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TREE EMBEDDINGS IN DENSE GRAPHS

En 1995 Komlós, Sárközy y Szemerédi probaron que para cualquier δ > 0 y cualquier entero
positivo ∆, todo grafo G de orden n, con n suficientemente grande, que satisfaga δ(G) ≥
(1 + δ)n

2
, contiene como subgrafo a todo árbol de n vértices y grado máximo acotado por ∆.

En esta memoria se presentan dos posibles generalizaciones de este resultado, estableciendo
condiciones suficientes para el embedding de árboles de orden k en grafos con grado mínimo
al menos (1 + δ)k

2
, donde k es lineal en el orden del grafo anfitrión.

En 1963 Erdős y Sós conjeturaron que, dado un entero k, un grafo G con grado promedio
mayor que k − 1 debería contener todos los árboles en k aristas como subgrafos. Como
consecuencia de uno de los resultados principales de esta memoria, se demuestra una versión
parcial de la conjetura de Erdős-Sós.

Siguiendo la linea del embedding de árboles en grafos con condiciones de grado mínimo, Havet,
Reed, Stein y Wood conjeturaron el 2016 que todo grafo con grado mínimo al menos b2k

3
c

y grado máximo al menos k contiene todo árbol con k aristas como subgrafo. Las técnicas
aquí desarrolladas permiten, adicionalmente, probar una versión parcial de esta conjetura.
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TREE EMBEDDINGS IN DENSE GRAPHS

In 1995 Komlós, Sárközy and Szemerédi proved that for any δ > 0 and any positive integer
∆, every graph G of order n, with n sufficiently large, that satisfies δ(G) ≥ (1+δ)n

2
, contains

every tree on n vertices and maximum degree bounded by ∆ as a subgraph. In this thesis we
present two possible generalizations of this result, establishing sufficient conditions for the
embedding of trees of order k in graphs with minimum degree at least (1 + δ)k

2
, where k is

linear in the order of the host graph.

In 1963 Erdős and Sós conjectured that, given an integer k, a graph G with average degree
greater than k − 1 should contain any tree on k edges as a subgraph. As a consequence of
one of the main results of this tesis, we prove a partial approximated version of the Erdős-Sós
conjecture.

Following the line of minimum degree conditions Havet, Reed, Stein and Wood conjectured
in 2016 that every graph with minimum degree at least b2k

3
c and maximum degree at least

k contains every tree on k edges as a subgraph. The techniques here developed allow, addi-
tionally, to prove a partial approximated version of this conjecture.
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... the atlas is a manifold. This is a typical mathematician’s use of the word "is", and
should not be confused with the normal use.

Timothy Gowers
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Introduction

In 1907 Mantel proved that an n-vertex graph with no triangle as a subgraph contains at
most n2

4
edges. Many years later, in 1941, Turán [45] published a generalization of Mantel’s

theorem, determining the maximum number of edges that a graph could have without con-
taining a clique of a given size as a subgraph. In light of subsequent events this result can be
seen as the starting point of a prolific branch of graph theory known as extremal graph the-
ory. Generally speaking, the primary question motivating extremal graph theory is how and
when can a global property force some local structure in a graph. Global properties can vary
from the number of edges to the chromatic number of a graph while a local structure could
be anything from a given subgraph, such as a clique or a tree, to the more general notions of
minor and immersion. The present thesis is motivated by the questions in extremal theory
concerning trees, specifically the Erdős-Sós conjecture and some of the posterior works in
tree embeddings.

In 1963 Erdős and Sós [15] conjectured that, given an integer k, a graph G with average
degree greater than k − 1 should contain any tree on k edges as a subgraph. The conjecture
is trivially true for stars and the work published by Erdős and Gallai [13] in 1959 shows that
it is also true for paths of length k. Besides, when the average degree condition is replaced
by a minimum degree condition, i.e, when G satisfies δ(G) > k − 1, the embedding can be
easily performed by means of a greedy argument. To see that the conjecture is best possible
it is enough to consider the complete graph on k vertices, Kk, which does not contain any
tree on k edges and has average degree k − 1. Many efforts have been made around this
conjecture, resulting in several partial results. The conjecture has been proved to be true
for graphs of order k + 1, k + 2, k + 3, k + 4 and k + 5 by Zhou [49] in 1984, by Slater,
Teo and Yap [41] in 1985, by Woźniak [46] in 1996, by Tiner [44] in 2010 and by Yuan and
Zhang [47] in 2014, respectively. A generalization of these results was obtained by Görlich
and Żak [19] in 2016, proving that the conjecture holds for graphs of order k + c, where c
is any given constant and k is sufficiently large. Other types of restrictions have also been
made on the class of host graphs. In 1996 Brandt and Dobson [7] proved the conjecture for
graphs of girth at least five. Later, in 1997, Saclé and Woźniak [40] improved the result of
Brandt and Dobson by showing that the conjecture holds for graphs not containing a C4 as a
subgraph. Balasubramanian and Dobson [2] showed the conjecture for graphs not containing
a K2,s, with s < k

12
+ 1. In 2013 Eaton and Tiner [11] proved it for graphs not containing

a path of length k + 4. Interestingly, similar restrictions over the complement of the host
graph also help to prove the conjecture. Li, Liu and Wang [35] showed the conjecture for the
graphs whose complement is of girth at least five. This result was later improved by Dobson
[9] showing it for graphs with a complement not containing a K2,4. Restrictions on the class
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of trees have also proved to be helpful. Eaton and Tiner [10] successfully embedded the trees
having a vertex with at least dk

2
e − 2 leaf-neighbors and Woźniak [46] did the same with the

trees of diameter at most four having at most one vertex of degree greater than two. Ajtai,
Komlós, Simonovits and Szemerédi announced a proof of the conjecture for sufficiently large
host graphs in the 1990’s, but it has not been published to the date.

There are other conditions besides the average degree that are worth exploring. As we
mentioned above, if the minimum degree of a graph G is at least k, then any tree on k edges
can be easily embedded into G using a greedy strategy. Besides, it is known that every graph
with average degree greater than k contains a subgraph with minimum degree at least k

2
.

Thus, it is natural to think of minimum degree conditions as an alternative to the average
degree.

In 1995 Komlós, Sárközy and Szemerédi [30] proved that for any δ > 0 and any positive
integer ∆, every graph G of order n, with n sufficiently large, that satisfies δ(G) ≥ (1 + δ)n

2
,

contains every tree on n vertices and maximum degree bounded by ∆ as a subgraph. This
result gave an affirmative answer to a conjecture of Bollobás [6]. In 2001 the same authors [31]
improved their result by showing that the bound on the degree of the trees can be replaced
by a function of the form c n

logn
, where c is a constant, and this is best possible. A different

improvement was made by Csaba, Levitt, Nagy-György and Szemerédi [8] in 2010, showing
that, when considering trees with maximum degree bounded by a constant, it is enough to
ask for the host graph to have minimum degree at least n

2
+ c log n.

Following the line of minimum degree conditions Havet, Reed, Stein and Wood [20] conjec-
tured in 2016 that every graph with minimum degree at least b2k

3
c and maximum degree at

least k contains every tree on k edges as a subgraph. We will refer to this conjecture as the 2
3

conjecture. The maximum degree condition is obviously needed since without this condition
there would be no way of embedding the star on k edges. Also, there is no way of embedding
the tree Tk,3 formed by a vertex connected to the central vertices of three stars of order k

3

into the graph formed by two copies of K 2k
3
−1 and a universal vertex seeing both cliques;

hence the bound 2k
3

on the minimum degree is tight. The authors provide two results that
support their conjecture. First they show that the conjecture holds when the bound on the
maximum degree is replaced by a function which is exponential on k. Secondly they prove
that there is a constant γ > 0 such that any graph G with δ(G) ≥ (1 − γ)k and ∆(G) ≥ k
contains every tree on k edges. Reed and Stein [39] have recently proved an approximated
version of the conjecture for spanning trees.

Another interesting related conjecture that have received considerable attention is the Loebl-
Komlós-Sós conjecture [12], which considers a median degree condition. It states that an
n-vertex graph G with at least n

2
vertices of degree at least k contains every tree on k

edges as a subgraph. Several efforts have been made around this conjecture too. Soffer [42]
proved in 2000 that the conjecture was true for graphs of girth at least seven. Piguet and
Stein [38] proved in 2012 an approximated version for the dense case. In 2017 Hladký and
Piguet [27] improved the result from [38] by showing the exact case for dense host graphs.
Zhao [48] proved the case where k = n for large n. In a series of four papers [23–26] Hladký,
Komlós, Piguet, Simonovits, Stein and Szemerédi proved a relaxation of the Loebl-Komlós-
Sós conjecture: for every α > 0 there exists k0 ∈ N such that for every k ≥ k0, every n-vertex

2



graph with at least (1
2

+α)n vertices of degree at least (1 +α)k contains each tree T of order
k as a subgraph.

Other approaches around tree embeddings involve considering expansion properties [1, 3, 18,
21, 28], random host graphs [4, 16, 17, 22, 28, 29, 32, 36, 37] and random perturbations of
deterministic graphs [33].

The main problem studied in this thesis can be seen as a generalization of the result of
Komlós, Sárközy and Szemerédi [30], but the tools developed to treat this problem will also
have implications on the 2

3
conjecture and the Erdős-Sós conjecture. We are interested in

the embedding of trees on k edges into graphs with minimum degree at least (1 + δ)k
2
, where

δ is any given positive constant and k is greater than a constant k0 depending on δ. The
sole hypothesis of high minimum degree is not sufficient, because if the minimum degree is
below k, the host graph might simply be too small; thus, an additional condition is needed.
A first idea would be to impose a restriction on the order of the host graph, forcing it to be
larger than the trees we want to embed, in addition to being connected. However, the graph
formed by two copies of K k

2
connected by an edge does not contain Tk,3 as a subgraph. This

example can be generalized to show that no bound on the order of the host graph is sufficient
to ensure the appearance of every tree on k edges as a subgraph. Instead, we consider two
types of maximum degree conditions. Firstly we ask for a vertex of high degree, specifically
one with at least (1 + δ)2k neighbors. In Section 3.2.2 we present an example showing that
the bounds k

2
and 2k for the minimum and the maximum degree, respectively, are tight when

no other assumptions are made. Secondly we forget about the high degree vertex and we ask
for a small portion of vertices having degree at least (1 + δ)k. Whatever the case may be,
we will only work with dense host graphs, i.e., host graphs whose order is linear in the size
of the trees; this allows us to make use of an important tool in extremal graph theory known
as the Regularity Lemma [43]. Also, the maximum degree of the trees will be restricted.
The approximative constant δ, the density of the host graph and the bound on the degree
of the trees are necessary for our techniques to work, but we have no evidence that these
restrictions cannot be relaxed or even discarded. All the results here presented come from a
joint work with Matías Pavez and Maya Stein. The results from Chapter 2 and Chapter 3
are also part of [5].

The work is organized as follows. In the first chapter we give the basic notions and definitions
necessary to the understanding of the thesis, as well as any previous result used in the proofs
here developed. We will devote a section of Chapter 1 to the Regularity Lemma and to some
simple but useful results derived from it. In Chapter 2 we present a lemma and a proposition
relative to the cutting of the trees, which will be of particular help for the results presented
in Chapter 3 and may be of independent interest. Chapter 3 is dedicated to the proof of five
theorems concerning the embedding of trees in graphs with a minimum degree condition and
a vertex of high degree, one of which is a partial approximated version of the 2

3
conjecture.

In Chapter 4 we present a single result for which, despite being similar to the theorems in
Chapter 3, we occupy a somewhat different technique. Finally, Chapter 5 is devoted to the
Erdős-Sós conjecture. In this rather short chapter we make use of the result from Chapter 4
to derive a partial approximated version of the Erdős-Sós conjecture.

3



Results overview

As we mentioned in the Introduction, we will be considering graphs subject to a minimum
degree condition to which we will add a maximum degree hypothesis. In Chapter 3 we study
the first type of maximum degree hypothesis. Here the graphs will have a certain minimum
degree and a vertex of high degree. The next two theorems are the main results from Chapter
3.

Theorem 3.2.5 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)k

2

and maximum degree at least (1 + δ)2k, with n ≥ k ≥ δn. If T is a tree with k edges and
maximum degree at most k

1
90 , then T is a subgraph of G.

Theorem 3.2.8 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)2k

3

and maximum degree at least (1 + δ)k, with n ≥ k ≥ δn. If T is a tree with k edges and
maximum degree at most k

1
66 , then T is a subgraph of G.

As you can see, Theorem 3.2.5 generalizes, in one possible direction, the result of Komlós,
Sárközy and Szemerédi [30], while Theorem 3.2.8 provides support to the 2

3
conjecture.

In order to simplify the proofs of the theorems from Chapter 3 we first give a general lemma,
Lemma 3.2.4, describing a variety of possible structures in the host graph which enable us
to perform the embedding. Thus, all we have to do is to show that at least one of the
configurations from Lemma 3.2.4 appears in our host graph.

In Chapter 4 we study the second type of maximum degree hypothesis. Here we will be
asking for a small portion of vertices of degree at least (1 + δ)k. Theorem 4.0.6 is the main
result from this chapter and it can also be considered a generalization of the result of Komlós,
Sárközy and Szemerédi [30].

Theorem 4.0.6 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N and c = c(δ) ∈ N such that for
all n ≥ n0 the following holds. Let G be a graph with n vertices which has minimum degree
at least (1 + δ)k

2
and |{v ∈ V (G) : deg(v) ≥ (1 + δ)k}| ≥ δn, with n ≥ k ≥ δn. If T is a tree

with k edges and maximum degree at most ck, then T is a subgraph of G.

As we mentioned earlier, we will present in Chapter 5 a partial approximated version of the
Erdős-Sós conjecture. A well-known result in graph theory establish, for any given graph G,
the existence of a subgraph H ⊂ G maintaining the average degree of G, but with minimum

4



degree at least 1
2
d(G). Thus, Theorem 5.0.1 will be a direct consequence of Theorem 4.0.6

and of the density of the host graph: a graph H with average degree linear in |V (H)| must
contain a small portion of vertices of high degree, i.e., of degree close to the average degree.

Theorem 5.0.1 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N and c = c(δ) ∈ N such that for
all n ≥ n0 the following holds. Let G be a graph on n vertices which satisfies

d(G) > k − 1 + δk,

with n ≥ k ≥ δn. If T is a tree with k edges and maximum degree at most ck, then T is a
subgraph of G.

Variants of Theorem 3.2.5

In Chapter 3 we also present some variants of Theorem 3.2.5, which consider additional or
alternative hypothesis. For instance, when considering trees with maximum degree bounded
by a constant, we can lower the bound on the maximum degree of the host graph in Theorem
3.2.5.

Theorem 3.2.7 Let δ ∈ (0, 1) and ∆ ≥ 2. There exists n0 = n0(δ) ∈ N such that for all
n ≥ n0 the following holds. Let G be a graph on n vertices which has minimum degree at
least (1 + δ)k

2
and maximum degree at least (1 + δ)2 (∆−1)

∆
k, with n ≥ k ≥ δn. If T is a tree

with k edges and maximum degree at most ∆, then T is a subgraph of G.

Also, in Section 3.2.3, we define a special class of graphs Nk,δ and we show that the maximum
degree condition in Theorem 3.2.5 is only needed for graphs that belong to this class, in the
rest a vertex with degree at least (1 + δ)4k

3
is sufficient.

Theorem 3.2.9 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)k

2
,

maximum degree at least (1 + δ)4k
3

and does not belong to Nk,δ, with n ≥ k ≥ δn. If T is a
tree with k edges and maximum degree at most k

1
90 , then T is a subgraph of G.

Another way of relaxing the maximum degree condition in Theorem 3.2.5 is by asking for a
vertex with a large first and second neighborhood.

Theorem 3.2.10 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N such that for all n ≥ n0

the following holds. Let G be a graph with n vertices which has minimum degree at least
(1 + δ)k

2
, with n ≥ k ≥ δn. Suppose there is a vertex x ∈ V (G) with |N(x)| ≥ (1 + δ)4k

3
and

|N2(x)| ≥ (1 + δ)4k
3
. If T is a tree with k edges and maximum degree at most k

1
90 , then T is

a subgraph of G.

In each of these settings we find the embedding of T by showing that at least one of the
structures described in Lemma 3.2.4 appears in the host graph.

5



Chapter 1

Preliminaries

1.1 Basic notation

We begin with some standard graph theory notation. Given ` ∈ N, we write [`] = {1, . . . , `}.
Let H be a graph, we denote by V (H) and E(H) the set of vertices and edges respectively,
and we write v(H) = |V (H)| and e(H) = |E(H)| for their sizes. Let X, Y ⊆ V (H), we
write EH(X, Y ) for the set of edges xy ∈ E(H) with x ∈ X and y ∈ Y and eH(x, y) for the
number of such edges. Given x ∈ V (H) we write NH(x) for its set of neighbors, degH(x)
for its cardinality and EH(x) for the set of edges incident to x. For S ⊆ V (H) we write
NH(x, S) = NH(x) ∩ S for the set of neighbors of x in S and degH(x, S) for its cardinality.
If the underlying graph is clear we omit the subscript. The second neighborhood of x will
be denoted by N2(x) := (

⋃
x∈N(x)N(y)) \ N(x). The i-th neighborhood can be defined in

a similar way. We write δ(H) := minv∈V (H) deg(v), d(H) :=
∑

v∈V (H) deg(v)

|V (H)| and ∆(H) :=

maxv∈V (H) deg(v) for the minimum, average and maximum degree of H, respectively. Given
a set U ⊂ V (H) we write H[U ] for the graph induced in H by the vertices in U . We denote
by C(H) the family of components of H. Let T be a tree and let F be a forest. The set of
leaves of T will be denoted by `(T ), the same for F. If T and F are rooted, r(T ) will stand
for the root of T and r(F) for set of roots of F. Let T be a family of disjoint trees, then

⋃
T

is the forest induced by the union of the trees in T.

Given two vertices x, y ∈ V (H) we denote the distance between x and y, that is, the length
of the shortest path connecting x and y, by distH(x, y). The diameter of H is denoted by
diam(H) and is defined as diam(H) := maxx,y∈V (H) distH(x, y).

We say that a graphH embeds in a graph G if there is an injective function φ : V (H)→ V (G)
preserving adjacency, that is, if uv is an edge in H, then φ(u)φ(v) is an edge in G.

A proper 2-coloring c of a graph G is a map c : V (G)→ {0, 1} such that for any uv ∈ E(G),
c(u) 6= c(v). For such a coloring we define c0 := {v ∈ V (G) : c(v) = 0} and c1 := {v ∈
V (G) : c(v) = 1}. Throughout the rest of the thesis we will assume that |c0| ≥ |c1|. For the
sake of clarity, when we are talking about a tree T we will refer to its color classes as A(T )

6



and B(T ) and we will also assume that |A(T )| ≥ |B(T )|.

Let us mention here a well-known fact in graph theory that we will need when working on
the Erdős-Sós conjecture.

Fact 1.1.1 Let t > 0 and let H be a graph with d(H) ≥ t, then there exists a subgraph
H ′ ⊂ H with d(H ′) ≥ t and δ(H ′) ≥ t

2
.

In the next section we introduce the notion of regularity and the famous Regularity Lemma
due to Endre Szemerédi.

1.2 Regularity Lemma

We begin by presenting the concept of regular pair.

Definition 1.2.1 Let H = (A,B;E) be a bipartite graph with density d(A,B) := e(A,B)
|A||B| .

Let ε > 0. We say that the pair (A,B) is ε-regular if for any X ⊆ A and Y ⊆ B, with
|X| > ε|A| and |Y | > ε|B|, we have that

|d(X, Y )− d(A,B)| < ε.

It turns out that regular pairs behave, in many ways, like random bipartite graphs with the
same edge density. Given (A,B) an ε-regular pair with density d, we say that a subset X ⊆ A
is significant if |X| > ε|A|, and similar for subsets of B. A vertex x ∈ A is called typical to
a significant set Y ⊆ B if deg(x, Y ) > (d− ε)|Y |. The next fact states that in a regular pair
almost every vertex is typical to any given significant set, and also that regularity is inherited
by subpairs.

Fact 1.2.2 Let (A,B) be an ε-regular pair with density d. The following holds:

1. For any significant Y ⊂ B, all but at most ε|A| vertices from A are typical to Y .

2. Let δ ∈ (0, 1). For any subsets X ⊂ A and Y ⊂ B, with |X| ≥ δ|A| and |Y | ≥ δ|B|,
the pair (X, Y ) is 2ε

δ
-regular with density between d− ε and d+ ε.

The Regularity Lemma states that the vertex set of any large graph can be partitioned into a
bounded number of clusters, such that the graph induced by almost any pair of those clusters
is ε-regular, for a given ε > 0. Let us now state the Regularity Lemma in a precise form.

Theorem 1.2.3 (Regularity Lemma) Let ε > 0 and let m0 ∈ N. There exists n0 and M0,
depending only on ε and m0, such that the following is true. For every graph G on n ≥ n0

vertices there exists a vertex partition V (G) = V0 ∪ V1 ∪ · · · ∪ V`, where m0 ≤ ` ≤ M0, such
that

1. |V0| ≤ εn,
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2. |V1| = |V2| = · · · = |V`| and

3. all but at most ε`2 of the pairs (Vi, Vj) are ε-regular.

Once the Regularity Lemma is applied to a large graph G it is more comfortable to work with
a subgraph Gd ⊆ G, usually called pure graph, that is simpler to analyze and, furthermore,
it approximates very well G in the sense that |E(G)| − |E(Gd)| < α|V (G)|2, where α is a
constant that can be arbitrarily lowered. The pure graph is obtained by deleting the vertices
in V0, the edges inside the clusters, the edges of the pairs of clusters that are not regular and
the edges of those pairs that have a density below some given threshold d ≥ 0. Let us say
n := |V (G)| and s := |Vi|. During this deletion process we throw away

|E(G−Gd)| < εn2 + `
s2

2
+ ε`2s2 +

`2

2
ds2 ≤

(
1

2m0

+ 2ε+
d

2

)
n2

edges and, therefore, we could say that α = 1
2m0

+ 2ε+ d
2
, which are all parameters that can

be chosen. We say then that the pure graph admits an (ε, d)-upper regular partition, more
precisely: a vertex partition V (Gd) = V1 ∪ · · · ∪ V` is called (ε, d)-upper regular if

1. |V1| = |V2| = · · · = |V`|,

2. Vi is independent for all i ∈ [`], and

3. for all 1 ≤ i < j ≤ `, (Vi, Vj) is ε-regular with density either d(Vi, Vj) > d or d(Vi, Vj) =
0.

We state now another version of the lemma, which will be specially useful for us. This slightly
different version was published by Kühn and Osthus [34] in 2009 and has the additional
advantage of providing a bound for the degree of each vertex, which will be of particular help
when working with graphs subject to a minimum degree condition.

Proposition 1.2.4 Let ε > 0 and let m0 ∈ N. There exists N0,M0, depending only on ε and
m0, such that the following holds. Let d ∈ [0, 1] and let G be any graph on n ≥ N0 vertices.
There exists a subgraph G′ ⊂ G, with |V (G)\V (G′)| ≤ εn and degG′(x) ≥ degG(x)−(d+ε)n
for all x ∈ V (G′), such that G′ admits an (ε, d)-upper regular partition V (G′) = V1∪· · ·∪V`,
where m0 ≤ ` ≤M0.

We have already seen that in a regular pair most of the vertices are typical to a given
significant set. The next lemma generalizes that result for more than one significant set.

Definition 1.2.5 Let ε > 0 and let d > 0. Let G be a graph that admits an (ε, d)-upper
regular partition. Let C be a family of significant sets and consider v ∈ V (G). We define
Tv(C) := {C ∈ C : v is typical to C}.

Lemma 1.2.6 Let ε ∈ (0, 1) and let d > 0. Let G be a graph that admits a (ε, d)-upper
regular partition. Let Y be a family of significant sets. For any cluster C,

|Tv(Y)| ≥ (1−
√
ε)|Y|

for at least (1−
√
ε)|C| vertices v ∈ C.
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Proof. Suppose that there is a cluster C and a set C ⊂ C with |C| ≥
√
ε|C| such that

|Tv(Y)| < (1−
√
ε)|Y|, for each v ∈ C. Then,∑

Y ∈Y

|{v ∈ C : v is not typical to Y }| =
∑
v∈C

|{Y ∈ Y : v is not typical to Y }|

≥
∑
v∈C

|{Y ∈ Y : v is not typical to Y }|

≥ |C|
√
ε|Y|

> ε|C||Y|

This means that there is a cluster Y ∈ Y such that more than ε|C| vertices in C are not
typical to Y , a contradiction.

Let G be a graph admitting an (ε, d)-upper regular partition for some ε > 0 and some
d > 0. We will say that two clusters are adjacent if they share common edges. Using this
definition of adjacency we can define a graph Gr called the reduced graph, whose vertex set
is the family of clusters in G and where two clusters are connected by an edge if they are
adjacent in G. We will speak about some cluster structures such as cluster-matchings, cluster-
triangles, cluster-paths, cluster-walks and cluster-cycles; each of these structures is defined
as the corresponding object in the reduced graph. For a family of clusters C we will write
V (C) :=

⋃
C∈C C, also for a cluster-matching M we will write V (M) :=

⋃
(A,B)∈M(A∪B) and

similarly for other cluster structures. Sometimes we will speak about the weighted degree of
a cluster C which we define as follows,

deg(C) :=
e(C, V (G) \ C)

|C|
.

Also, we define the weighted degree of a cluster C towards a family of clusters or towards a
cluster structure C as

degC(C) :=
e(C, V (C))
|C|

.

1.3 Trees

Let T be a rooted tree. We define a partial order � on V (T ) in the following way. We say
that x � y if and only if y lies in the unique path from x to r(T ), if x � y we will say that
x is below y. Given x ∈ V (T ), we say that v ∈ V (T ) is a child of x if xv ∈ E(T ) and v is
below x. Given a vertex x ∈ V (T ), we define the tree induced by x, denoted by T (x), as the
subtree of T with vertex set V (T (x)) = {v : v � x}. For i ≥ 0 we may define Li ⊆ V (T ),
the i-th level of T , as those vertices that are at distance i from the root.

The following lemma gives an idea of why regularity is so useful for the task of embedding
trees. It ensures that we can embed small trees in sufficiently large regular pairs.

Lemma 1.3.1 Let (A,B) be a ε-regular pair with d(A,B) > d and size |A| = |B| = s.
Let X ⊂ A, Y ⊂ B be subsets with more than αs vertices, where α = β+4ε

d−ε , and let T be a
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tree on βs vertices, where 0 < β ≤ ε. Then T can be embedded into X ∪ Y by a function
φ : T → X ∪Y such that all but εs vertices can be chosen as the root of T , and for any other
x ∈ V (T ), φ(x) is chosen from a set of more than 3εs+ 1 vertices.

Proof. Let T be a tree on βs vertices rooted at r ∈ V (T ), we will construct an embedding
φ : V (T )→ X ∪ Y sequentially through the levels of T . We embed r into a typical vertex of
X∪Y , let suppose that φ(r) ∈ X so it will be typical to Y . Assume that L0, . . . , Li are already
embedded, where i is without loss of generality even, in a way such that deg(φ(x), Y ′) ≥
(d − ε)|Y ′| for all x ∈ Li, where X ′ and Y ′ are the set of unoccupied vertices in X and Y
respectively. Let v be any vertex in Li+1 and let x ∈ Li be its father. We have to select
a vertex u ∈ N(φ(x), Y ′) which is typical to X ′. Since at most εs vertices from Y ′ are not
typical to X ′ and at most |Li+1| − 1 vertices of the neighborhood of φ(x) in Y ′ may be
occupied, then φ(y) can be chosen from at least

|N(φ(x), Y ′)| − (|Li+1)| − 1)− εs ≥ (d− ε)|Y ′| − |Li+1| − εs+ 1

vertices. Notice that

(d−ε)|Y ′|−|Li+1| ≥ (d−ε)(|Y |−
∑
t≤i

|Lt|)−|Li+1| > (d−ε)|Y |−
∑
t≤i+1

|Lt| ≥ (d−ε)|Y |−|V (T )|.

Since α = β+4ε
d−ε , it implies that (d − ε)|Y | ≥ βs + 4εs ≥ |V (T )| + 4εs and thus the number

of choices of φ(y) is at least 3εs+ 1.

Remark 1.3.2 It is important that φ(y) can be chosen in at least 3εs+ 1 ways, because for
some y ∈ V (T ) we will need to choose φ(y) not only typical to X or Y , but also typical to
other two clusters D1 and D2 in order to continue the embedding of the tree.

We now state a simple lemma on tree cutting and then a numeric lemma that will simplify
the treatment of the pieces resulting from the cut.

Lemma 1.3.3 [38] Let T be a tree on t edges. There is a vertex z ∈ V (T ) such that every
component of T − z has d t

2
e or fewer vertices.

Proof. Choose any vertex x ∈ V (T ) to be the root of T . Let z be the vertex minimal
with respect to the order given by the root x such that |V (T (z))| > t

2
. Note that each

component below z covers at most b t
2
c vertices. From the choice of z we also have that

|V (T − T (z))| ≤ d t
2
e.

Lemma 1.3.4 Let t ∈ N and let (ai)
m
i=1 a sequence of positive integers with m ≥ 1 such

that 0 < ai ≤ t/2, for each i = 1 . . . ,m, and
∑m

i=1 ai ≤ t. Then:

1. There is a partition {I1, I2, I3} of the set [m] such that
∑

i∈Ik ai ≤
t
2
, for k = 1, 2, 3,

and
∑

i∈I3 ai ≤
∑

i∈I2 ai ≤
∑

i∈I1 ai.

2. There is a partition {J1, J2} of the set [m] such that
∑

i∈J1 ai ≤
2t
3
,
∑

i∈J2 ai ≤
t
2
and∑

i∈J2 ai ≤
∑

i∈J1 ai.
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Proof. We first pick a set I1 ⊂ [m] with
∑

i∈I1 ai ≤
t
2
that maximizes the sum. From [m]\ I1

we extract a second set I2 with
∑

i∈I2 ai ≤
t
2
that maximizes the sum. The choice of I1, I2

ensures that for I3 := [m] \ (I1 ∪ I2) also holds that
∑

i∈I3 ai ≤
t
2
. These sets fulfill condition

(1). Notice that I2 and I3 may be empty.

Let us call Sk :=
∑

i∈Ik ai ≤
t
2
and S := S1 + S2 + S3. Observe that S1 ≥ min{S, t

3
} and,

therefore, S2 + S3 ≤ 2t
3
. Thus, if I3 6= ∅ we set J1 := I2 ∪ I3 and J2 := I1. When I3 = ∅ we

just set J1 := I1 and J2 := I2, which trivially satisfy point (2).

Remark 1.3.5 Observe that I3 can have at most one element, otherwise, due to the maxi-
mality of I1 and I2, there would be j, k ∈ I3 such that aj+

∑
i∈I1 ai >

t
2
and ak+

∑
i∈I2 ai >

t
2
,

which contradicts the fact that
∑m

i=1 ai ≤ t.

Lemma 1.3.4 tells us that after cutting a tree with Lemma 1.3.3 (1) we can form groups of
trees with the components of T − z having some control over the sizes of the groups. In the
next chapter we study the “balance” of the resulting forest.
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Chapter 2

Results on tree cutting

After cutting a tree with Lemma 1.3.3 we would like to say something about the “balance”
of the resulting forest, and for this we resort to the concept of vertex coloring. Recall that
for a proper 2-coloring c of a graph G, c0 = {v ∈ V (G) : c(v) = 0} and c1 = {v ∈ V (G) :
c(v) = 1}. Remember also that |c0| ≥ |c1|. When we are talking about a tree T we refer to
its color classes as A(T ) and B(T ) and we also assume that |A(T )| ≥ |B(T )|.

Lemma 2.0.1 Let T be a tree on t + 1 vertices. There exists z ∈ V (T ) and a proper
2-coloring c : V (T − z)→ {0, 1} of T − z such that |c0| ≤ 3t

4
and |c1| ≤ t

2
.

Proof. Let us apply Lemma 1.3.3 to obtain a cut vertex z and a forest T−z with components
{Ti}mi such that |Ti| ≤ t

2
, for every i. To simplify things we will use Lemma 1.3.4 to group

the components of T − z: setting ai := |Ti| we get three sets I1, I2 and I3 such that the
forests Fj :=

⋃
i∈Ij Ti, with j = 1, 2, 3, cover less than t

2
vertices each. For j = 1, 2, 3 consider

an arbitrary 2-coloring cj of the forest Fj.

Suppose first that the heavier color class of F1, c1
0, satisfy |c1

0| > 3
4
|F1|. Define c0 := c1

0∪c2
1∪c3

1

and c1 := V (T − z) \ c0 = c1
1 ∪ c2

0 ∪ c3
0. This yields:

|c0| ≤ |c1
0|+ |c2

1|+ |c3
1| ≤ |F1|+

|F2|
2

+
|F3|

2
=
|F1|

2
+
|T − z|

2
≤ t

4
+
t

2
=

3t

4
.

Moreover,

|c1| ≤ t− |c1
0| ≤ t− 3|F1|

4
≤ t− t

4
=

3t

4

where the last inequality comes from the fact that |F1| ≥ t
3
. These two bounds ensure that

max{|c0|, |c1|} ≤ 3t
4
; renaming the color classes if necessary we get the result.

We can now assume that |c1
0| ≤

3|F1|
4

. Define c0 := c1
0 ∪ c2

1 ∪ c3
0 and c1 := V (T − z) \ c0 =

c1
1 ∪ c2

0 ∪ c3
1:

|c0| ≤
3|F1|

4
+
|F2|

2
+ |F3| =

2|T − z|
4

+
|F1|+ 2|F3|

4
≤ t

2
+
|F1|+ |F2|+ |F3|

4
=

3t

4
.
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For c1 we have:

|c1| ≤
|F1|

2
+ |F2|+

|F3|
2

=
t

2
+
|F2|

2
≤ 3t

4
.

Again we obtain max{|c0|, |c1|} ≤ 3t
4
.

Lemma 2.0.1 states that we can always cut a tree in a somewhat balanced manner. If the
cut is made in a way that all the resulting trees cover at most half of the total vertices, then
the fraction 3

4
in Lemma 2.0.1 is not replaceable by a smaller one: consider the tree obtained

from the union of a path of order t
2

+ 2 and a star of order t
2
such that the central vertex of

the star is one of the end vertices of the path and this is the only vertex they share; cutting
this tree would result in a forest composed by a path of order t

2
and a star of order t

2
; one

of the color classes of this forest will always contain 3t
4
− 1 vertices. This last example shows

that if we want to cut our tree so that the resulting forest is even more balanced, then we
need to cut it in a different fashion. The following proposition deals with this problem.

Definition 2.0.2 Given a graph G and a proper 2-coloring of its vertex set c : V (G)→ {0, 1}
we define the imbalance of c as σ(c) := |c0| − |c1|. For a tree T we will use σ(T ) to denote
the imbalance of its unique 2-coloring, i.e., σ(T ) := |A(T )| − |B(T )|.

Proposition 2.0.3 Let T be a tree on t + 1 vertices. There exists z ∈ V (T ) and a proper
2-coloring c : V (T − z)→ {0, 1} of T − z such that |c0| ≤ 2t

3
and |c1| ≤ t

2
.

Proof. Consider z0 ∈ V (T ) and c : V (T − z0) → {0, 1} from Lemma 2.0.1, this means that
the heavier color class induced by c, c0, contains at most 3t

4
vertices. If there were a 2-coloring

of T −z0 with both color classes containing less than 2k
3
vertices, we would be done, therefore

we will assume that the heavier color class of any 2-coloring of T − z0 covers at least 2t
3

vertices, in particular we have

|c0| ≥
2t

3
and |c1| ≤

t

3
. (2.1)

Let us call R ⊆ C(T − z0) = {Ti}i∈I the collection of components of T − z0 with its heavier
color class contained in c0, i.e., Ti ∈ R if and only if A(Ti) ⊆ c0, and let R ⊂ I be the set of
its indices. For the sake of order we state a few facts before proving the result.

Fact 2.0.4 For every P ⊆ R either
∑

i∈P σ(Ti) <
t

12
or
∑

i∈P σ(Ti) >
t
3
.

If this were not true, we could invert the colors in the trees contained in a subfamily {Ti}i∈P ⊆
R with t

12
≤
∑

i∈P σ(Ti) ≤ t
3
; this would yield a coloring c′ such that |c′0| = |c0|−

∑
i∈P σ(Ti) ≤

3t
4
− t

12
= 2t

3
and |c′1| = |c1| +

∑
i∈P σ(Ti) ≤ 2t

3
, where we have used (2.1). This contradicts

our first assumption.

Obviously, since c is an unbalanced coloring, it must happen that
∑

i∈R σ(Ti) >
t
3
. From

Fact 2.0.4 we can also derive the following,

there is no P ⊆ R such that σ(Ti) <
t

12
for every i ∈ P and

∑
i∈P

σ(Ti) ≥
t

12
, (2.2)

because we could easily find a set Q ⊆ P with t
12
≤
∑

i∈Q σ(Ti) ≤ t
3
. In particular, we deduce

that there is a tree Ti1 inR with σ(Ti1) >
t
3
. Notice that this unbalanced tree must be unique,
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for if there were two such trees we could switch color classes in one of them and obtain a
contradiction to the initial assumption. We will assume that T1 is the unique component in
T − z0 of great imbalance. Thus, σ(Ti) <

t
12

for every i ∈ R \ {1}, and making use of (2.2)
we have ∑

i∈R\{1}

σ(Ti) ≤
t

12
. (2.3)

We are now ready to state our second fact.

Fact 2.0.5
∑

i∈I\{1} σ(Ti) ≤ t
6
.

If
∑

i∈I\{1} σ(Ti) >
t
6
, we can switch colors in every tree of the family R \ {T1} to obtain a

2-coloring c′ of T − z0 with |c′1| < t
3

+ t
12
< t

2
, where we have used (2.1) and (2.3). Besides,

|c′1| = |B(T1)|+
∑

i∈I\{1}

|A(Ti)| ≥
∑

i∈I\{1}

(
|Ti|
2

+
σ(Ti)

2

)
>
t− |T1|

2
+

t

12
≥ t

4
+

t

12
=
t

3
,

which implies t
2
< |c′0| < 2t

3
, a contradiction.

Now, apply Lemma 1.3.3 to obtain z1 ∈ V (T1) such that every component of T1−z1 covers at
most |T1|−1

2
< t

4
vertices. We call these components {T1,i}i∈I1 . Let us call Tz0 the component

of T − z1 that contains z0 and let us say that T1,1 is the unique component of T1 − z1 that
is contained in Tz0 (T1,1 may be empty). Use Lemma 1.3.4 (2) to group the components
{T1,j}j>1 into two forests FA and FB fulfilling

|FA| ≤ 2(|T1| − 1)

3
≤ t

3
and |FB| ≤ |T1| − 1

2
≤ t

4
. (2.4)

For i = A,B consider ci a proper 2-coloring of F i that maximizes σ(ci). We state one final
fact before completing our proof.

Fact 2.0.6 σ(cA) + σ(cB) > t
12
.

This comes simply from the fact that σ(T1) < |T1,1| + σ(cA) + σ(cB), from which we obtain
σ(cA)+σ(cB) > σ(T1)−|T1,1| ≥ t

12
. Now we consider and treat separately two possible cases.

Case 1: σ(Tz0) ≤ t
3
.

If σ(cA) ≥ σ(cB), define c′0 := A(Tz0) ∪ cA1 ∪ cB0 and c′1 := (T − z1) \ c′0 = B(Tz0) ∪ cA0 ∪ cB1 .
This implies

|c′0| =
|Tz0|

2
+
σ(Tz0)

2
+
|FA|

2
− σ(cA)

2
+
|FB|

2
+
σ(cB)

2
≤ t

2
+
σ(Tz0)

2
≤ 2t

3

where we have used the bound on the imbalance of Tz0 . Also, by (2.4),

|c′1| <
|Tz0 |

2
+ |FA|+ |F

B|
2

=
t

2
+
|FA|

2
≤ 2t

3
.

If σ(cB) ≥ σ(cA), define c′0 := A(Tz0) ∪ cA0 ∪ cB1 and c′1 := (T − z1) \ c′0. Again we obtain
|c′0| ≤ 2t

3
and |c′1| ≤ 2t

3
. Thus, c′ fulfills the balance condition we are looking for.
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Case 2: σ(Tz0) >
t
3
.

This time we define c′0 := A(Tz0) ∪ cA1 ∪ cB1 and c′1 := B(Tz0) ∪ cA0 ∪ cB0 . Recalling Facts 2.0.5
and 2.0.6 we get

|c′0| =
t

2
+
σ(Tz0)

2
−σ(cA) + σ(cB)

2
≤ t

2
+
σ(T1,1) +

∑
i∈I\{1} σ(Ti) + 1

2
− t

24
≤ t

2
+
t

8
+
t

12
− t

24
=

2t

3

and, by (2.4),

|c′1| <
|Tz0|

2
− σ(Tz0)

2
+ |FA|+ |FB| < t

2
+
|FA|+ |FA|

2
− t

6
<

2t

3
,

which again yields max{c′0, c′1} ≤ 2t
3
, finding with this the wanted coloring and completing

the proof.

Observe that the bound 2t
3
given by Proposition 2.0.3 is almost best possible, in the sense

that the fraction 2
3
is not replaceable by a smaller one. To see this it is enough to consider

the tree consisting of a vertex connected to the central vertices of three stars of order t
3
.
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Chapter 3

Embedding of trees in graphs with
minimum degree condition

In this chapter we study the embedding of trees of bounded degree into graphs subject to a
minimum degree condition and which contain a vertex of high degree. We will first establish
some results working on connected regularized graphs to then move on to the general case,
where the regularized graph might not be connected. In this case the high degree vertex will
play a fundamental role, as it will act as a link between different components of the host
graph.

3.1 Embedding of trees in large connected graphs

The results of this section work for large connected graphs that admit a regular partition.
These propositions are meant to be used once the Regularity Lemma has been applied to
our host graph. We treat separately the bipartite case and the non-bipartite case. Then, in
Proposition 3.1.14, we show how to improve the bound on the degree of the trees.

3.1.1 Cutting the trees into small pieces

As we saw in Lemma 1.3.1 we can easily map small trees into regular pairs. Thus, when we
want to embed a tree T into a regularized graph, it is useful to cut down T into small subtrees.
We present here a proposition showing that any sufficiently large tree can be decomposed
into a family of small subtrees connected by few vertices.

Proposition 3.1.1 Let β ∈ (0, 1). There exists t0 = t0(β) ∈ N such that for all t ≥ t0 the
following holds. Let T be a rooted tree on t+ 1 vertices. There exist a set of seeds S ⊂ V (T )
and a family P of disjoint rooted trees which will be called pieces, such that

(i) r(T ) ∈ S;
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(ii) P consists of the components of T − S;

(iii) each piece in P has at most βt vertices; and

(iv) |S| < 1
β

+ 2.

Proof. We iteratively construct the set S, starting with T 0 := T and S0 := ∅. In step i+ 1,
let si+1 be the minimal vertex of T i (minimal with respect to the order defined in 1.3) such
that

|T i(si+1)| > βt.

Note that by the minimality of si+1 the trees in T i(si+1)−si+1 each cover at most βt vertices.
Obtain Si+1 by adding si+1 to Si and set T i+1 = T i − T i(si+1). If at some step j there is
no vertex sj+1 with |T j(sj+1)| > βt, then |T j| ≤ βt, and we end the process. We set
S := Sj ∪ {r(T )} and P := C(T − S).

Properties (i)–(iii) clearly hold. For (iv) observe that |T i+1| < |T i| − βt. Hence,

0 ≤ |Tm| ≤ |T 0| − j · βt

which in turn implies that |S| = j + 1 ≤ |T |
βt

+ 1 < 1
β

+ 2.

3.1.2 Bipartite case

We said that a graph with minimum degree at least k contains every tree on k edges as a
subgraph, and that this can be proved with a simple greedy argument. In the case where
the host graph is bipartite the minimum degree condition can be relaxed and the greedy
argument will continue to work. Consider a bipartite graph G = X ∪ Y . If deg(x) ≥ bk

2
c for

all x ∈ X, and deg(y) ≥ k for all y ∈ Y , then each tree T with k edges is a subgraph of G.
This weakened hypothesis works because the lighter color class of T , B(T ), contains at most
bk

2
c vertices and, if the embedding is done in a way that φ(B(T )) ⊂ Y , the minimum degree

of X will always suffice to find enough unoccupied vertices in Y .

The next proposition shows that when the trees have bounded degree and G admits a regular
partition, it suffices to ask for a minimum degree greater than k

2
in only one of bipartition

classes, subject to the size of that class being sufficiently large.

Proposition 3.1.2 Let ε ∈ (0, 10−4) and let d ∈ N. There exists k0 = k0(ε) ∈ N such that
for all k ≥ k0 the following holds. If G = (X, Y ;E) is a connected bipartite graph with an
(ε, 5
√
ε)-upper regular partition, and corresponding reduced graph Gr, such that

(i) diam(Gr) ≤ d;

(ii) deg(x) ≥ (1 + 100
√
ε)k

2
, for all x ∈ X; and

(iii) |X| ≥ (1 + 100
√
ε)k,

then G contains any tree T with k edges and ∆(T ) ≤ k
1

d+1 as a subgraph.
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Proof. Let X = X1 ∪ · · · ∪Xs and Y = Y1 ∪ · · · ∪ Yt be the (ε, 5
√
ε)-upper regular partition

of G, and m denote the cardinality of each cluster. For each i ∈ [s], we arbitrarily partition
Xi into sets Xi,S, Xi,L, Xi,C ; and for each j ∈ [t] we arbitrarily partition Yj into Yj,S, Yj,L,
Yj,C , such that

|Xi,S| = |Xi,L| = |Yj,S| = |Yj,L| = d10
√
εme.

The letters S, L and C stand for seeds, links and clusters, respectively (setsXi,C and Yj,C con-
tain the bulk of the clusters). We call these subsets the L-, S- or C-slice of the corresponding
cluster.

Note that, by Fact 1.2.2, for every (Xi, Yj) with positive density, each of the pairs (Xi,K , Yj,K′),
with K,K ′ ∈ {S, L, C}, is

√
ε

5
-regular with density greater than 4

√
ε.

Root T at any vertex r(T ). By Proposition 3.1.1, with parameters β = ε
s+t

, we obtain a
decomposition of T into a collection of pieces P , each of order at most βk, and a family of
seeds S of size at most 2

β
. Order the elements from S ∪ P in a way that the first element is

r(T ), and the parent of each element is either an earlier seed or belongs to an earlier piece.

Our plan is to embed the elements from S∪P in this order. Seeds will go to appropriate slices
Xi,S or Yj,S, with r(T ) going to a cluster Xi ⊆ X if r(T ) belongs to the heavier bipartition
class of T , and going to a cluster from Y otherwise.

Pieces from P will go into slices (Xi,C , Yj,C) of appropriate pairs (Xi, Yj), and into L-slices
of other clusters. More precisely, for each piece P ∈ P we will find a pair (Xi, Yj) such
that there is enough space left in (Xi,C , Yj,C) to accommodate P . At this point, the parent
of P is already embedded into some cluster Z, so we need to embed part of P into a path
ZZ0Z1Z2 . . . Zh that connects Z with the pair (Xi, Yj). Because of the bounded degree of T ,
and since the diameter of G is also bounded, this path can be chosen short enough to ensure
that the levels of P that are embedded into this path only contain a small fraction of k. So
we can use the L-slices of the clusters Z` for these levels. The remaining levels of P will be
embedded into the free space of (Xi,C , Yj,C).

Let us make this sketch more precise. During the embedding procedure, we will write X ′i,C
and Y ′j,C for the set of unoccupied vertices of Xi,C and Yj,C respectively. We will say that
a pair (Xi, Yj) is good if d(Xi, Yj) >

√
ε and min{|X ′i,C |, |Y ′j,C |} ≥ 5

√
εm. Hence we will be

able to apply Lemma 1.3.1 to any good pair and any piece belonging to P .

The embedding φ : V (T ) → V (G) will be constructed iteratively, following the embedding
order of S ∪P chosen above. Employing the strategy explained above, we make sure that at
every step, the following conditions will be satisfied:

(A) Each vertex is embedded into a neighbor of the image of its already embedded parent;

(B) each s ∈ S is embedded into the S-slice of some cluster;

(C) for each P ∈ P , the first (up to d) levels are embedded into the L-slices of some clusters,
and the rest goes into the C-slices; and

(D) every v ∈ V (T ) is mapped into a vertex that is typical towards both the S-slice and the
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L-slice of some adjacent cluster.

Since the set S has constant size, and since we do not particularly care1 into which cluster a
seed goes, as long as it goes to the S-slice, it is clearly possible to embed a seed s, when its
time comes, satisfying conditions (A), (B) and (D).

So assume we are about to embed a piece P ∈ P . The parent of the root r(P ) of P is already
embedded into some vertex that is typical with respect to the L-slice of some cluster Z0. In
order to be able to embed P according to our plan, it suffices to ensure that

(I) there exists some good pair (Xi, Yj);

(II) there is a path Z0Z1Z2 . . . Zh of length h ≤ d from Z0 to one of Xi, Yj;

(III) the union of the first h levels of P is small enough to fit into the free space in the
L-slices of {Z0, Z1, Z2, . . . , Zh−1}.

For the moment, assume (I) holds. Note that then (II) holds because of condition (i) of
Proposition 3.1.2. Let us prove (III).

Using (C) for already embedded pieces P ′, and using the fact that, for any such piece P ′, the
number of vertices in their first d levels is bounded by 2(∆(T )−1)d−1 (except if ∆(T ) ≤ 2, in
which case this number is bounded by d), we have that the total number of occupied vertices
in L-slices is at most

|S| ·∆(T ) · 2(∆(T )− 1)d−1 ≤ 4

β
· k

d
d+1 < εm

for k sufficiently large. In particular, each L-slice of a cluster Z` has at least d9
√
εme unused

vertices. This is enough to ensure that we can embed each vertex of the first h levels of
P into the L-slices of the clusters Z0, Z1, Z2, . . . , Zh−1 in a way that (A) and (D) hold.
This proves (III). Finally, repeatedly apply Lemma 1.3.1 to embed the trees induced by the
remaining levels of P into (X ′i,C , Y

′
j,C) in a way that (A) and (D) hold.

Let us now prove (I). We first note that there exists some cluster Xi such that |φ−1(Xi,C)| <
|Xi,C | − 5

√
εm. Indeed, otherwise we have used at least

(1− 21
√
ε)|X| − 5

√
ε|X| ≥ (1− 26

√
ε)(1 + 100

√
ε)k > (1 + 2

√
ε)k > k + 1

vertices from X already, a contradiction, since |T | = k + 1.

Next, we claim there exists some cluster Yj such that (Xi, Yj) is good. If this was not the
case, then we have used at least

(1− 26
√
ε)|N(Xi)| ≥ (1− 26

√
ε)(1 + 100

√
ε)
k

2
> (1 + 2

√
ε)
k

2
>
k + 1

2

vertices of Y already, a contradiction, as we placed the root r(T ) of T in a way that guaranteed
we would embed the smaller bipartition class of T into Y .

1except if it is the root, see above
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Remark 3.1.3 It is easy to see that instead of conditions (ii) and (iii) from Proposition 3.1.2
we could use the weaker requirement that there is a set C of clusters in X such that deg(x) ≥
(1 + 100

√
ε)k

2
, for all x ∈ V (C), and |V (C)| ≥ (1 + 100

√
ε)k.

Remark 3.1.4 Another useful hypothesis can be added to Proposition 3.1.2, implying only
small modifications to the proof. Consider an arbitrary set U ⊂ V (G) and any tree T such
that |U |+ |T | ≤ k+1, |U ∩A|+c0(T ) ≤ k and |U ∩B|+c1(T ) ≤ k

2
. If T has maximum degree

bounded by k
1

d+1 , then T can be embedded into G, avoiding U , i.e., φ(V (T )) ⊂ V (G) \ U .

Moreover, observe that repeatedly applying Proposition 3.1.2 together with Remark 3.1.4,
we can actually embed a forest instead of a tree. A (k1, k2, c)-forest F is a forest with at most
k1 + k2 vertices and maximum degree bounded by (k1 + k2− 1)

1
c that admits a proper vertex

coloring with c0(F) ≤ k1 and c1(F) ≤ k2.

Corollary 3.1.5 Let ε ∈ (0, 10−4) and let d ∈ N. There exists k0 = k0(ε) ∈ N such that
for all k1, k2 ≥ k0 the following holds. If G = (X, Y ;E) is a connected bipartite graph with
an (ε, 5

√
ε)-upper regular partition with clusters of size m, and corresponding reduced graph

Gr, such that

(i) diam(Gr) ≤ d;

(ii) deg(x) ≥ (1 + 100
√
ε)k2, for all x ∈ X; and

(iii) |X| ≥ (1 + 100
√
ε)k1,

then G contains any (k1, k2, d + 1)-forest as a subgraph. Moreover, there is a set X ′ with
|X ′| > (1− 2ε)|X| such that the roots that must be mapped into X can be chosen from X ′,
and similarly for the roots that must be mapped into Y.

Let us now quickly discuss the bound on the size of bipartition classX from Proposition 3.1.2.
This bound is close to best possible, which can be seen by considering the tree T on an even
number of levels, where every vertex in an even level (including the root) has degree ∆ ≥ 3,
and every vertex in an odd level, except for the leaves, has degree 2. Setting k := |T | − 1, we
can calculate that there are (∆−1)

∆
k+ 1 vertices in odd levels. For any 0 < δ ≤ 1

3
consider the

complete bipartite graph with bipartition classes of sizes (∆−1)
∆

k and d(1 + δ)k
2
e. This graph

has minimum degree d(1 + δ)k
2
e, but does not contain T .

It is easy to see that the tree from the previous paragraph is the most unbalanced tree whose
maximum degree is bounded by ∆. Therefore, one can show the following improvement of
Proposition 3.1.2.

Corollary 3.1.6 Let ε ∈ (0, 10−4), d ∈ N and ∆ ≥ 2. There exists k0 = k0(ε) ∈ N such that
for all k ≥ k0 the following holds. If G = (A,B;E) is a connected bipartite graph with an
(ε, 5
√
ε)-upper regular partition, and corresponding reduced graph Gr, such that

(i) diam(Gr) ≤ d;
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(ii) deg(x) ≥ (1 + 100
√
ε)k

2
for all x ∈ X;

(iii) |X| ≥ (1 + 100
√
ε) (∆−1)

∆
k,

then G contains any tree T with k edges and ∆(T ) ≤ ∆ as a subgraph.

3.1.3 Non-bipartite case

When the graphs we are considering are non-bipartite, the presence of a cluster matching
of a certain size will be enough to ensure that a given tree can be embedded. This case
is very similar to Proposition 3.1.2, so we will omit some details. When we speak about a
sequence of clusters W1W2 . . .W` from X to Y , this means that W1 = X, W` = Y and, for
each i ∈ [`− 1], Wi is adjacent to Wi+1.

Proposition 3.1.7 Let ε ∈ (0, 10−4) and let d ∈ N. There exists k0 = k0(ε) ∈ N such
that for all k ≥ k0 the following holds. Let G be a connected non-bipartite graph with an
(ε, 5
√
ε)-upper regular partition and corresponding reduced graph Gr. If diam(Gr) ≤ d, and

Gr has a matching M with |V (M)| ≥ (1 + 100
√
ε)k, then any tree T with k edges and

∆(T ) ≤ k
1

4d+2 is a subgraph of G.

Proof. Let V (G) = V1 ∪ · · · ∪ V` be the (ε, 5
√
ε)-upper regular partition of G. For each

i ∈ [`], we partition Vi into sets Vi,S, Vi,L, Vi,C in the same way we did it in Proposition 3.1.2.
Also, consider the decomposition of T into T and S given by Proposition 3.1.1 with β = ε

`
.

We order S ∪ P in the same way as in the proof of Proposition 3.1.2.

The embedding φ : V (T )→ V (G) will be constructed iteratively, following the order of S∪P .
We make sure that at every step, the following conditions will be satisfied:

(A) Each vertex is embedded into a neighbor of the image of its already embedded parent;

(B) each s ∈ S is embedded into the S-slice of some cluster;

(C) for each P ∈ P , the first (up to 4d + 1) levels are embedded into the L-slices of some
clusters, and the rest goes into the C-slices;

(D) every v ∈ V (T ) is mapped into a vertex that is typical towards both the S-slice and the
L-slice of some adjacent cluster; and

(E) for each pair (Vi, Vj) ∈M , ||φ−1(Vi,C)| − |φ−1(Vj,C)|| ≤ εm.

We already know that it is no problem to embed a seed s, when its time comes, satisfying
conditions (A), (B) and (D). So assume we are about to embed a piece P ∈ P . The parent
of the root r(P ) of P is already embedded into some vertex that is typical with respect to
the L-slice of some cluster Z0. In order to be able to embed P , it suffices to ensure that

(I) there exists some good pair (Vi, Vj);
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(II) there is a sequence Y = Y0Y1 . . . Yh from Z0 to Vi and there is a sequence W =
W0W1 . . .Wh from Z0 to Yj such that h ≤ 4d+ 1;

(III) the union of the first h levels of P is small enough to fit into the free space in the L-slices
of {Y0, Y1, . . . , Yh−1} or into the free space in the L-slices of {W0,W1, . . . ,Wh−1}.

For the moment, assume (I) holds. Now, let C = C0C1 . . . CpC0 be a minimal odd cycle in
the reduced graph. Since C is minimally odd, the shortest path between two clusters in C is
the shortest arc in the cycle, hence the length of C is at most 2d+ 1. Let R = Z0R1 . . . RsC0

be a shortest path going from Z0 to C0 and let Q = C0Q1 . . . QtVi be a shortest path going
from C0 to Vi. As diam(Gr) ≤ d, the lengths of R and Q are at most d. Thus, the sequence
Y = Z0R1 . . . RsC0C1 . . . CpC0Q1 . . . QtVi has length at most 4d + 1, i.e., the number of
clusters in Y is at most 4d+ 2. Now, the sequence W ′ = Z0R1 . . . RsC0Q1 . . . QtViVj has the
same parity of Y and has at least two clusters less than Y , therefore, we can concatenate ViVj
at the end of W ′ as many times as necessary to form a sequence W = W ′ViVj . . . ViVj with
the same length as Y . As Y goes from Z0 to Vi and W goes from Z0 to Vj, condition (II)
holds.

Using the same reasoning as in Proposition 3.1.2 we can prove that the total number of
occupied vertices in L-slices is at most

|S| ·∆(T ) · 2(∆(T )− 1)4d ≤ 4

β
· k

4d+1
4d+2 < εm

for k sufficiently large. Which proves (III). In particular, the L-slice of each cluster has at
least d9

√
εme unused vertices and, therefore, we can embed each vertex of the first h levels

of P into the L-slices of the first h clusters of any the two sequences.

Now, in order to ensure that condition (E) holds at the end of this step, we need to be careful
with the election of the sequence through which the first h levels of P will be embedded. We
know that, regardless of the choice of the sequence, the set

⋃
i≥h Li(P ) has to be mapped into

(Vi,C , Vj,C), so all we have to determine is which of the sets
⋃
i≥dh

2
e L2i(P ) and

⋃
i≥bh

2
c L2i+1(P )

has more vertices and which of the slices Vi,C and Vj,C has less vertices assigned so far. Let us
assume that |

⋃
i≥dh

2
e L2i(P )| ≥ |

⋃
i≥bh

2
c L2i+1(P )| and that |φ(V (T ))∩Vi,C | ≥ |φ(V (T ))∩Vj,C |,

then
we need to embed

⋃
i≥dh

2
e

L2i(P ) into Vj,C and
⋃
i≥bh

2
c

L2i+1(P ) into Vi,C . (3.1)

Suppose also that h is even. We can embed each vertex of the first h levels of P into the
L-slices of the clusters W0, W1, W2, . . . ,Wh−1 in a way that (A) and (D) hold. Finally, we
repeatedly apply Lemma 1.3.1 to embed the trees induced by the remaining levels of P into
(X ′i,C , Y

′
j,C) in a way that (A), (D) and (3.1) hold. This and the fact that |P | ≤ βk ≤ εm

ensures that condition (E) holds. If h were odd, then we use Y instead of W .

Let us now prove (I). Suppose there is no good pair in M . This together with (E) imply
that the number embedded vertices is at least∑

(U,V )∈M

(|Ui,C | − 6
√
εm+ |Vi,C | − 6

√
εm) ≥ (1− 33

√
ε)(1 + 100

√
ε)k > k + 1,

a contradiction, since |T | = k + 1.
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Remark 3.1.8 When d = 1 we can actually embed trees with maximum degree bounded
by ck, where c is a sufficiently small constant, without modifying our proof.

Remark 3.1.9 In the non-bipartite case we can add an hypothesis similar to the one in
Remark 3.1.4. Consider an arbitrary set U ⊂ V (G) and any tree T such that |U |+|T | ≤ k+1
and such that U is balanced in M , i.e., ||U ∩C| − |U ∩D|| < εm. If T has maximum degree
bounded by k

1
4d+2 , then T can be embedded into G, avoiding U .

Repeatedly applying Proposition 3.1.7 together with Remark 3.1.9 we can embed a forest
instead of a tree.

Corollary 3.1.10 Let ε ∈ (0, 10−4) and let d ∈ N. There exists k0 = k0(ε) ∈ N such
that for all k ≥ k0 the following holds. Let G be a connected non-bipartite graph with an
(ε, 5
√
ε)-upper regular partition and corresponding reduced graph Gr. If diam(Gr) ≤ d and

Gr has a matching M with |V (M)| ≥ (1 + 100
√
ε)k, then any forest F on at most k + 1

vertices that satisfies ∆(F) ≤ k
1

4d+2 is a subgraph of G. Moreover, there is a set V ′ with
|V ′| > (1− 2ε)|V (M)| ·m such that the roots of F can be chosen from V ′.

The next lemma shows that a bound on the minimum degree can be used to prove the
existence of a cluster matching of a certain size, which will allow us to use Proposition 3.1.7
and Corollary 3.1.10 in graphs with a minimum degree condition.

Lemma 3.1.11 Let ε ∈ (0, 1). There exists t0 = t0(ε) ∈ N such that for all t ≥ t0
the following holds. Let H be a connected graph on n ≥ (1 + 100

√
ε)2t vertices. If H

admits an (ε, 6
√
ε)-upper regular partition with M0 clusters and has minimum degree at

least (1 + 100
√
ε)t, then there exist a set V0 ⊂ V (G) with |V0| ≤ M0, a (6ε, 5

√
ε)-upper

regular partition of the graph G − V0 with at most 2M0 clusters, a cluster matching M in
G− V0 and an independent family of clusters C in G− V0 such that,

• V (M) ∩ V (C) = ∅,
• V (M) ∪ V (C) ⊇ V (G) \ V0,
• a pair in M is seen in at most one side by the clusters in C, and
• |V (M)| ≥ min{n, (1 + 100

√
ε)2t} −M0.

Proof. Let us choose a pair (M1,Γ), where M1 is a cluster matching and Γ is a family of dis-
joint triangles, disjoint fromM1, such that |V (M1)∪V (Γ)| = |V (M1)|+ |V (Γ)| is maximized.
Let C1 be the family of clusters not covered by (M1,Γ). Note that C1 may be empty, but we
will momentarily suppose that it is not. Due to the maximality of (M1,Γ), C1 must be an
independent family. Let C ∈ C1. If C sees a vertex in some triangle XY Z ∈ Γ, say C is ad-
jacent to X, then (M1∪{(C,X), (Y, Z)},Γ\{XY Z}) contradicts the maximality of (M1,Γ).
Suppose that C sees both sides of a pair (A,B) ∈ M1, meaning that (C,A) and (C,B) are
ε-regular with positive density, then ABC is a triangle and (M1\{(A,B)},Γ∪{ABC}) cover
more vertices than (M1,Γ). Finally, let D be another cluster in C1 and suppose that there is
a pair (A,B) ∈M1 such that C sees one side of it and D sees the other side, namely (C,A)
and (D,B) are ε-regular with positive density, then ((M1 \ {(A,B)}) ∪ {(C,A), (D,B)},Γ)
contradicts again the maximality of (M1,Γ). Therefore, C1 is an independent family not

23



seeing Γ and seeing at most one side of each pair in M1.

If C1 = ∅, then |V (M1) ∪ V (Γ)| = n. If C1 6= ∅, consider again the cluster C ∈ C1. As
δ(H) ≥ (1 + δ)t and C only sees one side of the matching M1, and nothing else, we have that
C sees at least (1 + δ)t vertices in M1 and therefore |V (M1)| ≥ (1 + δ)2t.

Now, if Γ is empty, we are done. Thus, suppose that there is at least one triangle. For each
cluster X we arbitrarily choose two subsets X1, X2 ⊂ X such that |X1| = |X2| = b |X|

2
c.

Define V0 :=
⋃
X X \ (X1 ∪ X2) and observe that it contains either zero or M0 vertices

(recall that all clusters have the same size). Thanks to second point of Fact 1.2.2, partition
V (G) \ V0 =

⋃
X X

1 ∪X2 is (6ε, 5
√
ε)-upper regular. Finally we define

M :=
⋃

(A,B)∈M1

{(A1, B1), (A2, B2)} ∪
⋃

XY Z∈Γ

{(X1, Y 1), (Y 2, Z1), (Z2, X2)}

and
C :=

⋃
C∈C1

{C1, C2}

As the original clusters are independent sets and C1 does not see Γ, M and C inherit the
properties of C1 and M1.

As we have seen, the embedding propositions in this section require a bound on the diameter
of the host graph. We state here a result from [14] that will be useful to obtain this type of
bounds.

Theorem 3.1.12 (Erdős, Pach, Pollach and Tuza [14]) Let G be connected graph with n
vertices and with minimum degree δ ≥ 2. Then diam(G) ≤

⌊
3n
δ+1

⌋
− 1.

3.1.4 Embedding constant degree trees

In this section we shall improve the upper bound on the degree of the trees. We will consider
those trees whose maximum degree is bounded above by a function of the form k

1
c , where

c > 1 is a constant we will specify later. The difference between this result and those from
the previous sections is that the constant c does not depend on the diameter of the graph,
and therefore, it does not depend on the constant of approximation δ.

We begin by presenting a lemma which can be seen as a variant of Theorem 3.1.12.

Lemma 3.1.13 Let p, q ∈ N and let G be a connected graph with δ(G) ≥ p. For every
vertex v ∈ V (G) ∣∣∣∣∣

3q+1⋃
i=0

Ni(v)

∣∣∣∣∣ ≥ min{(q + 1)(p+ 1), |V (G)|}.

Proof. Let v ∈ V (G). Notice that if Ni(v) = ∅ for some i = 1, . . . , 3q + 1, then, as G is
connected, V (G) ⊆

⋃i−1
j=0 Nj(v); thus |

⋃3q+1
i=0 Ni(v)| = |V (G)|. Therefore, we assume that
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Ni(v) 6= ∅ for every i = 1, . . . , 3q + 1. Now pick vertices v3j ∈ N3j(v) for j = 1, . . . , q and
observe that N(v3j) ⊆ N3j−1(v)∪N3j(v)∪N3j+1(v), for each j; this tells us that |N3j−1(v)∪
N3j(v)∪N3j+1(v)| ≥ p+ 1. We also know that |N0(v)∪N1(v)| = |N(v)|+ 1 ≥ p+ 1. Putting
all this together yields ∣∣∣∣∣

3q+1⋃
i=0

Ni(v)

∣∣∣∣∣ ≥ (q + 1)(p+ 1).

The next proposition is this section’s main result. In order to prove it we will resort first to a
strategy similar to the one used in Propositions 3.1.2 and 3.1.7; if this strategy fails, we will
have found a good structure in the host graph and, thus, we will forget about the embedding
made in the first manner and make use of this structure to do the embedding in a different
way. When we speak about the distance between two clusters X and Y we are referring to
the length of the shortest cluster-path that has X and Y as endpoints.

Proposition 3.1.14 Let α ∈ [1
2
, 1) and let ε ∈ (0, 10−4). There exists k0 = k0(δ) ∈ N such

that for all k ≥ k0 the following holds. LetG be a connected graph with δ(G) ≥ (1+100
√
ε)αk

which admits an (ε, 5
√
ε)-upper regular partition, then G contains each tree T with k edges

and maximum degree at most k
1
c as a subgraph, where c = 24d 2

α
e − 6.

Proof. Given α ∈ [1
2
, 1) we define

d1 := 3d 2

α
e − 2, d2 := 2(d1 + 1) and c := 4d2 + 2.

Note that if |V (G)| < (1 + 100
√
ε)2k, then, by Theorem 3.1.12, diam(G) ≤ b 6

α
c − 1 ≤ d2

and, therefore, we can apply either Proposition 3.1.2 or Proposition 3.1.7 to conclude. Thus,
from now on we will assume that

|V (G)| ≥ (1 + 100
√
ε)2k. (3.2)

Now, let T be a tree on k edges with ∆(T ) ≤ k
1
c . Root T at any vertex. Partition T using

Proposition 3.1.1 with β � ε, thus obtaining a set of special vertices S and a family of pieces
T . We first try to emulate the embedding scheme used in Proposition 3.1.2.

Partition each cluster X into three sets XC , XS, XL where |XS| = |XL| = d10
√
ε|X|e. We

are going to do the embedding in |S| steps. In each step j we consider a vertex sj ∈ S
not embedded yet, but whose father uj is already embedded, except for the step j = 1, in
which we will embed the root of T into any cluster of our choice. We can assume that φ(uj)
is typical towards the S-slice of some adjacent cluster Q. Embed sj in QS, choosing φ(sj)
typical to RL and to RS, where R is any neighbor of Q. Now, let (W,Z) be any good pair
such that dist(Q,W ) ≤ d1. Find a shortest cluster-path P from R to W and suppose that
P = X0X1 . . . Xl−1Xl, where X0 = R and Xl = W . Clearly, the length of P is at most d1 +1.
Consider a piece T ′ hanging from sj and let us embed the first l levels of T ′ into P , mapping
the vertices from Li(T ) into unoccupied vertices from (Xi)L that are typical towards (Xi+1)L
and towards (Xi+1)S, for each i = 0, . . . , l − 1. For the root of T ′ we take the additional
consideration of mapping it into the neighborhood of φ(sj) in (X0)L. Finish the embedding
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of T ′ into the unoccupied vertices of (WC , ZC) using Lemma 1.3.1, mapping the vertices in
Ll(T ) into WC and picking all vertices typical towards the L-slice and the S-slice of some
adjacent cluster. Repeat this procedure for every non embedded piece adjacent to sj and
then move to the next special vertex.

If every step of the process is successful, T is satisfactorily embedded into G. It might
also happen that the embedding can not be completed, because we are not able to find a
good pair at close range. Consider the special vertex s∗ where the process stopped and
the cluster C∗ to which s∗ was assigned. Let us define H := G[

⋃d1
i=0 V (Ni(C

∗))] and S :=
{C cluster in H : |C \ C ′| ≥ 5

√
ε|C|}. We know that, as the assignment could not be

finished, S is an independent set of clusters. Now, pick any vertex x ∈ C∗ and observe that⋃d1
i=0Ni(x) ⊂ V (H); this implies, thanks to Lemma 3.1.13 applied with q = d 2

α
e − 1 and

p = (1 + 100
√
ε)αk, that |V (H)| > (1 + 100

√
ε)2k. We also know that, as |T | ≤ k + 1,

|V (S)| ≥ (1 + 100
√
ε)k. Now, consider H ′ := G[

⋃d1+1
i=0 V (Ni(C

∗))]; there are two possible
cases.

Case 1: H ′ is non-bipartite

We can use S to construct a cluster-matching M in H ′ with |V (M)| ≥ (1 + 100
√
ε)k:

consider a maximal cluster-matching such that for every pair (C,D) ∈ M , either C ∈ S or
D ∈ S and suppose that |V (M)| < (1 + 100

√
ε)k; since |V (S)| ≥ (1 + 100

√
ε)k, there exists

x ∈ V (S)\V (M); observe that degH′(v) ≥ (1+100
√
ε)k

2
for each v ∈ V (S); this implies that

x has a neighbor y ∈ V (S) \ V (M), thus contradicting the independence of S. Observing
that diam(H ′) ≤ 2(d1 + 1) = d2 and applying Proposition 3.1.7 to H ′ we can conclude.

Case 2: H ′ is bipartite

Let us say H ′ = (A,B). As |V (H)| ≥ (1+100
√
ε)2k, we have that, without loss of generality,

|A ∩H| ≥ (1 + 100
√
ε)k. Finally observe that degH′(x) ≥ (1 + 100

√
ε)k

2
for each x ∈ V (H).

Applying Proposition 3.1.2 with Remark 3.1.3 to H ′ we get the result.

3.2 Main results

We are ready to establish our main results. The first part of this section is dedicated to
understand some global structures of the host graph in which we are able to perform the
embedding. In the second section we prove the main theorems of this chapter, while in
the third section we study some alternative conditions on the host graph with which the
maximum degree condition of 3.2.5 can be relaxed.

3.2.1 A general embedding lemma

We present here a lemma containing a series of configurations in which we are able to perform
the embedding of a bounded degree tree. This result can be seen as a compendium of favorable
scenarios. Before stating the lemma we need three simple but useful definitions.
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Definition 3.2.1 Let n ∈ N and let θ ∈ (0, 1). Given an n-vertex graph G and a vertex x,
let Gx(θ) denote the class of all graphs obtained by deleting at most θn2 edges from G, none
which may be incident with x, and by deleting at most θn vertices from G, none which may
be x.

Definition 3.2.2 Let n ∈ N and let θ ∈ (0, 1). A vertex x of an n-vertex graph H θ-sees a
set U ⊆ V (H) if it has at least θ|U | neighbors in U .

Definition 3.2.3 Let k ∈ N and let θ ∈ (0, 1). A non-bipartite connected graph G is said to
be (k, θ)-small if |V (G)| < (1 + θ)k. A bipartite graph H = (A,B) is said to be (k, θ)-small
if max{|A|, |B|} < (1 + θ)k. When a connected graph is not (k, θ)-small, we will say that it
is (k, θ)-large.

Lemma 3.2.4 Let α ∈ [1
2
, 1) and let δ ∈ (0, 1). There exists n0 ∈ N such that for all n ≥ n0

the following holds. Let G be an n-vertex graph of minimum degree at least (1 + δ)αk,
and let T be a k-edge tree with maximum degree bounded by k

1
c , where n ≥ k ≥ δn and

c = 24d 2
α
e − 6. Then T embeds in G if there is an x ∈ V (G) such that at least one of the

following conditions holds for each G′ ∈ Gx( δ3

100
):

(I) G′ − x has a (k, δ
100

)-large non-bipartite component; or

(II) G′ − x has a (|A(T )|, δ
100

)-large bipartite component; or

(III) G′−x has a (2k
3
, δ

100
)-large bipartite component such that, in G’, vertex x δ2

100
-sees both

sides of the bipartition; or

(IV) x δ2

100
-sees two components C1, C2 of G′ − x in a way that one of the following holds:

(a) x sends an edge to a third component C3; or

(b) there is i ∈ {1, 2} such that Ci is non-bipartite and (2k
3
, δ

100
)-large; or

(c) there is i ∈ {1, 2} such that Ci is bipartite and x sees both sides of the bipartition;
or

(d) there is i ∈ {1, 2} such that Ci is bipartite with parts A and B, min{|A|, |B|} ≥
(1 + δ

100
)2k

3
and x sees only one side of the bipartition.

(e) C1 and C2 are bipartite with partsA1, B1 andA2, B2 respectively, min{|A1|, |B2|} ≥
(1 + δ

100
)2k

3
and x sees only A1 and A2.

Proof. Given δ, we suitably choose ε and d such that

0 < ε� d� δ. (3.3)

Let N0,M0 be given by Proposition 1.2.4 for input ε and m0 := 1
ε
. Let k0 be the maxi-

mum of the outputs k0 and t0 of Proposition 3.1.14, Corollary 3.1.5, Corollary 3.1.10 and
Lemma 3.1.11, and set n0 := max{N0, δ

−1k0}.
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Now given an n-vertex graph G of minimum degree at least (1 + δ)αk, with n ≥ k ≥ δn and
n ≥ n0, choose a vertex x ∈ V (G) as in Lemma 3.2.4. Applying Proposition 1.2.4 to G− x
yields a subgraph Gd ⊆ G − x that admits an (ε, d)-upper regular partition, with at most
M0 clusters, and having minimum degree

δ(Gd) ≥ (1 +
δ

2
)αk. (3.4)

Let T be a k-edge tree with maximum degree bounded by k
1
c . Our goal is to find an embedding

of T in G′ := Gd + x + EG(x,Gd) ∈ Gx( δ3

100
). Note that G′ must fulfill one of the conditions

from Lemma 3.2.4.

Let C be the collection of connected components in Gd, that is, C := C(Gd). If C contains a
(k, δ

100
)-large non-bipartite component or a (|A(T )|, δ

100
)-large bipartite component, then we

can, recalling (4.7) and (3.4), conclude by Proposition 3.1.14. So we can discard scenarios (I)
and (II) from Lemma 3.2.4. Thus, by Theorem 3.1.12, for any component C of the reduced
graph Gr, we have that

diam(C) ≤ 3|V (C)|
(1 + δ

100
)αk
≤ 6

α
. (3.5)

This implies that 4 diam(C) + 2 ≤ c for each component C of Gr, which means that we could
eventually apply Corollaries 3.1.5 and 3.1.10 to the elements of C.

In order to embed T into G′ under scenarios (III) and (IV), we use the results from Section ??.
Applying Proposition 2.0.3 to T we obtain a vertex z0 ∈ V (T ) and a proper 2-coloring
c : V (T − z0) → {0, 1} of T − z0 with |c1| ≤ |c0| such that |c0| ≤ 2k

3
and |c1| ≤ k

2
. Also, let

z1 ∈ V (T ) be the vertex given by Lemma 1.3.3 and let T be the set of connected components
of T − z1. Then T is a family of at most ∆(T ) rooted trees whose roots are neighbors of z1

in T , and |V (T ′)| ≤ dk
2
e for every T ′ ∈ T. Applying Lemma 1.3.4 (i) to T we obtain three

disjoint families of trees F1,F2 and F3, where F3 could be empty, such that |V (
⋃
Fi)| ≤ dk2e

for each i = 1, 2, 3 and F1 ∪ F2 ∪ F3 = T. For later use, let us record here that

|F1|+ |F2|+ |F3| ≤ ∆(T ). (3.6)

Similarly, applying Lemma 1.3.4 (ii) to T we obtain two disjoint families of trees J1 and J2

such that |V (
⋃
J2)| ≤ |V (

⋃
J1)| ≤ 2k

3
and J1 ∪ J2 = T.

We split the remainder of the proof into six cases, according to which of the conditions (III),
(IVa), (IVb), (IVc), (IVd) or (IVe) holds. Depending on the case we will make use of partition
{Fi} or {Ji} or we will just use the cutvertex z0 and the forest T − z0.

Case 1 (scenario (III)): G′ − x has a (2k
3
, δ

100
)-large bipartite component C such that x

δ2

100
-sees both sides of the bipartition.

We map z0 into x. Recalling (3.4), (3.5) and the fact that T − z0 is a (2k
3
, k

2
, c)-forest we can

apply Corollary 3.1.10 to embed T − z0 into C, picking the images of the roots of T − z0 as
neighbors of x. (Note that, as x δ2

100
-sees C1, the neighborhood of x contains enough typical

vertices.)

Case 2 (scenario (IVa)): The vertex x δ2

100
-sees two components C1, C2 of G′−x and sends

an edge to a third component C3.

28



We embed z1 into x, and then proceed to embed the roots of the trees from Fi into NGd
(x,Ci),

for each i = 1, 2, 3. (This is possible because, due to Remark 1.3.5, the set F3 contains at
most one tree and thus, there is at most one root to embed into C3. Furthermore, by (3.6),
there are at most ∆(T ) ≤ δ

100
|Ci| roots to be embedded into Ci, for i = 1, 2.)

Finally, because of the minimum degree in Gd, we can greedily embed the remaining vertices
of each forest

⋃
Fi into component Ci. This finishes Case 2.

Case 3 (scenario (IVb)): The vertex x δ2

100
-sees two components C1, C2 of G′ − x, one of

these components is non-bipartite and (2k
3
, δ

100
)-large.

Let us assume that C1 is the (2k
3
, δ

100
)-large non-bipartite component. We map z1 into x, and

then embed
⋃

J2 greedily into C2. We can make use of Corollary 3.1.10, whose conditions
hold by (3.4), (3.5) and the fact that |V (

⋃
J1)| ≤ 2k

3
, to complete the embedding of

⋃
J1 into

C1.

Case 4 (scenario (IVc)): The vertex x δ2

100
-sees two components C1, C2 of G′ − x, one of

these components is bipartite and x sees both sides of the bipartition.

Let us assume that C1 is the bipartite component of which x sees both sides, namely A and
B. Note that, as x δ2

100
-sees C1, we can assume that x δ2

100
-sees A. We map z1 into x and then

embed
⋃
F1 greedily into C2. For the remaining forests observe that for any proper 2-coloring

of
⋃

F2 and
⋃

F3, the larger color class of
⋃
Fi and the smaller color class of

⋃
F5−i, for

i = 2, 3, add up to at most

|
⋃

Fi|+
|
⋃

F5−i|
2

≤ |
⋃
F1|+ |

⋃
F2)|+ |

⋃
F3|

2
=
k

2
. (3.7)

As x has at least one neighbor v ∈ B, we can map the root of
⋃
F3 into v and then greedily

embed the rest of
⋃

F3 into C1. Now, we can make use of Corollary 3.1.5 together with
Remark 3.1.4, whose condition holds by (3.7), to complete the embedding of

⋃
F2 into C1,

avoiding φ(V (
⋃

F3)). This finishes Case 4.

Case 5 (scenario (IVd)): The vertex x δ2

100
-sees two components C1, C2 of G′ − x, one of

them is bipartite with parts A and B, min{|A|, |B|} ≥ (1 + δ
100

)2k
3

and x sees only one side
of the bipartition.

Let us assume that C1 is the bipartite component with parts A and B containing at least
(1 + δ

100
)2k

3
vertices each and that x only sees the set A. Note that x actually δ2

100
-sees A.

We map z1 into x and then embed
⋃
J2 greedily into C2. Applying Corollary 3.1.10 we can

embed
⋃
J1 into C1 in a way that the images of its roots are neighbors of x. Note that this

time the roots of
⋃

J2 are forced to be mapped into A, but this is not a problem since both
sides of C1 have enough space for the whole forest to fit in.

Case 6 (scenario (IVe)): The vertex x δ2

100
-sees two components C1, C2 of G′ − x, both of

them are bipartite with parts A1, B1 and A2, B2 respectively, min{|A1|, |B2|} ≥ (1 + δ
100

)2k
3

and x sees only A1 and A2.

Note that x δ2

100
-sees A1 and A2. Consider the coloring c that T induces in

⋃
J1. If the roots

of the trees in J1 are contained in c0, the heavier color class of c, then we embed
⋃
J1 into C1,
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otherwise we embed
⋃

J1 into C2. In any case we make use of Corollary 3.1.10 and we take
care of mapping the roots into neighbors of x. We greedily embed

⋃
J1 into the remaining

component. Finally, we map z1 into x. This completes the proof of Lemma 3.2.4.

3.2.2 Minimum degree theorems

The results of this section will be a consequence of Lemma 3.2.4. Using the minimum degree
conditions and the high degree vertex we will be able to show that at least one of the
configurations from Lemma 3.2.4 appears in our host graph. We begin with Theorem 3.2.5.

Theorem 3.2.5 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)k

2

and maximum degree at least (1 + δ)2k, with n ≥ k ≥ δn. If T is a tree with k edges and
maximum degree at most k

1
90 , then T is a subgraph of G.

Proof. Given δ ∈ (0, 1) and α = 1
2
consider n0 from Lemma 3.2.4. Let G be an n-vertex

graph with minimum degree at least (1 + δ)k
2
and maximum degree at least (1 + δ)2k, where

n ≥ k ≥ δn and n ≥ n0. Let x ∈ V (G) be a vertex of degree at least (1 + δ)2k. We are going
to show that for any removal of at most δ3

100
n2 edges not incident with x and of at most δ3

100
n

vertices different from x, the resulting graph G′ fulfills at least one of conditions (I)- (IV)
from Lemma 3.2.4.

Let C be the collection of connected components in G′ − x, that is, C := C(G′ − x). We will
assume that

all components in C are (k,
δ

100
)-small, (3.8)

otherwise we are done. First note that, as G′ misses at most δ3

100
vertices from G,

degG′(x) ≥ (1 +
δ

2
)2k. (3.9)

Suppose now that x does not δ2

100
-see any component in C. This would mean that

2δn ≤ (1 +
δ

2
)2k ≤ degG′(x) =

∑
C∈C

degG′(x,C) ≤ δ2

100
n.

Therefore, there is a component C1 ∈ C receiving more than δ2

100
|C1| edges from x. By (3.8),

vertex x can have at most 2(1 + δ
100

)k neighbors in C1. So by (3.9), there are at least
( δ

2
− δ

100
)k > δ

4
k ≥ δ2

4
n neighbors of x outside C1. Following the same reasoning as before,

there must be a second component C2 receiving at least δ2

100
|C2| edges from x. We can assume

that x has not neighbors outside C1∪C2, otherwise condition (IVa) from Lemma 3.2.4 holds.
By (3.9) we can assume that

degG′(x,C1) ≥ (1 +
δ

2
)k.
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In particular, we can again employ (3.8) to see that C1 is bipartite, and, letting A and B
denote the color classes of C1,

min{degG′(x,A), degG′(x,B)} ≥ δ

4
k >

δ2

100
·max{|A|, |B|}.

Therefore, condition (IVc) from Lemma 3.2.4 holds and the proof is finished.

The following example shows that in general, the bound (1 + δ)2k on the maximum degree
cannot be replaced by a bound of the form ck with c < 2.

Example 3.2.6 Let ` ∈ N be odd and let k ∈ N be divisible by l. Let Hk,` be the graph
consisting of two copies of K(`−1)( k

`
−1), k

2
, which we call H1 and H2, and a vertex x that is

adjacent to all the vertices in the parts of size (`− 1)(k
`
− 1).

Consider the tree Tk,` formed by ` stars of size k
`
and an additional vertex v connected to the

centers of the stars. Notice that we cannot embed Tk,` in Hk,` by mapping v into x, since
there would be too many stars assigned to one of the Hi.
Therefore, if we want to embed Tk,` into Hk,`, the vertex v must be mapped into one of the
bipartite graphs, say into H1. But then, we have to embed at least `− 1 stars into H1, with
the leaves of these stars going to the same side as v, which is impossible. Thus Tk,` 6⊆ Hk,`.

When the considered trees have its maximum degree bounded by a constant, the maximum
degree of the host graph can be lowered by a linear factor. Theorem 3.2.7 illustrates this
possibility.

Theorem 3.2.7 Let δ ∈ (0, 1) and ∆ ≥ 2. There exists n0 = n0(δ) ∈ N such that for all
n ≥ n0 the following holds. Let G be a graph on n vertices which has minimum degree at
least (1 + δ)k

2
and maximum degree at least (1 + δ)2 (∆−1)

∆
k, with n ≥ k ≥ δn. If T is a tree

with k edges and maximum degree at most ∆, then T is a subgraph of G.

Proof. Given δ ∈ (0, 1) and α = 1
2
consider n0 from Lemma 3.2.4. Let G be an n-vertex

graph as in Theorem 3.2.7, where n ≥ n0. Let x ∈ V (G) be a vertex of degree at least
2(1 + δ) (∆−1)

∆
k and consider the graph G′ resulting of the arbitrary removal of at most δ3

100
n2

edges not incident with x and of at most δ3

100
n vertices different from x. Let C be the set of

components in G′ − x.

An important thing to take into account is that, given ∆ ≥ 2, each tree T on k edges with
maximum degree at most ∆ will satisfy

|A(T )| ≤ (∆− 1)

∆
k. (3.10)

We can discard scenarios (I) and (II) and therefore assume that

all non-bipartite components in C are (k,
δ

100
)-small, (3.11)

and, by (3.10),

all bipartite components in C are (
(∆− 1)

∆
k,

δ

100
)-small. (3.12)
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As we removed few vertices from G, vertex x has at least 2(1 + δ
2
) (∆−1)

∆
k neighbors in G′.

This together with (3.11) and (3.12) imply that there are components C1, C2 ∈ C such that

degG′(x,Ci) ≥
δ2

100
|Ci|, for i = 1, 2.

We will suppose that x does not see other components, otherwise G′ satisfies condition (IVa)
from Lemma 3.2.4 and we are done. Thus, we can assume, by symmetry, that

degG′(x,C1) ≥ (1 +
δ

2
)
(∆− 1)

∆
k. (3.13)

If C1 is non-bipartite, G′ satisfies condition (IVb) from Lemma 3.2.4. If C1 is bipar-
tite with parts A and B, we can employ again (3.12) together with (3.13) to conclude
that min{degG′(x,A), degG′(x,B)} ≥ δ2

100
max{|A|, |B|}, which says that G′ satisfies con-

dition (IVc) from Lemma 3.2.4 and concludes the proof.

An analogue version of Theorem 3.2.5 can be proved for graphs with minimum degree above
2k
3
, only this time a vertex of degree greater than k will do. Theorem 3.2.8 certainly helps to

support the 2
3
conjecture.

Theorem 3.2.8 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)2k

3

and maximum degree at least (1 + δ)k, with n ≥ k ≥ δn. If T is a tree with k edges and
maximum degree at most k

1
66 , then T is a subgraph of G.

Proof. Given δ ∈ (0, 1) and α = 2
3
consider n0 from Lemma 3.2.4. LetG be an n-vertex graph

as in Theorem 3.2.8, where n ≥ n0. Let x ∈ V (G) be a vertex of degree at least (1 + δ)k and
consider the graph G′ resulting of the arbitrary removal of at most δ3

100
n2 edges not incident

with x and of at most δ3

100
n vertices different from x. Note that degG′(x) ≥ (1 + δ

2
)k. Let C

be the set of components in G′ − x.

Due to the degree of x, there must be a component C1 ∈ C such that x δ2

100
-sees C1. We can

assume that C1 is (k, δ
100

)-small. Thus, if x has more than (1+ δ
100

)k neighbors in C1, C1 must
be bipartite and x must see at least a δ2

100
-portion of both sides of the bipartition, namely A

and B. Note that there is a vertex in C1 having degree at least (1 + δ
100

)2k
3
, otherwise, due

to the minimum degree in G, the number of removed edges is at least

1

2

(
|C1| ·

δ

2
· 2k

3

)
≥ δ3

6
n2,

which is a contradiction. Therefore, max{|A|, |B|} ≥ (1 + δ
100

)2k
3

and G′ satisfies condi-
tion (III) from Lemma 3.2.4. If x has less than (1 + δ

100
)k neighbors in C1, then there

must be a second component C2 ∈ C in which x has at least δ2

100
|C2| neighbors. We can

assume that x does not send edges to any other component. Also, we can suppose that
degG′(x,C1) ≥ (1 + δ

2
)k

2
. Following the same reasoning as before we can conclude that there

is a vertex in C1 having at least (1 + δ
100

)2k
3

neighbors and, therefore, |C1| ≥ (1 + δ
100

)2k
3
. If

C1 is non-bipartite, then G′ satisfies condition (IVb) from Lemma 3.2.4. So we suppose C1
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is bipartite and, furthermore, we assume vertex x does not see both sides of the bipartition,
otherwise condition (IVc) from Lemma 3.2.4 holds. Let us call A and B each side of C1 and
let us assume, by symmetry, that degG′(x,A) ≥ (1 + δ

4
)k

2
. Again we can find a vertex in A

having more than (1 + δ
100

)2k
3
neighbors in B, which in turn implies that there is a vertex in

B having more than (1 + δ
100

)2k
3
neighbors in A. This means that G′ satisfies condition (IVd)

from Lemma 3.2.4, which competes the proof.

Note that the bound 2k
3
on the minimum degree of Theorem 3.2.8 is best possible. Consider

a graph G formed by two copies of K 2k
3
−1 and a universal vertex seeing both cliques. It is

easy to see that the tree Tk,3 is not a subgraph of G.

3.2.3 Maximum degree 4k
3

As we saw in Example 3.2.6, there is no way of lowering the bound on the maximum degree
of the host graph when no further assumptions are made. Nevertheless, graphs with the
structure of Hk,` might be the only obstructions to embed a tree on k edges into a graph of
maximum degree greater than (1 + δ)4k

3
and minimum degree greater than (1 + δ)k

2
. We now

show that for bounded degree trees, and dense host graphs, this is the case.

A graph G will be called (k, δ)-good if δ(G) ≥ (1 + δ)k
2
and ∆(G) ≥ (1 + δ)4k

3
. Set

L(G) :=

{
x ∈ V (G) : deg(x) ≥ (1 +

δ

100
)
4k

3

}
.

For x ∈ L(G) we say that the pair (G, x) satisfies property (?) if the following three
conditions hold.

(a) Every component of G− x is (k, δ
100

)-small;

(b) x sees exactly two of the components, C1 and C2;

(c) For i = 1, 2, if Ci is non-bipartite, then Ci is (2k
3
, δ

100
)-small, and if Ci is bipartite, then

x sees at most one side of the bipartition.

We define Nk,δ as the class of all (k, δ)-good graphs G such that for all x ∈ L(G), there is
G′ ∈ Gx( δ3

100
) such that the pair (G′, x) satisfies property (?).

Theorem 3.2.9 Let δ ∈ (0, 1). There exists n0 = n0(δ) ∈ N such that for all n ≥ n0 the
following holds. Let G be a graph on n vertices which has minimum degree at least (1 + δ)k

2
,

maximum degree at least (1 + δ)4k
3

and does not belong to Nk,δ, with n ≥ k ≥ δn. If T is a
tree with k edges and maximum degree at most k

1
90 , then T is a subgraph of G.

Proof. Given δ ∈ (0, 1) and α = 1
2
consider n0 from Lemma 3.2.4. Let G be an n-vertex

graph as in Theorem 3.2.9, where n ≥ n0. Let x ∈ L(G) be one of the vertices that make G
not belong to Nk,δ and consider the graph G′ resulting of the arbitrary removal of at most
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δ3

100
n2 edges not incident with x and of at most δ3

100
n vertices different from x. Note that

degG′(x) ≥ (1 + δ
2
)k. Let C be the set of components in G′ − x.

We know the pair (G′, x) does not satisfy property (?), but if there is a (k, delta
100

)-large com-
ponent in C, we are done, se we can suppose condition (a) holds.

If condition (b) does not hold for G′ and x, then either x sees only one component C1 or it
sees at least three components. The first case leads to scenario (III) from Lemma 3.2.4, as
x has at least (1 + δ

2
)4k

3
neighbors in C1 and C1 is (k, δ

100
)-small. For the second case: if x

has more than (1 + δ
4
)k neighbors in one component, then we are essentially in the first case,

so we can conclude, as in previous proofs, that x δ2

100
-sees at least two components, which

together with the fact that x sends an edge to a third component leads to scenario (IVa)
from Lemma 3.2.4.

Finally we assume condition (b) holds and, therefore, condition (c) does not. We can assume
x δ2

100
-sees both C1 and C1, otherwise we get (III) from Lemma 3.2.4. Now, either one of the

components is non-bipartite and (2k
3
, δ

100
)-large or one of the components is bipartite and x

sees both sides of the bipartition, which are scenarios (IVb) and (IVc) from Lemma 3.2.4,
respectively. This concludes the proof.

A different way of avoiding Example 3.2.6 is to impose some conditions over the size of the
second neighborhood of a vertex already belonging to L(G). We explore this approach in the
next theorem.

Theorem 3.2.10 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N such that for all n ≥ n0

the following holds. Let G be a graph with n vertices which has minimum degree at least
(1 + δ)k

2
, with n ≥ k ≥ δn. Suppose there is a vertex x ∈ V (G) with |N(x)| ≥ (1 + δ)4k

3
and

|N2(x)| ≥ (1 + δ)4k
3
. If T is a tree with k edges and maximum degree at most k

1
90 , then T is

a subgraph of G.

Proof. Given δ ∈ (0, 1) and α = 1
2
consider n0 from Lemma 3.2.4. LetG be an n-vertex graph

as in Theorem 3.2.10, where n ≥ n0. Let x ∈ V (G) be a vertex with |N(x)|, |N2(x)| ≥ (1+δ)4k
3

and consider the graph G′ resulting of the arbitrary removal of at most δ3

100
n2 edges not

incident with x and of at most δ3

100
n vertices different from x. Note that the first and the

second neighborhood of x in G′ contain at least (1 + δ
2
)4k

3
vertices each. Let C be the set of

components in G′ − x.

We assume that every component in C is (k, δ
100

)-small and that

G′ does not satisfy condition (III) from Lemma 3.2.4, (3.14)

otherwise we are done. This implies that x δ2

100
-sees at least two components C1, C2 ∈ C. If x

sends and edge to a third component, the result follows, so we can assume that x only sees
C1 and C2 and, therefore,

the second neighborhood of x in G′ is entirely contained in C1 ∪ C2. (3.15)
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Also, by symmetry, we can suppose that degG′(x,C1) ≥ (1 + δ
2
)2k

3
. We will additionally

assume that

G′ does not meet conditions (IVb) or (IVc) from Lemma 3.2.4. (3.16)

This means that C1 is bipartite with parts A1, B1 and that x sees only one side of C1, namely
A1. This means that |A1| ≥ (1 + δ

100
)2k

3
. Now, if |B1| ≥ (1 + δ

100
)2k

3
, we are in scenario (IVd)

from Lemma 3.2.4, so we can assume, by (3.15), that most of the second neighborhood of x
is contained in C2, which by the first part of (3.16) implies that C2 is bipartite with parts
A2 and B2. Moreover, by (3.14) x sees only one side of C2, namely A2. This implies that the
second neighborhood of x in C2 is entirely contained in B2, which means |B2| ≥ (1 + δ

100
)2k

3
.

Thus, G′ satisfies condition (IVe) from Lemma 3.2.4, which concludes our proof.
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Chapter 4

Embedding of trees with linear degree

This chapter is devoted to a single result, Theorem 4.0.6. This theorem is the result of
exploring an alternative condition to the high degree vertex of Theorem 3.2.5. Instead of
requiring a vertex of degree greater than (1 + δ)2k, we ask for a few vertices of degree at
least (1 + δ)k. This new condition will allow us to enlarge the family of embeddable trees,
by replacing the bound on the maximum of degree of the trees by a linear function.

4.0.1 Cutting the trees into small pieces

The following proposition is an alternative version of Proposition 3.1.1, where all the pieces
have an odd number of levels and all the seeds are at even distance from the root.

Proposition 4.0.1 Let β ∈ (0, 1). There exist t0 = t0(β) ∈ N and c = c(β) ∈ N such that
for all t ≥ t0 the following holds. Let T be a rooted tree on t + 1 vertices and maximum
degree at most ct. There exist a set of seeds S ⊂ V (T ) and a family T of disjoint rooted
trees which we call pieces that satisfy

(i) r(T ) ∈ S,

(ii) T consists of the components of T − S,

(iii) each s ∈ S is at even distance from r(T ),

(iv) each piece in T has at most βt vertices, and

(v) |S| < βt.

Proof. Given β ∈ (0, 1), set c < β2

2
and t0 > 6

β2 . Let T be a rooted tree on t+1 vertices with
∆(T ) ≤ ct, where t ≥ t0. Applying proposition 3.1.1 to T we obtain a set of seeds S ′ and a
family of pieces P . Let us call SA the set of vertices in S ′ that are at odd distance from the
root and SB those which are at even distance from the root. Consider the set SB of vertices
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in T − S ′ that are adjacent to a vertex in SA and set

S := SB ∪ SB.

Notice that SB can be decomposed into two perhaps intersecting sets,

X := {x ∈ T − S ′ : x is father of some a ∈ SA}

and
Y := {x ∈ T − S ′ : some a ∈ SA is father of x}.

As a vertex in T can have only one father, we have that |X| ≤ |SA| < 1
β

+ 2. Besides,
|Y | < |SA|∆(T ) < βt

2
. Therefore, we get

|SB| <
1

β
+ 2 +

βt

2
,

which in turn implies |S| < βt. Finally we can define our family of pieces as T := C(T − S).
As each P ∈ T is subgraph of some P ′ ∈ P , point (4) remains true, concluding with this the
decomposition of our tree.

In order to embed T , we will need to ensure some balance condition over its pieces. The next
numeric lemma will later allow us to find a subfamily of pieces having a given size and which
maintains the global imbalance of T .

Lemma 4.0.2 Let I be a finite set and let λ > 0. Let {ai}i∈I and {bi}i∈I be two sequences
of positive real numbers such that ai + bi ≤ λ, for each i ∈ I. We call Σa :=

∑
i∈I ai and

Σb :=
∑

i∈I bi. For any M ≥ 0 there is a set J ⊆ I such that

min{M − λ,Σa + Σb} ≤
∑
i∈J

(ai + bi) ≤M and
∑

i∈J ai∑
i∈J bi

≥ Σa

Σb

.

Proof. Let us define a total order � in I such that i � j implies that bi
ai
≤ bj

aj
. From the

definition of this order we get, for each l ∈ I,
bl+1

al+1

≥
∑

i�l bi∑
i�l ai

.

Multiplying both sides by al+1

∑
i�l ai, adding

∑
i�l ai

∑
i�l bi and dividing by

∑
i�l bi

∑
i�l+1 bi

we obtain ∑
i�l ai∑
i�l bi

≥
∑

i�l+1 ai∑
i�l+1 bi

and thus ∑
i�l ai∑
i�l bi

≥
∑

i∈I ai∑
i∈I bi

=
Σa

Σa

.

Let i∗ be the maximal element in I such that
∑

i�i∗(ai + bi) ≤ M . Defining J := {i ∈ I :
i � i∗} we get the result.

Remark 4.0.3 Note that consequently,

Σa + Σb −M ≤
∑
i∈I\J

(ai + bi) ≤ max{Σa + Σb −M + λ, 0}.
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4.0.2 A structural lemma

We know from Lemma 3.1.11 that the minimum degree condition ensures the existence of a
matching M and a set of clusters C seeing only one side of M . We will use M and C together
with the minimum degree condition to derive a specific structure, which will be of special
help to perform the embedding.

Lemma 4.0.4 Let ε ∈ (0, 10−4). There exists k0 such that for all k ≥ k0 the following
holds. Let G be a connected graph with n vertices, where n ≥ k ≥ 110 4

√
εn, which satisfies

δ(G) ≥ (1 + 110 4
√
ε)k

2
and |{v ∈ V (G) : deg(v) ≥ (1 + 110 4

√
ε)k}| > 2εn. Suppose that G

admits an ( ε
6
, 2 4
√
ε)-upper regular partition with M ′

0 >
1

100
√
ε
clusters of size m′ := n

M0
. There

exist a set V0 ⊂ V (G) with |V0| ≤M ′
0, an (ε,

√
ε)-upper regular partition of the graph G−V0

with at most M0 = 2M ′
0 clusters of size m = bm′

2
c, a cluster CS, two cluster-matchings MW ,

MV and a bipartite graph H = (X, Y ;E) subgraph of G, satisfying the following properties,

(I) CS ∩ (V (MW ) ∪ V (MV ) ∪ V (H)) = ∅,
(II) V (MW ) ∩ V (MV ) = ∅ and V (MW ) ∩ V (H) = ∅,
(III) CS sees both sides of each pair in MW ,
(IV) CS sees exactly one cluster of each pair in MV ,
(V) CS sees every cluster in X,
(VI) X ∩ V (MV ) = ∅,
(VII) for every v ∈ X, degH(v) ≥ max{0, 1

2
((1 + 90 4

√
ε)k − |V (MW )|)}, and

(VIII) |V (MW )|+ 1
2
|V (MV )|+ |X| ≥ (1 + 80 4

√
ε)k.

Proof. Applying Lemma 3.1.11 to G we obtain a set V0, an (ε,
√
ε)-upper regular partition

on G− V0, a cluster-matching M1 and an independent family of clusters C such that,

• V (M1) ∩ V (C) = ∅,
• V (M1) ∪ V (C) = V (G),
• a pair in M1 is seen in at most one side by the clusters in C, and
• |V (M1)| ≥ (1 + 100

√
ε)k.

Note that as |V0| ≤M ′
0 < εn, for n sufficiently large, there are still at least εn ≥ ε|V (G−V0)|

vertices of degree greater than (1 + 100 4
√
ε)k in G − V0. Also, δ(G − V0) ≥ (1 + 100 4

√
ε)k

2
.

Now, observe that there is a cluster CS with |{v ∈ CS : deg(v) ≥ (1 + 100 4
√
ε)k}| > εm and,

therefore, deg(CS) ≥ (1 + 90 4
√
ε)k.

We will denote by C1 the set of clusters seen by some cluster in C. If CS belongs to a pair in
M1, then we denote by M1(CS) its neighbor in the matching.

Suppose first that degM1(CS) ≥ (1+90
√
ε)k. We can either defineM := M1\{(CS,M1(CS))},

if CS ⊂ V (M1), or M := M1, if CS ∈ C. Since |CS|+ |M1(CS)| = 2m < 2 4
√
εk, we have that

degM(CS) > (1 + 80
√
ε)k. Setting X, Y,E := ∅ we get the result.

We can now assume that degM1(CS) < (1 + 90
√
ε)k. Let us call M ′

1 and C ′ the set of pairs in
M1 and the set of clusters in C, respectively, receiving edges from CS. The set of pairs in M ′

1
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receiving edges from CS in both sides will be called M1
W . The set of pairs in M ′

1 \M1
W seen

by CS in the side lying in C1 will be called MU . We also define M1
V := M ′

1 \ (M1
W ∪MU).

Now, consider the bipartite graphN := (V (C ′)∪(V (C1)∩V (MU)), EG(V (C ′), V (C1)∩V (MU)))
and let M2

W be a maximal cluster-matching in N . Note that the pairs in M2
W receive edges

from CS in both sides. We denote byM2
V the set of pairs inMU not intersecting a pair inM2

W .
Notice that the vertices in V (M2

V ) ∩ V (C1) are not seen by the vertices in V (C ′) \ V (M2
W ),

since M2
W is maximal. Set MW := M1

W ∪M2
W and MV := M1

V ∪M2
V . Finally define X :=

V (C ′) \ V (M2
W ), Y := V (C1) \ V (M1

W ∪MU), E := EG(X, Y ) and set H := (X, Y ;E).

From the construction, points (II)-(VI) are met. Additionally, due to the minimum degree
of G and as the vertices in X do not see the vertices in V (M2

V ), we have that for every
v ∈ X, degH(v) ≥ max{0, 1

2
((1 + 100 4

√
ε)k − |V (MW )|)}. Also, as the neighborhood of CS is

contained in V (MW )∪V (MV )∪X, we have that |V (MW )|+ 1
2
|V (MV )|+ |X| ≥ (1 + 90 4

√
ε)k.

Removing CS and M1(CS), if necessary, from our structures, we get points (I), (VII) and
(VIII).

4.0.3 Main result

Like in Chapter 3, we first prove a preliminary lemma that is thought to be employed once
the host graph has already been regularized. Is in this lemma where the embedding procedure
is done, and Theorem 4.0.6 will only be a rather direct consequence of it.

Proposition 4.0.5 Let ε ∈ (0, 10−8). There exists k0 = k0(ε) ∈ N such that for all k ≥ k0

the following holds. Let G be a graph with n vertices, where n ≥ k ≥ 110 4
√
εn, which satisfies

δ(G) ≥ (1 + 110 4
√
ε)k

2
and |{v ∈ V (G) : deg(v) ≥ (1 + 110 4

√
ε)k}| > 2εn. Suppose that G

admits an ( ε
6
, 2 4
√
ε)-upper regular partition with M ′

0 >
1

100
√
ε
clusters of size m′ := n

M0
. There

exists c = c(ε) such that any tree T with k edges and ∆(T ) ≤ ck is a subgraph of G.

Proof. Set β <
4√ε

100M0
and consider t0, c given by Proposition 4.0.1 and k0 given by 4.0.4. Let

k ≥ max{t0, k0}, let G be a graph as in Proposition 4.0.5 and let T be a tree on k edges and
maximum degree bounded by ck. Apply Lemma 4.0.4 to G to obtain a new regular partition
over G− V0, where V0 is of constant size, a cluster CS, two cluster-matchings MV , MW and
a bipartite graph H = (X, Y ;E) ⊂ G satisfying properties (I)-(VIII). We will denote by CV
the set of clusters in MV that are seen by CS. Also, we will denote by m the size of the
clusters in the new partition, where m = bm′

2
c.

Recalling our convention, |A(T )| ≥ |B(T )|. Let us pick a vertex r ∈ B(T ) and root T at it.
Proposition 4.0.1 allows us to decompose T into a set of seeds S and a family of small pieces
T , which for our convenience will be indexed by a set I. Note that S ⊆ B(T ).

Our intention is to embed each seed s ∈ S into the cluster CS to then map each piece
hanging from s, that is, each piece whose root is a child of s, either into an edge of MW

or MV or into the bipartite graph H. To do this in an orderly manner we will partition T
into two families, one of which will be embedded into V (MW ) while the other one will be
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embedded into V (MV ) ∪ V (H). We obviously need each family to have an appropriate size,
but also we will require a certain balance condition to hold over the family of pieces assigned
to V (MV )∪V (H), since the total amount of vertices going into Y ∪ (V (MV )\V (CV )) cannot
exceed a certain number for our technique to work. Lemma 4.0.2 will provide a partition of
T with such characteristics. Let us precise here that this partition is only needed if MW is
not empty and T cannot be entirely embedded into V (MW ), so, to place ourselves in the
more general setting, we will suppose that this is the case, i.e., we assume that

MW 6= ∅ and |V (T )| > (1− 10 4
√
ε)|V (MW )|. (4.1)

Condition (VIII) from Lemma 4.0.4, together with assumption (4.1), ensures that V (MV )∪X
is not empty either.

Let us partition T . For each i ∈ I we define ai := |A(T ) ∩ V (Ti)| and bi := |B(T ) ∩ V (Ti)|.
Applying Lemma 4.0.2 to the sequences {ai}i∈I and {bi}i∈I with parameters λ = βk and
M = |V (T )| − (1− 11 4

√
ε)|V (MW )| we obtain a set J ⊆ I such that∑

i∈J

|V (Ti)| ≤ |V (T )| − (1− 11 4
√
ε)|V (MW )| ≤ (1− 10 4

√
ε)(

1

2
|V (MV )|+ |X|), (4.2)

where the second inequality comes from condition (VIII) in Lemma 4.0.4. The set J also
satisfies ∑

i∈J ai∑
i∈J bi

≥
∑

i∈I ai∑
i∈I bi

=
|A(T ) ∩ V (T − S)|
|B(T ) ∩ V (T − S))|

>
|A(T )| − βk
|B(T )|

≥ 1− βk

|B(T )|
,

thus implying that J fulfills the following useful inequality,∑
i∈J

ai ≥
∑
i∈J

bi − βk. (4.3)

Recalling Remark 4.0.3 we also obtain∑
i∈I\J

|V (Ti)| ≤ (1− 11 4
√
ε)|V (MW )|+ βk ≤ (1− 10 4

√
ε)|V (MW )|. (4.4)

As we said before, our intention is, for each i ∈ J , to embed Ti into either a pair in MV or a
pair of adjacent clusters in H, while the trees with index in I \ J will be embedded in MW .

We will define our embedding in an iterative process consisting of |S| steps. In each step
j we embed a seed sj ∈ S into CS, then we embed each one of the pieces below sj into
V (MV )∪V (H) or V (MW ) depending on the index of the piece. We go through S in an order
such that the embedding remains connected in each step, starting with the root of T , i.e,
s1 = r(T ).

Suppose that we are in the step j ∈ {1, . . . , |S|}. We call Vj to the set of vertices in V (T )
already mapped into G. The map, which is so far only defined for the vertices in Vj, will
be called φ. For any set of vertices R, we call Uj(R) to the set of unoccupied vertices in R,
i.e., Uj(R) = R \ φ(Vj). Consider any seed sj ∈ S not embedded yet, but whose father is
already embedded. The set of pieces hanging from sj will be called Tj. A cluster C with
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|Uj(C)| ≥ 7 4
√
εm will be a good cluster. A pair of clusters (C,D) will be a good pair if C

and D are adjacent and they are both good clusters. The clusters and the pairs which are
not good will be bad clusters and bad pairs.

Five conditions hold at the beginning of each step j ∈ {1, . . . , |S|},

(i) if j > 1, the father of sj is embedded into a vertex typical towards CS,
(ii) for every cluster C, |Uj(C)| > 5 4

√
εm,

(iii) if V (Ti) ⊆ Vj with i ∈ J , then φ(A(T )∩V (Ti)) ⊂ (V (CV )∪X) and φ(B(T )∩V (Ti)) ⊂
((V (MV ) \ V (CV )) ∪ Y ),

(iv) if V (Ti) ⊆ Vj with i ∈ I \ J , then φ(V (Ti)) ⊂ V (MW ), and
(v) for a pair (C,D) ∈MW , ||φ(Vj) ∩ C| − |φ(Vj) ∩D|| < βk.

Now, let us partition the family {Uj(C) : C is a cluster adjacent to CS} into three families
Y1,Y2,Y3, where D ∈ Y1 if D ⊂ V (MW ), D ∈ Y2 if D ⊂ V (MV ) and D ∈ Y3 if D ⊂ X.
Condition (ii) ensures that every set in Yi is significant, for each i = 1, 2, 3. Applying
Lemma 1.2.6 to CS and Yi, for each i = 1, 2, 3, we find a set C ′S ⊂ CS with |C ′S| ≥ (1−3

√
ε)m

such that for every v ∈ C ′S,

|Tv(Yi)| ≥ (1−
√
ε)|Yi|, for each i = 1, 2, 3. (4.5)

Let f ∈ V (T ) be the father of sj. From condition (i) we know that degCS
(φ(f)) ≥ ( 4

√
ε −

ε)m. This means that |NCS
(φ(f)) ∩ C ′S| ≥ ( 4

√
ε − 4

√
ε)m > βk + 1 > |S| + 1. Therefore,

|NUj(CS)(φ(f)) ∩ C ′S| ≥ 1. Pick a vertex vj ∈ NUj(CS)(φ(f)) ∩ C ′S and set φ(sj) = vj.

Now that sj is embedded into vj we proceed to embed the trees in Tj one by one, adopting
different strategies depending on the index of the tree, but first we will save some space for
the roots of the trees in Tj. Consider a cluster C such that vj is typical towards Uj(C).
Condition (ii) allows us to ensure that |NUj(C)(vj)| ≥ 5

√
εm > 2εm + ck, since c < β. We

arbitrarily choose d2εm + cke vertices in NUj(C)(vj) and call the resulting set CR. We will
only embed in CR the sons of sj which are roots of trees in Tj. The size of CR gives us the
freedom to apply Lemma 1.3.1 choosing the root of the tree to be typical towards CS, in case
that the root is father of a seed, for every tree in Tj. Let Ti ∈ Tj be the next tree we want
to embed.

Case 1: i ∈ J .

If |φ(Vj)∩V (MV )| < (1−10 4
√
ε)1

2
|V (MV )|, then there must be more than

√
ε|MV | good pairs

in MV , otherwise

(1 + 10 4
√
ε)

1

2
|V (MV )| ≤

∑
(C,D)∈MV

(|Uj(C)|+ |Uj(D)|)

=
∑

(C,D)∈MV

(C,D) good

(|Uj(C)|+ |Uj(D)|) +
∑

(C,D)∈MV

(C,D) bad

(|Uj(C)|+ |Uj(D)|)

≤
√
ε|MV |2m+ |MV |(1 + 7 4

√
ε)m
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< (1 + 9 4
√
ε)

1

2
|V (MV )|

which is a contradiction. Therefore, using (4.5), we know that there must be a good pair
(C,D) ∈MV such that vj is typical to Uj(D). Map Ti into (Uj(C), Uj(D)) avoiding CR and
DR. The root of Ti must be embedded into DR, and thus all the vertices in A(T ) ∩ V (Ti)
will also be mapped into D ∈ CV . We also take care of embedding the vertices in V (Ti) that
are fathers of seeds into vertices typical towards CS.

If |φ(Vj)∩ V (MV )| > (1− 10 4
√
ε)1

2
|V (MV )|, then we have to consider a good pair in H to do

the embedding of Ti. Let us call CX the set of clusters contained in X. Since
∑

i∈J |V (Ti)| ≤
(1− 10 4

√
ε)(1

2
|V (MV )|+ |X|), we have that |φ(Vj)∩X| < (1− 10 4

√
ε)|X|. Hence, there must

be more than
√
ε|CX | good clusters in CX , otherwise

10 4
√
ε|X| <

∑
C∈CX

|Uj(C)|

=
∑
C∈CX
C good

|Uj(C)|+
∑
C∈CX
C bad

|Uj(C)|

≤
√
ε|CX |m+ |CX |7 4

√
εm

< 8 4
√
ε|X|

Thus, there is a good cluster C ∈ CX such that vj is typical towards Uj(C). Now, we know
that degH(v) ≥ max{0, 1

2
((1 + 90 4

√
ε)k − |V (MW )|)}, for every v ∈ X. We will assume that

the minimum degree in H of the vertices in X is greater than zero, otherwise |V (MW )| ≥
(1 + 90 4

√
ε)k and, therefore, k ≤ (1− 10 4

√
ε)|V (MW )|, contradicting assumption (4.1). Thus,

the neighborhood of C covers at least 1
2
((1 + 90 4

√
ε)k − |V (MW )|) > 0 vertices in Y .

Making use of condition (iii), property (4.3) and the fact that
∑

i∈J |V (Ti)| ≤ |V (T )| − (1−
11 4
√
ε)|V (MW )|, we get

|φ(Vj) ∩ Y | ≤
1

2

[∑
i∈J

|V (Ti)|+ βk

]

<
1

2

[
|V (T )| − (1− 11 4

√
ε)|V (MW )|+ βk

]
(4.6)

<
1

2

[
k − (1− 11 4

√
ε)|V (MW )|+ βk

]
Suppose that there are not good clusters in the neighborhood of C in H. Then, due to the
minimum degree of the vertices of C in H,

|φ(Vj) ∩ Y | > (1− 7 4
√
ε)|{v ∈ D : D is a cluster contained in Y and D is adjacent to C}|

≥ (1− 7 4
√
ε)

1

2

[
(1 + 90 4

√
ε)k − |V (MW )|

]
Joining this inequality with (4.6) we obtain

4 4
√
ε|V (MW )| > (83 4

√
ε− 630 2

√
ε− β)k

> 10 4
√
ε|V (T )|
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> 10 4
√
ε(1− 10 4

√
ε)|V (MW )|

> 4 4
√
ε|V (MW )|

where we have used the inequality in (4.1). Thus, there is a good cluster D ⊂ Y neighbor of
C. Map Ti into (Uj(C), Uj(D)) avoiding CR and DR. The root of Ti must be mapped into
CR. We take care of embedding the vertices in V (Ti) that are fathers of seeds into vertices
typical towards CS.

Case 2: i ∈ I \ J .

From (4.4) we know that |φ(Vj)∩ V (MW )| < (1− 10 4
√
ε)|V (MW )| and, therefore, there must

be more than 2
√
ε|MW | good pairs in MW , otherwise using condition (v) we obtain,

10 4
√
ε|V (MW )| ≥

∑
(C,D)∈MW

(|Uj(C)|+ |Uj(D)|)

=
∑

(C,D)∈MW

(C,D) good

(|Uj(C)|+ |Uj(D)|) +
∑

(C,D)∈MW

(C,D) bad

(|Uj(C)|+ |Uj(D)|)

≤ 2
√
ε|MW |2m+ |MW |(7 4

√
εm+ 7 4

√
εm+ βk)

< 8 4
√
ε|V (MW )|

Thus, we know that there must be a good pair (C,D) ∈ MW such that vj is typical to
Uj(C) and to Uj(D). We are going to map Ti into (Uj(C), Uj(D)) avoiding CR and DR. If
|Uj(C)| > |Uj(D)|, then we chose the side for the root in a way that A(Ti) is mapped into
C and B(Ti) is mapped into D. If |Uj(C)| ≤ |Uj(D)|, then we map A(Ti) into D and B(Ti)
into C. This ensures that condition (v) remains true. The root of Ti must be mapped into
the R-slice of the cluster it is assigned. We also take care of embedding the vertices in V (Ti)
that are fathers of seeds into vertices typical towards CS. This completes the proof.

Theorem 4.0.6 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N and c = c(δ) ∈ N such that for
all n ≥ n0 the following holds. Let G be a graph with n vertices which has minimum degree
at least (1 + δ)k

2
and |{v ∈ V (G) : deg(v) ≥ (1 + δ)k}| ≥ δn, with n ≥ k ≥ δn. If T is a tree

with k edges and maximum degree at most ck, then T is a subgraph of G.

Proof. Given δ, we suitably choose ε and d such that

0 < ε� d� δ. (4.7)

Let N0,M
′
0 be given by Proposition 1.2.4 for input ε and m0 := 1

ε
. Let k0 be the output of

Proposition 4.0.5, and set n0 := max{N0, δ
−1k0}.

Now given an n-vertex graph G as in Theorem 4.0.6, with n ≥ n0, apply Proposition 1.2.4 to
G to obtain a subgraph Gd ⊆ G that admits an (ε, d)-upper regular partition, with at most
M ′

0 clusters, and such that |V (G) \ V (Gd)| ≤ εn and degGd
(x) ≥ degG(x)− (d+ ε)n, for all

x ∈ V (Gd). This implies that δ(Gd) ≥ (1+ δ
2
)k

2
and that |{v ∈ V (Gd) : deg(v) ≥ (1+ δ

2
)k}| ≥

δ
2
n.

Hence, we can apply Proposition 4.0.5 to Gd to conclude.
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Chapter 5

On the Erdős-Sós conjecture

In this final chapter we give an affirmative answer to a partial approximated version of the
Erdős-Sós conjecture in the case where the host graph is dense, i.e., the case where the
number of edges grows quadratically on the number of vertices. Our result is just a simple
consequence of Theorem 4.0.6.

Theorem 5.0.1 Let δ ∈ (0, 1). There exist n0 = n0(δ) ∈ N and c = c(δ) ∈ N such that for
all n ≥ n0 the following holds. Let G be a graph on n vertices which satisfies

d(G) > k − 1 + δk,

with n ≥ k ≥ δn. If T is a tree with k edges and maximum degree at most ck, then T is a
subgraph of G.

Proof. Given δ′ := δ2

2
consider k0 and c from Theorem 4.0.6. Let G be an n-vertex graph

with d(G) > k − 1 + δk, where n ≥ k ≥ δn and k ≥ k0. By Fact 1.1.1 we obtain a graph
H ⊆ G such that

δ(H) ≥ (1 + δ)
k

2
and d(H) ≥ (1 + δ)k. (5.1)

We denote by n0 the order of H. Let us define L := {v ∈ V (H) : degH(v) ≥ (1 + δ
2
)k} and

S := V (H) \ L. Note that |L| ≥ δ2

2
n0, otherwise

δ2

2
n2

0 + (1 +
δ

2
)k · n0 > |L| · n0 + |S| · (1 +

δ

2
)k ≥

∑
v∈V (H)

deg(v) ≥ (1 + δ)k · n0,

which in turn implies that δ2n0 > δk, a contradiction to the fact that k ≥ δn ≥ δn0.
Therefore, applying Theorem 4.0.6 to H with parameter δ′ we get the result.
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Conclusion

As we have previously said, part of this work can be seen as a generalization of the re-
sult of Komlós, Sárközy and Szemerédi [30], but part of its relevance also lies in the fact
that it provides support for the 2

3
conjecture and for the Erdős-Sós conjecture, by means of

Theorems 3.2.8 and 5.0.1 respectively.

As we have seen in Section 3.1, Propositions 3.1.2 and 3.1.7 establish an explicit relation
between the diameter of the host graph and the degree of the trees we are able to embed
by means of our technique. In both propositions we embed the first levels of each piece
through a path leading to a pair of clusters with space. In order to maintain control on the
embedding we need that the number of vertices that go into these paths is not too large; that
is why we impose a restriction on the degree of the trees: the greater the diameter, the longer
might be the paths connecting good pairs and, therefore, the smaller has to be the bound
on the degree of the trees. Proposition 3.1.14 shows that this dependence is not necessary,
and that it can be replaced by a dependence on the minimum degree, thus improving the
bound on the degree of the trees. The key idea here is that we do not need to go so far to
find a pair of clusters with space to continue the embedding. Thus, we think that a possible
improvement or extension of the present work would be lowering this distance, or finding a
workable structure in the cases requiring longer distances, for this would enlarge the class of
embeddable trees. The interesting thing about this is that it would have direct impact in all
the Theorems of Section 3.2, raising the bound on the degree of the trees.

Another possible extension to this work would consist in solving the approximated dense
case of the Erdős-Sós conjecture, i.e., to be able to remove the bound on the degree of the
trees in Theorem 5.0.1. It is not difficult to prove that, when a graph has average degree
at least k, the average degree of its line graph is at least 2k and, therefore, one can find
an edge which is adjacent to at least 2k edges. In the approximated dense case this result
could be applied to the reduced graph to find a pair of adjacent clusters (C,D) satisfying
deg(C) + deg(D) ≥ (1 + δ′)2k. We believe this special pair of clusters could be used to do
the embedding in a similar way to Proposition 4.0.5, by considering two sets of seeds instead
of one, as Piguet and Stein do in [38].
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