cur-
rent theorem provers (Z3 [[L1], SPASS+T [18] and Beagle [3]), and we compare their
performance.

* NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 86-P5] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Proving Infinite Satisfiability 87

Related Work. Kapur and Zarba [8]] show by way of reductions to sub-theories how
to decide the satisfiability of conjunctions of ground literals wrt. various theories, in-
cluding arrays and lists. Armando, Bonacina, Ranise and Schulz [2]] use the superpo-
sition calculus as a decision procedure, again for conjunctions of ground literals wrt.
these (and other) theories. In a similar way, Lynch and Morawska [9]] aim at superpo-
sition as decision procedure based on finite saturation. IThlemann, Jacobs and Sofronie-
Stokkermans [7]] develop decidability results for the theory of arrays and others using
the framework of local theory extensions. DeMoura and Bjoerner [12] give decidabil-
ity results for a theory extending the basic theory of arrays. McPeak and Necula [10]
provide decision procedures for pointer data structures. Bradley, Manna and Sipma [4]]
give a decidability result for an expressive fragment of the theory of arrays, the array
property fragment. Certain desirable formulas are not included in this fragment, for ex-
ample totality axioms for functions or an injectivity predicate for arrays (see distinct in
Section M)). Ghilardi, Nicolini, Ranise and Zucchelli [6] provide a decision procedure
for an extension of the array theory and demonstrate how decision procedures may be
derived for extensions to this theory, many of which lie outside the array property frag-
ment. This relies on the existence of a “standard model” for the theory and extension,
whose existence must be demonstrated a priori.

In contrast to these works, we do not provide decision procedures for specific fragments.
This is intentionally so, in order to support disproving tasks in the presence of liberally
formulated additional axioms (the set HYP above). Although we employ superposition-
based provers in our experiments (like some of the approaches above), our approach
does not hinge on finite saturation. Claessen and Lilliestrom [5] present a method for
showing that a set of formulas does not admit finite models. It does not answer the
question whether infinite models exists, and this way our work is complementary to
theirs. Suter, Koksal and Kuncak [17] have developed a semi-decision procedure for
checking satisfiability of correctness properties of recursive functional programs on al-
gebraic data types. It overlaps with out method on lists (Section[3) by imposing similar
syntactic restrictions. Their method works differently, by partial unrolling of function
definitions into quantifier-free logic instead of theorem proving on (quantified) formu-
las. In [[15], Riimmer and Shah use a program logic for Java to prove the incorrectness of
programs. It utilizes a sequent calculus for unfolding lists and reasoning with arithmetic
constraints, and this way is somewhat more spcialised than our approach.

Preliminaries. We work in the context of many-sorted logic with first-order signatures
comprised of sorts and operator symbols (i.e., function symbols and predicate symbols)
of given arities over these sorts. In this paper we focus on theorem proving modulo the
fixed background theory of (linear) integer arithmetic. Our signatures 2 are comprised
of sort symbols sy, ..., s, where s, = Z, the integer sort. Let sorts(2) = {s,..., sy}
We assume 2 contains an equality symbol =, for each sort s;. We usually drop the sort
annotion from =;,. We also assume infinite supplies of variables of each sort. When x is
a variable and s is a sort we write x,; to make clear that the sort of x is s.

We use the notions commonly used in automated theorem proving in a standard way.
The (well-sorted X-) terms, atoms, and formulas are defined as usual. Let xi, ..., x, be
pairwise different variables of corresponding sorts sy, ..., s,. We write F[xy,..., x,] to
indicate that the formula F has free variables at most xy, .. ., x,, and we say that F' has

88 P. Baumgartner and J. Bax

the arity s X - - - X s,. We write F[t4,...,1,] for the formula obtained from F[xi,..., x,]
by replacing every free occurrence of x; in F by #;, forall 1 <i < n.

Our logical language is essentially the same as the TPTP-language TFA (“Typed
Formulas with Arithmetic”) and we adopt the semantics given for it in [[16]. In brief, a
(2-)interpretation I consists of a (2-)domain D = D, W ... D, with disjoint, non-
empty sub-domains for each sort, and an arity-respecting mapping of function symbols
to functions and predicate symbols to relations (representing the tuples of which the
predicate holds true). We work with E-interpretations only. That is, I(xy,) = {(d,d) |
d € Dy}, where I(op) is the interpretation of the operator op. Furthermore, we consider
only interpretations that extend arithmetic, that is, (i) the domain Dz of the integer sort
Z is the set of all integer numbers and, (ii) the numeric operators such as >, >, +, —
and - are interpreted as expected. The usual notions of satisfaction, validity, model etc.
apply in the standard way. In particular, when N is a set of sentences we write I = N to
indicate that I is a model of (all elements of) N, and we say that N entails a formula F,
written as N | F iff every model of N is a model of F'.

2 Approach

Our approach consists in starting with a signature 2 and a set of 2-sentences Ax that
is known to be satisfiable. Our main interest is in lists and arrays, and so Ax will be
corresponding axioms, see below. Then we stepwise expand 2 and Ax with new user-
defined operators and additional definitions for these.

More formally, for two signatures 2" and 2” over the same sorts we use set operators
to relate the sets of their operators in the obvious way. For instance, we write 2’ =
2 U {op} to indicate that 2" is obtained from 2 by adding the operator op. We consider
sequences (Ax, Def,, , ..., Def,,) such that Def,, is a set of 2;-sentences (“Definition
for op,”) of a certain form explained below, where 2y = 2, op; ¢ 2i_1 and 2; = 2;_; U
{op;} for all 1 < i < n. We call any such sequence an extension of Ax.

Definition 2.1 (Admissible Definition). Ler 2 be a signature, D a 2-domain, and op ¢
2’ an operator with an arity over sorts(X). We say that a set of (X' U {op})-sentences N is
an admissible definition of op (wrt. 2 and D) iff every X-interpretation I with domain
D can be expanded to a (X' U {op})-interpretation I’ with domain D such that I’ = N.

That is, I’ differs from I only by adding an interpretation for op which satisfies N. We
indicate this by writing I’ = I U I(op).

Proposition 2.2. Let (Ax,Def,, ,...,Def,,) be an extension of Ax. Suppose there is
a 2o-model 1 = Ax with domain D. If Def,, is an admissible definition of op; wrt.
21 and D, for all 1 < i < n, then there is a X,-interpretation I’ such that I' E
Ax U |y <jcn Defyp,.

Proof. By induction over the length n of extensions, using the given model [in the
induction start and using admissibility in the induction step. O

As said, in this paper we are mainly interested in disproving conjectures. With the
current terminology, the problem is to show that N = Ax U | J, <, Def,,, does not entail

Proving Infinite Satisfiability 89

a given 2,-sentence Con, the conjecture in question. Assuming admissible definitions,
Proposition gives us I’ = N, for some 2, -interpretation I’. Now, suppose we are
able to prove (by a theorem prover) the entailment N | —Con. It follows I’ | =Con,
and so I’ [Con. By definition, then N £ Con, and so the conjecture is disproven.

Our intended application context is that of dynamically evolving systems. By this
we mean computations that start in a (typically partially) specified initial state, modify
some data until a final state is reached, and then the resulting (partially specified) final
state is queried as to whether a property P holds in it. This leads to universally quantified
implications Corn in which the premise encodes both the initial state and computation,
while the conclusion encodes property P.

A trivial example of this situation is the formula Con = Vst [|gr .l # NIIAT =
tail(l) = I’ # nil. Here, [# nil is meant to represent the initial state; I’ = tail(/) the
computation; and P = I’ # nil. Where Ax st are the list axioms of Section 3] below,
we wish to show Axy st £ Con. With the approach indicated above, we have to prove
Axust E dlust I g7 - L # nil A" = tail(]) instead, which is a theorem proving task.

3 Lists

We consider lists over integers. To this end let the signature 2| st consist of sorts LIST
and Z and the operators nil : LIST, cons : Z X LIST +— LIST, head : LIST — Z,
tail : LIST + LIST. The list axioms AX st are the following formulas, each implicitly
universally quantified, where k is Z-sorted and / is LIST-sorted:

head(cons(k, 1)) ~ k cons(k, [) # nil
tail(cons(k, 1)) ~ 1 cons(head()), tail(/)) ~ [v [~ nil

Structurally identical axioms have been mentioned in [13]. The satisfiability of the
list axioms is well known. It can also be determined automatically. For example,
the theorem prover Beagle [3] in a complete setting and after adding the axioms
dd;.head(nil) ~ d and tail(nil) ~ nil, terminates on AX_sT in a saturated state. Be-
cause the axioms satisfy a certain sufficient completeness requirement, this provides
a proof of satisfiability. In particular, the list axioms are satisfied in the interpretation
I st with the domain Dy st = LIST, the finite length lists (over integers), which we
assume to be freely generated by the constructors nil and cons(:,-), and the obvious
interpretation for the 2| gT-operators.
We now turn to the templates for definitions.

Relations. Let 2* be an expansion of X st and P ¢ X* a predicate symbol with arity
Z x LIST. Let Defp a formula of the form

v kZ lLIST . P(k, l) (=4

[~ nil A B[k] (P1)
V dhz tst .1 ~ cons(h,t) A Clk, h, t] P2)
VvV dhz tyst . L~ cons(h,t) A D[k, h,t] A P(k,t) (P3)

where B is a 2*-formula of arity Z, and C and D are X*-formulas of arity Z X Z X LIST.

90 P. Baumgartner and J. Bax

Lemma 3.1. Let D be a X" -domain with Dy ,st = LIST. Then Defp is an admissible
definition of P wrt. X* and D.

Proof. Briefly, the proof proceeds by constructing a canonical (minimal) model of the
«-direction of Defp, which is also always a model of the =-direction. From a logic-
programming angle, the user could as well give only the <-direction of Defp, then the
system can add the completion (=-direction) for disproving purposes.

We assume Interpretations include a valuation component for variables. We write
I1xq to indicate an update for the variable x to the domain element d.

Let I be a 2*-interpretation with domain D. We have to show that I can be expanded
to a (Z* U {P})-interpretation I’ = I U I(P), such that I’ = Defp.

The definition of /(P) utilizes transfinite induction, and we need several orderings
for that. Let >z be a (any) well-ordering on the integers and > its extension to the
quasi-lexicographic ordering on LIST[] Because >z is well-founded and total, > is
well-founded and total, too (this is well-known). Let > denote the strict subset of >.

Next, we define an ordering >p on pairs over integers and finite lists over integers as
(k1, 1) =p (ka,) iff I; > I orelse I} = I and ky >z k,. Notice that >p is also total
and well-founded. Let >p denote the strict subset of >p.

Let (k,I) € Z x LIST be chosen arbitrarily. We need to decide whether to include
(k,1) in I’(P) or not, that is, whether to make I’(P)(k, I) true or false, respectively. We
do this by evaluating the body of Defp, which resorts to evaluating smaller elements
only.

More formally, for a given pair (k,) we define subsets ep(k, I) and I(P),1) of Z X
Dy st. Assume that ep(k’, I’) has already been defined for all (k’,1’) € Z X Dyst with
(k,1) >p (K’,1). Where I(P)1y = U.n>p 1) €P(K’, ") define

I = nil and Iy 5 = Blk] or
I = cons(h, t) and ik posn oty E CLk, By 1],

for some h € Zand t € D st or
I = cons(h, t), Ik wshion E DIk, h,t] and

(I U IP)g)ik kit] E Pk, 1),
forsome h € Z and t € Dyst

ep(k, D) = {(k, D} if

In all other cases define ep(k, 1) = 0. Finally define I(P) = J,) ep(k, D).

Notice that the conditions in the definition of ep(k, I) are all well-defined. In partic-
ular, we have (k,I) >p (k,t) in the last case. With the definition of I(P) it is straight-
forward to show (I U I(P)) | Defp (assume a >p-minimal pair (k, I) under which Defp
evaluates to false in I U I(P) and lead this to a contradiction). O

Example. Let inRange : Z X LIST be a predicate symbol. Consider the extension of
Axp st with the following (admissible) definition for P (the free variables are universally
quantified with the obvious sorts).

inRange(n,l) © [= nilv Ahz ts7. (I = cons(h,t) AO < h A h < n AinRange(n, 1))

' A quasi-lexicographic ordering, or shortlex ordering, compares firstly lists by their length, so
that nil comes first, and then compares lists of the same length lexicographically.

Proving Infinite Satisfiability 91

This example comes from a case study with the first-order logic model checker from [[1]].
The inRange predicate is used there to specify lists of “ordered items” handled in a
purchase order process, which must all be in a range 0..N — 1, for some N > 0. The
other examples in this paper are contrived.

The following table lists some sample problems together with the runtimes (in sec-
onds) needed to disprove them with the provers mentioned &

Problem Beagle Spass+T Z3
inRange(4, cons(1, cons(5, cons(2, nil)))) 6.2 03 02
n > 4 = inRange(n, cons(1, cons(5, cons(2, nil)))) 7.2 03 02
inRange(n, tail(/)) = inRange(n,) 3.9 03 02
Angz st .1 # nil AinRange(n,) A n —head(l) < 1 2.7 03 02
inRange(n,l) = inRange(n — 1,1) 8.2 03 >60
[# nil A inRange(n,l) = n — head(l) > 2 2.8 03 02

n > 0 AinRange(n,l) Al' = cons(n — 2,1) = inRange(n,l') 4.5 52 02

We remark that none of these problems are solvable by using any of the provers to
directly establish consistency of the axioms, definitions and the conjecture. Even if
only the <-direction is used, Z3 and Spass+T do not terminate. Because the universally
quantified variables in the conjectures lead to Skolem constants, the resulting clause set
is no longer sufficiently complete (see [3]), and a finite saturation obtained by Beagle
does not allow one to conclude satisfiability.

Functions. Let Z* 2 X s7 be a signature, s € sorts(X) and f ¢ 2" a function symbol
with arity ZxLIST s. Let Def be a set of (implicitly) universally quantified formulas
of the form below, where k and & are Z-sorted and ¢ is LIST-sorted:

f(k, nil) =~ blk] < Bl[k] (fo)
f(k,cons(h, 1)) = ci1lk, h, t, f(k,1)] & Cilk, h,t, f(k,1)] (f1)
f(k,cons(h, 1)) = c,lk, h, t, f(k,1)] & Culk, h,t, f(k,1)] (fn)

where B is a 2" -formula of arity Z, each C; is a 2*-formula of arity Z X Z X LIST x s, b
is a Z*-term of arity Z + s, and each ¢; is a 2*-term with arity Z X Z X LIST X s > s.

Lemma 3.2. Let D be a 2*-domain with Dyst = LIST. If forall 1 < i < j < n the
formula

Y kg hz tust x5 . Cilk, h, t, x] A Cj[k, h,t,x] = cilk, h,t,x] = Cj[k, h,t, x]

is valid in all X*-interpretations with domain D then Def; is an admissible definition
of f wrt. 2* and D.

2 Here and below, Beagle has been run with “cautious simplification on” and “ordinary vari-
ables on”; Z3, version 4.3.1 with the options “pull-nested-quantifiers”, “mbqi” and “macro-
finder” on; SPASS+T used Yices as a theory solver. All timings obtained on reason-
able recent computer hardware. The input problems are available on the Beagle website
http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

92 P. Baumgartner and J. Bax

Proof. The proof of Lemma uses the same model construction technique as the
proof of Lemma [3.1] Totality is obtained by interpreting f on an argument tuple such
that none of the conditions fy to f, holds true by an arbitrary domain element. The
condition in the lemma statement enforces right-uniqueness (functionality). O

The condition in the statement of Lemma[3.2]is needed to make sure that all cases (f;)
and (f;) for i # j are consistent. For example, for f(cons(h,f)) * 1 < h = 1 and
f(cons(h,t)) ~ a & h ~ 1 + a this is not the case. Indeed, Vhzy .h~1Ah~1+a=
1 ~ a is not valid. Notice that establishing the condition is a theorem proving task,
which fits well with our method. In the examples below it is trivial.

Example. Let length : LIST — Z, count : Z X LIST — Z, append : LIST x LIST +—
LIST and in : ZXLIST be operators. Consider the extension of Ax st with the following
(admissible) definitions, in the given order.

length(nil) ~ 0 append(nil,l) ~ [
length(cons(h, 1) ~ 1 + length(z) append(cons(h, t),l) ~ cons(h, append(t, 1))
count(k, nil) ~ 0
count(k,cons(h,t)) ~ count(k,t) =k # h in(k,l) © count(k,l) >0

count(k,cons(h, 1)) =~ count(k,t) + 1 & k= h

Here are some sample conjectures together with the times for disproving themfl

Problem Beagle Spass+T Z3
length(ly) = length(l,) = [= I, 4.3 9.0 0.2
n > 3 Alength(l) > 4 = inRange(n, [) 54 1.1 02
count(n, /) ~ count(n, cons(1, 1)) 2.5 0.3 >60
count(n,) > length(l) 2.7 0.3 >60
Iy # I, = count(n, [;) # count(n,) 2.4 0.8 >60
length(append(ly, [»)) =~ length(l;) 2.1 03 0.2

length(l;) > 1 A length(l;) > 1 = length(append(k,)) > 4 37 >60 >60
in(ny, 1) A =in(ny, I) A I3 = append(l;, cons(ny,) =

>60(6.2) 9.1 >60
count(n, I3) ~ count(n, [;)

4 Arrays

The signature 2agray consist of sorts ARRAY and Z and the operators read : ARRAY x
Z — Z, write : ARRAY x Z x Z — ARRAY, and init : Z — ARRAY. The array axioms
AXARRAY follow:
read(write(a, i, x),1) ~ x read(a,i) ~ read(b,i) > a=~b
read(write(a, i, x), j) = read(a, j) Vi= j read(init(x), i) ~ x
With the axiom read(init(x), i) = x, a term init(f) represents an array that is initialized

everywhere with 7. As with the list axioms, the satisfiability of the array axioms can be
established automatically with the Beagle prover by means of a finite saturation.

3 The time of 6.2 seconds for the last problem is with “ordinary variables off”.

Proving Infinite Satisfiability 93

Relations. Let X* 2 Zappay be a signature and P ¢ X2* a new predicate symbol with
arity Z X ARRAY. Let Defp be a formula of the form V kz xagray . P(k, x) & Clk, x],
where C is a 2*-formula with arity Z x ARRAY.

This is a simpler definition than that for LIST, as it does not admit recursion with
the new operator P. Of course, this is balanced by the strength of the read operator for
arrays. Using it we can easily define useful predicates without recursion. For example
the sorted predicate defines arrays in which the first N elements are sorted in increasing
order: sorted(a,n) © (0<iAi< jA j<n)= read(qa,i) < read(a, j).

Lemma 4.1. Defp is an admissible definition of P wrt. X* and D.

Proof. This must be so, since for any 2*-interpretation I over D and any x, k, I provides
an evaluation of ¢[k, x] and so the obvious interpretation I(P) for X* U {P} can be
defined. m|

Functions. Let 2* 2 Xappay be a signature, s € sorts(2) and f ¢ X2* a function symbol
with arity Z X ARRAY ~ s. Let Def; be a set of (implicitly) universally quantified
formulas of the form below, where k is Z-sorted, a is ARRAY-sorted and y is s-sorted:

f(a7k)zy:C][a’k7y] (fl)

fla,k) =y < Cyla, k,y] (f,)

where each C; is a 2*-formula of arity ARRAY X Z X s. Note the differences between
the LIST version and this definition. Here we do not allow recursion- each C; is strictly
over the signature 2* and, instead of a term ¢; we have a universally quantified variable
y as the evaluation of f. While some functions on arrays are difficult or impossible
to express in this way (for example, the sum of the first N elements of an array), many
other interesting functions fit this framework. Consider the function rev : ARRAY XZ —
ARRAY that returns a copy of an array with the order of the first N elements reversed:

revia,n) = b <=Viz .0<iANi<nAread(b,i) = read(a,n— (i+ 1))
V (0>iVvi>n)Aread(b,i) ~ read(a,i))

Lemma 4.2. Let D be a X" -domain. If, for all 1 <i < j < n the formula
Cila,k,y(1 A Cjla, k,y2] = y1 = 2

is valid in all X*-interpretations with domain D, then Def s is an admissible definition
of f wrt. 2+ and D.

Proof. Assume that the above condition is met and that / is a 2* interpretation over
D. For this particular I(f), let f be a function which maps a tuple of domain elements
x to a domain element y of the correct sort such that I E C;[x,y] for some i or to
some arbitrary d € D of the correct sort if no such i and y exist. Since each C; is a 2*
formula, it has an evaluation in / and by assumption any satisfying y is unique up to
sort equivalence. Where an arbitrary element is selected no contradiction arises since
I(f) F f(x) =d = C[x,d]. Thus, Def is an admissible definition for f. O

94 P. Baumgartner and J. Bax

Examples. Let the operators inRange : ARRAY X Z x Z, max, distinct be defined as
follows (sorted and rev are as defined previously):

inRange(a,r,n) & distinct(a,n) &
Vi.n>2iNni=0) Vi,j.(n>iAn>jAj>20Ai=0)
= (r > read(a, i) A read(a,i) > 0) = read(a, i) ~ read(a, j) = i = j)

max(a,n) ~w &Vi.(n>iANi>0)=w>read(a,)) AN(Ji.n>iANi>0Aread(a,i) = w)

Here are some sample conjectures together with the times for disproving them. A
Note that u indicates termination with a status “unknown”.

Problem Beagle Spass+T Z3
n > 0 = inRange(a, max(a, n), n) 1.40 0.16 u
distinct(init(n), i) 0.98 0.15 u
read(rev(a,n + 1),0) = read(a, n)) >60 >60(0.27) >60
distinct(a, n) = distinct(rev(a, n)) >60 0.11 0.36
A nyz . =sorted(rev(init(n), m), m) >60 0.16 u
sorted(a, n) A n > 0 = distinct(a, n) 2.40 0.17 0.01

In addition, SPASS+T, Beagle and Z3 were used to prove the functionality condition
in Lemmal4.2l for the max and rev operators. All provers verified the condition for max
but only SPASS+T and Z3 verified that for rev.

5 Conclusions

The aim of this work is to provide a reasonably expressive language (in practical terms)
that allows one to specify properties of data structures under consideration, like lists
and arrays, and that supports disproving by existing theorem provers. The main idea
is to capitalize on the strengths of these systems in theorem proving and use these for
solving (appropriately phrased)disproving problems, instead of relying on their model-
building capabilities. The latter, direct approach does not work well in the context of
(integer) background theories: both saturation based and SMT methods are inherently
incomplete, and so non-provability does not entail non-validity. See [3] for further de-
tails under which complete theorem proving is possible.

We gave some example problems and tested them with the theorem provers
SPASS+T, Beagle and Z3. These examples are all non-solvable with the direct ap-
proach and solvable with our approach. All of them could be solved, and in short time.
In general, the first-order solvers Beagle and SPASS+T worked most reliably, possibly
thanks to handling quantified formulas natively instead of relying solely on instantia-
tion heuristics. On the other hand, it is easy to find examples where our method does
not work. A simple example is the conjecture nz I st . length(cons(n, l)) ~ 0. (The
direct approach does not work either, e.g., Beagle does not find a finite saturation.)

4 SPASS+T used Yices as a theory solver. The time of 0.27s in the third problem is obtained by
excluding the inRange definition.

Proving Infinite Satisfiability 95

Acknowledgements. We thank the reviewers for their helpful comments.

References

18.

. Bauer, A., Baumgartner, P., Diller, M., Norrish, M.: Tableaux for verification of data-

centric processes. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS,
vol. 8123, pp. 28—43. Springer, Heidelberg (2013)

. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfia-

bility procedures. ACM Trans. Comput. Log. 10(1) (2009)

. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In:

Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39-57. Springer, Heidelberg
(2013)

. Bradley, A.R., Manna, Z., Sipma, H.B.: Whats decidable about arrays? In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427-442. Springer, Heidelberg
(2006)

. Claessen, K., Lilliestrom, A.: Automated inference of finite unsatisfiability. J. Autom. Rea-

soning 47(2), 111-132 (2011)

. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for extensions of the

theory of arrays. Ann. Math. Artif. Intell. 50(3-4), 231-254 (2007)

. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In:

Ramakrishnan, Rehof (eds.) [14], pp. 265-281

. Kapur, D., Zarba, C.G.: A reduction approach to decision procedures (2005)
. Lynch, C., Morawska, B.: Automatic decidability. In: LICS, pp. 7-16. IEEE Computer Soci-

ety (2002)

. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etes-

sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476—490. Springer, Heidel-
berg (2005)

. de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, Rehof (eds.)

[14], pp. 337-340

. de Moura, L.M., Bjgrner, N.: Generalized, efficient array decision procedures. In: FMCAD,

pp. 45-52. IEEE (2009)

. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. Journal of

Association for Computer Machinery 27(2) (1980)

. Ramakrishnan, C.R., Rehof, J. (eds.): TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg

(2008)

. Riimmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for java dy-

namic logic. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 41-60.
Springer, Heidelberg (2007)

. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form

with arithmetic. In: Bjgrner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp.
406-419. Springer, Heidelberg (2012)

. Suter, P., Koksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In: Yahav, E.

(ed.) SAS 2011. LNCS, vol. 6887, pp. 298-315. Springer, Heidelberg (2011)
Waldmann, U., Prevosto, V.: Spass+t. In: Geoff Sutcliffe, S.S., Schmidt, R. (eds.) ESCoR,
Seattle, WA, USA. CEUR Workshop Proceedings, pp. 18-33 (2006)

SAT-Based Preprocessing for MaxSAT*

Anton Belov!, Anténio Morgado?, and Joao Marques-Silva'-2

! Complex and Adaptive Systems Laboratory University College Dublin
2 IST/INESC-ID, Technical University of Lisbon, Portugal

Abstract. State-of-the-art algorithms for industrial instances of MaxSAT prob-
lem rely on iterative calls to a SAT solver. Preprocessing is crucial for the acceler-
ation of SAT solving, and the key preprocessing techniques rely on the application
of resolution and subsumption elimination. Additionally, satisfiability-preserving
clause elimination procedures are often used. Since MaxSAT computation typi-
cally involves a large number of SAT calls, we are interested in whether an input
instance to a MaxSAT problem can be preprocessed up-front, i.e. prior to run-
ning the MaxSAT solver, rather than (or, in addition to) during each iterative SAT
solver call. The key requirement in this setting is that the preprocessing has to
be sound, i.e. so that the solution can be reconstructed correctly and efficiently
after the execution of a MaxSAT algorithm on the preprocessed instance. While,
as we demonstrate in this paper, certain clause elimination procedures are sound
for MaxSAT, it is well-known that this is not the case for resolution and sub-
sumption elimination. In this paper we show how to adapt these preprocessing
techniques to MaxSAT. To achieve this we recast the MaxSAT problem in a re-
cently introduced labelled-CNF framework, and show that within the framework
the preprocessing techniques can be applied soundly. Furthermore, we show that
MaxSAT algorithms restated in the framework have a natural implementation on
top of an incremental SAT solver. We evaluate the prototype implementation of
a MaxSAT algorithm WMSUTI in this setting, demonstrate the effectiveness of
preprocessing, and show overall improvement with respect to non-incremental
versions of the algorithm on some classes of problems.

1 Introduction

Maximum Satisfiability (MaxSAT) and its generalization to the case of Satisfiability
Modulo Theories (MaxSMT) find a growing number of practical applications [[17419].
For problem instances originating from practical applications, state of the art MaxSAT
algorithms rely on iterative calls to a SAT oracle. Moreover, and for a growing number
of iterative algorithms, the calls to the SAT oracle are guided by iteratively computed
unsatisfiable cores (e.g. [19]).

In practical SAT solving, formula preprocessing has been extensively studied and is
now widely accepted to be an often effective, if not crucial, technique. In contrast, for-
mula preprocessing is not used in practical MaxSAT solving. Indeed, it is well-known

* This work is partially supported by SFI PI grant BEACON (09/IN.1/12618), FCT grants
ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010), and
INESC-IDs multiannual PIDDAC funding PEst-OE/EEI/LA0021/2011.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 96-[[11] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

SAT-Based Preprocessing for MaxSAT 97

that resolution and subsumption elimination, which form the core of many effective
preprocessors, are unsound for MaxSAT solving [[17]. This has been addressed by the
development of a resolution calculus specific to MaxSAT [7]. Nevertheless, for practical
instances of MaxSAT, dedicated MaxSAT resolution is ineffective.

The application of SAT preprocessing to problems where a SAT oracle is used a num-
ber of times has been the subject of recent interest [2]]. For iterative MaxSAT solving,
SAT preprocessing can be used internally to the SAT solver. However, we are interested
in the question of whether an input instance of a MaxSAT problem can be preprocessed
up-front, i.e. prior to running the MaxSAT solver, rather than (or, in addition to) during
each iterative SAT solver call. The key requirement in this setting is that the prepro-
cessing has to be sound, i.e. so that the solution can be reconstructed correctly and
efficiently after the execution of a MaxSAT algorithm on the preprocessed instance.

In this paper we make the following contributions. First, we establish that certain
class of clause elimination procedures, and in particular monotone clause elimination
procedures such as blocked clause elimination [14], are sound for MaxSAT. Second, we
use a recently proposed labelled-CNF framework [32]] to re-formulate MaxSAT and its
generalizations, and show that within the framework the resolution and subsumption-
elimination based preprocessing techniques can be applied soundly. This result comple-
ments a similar result with respect to the MUS computation problem presented in [2].
An interesting related result is that MaxSAT algorithms formulated in the labelled-CNF
framework can naturally implemented on top of an incremental SAT solver (cf. [10]).
We evaluate a prototype implementation of a MaxSAT algorithm WMSUT [[1L1/1{18]] in
this setting, demonstrate the effectiveness of preprocessing, and show overall improve-
ment with respect to non-incremental versions of this algorithm on weighted partial
MaxSAT instances.

2 Preliminaries

We assume the familiarity with propositional logic, its clausal fragment, SAT solving
in general, and the assumption-based incremental SAT solving cf. [10]. We focus on
formulas in CNF (formulas, from hence on), which we treat as (finite) (multi-)sets of
clauses. When it is convenient we treat clauses as sets of literals, and hence we assume
that clauses do not contain duplicate literals. Given a formula F' we denote the set of
variables that occur in F' by Var(F'), and the set of variables that occur in a clause C' €
F by Var(C). An assignment 7 for F' is a map 7 : Var(F) — {0,1}. Assignments
are extended to formulas according to the semantics of classical propositional logic. If
7(F) = 1, then 7 is a model of F. If a formula F" has (resp. does not have) a model,
then F is satisfiable (resp. unsatisfiable). By SAT (resp. UNSAT) we denote the set of
all satisfiable (resp. unsatisfiable) CNF formulas.

MUSes, MSSes, and MCSes. Let F' be an unsatisfiable CNF formula. A formula
M C F is a minimal unsatisfiable subformula (MUS) of F if (i) M € UNSAT, and
(14) VC € M, M\{C} € SAT. The set of MUSes of F is denoted by MUS(F"). Dually,
a formula S C F is a maximal satisfiable subformula (MSS) of F if (i) S € SAT,
and (it) VC' € F\ S, SU{C} € UNSAT. The set of MSSes of F' is denoted by

98 A. Belov, A. Morgado, and J. Marques-Silva

MSS(F). Finally, a formula R C F is a minimal correction subset (MCS), or, co-MSS
of F, if F\ R € MSS(F), or, explicitly, if (i) F\ R € SAT, and (ii) VC € R,
(F\ R) U{C} € UNSAT. Again, the set of MCSes of F is denoted by MCS(F).
The MUSes, MSSes and MCSes of a given unsatisfiable formula F' are connected via
so-called hitting sets duality theorem, first proved in [20]]. The theorem states that M
is an MUS of F'if and only if M is an irreducible hitting sel] of the set MCS(F'), and
vice versa: R € MCS(F) iff R is an irreducible hitting set of MUS(F).

Maximum Satisfiability. A weighted clause is a pair (C, w), where C is a clause, and
w € Nt U {T} is the cost of falsifying C. The special value T signifies that C' must
be satisfied, and (C, T) is then called a hard clause, while (C, w) for w € N is called
a soft clause. A weighted CNF (WCNF) is a set of weighted clauses, F' = FH U FS,
where F'H is the set of hard clauses, and F'® is the set of soft clauses. The satisfiability,
and the related concepts, are defined for weighted CNFs by disregarding the weights.
For a given WCNF F = FHUFS, a MaxSAT model for F is an assignment 7 for F that
satisfies F'*7. A cost of a MaxSAT model 7, cost (), is the sum of the weights of the soft
clauses falsified by 7. For the rest of this paper, we assume that (i) F# € SAT,ie. F
has at least one MaxSAT model, and (i7) F' € UNSAT, i.e. cost(T) > 0. (Weighted)
(Partial) MaxSAT is a problem of finding a MaxSAT model of the minimum cost for a
given WCNF formula F = FH U FS. The word “weighted” is used when there are soft
clauses with weight > 1, while the word “partial” is used when F'# = ().

A straightforward, but nevertheless important, observation is that solving a weighted
partial MaxSAT problem for WCNF F' is equivalent to finding a minimum-cost MCS
R,in, of F, or, alternatively, a minimum-cost hitting set of MUS(F')@ The MaxSAT
solution is then a model for the corresponding MSS of F, i.e. F'\ Ryin.

SAT Preprocessing. Given a CNF formula F', the goal of preprocessing for SAT solv-
ing is to compute a formula F” that is equisatisfiable with F', and that might be easier to
solve. The computation of F’ and a model of F' from a model of F’ in case F’ € SAT,
is expected to be fast enough to make it worthwhile for the overall SAT solving. Many
SAT preprocessing techniques rely on a combination of resolution-based preprocessing
and clause-elimination procedures. Resolution-based preprocessing relies on the appli-
cation of the resolution rule to modify the clauses of the input formula and/or to reduce
the total size of the formula. Clause-elimination procedures, on the other hand, do not
change the clauses of the input formula, but rather remove some of its clauses, pro-
ducing a subformula the input formula. SAT preprocessing techniques can be described
as non-deterministic procedures that apply atomic preprocessing steps to the, initially
input, formula until a fixpoint, or until resource limits are exceeded.

One of the most successful and widely used SAT preprocessors is the SatElite pre-
processor presented in [8]. The techniques employed by SatElite are: bounded variable

! For a given collection .# of arbitrary sets, a set H is called a hitting set of . if for all S € .7,
H NS # (. A hitting set H is irreducible, if no H' C H is a hitting set of .. Irreducible
hitting sets are also known as hypergraph transversals.

2 For a set of weighted clauses, its cost is the sum of their weights, or T if any of them is hard.

SAT-Based Preprocessing for MaxSAT 99

elimination (BVE), subsumption elimination, self-subsuming resolution (SSR), and, of
course, unit propagation (UP). An additional practically relevant preprocessing tech-
nique is blocked clause elimination (BCE) [14]. We describe these techniques below, as
these will be discussed in this paper in the context of MaxSAT.

Bounded variable elimination (BVE) [8] is a resolution-based preprocessing tech-
nique, rooted in the original Davis-Putnam algorithm for SAT. Recall that for two
clauses C1 = (zV A) and Cy = (—zV B) the resolvent Cy ®, Cs is the clause (AV B).
For two sets F,, and F_, of clauses that all contain the literal x and —z, resp., define
F,,F.,={C1®,Cy|Ci € F,,Cy € F_,, and C; ®, Cs is not a tautology}. The
formulave(F,z) = F\ (Fy UF_;)U(F; ®, F-;) is equisatisfiable with I, however, in
general, might be quadratic in the size of F'. Thus the atomic operation of bounded vari-
able elimination is defined as bve(F, z) = if (|ve(F, z)| < |F|) then ve(F, z) else F.
A formula BVE(F') is obtained by applying bve(F, x) to all variables in .

Subsumption elimination (SE) is an example of a clause elimination technique. A
clause Cy subsumes a clause Co, if C1 C Cs. For C1,Cs € F, define sub(F, Cq,Cs) =
if (Cy C Cy) then F'\ {C>} else F'. The formula SUB(F) is then obtained by apply-
ing sub(F, C1, C2) to all clauses of F.

Notice that unit propagation (UP) of a unit clause (I) € F is just an application of
sub(F, (1), C) until fixpoint (to remove satisfied clauses), followed by bve(F, var(l))
(to remove the clause (1) and the literal —/ from the remaining clauses), and so we will
not discuss UP explicitly.

Self-Subsuming resolution (SSR) uses resolution and subsumption elimination. Given
two clauses C1 = (IV A) and C; = (I V B) in F, such that A C B, we have
C1 ® Co = B C (5, and so Cy can be replaced with B, or, in other words, —! is
removed from C5. Hence, the atomic step of SSR, ssr(F, Cy, C5), results in the formula
F\ {Cy} U{B}if Cy, (5 are as above, and F, otherwise.

An atomic step of blocked clause elimination (BCE) consists of removing one
blocked clause — a clause C' € F' is blocked in F' [15]], if for some literal | € C,
every resolvent of C' with C’ € F on [is tautological. A formula BCE(F) is obtained
by applying bce(F, C') = if (C blocked in F') then F' \ {C} else F to all clauses of
F. Notice, that a clause with a pure literal is blocked (vacuously), and so pure literal
elimination is a special case of BCE. BCE possesses an important property called mono-
tonicity: for any F C F, BCE(F') C BCE(F). This holds because if C' is blocked
w.r.t. to F, it will be also blocked w.r.t to any subset of F'. Notice that subsumption
elimination is not monotone.

3 SAT Preprocessing and MaxSAT

Let F’ denote the result of the application of one or more of the SAT preprocessing
techniques, such as those discussed in the previous section, to a CNF formula F'. The
question that we would like to address in this paper is whether it is possible to solve a
MaxSAT problem for F”, instead of F, in such a way that from any MaxSAT solution
of F’, a MaxSAT solution of F’ can be reconstructed feasibly. In a more general setting,

3 Specific implementations often impose additional restrictions on BVE.

100 A. Belov, A. Morgado, and J. Marques-Silva

F might be a WCNF formula, and F’ is the set of weighted clauses obtained by pre-
processing the clauses of F', and perhaps, adjusting their weights in some manner. The
preprocessing techniques for which the answer to this question is “yes” will be refereed
to as sound for MaxSAT. To be specific:

Definition 1. A preprocessing technique P is sound for MaxSAT if there exist a poly-
time computable function ap such that for any WCNF formula F' and any MaxSAT
solution T of P(F'), ap(7) is a MaxSAT solution of F'.

This line of research is motivated by the fact that most of the efficient algorithms for
industrial MaxSAT problems are based on iterative invocations of a SAT solver. Thus,
if F is indeed easier to solve than F' by a SAT solver, it might be the case that it is
also easier to solve by a SAT-based MaxSAT solver. To illustrate that the question is not
trivial, consider the following example.

Example 1. In the plain MaxSAT setting, let F = {C4,...,Cs}, with C1 = (p),
Cy=(p),Cs=(pVgq),Cs= (pV—q),Cs = (r), and Cs¢ = (—r). The clauses
Cs5 and Cy are subsumed by C1, and so SUB(F) = {C1,C5,C5,Cs}. SUB(F) has
MaxSAT solutions in which p is assigned to 0, e.g. {(p, 0), (r,0)}, while F' does not.
Furthermore, BVE(F') = {(} — a formula with 8 MaxSAT solutions (w.r.t. to the
variables of F') with cost 1. F', on the other hand, has 4 MaxSAT solutions with cost 2.

Thus, even a seemingly benign subsumption elimination already causes problems for
MaxSAT. While we do not prove that the technique is not sound for MaxSAT, a strong
indication that this might be the case is that SUB might remove clauses that are included
in one or more of the MUSes of the input formula F' (c.f. Example[I), and thus lose
the information required to compute the MaxSAT solution of F'. The problems with
the application of the resolution rule in the context of MaxSAT has been pointed out
already in [17]], and where the motivation for the introduction of the so-called MaxSAT
resolution rule [7] and a complete proof procedure for MaxSAT based on it. However,
MaxSAT resolution does not lead to effective preprocessing techniques for industrial
MaxSAT since it often introduces a large number of auxiliary “compensation” clauses.
Once again, we do not claim that resolution is unsound for MaxSAT, but it is likely to
be the case, since for example ve ran to completion on any unsatisfiable formula will
always produce a formula {0}.

In this paper we propose an alternative solution, which will be discussed shortly. But
first, we observe that monotone clause elimination procedures are sound for MaxSAT.

3.1 Monotone Clause Elimination Procedures

Recall that given a CNF formula F, an application of clause elimination procedure E
produces a formula E(F') C F equisatisfiable with F'. Monotonicity implies that for any
F' C F,E(F") C E(F). Some examples of monotone clause elimination procedures
include BCE (and as a special case, pure literal elimination), and also covered clause
elimination introduced in [[12].

It was observed already in [16] that if a clause C' € F' is blocked in F', then none of
the MUSes of F' can include C. Thus, MUS(BCE(F')) = MUS(F'), and therefore, by
the hitting-sets duality, MCS(BCE(F')) = MCS(F'). In particular, any minimum-cost

SAT-Based Preprocessing for MaxSAT 101

MCS of BCE(F) is also a minimum-cost MCS of F. Thus, the cost of any MaxSAT
solution 7 of BCE(F) is exactly the same as of any MaxSAT solution of F', and more-
over, there exist a MaxSAT solution of F’ that falsifies the exact same set of clauses as
7 in BCE(F'). The only question is whether a solution of F' can be feasibly constructed
from 7. A linear time procedure for reconstruction of satisfying assignments after BCE
has been described in [[13] (Prop. 3). We show that the same procedure can be applied
to reconstruct the solutions in the context of MaxSAT. We generalize the discussion to
include some of the clause elimination procedures beside BCE.

Definition 2. A clause elimination procedure E is MUS-preserving if MUS(E(F')) =
MUS(F).

Theorem 1. Any MUS-preserving clause elimination procedure is sound for MaxSAT.

Proof. Let E be an MUS-preserving clause elimination procedure, and let g be a feasi-
bly computable function that for any CNF formula G maps a model of E(G) to a model
of G when E(G) is satisfiable. Let F' be a WCNF formula, and let 7 be a MaxSAT so-
lution of the formula E(F'). Let E(F') = RW SH. where R (resp. S) is the set of clauses
falsified (resp. satisfied) by 7, i.e. R is a minimum-cost MCS of E(F'), and S is the cor-
responding MSS of E(F). Since E is MUS-preserving, MUS(E(F')) = MUS(F)), and,
by hitting-sets duality, MCS(E(F')) = MCS(F'), and so R is also a minimum-cost MCS
of F. To show that 7/ = «ag(7) satisfies S’ = F'\ R, we observe that since F = RW S’,
E(F)=E(RWS’') = RYE(Y’), because R C E(F'). Hence S = E(S’), and therefore
given any model 7 of S, ag(7) is a model of S’. O

Proposition 1. Any monotone clause elimination procedure is M US—preservingﬁ.

Corollary 1. Any monotone clause elimination procedure is sound for MaxSAT.

3.2 Resolution-Based and Subsumption Elimination Based Techniques

To enable sound preprocessing for MaxSAT using resolution-based and subsumption
elimination based preprocessing techniques, we propose to recast the MaxSAT prob-
lem in the framework of so-called labelled CNF (LCNF) formulas. The framework was
introduced in [3]], and was already used to enable sound preprocessing for MUS ex-
traction in [2l]. We briefly review the framework here, and refer the reader to [3l2] for
details.

Labelled CNFs. Assume a countable set of labels Lbls. A labelled clause (L-clause)
is a tuple (C, L), where C is a clause, and L is a finite (possibly empty) subset of
Lbls. We denote the label-sets by superscripts, i.e. C is the labelled clause (C, L). A
labelled CNF (LCNF) formula is a finite set of labelled clauses. For an LCNF formula
ol 1et Cls(®) = UcreatC} be the clause-set of @, and Lbls(®) = (U1 g L be the

* The symbol W refers to a disjoint union.
3 All missing proofs are included in the extended version of this paper [4].
® We use capital Greek letters to distinguish LCNFs from CNFs.

102 A. Belov, A. Morgado, and J. Marques-Silva

label-set of . LCNF satisfiability is defined in terms of the satisfiability of the clause-
sets of an LCNF formula: @ is satisfiable if and only if Cls(®P) is satisfiable. We will
re-use the notation SAT (resp. UNSAT) for the set of satisfiable (resp. unsatisfiable)
LCNF formulas{?]. However, the semantics of minimal unsatisfiability and maximal and
maximum satisfiability of labelled CNFs are defined in terms of their label-sets via the
concept of the induced subformula.

Definition 3 (Induced subformula). Let @ be an LCNF formula, and let M C Lbls(®).
The subformula of ® induced by M is the LCNF formula ®|y; = {C* € @ | L C M}.

In other words, @|5; consists of those labelled clauses of ¢ whose label-sets are in-
cluded in M, and so Lbls(®|pr) € M, and Cls(P|yr) C Cls(P). Alternatively, any
clause that has at least one label outside of M is removed from @. Thus, it is convenient
to talk about the removal of a label from @. Let [€ Lbls(P) be any label. The LCNF
formula @[\ g7} is said to be obtained by the removal of label | from ®.

To the readers familiar with the assumption-based incremental SAT (c.f. [10]), it
might be helpful to think of labels as selector variables attached to clauses of a CNF
formula, taking into account the possibility of having multiple, or none at all, selectors
for each clause@. Then an induced subformula @], is obtained by “turning-on” the
selectors in M, and “turning-off” the selectors outside of M. An operation of removal
of a label | from @ can be seen as an operation of “turning-off” the selector /.

The concept of induced subformulas allows to adopt all notions related to satisfi-
ability of subsets of CNF formulas to LCNF setting. For example, given an unsatis-
fiable LCNF &, an unsatisfiable core of @ is any set of labels C C Lbls(®P) such
that @|c € UNSAT. Note that the selectors that appear in the final conflict clause in
the context of assumption-based incremental SAT constitute such a core. Furthermore,
given an unsatisfiable LCNF @, a set of labels M C Lbls(®) is an MUS of &, if (4)
@|ar € UNSAT, and (i7) VI € M, P|pp 1y € SAT. As with CNFs, the set of all MUSes
of LCNF & is denoted by MUS(®). MSSes and MCSes of LCNF formulas can be de-
fined in the similar manner. Specifically, for an unsatisfiable LCNF formula &, a set
of labels R C Lbls(®P) is an MCS of @, if (i) @|ryse)\r € SAT, and (i) VI € R,
Q| (Lus(@)\ryufiy € UNSAT. The set of all MCSes of @ is denoted by MCS(®). 1t
was shown in [3] that the hitting-sets duality holds for LCNFs, i.e. for any LCNF &,
M C Lbls(®) is an MUS of @ if and only if M is an irreducible hitting set of MCS(®),
and vice versa.

Example 2. Let & = {(-p)?, (r)?, (p V o)1}, (p v =¢q){2} (p)2}, (—=r){3}}. The
label-set of a clause is given in the superscript, i.e. Lbls = N and Lbls(®) = {1, 2, 3}.
The subformula induced by the set S = {1} is ®|s = {(-p)?, (1)?, (p V ¢)11}}. S is
an MSS of @, as &|s € SAT and both formulas ®|¢; 2y and P|;; 5y are unsatisfiable.
R = {2, 3} is the corresponding MCS of .

To clarify the connection between LCNF and CNF formulas further, consider a
CNF formula F' = {C4,...,C,}. The LCNF formula @ associated with F' is con-

7 To avoid overly optimistic complexity results, we will tacitly assume that the sizes of label-sets
of the clauses in LCNFs are polynomial in the number of the clauses

8 Furthermore, notice that clauses with multiple selectors show up exactly when resolution-
based preprocessing is applied in the context of incremental SAT.

SAT-Based Preprocessing for MaxSAT 103

structed by labelling each clause C; € F with a unique, singleton labelset {i}, i.e.
Pp = {C’i{l} | C; € F'}. Then, a removal of a label 7 from & corresponds to a removal
of a clause C; from F', and so every MUS (resp. MSS/MCS) of @ corresponds to an
MUS (resp. MSS/MCS) of F' and vice versa.

The resolution rule for labelled clauses is defined as follows [2]: for two labelled
clauses (z V A)Pt and (—a vV B)"2, the resolvent C* ©, CL? is the labelled clause
(A v B)L1YE2 The definition is extended to two sets of labelled clauses @, and ¢—.,
that contain the literal z and —x resp., as with CNFs. Finally, a labelled clause C’lL L is
said to subsume C’QLz, in symbols C’IL1 c Ok if ¢y € Cyand Ly C Lo. Again, the
two definitions become immediate if one thinks of labels as selector variables in the
context of incremental SAT.

Resolution and Subsumption Based Preprocessing for LCNFs. Resolution and sub-
sumption based SAT preprocessing techniques discussed in Section 2] can be applied to
LCNFs [2], so long as the resolution rule and the definition of subsumption is taken
to be as above. Specifically, define ve(®,z) = &\ (P, U P_;) U (P ®p P—z).
Then, an atomic operation of bounded variable elimination for LCNF @ is defined as
bve(®, z) = if (Jve(P,x)| < |P|) then ve(P, x) else P. The size of P is just the num-
ber of labelled clauses in it. A formula BVE(®) is obtained by applying bve(®, x) to all
variables in @. Similarly, for CF*, C+? € F, define sub(®,C{*,CL?) = if (Cf* ¢
CL2) then & \ {C}?} else #. The formula SUB(®) is then obtained by applying
sub(®, CL*, CL2) to all clauses of ®. Finally, given two labelled clauses C1* = (I V
A and C’QL2 =(xlv B)L2 in @, such that A C B and Ly C Lo, the atomic step of
self-subsuming resolution, ssr(®, CL*, C2?), results in the formula &\ {C12} U{ B2},
Notice that the operations bve and ssr do not affect the set of labels of the LCNF for-
mula, however it might be the case that sub removes some labels from it.

The soundness of the resolution and subsumption based preprocessing for LC-
NFs with respect to the computation of MUSes has been established in [2]] (Theo-
rem 1, Prop. 6 and 7). Specifically, given an LCNF &, MUS(bve(®, z)) C MUS(®),
MUS(sub(®, CL*, CLE2)) € MUS(®), and MUS(ssr(®, CL* CF2)) € MUS(®). In
this paper we establish stronger statements that, by the hitting-sets duality for LCNFs
[3]], also imply that the set inclusions C between the sets MUS(o) are set equalities.

Proposition 2. For any LCNF formula ® and variable x, MCS(bve(®, z)) = MCS(P).

Proposition 3. For any LCNF formula &, and any two clauses C’f Y CzL e,
MCS(sub(®, CEr, CE2)) = MCS (o).

Proposition 4. For any LCNF formula &, and any two clauses C’IL Y C’2L e,
MCS(ssr(®, CLt, CL2)) = MCS(P).

To summarize, the three SAT preprocessing techniques discussed in this section,
namely bounded variable elimination, subsumption elimination and self-subsuming
resolution, preserve MCSes of LCNF formulas. Given that the MaxSAT problem for
weighted CNFs can be cast as a problem of finding a minimum-cost MCS (cf. Sec-
tion[2)), we now define the MaxSAT problem for weighted LCNFs, and draw a connec-
tion between the two problems.

104 A. Belov, A. Morgado, and J. Marques-Silva

Maximum Satisfiability for LCNFs. Recall that the maximum satisfiability problem
for a given weighted CNF formula F' = F# U F® can be seen as a problem of finding
a minimum-cost set of soft clauses R,,;, whose removal from I’ makes I satisfiable,
i.e. a minimum-cost MCS of F'. In LCNF framework we do not remove clause directly,
but rather via labels associated with them. Thus, a clause labelled with an empty set of
labels cannot be removed from an LCNF formula, and can play a role of a hard clause
in a WCNF formula. By associating the weights to labels of LCNF formula, we can
arrive at a concept of a minimum-cost set of labels, and from here at the idea of the
maximum satisfiability problem for LCNF formulas.

Thus, we now have weighted labels (I, w), with | € Lbls, and w € N7 (note that
there’s no need for the special weight T). A cost of a set L of weighted labels is the sum
of their weights. A weighted LCNF formula is a set of clauses labelled with weighted
labels. It is more convenient to define a MaxSAT solution for weighted LCNFs in terms
of minimum-cost MCSes, rather that in terms of MaxSAT models. This is due to the
fact that given an arbitrary assignment 7 that satisfies all clauses labelled with (), the
definition of a “set of labels falsified by 7” is not immediate, since in principle a clause
might be labelled with more than one label, and, from the MaxSAT point of view, we
do not want to remove more labels than necessary.

Definition 4 (MaxSAT solution for weighted LCNF). Let ¢ be a weighted LCNF
Sformula with ®|y € SAT. An assignment 7 is a MaxSAT solution of @ if T is a model
of the formula P|1p15(w)\ R,s,, JOr some minimum-cost MCS Ry, of D. The cost of T is
the cost of Ruin.

In other words, a MaxSAT solution 7 for a weighted LCNF maximizes the cost of a
set S C Lbls(P), subject to 7 satisfying P|g, and the cost of 7 is the cost of the set
R = Lbls(P)\ S.

Let F = FH" U FS be a weighted CNF formula. The weighted LCNF formula
®r associated with F' is constructed similary to the case of plain CNFs: assuming
that ¥ = {C4,...,C,}, we will use {1,...,n} to label the soft clauses, so that a
clause C; gets a unique, singleton labelset {4}, hard clauses will be labelled with (),
and the weight of a label 7 will be set to be the weight of the soft clause C;. Formally,
Lbls(®) = {1,...,|FS|} € N*, &p = (Uperpn{C*}) U (Ug,cps{C7}, and Vi €
Lbls(P), w(i) = w(Cy).

Let &1 be the weighted LCNF formula associated a weighted CNF F'. Clearly, ev-
ery MaxSAT solution of @ is a MaxSAT solution of F’, and vice versa. In the previous
subsection we showed that the resolution and the subsumption elimination based pre-
processing techniques preserve the MCSes of @ . We will show shortly that this leads
to the conclusion that the techniques can be applied soundly to @, and so, assuming the
availability of a method for solving MaxSAT problem for @ (Section[d)), this allows to
use preprocessing, albeit indirectly, for solving MaxSAT problem for F.

Preprocessing and MaxSAT for LCNFs

Theorem 2. For weighted LCNF formulas, the atomic operations of bounded variable
elimination (bve), subsumption elimination (sub), and self-subsuming resolution (ssr)
sound for MaxSAT.

SAT-Based Preprocessing for MaxSAT 105

Proof. Let @ be a weighted LCNF formula. Assume that for some variable z, &' =
bve(®, x), and let 7’ be a MaxSAT solution of ¢’. Thus, for some minimum-cost MCS
Rpnin of @', 7" is a model of &'| 145(4/)\ R,,.,.,, - BY Proposition2l Ry, is a minimum-
cost MCS of @. If x was eliminated, 7’ can be transformed in linear time to a model 7
of D| 1p15(4)\ R, DY assigning the truth-value to 2 (cf. [13]]). We conclude that bve is
sound for LCNF MaxSAT.

For sub and ssr no reconstruction is required, since the techniques preserve equiva-
lence. The claim of the theorem follows directly from Propositions 3] and [l a

To conclude this section, lets us summarize the SAT preprocessing “pipeline” for solv-
ing the MaxSAT problem for weighted CNFs. Given a WCNF formula F, first apply
any MUS-preserving (and so, monotone) clause-elimination technique, such as BCE,
to obtain the formula F’. Then, construct an LCNF formula @|p/ associated with F’,
and apply BVE, subsumption elimination and SSR, possibly in an interleaved manner,
to @| g to obtain ¢’. Solve the MaxSAT problem for ¢’, and reconstruct the solution to
the MaxSAT problem of the original formula F' — Theorems[1l and 2l show that it can
be done feasibly. The only missing piece is how to solve MaxSAT problem for LCNF
formulas — this is the subject of the next section.

We have to point out that the resolution and the subsumption elimination prepro-
cessing techniques in the LCNF framework are not without their limitations. For BVE
the label-sets of clauses grow, which may have a negative impact on the performance
of SAT solvers if LCNF algorithms are implemented incrementally. Also, two clauses
CT1 and C*2 are treated as two different clauses if L; # Lo, while without labels they
would be collapsed into one, and thus more variables might be eliminated. Neverthe-
less, when many hard (i.e. labelled with @) clauses are present, this negative effect is
dampened. For subsumption elimination the rule L; C Lo is quite restrictive. In par-
ticular, it blocks subsumption completely in the plain MaxSAT setting (though, as we
already saw, unrestricted subsumption is dangerous for MaxSAT). However, in partial
MaxSAT setting it does enable the removal of any clause (hard or soft) subsumed by a
hard clause. In Section 3l we demonstrate that the techniques do lead to performance
improvements in practice.

4 Solving MaxSAT Problem for LCNFs

In this section we propose two methods for solving MaxSAT problem for weighted
LCNFs. Both methods rely on the connection between the labels in LCNFs and the
selector variables.

4.1 Reduction to Weighted Partial MaxSAT

The idea of this method is to encode a given weighted LCNF formula ¢ as an WCNF
formula Fg, mapping the labels of @ to soft clauses in such a way that a removal of
soft clause from Fi would emulate the operation of a removal of a corresponding label
from &. This is done in the following way: for each [; € Lbls(®P), create a new variable
a;. Then, for each labelled clause C'* create a hard clause C'\V'\/ 1,1 (a;). Finally, for

106 A. Belov, A. Morgado, and J. Marques-Silva

each l; € Lbls(P), create a soft clause (a;) with a weight equal to the weight of the
label [;.

Example 3. Let & = {(—p)?, (n)?, (p v)11}, (p v =¢) (2}, (p)2}, (—=r)13}}, and as-
sume that the weights of all labels are 1. Then, Fg = {(-p, T),(r, T),(ma1 VpV
q,T),(ma1V-azVpV =g, T),(mazVp, T),(masV-r,T),(a1,1), (az, 1), (as, 1)}
Then, removal of (as, 1) from the F leaves —as pure, and so is equivalent to the re-
moval of all hard clauses clauses that contain as, which in turn is equivalent to the
removal of the label 2 from &.

It is then not difficult to see that any MaxSAT solution of F is a MaxSAT solu-
tion of @, and vice versa. The advantage of the indirect method is that any off-the-shelf
MaxSAT solver can be turned into a MaxSAT solver for LCNFs. However, it also cre-
ates a level of indirection between the selector variables and the clauses they are used
in. In our preliminary experiments the indirect method did not perform well.

4.2 Direct Computation

Core-guided MaxSAT algorithms are among the strongest algorithms for industrially-
relevant MaxSAT problems. These algorithms iteratively invoke a SAT solver, and for
each unsatisfiable outcome, relax the clauses that appear in the unsatisfiable core re-
turned by the SAT solver. A clause C; is relaxed by adding a literal r; to C; for a fresh
relaxation variable r;. Subsequently, a cardinality or a pseudo-Boolean constraint over
the relaxation variables r; is added to the set of the hard clauses of the formula. The
exact mechanism is algorithm-dependent — we refer the reader to the recent survey of
core-guided MaxSAT algorithms in [19].

The key idea that enables to adapt core-guided MaxSAT algorithms to the LCNF
setting is that the “first-class citizen” in the context of LCNF is not a clause, but rather a
label. In particular, the unsatisfiable core returned by a SAT solver has to be expressed
in terms of the labels of the clauses that appear in the core. Furthermore, in the LCNF
setting, it is the labels that get relaxed, and not the clauses directly. That is, when a
label /; is relaxed due to the fact that it appeared in an unsatisfiable core, the relaxation
variable r; is added to all clauses whose labelsets include ;.

To illustrate the idea consider the pseudocode of a core-guided algorithm for solving
partial MaxSAT problem due to Fu and Malik [11]], presented in Figure[Il And, contrast
it with the (unweighted) LCNF-based version of the algorithm, presented in Figure
The original algorithm invokes a SAT solver on the, initially input, formula F' until
the formula is satisfiable. For each unsatisfiable outcome, the soft clauses that appear
in the unsatisfiable core C'ore (assumed to be returned by the SAT solver) are relaxed
(lines 5-7), and the CNF representation of the equalsl constraint on the sum of relax-
ation variables is added to the set of the hard clauses of F'. The LCNF version of the
algorithm proceeds similarly. The only two differences are as follows. When the LCNF
formula & is unsatisfiable, the unsatisfiable core has to be expressed in terms of the la-
bels, rather than clauses. That is, the algorithm expects to receive a set L.ore C Lbls(®P)
such that @|r_ .. € UNSAT. Some of the possible ways to obtain such a set of core la-
bels are described shortly. The second difference is that a fresh relaxation variable r; is

SAT-Based Preprocessing for MaxSAT 107

Input : & — an unweighted LCNF
formula

Input : F = F# U F¥ — a partial
pd a parhia Output: 7 — a MaxSAT solution for ¢

MaxSAT formula
Output: 7 — a MaxSAT solution for F’ 1 while true do

1 while true do 2 (st, 7, Leore) = SAT(P)

, (st, 7, Core) — SAT(F) 3 I;St :(/]true then return
3 if st = true then return 7 4 / /E L
. R @ relax labels in Lcore
) 5 foreach [; € L.or. do
// relax soft clauses in Core
< 6 R+ RU{r;}

5 foreach C; € Coren F~ do I

7 foreach C~ € &s.t.l; € L do
6 R<—RU{’I‘¢'} | CL ith 'VCL
7 replace C; with (r; V C5) 8 replace with (r;)
8 FM e FPucnE(Y, cpri=1) 9 P BUCNF(YL, pri=1)

Fig.1. Fu and Malik algorithm for partial Fig.2. (Unweighted) LCNF version of Fu and
MaxSAT [LL] Malik algorithm

associated with each core label [;, rather than with each clause as in the original algo-
rithm. Each core label /; is relaxed by replacing each clause C'* such that I; € L with
(r; V C’)L (lines 7-8). Note that in principle cL may include more than one core label,
and so may receive more than relaxation variable in each iteration of the algorithm. The
nested loop on lines 5-8 of the algorithm can be replaced by a single loop iterating over
all clauses C'F such that L N Leore # (). Finally, the clauses of the CNF representation
of the equals] constraint are labelled with @), and added to .

One of the possible ways to obtain the set of core labels is to use a standard core-
producing SAT solver. One can use either a proof-tracing SAT solver, such as PicoSAT
[5l], that extracts the core from the trace, or an assumption-based SAT solver, that ex-
tracts the core from the final conflict clause. Then, to check the satisfiability of @,
the clause-set Cls(P) of @ is passed to a SAT solver, and given an unsatisfiable core
Core C Cls(P), the set of core labels is obtained by taking a union of the labels of
clauses that appear in Core. Regardless of the type of the SAT solver, the solver is
invoked in non-incremental fashion, i.e. on each iteration of the main loop a new in-
stance of a SAT solver is created, and the clauses Cls(®) are passed to it. It is worth
to point out that the majority of SAT-based MaxSAT solvers use SAT solvers in such
non-incremental fashion. Also, it is commonly accepted that proof-tracing SAT solvers
are superior to the assumption-based in the MaxSAT setting, since a large number of
assumption literals tend to slow down SAT solving, while, at the same time, the incre-
mental features of assumption-based solvers are not used.

An alternative to the non-incremental use of SAT solvers in our setting is to take
advantage of the incremental features of the assumption-based SAT solvers. While
we already explained that labels in LCNFs can be seen naturally as selectors in the
assumption-based incremental SAT, the tricky issue is to emulate the operation of re-
laxing a clause, i.e. adding one or more relaxation variables to it. The only option in
the incremental SAT setting is to “remove” the original clause by adding a unit clause
(—s) to the SAT solver for some selector literal —s, and add a relaxed version of the

108 A. Belov, A. Morgado, and J. Marques-Silva

clause instead. The key observation here is that since the labels are already represented
by selector variables, we can use these selector variables to both to remove clauses and
to keep track of the core labels. For this, each label [; € Lbls(®) is associated with a
sequence of selector variables al, al, a?, At the beginning, just like in the reduction
described in Section 4.1 for each C'L we load a clause C" = C' v VlieL(_‘a?) into the
SAT solver, and solve under assumptions {a?, a3, ... }. The selectors that appear in the
final conflict clause of the SAT solver will map to the set of the core labels L;oyc. As-
sume now that a label [, € L is a core label, i.e. the selector a(c) was in the final conflict
clause. And, for simplicity, assume that /.. is the only core label in L. Now, to emulate
the relaxation of the clause C’, we first add a unit clause (—a!) to the SAT solver to
“remove” C’, and then add a clause C"" = (C' \ {—a%}) U {r, —al}, where r is the
relaxation variable associated with . in this iteration, and ai is a “new version” of a
selector variable for [.. If on some iteration a! appears in the final conflict clause, we
will know that [, is a core label that needs to be relaxed, add (ﬁai) to the SAT solver,
and create yet another version a2 of a selector variable for the label .. For MaxSAT
algorithms that relax each clause at most once (e.g. WMSU3 and BCD?2, cf. [19]), we
only need two versions of selectors for each label.

Note that since, as explained in Section Bl MaxSAT problem for WCNF F can be
recast as a MaxSAT problem for the associated LCNF @, the incremental-SAT based
MaxSAT algorithms for LCNFs can be seen as incremental-SAT based MaxSAT al-
gorithm for WCNFs — to our knowledge such algorithms have not been previously
described in the literature. The main advantage of using the SAT solver incrementally,
beside the saving from re-loading the whole formula in each iteration of a MaxSAT
algorithm, is in the possible reuse of the learned clauses between the iterations. While
many of the clauses learned from the soft clauses will not be reused (since they would
also need to be relaxed, otherwise), the clauses learned from the hard clauses will. In our
experiments (see next section) we did observe gains from incrementality on instances
of weighted partial MaxSAT problem.

S Experimental Evaluation

To evaluate the ideas discussed in this paper empirically, we implemented an LCNF-
based version of the MaxSAT algorithm WMSUT [[1111118]], which is an extension of Fu
and Malik’s algorithm discussed in Section 2] to the weighted partial MaxSAT case.
Note that none of the important optimizations discussed in [18]] were employed. The
algorithm was implemented in both the non-incremental and the incremental settings,
and was evaluated on the set of industrial benchmarks from the MaxSAT Evaluation
2013[9, a total of 1079 instances. The experiments were performed on an HPC cluster,
with quad-core Intel Xeon E5450 3 GHz nodes with 32 GB of memory. All tools were
run with a timeout of 1800 seconds and a memory limit of 4 GB per input instance.

In the experiments PicoSAT [5] and Lingeling [6] were used as the underlying SAT
solvers. For (pure) MaxSAT benchmarks, we used PicoSAT (v. 935), while for partial
and weighted partial MaxSAT instances we used PicoSAT (v. 954) — the difference

o http://maxsat.ia.udl.cat/

http://maxsat.ia.udl.cat/

SAT-Based Preprocessing for MaxSAT 109

1800 - 1800 ——
P_NI + L5 PN - 3 7T
1600 H| . P_NL+BCE - o 1600 H| . P_NL+BCE - PR
P_NI+BCE+RS *- : P_NI+BCE+RS ¥ Jg o
P_NI+RS & : P_NI+RS & [3
1400 P ;- 1400 P ‘ I
P+BCE L P+BCE % f
1200 P+BCE+RS -® ol o 1200} P+BCE+RS -® o
P4RS £ ali F P4RS £ 5 v
N .y N 7
1000 | L+BCE igs 1000 | L+BCE v i
L+BCE+RS v ﬁa; L+BCE+RS v ‘]
800 H L+RS o - 800 H L+RS o V"’
WMSU1 i/ WMSU1 418
¥
600 of e 600 ool
il '
400 g ro 400
4 SO‘QJ
EERE gg;.'lw 200
o 0 30 40 OFBT30 150 160 170 180 190 200 210 220 230 240 250 260 270 280
(a) MaxSAT (b) Partial MaxSAT
1800 ry 1800
P NHOE - ¢ P_NI BCEEB M
I + A I +] v
160011 p NIFBCE+RS * 1600 11 p NI+BCE+RS§3 *
P_NI+RS O . ‘ P_NI+RS(3) O J
1400 1 3 . 1400 P(5 e
P+BCE i P+BCE§6; ¥ AP
1200/ P+BCE+RS ‘® i 1200/ P+BCE+RS(7) ® 5
P+RS 4 | P+RSES A ' 4
. Vdl L(9) » £
1000 H L+BCE < P 1000 r L+BCE(10) <= V4 %
L+BCE+RS v s L+BCE+RS(11) v | ¢ 4
800 H L+RS ¢ £ 800 H L+RS(12) -¢
WMSUT + ,j WMSU1(13) + ‘f / 2
600 ;}* 600 / $
L % w # .. 3
400 g : 400 S ey
200 200 -
OG0 T70 T80 190 200 210 220 230 240 250 260 270 280 290 0580 400 420 440 460 480 500 520 540 560 580 600
(c) Weighted Partial MaxSAT (d) All

Fig. 3. Cactus plots for the different categories

between versions is due to better performance in the preliminary experiments. Both
incremental (P) and non-incremental proof-tracing (P NI) settings for PicoSAT were
tested. For Lingeling (v. ala) the incremental mode (L) was tested.

For the preprocessing, we implemented our own version of Blocked Clause Elimi-
nation (BCE), while for Resolution and Subsumption (RS) both SatElite [8] and Lin-
geling [6] as a preprocessor were used. We have included in the experiments WMSU1
algorithm from MSUnCore in order to establish a reasonable baseline.

Figure[3lshows the results for different classes of industrial MaxSAT instances, while
Table [Tl complements it by showing the number of solved instances by each configura-
tion/solver, and the average CPU time taken on the solved instances. From the figure
and the table, the following conclusions can be drawn. First, we note that the resolution
and subsumption elimination based preprocessing (RS) is, in general, quite effective.
In fact, for each of the solvers, within the same solver, the configuration that outper-
forms all others is RS, except for plain MaxSAT instances with PicoSAT. Also L+RS
solves the highest number of instances overall, as revealed in Figure [3] (d). Regard-
ing the blocked clause elimination (BCE), the technique is effective for plain MaxSAT
instances, however not for other classes of instances. Notice that the combination of
BCE+RS never improves over the best of the techniques considered separately, being
only equal with Lingeling for (pure) MaxSAT instances.

110 A. Belov, A. Morgado, and J. Marques-Silva

Table 1. Table of solved instances and average CPU times

All MaxSAT Partial MaxSAT Weighted Partial MaxSAT

#Sol. A.CPU #Sol. A.CPU #Sol. A.CPU #Sol. A.CPU
Instances 1079 55 627 397
P NI 524 14429 37 172776 254 152.04 233 131.32
P NI+BCE 516 115.84 41 237.58 241 105.02 234 105.65
P NI+BCE+RS 522 103.08 35 177.37 240 120.70 247 75.42
P NI+RS 556 12448 37 246.68 265 154.84 254 75.00
P 523 91.81 37 236.26 237 132.83 249 31.31
P+BCE 513 57.70 38 180.22 227 70.08 248 27.60
P+BCE+RS 517 67.61 37 209.48 221 8536 259 32.19
P+RS 545 9371 34 151.77 238 14693 273 40.08
L 580 55.93 36 101.92 270 7545 274 30.64
L+BCE 584 60.84 37 67.88 271 9589 276 25.49
L+BCE+RS 584 48.03 38 96.02 271 7390 275 15.90
L+RS 603 6526 38 161.71 276 91.15 289 27.85
WMSU1 512 157.68 39 165.64 241 149.01 232 165.35

Somewhat surprisingly, our results suggest that, in contrast with standard practice
(i.e. most MaxSAT solvers are based on non-incremental SAT), the incremental SAT
solving can be effective for some classes of MaxSAT instances. Namely for Weighted
Partial MaxSAT instances, where for example PicoSAT incremental (P) solves 16 more
instances than PicoSAT non-incremental (P NI) with a much lower average CPU time
on the solved instances.

Finally, comparing the underlying SAT solvers used, it can be seen that in our exper-
iments Lingeling performs significantly better than PicoSAT, which, as our additional
experiments suggest, is in turn is much better SAT solver than Minisat [9], for MaxSAT
problems.

6 Conclusion

In this paper we investigate the issue of sound application of SAT preprocessing tech-
niques for solving the MaxSAT problem. To our knowledge, this is the first work that
addresses this question directly. We showed that monotone clause elimination proce-
dures, such as BCE, can be applied soundly on the input formula. We also showed that
the resolution and subsumption elimination based techniques can be applied, although
indirectly, through the labelled-CNF framework. Our experimental results suggest that
BCE can be effective on (plain) MaxSAT problems, and that the LCNF-based resolu-
tion and subsumption elimination leads to performance boost in partial and weighted
partial MaxSAT setting. Additionally, we touched on an issue of the incremental use
of assumption-based SAT solvers in the MaxSAT setting, and showed encouraging re-
sults on weighted partial MaxSAT problems. In the future work we intend to investigate
issues related to the sound application of additional SAT preprocessing techniques.

SAT-Based Preprocessing for MaxSAT 111

Acknowledgements. We thank the anonymous referees for their comments and
suggestions.

References

1.

12.
13.

14.

15.

16.

18.

20.

Ansétegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through satisfia-
bility testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427-440. Springer,
Heidelberg (2009)

. Belov, A., Jarvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In:

Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp.
108-123. Springer, Heidelberg (2013)

. Belov, A., Marques-Silva, J.: Generalizing redundancy in propositional logic: Foundations

and hitting sets duality. CoRR, abs/1207.1257 (2012)

. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT (extended

version). CoRR, abs/1310.2298 (2013)

. Biere, A.: Picosat essentials. JSAT 4(2-4), 75-97 (2008)
. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report

Series Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)

. Bonet, M.L., Levy, J., Manya, F.: Resolution for Max-SAT. Artif. Intell. 171(8-9), 606-618

(2007)

. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.

In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61-75. Springer, Heidelberg
(2005)

. Eén, N., Sorensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.)

SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)

. Eén, N., Sorensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.

Comput. Sci. 89(4), 543-560 (2003)

. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A., Gomes, C.P. (eds.)

SAT 2006. LNCS, vol. 4121, pp. 252-265. Springer, Heidelberg (2006)

Heule, M., Jarvisalo, M., Biere, A.: Covered clause elimination. In: LPAR Short Paper (2010)
Jarvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340-345. Springer,
Heidelberg (2010)

Jarvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129-144. Springer, Heidelberg (2010)
Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-
97, 149-176 (1999)

Kullmann, O., Lynce, 1., Marques-Silva, J.: Categorisation of clauses in conjunctive normal
forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22-35. Springer, Heidelberg (2006)

. Li, C.M., Manya, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van

Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence
and Applications, vol. 185, pp. 613-631. IOS Press (2009)

Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimiza-
tion. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495-508. Springer, Heidelberg
(2009)

. Morgado, A., Heras, F.,, Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided

MaxSAT solving: A survey and assessment. Constraints (2013)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57-95 (1987)

Dynamic and Static Symmetry Breaking in Answer Set
Programming

Belaid Benhamou!»2*
L Aix-Marseille Université
Laboratoire des Sciences de I’Information et des Systemes (LSIS)
Domaine universitaire de Saint Jérdme, Avenue Escadrille Normandie Niemen, 13397
MARSEILLE Cedex 20
2 Centre de Recherche en Informatique de Lens (CRIL)
Université d’ Artois, Rue Jean Souvraz, SP 18 F 62307 Lens Cedex
belaid.benhamou@univ-amu. fr

Abstract. Many research works had been done in order to define a semantics
for logic programs. The well know is the stable model semantics which selects
for each program one of its canonical models. The stable models of a logic pro-
gram are in a certain sens the minimal Herbrand models of its reduct programs.
On the other hand, the notion of symmetry elimination had been widely studied
in constraint programming and shown to be useful to increase the efficiency of
the associated solvers. However symmetry in non monotonic reasoning still not
well studied in general. For instance Answer Set Programming (ASP) is a very
known framework but only few recent works on symmetry breaking are known in
this domain. Ignoring symmetry breaking in the answer set systems could make
them doing redundant work and lose on their efficiency. Here we study the notion
of local and global symmetry in the framework of answer set programming. We
show how local symmetries of a logic program can be detected dynamically by
means of the automorphisms of its graph representation. We also give some prop-
erties that allow to eliminate theses symmetries in SAT-based answer set solvers
and show how to integrate this symmetry elimination in these methods in order
to enhance their efficiency.

Keywords: symmetry, logic programming, stable model semantics, answer set
programming, non-monotonic reasoning.

1 Introduction

The work we propose here to investigate the notion of symmetry in Answer Set Pro-
gramming (ASP). The (ASP) framework can be considered as a sub-framework of
the default logic [37]. One of the main questions in ASP, is to define a semantics to
logic programs. A logic program 7 is a set of first order (formulas) rules of the form
r : concl(r) < prem(r), where prem(r) is the set of premises of the rule given
as a conjunction of literals that could contain negations and negations as failure. The
right part concl(r) is the conclusion of the rule which is generally, a single atom,

* Actually, T am at CRIL for one year CNRS delagtion position.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 112-]126] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Dynamic and Static Symmetry Breaking in Answer Set Programming 113

or in some cases a disjunction of atoms for logic programs with disjunctions. Some
researchers considered prem(r) as the body of the rule r and concl(r) as its head
(r : head(r) < body(r)). Each logic program 7 is translated into its equivalent ground
logic program ground(w) by replacing each rule containing variables by all its ground
instances, so that each literal in ground(w) is ground. This technique is used to elimi-
nate the variables even when the program contains function symbols and its Herbrand
universe is infinite. Among the influential semantics that had been given for these logic
programs with negation and negation as failure are the completion semantics [15] and
the stable model or the answer set semantics [25]. It is well know that each answer set
for a logic program is a model of its completion, but the converse, is in general not true.
Fages in his paper [21] showed that both semantics are equivalent for free loops logic
programs that are called tight programs. A generalization of Fage’s results to logic pro-
grams with eventual nested expressions in the bodies of their rules was given in [20].
On the other hand Fangzhen Lin and Yutin Zhao proposed in [31] to add what they
called loop formulas to the completion of a logic program and showed that the set of
models of the extended completion is identical to the program’s answer sets even when
the program is not tight.

On the other hand, symmetry is by definition a multidisciplinary concept. It ap-
pears in many fields ranging from mathematics to Artificial Intelligence, chemistry and
physics. It reveals different forms and uses, even inside the same field. In general, it
returns to a transformation, which leaves invariant (does not modify its fundamental
structure and/or its properties) an object (a figure, a molecule, a physical system, a for-
mula or a constraints network...). For instance, rotating a chessboard up to 180 degrees
gives a board that is indistinguishable from the original one. Symmetry is a fundamental
property that can be used to study these various objects, to finely analyze these complex
systems or to reduce the computational complexity when dealing with combinatorial
problems.

As far as we know, the principle of symmetry has been first introduced by Krish-
namurthy [29]] to improve resolution in propositional logic. Symmetries for Boolean
constraints are studied in depth in [5i6]]. The authors showed how to detect them and
proved that their exploitation is a real improvement for several automated deduction
algorithms efficiency. Since that, many research works on symmetry appeared. For in-
stance, the static approach used by James Crawford et al. in [16]] for propositional logic
theories consists in adding constraints expressing global symmetry of the problem. This
technique has been improved in [1]] and extended to 0-1 Integer Logic Programming in
[2]]. The notion of interchangeability in Constraint Satisfaction Problems (CSPs) is in-
troduced in [22] and find a good exploitation in [27], and symmetry for CSPs is studied
earlier in [36.4].

Within the framework of the Artificial Intelligence, an important paradigm is to take
into account incomplete information (uncertain information, revisable information...).
Contrary to the mode of reasoning formalized by a conventional or a classical logic, a
result deducible from information (from a knowledge, or from beliefs) is not true but
only probable in the sense that it can be invalidated further, and can be revised when
adding new information.

114 B. Benhamou

To manage the problem of exceptions, several logical approaches in Artificial In-
telligence had been introduced. Many non-monotonic formalisms were presented since
about thirty years. But, the notion of symmetry within this framework was not well stud-
ied. The principle of symmetry had been extended recently in [8l9/11]] to non-monotonic
reasoning. Symmetry had been defined and studied for three known non-monotonic
logics: the preferential logic [13/14/1228]], the X-logic [38] and the default logic [38].
More recently, global symmetry had been studied for the Answer Set Programming
framework [18/19]. In the same spirit as what it is done in [L6J142] for the satisfiability
problem, the authors of [[1819] showed how to break the global symmetry statically in a
pre-processing phase for the ASP system Clasp[24]. They did that by adding symmetry
breaking predicates to the considered logic program. They showed that global symme-
try elimination in Clasp improves dramatically its efficiency on several problems. In
this work, we investigate dynamic local symmetry detection and elimination and static
global symmetry exploitation in SAT-based answer set programming systems. Local
symmetry is the symmetry that we can discover at each node of the search tree during
search. Global symmetry is the particular local symmetry corresponding to the root of
the search tree (the symmetry of the initial problem). Almost all of the known works on
symmetry are on global symmetry. Only few works on local symmetry [5l6/7010] are
known in the literature. Local symmetry breaking remains a big challenge. As far as we
know, local symmetry is not studied yet in ASP.

The rest of the paper is structured as follows: in Section 2, we give some neces-
sary background on answer set programming and permutations. We study the notion of
symmetry for answer set programming in Section 3. In Section 4 we show how local
symmetry can be detected by means of graph automorphism. We show how both global
and local symmetry can be eliminated in Section 5. Section 6 shows how local sym-
metry elimination is implemented in a SAT-based answer set programming Method.
Section 7 investigates the first implementation and experiments. We give a conclusion
in Section 8.

2 Background

We summarize in this section some background on both the answer set programming
framework and permutation theory.

2.1 Answer Set Programming

A ground general logic program 7 is a set of rules of the formr : Lo <— Ly, Lo, ..., Ly,
notLy41,...,n0tL,, (0 < m < n) where L; (0 < ¢ < n) are atoms, and not is the
symbol expressing negation as failure. The positive body of r is denoted by body ™ (r) =
{L1, La, ..., Ly}, and the negative body by body~ (r) = {Lm+1, ..., Ln}. The word
general expresses the fact that the rules are more general than Horn clauses, since
they contain negations as failure. The sub-rule 7+ : Ly < L1, Lo, ..., L,, expresses
the positive projection of the rule r. Intuitively the rule » means "If we can prove
all of {L1, Lo, ..., L.} and we can not prove all of {Ly,41,...,L,}, then we de-
duce Lg*“. Given a set of atoms A, we say that a rule r is applicable (active) in A if

Dynamic and Static Symmetry Breaking in Answer Set Programming 115

body™(r) C A and body~(r) N A = (). The reduct of the program 7 with respect to
a given set A of atoms is the positive program 74 where we delete each rule con-
taining an expression notL; in its negative body such that L; € A and where we
delete the other expressions notL; in the bodies of the other rules. More precisely,
74 = {rt/r € m,body=(r) N A = ()}. The most known semantics for general logic
programs is the one of stable models defined in [25] which could be seen as an improve-
ment of the negation as failure of Prolog. A set of atoms A is a stable model (an answer
set) of 7 if and only if A is identical to the minimal Herbrand model of 7# which is
called its canonical model (denoted by C'M (74)). That is, if only if A = CM(z4).
The stable model semantics is based on the closed world assumption, an atom that is
not in the stable model A is considered to be false.

An extended logic program is a set of rules as the ones given for general programs
which could contain classical negation. The atoms L; could appear in both positive and
negative parity. In other words, the atoms L; become literals. A logic program is said to
be disjunctive when at least one of its rules contains a disjunction of literals in its head
part. In the sequel, we will use indifferently the words stable model and answer set to
designate a stable model of a general logic program.

2.2 Permutations

Let 2 ={1,2,..., N} for some integer N, where each integer might represent a propo-
sitional variable or an atom. A permutation of {2 is a bijective mapping ¢ from (2 to
{2 that is usually represented as a product of cycles of permutations. We denote by
Perm(£2) the set of all permutations of {2 and o the composition of the permutation
of Perm({2). The pair (Perm({2), o) forms the permutation group of {2. That is, o is
closed and associative, the inverse of a permutation is a permutation and the identity
permutation is a neutral element. A pair (T, o) forms a sub-group of (S,0) iff T is a
subset of .S and forms a group under the operation o.

The orbit w”¢"™(?) of an element w of 2 on which the group Perm(§2) acts is
wPerm={y7 . w7 = g(w), o € Perm(£2)}.

A generating set of the group Perm({2) is a subset Gen of Perm({2) such that each
element of Perm(f2) can be written as a composition of elements of Gen. We write
Perm(£2)=< Gen >. An element of Gen is called a generator. The orbit of w € 2
can be computed by using only the set of generators Gen.

3 Symmetry in Logic Programs

Since Krishnamurthy’s [29] symmetry definition and the one given in [5)6] in proposi-
tional logic, several other definitions are given in the CP community.

We will define in the following both semantic and syntactic symmetries in answer set
programming and show their relationship. In the sequel 7 could be the logic program or
its completion [15] Comp(), the symmetry definitions and properties remain valuable.

116 B. Benhamou

Definition 1. (semantic symmetry of the logic program) Let © be a logic program and
L its completeE] set of literals. A semantic symmetry of 7 is a permutation o defined
on Ly such that w and o () have the same answer sets.

Definition 2. (semantic symmetry of the completion) Let Comp(r) be the Clark com-
pletion of a logic program w and Lcomp(r) its complete@ set of literals. A semantic
symmetry of Comp() is a permutation o defined on L omp(r) such that Comp(m)
and o(Comp(7)) have the same answer sets.

In other words a semantic symmetry is a literal permutation that conserves the set of
answer sets of the logic program 7. We adapt in the following the definition of syntactic
symmetry given in [Sl6] for satisfiability to logic programs.

Definition 3. (syntactic symmetry of the logic program) Let © be a logic program and
L. its complete set of literals. A syntactic symmetry of 7 is a permutation o defined on
L such that the following conditions hold:

1.Vl € Ly,o0(=f) =-0(l),
2. Yl € Ly, o(notl) = not{co(l)},
3 o(r)=m

Definition 4. (syntactic symmetry of the completion) Let Comp(r) be a logic program
and L omp(x) its complete set of literals. A syntactic symmetry of Comp(r) is a per-
mutation o defined on Lcomp(r) such that the following conditions hold:

1.Vl € Ly,0(—0) =—0o(L),
2. o(Comp(r)) = Comp(r)

In other words, a syntactical symmetry of a logic program or its completion is a literal
permutation that leaves the logic program or the completion invariant. If we denote by
Perm(Ly) the group of permutations of L, and by Sym(L,) C Perm(L) the subset
of permutations of L, that are the syntactic symmetries of 7, then Sym(L) is trivially
a sub-group of Perm(Ly).

Theorem 1. Each syntactical symmetry of a logic program T is a semantic symmetry

of m.

Proof. 1t is trivial to see that a syntactic symmetry of a logic program 7 is always a
semantic symmetry of 7. Indeed, if o is a syntactic symmetry of , then o(7) = m, thus
it results that and o (7) have the same set of answer sets.

In a similar way, we can prove the following theorem :

Theorem 2. Each syntactical symmetry of the completion Comp(7) is a semantic sym-
metry of Comp().

! The set of literals containing each literal of 7 and its negation as failure.
? The set of literals containing each literal of Comp() and its negation.

Dynamic and Static Symmetry Breaking in Answer Set Programming 117

Example 1. consider the logic program m = {d +;c¢ <;b + ¢, nota;a + d,notb}
and the permutation o=(a, b)(c, d)(nota, notb) defined on the complete set L, of liter-
als occurring in 7. We can see that o is a syntactic symmetry of 7 (o (7)=m).

Remark 1. The converse of each of the previous theorems is not true. That is, it is not
true that a semantic symmetry is always a syntactical symmetry.

Now, we give an important property which establishes a relationship between the
symmetries of a logic program and its completion.

Proposition 1. Each syntactical symmetry of a logic program m is a semantic symmetry
of its completion Comp(r).

Proof. Let o be a syntactical symmetry of the program 7 and I a model of Comp(m)
which is an answer set of 7. We have to prove that o (/) is also a model of Comp(r)
which is an answer set of 7. The permutation ¢ is a syntactical symmetry of 7, thus
by Theorem[I] we deduce that o is also a semantic symmetry of 7. It results that o (1)
is also an answer set of 7. Since each model of a logic program 7 is also a model of
its Clark completion, it follows that o(I) is a model of Comp(m) which is in fact an
answer set of 7.

Remark 2. The previous proposition allows to use the syntactical symmetries of a logic
program 7 in its Clark completion Comp(7) in order to detect symmetrical answer sets
of 7. This gives an important alternative for symmetry detection in SAT-based ASP sys-
tems that use the the Clark completion. Indeed, we can just calculate the symmetries of
the logic program 7 instead of calculating those of its completion. This could accelerate
the symmetry detection as the size of the program 7 is generally substantially smaller
than the size of its completion.

In the sequel we give some symmetry properties only in the case of logic programs
7, but the considered properties are also valid in the case of the completion Comp(r).

Definition 5. Two literals £ and {' of a logic T are symmetrical if there exists a symme-
try o of w such that o(£) = ¢’

Definition 6. Let 7 be a logic program, the orbit of a literal £ € L, on which the group
of symmetries Sym(Ly) acts is £59™ =) ={o(0) : 0 € Sym(L.)}

Remark 3. All the literals in the orbit of a literal ¢ are symmetrical two by two.

Example 2. In Example [Il the orbit of the literal a is aSym(Lax) = {a, b}, the orbit
of the literal ¢ is ¢3¥™(ELx)= {¢, d} and the one of the literal nota is nota™¥™(F~)=
{nota,notb} All the literals of a same orbit are all symmetrical.

If I is an answer set of 7 and o a syntactic symmetry, we can get another answer
set of 7 by applying o on the literals which appear in /. Formally we get the following
property.

Proposition 2. [is an answer set of 7 iff o(I) is an answer set of 7 .

118 B. Benhamou

Proof. Suppose that [is an answer set of 7, then [is a minimal Herbrand model of the
reduct 7! . It follows that o'(1) is a minimal model of ()7 (/). We can then deduce that
o(I) is a minimal model of 77! since 7 is invariant under o. We conclude that o(1) is
an answer set of . The converse can be shown by considering the converse permutation
of 0.

For instance, in Example [Tl there are two symmetrical answer sets for the logic pro-
gram 7. The fist one is I = {d, ¢, a} and the second is o(I) = {d, ¢, b}. These are what
we call symmetrical answer sets of 7. A symmetry o transforms each answer set into
an answer set and each no-good (not an answer set) into a no-good.

Theorem 3. Let { and ¢’ be two literals of 7 that are in the same orbit with respect to the
symmetry group Sym(L,), then € participates in an answer set of m iff ¢’ participates
in an answer set of T.

Proof. If £ is in the same orbit as ¢’ then it is symmetrical with £’ in 7. Thus, there exists
a symmetry o of 7 such that o(¢) = ¢'. If I is an answer set of 7 then o (I) is also an
answer set of o(m) = 7, besides if £ € I then ¢ € o(I) which is also an answer set of
. For the converse, consider £ = o~ (¢'), and make a similar proof.

Corollary 1. Let ¢ be a literal of w, if £ does not participate in any answer set of T,
then each literal ¢! € orbit’ = (59" Ix) does not participate in any answer set of .

Proof. The proof is a direct consequence of Theorem 3]

Corollary [[lexpresses an important property that we will use to break local symmetry
at each node of the search tree of a SAT-based answer set procedure. That is, if a no-
good is detected after assigning the value True to the current literal ¢, then we compute
the orbit of ¢ and assign the value false to each literal in it, since by symmetry the value
true will not lead to any answer set of the logic program.

For instance, consider the program of Example[ll and the partial interpretation I =
{a, b, c} where c is the current literal under assignation. It is trivial that I is not a stable
model of the program. By corollary [l we can deduce that the set I’ = {a, b, d} is nota
stable model of the program too. Indeed, I’ is obtained by replacing the current literal ¢
in I by its symmetrical literal d. I is a no-good and by symmetry (without duplication
of effort) we infer that I’ is a no-good.

4 Symmetry Detection

The most known technique to detect syntactic symmetries for CNF formulas in satis-
fiability is the one consisting in reducing the considered formula into a graph [16/3/2]]
whose the automorphism group is identical to the symmetry group of the original for-
mula. We adapt the same approach here to detect the syntactic symmetries of the com-
pletion of a program 7. That is, we represent the CNF formula corresponding to the
completion (Compl(m)) of the logic program 7 by a graph G that we use to compute
the symmetry group of 7 by means of its automorphism group. When this graph is built,
we use a graph automorphism tool like Saucy [3], Nauty [32], AUTOM [35]] or the one

Dynamic and Static Symmetry Breaking in Answer Set Programming 119

described in [33] to compute its automorphism group which gives the symmetry group
of Comp(). Following the technique used in [16/312] to represent CNF formulas, we
summarize bellow the construction of the graph which represent the completion of the
logic program 7. Here we focus on the case of general logic programs, but the technique
could be generalized to other classes of logic programs like extended logic programs
or disjunctive logic programs. Given the completion of a general logic program 7, the
associated colored graph G (V, E) of its completion is defined as follows:

— Each positive literal ¢; of Compl() is represented by a vertex ¢; € V of the color
1 in G . The negative literal not/; associated with ¢; is represented by a vertex
notl; of color 1 in G. These two literal vertices are connected by an edge of E in
the graph G;.

— Each clause ¢; of Compl () is represented by a vertex ¢; € V' (a clause vertex) of
color 2 in G,. An edge connects this vertex ¢; to each vertex representing one of
its literals.

This technique could be extended to extended and disjunctive logic programs in a
natural way.

This is different from the approach which uses a body-atom graph [[18]]. Since our
study is oriented to SAT-based ASP using the completion, we do not need to manage an
oriented body-atom graph.

An important property of the graph G is that it preserves the syntactic group of
symmetries of Compl (). That is, the syntactic symmetry group of the logic program
Compl() is identical to the automorphism group of its graph representation G, thus
we could use a graph automorphism system like Saucy on G to detect the syntac-
tic symmetry group of Comp(w). The graph automorphism system returns a set of
generators Gen of the symmetry group from which we can deduce each symmetry of
Compl(r).

5 Symmetry Elimination

There are two ways to break symmetry. The first one is to deal with the global symmetry
which is present in the formulation of the given problem. Global symmetry can be elim-
inated in a static way in a pre-processing phase of an answer set solver by just adding
the symmetry predicates. For instance, a method for global symmetry elimination is
introduced in [18] for the Clasp ASP system [24]. The second way is the elimination
of local symmetry that could appear in the sub-problems corresponding to the different
nodes of the search tree of an answer set solver. Global symmetry can be considered as
the local symmetry corresponding to the root of the search tree.

Local symmetries have to be detected and eliminated dynamically at some decision
node of the search tree. Dynamic symmetry detection in satisfiability had been studied
in [5l6] where a local syntactic symmetry search method had been given. However, this
method is not complete, it detects only one symmetry ¢ at each node of the search
tree when failing in the assignment of the current literal ¢. As an alternative to this
incomplete symmetry search method, a complete method which uses the tool Saucy [3]]
had been introduced in [[10] to detect and break all the syntactic local symmetries of a

120 B. Benhamou

constraint satisfaction problem (CSP) [34] during search and local symmetry had been
detected and eliminated dynamically in a SAT solver [7].

Consider the completion Compl () of a logic program 7, and a partial assignment
I of a SAT-based answer set solver applied to Compl (). Suppose that ¢ is the current
literal under assignment. The assignment I simplifies Compl(7) into a sub-completion
Compl(r); which defines a state in the search space corresponding to the current node
ny of the search tree. The main idea is to maintain dynamically the graph G, of the
sub-completion Compl(r), corresponding to the current node 7, then color the graph
G, as shown in the previous section and compute its automorphism group Aut(7y).
The sub-completion Compl(7); can be viewed as the remaining sub-problem corre-
sponding to the unsolved part. By applying an automorphism tool on this colored graph
we can get the generator set Gen of the symmetry sub-group existing between literals
from which we can compute the orbit of the current literal ¢ that we will use to make
the symmetry cut.

After this, we use Corollary [I] to break dynamically the local symmetry and then
prune search spaces of tree search answer set methods. Indeed, if the assignment of the
current literal ¢ defined at a given node n; of the search tree is shown to be a failure,
then by symmetry, the assignment of each literal in the orbit of ¢ will result in a failure
too. Therefore, the negated literal of each literal in the orbit of ¢ has to be assigned
in the partial assignment I. Thus, we prune in the search tree, the sub-space which
corresponds to the assignment of the literals of the orbit of £. That is what we call the
local symmetry cut.

6 Local Symmetry Exploitation in SAT-Based ASP Solvers

The solver ASSAT [31] has some drawbacks: it can compute only one answer set and
the formula could blow-up in space. Taking into account these disadvantages of AS-
SAT and the fact that each answer set of a program 7 is a model of its completion
Compl(w), Guinchiglia et al. in [26] do not use SAT solvers as black boxes, but imple-
mented a method which is based on the DLL [17] procedure and where they include a
function which checks if a generated model is an answer set or not. This method had
been implemented in the Cmodels-2 system [30] and has the following advantages:
it performs the search on Compl(w) without introducing any extra variable except
those used by the clause transformation of Compl(w), deals with tight and not tight
programs, and works in a polynomial space. Global symmetry breaking do not need
any extra-implementation, a SAT-based answer set solver is used as a black box on
the completion of the logic program and the generated symmetry breaking predicates.
More recently the ASP solvers like the conflict-driven Clasp solver [24] include some
materials of modern SAT solvers such as: conflict analysis via the First UIP scheme,
no-good recording and deletion, backjumping, restarts, conflict-driven decision heuris-
tics, unit propagation via watched literals, equivalence reasoning and resolution-based
pre-processing [23] have shown dramatic improvements in their efficiency and compete
with the best SAT solvers.

We give in the following a DLL-based answer set method in which we implement dy-
namic local symmetry breaking. We used as a baseline method the DLL-based answer

Dynamic and Static Symmetry Breaking in Answer Set Programming 121

set procedure given in [26] to show the implementation of local symmetry eliminations
(local symmetry cuts).

If I is an inconsistent partial interpretation in which the assignment of the value
true to the current literal £ is shown to be a no-good, then, all the literals in the orbit
of ¢ computed by using the group Sym(r) returned by the graph automorphism tool
are symmetrical to ¢. Thus, we assign the value false to each literal in £5¥"(Ex) since
the value true is shown to be contradictory, and then we prune the sub-space which
corresponds to the value true assignments. The other case of local symmetry cut happen
when the assignment [is shown to be a model of Compl (), but is not an answer set
of 7. In this case, the algorithm makes a backtracking on the last decision literal £ in I,
then according to corollary [[lassigns the value false to each literal in the orbit ¢£5¥"(Zx)
since the value true does not lead to an answer set of 7. If I' = Compl(r), then the
resulting procedure called DLLAnswerSet, is given in Figure 1l

Procedure DLLAnswerSet(I', I);
begin
if I" = () then return AnswerSetCheck(I,)
else return False
else if I contains the empty clause, then return False
else
if there exists a mono-literal or a monotone literal £ then
return DLLAnswerSet(I;, I U {¢})
begin
Choose an unsigned literal ¢ of I
Gen=AutomorphismTool(I7);
25vmm) —orbit(€,Gen)={{1, la, ..., In };
return DLLAnswerSet(I;, I U {¢}) or
DLLAnswerSet(I - on—e; A—ton...A=Lp >
TU{=t,~ly,...,~ln})
end
end

Fig. 1. The DLL-based answer set procedure with local symmetry elimination

The function AutomorphismTool(77) is a call to the automorphism tool which return
the set of generators in the variable GEN. The function orbit(¢, Gen) is elementary, it
computes the orbit (the symmetrical literals) of the literal ¢ from the set of generators
Gen returned by AutomorphismTool(7ry). The set Iy is the set of clauses obtained from
I' by removing the clauses to which ¢ belongs, and by removing —¢ from the other
clauses of I

The function AnswerSetCheck(I,) is also elementary:

— it computes the set A = I N {head(r) : r € 7} of positive literals (atoms) in I and
returns T'rue if A is an answer set or 7, and
— return False, otherwise.

122 B. Benhamou
7 Experiments

Now we shall investigate the performances of our search techniques by experimental
analysis. We choose for this first implementation the graph coloring problem to show
the local symmetry behavior on answer sets search vs the global symmetry. Graph col-
oring problem is expressed naturally as a set of rules of a general problem. For more
details, the reader can refer to the Lparse user’s manual given on line on the Cmodels
site (http://www.cs.utexas.edu/ tag/cmodels/). Here, we tested and compared on some
random graph coloring instances two methods:

1. Global-sym: search with global symmetry breaking. This method uses in a pre-
processing phase the program SHATTER [[1/2]] that detects and eliminates the global
symmetries of the considered instance by adding to it symmetry breaking clauses,
then apply the SAT based answer set solver defined in [26] to the resulting instance.
The CPU time of Global-sym includes the time that SHATTER spends to compute
the global symmetry. A disadvantage of this method is that it could significantly in-
crease the size of the considered instance. Its advantage is that its implementation
requires no modification of the solver.

2. Local-sym: search with local symmetry breaking. This method implements in the
SAT based answer set solver defined in [26] the dynamic local symmetry detection
and elimination strategy described in this work. The resulting method is depicted in
figure[Il(the DLLAnswerSet procedure). The CPU time of Local-sym includes local
symmetry search time. A disadvantage of this method is that it could significantly
increase the time of execution in the case of instances which contain few local
symmetries. Its advantage is that its application does not require any increase in the
size of the instance, changing the solver is simple and it detects more symmetries.

The common baseline answer set search method for both previous methods is the one
given in [26]. The complexity indicators are the number of nodes of the search tree
and the CPU time. Both the time needed for computing local symmetry and global
symmetry are added to the total CPU time of search. The source codes are written in C
and compiled on a Pentium 4, 2.8 GHZ and 1 Gb of RAM.

7.1 The Results on the Graph Coloring Instances

Random graph coloring problems are generated with respect to the following param-
eters: (1) n : the number of vertices, (2) Colors: the number of colors and (3) d: the
density which is a number between 0 and 1 expressed by the ratio : the number of con-
straints (the number of edges in the graph) to the number of all possible constraints
(the number of possible edges in the graph). For each test corresponding to some fixed
values of the parameters n, Colors and d, a sample of 100 instances are randomly
generated and the measures (CPU time, nodes) are taken on the average.

We reported in Figure Rlthe practical results of the methods: Global-sym, and Local-
sym, on the random graph coloring problem where the number of variables is n = 30
and where the density is (d = 0.5). The curves give the number of nodes respectively
the CPU time with respect to the number of colors for each search method.

Dynamic and Static Symmetry Breaking in Answer Set Programming 123

2500
“Globalsymnodes’ ‘Globalsymtime

"Localsymnodes2" -f-- “Localsymtime" /-3
2000 -

1500

1000

Fig. 2. Node and Time curves of the two symmetry methods on random graph coloring where
n=30andd = 0.5

We can see on the node curves (the curves on the left of the figure) that Local-sym
detects and eliminates more symmetries than the Global-sym method and Global-sym
is not stable for graph coloring. From the CPU time curves (the curves on the right
of the figure), we can see that Local-sym is in average faster than Global-sym even
that Saucy is run at each contradictory decision node. Local symmetry elimination is
profitable for solving random graph coloring instances and outperforms dramatically
global symmetry breaking on these problems.

These are just our first results, our implementation and experiments are still in
progress, we need to experiment much more and greater size instances than the ones
presented here in order to further confirm the advantage of local symmetry breaking.

8 Conclusion

We studied in this work the notions of global and local symmetry for logic programs
in the answer set programing framework . We showed how a logic program or its com-
pletion is represented by a colored graph that can be used to compute symmetries. The
syntactic symmetry group of the completion is identical to the automorphism group of
the corresponding graph. Graph automorphism tools like SAUCY can be naturally used
on the obtained graph to detect the syntactic symmetries. Global symmetry is elimi-
nated statically by adding in pre-processing phase the well known lex order symmetry
breaking predicates to the program completion and applying as a black box a SAT-
based answer set solver on this resulting encoding. We showed how local symmetry
can be detected and eliminated dynamically during search. That is, the symmetries of
each sub-problem defined at a given contradictory decision node of the search tree and
which is derived from the initial problem by considering the partial assignment cor-
responding to that node. We showed that graph automorphism tools can be adapted to
compute this local symmetry by maintaining dynamically the graph of the sub- program
or the sub-completion defined at each node of the search tree. We proved some prop-
erties that allow us to make symmetry cuts that prune the search tree of a SAT-based
answer set method. Finally, we showed how to implement these local symmetry cuts in
a DLL-based answer set method.

124 B. Benhamou

The proposed local symmetry detection method is implemented and exploited in the
tree search method DL L AnswerSet to improve its efficiency. The first experimental
results confirmed that local symmetry breaking is profitable for answer set solving and
improves global symmetry breaking on the considered problems.

As a future work, we are looking to experiment other problems and combine both
the global symmetry and local symmetry eliminations in a DLL-based answer set solver
and compare the performances of the obtained methods to existing methods.

Another alternative of symmetry detection that we want to do in the future is to
detect symmetries of the logic program by means of a body-atom graph, instead of
those of its completion, then use Proposition [I] to make cuts in the search tree of the
considered ASP solver. This could accelerated the symmetry detection then get a fastest
solver.

We studied the notion of symmetry for the general logic programs, but the study
could naturally be generalized for extended logic programs, disjunctive logic programs
or other extensions. This is another important point that we are looking to investigate in
future.

References

1. Aloul, FA., Ramani, A., Markov, I.L., Sakallak, K.A.: Solving difficult sat instances in the
presence of symmetry. In: DAC, pp. 1117-1137 (2003)

2. Aloul, FA., Ramani, A., Markov, L.L., Sakallak, K.A.: Symmetry breaking for pseudo-
boolean satisfiability. In: ASPDAC 2004, pp. 884-887 (2004)

3. Aloul, FA., Ramani, A., Markov, L.L., Sakallah, K.A.: Solving difficult SAT instances in
the presence of symmetry. In: The Proceedings of the 39th Design Automation Conference
(DAC 2002), pp. 731-736. ACM Press (2002)

4. Benhamou, B.: Study of symmetry in constraint satisfaction problems. In: Borning, A. (ed.)
PPCP 1994. LNCS, vol. 874, pp. 246-254. Springer, Heidelberg (1994)

5. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus and appli-
cation. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 281-294. Springer, Heidelberg
(1992)

6. Benhamou, B., Sais, L.: Tractability through symmetries in propositional calculus. The Jour-
nal of Automated Reasoning 12, 89-102 (1994)

7. Benhamou, B., Nabhani, T., Ostrowski, R., Saidi, M.R.: Dynamic symmetry detection and
elimination in the satisfiability problem. In: Proceedings of the 16th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR-16, Dakar, Senegal,
April 25-May 1 (2010)

8. Benhamou, B., Nabhani, T., Siegel, P.: Reasoning by symmetry in non-monotonic infer-
ence. In: The Proceedings of the International Conference on Machine and Web Intelligence
(ICMWI 2010), Algiers, Algeria, pp. 264-269 (October 3, 2010)

9. Benhamou, B., Nabhani, T., Siegel, P.: Reasoning by symmetry in non-monotonic logics. In:
13th International Workshop on Non-Monotonic Reasoning (NMR 2010) (May 14, 2010)

10. Benhamou, B., Saidi, M.R.: Local symmetry breaking during search in cSPs. In: Bessiere,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 195-209. Springer, Heidelberg (2007)

11. Benhamou, B., Siegel, P.: Symmetry and non-monotonic inference. In: The Proceedings of
Symcon 2008, Sydney, Australia (September 2008)

13.

14.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

Dynamic and Static Symmetry Breaking in Answer Set Programming 125

. Besnard, P., Siegel, P.: The preferential-models approach in nonmonotonic logics - in non-

standard logic for automated reasoning. In: Smets, P. (ed.) Academic Press, pp. 137-156
(1988)

Bossu, G., Siegel, P.: Nonmonotonic reasoning and databases. In: Advances in Database
Theory, pp. 239-284 (1982)

Bossu, G., Siegel, P.: Saturation, nonmonotonic reasoning and the closed-world assumption.
Artif. Intell. 25(1), 13-63 (1985)

. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and data bases, pp.

293-322 (1978)

Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for search
problems. In: KR 1996, pp. 148-159 (1996)

Davis, M., Logemann, G.W., Loveland, D.W.: A machine program for theorem proving.
Journal of Communications of The ACM - CACM 5(7), 394-397 (1962)

. Drescher, C., Tifrea, O., Walsh, T.: Symmetry-breaking answer set solving. AI Com-

mun. 24(2), 177-194 (2011)

Drescher, C., Tifrea, O., Walsh, T.: Symmetry-breaking in answer set solving. In: ICLP 2010
Workshop ASPOCP 2010 (2010)

Erdem, E., Lifschitz, V.: Tight logic programs. Thoery and Practice of Logic Programming 3,
499-518 (2003)

Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Meth-
ods of Logic Programming in Computer Sciences 1, 51-60 (1994)

Freuder, E.: Eliminating interchangeable values in constraints satisfaction problems. In:
AAAI 1991, pp. 227-233 (1991)

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced pre-processing for answer
set solving. In: Proceedings of the 18th European Conference on Atrtificial Intelligence, pp.
15-19. 10S Press, Amsterdam (2008)

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260-265. Springer, Heidelberg (2007)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kawalski, R., Bowen, K. (eds.) Logic Programming: Fifth Int’l Conf. and Symp., pp.
1070-1080 (1988)

Giunchiglia, E., Lierler, Y., Maratea, M.: Sat-based answer set programming. In: 19th Na-
tional Conference on Artificial Intelligence, July 25-29. AAAI, San Jose (2004)

Haselbck, A.: Exploiting interchangeabilities in constraint satisfaction problems. IJCAI 93,
282-289 (1993)

Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167-207 (1990)

Krishnamurty, B.: Short proofs for tricky formulas. Acta Inf. (22), 253-275 (1985)

Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight
programs. In: Lifschitz, V., Niemel4, 1. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346-350. Springer, Heidelberg (2003)

Lin, F.,, Zhao, Y.: Assat: Computing answer sets of a logic program by sat solver. In: Pro-
ceedings of AAAI 2002 (2002)

McKay, B.: Practical graph isomorphism. Congr. Numer. 30, 45-87 (1981)

Mears, C., de la Banda, M.G., Wallace, M.: On implementing symmetry detection. In: Pro-
ceedings of SymCon 2006, pp. 1-8 (2006)

Montanari, U.: Networks of constraints: Fundamental properties and applications to picture
processing. Information Science 7, 95-132 (1974)

126

35.

36.

37.
38.

B. Benhamou

Puget, J.-F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) CP
2005. LNCS, vol. 3709, pp. 475-489. Springer, Heidelberg (2005)

Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In:
Komorowski, J., Ras, Z.W. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, Springer,
Heidelberg (1993)

Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81-132 (1980)

Siegel, P., Forget, L., Risch, V.: Preferential logics are x-logics. Journal of Logic and Com-
putation 11(1), 71-83 (2001)

HOL Based First-Order Modal Logic Provers*

Christoph Benzmiiller! and Thomas Raths?

! Dep. of Mathematics and Computer Science, Freie Universitit Berlin, Germany
2 Institute for Computer Science, University of Potsdam, Germany

Abstract. First-order modal logics (FMLs) can be modeled as natural
fragments of classical higher-order logic (HOL). The FMLtoHOL tool ex-
ploits this fact and it enables the application of off-the-shelf HOL provers
and model finders for reasoning within FMLs. The tool bridges between
the gmf-syntax for FML and the TPTP thf0-syntax for HOL. It currently
supports logics K, K4, D, D4, T, S4, and S5 with respect to constant,
varying and cumulative domain semantics. The approach is evaluated in
combination with a meta-prover for HOL, which sequentially schedules
various HOL reasoners. The resulting system is very competitive.

1 Introduction

First-order modal logics (FMLs) [7] have many applications and these applica-
tions motivate the use of automated theorem proving systems for FMLs. Until
recently no (correct) ATP systems for FMLs were available[] However, good
progress has been made in the last two years, and novel provers have recently
been implemented and compared [I]. Among these systems is also an approach
based on classical higher-order logic (HOL) [3l2]. This HOL approach, which is
further improved and evaluated here, is the focus of this paper. The particular
contributions include:

(A) The FMLtoHOL tool is presented, which converts problems in FML, for-
mulated in gmf-syntax [I3] (which extends the TPTP fol-syntax [15] with opera-
tors #box and #dia), into HOL problems in thf0-syntax [16] & FMLtoHOL imple-
ments a semantic embedding of constant domain FMLs in HOL [3]. The tool has
been extended to also support varying and cumulative domains. FMLtoHOL turns
any thfO-compliant HOL ATP system into a flexible ATP system for FMLs.
At present FMLtoHOL supports modal logics from L := {K,K4,D,D4,T,S4,S5}.
However, its extension to further normal FMLs is straightforward.

(B) The FMLtoHOL tool is exemplarily applied in combination with a meta-
prover for HOL, called HOL-P in the remainder. This meta-prover exploits the

* Supported by the German Research Foundation (grants BE2501/9-1 & KR858/9-1).
! A pioneering prover is GQML [17]. However, GQML has been excluded in recent
experiments (in [I] or here) since it returned incorrect results for several formulae.

2 thf stands for typed higher-order form and it refers to family of syntax formats for
higher-order logic. So far only the fully developed thf0 format, for simply typed

lambda calculus, is in practical use.

K. McMillan, A. Middeldorp, and A. Voronkov (Eds.): LPAR-19, LNCS 8312, pp. 127-[36] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

128 C. Benzmiiller and T. Raths

SystemOnTPTP infrastructure [I5] and sequentially schedules the HOL rea-
soners LEO-II [4], Satallax [6], Isabelle [10], agsyHOL [9] and Nitpick [5]. HOL-
P is evaluated with respect to 580 benchmark problems in the QMLTP li-
brary [13]. As a side contribution a complete translation of the QMLTP li-
brary (for all logics in L, all different domain conditions, and both options as
explained in (C)) into HOL (resp. thf0) is achieved, resulting in 7 x 3 x 2 x
580 = 24360 problems. The 3480 problems for logic S4 can be download from
http://christoph-benzmueller.de/papers/THF-S4-ALL.zip; others can be
requested by EMail.

(C) There are different options in the HOL approach for the modeling of
logics in L. One is to state the conditions on the accessibility relation R associ-
ated with O ‘semantically’, e.g, VxdyRxy expresses that R is serial. Exploiting
quantification over booleans (¥?) (cf. [3]) the corresponding ‘syntactical’ axiom
VPp(Op = <p) may instead be postulated. FMLtoHOL so far only supports the
‘semantical’ approach. A first evaluation of both options is provided in this pa-
per. To enable this the semantical example problems have been converted into
their syntactical counterparts by hand.

The structure of the paper is as follows: §2 outlines FML. §3] and §4] describe
the theory and implementation of FMLtoHOL. §] introduces prover HOL-P. Ex-
periments are presented in §6l and §7 concludes the paper.

2 First-Order Modal Logic

The syntax of FML adopted in this paper is: F, G ::= P(t1,...,t,) | °F | FAG |
FVG|F = G|OF | OF | YaF | 3zF. The symbols P are n-ary (n > 0)
relation constants which are applied to terms ¢1,...,t,. The ¢; (0 < ¢ <n) are
ordinary first-order terms and they may contain function and constant symbols.
The usual precedence rules for logical constants are assumed. The formula E1
= (OJxPfax A DOVYy(OPy = Qy)) = <©32Q2 is used as a running example.

Regarding semantics, a Kripke style semantics for FML is adopted [7]. In
particular, it is assumed that constants and terms are denoting and rigid, i.e. they
always pick an object and this pick is the same object in all worlds. Regarding the
universe of discourse constant domain, varying domain and cumulative domain
semantics are considered. With respect to these base choices the normal modal
logics K, K4, K5, B, D, D4, T, S4, and S5 are studied.

3 Theory of FMLtoHOL

FMLtoHOL exploits the fact that Kripke structures can be elegantly embedded
in HOL [3]: FML propositions F' are associated with HOL terms F}, of pred-
icate type p := ¢ = 0. Type o denotes the set of truth values and type ¢ is
associated with the domain of possible worlds. Thus, the application (F,w,)
corresponds to the evaluation of FML proposition F' in world w. Consequently,
validity is formalized as vld,—., = AF,Vw,Fw. Classical connectives like — and
V are simply lifted to type p as follows: —,.,, = AF,Aw,~Fw and V,.,., =

http://christoph-benzmueller.de/papers/THF-S4-ALL.zip

HOL Based First-Order Modal Logic Provers 129

AF,AG o \w, (FwV Gw). O is modeled as O, , = AF, A \w, Vv, (~Rwv V Fv), where
constant symbol R,_,, denotes the accessibility relation of the O-operator, which
remains unconstrained in logic K. Further logical connectives are defined as
usual: A = AF,AG,~(—F V =G), = = AF,AG,(—F V G), & = AF,~0-F.

For individuals a further base type u is reserved in HOL. Universal quan-
tification VaF' is introduced as syntactic sugar for ITAzF', where constant IT
is defined as follows: IT, (i=p)mp = AH, 2w Ve, Hxw. For existential quantifi-
cation, X' = AH,_,~II\z,~Hz is introduced. 3z F is then syntactic sugar for
YAz F. n-ary relation symbols P, n-ary function symbols f and individual con-
stants ¢ in FML obtain types g1 — ... = fn = p, i1 = ... = [y — pns1 (both
with p; = p for 0 <4 <n+1) and p, respectively.

Moreover, universal quantification over propositional variables is added. Sim-
ilar to above this can be done by introducing a constant IIP. II? and II are
similar and only differ wrt the argument type: H&_}p)_)p = AH, ., \w,Vp,Hpw.
Again, VPpF is introduced as syntactic sugar for IIP ApF’, etc.

For any FML formula F' holds: F' is a valid in modal logic K for constant
domain semantics if and only if vld F), is valid in HOL for Henkin semantics.
This correspondence provides the foundation for proof automation of FMLs with
HOL-ATP systems. The correspondence is shown in [3].

To extend the above result for logic K to modal logics K4, K5, B, D, D4, T,
S4, S5 etc., one may choose between a ‘syntactical’ and a ‘semantical’ approach:
(Semantical) Axioms such as VxRzx or VaVyVz(Rzy A Ryz = Rxz) are postu-
lated to ensure that accessibility relation R obeys certain restrictions, here reflex-
ivity and transitivity. (Syntactical) Propositional quantification is exploited to
postulate corresponding axioms such as VPp(Op = p) or VPp(Op = OOp). These
axioms characterize R as reflexive and transitive. Similar axioms exist for other
FMLs. Respective correspondences between semantical properties of R and re-
spective syntactical axioms are well known.

Arbitrary normal modal logics extending K can be axiomatized this way.
There are cases where only the semantical approach is applicable. For example,
irreflexivity of accessibility relation R cannot be axiomatized in the syntactic
approach. However, it can trivially be modeled in the semantic approach. In
other cases the syntactical approach appears more suitable. Examples are non-
Stahlquist formulas like the Léb axiom or the McKinsey formula, for which there
are no corresponding first-order semantical conditions on R. Note, however, that
the HOL approach is not restricted to first-order conditions on R.

The above approach realizes constant domain semantics. For varying domain
semantics it is modified: (1) IT is defined as IT = AH,., \w,Vz,(exInWzw =
Hzw), where relation exInW,,,, (for ‘exists in world’) relates individuals with
worlds. (2) The non-emptiness axiom Vw,3x,exInWzw for these individual do-
mains is added. (3) For each individual constant symbol ¢ an axiom Yw,exInWcw
is postulated; these axioms enforce the designation of ¢ in the individual domain
of each world w. Analogous designation axioms are added for function symbols.
For cumulative domains the axiom Vz,Vv,Vw,(exInWzv A Rvw = exInWrw)

130 C. Benzmiiller and T. Raths

is additionally postulated. It states that the individual domains are increasing
along accessibility relation R.

4 Implementation and Functionality of FMLtoHOL

FMLtoHOL is implemented as part of the TPTP2X tool [15], and it is included in
the QMLTP—v1.1 package@ It is written in Prolog and it can be easily modified
and extended.

The tool is invoked as

./tptp2X -f thf:<logic>:<domain> <gqmf-file>

where <logic> € {k,k4,d,d4,t,s4,s5} and <domain> € {const, vary, cumul}.
Assume that file E1.qgmf contains example problem E1 in gmf-syntax:

qmf (con,conjecture,
(((#dia: 7 [X] : p(£(X))) & (#box: ! [Y]: ((#dia: p(Y)) => q(YD)))
=> #dia: 7 [Z] : q(2))).

The command ‘./tptp2X -f thf:d:const El.qmf’ generates a corresponding
HOL problem file E1.thf in thf0-syntaxt] [16] for constant domain logic D:

%—-—--Include axioms for modal logic D under constant domains
include(’Axioms/LCLO1370.ax.const’).
include (’ Axioms/LCLO13"2.ax’).

v -
thf (q_type,type,(q: mu > $i > $o)).

thf (p_type,type, (p: mu > $i > $o)).

thf (f_type,type, (f: mu > mu)).

thf (con,conjecture, (mvalid @
(mimplies @
(mand @
(mdia_d @ (mexists_ind @ ~ [X: mu] : (p@ (f@X)))) @
(mbox_d @ (mforall_ind @ ~ [Y: mul
(mimplies @ (mdiad@ (p@Y))@ (gq@Y)))))e
(mdia_d @ (mexists_ind @ = [Z: mu] : (q@Z)))))).

mimplies, mand, mbox d, etc. should be read as ‘modal-implies’, ‘modal-and’,
‘modal-box-d’, respectively. The included axiom files contain the definitions of
these connectives as outlined in §2. E.g., the definition for mforall ind (which
realizes IT for constant domain semantics) is given in LCL01370.ax.const:

3 The QMLTP library is available online at
http://www.iltp.de/qmltp/problems.html

4 Some explanations: ~ is A-abstraction and @ an (explicit) application operator. !,
?, 7, |, and => encode universal and existential quantification, negation, disjunction
and implication in HOL. mu > $i > $o encodes the HOL type u — ¢ — o. mimplies,
mforall ind, and mbox d are embedded logical connectives as described in §2. Their
denotation is fixed by adding definition axioms; see e.g. mforall ind below.

http://www.iltp.de/qmltp/problems.html

HOL Based First-Order Modal Logic Provers 131

thf (mforall_ind,definition, (mforall_ind =
(~ [Phi: mu > $i > $o, W: $i] : ! [X: mu] : (Phi @ X @ W)))).

File LCL013"2.ax contains the definition of the serial O-operator in logic D:

thf (mbox_d,definition, (mbox_d =
(~ [Phi: $i > $o,W: $i]
P [V: $i] : (" (reldewWwae@V) | (Phi@V))))).

thf (al,axiom, (mserial @ rel_d)).

Similar definitions are provided in the included axiom files for the other logical
connectives and for auxiliary terms like mserial. For problem E1.thf Nitpick
finds a countermodel in 8 seconds (when run with a 20s time limit).

When FMLtoHOL is called with option ‘-f thf:sb:vary’ a modified file
E1.thf is created containing a conjecture identical to above except that mbox d
is replaced by mbox s5 and rel d by rel s5. Moreover, E1.thf now includes
different axiom files LCL01370.ax.vary and LCL01376.ax. The former contains
a modified definition of mforall ind, adds a non-emptiness axiom, and adds
further axioms as required (cf. conditions (1)-(3) in §3). Axiom file LCL013°6.ax
specifies mbox s5 as follows:

thf (mbox_s5,definition, (mbox_s5 =
(~ [Phi: $i > $o,W: $i]
I [V: $i] : (~ (rel.s5@weV) | (Phie@VvV)))).

thf (al,axiom, (mreflexive @ rel_s5)).
thf (a2,axiom, (mtransitive @ rel_s5)).
thf (a3,axiom, (msymmetric @ rel_s5)).

The modified problem in file E1.thf is proved by Satallax and LEO-II within
milliseconds.

The above explanations are all with respect to the adapted tptp2X com-
mand that comes with the QMLTP package. The included axiom files, like
LCL013"6.ax etc., are also provided by this package, so that only the QMLTP
package is required for installing the FMLtoHOL tool.

5 The Prover HOL-P

In the experiments the following HOL provers were applied: Satallax (2.6) [6],
Isabelle (2012) [10], LEO-II [] (1.5.0), Nitpick (2012) [5] and agsyHOL (1.0) [9].
Isabelle, Satallax, LEO-II and agsyHOL are theorem provers. Nitpick is a (counter-)
model finder. Satallax, and to a lesser extend LEO-II, are also capable of find-
ing countermodels. These systems work for Henkin semantics and they support
the thf0-syntax as a common input language. Moreover, the SystemOnTPTP
infrastructure [I5] enables remote calls to instances of these provers at the Uni-
versity of Miami (running on 2.80GHz computers with 1GB memory). Exploit-
ing these features, a simple shell scr