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A B S T R A C T

Internal-body (core) and surface temperatures of livestock are important information that indicate heat stress
status and comfort of animals. Previous studies focused on developing mechanistic and empirical models to
predict these temperatures. Mechanistic models based on bioenergetics of animals often require parameters that
may be difficult to obtain (e.g., thickness of internal tissues). Empirical models, on the other hand, are data-
based and often assume linear relationships between predictor (e.g., air temperature) and response (e.g., in-
ternal-body temperature) variables although, from the theory of bioenergetics, the relationship between the
predictor and the response variables is non-linear. One alternative to consider non-linearity is to use machine
learning algorithms to predict physiological temperatures. Unlike mechanistic models, machine learning algo-
rithms do not depend on biophysical parameters, and, unlike linear empirical models, machine learning algo-
rithms automatically select the predictor variables and find non-linear functions between predictor and response
variables. In this paper, we tested four different machine learning algorithms to predict rectal (Tr), skin-surface
(Ts), and hair-coat surface (Th) temperatures of piglets based on environmental data. From the four algorithms
considered, deep neural networks provided the best prediction for Tr with an error of 0.36%, gradient boosted
machines provided the best prediction for Ts with an error of 0.62%, and random forests provided the best pre-
dictions for Th with an error of 1.35%. These three algorithms were robust for a wide range of inputs. The fourth
algorithm, generalized linear regression, predicted at higher errors and was not robust for a wide range of inputs.
This study supports the use of machine learning algorithms (specifically deep neural networks, gradient boosted
machines, and random forests) to predict physiological temperature responses of piglets.

1. Introduction

One of the current challenges in agriculture is to increase food
production to feed the world’s growing population while considering
environmental responsibilities and the comfort of the biological object
(livestock; Hunter et al., 2017). In animal production, the challenge is
in developing precision livestock farming techniques (Van Hertem
et al., 2017; Wathes et al., 2008) to increase animal comfort and pro-
duction. These techniques (Guarino et al., 2017) are focused on con-
tinuous monitoring of animal health, comfort, and production in-
dicators, such as internal-body and skin-surface temperature. These
temperatures indicate the health status and production levels of animals
(Da Silva and Maia, 2013; Soerensen and Pedersen, 2015), as well as
their heat stress level, estimated to cost the swine industry $300 million
each year (St-Pierre et al., 2003).

Heat stress is a major issue that decreases animal welfare
(Silanikove, 2000), production (Nienaber et al., 1999), reproduction
(Wolfenson et al., 2000), and growth potential (Collin et al., 2001). To
cope with heat stress, pigs rely on behavioral (Vasdal et al., 2009) and
physiological (Brown-Brandl et al., 2001, 2014; Robertshaw, 2006)
responses. Because of the importance of monitoring heat stress of pigs
(Shao and Xin, 2008), and the difficulty of measuring the necessary
parameters that indicate heat stress (McCafferty et al., 2015), two
classical approaches are used to estimate heat stress of animals: (1)
mechanistic modelling, and (2) empirical modelling.

Mechanistic models are based on the biophysical understanding of
conservation of energy, momentum, and mass in live animals (Collier
and Gebremedhin, 2015; DeShazer, 2009). Using conservation equa-
tions, a governing equation for the problem is formulated and solved
analytically or numerically. The limitations of analytical and numerical
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models are the assumption that internal and/or superficial tempera-
tures are known, or a simple mathematical relationship exists between
them, and/or some of the parameters are also difficult to obtain (e.g.,
thickness of internal tissues, etc.). Furthermore, mechanistic models
reveal that the relationship between environmental and physiological
responses are non-linear (Hensley et al., 2013; Milan and Gebremedhin,
2016a,b; McArthur, 1981).

Empirical models are data-based and usually assume a linear re-
lationship between predictor variables (e.g., air temperature) and the
response variable (e.g., internal-body temperature). These relationships
are chosen by the researcher and has a considerable impact on the
accuracy of the model (Mostaço et al., 2015; Pathak et al., 2009;
Ramirez, 2017; Soerensen and Pedersen, 2015).

A third approach that is receiving increased attention from swine
researchers are machine learning and computer vision algorithms
(Kamilaris and Prenafeta-Boldú, 2018). Recent applications include
monitoring animal behavior (Cross et al., in press; Lao et al., 2016;
Nasirahmadi et al., 2017; Shao and Xin, 2008), and weight (Kashiha
et al., 2014; Shi et al., 2016; Wongsriworaphon et al., 2015). In this
paper, we propose the use of machine learning algorithms to predict
internal-body temperature, skin-surface temperature, and hair-coat
surface temperature of piglets from environmental variables. The ad-
vantage of this approach compared to mechanistic models is that it does
not rely on biophysical parameters. The advantage of this approach
compared to empirical models is that it automatically finds a non-linear
function from the data, removing the subjectivity from the researcher
choosing the relationship between predictor and response variables. To
the best of our knowledge, this is the first study that applies machine
learning algorithms to predict physiological temperatures of swine.

2. Materials and methods

2.1. Experimental measurements

Animal use and research protocol were approved by the Animal
Care and Use Committee from São Paulo State University (FAPESP Proc.
17.519/14). The experiment was conducted in Jaboticabal, São Paulo,
Brazil (21°15′40′′ South Latitude and 595m elevation) for five con-
secutive days. Ten 5-days-old piglets (weight= 3.76 ± 0.41 kg,
mean ± SEM) from the commercial lineage “Large White” were ran-
domly selected from the same farrowing. The farrowing was not pro-
vided with supplemental heat. The selected piglets were randomly se-
parated into 5 groups (2 piglets in each group) and managed inside a
brooder (1.0× 1.0×1.0m3) from 3 a.m. to 8 a.m. Physiological
measurements were performed hourly and started one hour after the
piglets were inside the brooder (i.e., from 4 a.m. to 8 a.m.) to allow for
adaptation to the environment. Four of the five groups were provided
with supplemental heat (lamps) with intensities of 60W, 100W, 160W,
or 200W. The fifth group (control) was not provided with supplemental
heat.

Skin-surface temperature (Ts, °C) at the upper leg of the animal was
measured with a skin- temperature probe (MLT422/AL, ADInstruments,
accuracy ± 0.2 °C) and rectal temperature (Tr, °C) was measured with
a rectal temperature probe (MLT1403, ADInstruments,
accuracy ± 0.2 °C). These probes were connected to thermistor pods
(ML309, ADInstruments), and the pods were connected to a data ac-
quisition system (PL3516/P, PowerLab 16/35 and LabChart Pro,
ADInstruments) that recorded data every second for approximately
5min. Hair-coat-surface temperature (Th, °C) at the upper leg was
measured with an infrared thermometer (Model 568, Fluke,
accuracy ± 1 °C). Air temperature (Ta, °C) and relative humidity (RH,
%) inside the brooder were measured every minute (HOBO U12 Temp/
RH, Onset, accuracy ± 0.35 °C and ± 2.5%). Black globe temperature
(Tg, °C) inside the brooder was measured using a 15-cm dia. black globe
installed 10 cm above the ground (thermocouple TMC20-HD, data-
logger U12-013, accuracy ± 0.35 °C, Onset).

2.2. Model development

2.2.1. Data processing
The experiment was designed to provide 200 data points. Each in-

dividual data point contained the time of measurement (in hours), in-
tensity of the supplemental heat, Ta, RH, Tg, Tr, Ts, and Th. Time of
measurement, intensity of supplemental heat, Ta, and Tg were used as
predictors of Tr, Ts, and Th. RH was not used as a predictor variable
because 22% of the data was lost due to sensor failure. Further technical
problems led to a reduction in the number of collected datapoints from
200 to 173. Correlations of the variables, mean and standard error of
the mean were calculated. The univariate number of the outliers in the
dataset was calculated using the z-score method at 2.5 standard de-
viations above or below the mean (Cousineau and Chartier, 2010).

The dataset was divided into training and testing datasets (Hastie
et al., 2003). The training dataset was used to develop the machine
learning models and the testing dataset was used to evaluate the pre-
dictive performance of the models. The training dataset consisted of
130 data points (75% of the dataset) and the testing dataset consisted of
43 points (25% of the dataset). The testing dataset was first obtained
using stratified random sampling for each combination of time of
measurement/intensity of supplemental heat (strata). This approach
ensured that the testing dataset contained at least two data points from
each stratum. Mean values were calculated for each strata of the dataset
(yielding 20 data points) to determine the mean percentage error of
each model for every stratum.

2.2.2. Overview of machine learning models
The machine learning algorithms used in this study were general-

ized linear regression model with elastic net regularization (GLM; Zou
and Hastie, 2005), random forests (RF; Breiman, 2001), gradient
boosted machines (GBM; Natekin and Knoll, 2013), and deep neural
networks (feedforward neural networks) with the ReLU activation
function (DNN; Goodfellow et al., 2016). Each algorithm has hy-
perparameters that influence the model learned from the data.

GLM is ordinary linear regression with penalty terms in the L1 (sum
of magnitudes) and L2 (sum of squares) norms of the linear regression
coefficients. The penalties shrink irrelevant regression coefficients and
limit the impact of collinearity between the predictor variables (Zou
and Hastie, 2005). The objective function of the GLM model is de-
scribed as
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where β β, 0 are regression coefficients, the summation represents
the squared residual errors, xi is the predictor variable from the ith row
of data, yi is the predicted variable from the ith row of data, λ is the
severity of penalty applied, and α distributes the penalty between
L1(∥ ∥β 1) and squared L2(∥ ∥β 2

2) norms of the regression coefficients. The
hyperparameters are λ and α.

The RF and GBM models rely on decision trees, which are simple
predictive models that stratify the input data space into output areas.
The output-area prediction of decision trees is the mean of the response
variables from the training dataset that fall in that output area (Fig. 1).
For RF, several decision trees are developed independently from dif-
ferent subsets of the training dataset as well as from the different pre-
dictor variables. The prediction of the RF is the average of the predic-
tions from all decision trees. The hyperparameters for RF are number of
decision trees, minimum number of observations in a leaf, number of
variables used to develop each split in a decision tree, and the max-
imum depth of the decision trees. For the GBM model, decision trees are
developed sequentially, where each new decision tree is designed to
improve on the predictive performance of the previous decision trees.
The hyperparameters of the GBM are nearly the same as the hy-
perparameters for the RF, except GBM uses all predictor variables in a
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dataset for each split. GBM also has the learning rate of the sequential
trees and an annealing rate (the influence of sequential trees on the
final prediction output) as hyperparameters.

DNN algorithms provide flexible and robust approaches to develop
nonlinear machine learning models. Feedforward neural networks, the
type of DNN used in this study, consist of an input layer, hidden layers
of unobserved variables, and an output layer (Fig. 2). Given an input
vector x, the output of hidden layer h is computed as follows:

= +h f θ Wx( )

where θ is a vector of offsets, W is a matrix of weights, and f is a user
selected activation (non-linear) function (ReLU was used in this study).
The output from f (i.e., h) is an input for the next layer. This process is
repeated until the output layer is reached. The variable calculated for
the output layer, the prediction of the feedforward neural network, is
calculated similarly as h but with a different activation function. In this
study, the activation function for the output layer was the identity
function, which is equivalent to linear regression with the variables of
the last hidden layer. The hyperparameters for the DNN model are the
number of hidden layers, number of neurons in each hidden layer, mini-
batch size (the number of observations used in each iteration in the
model optimization process), epochs (the number of times the whole
training dataset is used in training), dropout percentage (the percentage
of weights not updated during a mini-batch iteration to avoid over-
fitting; Srivastava et al., 2014), and ρ and ε (hyperparameters of the
ADADELTA optimization framework; Zeiler, 2012).

2.2.3. Training and testing machine learning models
The objective of this paper was to develop machine learning models

to predict Tr, Ts, and Th using Ta, Tg, time of measurement, and intensity
of supplemental heat as predictors. The machine learning models were
trained in R (R Core Team, 2017) using the H2O package (The H2O.ai
Team, 2017) with modular 5-fold cross-validation (Hastie et al., 2003).
To develop the machine learning models, a random search for

hyperparameter optimization (Bergstra and Bengio, 2012) was per-
formed on the hyperparameter space described in Table 1. For GLM, RF,
and GBM, 1000 random searches were performed (resulting in 1000
trained models for each of these algorithms). For DNN, because of its
inherently larger hyperparameter space, 2000 random searches were
performed (resulting in 2000 trained deep neural network models).
Computations were performed on an Oryx Pro from System76, with
Pop-OS 17.10, 512 GB PCIe M.2 SSD, 64 GB DDR4 RAM memory
(2133MHz), i7-6820HK (3.6 GHz), 8 GB GeForce GTX 980M.

The mean squared error (MSE) was used as the evaluation metric

Fig. 1. Example of a decision tree for predicting hair-coat surface temperature.
A decision tree is developed by segmenting the input space into structured
outputs. Each decision (e.g., Time < 6) represents a split of the tree. A leaf is
the end node of the tree (e.g., the node with the value of 31 for Time≥ 6 and
Heat < 30). Random forests are based on creating several decision trees and
averaging their output. Gradient boosted machines are based on creating sev-
eral sequential decision trees, where new trees focus on improving the pre-
diction accuracy of previous trees, and linearly combining the predictions of
these trees. Time: time of measurement (hours); Heat: intensity of supplemental
heat (W); Ta: air temperature (°C); Tg: black globe temperature (°C).

Fig. 2. Feedforward neural network. Each input variable represents one neuron
(In) that connects to every hidden neuron in the first hidden layer (H1m). Each
hidden neuron is a non-linear function (activation function), where the outputs
of the hidden neurons in the previous hidden layer are inputs to the hidden
neurons in the next hidden layer. The outputs of the last hidden layer are inputs
to the output neuron (O), which provides the prediction of the neural network.
Time: time of measurement (hours); Heat: intensity of supplemental heat (W);
Ta: air temperature (°C); Tg: black globe temperature (°C); In: input neuron n;
Hnm: hidden neuron m of hidden layer n; O: output neuron; Tr: rectal tem-
perature (°C).

Table 1
Hyperparameter space used to sample hyperparameters for training the ma-
chine learning algorithms.

Hyperparameter Distributiona Hyperparameter Distributiona

Random Forests Generalized Linear Model
#Trees U (10, 250)d λ U −10 ( 10,0)

MNOLb U (1, 30)d α U (0, 1)
NVSc U (1, 4)d Deep Neural Network
Max. TreeDepth U (1, 100)d #Hidden layers U (1, 4)d

Gradient Boosted Machines #Neurons U (1, 250)d
#Trees U (1, 100)d Dropout percentage U (0, 0.33)
MNOLb U (1, 20)d Epochs U (1, 10 )d 4

Max. Tree Depth U (1, 100)d Mini-batch sized U (1, 130)d
Learning rate U (0.001, 1) ρ U (0.75, 0.999)
Annealing U (0.8, 1) ε U − −10 ( 10, 6)

a Ud stands for uniform discrete random distribution from a to b; U stands
for uniform random distribution from a to b.

b MNOL: minimum number of observations in a leaf.
c NVS: number of variables used in each split.
d The maximum number corresponds to the number of observations in the

training dataset.
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(Hastie et al., 2003). We used cross-validation MSE to select the best
performing model from each algorithm. Of these best performing
models, the overall best model was the one that minimized MSE on the
testing dataset.

Robustness and generalization of the best models were tested using
partial dependence plots (Friedman, 2001) for 5 artificial datasets. Each
dataset was designed to test how the models would perform under
different conditions. Four artificial datasets had Ta = [−20, 100] °C, Tg

= [−20, 100] °C, time of measurement = [0, 24] h, or intensity of
supplemental heat = [0, 1000] W, while keeping the remaining pre-
dictor variables at their mean values. The fifth artificial dataset con-
sisted of 10,000 random combinations of these artificial values to fur-
ther test how change in the predictor variables would affect the
prediction from the machine learning models.

3. Results and discussion

3.1. Environmental data

Fig. 3 shows the measured environmental data from the dataset
stratified for the different time of measurement and intensity of sup-
plemental heat while Table 2 shows the coefficients of correlation,
mean, standard error of the mean, and number of outliers. As expected
(Monteith and Unsworth, 2013), Ta and Tg increased when the intensity
of the supplemental heat increased while RH decreased.

3.2. Performance of machine learning models

Fig. 4 shows the MSE of the best performing machine learning
models (that minimized cross-validation MSE) using cross-validation,
training dataset, and testing dataset. Table 3 shows the hyperpara-
meters for these models. Fig. 5 shows the training and testing MSE of
these models for the training iterations. The GLM model converged at
one iteration, but the other models required more than ten iterations to
converge. The best overall model (based on minimum testing MSE), was
DNN for Tr, GBM for Ts, and RF for Th.

Fig. 6a shows the prediction output from the best machine learning
algorithms using the mean dataset and Fig. 6b shows the absolute
percentage error. The model predictions are very close to the measured
values. The observed mean absolute errors of Tr, Ts, and Th, were
0.36%, 0.62% and 1.35%, respectively (Fig. 6b). These errors are lower
than those previously reported from either statistical or mechanistic
models. Mostaço et al. (2015) predicted rectal temperatures of pigs with
2.5% error using multiple linear regression for air enthalpy and tym-
panic temperature (known to be correlated with internal body tem-
perature; Korthals et al., 1995). Costa et al. (2010) predicted surface
temperature of piglets with 5.5% error using a linear regression model.
Loughmiller et al. (2001) predicted mean body-surface temperature of
pigs with 3.5% error using a linear regression model. Turnpenny et al.
(2000a,b) developed a mechanistic model and the resulting error was
7% for predicting skin-surface temperature of pigs.

3.3. Test of robustness and generalization of the best machine learning
models

Figs. 7–9 show the partial dependence plots (Friedman, 2001) from
the effect of changing one predictor variable (while keeping the re-
maining predictor variables at their mean values) on Tr, Ts, and Th,
respectively. These figures show, with the exception of GLM, that the
machine learning models were robust with respect to the input vari-
ables because they did not produce unexpected predictions. GLM,
which fits linear functions for the predictor variables, however, pro-
duced relationships that are counter to expectations, such as decreasing
Ts and Tr while increasing Tg.

Fig. 10 shows the effect of randomly changing all predictor variables
on Tr, Ts, and Th, which are predicted by the best performing machine
learning models. This figure shows that temperature predictions using
GLM resulted in higher variance, which means that GLM is not robust to
changes in the predictor variables. The predictions from RF, GBM, and
DNN were, however, closer to the mean measured values and the var-
iance of their predictions was lower, which means that these algorithms
are robust to changes in the predictor variables.

Fig. 3. Experimental data (mean ± standard error of the mean) for air tem-
perature (Ta), black-globe temperature (Tg), and relative humidity (RH) sepa-
rated by time of measurement and intensity of supplemental heat.

Table 2
Correlation coefficients, mean and standard error of the mean, and number of univariate outliers of the measured data. The number of outliers is displayed on the
rightmost column, the mean and standard error of each data variable is displayed on the main diagonal of the table, and the correlation coefficients are displayed on
the remaining entries of the table. No outliers were removed from training and testing datasets.

Var.a Hour Heat Ta Tg RHb Tr Ts Th #Outliers

Hour 5.490 ± 1.149 −0.009 −0.020 −0.075 −0.110 −0.497 −0.699 −0.214 0
Heat −0.009 101.850 ± 72.441 0.891 0.912 −0.706 0.330 0.225 0.642 0
Ta −0.020 0.891 24.455 ± 3.424 0.969 −0.590 0.287 0.258 0.743 3
Tg −0.075 0.912 0.969 25.068 ± 3.464 −0.596 0.306 0.282 0.740 0
RHb −0.110 −0.706 −0.590 −0.596 43.888 ± 7.833 −0.063 0.071 −0.275 0
Tr −0.497 0.330 0.287 0.306 −0.063 37.917 ± 0.637 0.493 0.418 5
Ts −0.699 0.225 0.258 0.282 0.071 0.493 32.803 ± 1.506 0.428 2
Th −0.214 0.642 0.743 0.740 −0.275 0.418 0.428 33.836 ± 1.864 3

a Variables: Hour: time of measurement (hour); Heat: intensity of supplemental heat (W); Ta: air temperature (°C); Tg: black globe temperature (°C); RH: relative
humidity (%); Tr: rectal temperature (°C); Ts: skin-surface temperature (°C); Th: hair-coat surface temperature (°C).

b Number of samples for RH was 132.
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3.4. Limitations and potential applications of machine learning models

The main limitations of machine learning models are that they are
data-based as well as time-consuming and computationally expensive to
train. In addition, if the training dataset is noisy or the model is trained
inappropriately, then, the model may “learn” noise instead of the non-
linear relationships that may exist between the predictor variables and
the response variable (Natekin and Knoll, 2013). We showed in Section
3.3 that all algorithms considered in this study, except GLM, were ro-
bust to changes in the predictor variables. It should be noted, however,
that the models were trained and tested from the same data population.
This means that the models proposed in this study should not be applied
to different data sets obtained from other livestock species. If a model
is, however, trained with a larger dataset obtained from several live-
stock species, it would provide accurate predictions within the popu-
lation represented by the dataset. It is also important to note that in this
study, Ta and Tg were the only environmental predictor variables. Fu-
ture studies may include other environmental predictor variables (e.g.,
relative humidity and heat stress indices) and spatio-temporal para-
meters (e.g., time of the year), which could improve model perfor-
mance.

Training and validation of the four machine learning models con-
sidered in this study took∼ 9.5 h to complete. Most of this time was
spent on training the models (∼8 h in total; GLM=50min;
RF= 35min; GBM=30min; DNN=6 h). The time to compute one
prediction was ∼0.3ms, which is faster than the computing time re-
quired for analytical or numerical models (Milan and Gebremedhin,
2016b).

Our results suggest that machine learning algorithms, particularly
RF, GBM, and DNN were found to be accurate in predicting rectal

Fig. 4. Performance of the best machine learning models for predicting rectal (Tr; a), skin-surface (Ts; b), and hair-coat surface (Th; c) temperatures. GLM: generalized
linear regression model with elastic net regularization; RF: random forests; GBM: gradient boosted machines; DNN: deep neural network with ReLU activation
function.

Table 3
Hyperparameters of the best machine learning models.

Hyperparametera Tr Ts Th

Random Forests
#Trees 61 46 236
MNOLb 4 6 2
NVSc 1 3 2
Max. Tree Depth 72 26 82

Gradient Boosted Machines
#Trees 80 60 25
MNOLb 20 12 10
Max. Tree Depth 29 2 41
Learning Rate 0.351 0.504 0.398
Annealing 0.976 0.882 0.808
Generalized Linear Model
λ 1.632× 10−10 0.240 8.749× 10−7

α 0.244 0.453 0.409

Deep Neural Network
#Hidden Layers 2 4 2
#Neuronsd (242, 190) (11, 53, 241, 230) (65, 20)
Dropout Percentaged (0.13, 0.19) (0.06, 0.19, 0.17, 0.06) (0.03, 0.04)
Epochs 14 14.567 12.129
Mini-Batch Size 53 128 82
ρ 0.876 0.946 0.914
ε 2.855× 10−7 5.604× 10−7 5.646× 10−8

a Hyperparameters of the best machine learning models to predict rectal
temperature (Tr, °C), skin-surface temperature (Ts, °C), and hair-coat surface
temperature (Th, °C).

b MNOL: minimum number of observations in a leaf.
c NVS: number of variables used in each split.
d The numbers in parenthesis represent the value used for each hidden layer.
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Fig. 5. Mean squared error (MSE) on the training (a, c, e) and testing (b, d, f) datasets for predicting rectal (Tr; a, b), skin-surface (Ts; c, d), and hair-coat surface (Th;
e, f) temperatures using the best performing machine learning models.

Fig. 6. Measured (●) and predicted (■) rectal (Tr),
skin-surface (Ts), and hair-coat surface (Th) tem-
peratures for the mean dataset stratified by (a) time
of measurement and intensity of supplemental heat,
and (b) absolute percentage errors of the predicted
temperatures. Measured values and absolute per-
centage errors are presented as mean ± standard
error of the mean. Temperatures were predicted
from the best performing machine learning models.
RF: random forests; GBM: gradient boosted ma-
chines; DNN: deep neural network with ReLU ac-
tivation function.
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Fig. 7. Test of robustness and generalization of the best machine learning models in predicting rectal temperature when changing (a) air temperature, (b) black-globe
temperature, (c) time of measurement, or (d) intensity of supplemental heat, while keeping the remaining predictor variables at their mean values. The vertical
dashed lines represent the range of the measured predictor variable. The horizontal solid line represents the mean rectal temperature, and the horizontal dashed lines
represent the mean rectal temperature ± one standard deviation from the mean.

Fig. 8. Test of robustness and generalization of the best machine learning models in predicting skin-surface temperature when changing (a) air temperature, (b)
black-globe temperature, (c) time of measurement, or (d) intensity of supplemental heat, while keeping the remaining predictor variables at their mean values. The
vertical dashed lines represent the range of the measured predictor variable. The horizontal solid line represents the mean skin-surface temperature, and the
horizontal dashed lines represent the mean skin-surface temperature ± one standard deviation from the mean.
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temperature (Tr), skin-surface temperature (Ts), and hair-coat surface
(Th) temperature, but not GLM. The main advantage of machine
learning models is that only data is needed to train the non-linearity of
the data. For mechanistic models, the non-linearity comes from the
assumptions made in solving the conservation equations. Since machine
learning algorithms predict temperatures that are necessary to solve
mechanistic models, one possible application of machine learning al-
gorithms would be to provide inputs to mechanistic models.

4. Conclusions

Four machine learning algorithms were trained to predict rectal
temperature, skin-surface temperature, and hair-coat surface tempera-
ture of piglets based on environmental data. Deep neural networks,
gradient boosted machines, and random forests were the best algo-
rithms, based on the lowest mean squared error on the testing dataset,
to predict rectal, skin-surface, and hair coat-surface temperatures, re-
spectively. The mean absolute percentage errors calculated using the
mean dataset were 0.36% for rectal temperature, 0.62% for skin-surface
temperature and 1.35% for hair coat-surface temperature. These three
algorithms, different from generalized linear regression models, were
robust to a wide range of inputs. The data supports the use of machine
learning algorithms to predict physiological temperatures of livestock,
and these temperature predictions can be used as inputs to mechanistic
models. The combination of mechanistic and machine learning algo-
rithms has the potential to provide more information about thermal-
comfort status of livestock.
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