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Abstract: Open Science pursues the assurance of free availability and usability of every digital outcome originated from

scientific research, such as scientific publications, data, and methodologies. It motivated the emergence of

the FAIR Principles, which introduce a set of requirements that contemporary data sharing repositories must

adopt to provide findability, accessibility, interoperability, and reusability. However, implementing a FAIR-

compliant repository has become a core problem due to two main factors. First, there is a significant complex-

ity related to fulfilling the requirements since they demand the management of research data and metadata.

Second, the repository must be designed to support the inherent big data complexity of volume, variety, and

velocity. In this paper, we propose a novel FAIR-compliant software reference architecture to store, process,

and query massive volumes of scientific data and metadata. We also introduce a generic metadata warehouse

model to handle the repository metadata and support analytical query processing, providing different perspec-

tives of data insights. We show the applicability of the architecture through a case study in the context of a

real-world dataset of COVID-19 Brazilian patients, detailing different types of queries and highlighting their

importance to big data analytics.

1 INTRODUCTION

In the era of big data analytics, data is constantly be-

ing collected on an unprecedented scale. This occurs

mostly due to advances in cloud computing and paral-

lel and distributed data processing, which are respon-

sible for reducing challenges regarding storing and

querying massive datasets. These advances also moti-

vate the sharing of datasets and their derived analyses.

In this context, a significant opportunity has

emerged for the scientific community: boosting sci-

entific data sharing to increase the collaboration be-

tween researchers across the globe. The concept of

Open Science is an answer to this opportunity. Its

objective is to ensure that every digital output of re-

search objects is made available and usable free of

charge (Medeiros et al., 2020). These outputs can in-

clude, but are not limited to: (i) research publications;
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(ii) research data; and (iii) research methodologies,

encompassing any algorithm employed in the process

of generating research data.

Such magnitude of scientific data sharing de-

mands a dedicated infrastructure, which must be im-

plemented in a standardized manner to avoid any type

of incompatibilities. Therefore, a set of standards

referred to as the FAIR Principles have been pro-

posed (Wilkinson et al., 2016). FAIR stands for Find-

ability, Accessibility, Interoperability, and Reusabil-

ity of digital datasets. These principles describe

several requirements that contemporary data sharing

repositories must adopt to support manual and au-

tomated deposition, exploration, sharing, and reuse.

Satisfying these requirements involves handling sci-

entific data and their associated metadata, which can

result in a significant complexity depending on their

volume, variety, and velocity (Chen et al., 2014).

However, the FAIR Principles alone may not be

enough to guide a data engineer towards the imple-

mentation of a repository capable of addressing chal-

lenges inherent to the context of Open Science. Their

proximity to the user level and the complexity intrin-
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sic to big data environments requires the adoption of a

Software Reference Architecture (SRA) to assist data

engineers in overcoming this gap.

According to Nakagawa et al. (2017), an SRA

is “an architecture that encompasses the knowledge

about how to design concrete architectures of sys-

tems of a given application or technological domain”.

That is, SRAs are employed as a basis to derive archi-

tectures adapted to the requirements of specific con-

texts (Angelov et al., 2012). Regarding Open Science,

SRAs can work as a bridge between the FAIR Princi-

ples and the repository being implemented.

Due to the close relationship between Open Sci-

ence and big data analytics, an SRA designed to sup-

port the FAIR Principles must include components

to store considerable volumes of data and metadata,

which can be later efficiently retrieved by analytical

queries. The use of a data warehouse and a data lake

in this context enhances the features provided by the

SRA. A data warehouse is an integrated, subject ori-

ented, historical, and non-volatile database that is usu-

ally built by a multidimensional model (Kimball and

Ross, 2011; Vaisman and Zimányi, 2014). A data

lake is a considerably large raw data storage that deals

with any data format, i.e., structured, semi-structured,

and unstructured data (Couto et al., 2019; Sawadogo

and Darmont, 2021). Besides their importance in en-

abling the repository compliance with the FAIR Prin-

ciples, these components also contribute to the gener-

ation of data insights, an essential characteristic in the

decision-making process of big data analytics.

Despite the considerable importance behind

adopting an SRA to support Open Science, solutions

available in the literature introduce limitations, as de-

tailed in Section 2 and summarized as follows.

There are studies that propose SRAs for generic

big data systems but are unaware of the intrinsic char-

acteristics of the FAIR Principles. There are also

implementations of the FAIR principles in reposito-

ries that are driven to specific contexts. However,

these implementations do not propose an architecture

generic enough to fit the concept of an SRA, nega-

tively impacting on reusability. These limitations mo-

tivate the development of our work.

We introduce the following contributions:

• Proposal of an SRA to implement a data sharing

repository that is compliant with the FAIR Princi-

ples and is able to store, process, and query mas-

sive volumes of scientific data and metadata.

• Specification of a generic multidimensional

model to implement a metadata warehouse to han-

dle the repository metadata.

• Demonstration of the applicability of our architec-

ture through a case study that manipulates a real-

world dataset.

The remainder of this paper is organized as fol-

lows. Section 2 reviews related work. Section 3

presents the proposed architecture and highlights its

compliance with the FAIR Principles. Section 4 de-

tails the design of the metadata warehouse. Section 5

describes the case study that instantiates the architec-

ture and shows the execution of analytical queries,

discussing their usefulness in the decision-making

process. Finally, Section 6 concludes the paper.

2 RELATED WORK

In this section, we analyze studies available in the

literature by dividing them in two groups. Group 1,

named big data architectures, consists of general pur-

pose big data SRAs, i.e., big data architectures that

were not developed with the objective of complying

with the FAIR Principles. The state-of-the art ar-

chitectures are (Davoudian and Liu, 2020): (i) tra-

ditional business intelligence (Vaisman and Zimányi,

2014); (ii) kappa (Kreps, 2014); (iii) lambda (Warren

and Marz, 2015); (iv) liquid (Fernandez et al., 2015);

(v) solid (Martı́nez-Prieto et al., 2015); and (vi) bol-

ster (Nadal et al., 2017).

The main objective behind these architectures is

the generation of knowledge from big data to assist

users in the decision-making process. However, due

to their concern in providing real time analytics, most

of these SRAs are not designed for collecting and

managing data provenance and other types of meta-

data. Since this is an essential characteristic for a

repository to be compliant with the FAIR Principles,

these architectures can be deemed inadequate for the

context of Open Science.

The exceptions are the traditional business intel-

ligence and bolster architectures. Besides being able

to provide real time analytics, these architectures em-

ploy a centralized metadata repository for the collec-

tion and maintenance of different types of metadata.

However, they do not comply with several require-

ments imposed by the FAIR Principles. For instance,

these SRAs do not support the retrieval of source data

objects based on their metadata. They are also not

capable of guaranteeing that metadata will be kept

alive even when their corresponding data objects no

longer exist. Furthermore, these architectures are not

concerned with ad-hoc data anonymization or the em-

ployment of knowledge mapping data structures to

comply with domain-relevant community standards.

Group 2, named FAIR implementations, consists

of implementations of the FAIR Principles in data
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Table 1: Comparing the key characteristics of the proposed SRA with related work.

Key Characteristics Big Data SRAs FAIR Implementations Our Architecture

Complies with the FAIR Principles 7
Not clear if all requirements

are fulfilled
3

Describes the association between the
architecture’s layers and the FAIR
Principles

7 7 3

Can fit the concept of a SRA 3 7 3

Retrieves source data objects though its
metadata

7 3 3

Guarantees the existence of the
metadata even when the related data
object does not exist

7 3 3

Enables the generation of big data
insights

3 7 3

Provides ad-hoc data anonymization 7 7 3

Employs knowledge mapping data
structures

7 3 3

sharing repositories that are driven to specific con-

texts. The work of Pommier et al. (2019) describes a

workflow for the plant phenotypic data management,

detailing the data models and technologies used to

comply with the FAIR Principles. Devarakonda et al.

(2019) introduce a workflow to enable the adoption

of the FAIR Principles in the Atmospheric Radiation

Measurement Data Center, specifying the dataflow

and the employed components. In Lannom et al.

(2020), the context of biodiversity science and geo-

science is addressed through the proposal of a Digital

Object Architecture in an attempt to satisfy the FAIR

Principles. Sinaci et al. (2020) propose a workflow

to implement the FAIR Principles in the context of

health data, along with an architecture for this specific

domain. Finally, in Delgado and Llorente (2021), a

modular architecture that handles genomic informa-

tion and supports the FAIR Principles is proposed,

and the technologies employed in each service are

specified.

Although studies in Group 2 are concerned with

the intrinsic characteristics of the FAIR Principles,

they face several limitations. First, they do not pro-

pose an architecture that is generic enough to fit the

concept of an SRA. This is mostly due to the fact

that the proposed solutions are domain-specific, over-

burdening data engineers in the process of adapting

their solutions to different contexts. Second, some of

the studies are described at the implementation level,

such as Pommier et al. (2019) and Devarakonda et al.

(2019). This negatively impacts the reuse of the pro-

posed solutions, a FAIR principle of significant im-

portance.

Third, none of the studies clarify which require-

ments imposed by the FAIR Principles are satisfied

by their solutions. This fact raises two significant con-

cerns: (i) which parts of the solution are responsible

for implementing a specific requirement; and (ii) if all

requirements are being completely fulfilled. Fourth,

the studies are not optimized to provide big data in-

sights to data consumers. Although this is not a re-

quirement imposed by the FAIR Principles, it is im-

portant to support the decision-making process. Fifth,

ad-hoc data anonymization is not addressed by the

studies, raising an imbroglio regarding data security

and the compliance of the repository with domain-

relevant community standards.

In this paper, we overcome the limitations of the

studies analyzed in this section, as summarized in Ta-

ble 1. We propose an SRA to implement a data and

metadata sharing repository according to the FAIR

Principles. We highlight the relationship between

these principles and each of the architecture layers.

Our solution can retrieve source data objects by us-

ing their metadata and also generate multiple insights

to assist users in the decision-making process of big

data analytics. Furthermore, due to the employment

of a metadata warehouse, our architecture guaran-

tees the persistence of metadata even when the re-

lated data objects no longer exist. Finally, we employ

ad-hoc data anonymization and knowledge mapping

data structures to comply with domain-relevant com-

munity standards.

3 ARCHITECTURE

In this section, we describe a novel SRA for imple-

menting a data sharing repository compliant with the

FAIR Principles. Section 3.1 introduces the layers of

this architecture. Section 3.2 describes how these lay-

ers comply with the FAIR Principles.
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Figure 1: The proposed architecture for implementing a data sharing repository compliant with the FAIR Principles.

3.1 Layers

Figure 1 depicts our proposed architecture, which

consists of the following layers: (i) User; (ii) Per-

sonal Storage; (iii) Metadata Storage; (iv) Data Re-

trieval; (v) Knowledge Mapping; (vi) Data Insights;

and (vii) Data Publishing. In these layers, compo-

nents are represented by boxes with a solid border,

whereas processes are represented by boxes with a

dashed border. Furthermore, directional arrows rep-

resent the flow of data through the different layers,

components, and processes. Whenever the depiction

of these arrows include a padlock, the flow of data

must be end-to-end encrypted. This is due to the fact

that our architecture employs ad-hoc data anonymiza-

tion based on user permissions; thus, it is important to

guarantee that non anonymized data travels the net-

work with enhanced security (Puthal et al., 2017).

User Layer. Encompasses the users that interact with

the data repository and their respective environment.

Users can assume one or both of the following roles:

(i) data providers, which are responsible for loading

their own personal repository with their research data

and respective metadata, if available; and (ii) data

consumers, which can consume different types of data

from the repository. Data providers interact only

with the Personal Storage Layer, where their personal

repositories are located. On the other hand, data con-

sumers interact only with the Data Publishing Layer,

providing data requests and their credentials for au-

thentication, depending on the nature of the request.

Personal Storage Layer. Comprises a set of repos-

itories built to store research data objects along with

their respective metadata. Each personal repository

is owned by a different data provider and can be im-

plemented by using any available technology (e.g. a

data lake). Thus, the repositories can be autonomous,

geographically distributed, and heterogeneous. Our

architecture requires every personal repository to be

connected to a data streaming application program-

ming interface (API) responsible to send every novel

metadata entry to the metadata storage layer in real

time (e.g., Apache Kafka (Le Noac’h et al., 2017)).

This is an important characteristic of the architecture

since it enables analyses involving researches that are

constantly generating data in short intervals. It is also

imperative for the personal repositories to have an in-

terface that allows the Data Retrieval Layer to capture

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

30



research data objects when requested by data con-

sumers.

Metadata Storage Layer. Stores the metadata con-

stantly extracted from the Personal Storage Layer. To

this end, we employ two types of repositories: Meta-

data Warehouse and Metadata Lake. Due to its his-

torical and non-volatile characteristics, the Metadata

Warehouse keeps the metadata alive even when their

related data objects no longer exist. It is also designed

to support batch metadata querying to provide differ-

ent types of big data insights, as detailed in Section 4.

The Metadata Lake is responsible for instantly stor-

ing the raw metadata obtained via streaming from the

Personal Storage Layer until it is completely trans-

formed and loaded into the Metadata Warehouse. The

Metadata Lake supports real time metadata querying

and also serves as a data staging area, storing the in-

termediate results of the metadata transformations to

enhance performance. All metadata provenance, such

as data about the personal repositories that provide

the metadata and details about the extraction (E), load

(L), and transformation (T) processes, are maintained

in the Metadata Governance Repository. This repos-

itory also contains metadata about the metadata ex-

tracted from the Personal Storage Layer, i.e., a set of

data that describes and gives information about the

metadata.

Data Retrieval Layer. Provides resources to process-

ing and querying tasks, and is considered the core of

the architecture. It uses the repository big data infras-

tructure along with a parallel and distributed frame-

work (e.g., Apache Spark (Zaharia et al., 2010)) to

perform several tasks, such as: (i) retrieving source

research data objects from the Personal Storage Layer

based on the content of the metadata stored in the

Metadata Storage Layer; (ii) performing ad-hoc data

anonymization (Bazai et al., 2021) in the original re-

search data objects and in their associated metadata

according to the specifications sent by the Data Pub-

lishing Layer; (iii) using the ontologies and knowl-

edge graphs from the Knowledge Mapping Layer to

translate user data requests to the data model adopted

by the Metadata Storage Layer; and (iv) accessing the

content of every other layer to generate different types

of intelligence for the Data Insights Layer.

Knowledge Mapping Layer. We employ knowledge

mapping data structures, such as ontologies (Staab

et al., 2001) and knowledge graphs (Ehrlinger and

Wöß, 2016) for different purposes. For instance, these

structures can serve as a mapping between a generic

data model known by data consumers and the data

model implemented by the Metadata Storage Layer.

This is a very important requirement to data con-

sumers since it enables data retrieval by using well-

known standards. Further, the models stored in the

Knowledge Mapping Layer can also be applied to de-

lineate different data relationships, enabling the gen-

eration of several types of big data insights.

Data Insights Layer. Enables the generation of de-

scriptive, predictive, and prescriptive analyses (Lep-

enioti et al., 2020) by using the content stored in the

Metadata Storage, Personal Storage, and Knowledge

Mapping layers. The insights created by this layer to

support big data analytics can include, but are not lim-

ited to: (i) public dashboards that enhance the public-

ity of the scientific data stored in the repository, mak-

ing it more findable; (ii) private dashboards used by

managers and directors to monitor the repository; (iii)

machine learning models, which can be employed to

perform predictive and prescriptive analyses; and (iv)

report tools that generate predefined reports from the

stored data. The created insights are accessed only

through the Data Publishing Layer to guarantee secu-

rity and anonymization.

Data Publishing Layer. Serves as a single access

point for data consumers to obtain any type of data

from the repository. It is responsible for authenticat-

ing data consumers, receiving their data requests, and,

based on their permissions, sending the requests to the

Data Retrieval Layer along with data anonymization

specifications. It also returns the metadata requested

to data consumers as soon as they are processed by the

Data Retrieval Layer or the Data Insights Layer. Fur-

ther, the Data Publishing Layer supports mechanisms

for indexing the metadata stored in the repository in a

search engine to provide increased findability.

Because of the multiple possible contexts behind

the implementation of a repository compliant with the

FAIR Principles, it is not mandatory to instantiate ev-

ery component in the architecture. Data engineers

should choose the appropriate layers and components

according to the characteristics of the environment in

which the architecture is being employed.

3.2 Compliance with the FAIR

Principles

Table 2 describes the requirements related to the FAIR

Principles of Findability, Acessibility, Interoperabil-

ity, and Reusability. It also highlights which layers of

the proposed SRA (Figure 1) fulfill each requirement.

The Findability requirements are mostly satisfied

by the Metadata Storage Layer. This layer contains

the Metadata Warehouse, which is responsible for

storing the metadata (F2) and its identifier (F1), as

well as maintaining the identifier of the data instance

FAIR Principles and Big Data: A Software Reference Architecture for Open Science

31



Table 2: Relationship between the architecture layers and the FAIR Principles. Requirements reproduced from Wilkinson et
al. (2016).

Principles Requirements Architecture Layers

Findability
F1. Data and metadata are assigned a globally unique and
persistent identifier.

Personal Storage
Metadata Storage

F2. Data is described with rich metadata. Metadata Storage
F3. Metadata clearly and explicitly include the identifier of the
data it describes.

Metadata Storage

F4. Data and metadata are registered or indexed in a searchable
resource.

Data Publishing

Accessibility
A1. Data and metadata are retrievable by their identifier using a
standardized communications protocol.

Data Publishing
Data Retrieval
Metadata Storage
Personal Storage

A1.1. The protocol is open, free, and universally implementable. Data Publishing
A1.2. The protocol allows for an authentication and authorization
procedure, where necessary.

Data Publishing

A2. Metadata is accessible, even when the data is no longer
available.

Metadata Storage

Interoperability
I1. Data and metadata use a formal, accessible, shared, and
broadly applicable language for knowledge representation.

Knowledge Mapping

I2. Data and metadata use vocabularies that follow FAIR
Principles.

Knowledge Mapping

I3. Data and metadata include qualified references to other data
and metadata.

Knowledge Mapping

Reusability
R1. Data and metadata are richly described with a plurality of
accurate and relevant attributes.

Metadata Storage

R1.1. Data and metadata are released with a clear and accessible
data usage license.

Metadata Storage

R1.2. Data and metadata are associated with detailed provenance. Metadata Storage
R1.3. Data and metadata meet domain-relevant community
standards.

Metadata Storage
Knowledge Mapping

to which the metadata refers (F3). These identifiers

can be implemented as unique fields, such as primary

keys in relational databases. Two other layers also

enable findability. The Personal Storage Layer as-

signs an identifier for every data instance (F1) and the

Data Publishing Layer is responsible for registering

the repository in search engines (F4).

Regarding the Accessibility requirements, they

fall mostly under the responsibility of the Data Pub-

lishing Layer since it handles user connection (A1,

A1.1) and authentication (A1.2). The Metadata Stor-

age Layer also plays a significant role since the Meta-

data Warehouse keeps the metadata alive even when

the source data is no longer available (A2). Fi-

nally, the Data Retrieval, Metadata Storage, and Per-

sonal Storage layers enable data retrieval based on its

unique identifier (A1).

The Knowledge Mapping Layer must be em-

ployed to enable the Interoperability requirements.

This layer handles the translation between schemas in

the Metadata Storage and Personal Storage layers to

a well-known language (I1) and vocabulary (I2). It is

also responsible for storing the relationships between

different instances of metadata and data objects (I3).

Finally, the Reusability requirements are tackled

as follows. In the Metadata Storage Layer, the Meta-

data Warehouse enables a rich description of the data

objects and their metadata (R1), encompassing a di-

mension to deal with licensing information (R1.1)

and a Metadata Governance Repository to store data

provenance (R1.2). Further, the compliance with

domain-relevant community standards (R1.3) is ob-

tained by the Metadata Warehouse or through a map-

ping stored in the Knowledge Mapping Layer.

Our architecture goes one step forward in regards

to the FAIR Principles since it also enables big data

analytics. The Metadata Warehouse and the Metadata

Lake store huge volumes of metadata that can be re-

trieved efficiently by the Data Insights Layer. The

Metadata Warehouse supports the traditional batch

analytical query processing, while the Metadata Lake

is responsible for the streaming query processing to

monitor and extract knowledge in (almost) real time.

Therefore, the architecture contributes to the genera-

tion of a broad set of data insights to support data con-

sumers in the decision-making process. We show this

applicability by using real-world datasets of COVID-

19 Brazilian patients, as discussed in Section 5.
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Figure 2: The proposed metadata warehouse generic model.

4 METADATA WAREHOUSE

GENERIC MODEL

To effectively implement a data warehouse, we must

first model its numeric measures and dimensions. Nu-

meric measures are the subjects of interest. Dimen-

sions are described by a set of attributes and deter-

mine the context for these measures. In relational

implementations, the data warehouse is designed

through a star schema composed of fact and dimen-

sion tables, corresponding to the numeric measures

and dimensions, respectively (Kimball and Ross,

2011).

We propose a generic model for the Metadata

Warehouse that encompasses the needed metadata for

a repository to be compliant with the FAIR Principles.

This model is composed of eight dimension tables and

one fact table, as shown in Figure 2. More dimensions

or attributes can be included depending on the scope

of the repository being modeled.

The fact table FACT STORAGE represents the

event of extracting the metadata of a data cell at a

given date and time, considering the data repository,

the data provider, and the associated status, permis-

sions, and license. A data cell can be defined as the in-

tersection of an attribute and a tuple, such as the value

of a column in a row for a relational table, or the value

of a field in a document for a document collection.

The fact table contains the surrogate keys of every di-

mension, enabling different perspectives of analysis.

The set of these surrogate keys also composes the pri-

mary key. The fact represents the size of the data cell,

which can be expressed in characters, bytes, or simi-

lar measurement units. It is an additive numeric mea-

sure, indicating that the size can be summed across all

dimensions. Thus, it can be useful to support analy-

ses regarding the growth of the repository over time.

Other numeric measures can also be included in the

fact table, depending on the context of the repository

being implemented.

The following dimension tables are associated

with the fact table: (i) DIM DATAPROVIDER,

storing information on the provider of the data

cell, such as its name, type, and location;

(ii) DIM DATAREPOSITORY, containing the data

necessary to connect to the repository, its descrip-

tion, and storage type (e.g., PostgreSQL storage);

(iii) DIM DATACELL, keeping the metadata related
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Figure 3: Architecture instantiation for the context of the COVID-19 DataSharing/BR dataset.

to the source data objects (e.g., a relational table),

its attributes (e.g., a column in a relational table),

and its instances (e.g., a row in a relational ta-

ble); (iv) DIM STATUS, storing the status of the

data cell in the data source, specifying if it still ex-

ists; (v) DIM PERMISSIONS, maintaining the re-

quired role to access a data cell and a boolean at-

tribute to inform if data anonymization is required for

the access; (vi) DIM LICENSE, containing the data

cell licensing information; and (vii) DIM DATE and

DIM TIME, representing respectively the date and

time in which the data cell metadata has been ex-

tracted from the Personal Storage Layer.

The use of the metadata warehouse generic model

depicted in Figure 2 is very important to achieve the

FAIR Principles in a data sharing repository. For in-

stance, it enables data objects to be associated with

rich metadata, keeping it persisted even when these

objects no longer exist. Furthermore, due to the in-

trinsic characteristics of a data warehouse (i.e. sub-

ject oriented and integrated), analytical queries on the

stored metadata are considerably optimized, an essen-

tial characteristic for a big data analytics environment.

Analyses involving multiple perspectives are also en-

abled, not only due to the plurality of the dimensions

incorporated in the model but also due to the fact that

the data size is stored in the lowest possible granular-

ity level. Finally, since the model does not contain any

components that are specific to a particular repository,

it is generic enough to be reused in distinct contexts.

5 CASE STUDY

In this section, we present a case study to show how

our architecture and the metadata warehouse generic

model can be deployed to enable scientific data shar-

ing according to the FAIR Principles in a real-world

context. Our goal is to not conduct performance eval-

uations since it goes beyond the scope of this paper.

Section 5.1 discusses how to instantiate the architec-

ture to the given context. Section 5.2 describes differ-

ent analytical queries that data consumers can execute

on top of this instantiation.

5.1 Architecture Instantiation

We employ a real-world dataset of COVID-19 Brazil-

ian patients. The dataset is available in the COVID-19

DataSharing/BR repository (FAPESP, 2020), which

is a FAIR-compliant Open Science repository devel-

oped by the State of São Paulo Research Foundation

(FAPESP). Every data object available in this repos-

itory is accompanied by its metadata, such as a data

dictionary that describes the data type and the mean-

ing of every one of its attributes.

There are five distinct data providers, all refer-

ences in the field of medical diagnosis in Brazil:

(i) Beneficência Portuguesa de São Paulo (BPSP);

(ii) the University of São Paulo clinics hospital (USP);

(iii) the Fleury Group clinics (FG); (iv) the Albert

Einstein hospital (AE); and (v) the Syrian-Lebanese

hospital (SL). Each data provider contributed with
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three different data objects: (i) patients data, includ-

ing their unique identification (ID), sex, birth date,

country, state, city, and zip code; (ii) medical ex-

ams, including the patient’s unique ID, consultation

ID, collection date, collection venue, analyte descrip-

tion, exam description, result, measurement unit, and

reference value; and (iii) outcome, whose fields are

the patient’s unique ID, consultation ID, consultation

date, consultation type, clinic ID, clinic description,

outcome date, and outcome description. The con-

tent of these data objects were translated from Por-

tuguese to English to provide readability. Considering

all data providers, there is a total of 862,571 patients,

54,763,675 exams, and 307,928 outcomes.

Figure 3 depicts the layers and respective com-

ponents that are required to instantiate the architec-

ture shown in Figure 1 according to the characteris-

tics of the case study. The aforementioned five data

providers are represented in the User Layer drawn

on the left (Figure 3a). The COVID-19 DataShar-

ing/BR dataset is composed of comma-separated val-

ues (CSV) and Microsoft Excel sheet (XLSX) files.

Therefore, in the Personal Storage Layer (Figure 3a),

we choose to store each data provider using a different

Hadoop Distributed File System (HDFS) (Shvachko

et al., 2010) environment so that repositories owned

by different data providers are properly represented.

The Metadata Lake and Warehouse of the Meta-

data Storage Layer (Figure 3b) are also implemented

by using the HDFS. We employ Apache Kafka

((Le Noac’h et al., 2017)) to extract every new in-

stance of metadata inserted into the Personal Stor-

age Layer (Figure 3a) and to load it into the Meta-

data Lake. Furthermore, we employ Apache Spark to

transform the content of the Metadata Lake and load

it into the Metadata Warehouse for further analyses.

The design of the Metadata Warehouse follows the

model proposed in Section 4. Thus, every fact and

dimension depicted in Figure 2 is implemented.

Data consumers, represented in the User Layer

drawn on the right (Figure 3c), can issue differ-

ent types of requests. Three examples of analytical

queries involving the stored metadata and the source

data objects to which they refer are described in Sec-

tion 5.2. Data consumers issue queries using the

Structured Query Language (SQL). The queries are

then executed by the Data Retrieval Layer (Figure 3b)

in a parallel and distributed manner through the use

of SparkSQL (Armbrust et al., 2015). Because of the

characteristics of this interaction, the case study does

not require the instantiation of any data structure from

the Knowledge Mapping Layer.

Finally, since the COVID-19 DataSharing/BR

dataset has its personal and sensitive data already

anonymized, the Data Retrieval Layer (Figure 3b)

does not need to be concerned with ad-hoc data

anonymization. We also consider that data consumers

have all the needed permissions to query the reposi-

tory data, which renders the instantiation of the Data

Publishing Layer unnecessary.

5.2 Analytical Queries

We describe three analytical queries that data con-

sumers can execute on top of the instantiated archi-

tecture outlined in Section 5.1. The motivation be-

hind these queries is to validate the communication

between multiple layers of the proposed architecture.

The validation encompasses the task of integrating

the source data objects stored in the Personal Stor-

age Layer) with their respective metadata stored in the

Metadata Storage layer. We propose different types of

queries, i.e., queries that analyze different aspects in

the decision-making process:

• Query 1. Involves only metadata stored in the

Metadata Warehouse.

• Query 2. Encompasses only source data objects.

• Query 3. Includes both the stored metadata and

the source data objects.

These types of queries are generic and can be ap-

plied to different contexts. We present specific exam-

ples of these queries in our scenario as follows.

Query 1. Analyzing Data Size Grouped by Year,

Month, and Data Provider Type. This type of query

allows data consumers to verify which type of data

provider bestows the majority of the data to the repos-

itory over time. Hence, it can be useful to analyze the

growth of the repository. Since this analysis involves

only the stored metadata, the Data Retrieval Layer

can perform it by executing the following SparkSQL

query against the Metadata Warehouse:

SELECT DIM_DATE.year,

DIM_DATE.month,

DIM_DATAPROVIDER.type,

SUM(FACT.size) AS size

FROM FACT_STORAGE

INNER JOIN DIM_DATE

ON (FACT.sk_date =

DIM_DATE.sk_date)

INNER JOIN DIM_DATAPROVIDER

ON (FACT.sk_dataprovider =

DIM_DATAPROVIDER.sk_dataprovider)

GROUP BY DIM_DATE.year, DIM_DATE.month,

DIM_DATAPROVIDER.type

The results of Query 1 are depicted in Figure 4.

Through the interpretation of the results, data con-

sumers can verify that most of the data in the reposi-

tory has been provided by laboratories in 2020. It is
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also possible to identify that no laboratory has pro-

vided new data in February and April 2021. With this

information, data consumers can work on prospecting

new laboratory data providers, as well as on request-

ing more data from the current ones.
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Figure 4: Results of Query 1, which represent data size
grouped by month, year, and data provider type. A loga-
rithmic scale is employed to improve data visualization.

Query 2. Analyzing the Amount of Patients That

Were Tested for Calcium Grouped by Sex using

the Dataset Bestowed by the USP Provider. This

type of query inspects if there is any relationship be-

tween the patient sex and the types of exams per-

formed. Even though this investigation encompasses

only source data objects, the Data Retrieval Layer

must first access the Metadata Warehouse to obtain

the connection information to the Personal Storage

Layer. Once this information is retrieved and used

as a parameter to load the source data objects, data

consumers can run the following SparkSQL query:

SELECT USP_PATIENTS.ic_sex,

COUNT(DISTINCT

USP_PATIENTS.id_patient) AS amount

FROM USP_PATIENTS

INNER JOIN USP_EXAMS

ON (USP_PATIENTS.id_patient =

USP_EXAMS.id_patient)

WHERE USP_EXAMS.de_exam

LIKE ’%CALCIUM%’

GROUP BY USP_PATIENTS.ic_sex

By analyzing the results of Query 2 depicted in

Figure 5, it becomes clear that the majority of pa-

tients tested for calcium in the USP dataset are male.

With this insight, data consumers can perform further

analyses to confirm if there really is a correlation be-

tween the patient sex and the exams performed. For

instance, it is needed to verify the proportion of men

and women in the dataset, as well as if this behavior

remains unchanged in other data providers’ datasets.

Male

61.7%

Female

38.3%

Figure 5: Results of Query 2, which represent the amount of
patients that were tested for calcium grouped by sex using
the dataset bestowed by the USP provider.

Query 3. Analyzing the Five Most Voluminous

Data Sizes of Outcomes Registered in Emergency

Rooms, Grouped by Data Provider and Clinic

Name. Data consumers can use this type of in-

vestigation to generate insights to reveal which data

providers occupy the most repository space with out-

comes registered in emergency rooms. It is also pos-

sible to verify in which of the data providers clin-

ics the data size is bigger. Since this query involves

stored metadata and source data objects, the Data Re-

trieval Layer must access the Metadata Warehouse

twice: first for retrieving the connection information

to the Personal Storage Layer, and then for joining

the source data objects with their respective metadata.

Once the data objects are loaded, the following Spark-

SQL query is executed:

SELECT DIM_DATAPROVIDER.name,

OUTCOMES.clinic,

SUM(FACT.size) AS size

FROM FACT_STORAGE

INNER JOIN DIM_DATAPROVIDER

ON (FACT.sk_dataprovider =

DIM_DATAPROVIDER.sk_dataprovider)

INNER JOIN DIM_DATACELL

ON (FACT.sk_datacell =

DIM_DATACELL.sk_datacell)

INNER JOIN OUTCOMES

ON (OUTCOMES.id_patient =

DIM_DATACELL

.data_instance_unique_source_id_01

AND OUTCOMES.id_consultation =

DIM_DATACELL

.data_instance_unique_source_id_02

AND OUTCOMES.data_object_title =

DIM_DATACELL.data_object_title)

WHERE OUTCOMES.exam_description

LIKE ’%Emergency%’

GROUP BY DIM_DATAPROVIDER.name,

OUTCOMES.clinic

ORDER BY SUM(FACT.size) DESC

LIMIT 5

The results of Query 3 are depicted in Figure 6.

By interpreting these results, data consumers can ob-

tain different insights. For instance, they can observe
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that only clinics belonging to the BPSP and the SL

data providers are displayed in the query results. This

can indicate that, in regards to outcomes registered

in emergency rooms, there is a considerable gap be-

tween the data size of these clinics and those belong-

ing to other data providers. Additionally, data con-

sumers can realize that the significant majority of the

data referring to these outcomes have been registered

by two BPSP clinics: “U.Pa.” and “U.B.M.”. With

this information, it is possible to investigate the rea-

sons behind these outliers. For example, data con-

sumers can verify if these specific clinics store more

details regarding outcomes in emergency rooms when

compared to clinics with smaller data sizes. This in-

formation can be useful to encourage other clinics to

increase the level of detail in their data, enriching fu-

ture analyses that encompass this context.
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Figure 6: Results of Query 3, which represent the data size
of outcomes registered in emergency rooms, grouped by
data provider and clinic name. A logarithmic scale is em-
ployed to improve data visualization.

6 CONCLUSIONS AND FUTURE

WORK

In this paper, we propose a software reference archi-

tecture to implement data sharing repositories com-

pliant with the FAIR Principles. This architecture

is composed of seven layers: (i) User Layer, repre-

senting data providers and consumers; (ii) Personal

Storage Layer, encompassing the source data objects;

(iii) Metadata Storage Layer, responsible for storing

and maintaining the metadata extracted from the per-

sonal storage layer; (iv) Data Retrieval Layer, re-

sponsible for querying and processing data and meta-

data; (v) Knowledge Mapping Layer, containing as-

sociations between the repository data models and

domain-relevant community standards; (vi) Data In-

sights Layer, aimed to generate different types of

analyses from data and metadata; and (vii) Data Pub-

lishing Layer, representing a single access point for

data consumers to retrieve any type of data, metadata,

or insights from the repository. We detail which layer

fulfills each FAIR Principles requirement.

We also propose a metadata warehouse model that

can be employed by data engineers to guarantee meta-

data persistence, i.e., to guarantee that metadata re-

mains alive even when their corresponding source

data objects no longer exist. This model is generic

and can be adapted in the design of distinct reposito-

ries, according to the data consumers’ requirements.

Finally, we describe a case study that instantiates

the proposed architecture to the context of a real-

world dataset of COVID-19 Brazilian patients, avail-

able in the COVID-19 DataSharing/BR repository.

We detail three different types of queries and high-

light their importance to big data analytics.

We are currently developing guidelines to assist

data engineers in the process of implementing the

proposed architecture. Another future work includes

validating the efficiency of the architecture through

performance tests that investigate several aspects,

such as query response time, scalability, and memory

throughput. New case studies instantiating the pro-

posed architecture to different real-world contexts are

also planned as future work.
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