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Abstract—We propose an algorithm for estimating urban density from polarimetric synthetic aperture radar 12 

(SAR) images, and compare the urban density patterns of global megacities. SAR images are uniquely able to 13 

detect structural information of objects, but they are very sensitive to orientation angle. This issue has been an 14 

obstacle to applying SAR images to urban areas. Kajimoto and Susaki (2013b) proposed an algorithm to handle 15 

this issue. The effects of polarization orientation angle (POA) are removed by rotating the coherency matrix and 16 

then calculating the mean and standard deviation of scattering power by POA domain. The algorithm can 17 

estimate urban density from a single fully polarimetric SAR image but has the drawback that the generated 18 

urban density maps of multiple images are not comparable with each other because the algorithm generates a 19 

relative urban density valid only within the analyzed image. We therefore extend the method by calculating 20 

POA-domain statistics from all images of interest so that the generated maps can be compared. Estimated urban 21 

densities are assessed on two types of urban density generated from GIS data, building-to-land ratio and 22 

floor-area ratio. We demonstrate that the extended method can estimate urban density with reasonable 23 

accuracy. Finally, we generate two scattergrams of indices derived from urban density maps of global megacities. 24 
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An analysis using the scattergrams indicates insightful information about the patterns of urban development. 25 

We conclude that the proposed algorithm and the analysis using the obtained results are beneficial to 26 

understanding the conditions in megacities. 27 

 28 

Index Terms—Urban density, megacities, polarimetric synthetic aperture radar, polarization orientation angle. 29 

 30 

1. Introduction 31 

Mapping of human settlements is one of the most important applications of remote sensing. As the world population has 32 

increased, many megacities with populations exceeding one million have emerged, especially in Asia. Megacities such 33 

as Beijing, Bangkok, and Jakarta are still rapidly growing. Rapid growth of megacities in developing countries can 34 

cause severe urban problems, including problems related to traffic congestion, water supply, sewage disposal, air 35 

pollution, and housing. Before national or local governments can plan countermeasures against such urban problems, 36 

the areas of human settlement must be delineated. Population density should also be mapped at the district level to 37 

effectively determine budgets and improve the quality of urban life.  38 

One traditional approach to mapping urban areas and density is to use census data to generate maps with the help of a 39 

geographic information system (GIS). However, the initial cost of collecting census data and converting them into 40 

digital data, and the ongoing cost of updating such data, are significant. This is true not only in developing countries, but 41 

also in developed countries. For example, in Japan, Zenrin Co. Ltd. is well known for selling detailed census data and 42 

manually updating this data. These data are sold commercially as Zmap Town II by local government organizations. For 43 

example, the Tokyo metropolitan area includes Chiba, Saitama, and Kanagawa prefectures and parts of Ibaraki 44 

prefecture. The area had a population of 37.6 million in an area of 14,000 km2 in 2010 (Statistics Bureau, 2011). It costs 45 

approximately 300,000 USD to purchase the Zmap Town II data that includes the number of stories of buildings in the 46 

Tokyo metropolitan area (Zenrin, 2014). Because these data are so costly, most social science, civil engineering, and 47 

architecture researchers interested in urban areas have to find other sources of urban area data. 48 

The estimation of population density in urban areas can be difficult because it requires an accurate population census. 49 

Building density can be used as an alternative index to reflect the activities in urban areas. Hereinafter, urban density 50 

denotes building density. In this research, our motivation is to map urban density and urban areas for megacities 51 
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throughout the world, thus promoting analysis and research on urban environments. 52 

Remote sensing has the potential to map urban areas and density via several approaches. As daytime optical images, 53 

Landsat-series images have been widely used to monitor urban areas (Schneider, 2012; Zhu et al., 2012). Landsat has 54 

carried the Multispectral Scanner System (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus 55 

(ETM+) devices. Because their basic designs are highly similar, long-term monitoring is possible. Bagan and Yamagata 56 

(2012) conducted an analysis of urban growth in the metropolitan Tokyo area by fusing long-term Landsat imagery and 57 

statistical data. High-temporal-resolution sensors, such as the Advanced Very High Resolution Radiometer (AVHRR) 58 

and Moderate Resolution Imaging Spectroradiometer (MODIS) have been also used for global mapping of urban areas 59 

(Friedl et al., 2002; Schneider et al., 2010). Nighttime optical sensors were used to extract urban areas by detecting 60 

nighttime illumination from urban areas. Defense Meteorological Satellite Programme–Operational Line Scanner 61 

(DMSP-OLS) provided such nighttime imagery, and urban maps generated using that imagery have been reported 62 

(Elvidge et al., 1997; Elvidge et al., 1998; Sutton, 2003). However, optical sensors have a critical drawback: they are 63 

sensitive to atmospheric conditions. For example, few clear optical images of Asian countries can be acquired during the 64 

monsoon season. 65 

Synthetic aperture radar (SAR) and other microwave-based radar sensors are generally insensitive to atmospheric 66 

conditions, and interferometric SAR (InSAR) may be a useful approach to estimating heights for urban density mapping. 67 

Scattering mechanisms are very complex in urban areas due to multiple scattering by man-made structures (Margarit et 68 

al., 2010). Urban digital elevation models (DEM) estimated by InSAR are thus generally not accurate, but several 69 

approaches to improving accuracy have been presented (Thiele et al., 2007; Shabou et al., 2012). Permanent scatter 70 

InSAR (PSInSAR) (Ferretti et al., 2001) and SqueeSAR (Ferretti et al., 2011) generate DEM with very high accuracy 71 

(millimeter scale), even for urban areas (Ferretti et al., 2000; Stramondo et al., 2008; Perissin & Wang, 2012; Chaussard 72 

et al., 2014). However, the major obstacle to implementing such techniques is that they require dozens of SAR images, 73 

making it hard to map many megacities. 74 

Another feature of SAR is detection of structural information of surface targets. Fully polarimetric SAR (PolSAR) 75 

can provide data for four different combinations of horizontal (H)- and vertical (V)-polarization reception and 76 

transmission: HH, HV, VH, and VV. Three-component (Freeman & Durden, 1998) and four-component decomposition 77 

algorithms (Yamaguchi et al., 2005; Yamaguchi et al., 2006) decompose multi-polarization data into three or four 78 

scattering components: surface, double-bounce, and volume scatterings are common to both algorithms, and helix 79 
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scattering was added by the latter algorithm. Such analysis is quite different from when optical images are used. 80 

This feature can be used to map urban density. Niu and Ban used PolSAR data to extract high- and low-density urban 81 

areas (Niu and Ban, 2012) where no density information was given for industrial, commercial, and construction areas. 82 

One obstacle to mapping using SAR data is the effect of polarization orientation angle (POA) (Kimura, 2008). The 83 

scattering received by SAR sensor is very sensitive to the POA of the target. This effect is more evident in urban areas 84 

than with vegetated land cover such as forests and agricultural areas. Kajimoto and Susaki (2013b) overcame this POA 85 

effect and succeeded in mapping urban density from only one PolSAR image of an area of interest. However, the 86 

method generates a relative density index that is applicable to only the analyzed image. The method is therefore not 87 

guaranteed to be applicable to all urban areas for comparing the status of urbanization of different megacities. 88 

We extended the method proposed in Kajimoto and Susaki (2013b), and propose a method that estimates urban 89 

density from only one PolSAR image and enables comparison of urban densities of different cities. As described in 90 

Section 3, building density can be defined in several ways, such as building-to-land ratio and floor-area ratio. In this 91 

paper, the urban density estimated using PolSAR images is not defined in advance but rather assessed according to the 92 

kind of building density the estimated urban density is attributed to. Urban areas are defined as areas where artificial 93 

objects are dominant. The remainder of this paper is organized as follows: Section 2 describes the new method. 94 

Experimental results are reported in Section 3 and discussed in Section 4. Finally, we present our conclusions in Section 95 

5. 96 

 97 

2. Methods 98 

 99 

2.1 Outline of the Method 100 

Fig. 1 shows a flowchart of the proposed method, which uses fully polarimetric phase and amplitude data. First, POA is 101 

calculated, and four components with POA effect correction are generated. Next, urban areas are extracted using the 102 

method proposed by Kajimoto and Susaki (2013a). Finally, urban densities of multiple scenes are calculated. In this 103 

process, statistics (mean and standard deviation of scattering) are obtained by POA, as is homogeneous (or 104 

heterogeneous) status over the entire study area. 105 

 106 



 5 

2.2 Polarimetric SAR Data 107 

The format of PolSAR data consists of a complex scattering matrix  108 

 109 

(1) 110 

 111 

Here, for simplicity, SHV and SVH are assumed to be equivalent, so the coherency matrix is given by 112 

 113 

 114 

 115 

 116 

(2) 117 

 118 

 119 

 120 

2.3 Polarization Orientation Angle (POA) 121 

The polarization orientation angle (POA) estimates the azimuth angle of the target (Kimura, 2008). In this paper, the 122 

POA is denoted by φ, which is not the typical notation for POA. We do this because we discuss the effect of the off-nadir 123 

angle difference in Section 4.4, and the off-nadir angle of radar is denoted by θ in this paper. φ is estimated as  124 

 125 

 126 

 (3) 127 

 128 

The angle φ is determined by minimizing T33 (φ). 129 
 130 

2.4 Four-component Decomposition 131 

Four-component decomposition decomposes observed backscattering into four components calculated from the 132 

coherency matrix (Yamaguchi et al., 2005; Yamaguchi et al., 2006). Applying the four-component decomposition 133 
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method to the full PolSAR data gives the surface scattering power (Ps), the double-bounce scattering power (Pd), the 134 

volume scattering power (Pv), and the helix scattering power (Pc).  135 

Four components are sensitive to POA. Yamaguchi et al. (2011) proposed an algorithm that rotates the coherency 136 

matrix by the POA to reduce the dependence of the components on the relative azimuth angle. A rotation is applied to 137 

the coherency matrix: 138 

 139 

 140 

 141 

 (4) 142 

 143 

 144 

 145 

Here, †  denotes complex conjugation and transposition, and Rp (φ) is the rotation matrix given by 146 

 147 

 148 

(5) 149 

 150 

However, components remain dependent on the relative azimuth angle even after this correction (Iwasa & Susaki, 2011), 151 

and removal of the remaining angular effects is a nontrivial problem. 152 

 153 

2.5 Urban Area Classification 154 

Urban areas are discriminated from other types of land cover (mountain, farmland, bare ground, and sea surface) by 155 

using the method proposed by Kajimoto and Susaki (2013a). Analysis using L-band PolSAR images indicated that 156 

POA-corrected Pv generated by four-component decomposition with Eq. (4) is less sensitive to POA than other 157 

POA-corrected components, but there is still a dependency on POA. Another difficulty is that the scattering intensity in 158 

non-orthogonal urban areas and that in orthogonal farmland is similar in some cases. Here, an “orthogonal” area denotes 159 

an area that has an almost 0° POA. Therefore, in the first stage, POA-corrected Pv and total power (TP) data are used for 160 
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classification. TP is derived as
222 2 cbaTP ++= . The combination of the two variables improves classification of 161 

land cover. In addition, pixels are categorized on POA as (–7.5° to 7.5°), (–22.5° to 7.5°, 7.5° to 22.5°), (–37.5° to –162 

22.5°, 22.5° to 37.5°), and (–45.0° to –37.5°, 37.5° to 45.0°). A different classification threshold is set for each category. 163 

In this classification, training data for urban areas and farmland in the study area are manually selected. Principal 164 

component analysis is applied to the training data, and the threshold on the first principal component for discriminating 165 

between urban areas and farmland is determined. The threshold is determined from the means and standard deviations of 166 

the first principal components of the two land cover types. When classifying multiple images, optimal thresholds for the 167 

study area of interest are automatically updated. The difference between the means of the two land covers is divided by 168 

the standard deviations, and the breakpoint is used as the threshold. The threshold is then applied to another study area, 169 

and an attempt is made to separate the urban areas from farmland. The difference is calculated between the urban gravity 170 

points in the new area and in the initial study area, and this difference is used to adjust the threshold. The updated 171 

threshold is again applied to the new study area, and the gravity point difference is calculated. Iteration of this process is 172 

terminated when the change in the threshold is within a predefined limit. 173 

After the first stage of classification, both urban areas and mountainous areas are discriminated from the other three 174 

land covers (farmland, bare ground, and sea surface). Because most of the pixels of urban areas and mountainous areas 175 

overlap in Pv–TP space, the two land covers are not discriminated by using values of only scattering components. 176 

Therefore, in the second step, urban areas are discriminated from mountainous areas using POA randomness, rather than 177 

variance of POA. The procedure to count POA randomness is as follows. First, each pixel is labeled using one of five 178 

POA-based groups, (–45° to 25°), (–25° to –5°), (–5° to 5°), (5° to 25°), and (25° to 45°). Next, a window is set around 179 

the pixel to be analyzed. Taking each window pixel in turn, the POA labels of the four neighboring pixels are compared 180 

with the label of the central pixel, defined as the reference pixel. If all four pixels have labels that are equal to the 181 

reference pixel’s label or that differ by exactly one, the pixel is not counted. In all other cases, the pixel is counted. The 182 

number of pixels counted is then assigned to the reference pixel. Using this procedure, the pixel count is expected to be 183 

small in urban areas and large in mountainous areas. 184 

 185 
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2.6 Urban Density Estimation 186 

The method used to estimate urban density is based on the method proposed by Kajimoto and Susaki (2013b). It 187 

consists of two steps, the extraction of homogeneous-POA city districts and the normalization of scattering-power 188 

components in each POA space. They classified urban areas into homogeneous and heterogeneous areas because even if 189 

two pixels have nearly the same POA, their scattering intensities can be very different, especially in orthogonal building 190 

areas. After that, an index for urban density is calculated for each category of urban area, homogeneous or 191 

heterogeneous. 192 

First, POA variance is calculated as follows: 193 

 194 

 195 

(6) 196 

 197 

Here, Var(i, j) is the POA variance of the pixel (i, j), mnN  is the pixel count in the local Lee sigma filtering window of 198 

the pixel (i, j), φ is the POA, (m, n) indicates the location of pixels lying within the local window, and µφ (i, j) is the 199 

average POA within the local window. This calculation is done for all pixels of an image. The POA type H(i, j) of pixel 200 

(i, j) is given by 201 

 202 

 203 

(7) 204 

 205 

The threshold in Eq. (7) is set by using training data. As a result, urban areas are classified as either homogeneous or 206 

heterogeneous. 207 

The influence of POA can be removed by normalizing scattering-power components in each POA space. First, the 208 

whole POA space is divided into specific intervals. Then, in each POA interval the average and the standard deviation of 209 

each power component’s scattering intensity in urban areas are calculated separately for homogeneous and 210 

heterogeneous POA areas. Finally, the power component’s scattering intensity is normalized for all pixels in each POA 211 

interval. According to the results reported by Kajimoto and Susaki (2013b), we selected Pv+c as an optimal scattering to 212 

represent urban density. The normalized scattering intensity is expressed as follows: 213 
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 214 

 215 

(8) 216 

 217 

 218 

(9) 219 

 220 

 221 

(10) 222 

 223 

Here, T is the normalized scattering intensity, P is the original scattering intensity, μ and σ are, respectively, the average 224 

and standard deviation of the scattering intensity, which are calculated separately for homogeneous POA and 225 

heterogeneous POA areas in each POA interval, (i, j) indicates the location of the reference pixel, k indicates the SAR 226 

image number, and φ is the POA interval to which the (i, j) pixel belongs. Note that the average and standard deviation 227 

are calculated across all urban areas examined. When the average and standard deviation are calculated scene by scene, 228 

samples for specific POAs may be insufficient. This may lead to overcorrection or undercorrection of scattering power. 229 

In addition, the average and standard deviation may reflect the statistics of the area of interest, but may not be common 230 

to other areas. Therefore, in this research, the average and standard deviation are calculated across all areas. 231 

Finally, Tv+c is normalized to the range [0, 1] using Eq. (11): 232 

 233 

 234 

(11) 235 
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and Near Infrared Radiometer type 2 (AVNIR-2) optical sensor data were used as a reference. It is known that L-band 241 

SAR observation has significant effects from Faraday rotation, a phenomenon by which the plane of polarization is 242 

rotated, especially in tropical regions. This experiment assumed negligible effects of Faraday rotation, because 243 

correction was successful. We have two categories of PALSAR data: data with a 21.5° off-nadir angle against the center 244 

of the scene (Data A) and data with a 23.1° off-nadir angle (Data B). Table 1 shows a listing of Data A and B, 245 

respectively.  246 

Accurate information on urban density for Japanese cities was obtained from Zmap-TOWN II (ZENRIN) data, which 247 

are residential maps of Japan. Accurate urban density data were generated from Zmap-TOWN II (GIS) data, with 248 

reference to previous research (Tanaka, 2011). Two measures of urban density were defined: building-to-land ratio and 249 

floor-area ratio. First, building polygon data are intersected by a mesh. Buildings lying across the mesh border are 250 

divided into pieces by the border line. The mesh size was tentatively set to 20 m × 20 m, which approximately 251 

corresponds to the ground resolution of PALSAR after a multilooking process. Building density is calculated as follows: 252 

 253 

 254 

 255 

 256 

(12) 257 

 258 

Here, D is the estimated building density, S is an area, and F is a building floor. The pair (i, j) is the location of the 259 

reference pixel, k indicates the SAR image number, and l denotes the lth building included in the (i, j) pixel. Finally, GIS 260 

images were co-registered to PALSAR images by manually selecting ground control points between the images. 261 

Coefficients recorded in the leader files of PALSAR data calculate latitude and longitude for each pixel. With these 262 

latitudes and longitudes, urban density maps were automatically converted to the WGS 1984 coordinate system with 263 

UTM (Universal Transverse Mercator) projection. In this research, the UTM image grid size was set to 25 m. 264 

 For cities outside Japan, we used Open Street Map (2014). Shape files of building distributions were available for 265 

Munich and New York. We therefore generated building-to-land images for those two cities, and used them for 266 

assessment of the estimated urban densities. 267 
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4. Experiments  268 

In this study, Lee’s sigma filter is applied to PALSAR images as a speckle filter (Lee et al., 2009). The local window 269 

size for the filtering was set to 5 × 5. In the process of urban area extraction, a 3 × 3 boxcar filter was applied to the 270 

coherency matrix. The boxcar filter is effective in removing speckle noise but blurs an image quite substantially. 271 

However, in urban density estimation, preserving a target signature is a top priority, so Lee’s sigma filter with the 272 

smallest window size, 5 × 5, was selected.  273 

In urban area extraction, we followed the thresholds used in Kajimoto and Susaki (2013a). The minimum change in 274 

the urban gravity point was set to 0.01 dB to terminate the optimization loop. For POA randomness calculations, the 275 

window size was set at 31 × 31 pixels, and the ratio between the pixel count and the total number of pixels in the window 276 

for discriminating between urban and mountainous areas was set to 0.35. The threshold in Eq. (7) is 185.5° square, 277 

following Kajimoto and Susaki (2013b). The procedure for obtaining this value was determined by considering 278 

orthogonal building areas in Tokyo and Sapporo images. After manually determining regions of interest (ROIs) of 279 

homogeneous orthogonal building areas in the Tokyo and Sapporo areas, the thresholds, which include 95% of all pixels 280 

belonging to the ROIs, were 188° square (Tokyo) and 183° square (Sapporo). The average of the two study area 281 

thresholds, 185.5°, was used. Because application of this threshold value to the study areas was successful in the 282 

experiments, we did not change the value.  283 

In urban density estimation, A in Eq. (11) was set to 3 to normalize T in Eq. (8). 284 

 285 

4.1 Examination of Two Dataset Differences 286 

We first examined the differences between the two datasets: Data A and B. Figs. 2(a) and (b) show the relation 287 

between POA and TP of homogeneous and heterogeneous districts, respectively, in eight Japanese cities. Data A 288 

includes the Tokyo metropolitan area (hereafter, “Tokyo”), Kyoto, Nagoya, Sendai, and Kobe, and Data B includes 289 

Osaka, Sapporo, and Fukuoka. Fig. 2 indicates that there is a significant gap between the curves of Data A and those of 290 

Data B. To examine differences between the two datasets in specific areas, we used Data A and B of Tokyo and Sapporo 291 

(Table 1). Figs. 3(a) and (b) show the relation between POA and TP of homogeneous and heterogeneous districts in the 292 

two cities. Fig. 3 indicates that the relation is dependent not on the orbital difference (ascending or descending), but on 293 

off-nadir angle. Data B (23.1° off-nadir angle) are not reliable because the relations between peaks of the curves of 294 

Sapporo A and Tokyo D are inconsistent between homogeneous and heterogeneous districts (Figs. 3(a) and 3(b)); the 295 
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peak of the curve of Sapporo A is higher than that of Tokyo D in Fig. 3(a), but this is not the case in Fig. 3(b). This may 296 

be due to the quality of the calibration. As a result, we decided to use only Data A for further analysis. 297 

 298 

4.2 Effect of Spatial Scale 299 

In this research, we used fully polarimetric PALSAR images whose ground range resolution is approximately 25 m, 300 

and generated urban density maps by aggregating the results of each pixel. As expected, the accuracy obtained at smaller 301 

spatial scales (e.g. 1 km, 10 km) is better than that obtained at larger scales (e.g. 10 m, 100 m), but the results lose more 302 

information. We investigated the optimal spatial scale for maps in terms of accuracy and detail. For accuracy, we 303 

examined the correlation coefficients using GIS data at different spatial scales such as 100 m, 200 m, and 300 m, as 304 

shown in Fig. 4(a). For the map detail, we examined mutual information (Kullback–Leibler information or distance), 305 

expressed as  306 

∑=

i iQ
iPiPQPD
)(
)(log)()||(

.
 307 

(13) 308 

Here, D(P||Q) denotes Kullback–Leibler information, and P and Q are discrete probability distributions. In this 309 

experiment, we compared the distribution of urban density [0:1] at each spatial scale to that of a 50 m scale (Fig. 4(b)). 310 

The interval of urban density for calculating Eq. (13) was set to 0.01. This index represents how much detail is lost with 311 

a spatial scale change.  312 

The greatest difficulty in assessing optimal spatial scale is how to combine the correlation coefficient and the mutual 313 

information, because the mutual information represents only the relative distance between two probabilistic 314 

distributions. Because it seems quite difficult to find a reasonable solution, we did not combine them, but we 315 

qualitatively assessed the optimal spatial resolution by referring to the two results. The spatial scale of a thematic map 316 

depends on the map purpose. In this research, we decided that the correlation coefficient should not be less than a certain 317 

threshold, which we set as 0.7 for all cities. Then, according to Fig. 4(a), the optimal spatial scale was selected as 300 m. 318 

 319 
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4.3 Effect of Incident Angle of Radar 320 

Fig. 5 and Table 2 show the effect of incident angle difference on the accuracy of urban density estimation. Note that 321 

the results were obtained using slant-range coordinate (original coordinate) images, for ease in calculating the incident 322 

angle of each pixel. Because the off-nadir angle was 21.5° against the scene center, the incident angle at the scene center 323 

was approximately 24.0°. The incident angle, θ, was classified into three ranges: θ  ≤  23.0°, 23.5° ≤ θ ≤ 24.5 °, and θ ≥ 324 

25.0°. Table 2 shows the results of correlation coefficient calculations for 300-m-resolution GIS images. It shows that 325 

there is a significant difference among the correlation coefficients of the three ranges. 326 

One approach to correcting the incident angle effect is to divide the backscatter coefficient by cos θ (Shimada et al., 327 

2007). We corrected the original fully polarimetric data by multiplying them by the factor (cos 24.0°/cos θ) and assessed 328 

the estimated urban densities with GIS images. As a result, the correlation coefficients became a little worse (by about 329 

0.01) than those without incident angle correction. Although a significant effect of the incident angle difference was 330 

found, it may not be simple to remove it. This improvement is left as a future task for mapping urban densities from SAR 331 

images. 332 

 333 

4.4 Accuracy Assessment of Urban Density Estimation 334 

Figs. 6, 7, 8, and 9 show the respective results for Tokyo, Kyoto, Munich, and New York, two Japanese cities and 335 

two non-Japanese cities. We selected these Japanese cities because Tokyo is a highly dense city; Kyoto is relatively 336 

homogeneous in terms of building height due to building regulations. In Figs. 6 and 7, panel (a) shows the AVNIR-2 337 

image, (b) and (e) show the estimated urban density from PALSAR images, (c) and (f) show the building-to-land ratio, 338 

and (d) and (g) show the floor-area ratio. In Figs. 8 and 9, panel (a) shows the AVNIR-2 image, (b) and (d) show the 339 

estimated urban density from PALSAR images, and (c) and (e) show the building-to-land ratio. Floor-area ratio data 340 

were not available for Munich or New York. 341 

The effect of the mean and standard deviation (Eqs. (9) and (10)) on the final results was examined. In this study, we 342 

defined a calibration that calculates the mean and standard deviation over all images used for the analysis, following Eqs. 343 

(9) and (10). Figs. 10(a) and 11(a) show scattergrams of GIS data and the results before calibration, meaning that the 344 

mean and standard deviation used for Eq. (8) were calculated within the individual scene. In contrast, Figs. 10(b) and 345 

11(b) show the scattergram of GIS data and the results after calibration. These results were obtained with a 300 m 346 
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resolution. Table 3 shows the results of correlation coefficient calculations for 300 m resolution with using GIS images. 347 

On the whole, correlations with the building-to-land ratio are higher than those with the floor-area ratio. This means that 348 

building-to-land ratio is better than floor-area ratio for estimating urban density from PolSAR images..  349 

This paper extends the method previously proposed in Kajimoto and Susaki (2013b) to application for multi-scenes. 350 

The technique calculates statistics for multiple images, and then applies them to all multi-scene images. While this 351 

improvement might seem small, it has two important aspects from a statistical viewpoint. The first is normalization of 352 

the data. The previously proposed method is based on correction of POA effects in backscattering and related 353 

components. For instance, when the POA interval is set to 1°, we take samples and calculate statistics (mean and 354 

standard deviation) for –45°, –44°, …, 44°, 45° POA. The sum of volumetric and helix scatterings is normalized by Eq. 355 

(8). Assume that we separately generate two urban density maps for two images. Because the statistics of the two images 356 

are different, the values have different meanings. Thus, urban density maps generated in this way are not comparable. 357 

Calculating statistics based on multiple images, however, enables generation of comparable urban density maps. 358 

Another improvement is the robustness required for generating urban densities from multi scene images. We need 359 

samples for all POAs, and, as above, when the interval of POA is set to 1°, we need samples at –45°, –44°, …, 44°, 45° 360 

POA. Of course, some POAs have a small number or no samples for a given scene. POA statistics derived from a small 361 

number of samples are unstable. This instability has less effect when the method is applied to one scene for estimating 362 

urban density because the pixels affected are very limited in the scene. When statistics obtained from one scene are used 363 

to correct POA effects in another, however, the instability becomes significant. We thus need samples from all POAs to 364 

generate sufficiently stable statistics for POA effect correction. Even given a certain number of samples for a specific 365 

POA from one scene, the proposed method takes samples from multi-scenes to calculate statistics. The statistics from 366 

multi-scenes may not be optimal for any individual scene, but they are of use in reducing error caused by applying the 367 

statistics from one scene to another. 368 

We examined the effect of the number of cities used to calculate statistics. The results became stable when the 369 

number of cities was around 10, and adding additional cities resulted in little improvement. This indicates that robust 370 

estimation of urban density in multiple images requires a certain number of images, but that robustness can be achieved 371 

when sufficient samples for each POA are obtained. 372 

Here again, we discuss the implications of Table 3. The calibration of mean and standard deviation contributed to a 373 

slight improvement of correlation with the building-to-land ratio (by 0.026 for 7 cities), and with the floor-area ratio (by 374 



 15 

0.025 for 5 cities). Figs. 10 and 11 show that changes in the estimated urban density caused by calibration are significant 375 

for some data in Tokyo and Sendai. The correlation coefficients of some areas after calibration were worse than those 376 

before calibration. The average and standard deviation (Eqs. (9) and (10)) were calculated for each area before 377 

calibration, and thus they may be optimal for the area. However, an important point is that generated urban density maps 378 

are not comparable because of the normalization by using the statistics specific to the area. After calibration, the 379 

statistics common to all 17 areas were used to normalize. Because this normalization functioned to shift plots of each 380 

city to a common line (Figs. 10(a) to 10(b) and Figs. 11(a) to 11(b)), it contributed to overall improvement of the 381 

correlation. Because our objective is to compare the urban densities of global megacities, such normalization is 382 

necessary. In this context, in Table 3, the results of overall scenes are much more important than those of each scene. 383 

While the improvement indicated by correlation coefficients was small, we continued to apply the proposed method to 384 

global megacities. 385 

 386 

4.5 Estimation of Urban Density of Global Megacities 387 

The urban densities of megacities in ascending-mode Data A (Table 1) are shown in Fig. 12. The images correspond 388 

to the areas of 20 km × 20 km. In addition to the images, we extended the proposed method to extracting meaningful 389 

statistics in areas and districts. Two sizes of the urban area were set to 10 km × 10 km and 20 km × 20 km. As for the 390 

districts, two sizes were set to 2.5 km × 2.5 km and 5 km × 5 km, but the center of the window was common to all 391 

window sizes. These sizes were selected as follows. We first set a district of 2.5 km × 2.5 km, and this district was 392 

automatically determined by examining the highest mean urban densities within the window. This size was determined 393 

by examining the size of the highest urban density district in multiple images. The 20 km size for areas was determined 394 

by considering the area covered by PALSAR images. In polarimetric measurement mode, a PALSAR swath is 20 to 65 395 

km (JAXA, 2006), and the images used in the experiment have approximately 30 km swaths. It is ideal that the whole of 396 

a city should be extracted and compared with those of other cities. However, it was found that parts of some cities were 397 

not observed in the PALSAR images. Therefore, we decided to limit the area to compare global megacities. Two 398 

different sizes for districts and areas were set because the scattergram depended on the size and the comparison between 399 

the results with two different sizes may indicate information about urban distribution patterns. The other area size, 10 400 

km × 10 km, was determined by halving each dimension of 20 km × 20 km. In the same manner, if we halve the 2.5 km 401 
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× 2.5 km size of the district we get 1.25 km × 1.25 km, which is too small to represent urban density. We use therefore 402 

use 5 km × 5 km, obtained by doubling each dimension of the 2.5 km × 2.5 km area size. 403 

In calculating the mean, aggregated urban densities were divided by the number of samples where those urban 404 

densities were more than 0. Then, it was visually checked whether the highest urban density district is included in the 405 

automatically selected district. All results except the one for Kobe were acceptable. In the case of the Kobe image, parts 406 

of the Osaka area were included, and the automatically selected district belonged to them. The highest urban density 407 

district for Kobe was automatically detected by limiting the search area. Finally, the area that includes the 408 

pre-determined district and shows the highest mean urban densities was detected for each scene. Fig. 13 shows the 409 

relation between mean urban density in a district (for each, either 2.5 km × 2.5 km or 5 km × 5 km) and the skew of 410 

urban density in a wider area (10 km × 10 km or 20 km × 20 km). Skew is a statistical measure of asymmetry of a 411 

distribution, defined as follows:  412 
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(14) 414 

Here, X is a random variable, and µ and σ are the mean and standard deviation of X, respectively. When the distribution 415 

has strong symmetry, the absolute value of the skew is close to 0.  416 

Fig. 13 indicates several interesting findings. The vertical axis of Fig. 13 denotes homogeneity of urbanization, with 417 

larger values indicating more heterogeneously urbanized and developed cities in specific districts. The first finding is 418 

that cities such as Melbourne and Sydney show local heterogeneity because their skews are relatively high at both 419 

spatial scales (10 km × 10 km and 20 km × 20 km). This finding is supported by Figs. 12(d) and 13(j). The second 420 

finding is that the skew change indicates the degree of homogeneity. The skew of Ho Chi Minh City significantly 421 

increased between the 10 km and 20 km scales. This feature is unique to Ho Chi Minh City. It indicates that 422 

homogeneous areas with higher urban densities are distributed on a 10 km scale and that urban densities are significantly 423 

different between inside and outside the highly urbanized 10 km × 10 km area. Such a homogeneous area can be found 424 

in the left area of Fig. 12(b). The white triangle shows the international airport in Ho Chi Minh City. On the other hand, 425 

Tokyo, Taipei, Tehran, and Kyoto have small skew change between the 10 km and 20 km scales. This means that the 426 

homogeneous urban areas are found in a 20 km × 20 km area in these cities. 427 
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The third finding is that a few cities can be classified into same categories having similar urban structure by 428 

considering both plots in two scattergrams: (1) Tokyo and Taipei, (2) Munich and Beijing, (3) Kyoto and Tehran, (4) 429 

Melbourne and Sydney, and (5) Sendai and New Delhi. These similarities are also seen in Figs. 6, 7, 8 and 12. The final 430 

finding is that Vientiane, the capital and the largest city in the Laos, is much less urbanized than other cities in terms of 431 

urban density on a district level and an area level. On the basis of the previous discussion, we can compare the status of 432 

different global megacities by using PolSAR images and the proposed method. 433 

 434 

5. Conclusions 435 

We extended an existing effective density estimation algorithm to allow application to various areas, while the 436 

existing one was limited to application to single areas. A normalized combination of the volume scattering power and 437 

the helix scattering power (Tv+c) was used to calculate urban density. The mean and standard deviation used for the 438 

normalization were obtained by a calibration referring to all images to be analyzed. As a result of validation with GIS 439 

images, a small improvement was confirmed and the urban density estimated from a single PolSAR image has a 440 

significant correlation with the building-to-land ratio. We then applied this improved method to global megacities, and 441 

generated a two-dimensional scattergram of mean and skew of urban densities. This scattergram enabled international 442 

comparison of megacities in terms of urban structure, and indicated several findings. As a result, we found that the 443 

proposed method and such discussion based on the scattergram were very useful in obtaining knowledge about the 444 

status of megacities, especially when fundamental statistics are lacking for megacities of interest.  445 

In this study, we used L-band PALSAR images because fully polarimetric PALSAR images were available for many 446 

megacities over the world, and because stable results of urban mapping using L-band PolSAR images have been 447 

reported (Kajimoto & Susaki, 2013b). Satellite-borne X-band PolSAR images, such as those taken by TerraSAR-X, are 448 

now available, and the proposed method may be applied to such images. However, it may be expected that the obtained 449 

results will be different from those obtained as L-band images because the radar sensitivity of scatterers is dependent on 450 

wavelength. Because multiple scattering frequently occurs in urban areas, longer wavelength radar may be more 451 

appropriate for urban densities that have high correlation with building-to-land ratio. In future work, we will compare 452 

urban density maps generated from L-band PolSAR images with those generated from X-band PolSAR images. 453 

 454 
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List of Figure Captions 565 

 566 

Fig. 1. Flow of the proposed method 567 

 568 

Fig. 2. Average TP of PALSAR images plotted against POA. (a) Average TP for homogeneous POA areas, and (b) 569 

average TP for heterogeneous POA areas. Data A with 21.5° off-nadir angle against scene center includes Tokyo, Kyoto, 570 

Sendai, Nagoya, and Kobe. Data B with 23.1° off-nadir angle includes Osaka, Fukuoka, and Sapporo. 571 

 572 

Fig. 3. Average TP of PALSAR images (Sapporo and Tokyo) plotted against POA. Each city has two images with 573 

different off-nadir angle. (a) Average TP for homogeneous POA areas, and (b) average TP for heterogeneous POA areas. 574 

“A” denotes ascending mode of observation, and “D” denotes descending mode of observation. 575 

 576 

Fig. 4. Effect of spatial scale on the results. (a) Correlation coefficient of estimated urban density between SAR data and 577 

GIS data, (b) mutual information (Kullback–Leibler information) compared to the data at a 50 m spatial scale. 578 

 579 

Fig. 5. Effect of incident angle θ  difference to the accuracy of urban density estimation. (a) Results in case when θ  ≤ 580 

 23.0°, (b) 23.5° ≤  θ  ≤ 24.5 °, and (c) θ  ≥ 25.0°. 581 

 582 

Fig. 6. Results of urban density estimation for Tokyo. (a) AVNIR-2 image observed on January 11, 2007 (R:G:B = band 583 

3:4:2), (b)(e) estimated urban density, (c)(f) building-to-land ratio, and (d)(g) floor area ratio. (b), (c), and (d) were 584 

original data, and aggregated into images with 300 m mesh size (e), (f), and (g), respectively. 585 

 586 

Fig. 7. Results of urban density estimation for Kyoto. See Fig. 4 for a description of each panel. The AVNIR-2 image 587 

was observed on May 15, 2008. Note that some urban areas in (a) are not included in (c) and (d), because (c) and (d) 588 

have only data from inside Kyoto. 589 

 590 
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Fig. 8. Results of urban density estimation for Munich. (a) AVNIR-2 image observed on September 22, 2010 (R:G:B = 591 

band 3:4:2), (b)(d) estimated urban density, and (c)(e) building-to-land ratio. (b) and (c) were original data, and 592 

aggregated into images with 300 m mesh size (d) and (e), respectively. 593 

 594 

Fig. 9. Results of urban density estimation for New York. See Fig. 7 for a description of each panel. The AVNIR-2 595 

image was observed on November 3, 2010.  596 

 597 

Fig. 10. Effect of calibration to the assessment of the estimated urban density with building-to-land ratio. (a) 598 

Scattergram of GIS data and the results before calibration, in which the mean and standard deviation used for Eq. (8) 599 

were calculated within the individual scene. (b) Scattergram of GIS data and the results after calibration, in which the 600 

mean and standard deviation were calculated using Eqs. (9) and (10), respectively. 601 

 602 

Fig. 11. Effect of calibration to the assessment of the estimated urban density with floor area ratio. See Fig. 9 for a 603 

description of each panel. 604 

 605 

Fig. 12. Results of urban density estimation. (a) Beijing, (b) Ho Chi Minh, (c) Kobe, (d) Melbourne, (e) Nagoya, (f) New 606 

Delhi, (g) Sendai, (h) Shanghai, (i) Singapore, (j) Sydney, (k) Taipei, (l) Tehran, and (m) Vientiane. 607 

 608 

Fig. 13. Scattergram of indices derived from estimated urban densities. (a) Relation between the highest mean in a 2.5 609 

× 2.5 km district and the skew of urban density in a 10 × 10 km area, and (b) relation between the highest mean in a 5 610 

× 5 km district and the skew of urban density in a 20 × 20 km area.  611 
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Abstract—We propose an algorithm for estimating urban density from polarimetric synthetic aperture radar 12 

(SAR) images, and compare the urban density patterns of global megacities. SAR images are uniquely able to 13 

detect structural information of objects, but they are very sensitive to orientation angle. This issue has been an 14 

obstacle to applying SAR images to urban areas. Kajimoto and Susaki (2013b) proposed an algorithm to handle 15 

this issue. The effects of polarization orientation angle (POA) are removed by rotating the coherency matrix and 16 

then calculating the mean and standard deviation of scattering power by POA domain. The algorithm can 17 

estimate urban density from a single fully polarimetric SAR image but has the drawback that the generated 18 

urban density maps of multiple images are not comparable with each other because the algorithm generates a 19 

relative urban density valid only within the analyzed image. We therefore extend the method by calculating 20 

POA-domain statistics from all images of interest so that the generated maps can be compared. Estimated urban 21 

densities are assessed on two types of urban density generated from GIS data, building-to-land ratio and 22 

floor-area ratio. We demonstrate that the extended method can estimate urban density with reasonable 23 

accuracy. Finally, we generate two scattergrams of indices derived from urban density maps of global megacities. 24 
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An analysis using the scattergrams indicates insightful information about the patterns of urban development. 25 

We conclude that the proposed algorithm and the analysis using the obtained results are beneficial to 26 

understanding the conditions in megacities. 27 

 28 

Index Terms—Urban density, megacities, polarimetric synthetic aperture radar, polarization orientation angle. 29 

 30 

1. Introduction 31 

Mapping of human settlements is one of the most important applications of remote sensing. As the world population has 32 

increased, many megacities with populations exceeding one million have emerged, especially in Asia. Megacities such 33 

as Beijing, Bangkok, and Jakarta are still rapidly growing. Rapid growth of megacities in developing countries can 34 

cause severe urban problems, including problems related to traffic congestion, water supply, sewage disposal, air 35 

pollution, and housing. Before national or local governments can plan countermeasures against such urban problems, 36 

the areas of human settlement must be delineated. Population density should also be mapped at the district level to 37 

effectively determine budgets and improve the quality of urban life.  38 

One traditional approach to mapping urban areas and density is to use census data to generate maps with the help of a 39 

geographic information system (GIS). However, the initial cost of collecting census data and converting them into 40 

digital data, and the ongoing cost of updating such data, are significant. This is true not only in developing countries, but 41 

also in developed countries. For example, in Japan, Zenrin Co. Ltd. is well known for selling detailed census data and 42 

manually updating this data. These data are sold commercially as Zmap Town II by local government organizations. For 43 

example, the Tokyo metropolitan area includes Chiba, Saitama, and Kanagawa prefectures and parts of Ibaraki 44 

prefecture. The area had a population of 37.6 million in an area of 14,000 km
2
 in 2010 (Statistics Bureau, 2011). It costs 45 

approximately 300,000 USD to purchase the Zmap Town II data that includes the number of stories of buildings in the 46 

Tokyo metropolitan area (Zenrin, 2014). Because these data are so costly, most social science, civil engineering, and 47 

architecture researchers interested in urban areas have to find other sources of urban area data. 48 

The estimation of population density in urban areas can be difficult because it requires an accurate population census. 49 

Building density can be used as an alternative index to reflect the activities in urban areas. Hereinafter, urban density 50 

denotes building density. In this research, our motivation is to map urban density and urban areas for megacities 51 
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throughout the world, thus promoting analysis and research on urban environments. 52 

Remote sensing has the potential to map urban areas and density via several approaches. As daytime optical images, 53 

Landsat-series images have been widely used to monitor urban areas (Schneider, 2012; Zhu et al., 2012). Landsat has 54 

carried the Multispectral Scanner System (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus 55 

(ETM+) devices. Because their basic designs are highly similar, long-term monitoring is possible. Bagan and Yamagata 56 

(2012) conducted an analysis of urban growth in the metropolitan Tokyo area by fusing long-term Landsat imagery and 57 

statistical data. High-temporal-resolution sensors, such as the Advanced Very High Resolution Radiometer (AVHRR) 58 

and Moderate Resolution Imaging Spectroradiometer (MODIS) have been also used for global mapping of urban areas 59 

(Friedl et al., 2002; Schneider et al., 2010). Nighttime optical sensors were used to extract urban areas by detecting 60 

nighttime illumination from urban areas. Defense Meteorological Satellite Programme–Operational Line Scanner 61 

(DMSP-OLS) provided such nighttime imagery, and urban maps generated using that imagery have been reported 62 

(Elvidge et al., 1997; Elvidge et al., 1998; Sutton, 2003). However, optical sensors have a critical drawback: they are 63 

sensitive to atmospheric conditions. For example, few clear optical images of Asian countries can be acquired during the 64 

monsoon season. 65 

Synthetic aperture radar (SAR) and other microwave-based radar sensors are generally insensitive to atmospheric 66 

conditions, and interferometric SAR (InSAR) may be a useful approach to estimating heights for urban density mapping. 67 

Scattering mechanisms are very complex in urban areas due to multiple scattering by man-made structures (Margarit et 68 

al., 2010). Urban digital elevation models (DEM) estimated by InSAR are thus generally not accurate, but several 69 

approaches to improving accuracy have been presented (Thiele et al., 2007; Shabou et al., 2012). Permanent scatter 70 

InSAR (PSInSAR) (Ferretti et al., 2001) and SqueeSAR (Ferretti et al., 2011) generate DEM with very high accuracy 71 

(millimeter scale), even for urban areas (Ferretti et al., 2000; Stramondo et al., 2008; Perissin & Wang, 2012; Chaussard 72 

et al., 2014). However, the major obstacle to implementing such techniques is that they require dozens of SAR images, 73 

making it hard to map many megacities. 74 

Another feature of SAR is detection of structural information of surface targets. Fully polarimetric SAR (PolSAR) 75 

can provide data for four different combinations of horizontal (H)- and vertical (V)-polarization reception and 76 

transmission: HH, HV, VH, and VV. Three-component (Freeman & Durden, 1998) and four-component decomposition 77 

algorithms (Yamaguchi et al., 2005; Yamaguchi et al., 2006) decompose multi-polarization data into three or four 78 

scattering components: surface, double-bounce, and volume scatterings are common to both algorithms, and helix 79 
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scattering was added by the latter algorithm. Such analysis is quite different from when optical images are used. 80 

This feature can be used to map urban density. Niu and Ban used PolSAR data to extract high- and low-density urban 81 

areas (Niu and Ban, 2012) where no density information was given for industrial, commercial, and construction areas. 82 

One obstacle to mapping using SAR data is the effect of polarization orientation angle (POA) (Kimura, 2008). The 83 

scattering received by SAR sensor is very sensitive to the POA of the target. This effect is more evident in urban areas 84 

than with vegetated land cover such as forests and agricultural areas. Kajimoto and Susaki (2013b) overcame this POA 85 

effect and succeeded in mapping urban density from only one PolSAR image of an area of interest. However, the 86 

method generates a relative density index that is applicable to only the analyzed image. The method is therefore not 87 

guaranteed to be applicable to all urban areas for comparing the status of urbanization of different megacities. 88 

We extended the method proposed in Kajimoto and Susaki (2013b), and propose a method that estimates urban 89 

density from only one PolSAR image and enables comparison of urban densities of different cities. As described in 90 

Section 3, building density can be defined in several ways, such as building-to-land ratio and floor-area ratio. In this 91 

paper, the urban density estimated using PolSAR images is not defined in advance but rather assessed according to the 92 

kind of building density the estimated urban density is attributed to. Urban areas are defined as areas where artificial 93 

objects are dominant. The remainder of this paper is organized as follows: Section 2 describes the new method. 94 

Experimental results are reported in Section 3 and discussed in Section 4. Finally, we present our conclusions in Section 95 

5. 96 

 97 

2. Methods 98 

 99 

2.1 Outline of the Method 100 

Fig. 1 shows a flowchart of the proposed method, which uses fully polarimetric phase and amplitude data. First, POA is 101 

calculated, and four components with POA effect correction are generated. Next, urban areas are extracted using the 102 

method proposed by Kajimoto and Susaki (2013a). Finally, urban densities of multiple scenes are calculated. In this 103 

process, statistics (mean and standard deviation of scattering) are obtained by POA, as is homogeneous (or 104 

heterogeneous) status over the entire study area. 105 

 106 
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2.2 Polarimetric SAR Data 107 

The format of PolSAR data consists of a complex scattering matrix  108 

 109 

(1) 110 

 111 

Here, for simplicity, SHV and SVH are assumed to be equivalent, so the coherency matrix is given by 112 

 113 

 114 

 115 

 116 

(2) 117 

 118 

 119 

 120 

2.3 Polarization Orientation Angle (POA) 121 

The polarization orientation angle (POA) estimates the azimuth angle of the target (Kimura, 2008). In this paper, the 122 

POA is denoted by , which is not the typical notation for POA. We do this because we discuss the effect of the off-nadir 123 

angle difference in Section 4.4, and the off-nadir angle of radar is denoted by  in this paper.  is estimated as  124 

 125 

 126 

 (3) 127 

 128 

The angle is determined by minimizing T33 (). 129 

 130 

2.4 Four-component Decomposition 131 

Four-component decomposition decomposes observed backscattering into four components calculated from the 132 

coherency matrix (Yamaguchi et al., 2005; Yamaguchi et al., 2006). Applying the four-component decomposition 133 
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method to the full PolSAR data gives the surface scattering power (Ps), the double-bounce scattering power (Pd), the 134 

volume scattering power (Pv), and the helix scattering power (Pc).  135 

Four components are sensitive to POA. Yamaguchi et al. (2011) proposed an algorithm that rotates the coherency 136 

matrix by the POA to reduce the dependence of the components on the relative azimuth angle. A rotation is applied to 137 

the coherency matrix: 138 

 139 

 140 

 141 

 (4) 142 

 143 

 144 

 145 

Here, †  denotes complex conjugation and transposition, and Rp () is the rotation matrix given by 146 

 147 

 148 

(5) 149 

 150 

However, components remain dependent on the relative azimuth angle even after this correction (Iwasa & Susaki, 151 

2011), and removal of the remaining angular effects is a nontrivial problem. 152 

 153 

2.5 Urban Area Classification 154 

Urban areas are discriminated from other types of land cover (mountain, farmland, bare ground, and sea surface) by 155 

using the method proposed by Kajimoto and Susaki (2013a). Analysis using L-band PolSAR images indicated that 156 

POA-corrected Pv generated by four-component decomposition with Eq. (4) is less sensitive to POA than other 157 

POA-corrected components, but there is still a dependency on POA. Another difficulty is that the scattering intensity in 158 

non-orthogonal urban areas and that in orthogonal farmland is similar in some cases. Here, an “orthogonal” area denotes 159 

an area that has an almost 0° POA. Therefore, in the first stage, POA-corrected Pv and total power (TP) data are used for 160 
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classification. TP is derived as
222

2cbaTP  . The combination of the two variables improves classification of 161 

land cover. In addition, pixels are categorized on POA as (–7.5° to 7.5°), (–22.5° to 7.5°, 7.5° to 22.5°), (–37.5° to 162 

–22.5°, 22.5° to 37.5°), and (–45.0° to –37.5°, 37.5° to 45.0°). A different classification threshold is set for each 163 

category. 164 

In this classification, training data for urban areas and farmland in the study area are manually selected. Principal 165 

component analysis is applied to the training data, and the threshold on the first principal component for discriminating 166 

between urban areas and farmland is determined. The threshold is determined from the means and standard deviations of 167 

the first principal components of the two land cover types. When classifying multiple images, optimal thresholds for the 168 

study area of interest are automatically updated. The difference between the means of the two land covers is divided by 169 

the standard deviations, and the breakpoint is used as the threshold. The threshold is then applied to another study area, 170 

and an attempt is made to separate the urban areas from farmland. The difference is calculated between the urban gravity 171 

points in the new area and in the initial study area, and this difference is used to adjust the threshold. The updated 172 

threshold is again applied to the new study area, and the gravity point difference is calculated. Iteration of this process is 173 

terminated when the change in the threshold is within a predefined limit. 174 

After the first stage of classification, both urban areas and mountainous areas are discriminated from the other three 175 

land covers (farmland, bare ground, and sea surface). Because most of the pixels of urban areas and mountainous areas 176 

overlap in Pv–TP space, the two land covers are not discriminated by using values of only scattering components. 177 

Therefore, in the second step, urban areas are discriminated from mountainous areas using POA randomness, rather than 178 

variance of POA. The procedure to count POA randomness is as follows. First, each pixel is labeled using one of five 179 

POA-based groups, (–45° to 25°), (–25° to –5°), (–5° to 5°), (5° to 25°), and (25° to 45°). Next, a window is set around 180 

the pixel to be analyzed. Taking each window pixel in turn, the POA labels of the four neighboring pixels are compared 181 

with the label of the central pixel, defined as the reference pixel. If all four pixels have labels that are equal to the 182 

reference pixel‟s label or that differ by exactly one, the pixel is not counted. In all other cases, the pixel is counted. The 183 

number of pixels counted is then assigned to the reference pixel. Using this procedure, the pixel count is expected to be 184 

small in urban areas and large in mountainous areas. 185 

 186 
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2.6 Urban Density Estimation 187 

The method used to estimate urban density is based on the method proposed by Kajimoto and Susaki (2013b). It 188 

consists of two steps, the extraction of homogeneous-POA city districts and the normalization of scattering-power 189 

components in each POA space. They classified urban areas into homogeneous and heterogeneous areas because even if 190 

two pixels have nearly the same POA, their scattering intensities can be very different, especially in orthogonal building 191 

areas. After that, an index for urban density is calculated for each category of urban area, homogeneous or 192 

heterogeneous. 193 

First, POA variance is calculated as follows: 194 

 195 

 196 

(6) 197 

 198 

Here, Var(i, j) is the POA variance of the pixel (i, j), mnN  is the pixel count in the local Lee sigma filtering window of 199 

the pixel (i, j),  is the POA, (m, n) indicates the location of pixels lying within the local window, and  (i, j) is the 200 

average POA within the local window. This calculation is done for all pixels of an image. The POA type H(i, j) of pixel 201 

(i, j) is given by 202 

 203 

 204 

(7) 205 

 206 

The threshold in Eq. (7) is set by using training data. As a result, urban areas are classified as either homogeneous or 207 

heterogeneous. 208 

The influence of POA can be removed by normalizing scattering-power components in each POA space. First, the 209 

whole POA space is divided into specific intervals. Then, in each POA interval the average and the standard deviation of 210 

each power component‟s scattering intensity in urban areas are calculated separately for homogeneous and 211 

heterogeneous POA areas. Finally, the power component‟s scattering intensity is normalized for all pixels in each POA 212 

interval. According to the results reported by Kajimoto and Susaki (2013b), we selected Pv+c as an optimal scattering to 213 

represent urban density. The normalized scattering intensity is expressed as follows: 214 
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 215 

 216 

(8) 217 

 218 

 219 

(9) 220 

 221 

 222 

(10) 223 

 224 

Here, T is the normalized scattering intensity, P is the original scattering intensity, μ and σ are, respectively, the average 225 

and standard deviation of the scattering intensity, which are calculated separately for homogeneous POA and 226 

heterogeneous POA areas in each POA interval, (i, j) indicates the location of the reference pixel, k indicates the SAR 227 

image number, and  is the POA interval to which the (i, j) pixel belongs. Note that the average and standard deviation 228 

are calculated across all urban areas examined. When the average and standard deviation are calculated scene by scene, 229 

samples for specific POAs may be insufficient. This may lead to overcorrection or undercorrection of scattering power. 230 

In addition, the average and standard deviation may reflect the statistics of the area of interest, but may not be common 231 

to other areas. Therefore, in this research, the average and standard deviation are calculated across all areas. 232 

Finally, Tv+c is normalized to the range [0, 1] using Eq. (11): 233 

 234 

 235 

(11) 236 

 237 

Here, A is a constant.  238 

3. Dataset 239 

This study uses fully polarimetric Advanced Land Observing Satellite (ALOS)/Phased Array type L-band SAR 240 

(PALSAR) level 1.1 (L1.1) data. The images have slant-range coordinate data. Furthermore, ALOS/Advanced Visible 241 
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and Near Infrared Radiometer type 2 (AVNIR-2) optical sensor data were used as a reference. It is known that L-band 242 

SAR observation has significant effects from Faraday rotation, a phenomenon by which the plane of polarization is 243 

rotated, especially in tropical regions. This experiment assumed negligible effects of Faraday rotation, because 244 

correction was successful. We have two categories of PALSAR data: data with a 21.5° off-nadir angle against the center 245 

of the scene (Data A) and data with a 23.1° off-nadir angle (Data B). Table 1 shows a listing of Data A and B, 246 

respectively.  247 

Accurate information on urban density for Japanese cities was obtained from Zmap-TOWN II (ZENRIN) data, which 248 

are residential maps of Japan. Accurate urban density data were generated from Zmap-TOWN II (GIS) data, with 249 

reference to previous research (Tanaka, 2011). Two measures of urban density were defined: building-to-land ratio and 250 

floor-area ratio. First, building polygon data are intersected by a mesh. Buildings lying across the mesh border are 251 

divided into pieces by the border line. The mesh size was tentatively set to 20 m × 20 m, which approximately 252 

corresponds to the ground resolution of PALSAR after a multilooking process. Building density is calculated as follows: 253 

 254 

 255 

 256 

 257 

(12) 258 

 259 

Here, D is the estimated building density, S is an area, and F is a building floor. The pair (i, j) is the location of the 260 

reference pixel, k indicates the SAR image number, and l denotes the lth building included in the (i, j) pixel. Finally, GIS 261 

images were co-registered to PALSAR images by manually selecting ground control points between the images. 262 

Coefficients recorded in the leader files of PALSAR data calculate latitude and longitude for each pixel. With these 263 

latitudes and longitudes, urban density maps were automatically converted to the WGS 1984 coordinate system with 264 

UTM (Universal Transverse Mercator) projection. In this research, the UTM image grid size was set to 25 m. 265 

 For cities outside Japan, we used Open Street Map (2014). Shape files of building distributions were available for 266 

Munich and New York. We therefore generated building-to-land images for those two cities, and used them for 267 

assessment of the estimated urban densities. 268 
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4. Experiments  269 

In this study, Lee‟s sigma filter is applied to PALSAR images as a speckle filter (Lee et al., 2009). The local window 270 

size for the filtering was set to 5 × 5. In the process of urban area extraction, a 3 × 3 boxcar filter was applied to the 271 

coherency matrix. The boxcar filter is effective in removing speckle noise but blurs an image quite substantially. 272 

However, in urban density estimation, preserving a target signature is a top priority, so Lee‟s sigma filter with the 273 

smallest window size, 5 × 5, was selected.  274 

In urban area extraction, we followed the thresholds used in Kajimoto and Susaki (2013a). The minimum change in 275 

the urban gravity point was set to 0.01 dB to terminate the optimization loop. For POA randomness calculations, the 276 

window size was set at 31 × 31 pixels, and the ratio between the pixel count and the total number of pixels in the window 277 

for discriminating between urban and mountainous areas was set to 0.35. The threshold in Eq. (7) is 185.5° square, 278 

following Kajimoto and Susaki (2013b). The procedure for obtaining this value was determined by considering 279 

orthogonal building areas in Tokyo and Sapporo images. After manually determining regions of interest (ROIs) of 280 

homogeneous orthogonal building areas in the Tokyo and Sapporo areas, the thresholds, which include 95% of all pixels 281 

belonging to the ROIs, were 188° square (Tokyo) and 183° square (Sapporo). The average of the two study area 282 

thresholds, 185.5°, was used. Because application of this threshold value to the study areas was successful in the 283 

experiments, we did not change the value.  284 

In urban density estimation, A in Eq. (11) was set to 3 to normalize T in Eq. (8). 285 

 286 

4.1 Examination of Two Dataset Differences 287 

We first examined the differences between the two datasets: Data A and B. Figures 2(a) and (b) show the relation 288 

between POA and TP of homogeneous and heterogeneous districts, respectively, in eight Japanese cities. Data A 289 

includes the Tokyo metropolitan area (hereafter, “Tokyo”), Kyoto, Nagoya, Sendai, and Kobe, and Data B includes 290 

Osaka, Sapporo, and Fukuoka. Figure 2 indicates that there is a significant gap between the curves of Data A and those 291 

of Data B. To examine differences between the two datasets in specific areas, we used Data A and B of Tokyo and 292 

Sapporo (Table 1). Figures 3(a) and (b) show the relation between POA and TP of homogeneous and heterogeneous 293 

districts in the two cities. Figure 3 indicates that the relation is dependent not on the orbital difference (ascending or 294 

descending), but on off-nadir angle. Data B (23.1° off-nadir angle) are not reliable because the relations between peaks 295 

of the curves of Sapporo A and Tokyo D are inconsistent between homogeneous and heterogeneous districts (Figs. 3(a) 296 
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and 3(b)); the peak of the curve of Sapporo A is higher than that of Tokyo D in Fig. 3(a), but this is not the case in Fig. 297 

3(b). This may be due to the quality of the calibration. As a result, we decided to use only Data A for further analysis. 298 

 299 

4.2 Effect of Spatial Scale 300 

In this research, we used PALSAR images whose ground range resolution is approximately 25 m, and generated 301 

urban density maps by aggregating the results of each pixel. As expected, the accuracy obtained at smaller spatial scales 302 

(e.g. 1 km, 10 km) is better than that obtained at larger scales (e.g. 10 m, 100 m), but the results lose more information. 303 

We investigated the optimal spatial scale for maps in terms of accuracy and detail. For accuracy, we examined the 304 

correlation coefficients using GIS data at different spatial scales such as 100 m, 200 m, and 300 m, as shown in Figure 305 

4(a). For the map detail, we examined mutual information (Kullback–Leibler information or distance), expressed as  306 


i iQ
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 307 

(13) 308 

Here, D(P||Q) denotes Kullback–Leibler information, and P and Q are discrete probability distributions. In this 309 

experiment, we compared the distribution of urban density [0:1] at each spatial scale to that of a 50 m scale (Figure 4(b)). 310 

The interval of urban density for calculating Eq. (1) was set to 0.01. This index represents how much detail is lost with 311 

a spatial scale change.  312 

The greatest difficulty in assessing optimal spatial scale is how to combine the correlation coefficient and the mutual 313 

information, because the mutual information represents only the relative distance between two probabilistic 314 

distributions. Because it seems quite difficult to find a reasonable solution, we did not combine them, but we 315 

qualitatively assessed the optimal spatial resolution by referring to the two results. The spatial scale of a thematic map 316 

depends on the map purpose. In this research, we decided that the correlation coefficient should not be less than a certain 317 

threshold, which we set as 0.7 for all cities. Then, according to Figure 4(a), the optimal spatial scale was selected as 300 318 

m. 319 

 320 
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4.3 Effect of Incident Angle of Radar 321 

Figure 5 and Table 2 show the effect of incident angle difference on the accuracy of urban density estimation. Note 322 

that the results were obtained using slant-range coordinate (original coordinate) images, for ease in calculating the 323 

incident angle of each pixel. Because the off-nadir angle was 21.5° against the scene center, the incident angle at the 324 

scene center was approximately 24.0°. The incident angle, , was classified into three ranges: ≤ °, 23.5° ≤ ≤ 325 

24.5 °, and  ≥ 25.0°. Table 2 shows the results of correlation coefficient calculations for 300-m-resolution GIS images. 326 

It shows that there is a significant difference among the correlation coefficients of the three ranges. 327 

One approach to correcting the incident angle effect is to divide the backscatter coefficient by cos  (Shimada et al., 328 

2007). We corrected the original fully polarimetric data by multiplying them by the factor (cos 24.0°/cos) and assessed 329 

the estimated urban densities with GIS images. As a result, the correlation coefficients became a little worse (by about 330 

0.01) than those without incident angle correction. Although a significant effect of the incident angle difference was 331 

found, it may not be simple to remove it. This improvement is left as a future task for mapping urban densities from SAR 332 

images. 333 

 334 

4.4 Accuracy Assessment of Urban Density Estimation 335 

Figures 6, 7, 8, and 9 show the respective results for Tokyo, Kyoto, Munich, and New York, two Japanese cities and 336 

two non-Japanese cities. We selected these Japanese cities because Tokyo is a highly dense city; Kyoto is relatively 337 

homogeneous in terms of building height due to building regulations. In Figures 6 and 7, panel (a) shows the AVNIR-2 338 

image, (b) and (e) show the estimated urban density from PALSAR images, (c) and (f) show the building-to-land ratio, 339 

and (d) and (g) show the floor-area ratio. In Figures 8 and 9, panel (a) shows the AVNIR-2 image, (b) and (d) show the 340 

estimated urban density from PALSAR images, and (c) and (e) show the building-to-land ratio. Floor-area ratio data 341 

were not available for Munich or New York. 342 

The effect of the mean and standard deviation (Eqs. (9) and (10)) on the final results was examined. In this study, we 343 

defined a calibration that calculates the mean and standard deviation over all images used for the analysis, following Eqs. 344 

(9) and (10). Figures 10(a) and 11(a) show scattergrams of GIS data and the results before calibration, meaning that the 345 

mean and standard deviation used for Eq. (8) were calculated within the individual scene. In contrast, Figs. 10(b) and 346 

11(b) show the scattergram of GIS data and the results after calibration. These results were obtained with a 300 m 347 
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resolution. Table 3 shows the results of correlation coefficient calculations for 300 m resolution with using GIS images. 348 

On the whole, correlations with the building-to-land ratio are higher than those with the floor-area ratio. This means that 349 

building-to-land ratio is better than floor-area ratio for estimating urban density from PolSAR images..  350 

This paper extends the method previously proposed in Kajimoto and Susaki (2013b) to application for multi-scenes. 351 

The technique calculates statistics for multiple images, and then applies them to all multi-scene images. While this 352 

improvement might seem small, it has two important aspects from a statistical viewpoint. The first is normalization of 353 

the data. The previously proposed method is based on correction of POA effects in backscattering and related 354 

components. For instance, when the POA interval is set to 1°, we take samples and calculate statistics (mean and 355 

standard deviation) for –45°, –44°, …, 44°, 45° POA. The sum of volumetric and helix scatterings is normalized by Eq. 356 

(8). Assume that we separately generate two urban density maps for two images. Because the statistics of the two images 357 

are different, the values have different meanings. Thus, urban density maps generated in this way are not comparable. 358 

Calculating statistics based on multiple images, however, enables generation of comparable urban density maps. 359 

Another improvement is the robustness required for generating urban densities from multi scene images. We need 360 

samples for all POAs, and, as above, when the interval of POA is set to 1°, we need samples at –45°, –44°, …, 44°, 45° 361 

POA. Of course, some POAs have a small number or no samples for a given scene. POA statistics derived from a small 362 

number of samples are unstable. This instability has less effect when the method is applied to one scene for estimating 363 

urban density because the pixels affected are very limited in the scene. When statistics obtained from one scene are used 364 

to correct POA effects in another, however, the instability becomes significant. We thus need samples from all POAs to 365 

generate sufficiently stable statistics for POA effect correction. Even given a certain number of samples for a specific 366 

POA from one scene, the proposed method takes samples from multi-scenes to calculate statistics. The statistics from 367 

multi-scenes may not be optimal for any individual scene, but they are of use in reducing error caused by applying the 368 

statistics from one scene to another. 369 

We examined the effect of the number of cities used to calculate statistics. The results became stable when the 370 

number of cities was around 10, and adding additional cities resulted in little improvement. This indicates that robust 371 

estimation of urban density in multiple images requires a certain number of images, but that robustness can be achieved 372 

when sufficient samples for each POA are obtained. 373 

Here again, we discuss the implications of Table 3. The calibration of mean and standard deviation contributed to a 374 

slight improvement of correlation with the building-to-land ratio (by 0.026 for 7 cities), and with the floor-area ratio (by 375 
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0.025 for 5 cities). Figures 10 and 11 show that changes in the estimated urban density caused by calibration are 376 

significant for some data in Tokyo and Sendai. The correlation coefficients of some areas after calibration were worse 377 

than those before calibration. The average and standard deviation (Eqs. (9) and (10)) were calculated for each area 378 

before calibration, and thus they may be optimal for the area. However, an important point is that generated urban 379 

density maps are not comparable because of the normalization by using the statistics specific to the area. After 380 

calibration, the statistics common to all 17 areas were used to normalize. Because this normalization functioned to shift 381 

plots of each city to a common line (Figs. 10(a) to 10(b) and Figs. 11(a) to 11(b)), it contributed to overall improvement 382 

of the correlation. Because our objective is to compare the urban densities of global megacities, such normalization is 383 

necessary. In this context, in Table 3, the results of overall scenes are much more important than those of each scene. 384 

While the improvement indicated by correlation coefficients was small, we continued to apply the proposed method to 385 

global megacities. 386 

 387 

4.5 Estimation of Urban Density of Global Megacities 388 

The urban densities of megacities in ascending-mode Data A (Table 1) are shown in Fig. 12. The images correspond 389 

to the areas of 20 km × 20 km. In addition to the images, we extended the proposed method to extracting meaningful 390 

statistics in areas and districts. Two sizes of the urban area were set to 10 km × 10 km and 20 km × 20 km. As for the 391 

districts, two sizes were set to 2.5 km × 2.5 km and 5 km × 5 km, but the center of the window was common to all 392 

window sizes. These sizes were selected as follows. We first set a district of 2.5 km × 2.5 km, and this district was 393 

automatically determined by examining the highest mean urban densities within the window. This size was determined 394 

by examining the size of the highest urban density district in multiple images. The 20 km size for areas was determined 395 

by considering the area covered by PALSAR images. In polarimetric measurement mode, a PALSAR swath is 20 to 65 396 

km (JAXA, 2006), and the images used in the experiment have approximately 30 km swaths. It is ideal that the whole of 397 

a city should be extracted and compared with those of other cities. However, it was found that parts of some cities were 398 

not observed in the PALSAR images. Therefore, we decided to limit the area to compare global megacities. Two 399 

different sizes for districts and areas were set because the scattergram depended on the size and the comparison between 400 

the results with two different sizes may indicate information about urban distribution patterns. The other area size, 10 401 

km × 10 km, was determined by halving each dimension of 20 km × 20 km. In the same manner, if we halve the 2.5 km 402 
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× 2.5 km size of the district we get 1.25 km × 1.25 km, which is too small to represent urban density. We use therefore 403 

use 5 km × 5 km, obtained by doubling each dimension of the 2.5 km × 2.5 km area size. 404 

In calculating the mean, aggregated urban densities were divided by the number of samples where those urban 405 

densities were more than 0. Then, it was visually checked whether the highest urban density district is included in the 406 

automatically selected district. All results except the one for Kobe were acceptable. In the case of the Kobe image, parts 407 

of the Osaka area were included, and the automatically selected district belonged to them. The highest urban density 408 

district for Kobe was automatically detected by limiting the search area. Finally, the area that includes the 409 

pre-determined district and shows the highest mean urban densities was detected for each scene. Figure 13 shows the 410 

relation between mean urban density in a district (for each, either 2.5 km × 2.5 km or 5 km × 5 km) and the skew of 411 

urban density in a wider area (10 km × 10 km or 20 km × 20 km). Skew is a statistical measure of asymmetry of a 412 

distribution, defined as follows:  413 
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(14) 415 

Here, X is a random variable, and  and  are the mean and standard deviation of X, respectively. When the distribution 416 

has strong symmetry, the absolute value of the skew is close to 0.  417 

Figure 13 indicates several interesting findings. The vertical axis of Fig. 13 denotes homogeneity of urbanization, 418 

with larger values indicating more heterogeneously urbanized and developed cities in specific districts. The first finding 419 

is that cities such as Melbourne and Sydney show local heterogeneity because their skews are relatively high at both 420 

spatial scales (10 km × 10 km and 20 km × 20 km). This finding is supported by Figs. 13(d) and 13(j). The second 421 

finding is that the skew change indicates the degree of homogeneity. The skew of Ho Chi Minh City significantly 422 

increased between the 10 km and 20 km scales. This feature is unique to Ho Chi Minh City. It indicates that 423 

homogeneous areas with higher urban densities are distributed on a 10 km scale and that urban densities are significantly 424 

different between inside and outside the highly urbanized 10 km × 10 km area. Such a homogeneous area can be found 425 

in the left area of Fig. 13(b). The white triangle shows the international airport in Ho Chi Minh City. On the other hand, 426 

Tokyo, Taipei, Tehran, and Kyoto have small skew change between the 10 km and 20 km scales. This means that the 427 

homogeneous urban areas are found in a 20 km × 20 km area in these cities. 428 
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The third finding is that a few cities can be classified into same categories having similar urban structure by 429 

considering both plots in two scattergrams: (1) Tokyo and Taipei, (2) Munich and Beijing, (3) Kyoto and Tehran, (4) 430 

Melbourne and Sydney, and (5) Sendai and New Delhi. These similarities are also seen in Figs. 6, 7, 8 and 12. The final 431 

finding is that Vientiane, the capital and the largest city in the Laos, is much less urbanized than other cities in terms of 432 

urban density on a district level and an area level. On the basis of the previous discussion, we can compare the status of 433 

different global megacities by using PolSAR images and the proposed method. 434 

 435 

5. Conclusions 436 

We extended an existing effective density estimation algorithm to allow application to various areas, while the 437 

existing one was limited to application to single areas. A normalized combination of the volume scattering power and 438 

the helix scattering power (Tv+c) was used to calculate urban density. The mean and standard deviation used for the 439 

normalization were obtained by a calibration referring to all images to be analyzed. As a result of validation with GIS 440 

images, a small improvement was confirmed and the urban density estimated from a single PolSAR image has a 441 

significant correlation with the building-to-land ratio. We then applied this improved method to global megacities, and 442 

generated a two-dimensional scattergram of mean and skew of urban densities. This scattergram enabled international 443 

comparison of megacities in terms of urban structure, and indicated several findings. As a result, we found that the 444 

proposed method and such discussion based on the scattergram were very useful in obtaining knowledge about the 445 

status of megacities, especially when fundamental statistics are lacking for megacities of interest.  446 

In this study, we used L-band PALSAR images because fully polarimetric PALSAR images were available for many 447 

megacities over the world, and because stable results of urban mapping using L-band PolSAR images have been 448 

reported (Kajimoto & Susaki, 2013b). Satellite-borne X-band PolSAR images, such as those taken by TerraSAR-X, are 449 

now available, and the proposed method may be applied to such images. However, it may be expected that the obtained 450 

results will be different from those obtained as L-band images because the radar sensitivity of scatterers is dependent on 451 

wavelength. Because multiple scattering frequently occurs in urban areas, longer wavelength radar may be more 452 

appropriate for urban densities that have high correlation with building-to-land ratio. In future work, we will compare 453 

urban density maps generated from L-band PolSAR images with those generated from X-band PolSAR images. 454 

 455 
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List of Figure Captions 566 

 567 

Fig. 1. Flow of the proposed method 568 

 569 

Fig. 2. Average TP of PALSAR images plotted against POA. (a) Average TP for homogeneous POA areas, and (b) 570 

average TP for heterogeneous POA areas. Data A with 21.5° off-nadir angle against scene center includes Tokyo, Kyoto, 571 

Sendai, Nagoya, and Kobe. Data B with 23.1° off-nadir angle includes Osaka, Fukuoka, and Sapporo. 572 

 573 

Fig. 3. Average TP of PALSAR images (Sapporo and Tokyo) plotted against POA. Each city has two images with 574 

different off-nadir angle. (a) Average TP for homogeneous POA areas, and (b) average TP for heterogeneous POA areas. 575 

“A” denotes ascending mode of observation, and “D” denotes descending mode of observation. 576 

 577 

Fig. 4. Effect of spatial scale on the results. (a) Correlation coefficient of estimated urban density between SAR data and 578 

GIS data, (b) mutual information (Kullback–Leibler information) compared to the data at a 50 m spatial scale. 579 

 580 

Fig. 5. Effect of incident angle difference to the accuracy of urban density estimation. (a) Results in case when ≤ 581 

°, (b) 23.5° ≤  ≤ 24.5 °, and (c)  ≥ 25.0°. 582 

 583 

Fig. 6. Results of urban density estimation for Tokyo. (a) AVNIR-2 image observed on January 11, 2007 (R:G:B = band 584 

3:4:2), (b)(e) estimated urban density, (c)(f) building-to-land ratio, and (d)(g) floor area ratio. (b), (c), and (d) were 585 

original data, and aggregated into images with 300 m mesh size (e), (f), and (g), respectively. 586 

 587 

Fig. 7. Results of urban density estimation for Kyoto. See Fig. 4 for a description of each panel. The AVNIR-2 image 588 

was observed on May 15, 2008. Note that some urban areas in (a) are not included in (c) and (d), because (c) and (d) 589 

have only data from inside Kyoto. 590 

 591 
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Fig. 8. Results of urban density estimation for Munich. (a) AVNIR-2 image observed on September 22, 2010 (R:G:B = 592 

band 3:4:2), (b)(d) estimated urban density, and (c)(e) building-to-land ratio. (b) and (c) were original data, and 593 

aggregated into images with 300 m mesh size (d) and (e), respectively. 594 

 595 

Fig. 9. Results of urban density estimation for New York. See Fig. 7 for a description of each panel. The AVNIR-2 596 

image was observed on November 3, 2010.  597 

 598 

Fig. 10. Effect of calibration to the assessment of the estimated urban density with building-to-land ratio. (a) 599 

Scattergram of GIS data and the results before calibration, in which the mean and standard deviation used for Eq. (8) 600 

were calculated within the individual scene. (b) Scattergram of GIS data and the results after calibration, in which the 601 

mean and standard deviation were calculated using Eqs. (9) and (10), respectively. 602 

 603 

Fig. 11. Effect of calibration to the assessment of the estimated urban density with floor area ratio. See Fig. 9 for a 604 

description of each panel. 605 

 606 

Fig. 12. Results of urban density estimation. (a) Beijing, (b) Ho Chi Minh, (c) Kobe, (d) Melbourne, (e) Nagoya, (f) New 607 

Delhi, (g) Sendai, (h) Shanghai, (i) Singapore, (j) Sydney, (k) Taipei, (l) Tehran, and (m) Vientiane. 608 

 609 

Fig. 13. Scattergram of indices derived from estimated urban densities. (a) Relation between the highest mean in a 2.5 610 

× 2.5 km district and the skew of urban density in a 10 × 10 km area, and (b) relation between the highest mean in a 5 611 

× 5 km district and the skew of urban density in a 20 × 20 km area.  612 



Table 1: Details of POLSAR images used for the experiment. All images except those with notation “descending” were 

observed in an ascending mode. 

 

Data A (21.5° off-nadir angle against scene center) 

City 
Observation date 

(yyyy/mm/dd) 
City 

Observation date 

(yyyy/mm/dd) 

Tokyo 2006/07/17 New Delhi 2010/03/28 

Kyoto 2007/06/02 New York 2011/04/01 

Nagoya 2010/11/07 Shanghai 2011/03/29 

Kobe 2007/05/04 Singapore 2007/06/01 

Sendai 2009/04/19 Sydney 2007/05/04 

Beijing 2011/04/08 Taipei 2011/04/03 

Ho Chi Minh 2007/04/01 Tehran 2009/04/23 

Melbourne 2011/04/07 Vientiane 2007/05/10 

Munich 2011/03/20 Sapporo (descending) 2008/07/26 

Data B (23.1° off-nadir angle against scene center) 

City 
Observation date 

(yyyy/mm/dd) 
City 

Observation date 

(yyyy/mm/dd) 

Osaka 2009/05/09 Kalach 2010/05/02 

Fukuoka 2009/06/10 Kolkata 2010/05/29 

Sapporo 2007/05/25 Paris 2009/05/12 

Bangkok 2010/05/28 Yangon 2010/05/09 

Hanoi 2010/06/06 Tokyo (descending) 2006/08/19 

Jakarta 2010/05/06 
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Table 2: Effect of incident angle difference to correlation coefficients of estimated urban density between SAR data 

(Tv+c) and GIS data. Five cities (Tokyo, Kyoto, Nagoya, Kobe, and Sendai) were used for the analysis. 

 

 Before calibration After calibration 
Sample 

(pixel)  
Building-to-lan

d ratio 

Floor area 

ratio 

Building-to-l

and ratio 

Floor area 

ratio 

 ≤ 23.0 deg 0.818  0.676  0.837  0.686  6288  

23.5 ≤=  ≤ 24.5 0.778  0.617  0.797  0.660  3576  

 ≥ 25.0 0.757  0.580  0.764  0.586  4585  

 

Table 3: Correlation coefficients of estimated urban density between SAR data (Tv+c) and GIS data at a 300 m spatial 

scale. 

 

  

Before calibration After calibration 

Building-to-land 

ratio 
Floor area ratio 

Building-to-land 

ratio 
Floor area ratio 

Tokyo 0.731  0.560  0.740  0.550  

Kyoto 0.817  0.673  0.811  0.665  

Nagoya 0.621  0.468  0.620  0.461  

Kobe 0.726  0.642  0.723  0.640  

Sendai 0.741  0.575  0.739  0.574  

Munich 0.661 N/A 0.657 N/A 

New York 0.607 N/A 0.602 N/A 

All 0.702  0.553  0.728  0.578  
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