
UP-Hist Tree: Efficient Data Structure for High
Utility Pattern Mining from Transaction

Databases

Vikram Goyal, Siddharth Dawar

Indraprastha Institute of Information Technology, Delhi

Abstract. High-utility itemset mining is an emerging research area in
the field of Data Mining. Several algorithms were proposed to find high-
utility itemsets from transaction databases and use a data structure
called UP-tree for their working. However, algorithms based on UP-tree
generate a lot of candidates due to limited information availability in
UP-tree for computing utility value estimates of itemsets. In this pa-
per, we present a data structure named UP-Hist tree which maintains a
histogram of item quantities with each node of the tree. The histogram
allows computation of better utility estimates for effective pruning of the
search space. Extensive experiments on real as well as synthetic datasets
show that our algorithm based on UP-Hist tree outperforms the state of
the art algorithms in terms of the total number of candidate high util-
ity itemsets generated as well as total execution time. The UP-Hist tree
takes low memory ranging from few KB’s to MB’s only.

Keywords: Frequent Itemset Mining, Utility Mining, Pattern Mining,
Data Mining

1 Introduction

High-utility pattern mining[1–4] finds patterns from a database that have their
utility value no less than a given minimum utility threshold. The utility of a
pattern defines its importance and makes mined patterns more relevant for cer-
tain applications. Primarily, the interest in utility patterns arises as it allows to
associate relative importance to different items, and accounts for multiplicity of
items. On the other hand, frequent-pattern mining can’t be used to find high util-
ity patterns, due to its limitation of treating every item with equal importance
with no use of item-quantity information. Applications like retail stores, where
each item has different profit values and a transaction can have multiple copies
of an item, will have a direct role of high utility pattern mining. In this scenario,
the patterns can be interpreted as itemsets that contribute to the majority of the
profit, and can be used for deciding inventory of a retail store. Similar to retail
stores, utility mining also finds its applications in web click stream analysis[5],
bio-medical data analysis[6] and mobile E-commerce environment[7].

The majority of the algorithms on utility pattern mining is of type pattern
growth and use an efficient data structure named UP-tree for their working.

However, these algorithms generate a large number of candidate patterns in
the first phase, which are then verified for their high utility property in the
second phase. To reduce the number of candidate patterns generated in the first
phase in pattern growth algorithms, there are primarily two steps: i) identifying
better estimates of the utility value of patterns and (ii) systematic search of
space for patterns, using the estimates. The utility-value estimates allow early
pruning of non-candidate itemsets and avoids exploration of unpromising nodes
in the tree. We believe that any data structure which helps into computation
of better estimates will improve the performance of the mining algorithms by
effectively pruning the search space. Along the similar lines of thought, authors
in [2] associated with each tree node a minimum quantity information and have
observed improvement in performance.

In this paper, we propose a data structure named as UP-Hist tree that sup-
ports computing better estimates as compared to the previous approaches. In
UP-Hist tree, we associate a histogram which represents frequency distribution
of item-quantities with each node of the UP-tree and use it for storing the quan-
tity information of transactions. We observe that use of UP-Hist tree improves
the performance of utility-pattern mining algorithm. However, histograms re-
quire some extra storage as compared to the previous approaches, but still the
space required is a couple of MB’s which is not a big requirement in the era of
cloud-computing and big-data. We propose an algorithm called UP-Hist Growth,
which uses the UP-Hist tree data structure to mine high-utility patterns. The
algorithm is similar to UP-Growth, but effectively uses the histograms available
with tree nodes.

Our contributions can be summarized as follows:

– We propose a novel data structure UP-Hist tree and an algorithm UP-Hist
Growth for discovering high utility itemsets from a transaction database.

– We prove that the estimates computed by UP-Hist tree are correct and better
than the state-of-the-art approaches.

– We conduct extensive experiments on real as well as synthetic datasets to
demonstrate the performance of our proposed solution. The results confirm
that our proposed solution is scalable and outperforms state-of-the-art algo-
rithms in terms of the number of candidates and execution time.

2 Related Work

Frequent-itemset mining [8–10] has been studied extensively in the literature
and several algorithms have been proposed. However, frequent-itemset mining
algorithms can’t be used to find high utility itemsets as it is not necessarily
true that a frequent itemset is also a high utility itemset in the database. On the
other hand, mining high-utility patterns is challenging compared to the frequent-
itemset mining, as there is no downward closure property [8], like we have in
frequent-itemset mining scenario. The downward closure property states that
every subset of a frequent itemset is also frequent.

High-utility itemset mining[1] finds itemsets from the database which have
their utility no less than a minimum utility threshold. Several algorithms have
been proposed to find high utility itemsets. Liu et al.[3] proposed a two-phase al-
gorithm for mining high utility itemsets. The candidate high utility itemsets were
generated in the first phase and verification was done in the second phase. Ahmed
et al.[11] proposed a data structure called IHUP-tree and another two-phase al-
gorithm to mine high utility patterns incrementally from dynamic databases.
However, the above algorithms generate a lot of candidate itemsets in the first
phase. In order to reduce the number of candidates, Tseng et al.[12] proposed a
new data structure called UP-tree and proposed algorithms namely, UP-Growth
[12] and UP-Growth+ [2]. The authors proposed effective strategies like DGU,
DGN, DLU and DLN to reduce the overestimated utilities. However, we ob-
served that a histogram can be augmented with every node of the UP-tree and
can be used to reduce the overestimated utilities further. We present strategies
to compute utility estimates using the histograms and demonstrate the better
performance of our proposed strategy.

Several algorithms have been proposed to find top-k utility itemsets in trans-
actions [13], sequence databases [14] and data streams [15]. Most top-k algo-
rithms use a common search strategy for finding the results. The idea is to use
a buffer of size k and store the intermediate results in this buffer. The process
of finding top-k utility itemsets is repeated until it is guaranteed that no more
itemsets can become a part of the result. Wu et al. [13] proposed an algorithm
named TKU based on UP-Growth [12] for finding top-k high utility itemsets. We
believe that these works can also get the benefit of detailed information available
in the form of histogram to improve their performance.

3 Background

In subsection 3.1, we give some definitions given in earlier works and describe the
problem statement formally. We also briefly discuss the UP-tree data structure
in subsection 3.2.

3.1 Preliminary

We have a set of m items I = {I1, I2, ..., Im}, where each item has a profit
pr(ip) associated with it. An itemset X of length k is a set of k distinct items
X = {I1, I2, ..., Ik}, where for i ∈ 1.....k, Ii ∈ I. A transaction database D =
{T1, T2,, Tn} consists of a set of n transactions, where every transaction has a
subset of items belonging to I. Every item Ip in a transaction Td has a quantity
q(ip, Td) associated with it.

Definition 1. The utility of an item Ip in a transaction Td is the product of the
profit of the item and its quantity in the transaction i.e. u(ip, Td) = q(ip, Td) ∗
pr(ip).

Table 1: ExampleDatabase
TID Transaction TU
T1 (A : 1) (C : 10) (D : 1) 17
T2 (A : 2) (C : 6) (E : 2) (G : 5) 27
T3 (A : 2) (B : 2) (D : 6) (E : 2) (F : 1) 37
T4 (B : 4) (C : 13) (D : 3) (E : 1) 30
T5 (B : 2) (C : 4) (E : 1) (G : 2) 13
T6 (A : 6) (B : 1) (C : 1) (D : 4) (H : 2) 43

Table 2: Profit Table

Item A B C D E F G H
Profit 5 2 1 2 3 5 1 1

Definition 2. The utility of an itemset X in a transaction Td is denoted as
u(X,Td) and defined as

∑
X⊆Td∧ip∈X u(ip, Td).

Let us consider the example database shown in Table 1 and the profit values
in Table 2. The utility of item {A} in T3 = 2× 5 = 10 and the utility of itemset
{A,B} in T3 denoted by u({A,B}, T3) = u(A, T3) + u(B, T3) = 10 + 4 = 14.

Definition 3. The utility of an itemset X in database D is denoted as u(X)
and defined as

∑
X⊆Td∧Td∈D u(X,Td).

For example, u(A,B) = u({A,B}, T3) + u({A,B}, T6) = 14 + 31 = 55.

Definition 4. An itemset is called a high utility itemset if its utility is no less
than a user-specified minimum threshold denoted by min util.

For example, u(A,C) = u({A,C}, T1) + u({A,C}, T2) + u({A,C}, T6) =
15 + 16 + 31 = 62. If min util = 50, then {A,C} is a high utility itemset.
However, if min util = 75, then {A,C} is a low utility itemset.

Problem Statement. Given a transaction database D and a minimum utility
threshold min util, the aim is to find all the high utility itemsets i.e. itemsets
which have utility no less than min util.

We will now describe the concept of transaction utility and transaction
weighted downward closure(TWDC)[1].

Definition 5. The transaction utility of a transaction Td is denoted by TU(Td)
and defined as u(Td, Td).

For example, the transaction utility of every transaction is shown in Table 1.

Definition 6. Transaction-weighted utility of an itemset X is the sum of the
transaction utilities of all the transactions containing X, which is denoted as
TWU(X) and defined as

∑
X⊆Td∧Td∈D TU(Td).

Definition 7. An itemset X is called a high-transaction-weighted utility itemset
(HTWUI), if TWU(X) is no less than min util.

Property 1 (Transaction-weighted downward closure) For any itemset
X, if X is not a (HTWUI), any superset of X is not a HTWUI.
For example, TU(T1) = u({ACD}, T1) = 17;TWU({A}) = TU(T1) +TU(T2) +
TU(T3) + TU(T6) = 124. If min util = 60, {A} is a HTWUI. However, if
min util = 130, {A} and any of its supersets are not HTWUIs.

3.2 UP-Tree

Each node N in UP-tree [12] consists of a name N.item, overestimated utility
N.nu, support count N.count, a pointer to the parent node N.parent and a
pointer N.hlink to the node which has the same name as N.name. The root of
the tree is a special empty node which points to its child nodes. The support
count of a node N along a path is the number of transactions contained in that
path that have the item N.item. N.nu is the overestimated utility of an itemset
along the path from node N to the root. In order to facilitate efficient traversal, a
header table is also maintained. The header table has three columns, Item, TWU
and Link. The nodes in a UP-tree along a path are maintained in descending
order of their TWU values. All nodes with the same label are stored in a linked
list and the link pointer in the header table points to the head of the list.

4 Mining High Utility Itemsets

In this section, we will present the construction process of UP-Hist tree. Subse-
quently, we will show how UP-Hist tree can be used to compute better estimates
of utility value for an itemset as well as a node(N.nu). We also prove that the
utility estimates computed by our method are correct and better as compared
to the state-of-art approaches, namely UP-Growth [12], UP-Growth+ [2].

4.1 Construction of UP-Hist Tree

Primarily, in the UP-Hist tree we augment a histogram with every node of the
UP-tree. A histogram at a node stores the quantity information for a specific set
of transaction that contributes to the node utility.

Definition 8. A histogram h for an item-node Ni is a set of pairs 〈qi, numi〉,
where qi is an item quantity and numi is the number of transactions that contain
qi copies of an item.

The process of constructing UP-Hist tree is similar to the previous approaches
[2], [12] and requires two scans of the database. In the first scan, items are ordered
on the basis of their TWU values and non-candidates are discarded. A header
table is also created that explicitly stores the TWU values with each item and
maintains items in non-increasing order of their TWU value. During the second
scan of the database, each transaction is first reorganized and then inserted into
the UP-Hist tree. Reorganization of a transaction reduces the TU value by the
utility value of the discarded items as well as reorders the remaining items in the

107

{}

({6},12,1)

({2},22,1)

E

D

({1,4,6,10,13},34,5)

({2},8,1)

({1},11,1)

({1},30,1)

B

E

B

({4},27,1)

({2},22,1)

({2},26,1)

({2},32,1)

C

D

A

A

E

A

({1,6},56,2)

E

({1,3,4},40,3)
({2},16,1)

({1},41,1)

B

B

Item LinkTWU

130C

D

A

B

E

127

124

123

Fig. 1: Global UP-Hist tree

transaction using their RTU values. Similar to the basic UP-tree, tree traversal
of UP-Hist tree is supported by links maintained in the header table and at each
node of the tree.

The process of inserting reorganized transactions in the UP-Hist tree is as
follows: each transaction is processed from the beginning and matched with nodes
in the tree starting from the root. In case the item of a transaction matches with
the node’s item, the histogram associated with that node is updated with the
item’s quantity value, i.e. if a pair p with the same quantity value exists then
count is incremented by one, otherwise a new pair is added to the histogram. The
node utility value is also updated by the utility-value of the transaction-prefix
and the support is incremented by one. In the second case, when the item of
transaction does not match with any node at that level, a new node is created
for that item and an empty histogram is associated with the node. Then, a pair
(quantity, support) is added in the histogram with its first component value
set as the item’s quantity and the support (tc) is set to one. For the example
database given in Table 1 and profit Table 2, the global UP-Hist tree will be
as shown in Figure 1. The histograms in the figure are shown as the list of
item-quantity values for the reason of legibility, instead of a list of pairs.

4.2 Generating High-Utility Itemsets from UP-Hist Tree

In this subsection, we present our approach to calculate better utility estimates of
itemsets and nodes using histograms. Subsequently, we give a proof of correctness
of our estimates. Finally, we illustrate the advantage of using histograms with
an example.

Our algorithm 1 is a pattern-growth recursive algorithm. The algorithm picks
every item in a bottom-up manner from the header. If the picked item is of high
utility and can generate high utility itemsets, a local tree is generated for that
item, which is further explored in a recursive manner. At every expansion of

Algorithm 1 UP-Hist Growth(Tx, Hx, X)

1: for entry ik in Hx do
2: if nusumX ≥ min util then
3: Consider Y = X ∪ ik as a candidate and construct CPB of Y.
4: Put local promising items in Y − CPB into HY and create local

UP-Hist tree.
5: if TY 6= null then Call UP-Hist Growth(TY ,Hy,Y)
6: end if
7: end if
8: end for

a prefix, the utility of prefix in the local tree is estimated to decide whether
further exploration is worthy. Our algorithm generates these utility estimates
using histograms. We discuss the strategies of computing estimates and process
of constructing a local UP-Hist tree further.

In order to compute the estimates for an item-node Ni of a tree having a
support count s, we define two primitive operations, namely minC(Ni, s) and
maxC(Ni, s), that computes the minimum (lb) and maximum (ub) number of
item copies for a given number of transactions.

Definition 9. Let h be a histogram, associated with an item-node Ni, con-
sisting of n, (1 ≤ i ≤ n) pairs < qi, numi >, sorted in ascending order of qi.
minC(Ni, s) returns the sum of item-copies of k entries of h, i.e., minC(Ni, s) =∑k

1 qi, such that k is the maximal number fulfilling k ≤
∑k

1 numi.

Definition 10. Let h be a histogram, associated with an item-node Ni, con-
sisting of n, (1 ≤ i ≤ n) pairs < qi, numi >, sorted in descending order of qi.
maxC(Ni, s) returns the sum of item-copies of k entries of h, i.e., maxC(Ni, s) =∑k

1 qi, such that k is the minimal number fulfilling k ≤
∑k

1 numi.

Consider the histogram at node C in Figure 1, h = {< 1, 1 >,< 4, 1 >,<
6, 1 >,< 10, 1 >,< 13, 1 >}. The minC(C, 3) and maxC(C, 3) will be 11 and
29 respectively.

In the process of pattern growth, any intermediate pattern is checked whether
the pattern is high-utility or not. It requires to estimate the utility of the pattern
and is computed using minC(.) and maxC(.), as given further.

Definition 11. Given an itemset I =< a1, a2, ..., ak > corresponding to a
path in a UP-Hist tree , with support count value as s, the ub and lb util-
ity values of I are computed as follows: ub(I) =

∑k
i=1 maxC(ai, s) ∗ pr(ai).

lb(I) =
∑k

i=1 minC(ai, s) ∗ pr(ai).

We also use histograms to remove unpromising items during the construction
of local UP-Hist tree. The local tree construction is basically a two-step process
where, first a conditional pattern base (CPB) of a prefix itemset is created. The
conditional pattern base (CPB) of a prefix itemset is the collection of paths

from which the prefix itemset is reachable from the root of the local tree. In our
case, each path in the CPB will have a path utility value and each item in a
pattern will have a partial histogram associated with it. The partial histogram
is computed using the support count of a path as follows:

Definition 12. Given a path p with a support count s, a partial histogram
for an item-node Ni consists of the entries of Ni’s histogram used to compute
minC(Ni,s) and maxC(Ni,s) score.

In the second step local-tree construction, the CPB − paths are reorganized
by removing the unpromising items to produce reorganized paths, and the utility
of a reorganized path is defined as follows.

Definition 13. Reorganized path utility of a path p, with a support count s
due to removal of a set of unpromising local nodes R, is computed as follows:
p.nunew = p.nu−

∑
n∈R minC(n, s)∗pr(n), where p.nu is old path-utility before

reorganization.

The obtained CPB consisting of reorganized paths is then used to create a
local UP-Hist tree similar to the process of creating a local UP-tree. However, we
merge two histograms in the process using standard bag-union operation. After
the paths are reorganized, the new utility of every node Ni along that path is
calculated as shown below:

(Ni.nu)new = (Ni.nu)old + p.nu−
∑

n∈R minC(n, s) ∗ pr(n).

Claim 1. The utility values of an itemset I i.e lb(I) and ub(I) are correct lower
and upper bound estimates of the exact utility of I

Proof. As per Definition 11, the lower bound utility estimate of I i.e. lb(I) is
computed as a summation of the product of minC(ai, s) and profit pr(ai), for
each item ai ∈ I. The exact utility of the itemset I is computed as summation of
product of the exact number of copies of each item ai ∈ I and the profit pr(ai)
associated with each item. It is trivial to see the way minC(.) is computed as per
Definition 9, the actual quantity of each item ai in I can’t be less than computed
by minC(.). Similar argument holds for ub(I), which proves the claim.

Claim 2. The estimated reorganized path utility(p.nunew) and the new utility
of every node((Ni.nu)new) computed by UP-Hist Growth is better compared to
UP-Growth, UP-Growth+.

Proof. The reorganized path and node utilities are computed by removing the
utilities of unpromising items. The authors [2] used the minimum item utility of
an item i denoted by miu(i) and minimum node utility of a node N , denoted
as N.mnu to compute the estimates. miu(i) is the minimum quantity of item i
in the database and can be represented as global hist(1) i.e. the lowest quantity
value in the global histogram. N.mnu is the minimum quantity of item N.name
in the subset of transactions covered in the path p containing item N.name in
the tree and can be represented as hist(1), where hist(1) is the lowest item from

the global or the local histogram of item i. It is trivial to observe,∑
n∈R minC(n, s) ∗ pr(n) ≥

∑
n∈R s ∗n.mnu ∗ pr(n) ≥

∑
n∈R s ∗miu(n) ∗ pr(n)

which proves the claim.

Next, we present an example to show the effectiveness of our utility estimates.
Let us consider the example database as shown in Table 1 and let min util = 75.
In the first pass of the database, transaction weighted utilization (TWU) of
every distinct item is calculated. {F}, {G} and {H} are the low utility items as
their TWU is below the minimum utility threshold. The transactions are then
reorganized by removing the unpromising (low utility) items and sorting the
items within a transaction in decreasing order of their TWUs. Every reorganized
transaction is inserted one by one to create a global UP-Hist tree as shown in
Figure 1. Let us now process the local tree created by processing item {A}
from the header table. Item {A} is a candidate high utility itemset, since its
reorganized transaction utility is 94, which is greater than the minimum utility
threshold. The conditional pattern base of ({A} − CPB) is created and items
in the CPB are processed. ({A} −CPB) consists of paths < CD >,< C > and
< D > with path utility 56, 16 and 22. The transaction utility of items {C} and
{D} is 72 and 78. Therefore, {C} is an unpromising item and its utility must be
subtracted to get the reorganized path utilities. The reorganized utility of the
path < CD > by UP-Growth is computed as shown below.
p.nunew(< CD >,A− CPB) = 56−miu(C)× s(c) = 56− 1× 2 = 54.

p.nunew(< CD >, {A}−CPB) computed by UP-Growth+ is same asc.mnu
is also 1. The estimated utility of the itemset < AD > by UP-Growth and
UP-Growth+ is equal to the sum of path utility of < CD > and < D > in
{A} − CPB i.e. 76.

Now, we will calculate the estimated utility using our histogram. The support
of the unpromising item C is 2 and minC(C,2) is 5. The path utility of path
< CD > using the histogram of item {C} {< 1, 1 >,< 4, 1 >,< 6, 1 >,< 10, 1 >
,< 13, 1 >} is given below:

pu(< CD >, {A} − CPB) = 56−minC(C, 2) ∗ pr(C) = 56− 5 = 51.
The estimated utility of itemset < AD > is 73. Therefore, < AD > is a

potential high utility itemset according to the UP-Growth and UP-Growth+
algorithm, but a low utility itemset according to our algorithm.

5 Experiments and Results

In this section, we compare the performance of our proposed algorithm UP-
Hist Growth against the state-of-the-art approaches, i.e. UP-Growth [12], UP-
Growth+[2], on various real and synthetic datasets. The description of the var-
ious datasets is shown in Table 3. We implemented all the algorithms in Java
on Eclipse 3.5.2 platform with JDK 1.6.0 24. The experiments were performed
on an Intel Xeon(R) CPU=26500@2.00 GHz with 64 GB RAM. The datasets
Accidents, Mushroom and Chess were obtained from FIMI Repository [16]. The

20 30 40 50 60 70 80

0

5

10

Minimum Utility Threshold%

T
im

e(
se

c)
(l

o
g

sc
a
le

)

(a)Total Time

UP-Growth
UP-Growth+

UP-Hist Growth

20 30 40 50 60 70 80

0

5

10

15

Minimum Utility Threshold%

N
u
m

b
er

o
f

ca
n
d
id

at
es

(l
o
g

sc
a
le

)

(b)Number of Candidates

UP-Growth
UP-Growth+

UP-Hist Growth

Fig. 2: Performance Evaluation on Mushroom Dataset

40 45 50 55 60 65 70

2

4

6

8

10

Minimum Utility Threshold%

T
im

e(
se

c)
(l

og
sc

al
e)

(a)Runtime for phase I

UP-Growth
UP-Growth+

UP-Hist Growth

40 45 50 55 60 65 70

10

15

20

25

Minimum Utility Threshold%

N
u
m

b
er

of
ca

n
d
id

at
es

(l
og

sc
al

e)

(b)Number of Candidates

UP-Growth
UP-Growth+

UP-Hist Growth

Fig. 3: Performance evaluation on Chess Dataset

Foodmart dataset was acquired from Microsoft Foodmart 2000 database. Only
the Foodmart dataset contained the quantity and external utility values for each
item. The quantity and external utility for other datasets were generated using
log normal distribution. We compared the algorithms on the basis of number
of candidates generated in the first phase and total execution time. We report
execution time by taking the average of 20 iterations of each result to mini-
mize the effect of other system parameters. The results for the dense datasets
Mushroom and Chess are shown in Figure 2 and 3 respectively. The graphs
show that our proposed approach outperforms the state-of-the-art approaches
in terms of total execution time and the number of candidates. The reduction
in the number of candidates reduces the number of local trees generated during
the mining process. We also evaluated the performance of our algorithm on the
sparse Foodmart dataset and the results, as shown in Figure 4, show that our al-
gorithm performs better on sparse as well as dense databases. We also performed
experiments to show the scalability of our proposed algorithm. The experiments
were performed on the Accidents dataset and the results are shown in Figure 5.
The results demonstrate that the number of candidates and execution time of
every algorithm increases with an increase in the number of transactions. How-
ever, our proposed algorithm UP-Hist Growth, still generates the least number
candidates compared to the other state-of-the-art algorithms.

20 30 40 50 60 70

−4

−2

0

2

Minimum Utility Threshold%

T
o
ta

l
ti

m
e(

se
c)

(l
og

sc
al

e)

(a)Total running time

UP-Growth
UP-Growth+

UP-Hist Growth

20 30 40 50 60 70

0

5

10

15

Minimum Utility Threshold%

N
u
m

b
er

o
f

C
a
n
d
id

a
te

s(
lo

g
sc

al
e)

(b)Number of Candidates

UP-Growth
UP-Growth+

UP-Hist Growth

Fig. 4: Performance Evaluation on Foodmart dataset

Table 3: Characteristics of Datasets
Dataset #T x Avg. length #Items Type

Accidents 340,183 33.8 468 Dense

Chess 3,196 37.0 75 Dense

Foodmart 227 17.88 1559 Sparse

Mushroom 8,124 23.0 119 Dense

100 150 200 250 300

10

15

20

Database Size (k)

N
u
m

b
er

o
f

C
a
n
d
id

a
te

s
(l

o
g

sc
a
le

)

Scalability

UP-Growth

UP-Growth+

UP-Hist Growth

Fig. 5: Effect of Scalability

6 Conclusion

In this paper, we proposed a novel data structure, UP-Hist tree for finding high
utility itemsets. The inclusion of histogram reduced the estimated utility and
helped in pruning the search space better. Experimental results on real and
synthetic datasets demonstrate the better performance of our proposed data
structure compared to the state-of-the-art algorithms in terms of total execution
time and number of candidates.

References

1. Ying Liu, Wei-keng Liao, and Alok Choudhary. A fast high utility itemsets mining
algorithm. In International workshop on Utility-based data mining, pages 90–99.
ACM, 2005.

2. Vincent S Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S Yu. Efficient algo-
rithms for mining high utility itemsets from transactional databases. IEEE TKDE,
25(8):1772–1786, 2013.

3. Ying Liu, Wei-keng Liao, and Alok Choudhary. A two-phase algorithm for fast
discovery of high utility itemsets. In Advances in Knowledge Discovery and Data
Mining, pages 689–695. Springer, 2005.

4. Bai-En Shie, Vincent S Tseng, and Philip S Yu. Online mining of temporal maximal
utility itemsets from data streams. In ACM Symposium on Applied Computing,
pages 1622–1626. ACM, 2010.

5. Hua-Fu Li, Hsin-Yun Huang, Yi-Cheng Chen, Yu-Jiun Liu, and Suh-Yin Lee. Fast
and memory efficient mining of high utility itemsets in data streams. In IEEE
ICDM, pages 881–886, 2008.

6. Raymond Chan, Qiang Yang, and Yi-Dong Shen. Mining high utility itemsets. In
IEEE ICDM, pages 19–26, 2003.

7. Bai-En Shie, Hui-Fang Hsiao, Vincent S Tseng, and S Yu Philip. Mining high
utility mobile sequential patterns in mobile commerce environments. In DASFAA,
pages 224–238, 2011.

8. Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining associ-
ation rules. In 20th VLDB, volume 1215, pages 487–499, 1994.

9. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, volume 29, pages 1–12, 2000.

10. Carson Kai-Sang Leung, Quamrul I Khan, Zhan Li, and Tariqul Hoque. Cantree:
A canonical-order tree for incremental frequent-pattern mining. Knowledge and
Information Systems, 11(3):287–311, 2007.

11. Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, and
Young-Koo Lee. Efficient tree structures for high utility pattern mining in incre-
mental databases. IEEE TKDE, 21(12):1708–1721, 2009.

12. Vincent S Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S Yu. Up-growth: An
efficient algorithm for high utility itemset mining. In 16th ACM SIGKDD, pages
253–262, 2010.

13. Cheng Wei Wu, Bai-En Shie, Vincent S Tseng, and Philip S Yu. Mining top-k high
utility itemsets. In 18th ACM SIGKDD, pages 78–86. ACM, 2012.

14. Junfu Yin, Zhigang Zheng, Longbing Cao, Yin Song, and Wei Wei. Efficiently
mining top-k high utility sequential patterns. In IEEE ICDM, pages 1259–1264.
IEEE, 2013.

15. Tianjun Lu, Yang Liu, and Le Wang. An algorithm of top-k high utility itemsets
mining over data stream. Journal of Software, 9(9):2342–2347, 2014.

16. B Goethals and MJ Zaki. the fimi repository, 2012.

