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Abstract Regional Climate Models (RCMs) are widely
used tools to add detail to the coarse resolution of global

simulations. However, these are known to be affected
by biases. Usually, published model evaluations use a
reduced number of variables, frequently precipitation

and temperature. Due to the complexity of the mod-
els, this may not be enough to assess their physical
realism (e.g. to enable a fair comparison when weight-
ing ensemble members). Furthermore, looking at only

a few variables makes difficult to trace model errors.
Thus, in many previous studies, these biases are de-
scribed but their underlying causes and mechanisms

are often left unknown. In this work the ability of a
multi-physics ensemble in reproducing the observed cli-
matologies of many variables over Europe is analysed.

These are temperature, precipitation, cloud cover, ra-
diative fluxes and total soil moisture content. It is found
that, during winter, the model suffers a significant cold
bias over snow covered regions. This is shown to be re-

lated with a poor representation of the snow-atmosphere
interaction, and is amplified by an albedo feedback. It
is shown how two members of the ensemble are able to
alleviate this bias, but by generating a too large cloud
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cover. During summer, a large sensitivity to the cumu-
lus parameterization is found, related to large differ-

ences in the cloud cover and short wave radiation flux.
Results also show that small errors in one variable are
sometimes a result of error compensation, so the high

dimensionality of the model evaluation problem cannot
be disregarded.

Keywords WRF, multi-physics, model evaluation,
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1 Introduction

Over the last years, climate science has intensified focus
on regional scales and impacts. In this context, dynam-
ical downscaling arises as one of the main tools to get
regional information. This methodology uses Regional
Climate Models (RCMs) to produce high resolution cli-
mate variables from the coarser Global Climate Models
(GCMs). The COordinated Regional climate Downscal-
ing EXperiment (CORDEX) (Giorgi et al 2009) is the
first worldwide coordination framework for downscal-

ing climate information. Embedded into it, the Euro-
pean regional climate modeling community has set up
the Euro-CORDEX framework, coordinating the con-
tributions to the European CORDEX domain (Jacob
et al 2013; Vautard et al 2013; Kotlarski et al 2014).
The main goal of CORDEX is to assess regional cli-
mate change and the associated uncertainties by means
of an ensemble of simulations for each region. It is, how-
ever, unclear how to weight the individual contributions
in these ensembles. Some authors (see, among others

Christensen et al 2010; Herrera et al 2010) propose to
underweight or remove the models performing worse in
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the evaluation simulations nested into state-of-art re-

analyses. When comparing these simulations with ob-

servations, a fundamental problem arises. Climate mod-

els are complex programs adjusted with many parame-

ters, some of which are difficult or impossible to mea-

sure (Mauritsen et al 2012). Most evaluation studies use

only a few variables, being precipitation and tempera-

ture (P&T onwards) the most popular ones, followed

by Sea Level Pressure (SLP) or 500 hPa Geopotential

Height. This can lead to reduce the bias by balancing

out errors, instead of improving physical realism. For

example, Samuelsson et al (2011) performed a thorough

evaluation of an RCM, and found that excessive incom-

ing solar radiation was being compensated by a too

large albedo in snow-free areas over Southern Europe.

(Pessacg et al 2013) studied the surface energy balance

of seven RCMs over South America. They found that

some models reached small temperature biases by com-

pensating large errors in the radiative and heat fluxes.

These were related with errors in the cloud fraction

and albedo. To our knowledge, most RCM developers

do evaluate them with many observations apart from

P&T but, often, these results are kept unpublished and

retained as know-how of the group. As P&T are key

variables to assess the biophysical impacts of climate,

it is reasonable to focus on them. However, model relia-

bility requires transparency in the complete evaluation

and adjustment process.

In this context, multi-physics ensembles (MPEs) ap-

pear as a methodology to improve the physical insight

behind model biases. In these ensembles, the model is

perturbed by changing the physical parameterizations

used to represent unresolved phenomena (e.g., micro-

physics, cumulus, etc). Each parameterization combi-

nation leads to different simulated climates, so their

spread is an estimate of the model uncertainty arising

from the representation of the unresolved phenomena.

Most previous multi-physics studies with RCMs focused

in P&T (e.g. Mooney et al 2013; Argüeso et al 2011;

Awan et al 2011). Also, the majority of these stud-

ies were carried out using the Weather Research and

Forecasting model (WRF) (Skamarock et al 2008), or

its predecessor MM5 (Grell et al 1995), because these

models allow to easily choose among a large amount of

state-of-the-art parameterizations.

Argüeso et al (2011) compared 8 parameterization

combinations with observations over southern Spain.

They found precipitation to be more sensitive to the

choice of parameterizations (especially to cumulus and

the planetary boundary layer –PBL–) than tempera-

ture. Although they provide some recommendations,

they conclude that there is no combination clearly bet-

ter than the others. This conclusion is shared by most

multi-physics studies (Fernández et al 2007; Garćıa-

Dı́ez et al 2012; Jerez et al 2013).

Awan et al (2011) analysed a large number of pa-

rameterization combinations over the Alps, including

cumulus, microphysics and PBL. They found that it

was possible to consistently improve the model results

by choosing the most adequate combination. They also

found that the schemes interact in a non-linear manner,

so it is not possible to predict the result of a combi-

nation from the effects of changing each scheme alone

from a control run. Mooney et al (2013) compared a

12-member MPE with the observations over Europe.

The MPE was constructed combining 2 land-surface

schemes, 2 PBL schemes, 2 long-wave radiation schemes

and 2 microphysics schemes. However, they did not use

additional observations apart from P&T and SLP. The

authors concluded that WRF reproduces temperature

reasonably, but that it has problems with precipitation,

which is largely overestimated. Although these studies

find relevant results, they do not provide much infor-

mation about the misrepresented physical processes or

the model deficiencies behind the biases.

In this work, our goal is to show how the multi-

variable analysis of an MPE can be used to improve the

understanding of the physical realism of a model and to

identify sources of error compensation. With this aim,

a MPE is evaluated regarding not only P&T, but also

radiation fluxes, cloud cover, soil moisture and albedo.

It is well known that these additional variables play an

essential role in representing climate and climate sensi-

tivity (Jaeger and Seneviratne 2011; Samuelsson et al

2011; Watanabe et al 2012). Studying all these vari-

ables in an RCM MPE, which is unprecedented to our

knowledge, shows how the uncertainty introduced by

physical parameterizations behaves depending on the

season and region. Note that multi-physics design does

not account for all the uncertainty but, in contrast with

the multi-model approach, in an MPE the differences

between the members are traceable to the physical pro-

cesses parametrized. Thus, another goal of this work is

to analyse the main deficiencies of the model as well

as their sensitivity to the parameterizations. The MPE

approach allows us to discern whether these deficiencies

are general or characteristic of one parameterization or

parameterization set, and this helps to trace their ori-

gin. The large amount of dimensions involved (variable,

physics, seasons) prevents a complete evaluation of the

MPE. Thus, only the most relevant results are shown.

The domain used is the CORDEX-compliant do-

main for Europe at 0.44◦ horizontal resolution (figure 1),

and the model used is the Weather Research and Fore-

casting model. Thus, the present results are directly rel-

evant for the WRF community involved in CORDEX,
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Fig. 1 Model domain and topography

but also for other RCMs, given that some of the prob-

lems detected in WRF are also present in other Euro-

CORDEX RCMs (Kotlarski et al 2014; Samuelsson et al

2011).

2 Methododology and data

2.1 Model configuration

A new 7-member multi-physics ensemble has been pro-

duced with the Weather Research and Forecasting (WRF)

model. The parameterization combinations are based

in those used by the WRF contributions to the Euro-

CORDEX evaluation simulations Vautard et al (2013),

and are summarized in Table 1. Table 2 shows the

main features of each parameterization. As agreed in

CORDEX, ERA-INTERIM reanalyses (Dee et al 2011)

have been used as a “perfect” GCM to downscale in

the evaluation simulations. A 5-year period (2002-2006)

was covered, leaving one year (2001) as spin up. The

RCM used was WRF model version 3.3.1, which is an

open source model described in detail in Skamarock

et al (2008). This model allows to choose among a

large amount of state-of-the-art parameterizations. The

WRF4G execution framework (Fernández-Quiruelas et al

2010) was used to configure, execute and monitor the

MPE experiment.

The following parameterizations have been changed

(see Table 2 for abbreviations and brief details): Cu-

mulus (KD and GD), microphysics (WSM3, WSM5,

WSM6 and M2M) and radiation (CAM and RRTMG).

Some configurations differ from others in more than

one parameterization (e.g. MPE-D). The choice is justi-

fied by our aim to reproduce the parameterization sets

used in the Euro-CORDEX WRF ensemble (Vautard

et al 2013). We found in additional tests that results

running with WSM5 and WSM6 are almost identical,

Table 1 Summary of the parameterization combinations
used in the WRF multi-physics ensemble. Each scheme is
individually described in table 2.

Label Cumulus Microphysics Radiation

MPE-A KF WSM6 CAM
MPE-C KF WSM3 CAM
MPE-D BM WSM6 RRTMG
MPE-F GD WSM5 RRTMG
MPE-G GD WSM6 CAM
MPE-H KF M-2M CAM
MPE-M GD M-2M CAM
REFOR GD WSM6 CAM

so this leaves MPE-D as the only simulation with no

possible one-step comparison. Additionally, a simula-

tion in “reforecast mode” (REFOR) has been carried

out by restarting the model daily from ERA-INTERIM,

and leaving 12 hours of spin-up. This running scheme

preserves the correlation with the driving reanalyses

(Menéndez et al 2014), and it was used to distinguish

model errors that develop quickly from those that build

up over a long period. The parameterization set used

in REFOR and MPE-G is the same, enabling direct

comparison.

2.2 Observational data

E-OBS dataset

E-OBS (Haylock et al 2008) is an observation-based

gridded product that covers Europe with a daily fre-

quency. In the present work precipitation and temper-

ature data from the E-OBS v8.0 in the 0.5◦ grid have

been used. The dataset was produced by interpolating

station data from the European Climate Asssessment

and Data (ECA&D http://eca.knmi.nl). Recently, some

studies have found problems and inaccuracies in E-OBS

(Herrera et al 2010; Kysely and Plavcova 2010; Hof-

stra et al 2009). These affect especially precipitation

extremes, in areas with complex orography and scarce

stations. Over some of these areas the station coverage

improved in latest versions, while it remained poor in

a few areas (e.g. North Africa). In general, the mean

climatologies derived from E-OBS can be considered of

reasonable quality (Herrera et al 2010), and our work

will only use these.

Radiation data from CERES

The Cloud and Earth’s Radiant Energy System (CERES)

is an experiment from the National Aeronautics and

Space Administration (NASA) devoted to process satel-

lite observations, focusing in the earth radiation bud-
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Table 2 Summary of the WRF parameterizations used in this work.

Label Description

YSU Yonsei University PBL scheme (Hong et al 2006). Non-local diffusion scheme.
KF Kain-Frisch cumulus scheme (Kain 2004). Mass-flux scheme able to accumulate

CAPE.
BMJ Betts-Miller-Janjic convection scheme (Janjic 2000). Deep layer control scheme

unable to accumulate CAPE.
GD Grell-Devenyi cumulus scheme (Grell and Devenyi 2002). 144 member ensemble

made with mass-flux schemes.
WSM3 WRF Single-Moment microphysics parameterization (Hong et al 2004) with 3

species (vapor, cloud water/ice and rain/snow).
WSM5 Similar to WSM3 with two more species (vapour, cloud water, cloud ice, rain

and snow are treated independently).
WSM6 As WSM5 with one more species (graupel).
M2M Morrison 2-moment (Morrison et al 2009). Complex parameterization with 6

species and 2 moments (density and mixing ratio).
CAM Radiation parameterization of the NCAR Community Atmosphere Model

(Collins et al 2004). More complex than RRTMG
RRTMG Long wave radiation parameterization. Improved version (Iacono et al 2008) of

the Rapid Radiative Transfer Model of Mlawer et al (1997).
Noah Noah Land-Surface model Chen and Dudhia (2001) with 4 layers.

Table 3 Summary of the variables considered in the study.

Short name Long name Units

TASMEAN Daily Mean surface air temperature K
TASMAX Daily Maximum Near-Surface Air Temperature K
TASMIN Daily Minimum Near-Surface Air Temperature K
PR Precipitation Flux kgm−2day−1

RSDS Surface Downwelling Shortwave Radiation Flux Wm−2

RLDS Surface Downwelling Longwave Radiation Flux Wm−2

RLUT TOA Outgoing Longwave Radiation Flux Wm−2

CLT Total Cloud Area Fraction 1
ALB Surface Albedo 1
MRSO Total Soil Moisture Content kgm−2

get. In the present study, the radiation flux data from

CERES labeled as EBAF (Energy Balanced and Filled)

have been used in its version 2.7. These data are pro-

vided as monthly averages with a resolution of 1◦. In

the CERES website 1 a complete description of the

data elaboration process and its issues can be found.

The raw data used by this dataset come from AQUA,

TERRA and geostationary satellites. To produce the

EBAF data, the energy balance is adjusted to that in-

ferred by Loeb et al (2012) from the measured warming

of the oceans. Cloud cover observations are not avail-

able in EBAF, so we used those from SYN1deg (the

processing step previous to EBAF, before adjusting the

energy balance).

To check the robustness of the results, all the maps

shown in the paper using CERES data have been re-

produced with the independent GEWEX-SRB dataset,

which does not use data from MODIS (Gupta et al

1 http://ceres.larc.nasa.gov/order_data.php

2006). These are included in the supplementary mate-

rial.

Global Land Data Assimilation System soil moisture

content data

Surface observations of soil moisture are scarce, and the

large spatial variability of this variable makes its use

challenging (Greve et al 2013). Furthermore, satellite

products are also non-trivial to use, as they measure

only the moisture content of the first centimeters of the

soil (Dharssi et al 2011), in contrast with the few me-

ters that land surface models (LSMs) use to represent

the rooting zone. The Noah LSM (Chen and Dudhia

2001), which is the LSM used in all the simulations

produced for the present study, is integrated in four

layers up to 4 meters deep. Thus, to evaluate the to-

tal soil moisture content, data from the Global Land

Data Assimilation System (GLDAS; Rodell et al 2004)

has been used. Namely, we used GLDAS Version 2 with

0.25◦ resolution. This dataset is a global soil reanalysis

http://ceres.larc.nasa.gov/order_data.php
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produced by running a LSM forced with data as realis-

tic as possible. Actually, GLDAS data are available for

4 different LSMs, and one of them is the Noah LSM.

Forcing Noah with observations allows soil variables to

be comparable with those produced by WRF, avoiding

the problems that arise when using direct observations.

On the other hand, the use of a LSM reanalysis pre-

vents the assessment of errors arising from the LSM.

Thus, in the analysis of soil moisture (section 3.3) we

assume that the atmospheric forcing is the main source

of error. Moreover, we did not change the LSM in our

MPE, therefore, the uncertainty arising from the LSM

was not addressed at all in this study (or in the EURO-

CORDEX WRF simulations).

3 Results

This section is organized as follows. In section 3.1, stan-

dard temperature and precipitation biases are shown,

and their main features are discussed. Then, the com-

parison with CERES and GLDAS data is given in sec-

tions 3.2 and 3.3. The physical interpretation of the

whole annual bias is difficult, since models usually show

very different behaviour depending on the season (Garćıa-

Dı́ez et al 2012). Thus, only seasonal biases are consid-

ered, focusing in summer and winter. In order to focus

on the main results, and to avoid lengthy descriptions,

some of the variables are only analysed for summer. Fi-

nally, to provide a more general picture, the whole an-

nual cycles (regionally averaged) are compared in sec-

tion 3.4. The variables considered are summarized in

table 3 and, in the following, they are referred to by

their short names.

3.1 Temperature and precipitation bias signatures

WRF shows a large cold bias in winter temperatures

appearing in the NE quarter of the domain (figure 2),

mainly over Russia. This affects all simulations except

those using M2M microphysics. It may seem that the

larger complexity of M2M is able to overcome this prob-

lem, however, we will see below that it is balancing the

temperature error with a large bias in cloud cover. This

problem with the cloud cover is related to a bug in the

code of M2M. A missing term in an equation, related to

the cloud ice fall speed, causes the high cirrus clouds to

be too persistent2. Unfortunately, this problem affects

both MPE-H and MPE-M simulations. Arguably, these

could be discarded as flawed, however, bugs are present

2 http://www.mmm.ucar.edu/wrf/users/wrfv3.3/

known-prob-3.3.1.html

in all computer code (McConnell 2004), and this one

was present in the original release of WRF 3.3.1. These

simulations have been used due to the interest of their

results for the main point of the paper, which is a warn-

ing to avoid error compensation when evaluating mod-

els. REFOR (the simulation that has been restarted

daily from ERA-INTERIM) also shows a cold bias in

the NE corner, smaller than its continuous counterpart

MPE-G. Therefore, part of the bias develops rapidly

after starting the simulation. Other studies have found

that the model is too cold over snow covered terrain

(Mass 2013), and they have attributed it to a too simple

representation of the snow, or to an error in the surface

layer parameterization. Waliser et al (2011) found that

a scheme with a multi-layer snow pack (SSiB), recently

added to WRF, is able to improve the results thanks

to a better representation of the snow ageing and melt-

ing processes. Wang et al (2010) added some fixes and

improvements to the way the Noah scheme represents

snow, especially over woodland. These changes are im-

plemented in WRF v3.5, however, a test was carried

out with this version, and the cold bias over Russia

persisted.

Despite the good behaviour of MPE-M in winter,

this configuration is unrealistically cold in spring (not

shown) and summer (figure 3), reaching 4K cold biases.

On the other hand, during summer, the temperatures

of the simulations using KF (MPE-C, MPE-A, MPE-

H) are very similar among each other, with small biases

over large areas. In contrast, two of the simulations us-

ing GD are too cold (MPE-G and specially MPE-M),

whereas MPE-F reproduces the observed temperatures

well, with errors below ±1.4K. Contrary to winter, sum-

mer cold bias in MPE-G does not appear in REFOR.

Thus, it needs longer timescales to build up. Regarding

the daily cycle, comparison with daily extremes (sup-

plementary information), shows that most of the cold

bias in MPE-G and MPE-M is confined to the maxi-

mum temperatures.

As we can consider WSM5 and WSM6 microphysics

identical, the radiation schemes are the only difference

between MPE-F (RRTMG) and MPE-G (CAM3). Ac-

cording to this, RRTMG produces consistently warmer

temperatures than CAM. Previous experiments (not

shown), showed that BMJ and KF have a similar warm-

ing effect in summer temperatures when compared with

GD. Thus, despite non-linearities, we can conclude that

the combined effect of BMJ and RRTMG made MPE-D

the warmest simulation during summer.

WRF significantly overestimates precipitation in sum-

mer (figure 4) and winter (now shown), especially over

the eastern half of the domain, and biases are in gen-

eral larger than the differences between ensemble mem-

http://www.mmm.ucar.edu/wrf/users/wrfv3.3/known-prob-3.3.1.html
http://www.mmm.ucar.edu/wrf/users/wrfv3.3/known-prob-3.3.1.html
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Fig. 2 Bias respect to E-OBS for the daily mean temperature in DJF. The areas with no observed data are painted grey.

Fig. 3 Bias respect to E-OBS for the daily mean temperature in JJA. The areas with no observed data are painted grey.
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Fig. 4 Relative bias for the daily precipitation in JJA respect to E-OBS. The areas with no observed data are painted grey.

bers. This overestimation of the observed precipitation

is caused by a combination of different factors which

are difficult to disentangle. These include: gauge under-

catchment (Kotlarski et al 2014; Frei et al 2003), overes-

timation of the frequency of light rain events, biases in

the atmospheric circulation, and issues with the param-

eterizations. For summer precipitation (figure 4), unlike

for temperature, MPE-M is the configuration with the

smallest error. This is an example of how inappropri-

ate it is to consider a single variable (e.g. precipita-

tion), to evaluate a model, even if this is the variable of

interest for a given study. On the other hand, simula-

tions with correct temperatures, as MPE-F, or even too

warm, as MPE-D, produce excessive precipitation. It is

known that the Kain-Fritsch cumulus scheme overesti-

mates convective precipitation because it does not rep-

resent the radiative effect of unresolved cumulus clouds

(Herwehe et al 2014; Alapaty et al 2012). Other convec-

tion schemes, such as BMJ and GD, could be affected

by similar problems, and these would be an important

contribution to precipitation overestimation in summer.

3.2 Radiation fluxes and cloud cover

In the present section, CERES data are used to evalu-

ate the model radiation balance at the surface and at

the top of the atmosphere (TOA). This is also an indi-

rect way to evaluate the simulated cloud cover, which is

not straightforward to compare with observations (Dı́az

et al 2015).

Figure 5 shows the bias for the downward shortwave

radiation flux at the surface (RSDS) during the sum-

mer. Cold biases in this season for MPE-G and MPE-

M (Figure 3) are correlated with an underestimation

of RSDS. However, cold biases persist in areas with no

RSDS bias, such as southern France or northern Spain.

On the other hand, MPE-C and MPE-A, which pro-

duced realistic temperatures over central Europe, over-

estimate RSDS during summer. Thus, it seems that the

model is still too cold with a correct RSDS. In the case

of MPE-F, RSDS is close to the observation in most

of the domain. Interestingly, the REFOR simulation is

fairly different from MPE-G. Thus, again we see that

the bias pattern for RSDS and temperature that ap-

pears in MPE-G needs more than 12-24 hours to build.

A simple comparison with SYNdef1 total cloud cover

(CLT) data has been carried out to check if the results

are consistent to those found for the radiation fluxes.

To compute CLT in WRF we followed (Sundqvist et al

1989), which assumes maximum overlapping in each

cloud layer and random overlapping between layers.

CLT biases in summer (figure 6) correlate well with
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Fig. 5 Relative bias for RSDS in JJA respect to CERES EBAF. The areas with no observed data are painted grey.

those found for RSDS. The spatial patterns of the sum-

mer temperature biases in MPE-G and MPE-M are,

thus, related to the cloud cover. Clouds can either warm

or cool the surface depending on their altitude and the

phase of the diurnal cycle. Also, locally, advection can

be as important for temperature as the point energy

balance and, in fact, both processes can feed back. This

complicates the rigorous attribution of temperature bi-

ases to cloud cover. Here, we try to get the most com-

plete possible picture of what is happening into the

model by looking at many variables, but analyses to

rigorously address causal relationships would require a

more systematic approach. Causality in non linear sys-

tems is not straightforward to define (Sugihara et al

2012).

A negative CLT bias appears over the Mediterranean

Sea and its surrounding countries in all simulations

except MPE-H and MPE-M. This bias is also found

when comparing with data from an independent dataset

(GEWEX-SRB, see supplementary material). On the

other hand, ERA-INTERIM cloud cover is very similar

to WRF over this region (not shown). A more detailed

analysis would be needed to address whether the prob-

lem is in the observations or in the models.

The long wave downward radiation flux (RLDS),

depends on the emissivity and temperature of the tro-

posphere and, if clouds are present, on the tempera-

ture of the cloud base. Thus, the presence of low-base

clouds tends to increase RLDS. During summer, MPE-

C, MPE-A and MPE-H underestimate RLDS over most

of the domain (figure 7). This is consistent with the

overestimation of RSDS found, and its relationship to

a lack of cloudiness. Interestingly, simulations using the
Grell-Devenyi cumulus scheme (MPE-F, MPE-G and

MPE-M) show very small biases over the northern half

of continental Europe, despite the differences found for

RSDS in MPE-G and -M. This apparent inconsistency

can be either related to the cooler temperatures of MPE-

G and MPE-M and/or to the presence of clouds with

different longwave/shortwave transmissivities, such as

cirrus clouds. Over the almost cloud-free region in the

southern part of the domain (Mediterranean sea and

northern Africa), simulations using the RRTMG LW

radiation parameterization (MPE-F and MPE-D), dis-

play a larger RLDS, which is closer to observation than

the rest, which use CAM. MPE-F and MPE-D also

tend to be warmer over this area (figure 3). As MPE-D

and MPE-C display a very similar cloud cover over the

whole domain, figure 7 shows that, to equal cloudiness,

RRTMG produces a larger RLDS and warmer temper-

atures than CAM.
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Fig. 6 Bias for total cloud cover in JJA respect to CERES-SYNdef1. The areas with no observed data are painted grey.
.

Finally, the TOA radiation fluxes can also provide

information about the clouds. The long wave upward

flux at the TOA (RLUT) is a good indicator of the

height of cloud tops. Higher cloud tops are cooler and

emit less LW radiation. When the sky is clear, RLUT

provides information about surface temperature. RLUT

biases is summer (figure 8) are small (±3%) in all sim-

ulations, except those using the M2M microphysics,

which significantly underestimate it. Thus, this scheme

tends to produce too much high cloud cover. As men-

tioned before (Section 3.1), the cause is a bug related to

the cloud ice fall speed, which causes high cirrus clouds

to be too persistent.

The overestimation of RLUT by the simulations us-

ing the M2M microphysics occurs also in winter (not

shown). Thus, the persistence of high clouds seems to be

the factor compensating the winter cold bias in MPE-H

and MPE-M (figure 2). This is confirmed by figure 9,

where the CLT winter bias is shown. MPE-H and MPE-

M overestimate winter CLT, which has a net warm-

ing effect by blocking the night-time radiative cooling.

Furthermore, the CLT overestimation by MPE-H and

MPE-M is known to be affecting especially the high

clouds, which are more transparent to SW radiation

than to LW, increasing the warming effect. These sim-

ulations also overestimate winter RLDS (not shown),

confirming this picture. This is a clear case of error com-

pensation, where MPE-H and MPE-M produce seem-

ingly realistic temperatures by fixing the cold bias with

an unrealistic high cloud cover.

Furthermore, the relationship between the winter

cold bias found in figure 2, and the snow cover suggests

that the albedo can be playing a role in that problem.

Surface albedo is not directly available in CERES data,

but it can be estimated by simply dividing RSUS by

RSDS. This is not the best estimation, because albedo

can be directly observed, but this approach guaranties

the consistency with the rest of the analyses. WRF over-

estimates the albedo (figure 10) in the snowy regions

(Alps, Eastern Europe and Russia), which correlates

with the winter cold bias (figure 2). Most of the over-

estimation is bound to high latitudes, where the obser-

vations are uncertain and show an unrealistic discon-

tinuity. However, comparison with GEWEX-SRB data

(supplementary material) yields similar results, with an

even larger overestimation of the albedo, so this feature

is robust. A similar result was found by Xu and Yang

(2012) over North America. However, according to Mass

(2013), albedo does not seem to be the main cause of

the winter cold bias, which is unknown, but likely re-

lated to the treatment of the snow pack by the land

surface and/or surface layer schemes. Thus, the albedo
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Fig. 7 Relative bias for RLDS in JJA respect to CERES EBAF. The areas with no observed data are painted grey.

Fig. 8 Relative bias for RLUT in JJA respect to CERES EBAF. The areas with no observed data are painted grey.
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Fig. 9 Relative bias for CLT in DJF respect to CERES SYndef1. The areas with no observed data are painted grey. Note
that the data are problematic above 60◦ latitude.

.

bias would be a feedback reinforcing too cold temper-

atures. The presence of the cold bias in REFOR is a

measure of the part of this bias which appears immedi-

ately after starting from ERA-INTERIM.

3.3 Soil moisture

Total soil moisture content (MRSO) plays a major role

in the surface flux partition (Jaeger and Seneviratne

2011). In this section, WRF MRSO is compared with

data from the GLDAS reanalysis (see section 2.2). For

the sake of brevity, only results for summer will be

shown. WRF overestimates MRSO (figure 11) in most

places, except in the southern part of the domain. The

bias is larger in the coldest (driest) simulations (MPE-

G and MPE-M), and smaller in the warmest (wettest)

(MPE-D). A comparison of the sensible and latent heat

fluxes of WRF with GLDAS (not shown) reveals that

the latter is too large in the simulations that overes-

timate RSDS the most (MPE-D, MPE-C, and MPE-

A), while the former is correct. Thus, in these sim-

ulations the excessive soil moisture is influencing the

energy partitioning (Bowen ratio), shifting it to a too

large evaporation, and making difficult the occurrence

of the ”dry regime” where evapotranspiration is lim-

ited by soil moisture and not by incoming energy. This

is consistent with the general difficulty of WRF to sim-

ulate extreme heat waves using the NOAH soil scheme

(Stegehuis et al 2014). With a correct precipitation, soil

moisture and Bowen ratio, the temperature would likely

be higher, due to the too large RSDS. Therefore, this

is another example of error compensation.

3.4 Annual cycles

Previous sections have mainly focused in summer and

winter. The maps shown show that the spatial autocor-

relation is generally large. Thus, spatial averages make

sense in most regions. In this Section we use spatially-

averaged biases to gain better perspective of the tempo-

ral structure of the model error. The regions chosen are

the so-called PRUDENCE regions, shown in Figure 1.

We considered monthly time series (available as sup-

plementary material), which show that the relative dif-

ferences among the MPE members are preserved every

year with very few exceptions. Thus, spatially-averaged

monthly annual cycles have been computed, following

these steps: First, the data from WRF, CERES and
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Fig. 10 Surface albedo bias in DJF respect to CERES EBAF. The areas with no observed data are painted grey. Note that
the data are problematic above 60◦ latitude.

Fig. 11 Total soil moisture content bias in JJA respect to GLDAS2. The areas with no observed data are painted grey.
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GLDAS have been bilinearly interpolated to the E-OBS

grid and its land-sea mask has been applied. Second,

monthly averages have been computed and, then, spa-

tial averages have been applied. Finally, the annual cy-

cles were obtained by averaging the five values avail-

able for each month. As mentioned, the regions were

assumed to be homogeneous enough for the areal aver-

ages to be meaningful. This assumption holds in most

regions for the mean biases (except ME and AL) and

differences between ensemble members, but not for the

absolute values of the variables. However, the absolute

values have been plotted so the relationship between

bias, sensitivity to physical parameterizations and the

order of magnitude of the variable can be appreciated.

These annual cycles summarize many variables in one

panel (see Figure 12 for Middle Europe). The variables

chosen (see table 3) are TASMEAN, TASMAX, TAS-

MIN, RSDS, RLDS, MRSO, ALB, CLT and PR.

As analysing all regions would be too extensive and

redundant, the analysis is limited to the Middle Europe

(ME) PRUDENCE region. Figure 12 shows many fea-

tures common to other regions, and summarizes well

many of the results found in previous sections. Namely:

– Summer cold bias is larger in TASMAX than in

TASMIN (figure 12b, c), and is very large for MPE-

G and MPE-M, simulations also underestimating

RSDS. However, simulations overestimating RSDS

still underestimate maximum temperatures during

summer (MPE-C, MPE-A). MPE-D is the only sim-

ulation with correct TASMAX during summer, and

also the only one that removes enough soil mois-

ture to reach GLDAS during that season, although

it overestimates RSDS by more than 50 Wm−2.

– As previously seen for summer, WRF tends to gen-

erate a too large soil moisture content. This result

extends to the whole annual cycle, except for MPE-

D during autumn. Colder simulations, MPE-G and

MPE-M, have wetter soils during summer.

– Ensemble spread is generally much smaller during

the cold season. WRF shows an excessive surface

albedo from January to March, larger in MPE-G,

MPE-M and MPE-C. Although this region is not

affected by the large cold bias found in winter in the

NE quarter of the domain, most simulations show

cold-biased maximum temperatures during winter

and early spring, especially MPE-G and MPE-M.

These are also the simulations that overestimate the

albedo the most. The effect of an increased albedo

in winter and/or cloud cover in summer, related to a

moister soil, builds up over time, and illustrates how

feedbacks drive these two simulations to different

climates. The REFOR simulation, without spin-up,

does not show many of the features found in MPE-

G.

– Despite the large overestimation, WRF reproduces

the shape of the observed precipitation annual cycle.

The wet bias is more pronounced in the maxima on

May and July, reaching large values of more than 1

kgm−2day−1.

– Regarding total cloud cover, the ensemble spread

is very large. As in the radiation fluxes, MPE-F is

the configuration producing the most realistic cloud

cover. Despite that in general it is not possible to

find a better configuration in this kind of experi-

ments, in this case, MPE-F is clearly outperforming

the other configurations. Probably this would not

be the case with a larger ensemble size.

4 Discussion and conclusions

With the aim of improving the understanding of the

physical realism of a regional climate model, a new

multi-physics ensemble over Europe has been produced

and evaluated. The evaluation has been carried out us-

ing many variables in addition to the standard pre-

cipitation and temperature (P&T). Namely, radiation

fluxes, total cloud cover, surface albedo, and soil mois-

ture have been compared with CERES observations and

with GLDAS soil reanalysis, respectively. This enabled

us to see how the errors of the different variables can

sometimes compensate each other, so focusing on one

or few variables can be misleading. The approach fol-

lowed also revealed correlations between the biases of

different variables, helping to identify the processes that

are behind them. However, as temperature, precipita-

tion, clouds and soil moisture are non-linearly coupled

(Seneviratne et al 2010), drawing strong conclusions

about causal relationships behind the biases remains

as a challenge, and caution must be taken with the in-

terpretation of the results. This paper does not provide

a systematic method to deal with non-linearities and

identify the causes of the biases, but addresses the need

of publishing more thorough evaluations of the models.

This is needed to boost the reliability of the models and

to enable fair ensemble weighting methodologies.

One of the goals of the paper is to analyse the sen-

sitivity to physical parameterizations schemes. With

this aim, we used three cumulus schemes (KF, BMJ

and GD), two radiation schemes (RRTMG and CAM)

and four microphysics schemes (WSM3, WSM5, WSM6

and M2M, though WSM5 and WSM6 are very simi-

lar). We found that RRTMG is generally warmer than

CAM thanks to an enhanced downward long wave ra-

diation flux. The slightly different CO2 concentration
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Fig. 12 Mean annual cycles of areal averages over the Middle Europe PRUDENCE region. The variables plotted are TAS-
MEAN, TASMIN, RSDS, RLDS, MRSO, ALB, CLT and PR.
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prescribed in these schemes cannot explain the differ-

ence, as in fact it is larger in CAM (370 ppm in RRTMG

versus yearly IPCC AR4 A2 scenario, in the range of

374-383 ppm, in CAM). Thus, there must be another

cause, which remains unknown. During summer, we

found that the sensitivity to the cumulus parameter-

ization is large. When changing the cumulus scheme

in MPE-G from GD to KF, most of the cold bias is re-

moved. However, we found that this is due to a overesti-

mated downward short wave radiation flux. The excess

of energy received by the surface in these simulations is

compensated by a too low downward long wave flux and

a too large evaporation. Regarding the microphysics,

differences between WSM-3, WSM5 and WSM-6 are

generally small. Thanks to its increased cloud cover,

M2M is much cooler in summer and warmer in winter

over snow-covered areas, compensating the pronounced

cold bias found over these. This cannot be attributed

to the formulation of M2M itself but to the presence

of a bug in M2M code which makes cirrus clouds too
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persistent. Multi-physics spread is large, comparable to

that of a multi-model, which is consistent with other re-

sults in the literature (Jerez et al 2013). Spread is found

to be remarkably large for both RSDS and CLT, espe-

cially during summer. These two variables are key to

explain the spread, which is reasonable given that the

schemes changed are those more closely related with

clouds and radiation. Other studies evaluating RCMs

radiative fluxes (Kothe and Ahrens 2010; Kothe et al

2011; Pessacg et al 2013; Samuelsson et al 2011) found

similar relationships among the biases of the different

variables, and similar error magnitudes (or even larger,

in the case of tropical regions in (Pessacg et al 2013)).

They also found cases in which biases compensate each

other to result in small errors in some variables for the

wrong reasons.

Another goal was to analyse the main model de-

ficiencies. Two main biases have been identified in the

model. One is the overestimation of precipitation, which

occurs in almost all seasons and ensemble members,

except MPE-M, and especially in the eastern half of

the domain. This problem is currently affecting most

of the RCMs (Kotlarski et al 2014). During summer, it

is partly related to problems in adapting some aspects

of the models to the resolution, namely the cumulus

parameterization, which are being investigated (Ala-

paty et al 2012; Tripathi and Dominguez 2013). The

other causes behind this bias are difficult to measure,

but probably include errors in the atmospheric circu-

lation, gauge undercatchment, and other factors. The

comparison with GLDAS data revealed also that WRF

overestimates soil moisture content in most regions.

The second bias is the pronounced cold bias ap-

pearing in the NE quarter of the domain during winter

and spring. We found that, during those seasons, the

differences in albedo correlated well with the temper-

ature bias. Thus, the cold bias is partially related to

this albedo overestimation. This was also found by Xu

and Yang (2012) in other region (U.S.-Canada). Other

authors (Mass 2013) found that the cold bias appears

systematically over snow-covered regions, regardless of

the albedo. Evidence suggests that the problem is a too

crude representation of the snow pack or either some

problem in the computation of the skin temperature

or ground heat flux. The albedo would be acting as a

feedback and not as the main cause of the bias.

In general, WRF shows results comparable to other

models (Mearns et al 2012; Kotlarski et al 2014), al-

though the winter cold bias causes great deviations from

observed temperatures not found in other models. The

simulation labelled as MPE-M is also too unrealistic.

Some of the biases found can also be spotted in the

WRF members used in the EURO-CORDEX evalua-

tion work (Kotlarski et al 2014) covering a 20-year pe-

riod and including other configuration differences apart

from the physics options. Namely the winter cold bias

in the NE quarter is present in the IPSL-INERIS and

CRP-GL simulations, which use the physics of MPE-

F and MPE-A. In the UHOH simulation, equivalent to

MPE-H, winter temperatures are realistic in this region

but, as shown in the present work, this is due to com-

pensation of errors by a too large cloud cover.

The most important conclusion of this work are not

the particular results for the WRF configurations tested

(although these are valuable for the WRF community),

but showing how, when abandoning the limited per-

spective of P&T, a rich and complex picture emerges,

where the good model performance in some variables is

sometimes related to compensation of errors and not to

improved realism. The simulation labelled as MPE-M

is an extreme example of this behaviour. It was found

to produce realistic winter temperatures thanks to a

wrong cloud cover, and a realistic summer precipita-

tion thanks to a very large cold bias. Thus, we strongly

encourage the regional climate modeling community to

use as many variables as possible in model evaluation,

and in the weighting process of ensembles.

As a final remark, results suggest that surface tem-

perature is not well suited to assess the overall real-

ism of a simulation. Some studies (Giorgi and Coppola

2010) found no clear relationship between temperature

bias on evaluation runs and climate change amplitude

or sign. The present work shows how cloud cover, radi-

ation fluxes and soil moisture are key variables to show

that the model is producing a realistic present time sim-

ulation.
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