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Abstract

The data processing capability of existing remote sensing system has not kept

pace with the amount of data typically received and need to be processed. Exist-

ing product services are not capable of providing users with a variety of remote

sensing data sources for selection, either. Therefore, in this paper, we present

a product generation programme using multisource remote sensing data, across

distributed data centers in a cloud environment, so as to compensate for the low

productive efficiency, less types and simple services of the existing system. The

programme adopts “master-slave” architecture. Specifically, the master center

is mainly responsible for the production order receiving and parsing, as well

as task and data scheduling, results feedback, and so on; the slave centers are

the distributed remote sensing data centers, which storage one or more types

of remote sensing data, and mainly responsible for production task execution.

In general, each production task only runs on one data center, and the data

scheduling among centers adopts a “minimum data transferring” strategy. The

logical workflow of each production task is organized based on knowledge base,

and then turned into the actual executed workflow by Kepler. In addition,

IFully documented templates are available in the elsarticle package on CTAN.
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the scheduling strategy of each production task mainly depends on the Ganglia

monitoring results, thus the computing resources can be allocated or expanded

adaptively. Finally, we evaluated the proposed programme using test exper-

iments performed at global, regional and local areas, and the results showed

that our proposed cloud-based remote sensing production system could deal

with massive remote sensing data and different products generating, as well as

on-demand remote sensing computing and information service.

Keywords: remote sensing, Cloud Computing, Big Data

2016 MSC: 00-01, 99-00

1. Introduction

In recent times, there has been a sharp increase in the number of active

and passive remote sensors being sent to space. Those sensors generally have

characteristics such as hyper spectral, high spatial resolution, and high time res-

olution; thus, resulting in a significant increase in the volume, variety, velocity5

and veracity of data. Due to the richness of the data collected, their applica-

tions have also expanded. There are, however, limitations in existing remote

sensing data management, processing, production and service pattern systems

to adequately deal with the increased demands.

In data processing system, for example, the data processing capability has10

not kept pace with the amount of data typically received and need to be pro-

cessed. Similar observation is reported by Quick and Choo [1], who remarked

that “Existing forensic software solutions have evolved from the first genera-

tion of tools and are now beginning to address scalability issues. However, a

gap remains in relation to analysis of large and disparate datasets. Every year15

the volume of data is increasing faster than the capability of processors and

forensic tools can manage”. For example, the amount of data received from a

GF-2 satellite PSM1 sensor is approximately 1.5 TB per day, and the correction

of an image (7000*7000*4 pixels) includes billions of floating point operations

that require several minutes or even up to an hour to complete using a single20
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workstation. It is clear that the processing time is not appropriate for various

real-world applications.

In a data production system, existing remote sensing product services pri-

marily support moderate-resolution imaging spectroradiometer (MODIS) [2]

and Landsat [3, 4] production, and these services are not capable of providing25

users with a variety of remote sensing data sources for selection. If users need a

multi-source remote sensing data product or another specific product, then they

need to search for and download related data and use their own workstation.

However, if the user’s computing capability and/or knowledge on remote sens-

ing (as well as their computer skills) are limited, then it would be challenging30

for such user to obtain the remote sensing products they need [5, 6]. Hence,

this motivates the need for a well-designed platform with new data processing

system architectures and service patterns to provide products and services for

both skilled and unskilled researchers.

Cloud computing has been identified as a potential solution to address some35

of the big data challenges in remote sensing [7, 8, 9, 10] and big data comput-

ing [11, 12, 13, 14], such as allowing massive remote sensing data storage and

complex data processing, providing on-demand services [15, 16, 17], and improv-

ing the timeliness of remote sensing information service delivery. For example,

Lv, Hu, Zhong, Wu, Li and Zhao [18] demonstrated the feasibility of using40

MapReduce and parallel K-means clustering for remote sensing image storage

and processing. Also using MapReduce, Almeer [19] built an experimental,

high-performance cloud computing system in the Environmental Studies Cen-

ter at the University of Qatar. Lin, Chung, Wang, Ku and Chou [20] proposed

and implemented a framework desigend to store and process massive remote45

sensing images on a cloud computing platform. Similarly, Wang, Wang, Chen

and Ni [10] compared the use of rapid processing methods and strategies for

remote sensing images, using cloud computing and other computing paradigms.

However, the focus of these studies is only on the storage and computational

capabilities using cloud computing, rather than product generation and infor-50

mation service of remote sensing.
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Above all, the existing remote sensing systems are facing the following ma-

jor issues: (1) data processing capability has not kept pace with the amount of

data typically received and need to be processed; (2) product services are not

capable of providing users with a variety of remote sensing data sources for se-55

lection, and a well-designed platform is urgently needed to provide products and

services for both skilled and unskilled researchers; (3) the current cloud-based

remote sensing computing is less focused on product generation and information

service. Therefore, in order to tackle these complex challenges, in this paper,

we present a product generation programme using multisource remote sensing60

data, across distributed data centers in a cloud environment. This allows us

to achieve massive data storage, high-performance computing, virtualization,

elastic expansion, on-demand services and other cloud-inherent characteristics.

We also provide an easy-to-use multi-source remote sensing data processing and

production platform [21]. Finally, we demonstrate the utility of our approach65

using data processing and production generation experiments.

The remainder of this paper is organized as follows. In the next section, we

provide an overview of the background and related work. Section 3 introduces

the proposed cloud-based programme framework, system architectures, business

logic and service patterns. Section 4 describes the experiments and study cases.70

Finally, in Section 5, we provide a summary and conclude the paper.

2. BACKGROUND AND RELATED WORK

This section briefly review remote sensing products and production system

architectures, and related work.

2.1. Remote Sensing Products75

Remote sensing products can be broadly categorized into fine processing

products, inversion index products, and thematic products.
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2.1.1. Fine Processing Products

Fine processing products mainly include geometric normalization products,

radiometric normalization products, mosaic products, and fusion products.80

• Geometric normalization products refer to geometric-registered image col-

lection, where using geometric precision corrections, the images are turned

into space seamless remote sensing products [22].

• Radiometric normalization products are quantitative remote sensing prod-

ucts (essentially, products obtained after radiometric cross-calibration,85

long time series radiometric normalization, atmospheric correction, etc) [23].

• Mosaic products can be explained simply as stitching two or more or-

thorectified satellite images with an overlapping area if the images from

the satellite do not include atmospheric effects. To create a mosaic of two

or more optical satellite remote sensing images, we geometrically correct90

the raw optical remote sensing dataset to a known map coordinates sys-

tem (e.g., geographic coordinates system or projected coordinates system)

as well as preprocessing the atmospheric corrections (e.g., image-based

model, empirical line model and atmospheric condition model). However,

it is important to consider apparent seasonal changes in order to mosaic95

images obtained from different seasons, due to the difficulties in acquiring

high-resolution optical images in the same season for a number of reasons

such as adverse weather conditions [24].

• Fusion products, one of the most commonly used remote sensing data,

integrate information acquired with different spatial and spectral resolu-100

tions from sensors mounted on satellites, aircraft and ground platforms,

and they contain more detailed information than each of the sources [25].

Fusion techniques are useful for a variety of applications, ranging from

object detection, recognition, identification and classification, to object

tracking, change detection, decision making, etc [26].105
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2.1.2. Inversion Index Products

Inversion index products generally refer to various inversion products of geo-

physical parameters, which reflect variation in characteristics of the land, sea

and weather, such as Normalized Difference Vegetation Index (NDVI) [27], Nor-

malized Difference Water Index (NDWI) [28], Normalized Difference Drought110

Index (NDDI)[29], Normalized Difference Build-up Index (NDBI)[30], and Nor-

malized Difference Snow Index (NDSI)[31].

2.1.3. Thematic Products

Thematic products are application-oriented products or maps, such as the-

matic land-use and mineral thematic maps. Thematic products are generally115

obtained through remote sensing image interpretation and remote sensing in-

version model, as well as expert knowledge.

In general, the above mentioned remote sensing products have upper and

lower hierarchical relationship. That is to say, if we wish to obtain a remote

sensing thematic product, the fine processing or inversion index products may be120

generated first. According to this hierarchical relationship, we build a knowledge

base of remote sensing products and their corresponding production parameters,

which guide the products generation.

2.2. Remote Sensing Data Production System

The remote sensing production system architecture can be broadly catego-125

rized into (1) personal computers (PCs) or a single workstation that acts as

the remote sensing processing system, and (2) high-performance cluster-based

remote sensing processing system. The stand-alone processing system uses the

computational resources of single computer to independently perform remote

sensing data processing and production process via human-computer interac-130

tion. As computing technologies develop over the years, the stand-alone pro-

cessing system has evolved from big- and medium-sized computers specializing in

remote sensing data processing to super-minicomputers specializing in remote

sensing data processing to PC-based universal remote sensing data process-
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ing systems with multi-core processors to the current hyper-threading Graphics135

Processing Units (GPUs) [32, 33] universal remote sensing data processing sys-

tems [34].

Cluster-based remote sensing processing system generally consists of a num-

ber of identical PCs connected to multiple networks, tied together with channel

bonding software. Thus, the networks act like one network running at many140

times the speed [35, 36]. Notable examples include “Pixel Factory” (France’s

massive remote sensing data processing platform), the Grid Processing on De-

mand (G-POD) European Space Agency project [37], Global Earth Observation

System of Systems (GEOSS) [38], and Parallel Image Processing System (PIPS)

of the Chinese Academy of Sciences Institute of Remote Sensing and Digital145

Earth [39, 40].

With a significant increase in remote sensing data, methods for remote sens-

ing data processing and product generation are often limited by the sheer volume

of data and computational demands that far exceed the capability of single work-

stations. Cluster-based High-performance computing (HPC) had been used to150

rapidly analze very large data sets (> 10 Terabytes) can be rapidly analyzed;

thus, in this paper, we build an HPC cluster with Open MPI in the cloud en-

vironment. This allows us to process global data sets, detect environmental

change, and generate remote sensing products.

3. PROPOSED CLOUD-BASED REMOTE SENSING DATA PRO-155

DUCTION SYSTEM

3.1. Program Framework

Our proposed Cloud-based Remote Sensing (Cloud RS) programme adopts

a master and multiple slaves’ architecture (see Figure 1). The master center is

mainly responsible for the production order receiving and parsing, task and data160

scheduling, results feedback, and so on. The slave centers are the distributed

remote sensing data centers, which store one or more types of remote sensing

data. These slave centers are also mainly responsible for production task exe-
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Fig. 1. Cloud RS framework

cution. In addition, the master center ingests metadata and thumbnail of the

remote sensing data from each slave centers, and the service portal, including165

data service, production service and cloud storage service, distributed on the

master center.

3.2. System Architecture

The architecture of remote sensing production system in the cloud envi-

ronment consists of five layers, namely: resources, management, computing,170

business and service (see Figure 2).
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Fig. 2. Cloud RS system architecture

3.2.1. Resources Layer

A number of computing resources, network resources and storage resources

connected by multiple networks are established as a pool of virtualized resources

using the hypervisor (e.g., KVM, QEMU). Through unified management and175

scheduling, the virtualized pool can provide the standard and unified logical

Central Processing Unit (CPU), logical memory, logical storage space and logical

network interfaces. Thus, differences between multiple physical machines are

minimal, and the virtualized resources used by all end users are consistent in

the measurement, supply and scheduling aspects. End users just follow their180

own normal operations and make the necessary resource calls, without worrying

about the distance and number of the physical devices [41, 42].

3.2.2. Management Layer

This layer mainly adopts the OpenStack cloud computing framework, and

using its core components to manage all virtual resources. The OpenStack-185

Keystone component provides a single point of integration for managing au-
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thentication, authorization, and service catalog services. The OpenStack-Nova

component creates virtual machines (VMs) according to the user’s demand,

managing the lifecycle of these VMs or virtual clusters. The OpenStack-Neutron

component provides virtual network connection services, defining virtual net-190

works, virtual subnets, virtual routers, etc. The OpenStack-Glance component

enables users to discover, register and retrieve VM images, supporting a variety

of VM image formats, as well as creating, uploading, editing and deleting VM

images. The OpenStack-Swift component is used to implement object storage

in the large-scale extensible system with built-in redundancy and a high fault-195

tolerant mechanism. The OpenStack-Cinder component primarily runs the vir-

tual instances, providing block storage services. The OpenStack-Dashboard

(also known as Horizon) is a web interface that enables cloud administrators

and users to manage various OpenStack resources and services. The OpenStack-

Ceilometer component is responsible for the telemetry service, collecting event200

and metering data by monitoring notifications sent from services, and creating

alarms when collected data breaks a defined rule [43].

3.2.3. Computing Layer

This layer mainly provides a virtual cluster computing environment, such

as remote sensing data storage container, cluster computing and scheduling ca-205

pacity, computing environment monitoring and other services. Massive remote

sensing data could be stored in the OpenStack-Swift multi-user object stor-

age system. Each remote sensing image is stored as an object, and can be

accessed only through the domain name address, which is assigned by the file

identifier of each image. The metadata of the remote sensing image, thumb210

image and quick view image are stored in the NoSQL database MongoDB, a

document-oriented storage non-relational database [44]. Millions of metadata

can be located in one-tenth of a second using the powerful MongoDB search

engine. The retrieval capability may be improved by building an index for each

column independently via the MongoDB multi-level index [45]. It is worth not-215

ing that the NoSQL-based object storage mechanism eases management and
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retrieval of massive remote sensing data, but also avoids a single-point failure

(commonly associated with traditional distributed file system).

Cluster scheduling of the virtual computing environment is controlled by the

OpenStack-Nova and the storage capacity expansion of each node is managed220

by the block storage system OpenStack-Cinder. Block storage adds persistent

storage to each virtual machine and provides volumes for instances.

It should also be noted that parallel computation in the virtual computing

environment adopts transferring messages based on the Open Message Passing

Interface (Open MPI) naked parallel programming model [46, 47]. The schedul-225

ing solution of the computing cluster is a combination of TORQUE and MAUI,

so as to provide the resource allocation and scheduling ability for data pro-

cessing and products produced in the virtual cluster. Furthermore, TORQUE

and MAUI provide the scheduling strategy according to the monitoring soft-

ware Ganglia, which is a scalable distributed system monitor tool for high-230

performance computing systems (e.g., clusters and grids).

The log and abnormal accurate monitoring includes Splunk-based log moni-

toring and mining, and the Nagios-based abnormal resource alarm. The specific

Splunk-based log monitoring and mining process is as follows. The system log

of distributed compute and storage nodes are recorded by the Syslogd server,235

before being sent to the collecting server syslog-ng at regular intervals. The

collected system log is then classified and cleaned, so as to generate the log

statements and conduct warning analysis. The Nagios-based abnormal resource

alarm is raised under conditions of system resource overload, system perfor-

mance deterioration or system outage. According to the alarm information,240

virtual instances would be adjusted and administrators could conduct system

survey and analysis [48].

3.2.4. Business Layer

This layer mainly includes two parts, namely: (1) remote sensing data man-

agement across distributed data centers and (2) HPC platform for remote sens-245

ing production.
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(1)Remote Sensing Data Management

Remote sensing data management across distributed data centers, mainly in-

cludes multi-source data ingest, metadata index and data retrieval. Data ingest

from distributed data centers is mainly based on a crawler, which will launch250

itself at regular intervals, and push metadata to the master center. Then, the

metadata will be indexed in the master center, based on the global subdivision

mechanism. Finally, all of the indexed remote sensing data will be retrieved and

located, providing data sources for the HPC production system.

(2)HPC Platform for Remote Sensing Production255

The HPC platform for remote sensing production primarily realizes the ser-

vice logic of remote senisng products generation. The core processing unit of the

HPC platform is parallel image processing system (PIPS) [49, 50, 51], which was

developed by the PIPS research group of the Institute of Remote Sensing and

Digital Earth, Chinese Academy of Sciences. PIPS is a large-scale, geographi-260

cally distributed, and high-performance remote sensing data processing system.

PIPS provides more than 100 kinds of serial and parallel remote sensing image

processing algorithms, including level 0-2 remote sensing data pre-processing,

fine processing products, inversion index products and thematic products gen-

eration, so as to provide production services for agriculture, forestry, mining,265

marine and other remote sensing industries.

The scheduling engine of PIPS adopts the Kepler scientific workflow [21, 52],

and each production workflow mainly includes three parts: (1) data preparation

(2) workflow organization and (3) production task execution.

Data preparation denotes the input data selection of each production order.270

In general, the production needed data is the standard remote sensing data,

which is geometric and radiometric normalized original data, and their metadata

are stored in the standard data database. It’s important to note that the original

data is level 1B or level 2 remote sensing data, and they all have been after

inter-detector equalizations ( sometimes referred to as radiometric correction)275

and systematic geometry correction. But as for some higher-level inversion
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Fig. 3. The Kepler workflow of NDVI

index products, their required data may be some lower-level inversion products,

and the data selection strategy may be very complex in this situation. For

example, the required data sources of Net Primary Productivity (NPP) are

Photosynthetic Active Radiation (PAR) and Leaf Area Index (LAI), but PAR280

and LAI still need some vegetation indexs (VIs), and the VIs require standard

remote sensing data as input data sources, and this is very complex.

Workflow organization is essentially to determine the execution sequence of

each process unit. In Kepler, the process unit is viewed as an Actor, and it was

linked together by Relation and Link. Link determines the input and output of285

each Actor, and Relation shows the upper and lower hierarchical relationship of

each Actor. For example, Figure 3 shows the Kepler model corresponding to the

NDVI workflow. For the clarity of the paper, we omitted several steps from the

original workflow. There are two input of the process unit NDVI calculation

module, red and near-infrared bands, and output is a product. The upper290

module of NDVI is GN module, and lower module is product register. With

the same procedure other vegetation indexs or image processing workflows can

be implemented. However, there are so many kinds of remote sensing products

that we cannot be able to list all of their Kepler workflows, or some users may

want to define their production workflows. Therefore, we should provide a295

workflow auto-building capacity, then the knowledge database was built. And

the knowledge base will be detailed in the next sub section.

After data preparation and workflow organization, the production tasks en-
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ter the implementation phase. In general, the production task runs only on

one of data providing center, and the data scheduling adopts the the minimum300

data transferring strategy if one center cannot satisfy the data demand of the

production task. As for the computing nodes selection on each data center,

the total number is determined by the production task priority, or user deter-

mined, and which nodes assigned are determined by the scheduling policy of

TORQUE and MAUI, as well as the resources monitoring results of Ganglia.305

In addition, in order to improve the robustness of the whole production system,

self-management function is added.

3.2.5. Service Layer

Cloud services [53, 54] provided by the remote sensing cloud system include

user registration and authentication services, user charging service, remote sens-310

ing data and product services, cloud storage service, etc. Remote sensing data

denotes the original data, which is after inter-detector equalizations ( some-

times referred to as radiometric correction) and systematic geometry correc-

tion. Remote sensing data service mainly include data retrieval, data order,

data settlement, data download and unloading to cloud storage. Production315

service denotes the remote sensing data processing and generation services, in-

cluding order submission, products download and unloading to cloud storage,

et.al. Cloud storage service refers to the object storage that is built by the

OpenStack-Swift component. The remote sensing data and products ordered

by each user can be stored in their object storage space, and storage size can320

be dynamically grown or shrunk to meet user needs.

3.3. Knowledge Base and Inference Rules

Our knowledge base mainly includes three parts: (1) the upper and lower

hierarchical relationship database (2) input/output database of every kind of

remote sensing product and (3) inference rules for workflow organization.325
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3.3.1. The Upper and Lower Hierarchical Relationship Database

As mentioned before, remote sensing products mainly include three classi-

fies, fine processing, inversion index and thematic products. As for each level,

there are still some sub level products (Figure 4). In order to better use the hier-

archical relationship of remote sensing products to organize Kepler production330

workflow, we encoded each product, and the coding rules are as following.

• The first layer coding includes two binary codes, ’0’ and ’1’, and ’00’, ’01’,

’10’, ’11’ denote the ’original image’, ’fine processing products’, ’inversion

index products’ and ’thematic products’ separately.

• The second layer coding mainly aimed for the sub level products of each335

type. In order to as much as possible include all of sub level products, we

chose three binary codes, and the concrete coding results are as shown in

the right part of Figure 4.
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• The third layer coding is for the product in each sub level, i.e., this layer

coding is an ID of each product. This layer coding uses four binary codes.340

Above all, as for each remote sensing product, the whole coding will include

9 binary codes, and the final results are as shown in Table 1.

3.3.2. Input/output Database of Every Kind of Remote Sensing Product

In addition to the upper and lower hierarchical relationship, we need to

consider the input and output of each remote sensing product, so as to construct345

the production workflow. As mentioned above, remote sensing production needs

one or more types of standard remote sensing data, and some inversion index

products. Therefore, we build the input/output database for every kind of

remote sensing product. Taking NPP as an example, the input/output database

is shown in Figure 5350

3.3.3. Inference Rules for Production Demand Data Selection

In order to prepare data sources for production, we established a set of

inference rules, and it is as shown in Figure 6.

As shown in Figure 6, each production order need to parse inputParame-

tersData, inputParametersProducts and auxilizryData three types parameters,355

and they are corresponding to the standard data, products and auxilizry data

(Auxilizry data is only ready for some particular products). After parsing and

reasoning, each type data name and location will be return, preparing for pro-

duction scheduling.

3.3.4. Inference Rules for Workflow Organization360

Production algorithms all have a one-to-one correspondence relationship

with remote sensing products. Hence, the organization of remote sensing pro-

duction workflow is based on the upper and lower hierarchical relationship

database and input/output database. We also established inference rules in

order to provide guidance for Kepler workflow self-organization (Figure 7).365
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<inputParametersData> 

 <data> 

  <inputdatatype>1</inputdatatype> 

  <satellite>TERRA/AQUA </satellite > 

  <sensor>MODIS</sensor> 

<productweight>0.9</productweight> 

</data> 

</inputParametersData> 

<inputParametersProducts> 

 <product> 

  <productTag>0</productTag> 

  <productID>LAI</productID> 

 </product> 

<product> 

  <productTag>1</productTag> 

  <productID>PAR</productID> 

 </product> 

<product> 

  <productTag>2</productTag> 

  <productID>FPAR</productID> 

 </product> 

</inputParametersProducts> 

Fig. 5. The input/output database for remote sensing products (NPP as an example)
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Y

N
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Y
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Fig. 6. Inference rules for production demand data selection
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3.4. Business Logic

The business logic of remote sensing production system mainly includes or-

der submit, order analysis, completeness analysis, data preparation, products

generation, products management and other related processes (see Figure 8)).

Order analysis business module analyzes the feasibility of user-submitted370

product orders, which depends upon whether there is potentially needed origi-

nal remote sensing data in the database, whether there are potentially needed

products in the products database, and whether there are potentially needed

workflows in the workflows database. If the result of the order analysis is suc-

cessful, then the remote sensing data preparation will arrive.375

Remote sensing data preparation is aimed at determining and preparing the

kinds and amounts of potentially needed original data according to the order

analysis results. In essence, the original data refers to the preprocessed remote

sensing data, which is available after radiometric correction and systematic ge-

ometry correction. It should be noted that data preparation is based on a good380

data management mechanism. In our system, the data management includes the

original remote sensing database, database index, distributed storage strategy

of multiple copies of remote sensing data, etc.

After data preparation, completeness analysis for the prepared remote sens-

ing data is essential. Completeness analysis includes time range completeness385

analysis and space range completeness analysis. If the result of the completeness

analysis is true, then the prepared remote sensing data will be transferred into

the products generation module. But first, the prepared data should be stan-

dardized, including radiometric and geometric normalized. After normalization,

the product orders will be processed. Remote sensing products generation busi-390

ness module includes workflow and corresponding algorithm selection, comput-

ing resource allocation, production task self-management and so on. Workflow

and corresponding algorithm selection are determined by the products knowl-

edge base, which have been detailed earlier. The computing resource alloca-

tion is mainly based on the workflow complexity index and real-time resource395

monitoring information. The workflow complexity index is calculated with the
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Remote sensing products management

Production order return
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Fig. 8. Business logic of Cloud RS production system

input data volume, space and time complexities of the algorithms. Real-time

resource monitoring information is obtained by Ganglia cluster-monitoring soft-

ware. Production task self-management includes running task state monitoring,

system log monitoring, fault-tolerance of the running job, etc.400

Finally, the products will be checked-in and saved in the products manage-

ment system. Products check-in refers to writing the metadata of the processed

products into the products database for direct user product retrieval, so as to

avoid repeated production processes.
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3.5. Active Service Patterns405

In general, the traditional service pattern of remote sensing production is

the Build to Order (BTO) mode [55], sometimes referred to as Made to Order

(MTO). This is a production approach whereby products are not built until

a confirmed order is received, and the steps of its concrete realization are as

following.410

• By browsing the service portal, users can learn about remote sensing prod-

ucts information provided on the server side. Then, by the aid of a search

engine, users’ wanted products will be located, and it is generally accom-

plished based on the ”product type + time range + space range” retrieval

mode.415

• After retrieving the desired products, users can select products and sub-

mit their production orders. If the remote sensing products have been

produced, then the FTP URLs of the products will be returned. If not,

the FTP URLs of the corresponding original data will be returned, and

the production request will be generated and submitted.420

• When the production system on the server side receives the production

request, the production task will be executed and real-time feedback of the

production schedule will be presented to the users. After the production

task finishes, users will receive the FTP URL of the products for download

to their computers, or transfer to their cloud storage system. In addition,425

the metadata of the products will be written into the product database

for the next retrieve by other users.

BTO is the most appropriate approach for highly customized or low volume

products. However, BTO is a passive service mode, and in today’s competitive

market, it is unable to meet market demand. Therefore, we should design an430

active service mode and recommend the remote sensing product service to users,

based on their registration information and network behavior.
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Fig. 9. UML service pattern for the Cloud RS production system

Therefore, based on the traditional BTO mode, we proposed an active service

mode for remote sensing production, and its differences from BTO and main

ideas will be detailed in the following. Based on user registration information,435

past web history and other log information, we may determine the types of users

and topics that they already want. If user-related remote sensing data, products

or other services realized in our platform, we would push the service information

actively to users through their registered email or cellphone, thereby improving

customer satisfaction for our remote sensing service.440

In our cloud-based remote sensing producttion system, the implementation

procedures of the active remote sensing production service can be generated

using the Unified Modeling Language (UML), as shown in Figure 9).

As can be seen in Figure 9), the cloud-based service pattern differs from the

BTO mode in two respects:445
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• Once users’ requested products have been prepared, users can choose to

save the products into their cloud storage, which is provided by the pro-

duction system. The advantages of this pattern not only avoid the trouble

caused by limited user storage capacity, but also improve the level of re-

mote sensing data sharing.450

• The individuation active recommendation information service enhances

the utilization efficiency of the new generated products, while the active

service pattern can provide personalized services for remote sensing users.

4. EXPERIMENT AND CASE STUDY

We evaluated the proposed programme using test experiments performed at455

global, regional and local areas.

4.1. Global Scale Remote Sensing Production

At the global scale remote sensing production, we chose the higher level in-

version product NPP as an example. This is the quantity of carbon dioxide

vegetation consumed during photosynthesis excluding the quantity of carbon460

dioxide the plants release during respiration (metabolizing sugars and starches

for energy). In our test experiment, NPP was generated every 5 days in 2014,

with 1 kilometer spatial resolution, and its input data sources are mainly MODIS

L1B 1KM data from Landsat remote sensing data center. The production work-

flow is shown in Figure 10).465

In order to realize the annual global scale NPP production, the volume of

required MODIS L1B 1KM data is about 11 Terabyte (TB). Therefore, we

provide a virtual multi-core cluster with 10 nodes. Each node is a x-large type

of OpenStack instance, with 8 Virtual CPUs (VCPUs) and 16 GigaByte (GB)

memory. The operating system was CentOS 6.5, the C++ compiler was GNU470

C++ Compiler with optimizing level O3, and the MPI implementation was

MPICH. The total runtime was about 135 hours, and finally 74 global NPP

products in 2014 were obtained. In order to examine the quality of the generated
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Fig. 10. NPP production workflow organization

NPP products, we selected 6 of them in different months, and they are shown

in Figure 11).475

As observed in Figure 11), in mid-latitudes, NPP is clearly tied to seasonal

change, with productivity peaking in each hemispheres summer. The Boreal

Forests of Canada and Russia, for example, experience high productivity in July

and then a slow decline through fall and winter. Year-round, tropical forests in

South America, Africa, Southeast Asia, and Indonesia have high productivity,480

not surprising with the abundant sunlight, warmth, and rainfall. This was well

adaptive in natural animal growing, and also proved the practicability of our

production system.

4.2. Region scale mosaic production

We selected 7 bands Landsat-TM image as the region scale mosaic data485

source, and the spatial scope is the north and east China (113◦02′E- 123◦32′

E, 30◦45′N- 42◦21′N). The total image number is 28, and the total volume is

about 10 GB. The mosaic algorithm adopts parallel computing solution, and

the total runtime with increasing numbers of virtual processors are as shown in

Figure 12).490

As can be seen in Figure 12), the total runtime decreases sharply when scale
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Fig. 11. The global NPP maps in different months

Fig. 12. Total runtime of mosaic production with scaling virtual processors

26



to less than 32 VCPUs. However, the decrease rate is much slower when scale

from 40 VCPUs to more, and the runtime increases even up to 80 VCPUs. This

is probably because the communication time between nodes occupies a great

deal. The bands 4,3 and 2 false color composite image of the final region scale495

mosaic product is as shown in Figure 13).

In order to verify the effect of the mosaic production, we selected a 400 x

400 pixels region, and compared the visual effect before and after mosaicing. As

can be seen in Figure 13), compared with the mosaicing before image, except

for the partially color change, mosaic image can preserve the border structures500

efficiently. The color change may be because the color balance among all of

the input images, during the process of mosaic, and this is difficult inevitable.

Therefore, comprehensive considering the runtime and mosaic effect, our cloud-

based production system is powerful.

4.3. Local scale change detection505

Further more, in order to realize the time-series remote sensing production,

we provide a data cube technology. But first, we should introduce the remote

sensing data cube concept.

4.3.1. Remote sensing data cube

After geometric and radiometric normalization, remote sensing data are es-510

sentially becoming quantitative image ’tiles’, which are two dimensional space

seamless grids. Repeated observations of the same area at regular intervals

produce a sequence of satellite image ’tiles’. If we collect these ’tiles’ in time

sequences covering the same ares of ground, it can be visualised as a three

dimensional data set with the time axis as the third dimension. This is infor-515

mally referred to as a ’cube’. The cube can be analysed and used to detect

changes in the environment, so as to inform government about the effects of

land degradation, flood damage and deforestation.
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Fig. 13. Landsat-TM mosaic product of north and east China(R:band4, G:band3, B:band2)
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Fig. 14. HJ1A/B-CCD data cube of Aibi Lake (R:band4, G:band3, B:band2)

4.3.2. Local scale time-series production

At the local scale time-series production, we chose the Aibi Lake, which520

is in the northwest of China, as the study area. From September 18, 2008

to September 18, 2016, the HJ1A/B-CCD remote sensing data of that area,

about total number of 800 original scenes, were ordered from China Center

for Resources Satellite Data and Application (CRESDA). After geometric and

radiometric normalization, a subset of each image area (2000 pixels x 2000525

pixels x 4) was extracted, which covers the Aibi Lake. After weeding out the

poor quality data, the left subset images were collected in time sequences, and

the HJ1A/B-CCD data cube of Aibi Lake would be obtained (Figure 14)).

The prepared HJ1A/B-CCD data cube contains 421 scenes images, each

image with 4 bands, 2000 x 2000 x 4 pixels, and the whole cube is about 26.4530

GB. Using the NDWI production workflow in our system, with 10nodes virtual

computing instances, after about 5 minutes, the final product was as shown in

Figure 15).
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Fig. 15. The 9-year time series results of Aibi Lake (R:band4, G:band3, B:band2)

30



As observed in Figure 15), the blue area denotes the frequent water region

of Aibi Lake, and the deeper blue color, the higher frequency. Some regions do535

not have persistent water, and this may be caused by seasonal variation. This

is consistent with the natural laws, and further confirmed the practicability of

our production system.

5. CONCLUSIONS

In this paper, we briefly reviewed remote sensing products and production540

system architectures, prior to presenting our cloud-based production system,

across distributed data centers. We also described the system architectures,

business logic and service patterns. Specifically, the proposed system has a

five-layer architecture, which integrates several web and cloud computing tech-

nologies. Leveraging the benefits afforded by the use of cloud computing, we545

are able to support massive remote sensing data storage and processing. Each

user can use the virtual machine and cloud storage conveniently; thus, reduc-

ing information technology resource costs. Moreover, the system adopts the

individuation active recommendation information service.

Finally, findings from the test experiments (i.e. global scale production,550

regional scale mosaic, and local scale time-series analysis) demonstrated the

powerful computing capabilities and advantages of our proposed programme. In

other words, the proposed cloud-based remote sensing production system can

deal with massive remote sensing data and different products generating, as well

as on-demand remote sensing computing and information service. Future work555

includes extending, implementing and evaluating a prototype of the proposed

system in a real-world scenario.
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Table 1

The coding results of remote sensing products (part).

product name short name coding

Digital Numbe DN 000000000

Radiometric Normalized RN 010000000

Geometric Normalized GN 010000001

Mosaic Products Mosaic Products 010000010

Fusion Products Fusion Products 010000011

Surface Reflectance REF 100000000

Silicide Anomaly Index SAI 100010001

Normalized Difference Vegetation Index NDVI 100010010

Enhanced Vegetation Index EVI 100010011

Atmospherically Resistant Vegetation Index ARVI 100010100

Bidirectional Reflectance Distribution Function BRDF 100010101

Normalized Difference Water Index NDWI 100010111

Sea Ice Distribution SID 100011000

Vegetation Fractional Coverage FVC 100100000

Leaf Area Index LAI 100100001

Land Surface Albedo LSA 100100010

Photosynthetically Active Radiation PAR 100110000

Evapotranspire ET 100110001

Aerodynamic Roughness Length ARD 100110010

Sensible Heat Flux SHF 100110011

Downward Shortwave Radiation DSR 100110101

Land Surface Temperature LST 100110110

Ice Snow Mass Change ISM 100110111

Fraction Of Photosynthetically Active Radiation fPAR 101000000

Soil Moisture Index SMI 101000010

Soil Brightness Index SBI 101000011

Net Primary Productivity NPP 101010000
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