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Abstract: 

 

Order tracking has proved to be effective in dealing with the effects of speed variation 

in the analysis of rotating machinery vibration signals. To implement traditional order 

tracking in practice requires rotational speed information. However, it may be difficult 

in some cases to mount an appropriate monitoring device to obtain reliable speed 

information. In this paper, a novel empirical re-sampling of intrinsic mode functions 

obtained from empirical mode decomposition is explored, so that the approximation 

of order tracking effects without rotational speed is possible. At the same time, the 

newly introduced intrinsic cycle concept in the intrinsic mode function simplifies 

linking of the resultant spectra to signal variations, and is therefore beneficial for 

condition monitoring of rotating machines. In the paper the rationale behind the 

technique is first explained. Secondly, the effectiveness of the technique is 

demonstrated on a dynamic gear simulation model. Lastly, the technique is applied to 

experimental data from a gearbox test rig. Both the simulation and experimental 

studies corroborate the usefulness of the proposed technique. 

 

Key words: Empirical Mode Decomposition (EMD), Intrinsic Mode Function 

(IMF), Order Tracking, Re-sampling, Rotating machinery, Rotational speed. 

 

1. Introduction 

 

Rotating machinery vibration signals often suffer from the effects of variation of the 

rotational speed. Order tracking techniques were therefore developed to deal with 

these influences. In recent years, various classes of order tracking techniques have 

been developed and applied. These include computed order tracking which transforms 

time domain signals into the angle domain, Vold-Kalman filter order tracking which 

extracts each individual order or orders from the time domain, etc. To implement 

traditional order tracking one needs to capture vibration and rotational speed signals 

simultaneously. The vibration signals are usually measured by accelerometers while 

the rotational speed signals are captured by tachometers. However, direct 

measurement of speed may sometimes be difficult due to the complexities of the 



machine, e.g. inaccessible gearboxes inside a machine. Thus, the analyst sometimes 

has to compromise on accuracy for simplification of the system. Furthermore, reliable 

order tracking (such as Vold-Kalman filter order tracking) requires experience and 

sufficient mathematical background to support the analysis. These factors may also 

impede the advancement of order tracking in practice. Simplified signal processing 

methods to achieve order tracking effects in practical application on real rotating 

machines might be very beneficial. Thus, it is reasonable to explore the possibilities 

of using other signal processing methods without the involvement of rotational speed 

to approximate the effects of order tracking on rotating machine vibration signals. 

 

Vibration signals from rotating machinery may in general be non-stationary and 

nonlinear. In the literature, a number of techniques have been proposed to deal with 

such signals. These include techniques to deal with the effects of frequency variation 

(such as order tracking [1]), modeling techniques for diagnosis (for example 

cyclostationary modeling [2]) and statistics based methods to detect and characterize 

non-stationarity (for example spectral kurtosis [3]), as well as time–frequency domain 

methods to capture the variation of signals with the time (for example the wavelet 

transform). Various techniques have been developed, but few can deal with both 

non-stationary and nonlinear signals properly. 

 

In 1998 Huang and his colleagues [4] developed a method that can deal with both 

non-stationary and nonlinear signals and is known as empirical mode decomposition 

(EMD). It is an adaptive and unsupervised method with which complicated signals 

can be separated into a collection of intrinsic mode functions (IMFs) in the time 

domain. IMFs have been proved to have the ability of capturing useful vibration 

signals for rotating machine fault diagnosis (see for example [5], [6] and [7]). 

However, due to the possible frequency variation of IMFs, signal processing 

techniques that are dependent on Fourier analysis will also be influenced by smearing 

of the spectra. Specifically for rotating machine vibration signals, the speed variation 

effects would therefore still remain in the IMFs. Thus, order tracking analysis of IMFs 

will naturally enhance the diagnostic ability. Since there is no need for rotational 

speed information in the EMD process, this does however provide possibilities to 

simplify the order tacking analysis based upon it. 

 

In this paper, a novel way of reconstructing IMFs from EMD to approximate the 

effect of computed order tracking for rotating machine vibration signals is proposed. 

In stead of using traditional speed information to achieve the order tracking, an 

empirical re-sampling method is used on the IMFs which approximates the order 

tracking effects. Avoiding the need for speed information largely simplifies the 

practice of signal measurement and the method offers an alternative condition 

monitoring tool. Besides, the proposed method uses IMFs in stead of complicated raw 

signals. The simple data structure of IMFs offers additional advantages over the 

traditional signal processing method in the frequency domain, in that more direct 

connection between the frequency spectra and signal variations can be obtained. This 



will be further explained in the next paragraph. In the following, the first part of the 

paper explains the rationale behind the technique. Subsequently a simplified gear 

mesh model is used to demonstrate its ability in simulation studies. Lastly, real 

experimental gearbox data is studied and demonstrates the ability of the technique in 

condition monitoring. 

 

2. Basic rationale 

 

Three aspects of the proposed method are now discussed: 

 

a. Reconstruction of newly introduced intrinsic cycles to approximate computed 

order tracking effects. 

b. Interpretation on the reconstructed IMF result. 

c. Discussion on the proposed method in terms of rotating machine vibrations. 

 

2.1 The idea of an intrinsic cycle and approximation of computed order tracking 

effects 

 

Reconstruction of IMFs from EMD is first discussed. Huang et al. [4] define an IMF 

as a signal that satisfies two conditions: 

 

1) Over the whole signal segment, the number of extrema and the number of zero 

crossings must be either equal or differ at most by one. 

2) At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

 

From this original definition of an IMF, it can be inferred that each IMF is a 

symmetric and zero mean oscillation wave. This excludes two or more peaks within 

two successive zero crossings. However, the definition does not ensure that the 

frequency content of this symmetric oscillation wave is constant. Since the important 

purpose of computed order tracking is to exclude frequency variation from the 

rotational speed, it is, therefore, worthwhile to further investigate IMF signals with 

regards to the effects of frequency variation. 

 

2.1.1 Introduction to intrinsic cycle  

 

The intrinsic cycle (IC) is now introduced. Based upon the idea of an IMF, one may 

consider a symmetric oscillation wave about a zero mean and define the IC as 

follows: 

 

Start from the first zero crossing of an IMF and consider two successive zero 

crossings. The entire signal within these three zero crossings constitute one intrinsic 

cycle. In the same way, the signal from the last zero crossing of a previous intrinsic 

cycle and including the following two successive zero crossings, constitute another 



intrinsic cycle, and so on. 

 

The above definition of an IC from an IMF implies that there are one maximum, one 

minimum and three zero crossings within each IC. Each IC roughly resembles one 

period of a sine wave. Then considering about frequency variations in terms of newly 

introduced ICs in an IMF, in these approximately sinusoidal natured ICs frequency 

variations are not constrained. Variations may exist within and between ICs. If the 

frequency variation of a signal is solely due to the varying rotational speed, order 

tracking effects can be achieved by eliminating the frequency variations of the ICs. 

Thus, this is discussed below by considering frequency variations within and between 

ICs in an IMF. 

 

2.1.2 Approximation of computed order tracking effects 

 

In computed order tracking [1] the assumption is usually made that the rotating shaft 

angular acceleration is constant or zero over one revolution, since large angular 

accelerations or decelerations are usually undesirable in practical machines. This is 

typically done in commercial software [8]. When there are several ICs within one 

revolution, one could also assume angular acceleration within an IC is zero so that 

frequency variations within the ICs may be considered negligible. If this assumption 

is made and a constant rotational frequency within an IC is therefore implied, the 

focus in dealing with frequency variation effects may then shift to the frequency 

variations between ICs. 

 

One can now get rid of the frequency variations between ICs by re-sampling with an 

equal number of intervals within every IC. The frequency variations between ICs may 

therefore be discarded and render re-sampled intrinsic cycle data. This process is 

illustrated in Figure 1 for an arbitrary intrinsic mode function - a non-stationary sine 

wave. 

 

    

a. An Intrinsic Mode Function 

 

b. Intrinsic Cycles 



 

c. Re-sampling 

    

d. Re-sampled Intrinsic Cycles 

 

Figure 1: Illustration of re-sampled IC 

 

For this illustration, an arbitrary IMF sine wave is separated into four individual ICs 

based upon the definition presented above. It can be seen that the periods of these ICs 

are different. The 1
st
 (IC-1) and 4

th
 (IC-4) ICs have the same period of 1s but different 

amplitudes and 2
nd

 (IC-2) and 3
rd

 (IC-3) ICs have the same period of 0.5s and the 

same amplitudes. This causes the non-stationarity of the signal. These signals are 

re-sampled into 100 equal intervals within each IC. (In order to clearly illustrate the 

process visually, only 6 lines are drawn in the figure (c) for each IC and within each 

line drawn there are 20 equal intervals.) Once the re-sampling is finished, the final 

wave is reconstructed and features the re-sampled ICs as are shown in (d) which have 

the same number of equal intervals in each re-sampled IC and each re-sampled IC has 

the same new period of 0.75s. 

 

The re-sampled ICs have the same periods because each IC has been re-sampled with 

same number of intervals and a new sampling frequency can be obtained as, 

 

 

period

resample

new
t

S
f   

(1) 

where newf  is the new sampling frequency, resampleS  the number of samples of the 

re-sampled IMF and periodt  is the time period of the original data. 

 

Clearly, through this re-sampling process, the frequency variations between the ICs 

are eliminated. Subsequent to obtaining the re-sampled ICs, it can be seen that if 

frequency variations within ICs are negligible, which follows on the above zero 

angular acceleration assumption, then frequency variations of the overall signal are 



excluded in a way similar to eliminating frequency variations during computed order 

tracking re-sampling. For computed order tracking, the non-stationary time domain 

data is transformed into stationary angle domain data. In this method, a frequency 

varying IMF is transformed into a frequency stationary IMF. In this way, rotational 

speed variation effects in an IMF are eliminated. Fourier analysis can then be used to 

transform the re-sampled IMF into the frequency domain. Thus, similar computed 

order tracking effects are achieved through re-sampling the IMF. More importantly, 

though the present approach may achieve similar effects as to computed order 

tracking, it however neither requires a tacho signal, nor does it rely on interpolation of 

signals as is done in normal order tracking analysis. This method can be called the 

intrinsic cycle re-sampling method (ICR). 

 

2.2 Interpretation on the reconstructed IMF result 

 

2.2.1 Reconstructed IMF in terms of analytical form 

 

From the above it is clear that ICR is a development of an IMF. To understand the 

ICR results it is therefore necessary to trace its analytical form from the basic 

definition of the IMF. From the literature [9], an IMF )(ts  can be written in terms of 

a normalized amplitude modulation part )(tA  and an empirical frequency variation 

part )(te , in the time domain as in equation (2), 

 
)(cos)()( ttAts e  

(2) 

 

The ICR method proposed here transforms the possible frequency varied IMF into a 

frequency stationary IMF (re-sampled IMF). The empirical frequency modulation 

carrier wave )(cos te  in equation (2) is therefore transformed into a stationary 

carrier wave as in equation (3) 

 

 
)2cos()()( tftAts ICRICRICR   

(3) 

where )(tsICR  is the re-sampled IMF through ICR, )(tAICR is the amplitude 

modulation part of the re-sampled IMF and ICRf is the main frequency of the 

re-sampled IMF. 

 

Specifically ICRf , the main frequency of re-sampled IMF can be calculated through the 

ICs as, 



 

ICR

ICR
ICR

T

N
f   

(4) 

where ICRN  is the number of intrinsic cycles of the calculated IMF and ICRT is the 

time period of the calculated IMF. 

 

2.2.2 Discussions on the analytical form of reconstructed IMF 

 

Through the development of equation (3) from (2), the original empirical IMF 

becomes more specific than its original form. In equation (3) the parameters of the 

re-sampled IMF now become the fixed frequency carrier wave at ICRf  with 

amplitude modulation )(tAICR . As a result, the Fourier spectrum for this kind of signal 

is affected by only the two variables ICRf and )(tAICR . This simplifies the interpretation 

of the ICR result. Once the calculated time period in equation (4) is selected, the 

number of intrinsic cycles will determine the main frequency component ICRf . 

However )(tAICR can still vary according to the nature of the signals but its variations 

will be reflected in the sidebands of the main frequency component at ICRf . Thus, 

equations (3) and (4) lead to the following guidelines in examining the ICR results: 

 

a) Considering a re-sampled IMF time waveform, when signal amplitude variations 

occur in the re-sampled ICs but the number of ICs remains the same, equation (3) 

implies that )(tAICR  changed due to the amplitude variations and ICRf is 

invariant due to the unchanged number of ICs. Thus the final spectrum of ICR 

will exhibit sideband variations and a stationary main frequency peak. 

 

b) When the number of ICs varies and the amplitude of re-sampled ICs in the time 

waveform remains constant, i.e. )(tAICR  is invariant and ICRf changes in 

equation (3), the final spectrum will exhibit a shift of main frequency peak and 

stable sideband shapes. 

 

c) When the signal variations influence both the number of ICs and amplitude of 

re-sampled ICs in the time waveform, according to equation (3) both 

)(tAICR and ICRf  are varied. One may then expect a shift of the main frequency 

component as well as a variation in the sidebands. 



 

d) Further, the more the variations of the amplitude modulation )(tAICR  in the 

re-sampled IMF, the more variations of sidebands will appear in the ICR spectrum. 

And the larger the number of ICs, the higher the value of the main frequency 

component ICRf  will be. 

 

Firstly, considering rotating machinery faults, incipient machine faults will usually not 

severely influence the vibration signals, therefore in a re-sampled IMF, one may 

typically expect variations in the amplitude of the re-sampled ICs without changing 

the number of ICs. Introduction of a new IC requires at least one extra zero crossing 

in the signal. A small signal variation in a dominant vibration environment, especially 

for rotating machine vibrations where rotational speed harmonics are predominant, 

will not easy to introduce extra IC due to small variations of the signal. Thus, it may 

only change )(tAICR  and the main frequency component, ICRf , will remain the same. 

In such a case, the sidebands of the ICR spectrum relative to the main frequency 

component amplitude can be used for condition monitoring purposes. This 

corresponds to case (a). 

 

Secondly, if the measured response on the machine does not contain clear machine 

fault vibrations but only influences from the changes in rotational speed which leads 

to variations of ICs, ICRf will however shift in the ICR spectrum but the sidebands 

will retain its original shape. This can be used to detect the influence of rotational 

speed on the measured signals. This corresponds to case (b). 

 

Lastly, when severe changes in the sidebands and a clear shift of ICRf  occur, it 

usually indicates a machine fault occurred and is developing. This corresponds to case 

(c). In each condition mentioned in (a), (b) and (c), the severity of signal variations 

will influence the spectrum of ICR results differently in sidebands, main frequency 

component or both. This is relevant to case (d). 

 

2.3 Further discussions on Intrinsic Cycle Re-sampling (ICR) method in terms of 

rotating machine vibration signals 

 

For rotating machinery the order components will usually dominate the response. 

EMD can empirically decompose these orders into different IMFs. These 

characteristic orders in different IMFs usually have different physical meanings 

relating to machine conditions. Thus, each IMF is of great use in condition monitoring, 

and therefore ICR on IMF will also have advantages in this regard. Ideally, one IMF 

should capture one order signal and represent one single order component in the order 



spectrum, as implied by the word ‘intrinsic’. However, the IMF may also include 

other components due to its empirical nature. And the more other components appear 

in the IMF, the more pronounced the deviations from the order signal will become. As 

such the final Fourier spectrum of this IMF may contain more variations. This is in 

fact extremely useful for fault diagnosis of rotating machines, since most of the 

machine fault vibrations would modulate the order signals. And the IMF has the 

ability to include this information together with the order of interest. 

 

Researchers such as Feldman [10] have discussed the resolution of the EMD method. 

They proved that one IMF may include more than one harmonic signals and signals 

with small amplitudes compared with the dominant harmonics, may easily be 

included in an IMF. Wang and Heyns [11] also prove this opinion in their simulation 

and experimental studies on application EMD method in rotating machine vibration 

signals. While this is actually a disadvantage of IMF in extracting solely order signals, 

compared to conventional order tracking techniques, it does however provide a unique 

ability for capturing signals that modulate dominant order signals. Thus, ICR 

developed from IMFs can be used as a tool to reflect changes of vibration signals that 

modulate order signals. It could be very useful for condition monitoring of rotating 

machinery. In the following a simplified gear mesh model is used to demonstrate ICR. 

The logic of performing ICR is first schematically summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of ICR logic 

 

3. Simplified gear mesh model study 

 

3.1 Gear mesh model 

 

A simplified gear mesh model shown in Figure 3 is used for the simulation study. This 

model was also used by Stander and Heyns [12] to investigate the advantages of 

instantaneous angular speed for gearbox condition monitoring. It is adopted here to obtain 

simulated gear mesh signals. The model comprises four degrees of freedom. A unique 

Obtain one mode of possibly 

non-stationary and nonlinear 

intrinsic mode function (IMF) 

signal 

Find ICs and resample 

ICs with equal number 

of points into RICs. 

Perform Fourier analysis to RICs  



feature of the model is the incorporation of a translating mass 1M  to represent 

conventional translational vibration monitoring on the gear case. Model characteristics 

are given in Table 1. 
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Figure 3: Dynamic gear mesh model 

 

Table 1 Model characteristics and system load 

 

1M  
Translating mass 0.05 kg 

2M  
Pinion mass 0.05 kg 

3M  Gear wheel mass 0.05 kg 

1I  Inertia of pinion gear 2

21
2

1
pRMI   26105.2 mkg  

 

2I  Inertia of gear wheel 2

31
2

1
gRMI   26105.2 mkg  

 

1K  
Structural damping 100 kN/m 

2K  
Bearing stiffness 100 kN/m 

3K  Gear mesh stiffness 
)}sin(01.01{100 1 N  kN/m 

1C  
Structural damping 1.2 Ns/m 

2C  
Bearing damping 1.2 Ns/m 



3C  Gear mesh damping 1.2 Ns/m 

pR  Pinion base circle radius 0.01 m 

gR  Gearwheel base circle radius 0.01 m 

N  Number of gear teeth 10 

GR  Gear ratio 1:1 

sf  Sampling frequency 8192 Hz 

I  Number of re-sampling intervals 

within one revolution 

2000 

Input 

torque 
tT sin1.011  , 252    

Load 2

22 sKT  , 2.16sK  

 

The gear mesh stiffness 3K  is modeled to allow a 2% sinusoidal variation of the 

nominal gear mesh stiffness so as to simulate the fundamental gear mesh harmonic. This 

is based upon the work of Howard et al. [13]. A simple viscous damping model is 

assumed. 

A unity input torque 1T  is applied to the input pinion of the model with a 20% variation 

in time in order to simulate the fluctuating input and therefore causes the variations of 

rotational speed. The load on the system is set proportional to the square of the gearwheel 

speed, which enables the system to accelerate up to a nominal speed during the simulation. 

A proportional constant sK is chosen to control the resultant nominal steady-state 

rotational speed of the system. Choosing sK = 16.2, one obtains a nominal system 

rotational speed of 1500 rpm. The equations of motion describing the model are presented 

in Eqs. (5) – (8)  

 

 
0)()( 222212112111  XKXCXKKXCCXM   

(5) 

 
23121223223222 )()( 

gRCXKXCXKKXCCXM   

0131323   ppg RKRCRK   

(6) 
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2
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2

11 TXKRXCRKRRCRRKRCRI ppgpgppp     
(7) 



 
22323131323

2

23

2

22 TXKRXCRKRRCRRKRCRI ggpgpggg     
(8) 

 

The model was written into state space format and implemented in MATLAB for 

simulation with the ode45 differential equation solver. 

 

3.2 Application of ICR on simulation environment 

 

In this simulation studies, the ICR technique will be tested. To implement ICR 

technique, one should first find a proper IMF which could be used for condition 

monitoring purposes, thereafter ICR procedure could be applied on the IMF. Once the 

proper IMF is chosen, the ICR result will be used to explore two questions in this 

simulation study: 

 

a) How does the ICR result relate to order analysis in the simulation model? 

b) How does ICR perform as an alternative condition monitoring tool? 

 

3.2.1 Choosing an appropriate IMF 

 

Before the above questions can be addressed, the first step is to choose an appropriate 

IMF for the analysis. To do this the relationship between the original gear casing 

velocity signal 1X  and its IMFs is first considered. For this purpose the gear 

response was simulated over a 5 s period. The last 1 s of this response, after steady 

conditions have been reached, is now considered in the following analysis. In this 

steady state the variation of the rotational speed of the gear still remains due to the 

fluctuating load. For illustrative purposes, a section of 0.25 s of this signal is depicted 

in Figure 4(a). The low frequency fluctuation at 25 Hz, due to the variation in input 

torque, can easily be observed in this figure. Higher frequencies are the result of gear 

meshing which corresponds to 250 Hz (the 10
th

 order) at the nominal rotational speed 

of 1500 rpm. The response at gear meshing frequency is of great importance for 

obtaining information about the deterioration of the gear (i.e. stiffness). Basic Fourier 

analysis is performed in Figure 4(b). Except for the rotational frequency peak at 25 

Hz and the gear mesh frequency of 250 Hz, it shows several sidebands around the 

gear mesh frequency. This is due to the fluctuation of the rotational speed caused by 

the fluctuating load. 



   

     a. Velocity 1X                    b. Fourier spectrum of velocity 1X  

   

      c. Fourier spectrum of 2
nd

 IMF     d. Fourier spectrum of 1
st
 IMF 

 

 

Figure 4: Velocity 1X  and associated Fourier spectrum 

 

EMD is now applied to the signal and the spectra of the 1
st
 and 2

nd
 IMFs are plotted in 

Figures 4(d) and (c) respectively. The 1
st
 and 2

nd
 IMFs successfully separate the lower 

and higher frequency content. This can of course also be achieved by using low and 

high pass filters but, in this case is accomplished empirically. The 2
nd

 IMF captures 

the rotational frequency at 25 Hz while the 1
st
 IMF extracts the gear mesh frequency 

content and its sidebands. Clearly, the 1
st
 IMF which relates to the gear mesh 

frequency content, captures the changes of gear stiffness and is therefore the 

appropriate IMF for further analysis of the ICR method in condition monitoring. 

 

3.2.2 Comparison of ICR result to order analysis in the simulation model 

 

To investigate how the ICR results relate to order tracking analysis in this model, 

results from conventional order tracking analysis and ICR on the 1
st
 IMF, are 

compared in Figure 5. Since the 1
st
 IMF is focused on the gear mesh vibrations, the 

conventional order tracking analysis also focuses on gear mesh vibration for 

comparative purposes. The 10
th

 order is extracted from the raw signal by 



Vold-Kalman filter order tracking (VKF-OT), through which the gear mesh order (10
th

 

order) is obtained. (A 20% relative filter bandwidth is used. This means that the ratio 

of the instantaneous absolute filter bandwidth to the instantaneous rotational speed 

frequency is 0.2. See references [14] and [15] for more details on the choice of the 

filter bandwidth). Then computed order tracking is applied to the extracted gear mesh 

order into order spectrum. For further comparison to the ICR results, the figure is 

normalized in terms of the highest order peak which renders Figure 5(a). The ICR 

method is applied to the 1
st
 IMF and gives Figure 5(b) which is also normalized in 

terms of highest frequency peak. 

   

         a. 10
th

 order analysis                   b. ICR on 1
st
 IMF 

 

Figure 5: Comparison of COT and ICR results 

 

Through comparison of Figures 5(a) and (b), it is firstly clear from the abscissa that 

unlike order tracking analysis in Figure 5(a), the ICR result remains in the frequency 

domain, in stead of the order domain, as is shown in Figure 5(b). This is accomplished 

by employing the new sampling frequency of equation (1). 

 

Secondly, from the two normalized figures it can be seen that both the order tracking 

and ICR spectral maps feature similar shapes with one main peak and evenly 

distributed sidebands. For the order map in Figure 5(a), the order sideband spacing is 

1 with the 8
th

, 9
th

, 11
th

 and 12
th

 orders present. Similarly, the frequency sideband 

spacing in Figure 5(b) is 25 Hz with peaks at 200 Hz, 225 Hz, 275 Hz and 300 Hz. 

The 25 Hz corresponds to the nominal rotational speed. However, the ratio of the 

highest sideband to the main peak between two figures is slightly different. For Figure 

5(a) this ratio is 0.3 and 0.2 for Figure 5(b). The difference is due to the 

decomposition of the 2
nd

 IMF as is shown in Figure 4(c). The 25 Hz amplitude 

modulation is the same frequency as the nominal rotational speed, which has been 

partly separated into the 2
nd

 IMF. This reflects the fact that the ICR method is 

influenced by the decomposition process of EMD. However, both figures share 

similar attributes in analyzing the order of interest. 

 

Thirdly, the peaks on the order analysis results in Figure 5(a) are sharper than the ICR 

result in Figure 5(b). This also suggests a difference between the two methods. Firstly, 



the original sampling frequency in the simulation was set at Hzf s 8192  in Table 1. 

After re-sampling, the new sampling frequency for the ICR analysis changes to 

Hz
t

S
f

period

resample

new 48001
1

48001
  as defined in equation (1).  (In this case, within 

a 1 s signal, there are 24 revolutions and 250 intrinsic cycles. The re-sampling interval 

in one revolution is 2000I  (see Table 1). Thus the number of re-sampled intervals 

for the computed order tracking analysis is 48000200024  . To keep the same 

number of analysis samples for ICR, 192 intervals within one intrinsic cycle is chosen, 

therefore, the Hzfnew 48001 ). And the Nyquist frequency for this ICR analysis 

is Hz
f

f new
Nyquist 5.24000

2
 . For order analysis, the order sampling frequency is 

3.318
1000

2

1


 I
Osample order and the Nyquist order is 

15.159
500

2




sample

Nyquist

O
O order. Considering the ratio of the dominant 

components in the order spectrum and the ICR results to their Nyquist values, a 

difference can therefore be calculated that the dominant nominal gear mesh 

vibrations, Nf , in the ICR spectrum occurs at %04.1%100
5.24000

250


Nyquist

N

f

f
 of 

Nyquistf . However for order analysis, the corresponding gear mesh at the 10
th

 order, 

occurs at %29.6%100
1.159

1010 
Nyquist

th

O

O
of NyquistO . Clearly, the ratio of the frequency 

components in the ICR spectrum and the order component in order spectrum are 

different from their Nyquist values. As a result, the order spectrum in Figure 5(a) 

looks sharper than ICR spectrum in Figure 5(b). This indicates that the new sampling 

frequency for ICR analysis may influence the visual appearance of the of the 

spectrum map. 

 

Lastly, it should always be borne in mind that ICR is strictly speaking not an order 

tracking analysis. It reflects changes of the signal itself. Only when the frequency 

variation in signals is caused by rotational speed, it may serve as an alternative order 

tracking approximation. Fortunately, in many practical applications for rotating 

machine vibrations, such an assumption is applicable. This is the case in this 

simulation study for gearbox in good condition. 

 

In summary, to make clear of the differences between the two techniques as have been 



discussed above, it may use a comparison table to explicit it in Table 2. 

 

Table 2 Comparison between ICR result and order analysis 

 Order tracking 

effects 

Spectrum unit Spectrum 

Nyquist 

frequency 

Rotational 

speed info. 

ICR 

technique 

Good 

approximation but 

influenced by the 

EMD 

decomposition 

process 

Frequency  influenced by 

the number of 

Re-sampling 

samples 

No need 

Order 

analysis 

Good Order Influenced by 

order 

sampling 

frequency 

Need 

 

3.2.3 Traditional signal processing methods and ICR as an alternative condition 

monitoring tool on seeded fault 

 

a) Traditional signal processing methods on seeded fault 

 

Subsequently a typical seeded fault is introduced. The gear mesh stiffness 3K  is 

reduced to 98% of the nominal gear mesh stiffness at an angle from 160 to 165 of 

the shaft rotation. Firstly, traditional signal processing methods are applied to the 

signals from the gearbox in good condition and with the seeded fault so that a clear 

picture of how traditional signal processing methods respond to the fault can be 

obtained. Thus, time, frequency and order domain analyses are first compared in 

Figure 6. 

     

  a. 1
st
 IMF for good condition             b. 1

st
 IMF for fault condition 



     

   c. FFT on 1
st
 IMF for good condition     d. FFT on 1

st
 IMF for fault condition 

 

     

   e. Order tracking for good condition      f. Order tracking for fault condition 

 

Figure 6: Comparison of good and seeded fault conditions 

 

The 1
st 

IMF time domain velocity signals for good and fault conditions in Figures 6(a) 

and (b) show that the high frequency gear mesh signal has been extracted from the 

original velocity. In Figures 6(a) and (b), the amplitude variations are both clearly 

visible. Comparing the two figures indicate that the gear mesh vibrations change due 

to the introduction of the fault. 

 

In the frequency domain, Figures 6(c) and (d) show the frequency spectra of the 1
st
 

IMF signals. Sideband peaks are very clear in both figures. With the introduction of 

the fault, the corresponding spectrum in Figure 6(d) shows more sidebands and some 

of its peak amplitudes change. Figures 6(e) and (f) consider the order domain, to test 

the ability of the computed order tracking method for raw signals. Compared with 

Figure 6(d) in the frequency domain, the order domain spectrum features cleaner 

order components. This is due to the exclusion of speed variation effects. However by 

the reduction of gear mesh stiffness to 98%, more sidebands and order peak amplitude 

variations occur. This implies that the order tracking method also detects the changes 

in the system. In short, it may be noticed that traditional signal processing techniques 

detect the system changes in terms of amplitude changes in the time domain and peak 

amplitude changes in the spectrum as well as more sidebands appearance. 



 

b) ICR as an alternative tool on seeded fault detection 

 

Unlike the traditional methods discussed above, the way in which ICR responds to the 

fault, follows the fundamental characteristics of re-sampled IMF as is discussed in 

paragraph 2.2. The two aspects of the ICR results that respond to the fault are 

examined, namely the sidebands variation (S.V.) due to )(tAICR  and the value of the 

main frequency (M.F.) due to ICRf . To trend the changes in the ICR results, a range of 

six fault conditions are considered. They are 100%, 99.6%, 99.2%, 99%, 98.5% and 

98% of the original gear mesh stiffness. The ICR results for these cases are plotted in 

Figure 7. 

   

a.100% stiffness (good condition)           b. 99.6% stiffness 

S.V.: two clear sidebands    S.V.: two clear sidebands                               

and peak ratio 0.2                        and peak ratio 0.19 

M.F.: 250 Hz                            M.F.: 250 Hz 

   

    c. 99.2% stiffness                    d. 99% stiffness 

S.V.: extra sidebands                 S.V.: 4 deformed extra sidebands  

and peak ratio 0.185  

M.F.: 250 Hz                       M.F.: 262 Hz 



   

     e. 98.5% stiffness                     f. 98% stiffness 

 S.V.: 4 clear uneven amplitude sidebands  S.V.: more deformed sidebands 

 M.F.: 275 Hz                         M.F.: 283 Hz 

 

Figure 7: ICR results on different fault conditions 

 

Figure 7 shows the variation of the ICR results with the development of the fault.  

Instead of many sidebands appearing as happens in the frequency and order domains, 

the two aspects (S.V. and M.F.) show the progress of the fault. For this simulation 

study, the faults can be categorized into two stages in terms of M.F: Initially (Figures 

7(a) to (c)) the M.F. is stationary. For Figures 7(d) to (f) M.F. is varying. This 

corresponds to point (a) in the guidance provided in paragraph 2.2. 

 

In the first stage, the peak ratio between the highest sidebands to the main frequency 

peak can be used as a distinct indicator of changes in the signals. The S.V. ratio 

decreases with the development of the fault from 0.2 to 0.19 and then change to 0.185. 

This indicates that a variation of )(tAICR  occurs, albeit very small. Considering 

further the S.V. effects, it can be seen that (especially in Figure 7(c)) extra sidebands 

grow with the development of the fault. This further confirms that )(tAICR  is varying 

and it requires more sidebands to represent these changes. Due to the stationarity of 

the M.F. as well as the above discussions on the changes in S.V., it may be concluded 

that during the first stage, the fault does not severely influence the 1
st
 IMF or gear 

mesh vibrations, although it is developing. 

 

In the second stage, the M.F. values may be used as a distinct indicator of the system 

changes. With the development of the fault, the M.F. becomes 262 Hz, 275 Hz and 

283 Hz respectively. It is also found that the sidebands become uneven in amplitude 

in Figures 7(d), (e) and (f). The shapes of the sidebands become severely deformed in 

Figures (d) and (f). However, it notices that in figure (e) sidebands are smoother than 

the other two figures especially it is smoother than figure (d) where the fault on gear 

mesh stiffness is smaller. In such a case, according to the discussion of paragraph 2.2,  

M.F. values should be first considered as the indicator of fault severity, despite with 



smoother sidebands, figure (e) however shows more serious fault than figure (d) due 

to the bigger value of M.F. Besides, the smoother sidebands of figure (e) indicates that, 

compared to the other two fault conditions in (d) and (f), the amplitude part of the 

re-sampled IMF, )(tAICR , can be represented by much simpler sidebands in (e). In fact, 

it is an intermediate period of fault development. In such a case, when M.F. is 

different, the S.V. is not a decisive factor to determine the severity of the fault 

however M.F. should be first considered. According to theoretical studies in paragraph 

2.2 the guidance (c), in this second stage, the seeded faults severely influence the 1
st
 

IMF or gear mesh vibrations, the shift of M.F. with severe S.V. indicates a big 

variation of signals, thus apparently the severity of the damage is increasing. 

 

c) Comparisons of ICR to traditional signal processing methods 

 

In the end, one should compare the differences between the ICR result with traditional 

condition monitoring methods. The good and fault condition (at 98% nominal gear 

mesh stiffness) figures are first plotted for comparison. All figures are normalized in 

terms of highest spectrum peaks in Figure 8. 

   

       a. Frequency domain on 1
st
 IMF            b. Order domain  

 

c. ICR result 

 

Figure 8: Comparisons between traditional methods with ICR result 

 

Figure 8 clearly shows that the traditional methods in figures (a) and (b) indicate the 



fault is mainly revealed in terms of several extra sidebands as are indicated in both 

figures. There is significant variation in the frequencies and order peaks. To trend the 

system changes, one needs to attend to all these peaks. However, instead of presenting 

several extra sidebands, the ICR technique in figure (c) with its fundamental 

characters of re-sampled IMF, S.V. and M.F., can be used to trend the changes of 

system variations. It may be observed that the ICR method also present distinct 

changes in the results, especially for the unique shift of the M.F., where traditional 

methods do not have similar indicators. This suggests the ICR technique as an 

alternative method for machine fault diagnostic with distinct indicators for condition 

monitoring purposes. To summarize and further clarify the difference, the 

characteristics of different techniques in condition monitoring are summarized in 

Table 3. 

 

Table 3 Traditional signal processing methods and ICR in condition monitoring 

 Condition Monitoring 

Indicators Characteristics 

Traditional 

signal 

processing 

methods 

(e.g.: 

Fourier 

analysis, 

order 

tracking) 

By using 

frequency (order) 

component and 

sidebands 

Advantage Direct and easy to understand 

Disadvantage 

and 

limitations 

1) The result is easy to be 

influenced by different 

parameters, e.g.: RPM, 

complicated signals, noise 

etc. 

2) Need extra information 

e.g. RPM for order tracking 

analysis 

ICR 

technique 

By using Main 

frequency (M.F.) 

and Sideband 

Variation(S.V.) 

Advantage 1) Focused, direct and easy to 

trend the changes of signal 

2) Independent of extra 

information, e.g. RPM  

Disadvantage 

and 

limitations 

1) Influenced by EMD 

process to choose proper 

IMF. 

2) Assumption that 

non-stationarity of signal is 

caused by speed variation 

 

4. Experimental data analysis 

 

4.1 Experimental set-up and seeded fault 



 

As a further illustration of the ICR technique in condition monitoring, the technique is 

now demonstrated in a real working environment on signals from an experimental 

gearbox. The gearbox test rig was designed to conduct accelerated gear life tests on a 

Flender E20A gearbox under varying load conditions at the University of Pretoria 

Sasol Laboratory for Structural Mechanics. The experimental set-up consisted of three 

Flender Himmel Motox helical gearboxes, driven by a 5 kW three phase four pole 

Weg squirrel cage electrical motor. A 5.5 kVA Mecc alte spa three phase alternator 

was used for applying the load. The direct current (DC) fields of the alternator were 

powered by an external DC supply in order to control the load that was applied to the 

gears. A sinusoidal load with minimum to maximum loads from 7.4 to 14.7 (Nm) was 

applied to the alternator. Two additional Flender E60A gearboxes were incorporated 

into the design in order to increase the torque applied to the small Flender E20A 

gearbox which is being monitored shown in Figure 9(a). During the experimental 

process, the gear developed severe wear which eventually culminated in several 

broken tooth and ultimately a stripped gear tooth. The data used in this experimental 

study is when the first gear tooth is removed. The gear mesh frequency was 215Hz at 

5 Hz shaft rotational speed. For details about the test rig the reader may refer to the 

paper by Stander and Heyns [11]. In this case however the response measurements 

were taken with a Polytec PDV-100 laser Doppler vibrometer with a 500 mm/s 

measurement range (see Figure 9(a)). The original shape of the drive gear is shown in 

Figure 9(b).  

     

a. Experimental test rig of gear box   b. Original status of drive gear   

        Figure 9: Experimental test rig and gear conditions 

 

4.2 Traditional signal processing analysis on good and seeded fault conditions 

 

The monitored gearbox was set to run at about 300 rpm. To begin with, a 2 s signal 

was measured before damage was first introduced. The time domain waveform with 

the corresponding rotational speed, frequency spectrum of the translational velocity 

and computed order maps around 1× gear mesh order are shown in Figure 10. 



 

      a. A typical velocity-time signal        b. FFT on velocity signal 

    

       c. Computed order tracking     d. Zoom in for 1× gear meshing frequency 

Figure 10: Traditional signal processing methods 

 

In these figures no damage has been introduced yet and no clear impacts occur in the 

time domain signal (Figure 10(a)). However amplitude modulation is visible 

throughout the period. Although the gearbox operates in a stable condition, the load 

fluctuation influences the rotational speed which leads to the frequency variation in 

the signal. From the Fourier analysis (Figure 10(b)) it is clear that the real gearbox 

data is much more complex than the simulated signal. Many frequency peaks appear 

throughout the spectrum. For condition monitoring purposes, we focus on the gear 

mesh frequency in the frequency spectrum. The spectrum after zooming in around 1× 

gear mesh frequency is shown in Figure 10(d). In figure (d), some sidebands around 

the gear meshing frequency are also visible which are spaced at approximately 5 Hz. 

This corresponds to the rotational frequency of the gear. As expected the sidebands for 

the undamaged gear are few and small. The computed order tracking map in Figure 

10(c) which zooms in around 1× gear mesh order is also plotted. It should also be 

noted that although the order analysis excludes the speed variation effects, the spectra 

are still fairly complex and show several order sidebands around the gear mesh order. 

 

Once the seeded fault as described in the experimental set-up has been induced, and 

measured signals are considered over the same period as before. Firstly, traditional 

signal processing methods are used to detect the system changes. Thus, time, 

frequency and order domain results are analyzed and compared in different figures as 



is shown in Figure 11. In order to clarify the differences between figures, good and 

seeded fault conditions results that in frequency and order domain are superimposed 

together and normalized in terms of highest frequency or order peaks. 

   

      a. Time domain signals(fault)     b. zoomed in 1 × gear meshing frequency 

 

c. zoomed in 1 x gear mesh order 

 

Figure 11: Signals with broken tooth 

 

Firstly, figure 11(a) clearly shows that a periodic impact occurs in the signal, and that 

the period of this impact is approximately 0.2 second with a corresponding frequency 

of 5 Hz, which suggests that this impact occurs once per revolution. This is consistent 

with the induced fault scenario. Secondly, in the frequency domain, it shows that more 

sharp side bands appear in the spectrum and all the amplitudes of frequency peaks 

increased, especially the 1× gear mesh frequency component. It is well known that if 

additional sidebands appear and existing sidebands increase around the gear mesh 

frequency, this indicates a broken gear tooth problem in the gearbox. Further, 

computed order analysis comparisons in Figure 11(c) again confirms that extra orders 

around gear mesh order increased due to the seeded fault on gear teeth, but it also 

shows that relative amplitude of several order sidebands compared with gear mesh 

order does not change a lot as happened in frequency domain. However, in this case, 

the additional order sidebands show the detection of the changes for gear mesh 

conditions. In short, experimental studies using traditional time, frequency and order 

domain methods achieve the detection of seeded fault. 

 



4.3 Application of ICR technique  

 

4.3.1 Choosing an appropriate IMF 

 

Once one has a basic understanding of the raw signal, EMD may be applied to the 

signal to extract the gear mesh information for further ICR application. The 5
th

 to 8
th

 

IMFs are plotted in figure 12 as velocity as a function of frequency. 

   

     a. 5
th

 IMF                           b. 6
th

 IMF 

    

      c. 7
th

 IMF                           d. 8
th

 IMF  

Figure 12: IMFs of system response 

 

It can be seen from Figure 12 that the 7
th

 IMF captures the signal content which is 

relevant to the nominal gear mesh frequency at 215 Hz. Although some energy is 

present in the 6
th

 and 8
th

 IMF, this is however fairly small. For the 5
th

IMF very little 

energy is observed in that range. As a result, the 7
th

 IMF is of great importance for 

condition monitoring of gear mesh conditions. Therefore ICR is performed on the 7
th

 

IMF and result is shown in Figure 13. The result shows that the sidebands around the 

main frequency peak are oscillating and a clear two distinct sidebands appear around 

main frequency peak. The whole spectrum only concentrate on frequency range from 

150 Hz to 250 Hz in which only those gear mesh related vibrations are being focused. 

Outside this frequency range, spectrum becomes negligible. This is very different 

from traditional methods as in Figure 10. In this case, the main frequency component 

is located at 210 Hz which is very close to the calculated nominal gear mesh 

frequency at 215 Hz, it is clear that the 7
th

 IMF captures the gear mesh vibrations for 



the good condition case data. 

 

 

Figure 13: ICR on 7
th

 IMF result  

 

4.3.2 ICR technique on seeded fault detection 

 

ICR is then applied to the faulted gear experimental data. In order to clearly show the 

difference of the spectrum before and after seeded fault, the figure are also 

superimposed with good condition result and normalized in terms of highest 

frequency peak. Figure 14 shows the results. 

 

Figure 14: ICR result on faulted gear experimental data 

 

As is argued in paragraph 2.2.2 two aspects of the ICR results respond to faults in the 

system and are examined in Figure 14, namely Main Frequency (M.F.) and Sidebands 

Variation (S.V.). Clearly the seeded fault case, the M.F. value has a significant shift 

from 210Hz in good condition to 290Hz. This is a clear indication of increase of ICs, 

therefore a shift of ICRf . Then, from the prospective of S.V., firstly, the sidebands 

changed dramatically, therefore, the variation of the signal could not merely have 

been caused by rotational speed. This corresponds to paragraph 2.2 guideline (b). 

Secondly, although the highest sideband amplitudes do not change dramatically 

relative to the main frequency peak in the fault condition, many more sideband peaks 

appear in the spectrum. This is very different from good condition where two highest 

sidebands are distinctly appeared. This indicates that the amplitude modulation part 



)(tAICR of the seeded fault case is fundamentally changed. The above observations 

correspond to paragraph 2.2 guidelines (c) and (d). Clearly the fault introduced here 

does not represent a trivial influence to the gear mesh vibrations, which is consistent 

with the known broken gear tooth damage. 

 

In short, observations from the ICR results clearly show the changes in the gear mesh 

vibrations. Comparing Figure 11(b), (c) and Figure 14 in frequency, order and ICR 

results respectively, it is not difficult to obtain that ICR technique provides simple and 

clear indicators for detecting the changes in terms of M.F. and S.V. especially for the 

distinct shift of M.F., however traditional methods will present many sidebands and 

amplitude variations in frequency or order domain which may complicate the process 

of decision making on fault diagnostic. As a result, compared with traditional methods 

in fault diagnostic in this experimental study, ICR provides effective and unique 

indicators for detecting seeded fault which make ICR technique can be a good 

alternative method to condition monitoring. 

 

5. Conclusion 

 

In this paper, a novel method based on re-sampling of an intrinsic mode function from 

the empirical mode decomposition method is developed. It is called the intrinsic cycle 

re-sampling method. The re-sampling process takes advantage of an intrinsic mode 

function of symmetric, oscillating and zero mean nature to reconstruct an intrinsic 

mode function into a re-sampled intrinsic mode function which suppress frequency 

variations of the signal. In this way an approximation of order tracking is obtained 

without knowledge of the rotational speed. At the same time, it is known that intrinsic 

mode functions may include non-stationary and nonlinear signals which contain 

ample machine condition information. Therefore, inherent to the intrinsic cycle 

re-sampling method developed here, is its ability in condition monitoring. The method 

further brings advantages for condition monitoring, in that the empirical intrinsic 

mode function offer specific characteristics for trending. Two parameters are 

suggested to link signal variations to the final intrinsic cycle re-sampling spectrum 

map, namely main frequency component and sidebands variations. The simulation 

and experimental studies both demonstrate that through tracking the changes of these 

two parameters, intrinsic cycle re-sampling method provides direct and clear 

connections to signal variations so as to provide a good alternative method for 

condition monitoring. 
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