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4.1 Introduction

The different chapters of this book highlight manifold examples of reverse
logistics programs. While these cases vary substantially with respect to prod-
ucts, actors, and underlying motivations, as discussed in Chapter 1, they share
a number of fundamental managerial issues. One of these is the need for an
appropriate logistics infrastructure.

Analogous with traditional supply chains, the various transtormation pro-
cesses that turn a returned item into a remarketable good need to be em-
bedded in a corresponding logistics network. In conventional supply chains,
logistics network design is commonly recognized as a strategic issue of prime
importance (see, e.g. Chopra and Meindl, 2001, Chapter 3). The location of
production, storage, and cross-dock facilities, and the selection of transporta-
tion links between them, are major determinants of supply chain performance.
Analogously, logistics network design has a fundamental impact on the prof-
itability of reverse logistics systems. In order to maximize the value recovered
from used products, companies need to set up logistics structures that facil-
itate the arising goods flows in an optimal way. To this end, one needs to
decide where to locate the various processes of the reverse supply chain, as
introduced in Chapter 1, and how to link them in terms of storage and trans-
portation. In particular, companies need to choose how to collect recoverable
products from their former users, where to inspect collected products in order
to separate recoverable resources from worthless scrap, where to re-process
collected products to render them remarketable, and how to distribute recov-
ered products to future customers.

In this chapter, we take a detailed look at logistics network design in a
reverse logistics context. We start in Section 4.2 by highlighting key business
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ssues and contrasting them with logistics network design for traditional for-

ward’ supply chains. The core part of the chapter then discusses a number of
alternative modeling approaches that support the design of reverse logistics
networks and allow for a quantitative analysis of the underlying tradeofts.
Section 4.3 addresses integer-1‘)1‘0grannning—based approaches that build upon
location models. Section 4 4 considers stochastic programe-
n incorporating the aspect of uncertainty into the

traditional facility
ming approaches that focus o
network design decisions, and Section 4.5 presents a stream of research based

on continuous approximation techniques. Section 4.6 synthesizes the different

modeling approaches by exploring them in a common numerical example that
highlights the economics of reverse logistics networks. To conclude, Section
47 summarizes the key points of this chapter. Before embarking into a sys-
tematic analysis of reverse logistics network design, we illustrate some of the
main issues in a real-life business example in the remainder of this section.

4.1.1 Illustrative Case: Reverse Logistics Flows at IBM

The electronics industry has been a key sector 1n the growth of product re-
covery management. Ever expanding market volumes on the one hand, and
shorter product lifecycles on the other, result in huge amounts of used prod-
ucts being disposed of. In this light, 1t comes as no surprise that electronic
waste has been a prime target of environmental regulation, as reflected n en-
acted or pending take-back obligations in several countries (see also Chapter
15). At the same time, modular product design and a relatively small extent of
mechanical ‘wear and tear’ sustain the reusability of electronic products and
components. Together, both developments result in significant value recovery
potential.

B

Business activities of IBM, as one of the major players in this sector, 11-
volve several types of ‘reverse’ product flows, which together cover most of the
categories outlined in Chapter 2. From a business perspective, the most 1m-
portant class concerns product returns from expiring lease contracts. To date,
leases account for some 35% of IBM’s total hardware sales. Furthermore, IBM
has implemented take-back programs in several countries in North America,
Europe, and East Asia, which allow business customers to return used prod-
ucts for free or for a small fee. For remarketable products, customers may even
receive a positive contribution. In the consumer market, IBM is required to
take back end—of-life products in several countries in Europe and East Asia,
due to environmental regulation. Besides dealing with used products, IBM, as
do most companies, faces a ‘reverse’ stream of new products, which includes
retailer overstocks and canceled orders. This low very much depends on con-
tractual agreements along the supply chain (see also Chapter 12). Finally, 1t
is worth mentioning returns of rotable spare parts as a fairly traditional type
of closed-loop flow related to the service business: defective parts replaced in
a customer’s machine are sent back for repair and may then be stocked as
spare parts again (IBM, 2001; Fleischmann, 2001).
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Recognizing the growing importance of reverse logistics flows, IBM set up a
dedicated business unit in 1998, which is responsible for managing all product
returns worldwide. The main goal of this organization, named Global Asset
Recovery Services (GARS), is to manage the dispositioning of returned items
to maximize the total value recovered. To this end, GARS operates some 25
facilities all over the globe where returns are collected, inspected, and assigned
to an appropriate recovery option (see IBM, 2001). Equipment that is deemed
remarketable may be refurbished and then put into the market again. For this
purpose, IBM operates nine refurbishment centers worldwide, each dedicated
to a specific product range. Internet auctions, both on IBM’s own website and
on public sites, have become an important sales channel for remanufactured
equipment. Equipment that does not yield a sufficient value as a whole 1is
sent to a dismantling center in order to recover valuable components, such as
hard-disc assemblies. cards. and boards, which can be fed into IBM's spare
parts network or sold on the open market (for a detailed description of this
channel, see Fleischmann, 2001 and Fleischmann et al., 2003). The remaining
returned equipment is broken down into recyclable material fractions, which
are sold to external recyclers. In 2000, IBM reports the processing of 51,000
t of used equipment, of which only a residual of 3.2% was landfilled.

The above processes concern equipment from the business market. Given
the much lower market value, consumer returns follow a different road. To
work around inefficiencies of individual collection, IBM participates in coop-
erative, industry-wide solutions for this market sector in several countries.
In the Netherlands. for example, IBM supports a system organized by the
Dutch association of information and communication technology producers,
in response to national product take-back legislation. In this case, used ma-
chines from different manufacturers are collected by the municipalities and
then shipped to recycling subcontractors. Transportation and recycling costs
are shared by the member organizations, proportional to their products’ vol-
ume contribution (see Nederland ICT, 2002). Yet another system has recently
been implemented in the USA. Since November 2000, IBM customers have the
option to purchase a recycling service together with any new PC. Once the
equipment is no longer needed, the customer sends it by UPS to a dedicated
recycling center where it is either prepared for donation to charities or broken
down into recyclable materials (IBM, 2000).

4.2 Network Design Issues in Reverse Logistics

4.2.1 Delineation of Reverse Logistics Networks

The above example underscores the need for a logistics infrastructure that
accumulates used products and conveys them to recovery facilities and even-
tually to another user. In general terms, such a structure can be viewed as the
logistics link between two market interfaces, which provide a supply of used
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products and demand for reusable products, respectively. Moreover, this link
encompasses the reverse channel functions highlighted in Chapter 1, namely
collection. testing and sorting, re-processing, and re—distribution. Figure 4.1
depicts a general scheme of this perspective. It is worth pointing out that the
two markets involved may coincide, thereby implying a closed—-loop network.

From a logistics perspective, one may characterize the structure illustrated
in Figure 4.1 as a many-to-many distribution network. Within this layout,
one may distinguish a convergent inbound part corresponding to the collection
and acquisition function and a divergent outbound part serving a distribution
function. The intermediate part of the network hosts the actual transtorma-
tion processes. Therefore, 1ts structure very much depends on the type of
re-processing involved.

One may argue that it is only the inbound part of the network that actu-
ally concerns ‘reverse’ logistics processes. whereas the remainder very much
corresponds with a traditional production—distribution network. However, as
discussed in Chapter 1, this segregation may hamper a comprehensive analysis
since the different product flows are closely interrelated. In fact, in this light
one may wish to extend the scope even further and also include the distribu-
tion of the original new products (see Figure 4.1). It should be clear that this
broad scope does not mean that the entire network is, or should be, managed
by a single company. As in a traditional supply chain context, responsibilities
may be allocated to multiple players. However, in line with the supply chain
management imperative, one should consider the complete picture in order to
understand the economics of reverse logistics networks.

Within the above setup, examples of reverse logistics networks are far from
identical. Significant differences concern, for example, the players involved and
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Fig. 4.1. Reverse Logistics Network Structure (adapted from Fleischmann, 2003)
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their responsibilities, but also the network structure in terms of centralization
and the number of layers. In the literature, several classifications have been
proposed for structuring this field.

A first stream of research focuses on the reverse channel structure and the
roles of the different players involved. In this vein, Fuller and Allen (1995) dis-
tinguish (1) manufacturer-integrated systems, (2) waste-hauler systems, (3)
specialized reverse dealer-processor systems, (4) forward retailer-wholesaler
systems, and (H) temporary/facilitator systems. The analysis extends earlier
suggestions by Guiltinan and Nwokoye (1975) and Pohlen and Farris (1992).

In a different perspective, Bloemhof-Ruwaard and Salomon (1997) and
Fleischmann et al. (2000) attribute differences between reverse logistics net-
works primarily to the form of the recovery process. The authors then dis-
tinguish three network types, namely remanufacturing, recycling, and direct
reuse networks. Fleischmann (2003) refines this model by including ownership
of the recovery process (original equipment manufacturer (OEM) versus third
party) and recovery drivers (economic versus legislative) as additional ex-
planatory variables. Based on this analysis, the paper suggests distinguishing
the following five network classes: (1) networks for mandated product take-
back, (2) OEM networks for value added recovery, (3) dedicated remanufac-
turing networks, (4) recycling network for material recovery, and (5) networks
for refillable containers.

4.2.2 Characteristics of Reverse Logistics Networks

Strategic design decisions related to the type of logistics networks delineated
above include the choice of a collection/acquisition method, the location and
capacity of the sorting and re-processing operations and corresponding in-
ventory buffers, and the definition of various transportation links in terms of
sourcing, modes, and capacities. When comparing these tasks with the design
of a conventional production-distribution network, the network structure may
seem the most apparent discriminating factor. As pointed out above, reverse
logistics implies a many-to-many structure composed of a convergent and a
divergent part (see Figure 4.1), whereas production-distribution networks are
typically perceived as few-to-many, divergent structures. However, this dif-
ference may be a matter of scope rather than an intrinsic element of reverse
logistics. Taking a supply chain perspective, and hence taking into account
the supplier level in the design of a ‘forward’ distribution network, one obtains
a picture that very much resembles Figure 4.1.

[n contrast, the following three factors are specific of reverse logistics net-
works in a more fundamental sense:

e supply uncertainty,
e degree of centralization of testing and sorting, and
e interrelation between forward and reverse Hows.
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In traditional supply chains, demand is typically perceived as the main
nknown. In a reverse logistics setting, however, it is the supply side that
accounts for significant additional uncertainty. Used products are a much less
standardized input resource than conventional component supplies or raw ma-
terials. As pointed out in Chapter 1, quantity, quality, and timing of product
returns are, in general, not known with certainty and may be difficult to influ-
ence. Bffectively matching demand and supply, therefore, is a major challenge
in reverse logistics. Consequently, robustness with respect to variations in
Aow volumes and composition is an important prerequisite of reverse logistics
networks.

The need for testing and sorting operations in reverse logistics 1s a direct
consequence of the above supply uncertainty. The degree of centralization of
this stage has a fundamental impact on the transportation needs in a reverse
logistics network and is subject to the following tradeoft: testing collected
products early in the channel may minimize the total transportation distance
since inspected products can be sent directly to the corresponding recovery
operation. In particular, this approach helps avold excessive transportation
of worthless scrap. On the other hand, investment costs, for example for ad-
vanced test equipment or specially trained labor, may call for centralizing the
testing and sorting operations. There appears to be no direct equivalent to
this issue in traditional production—distribution networks as product routings
are, in principal, known beforehand in this case. Yet. to some extent the un-
derlying trade-off resembles the effect of risk pooling on inventory location
decisions.

Another important characteristic of reverse logistics networks concerns po-
tential synergies between different product Hows. While traditional distribu-
tion networks typically act as one-way streets, closed-loop chains encompass
multiple inbound and outbound flows crossing each other’s paths. In this set-
ting, it is intuitive to consider integration as a potential means for attaining
economies of scale. Opportunities may concern transportation and facilities.
For example, integrating the collection of used products with the distribution
function may help reduce empty rides. Similarly, integrating operations of the
forward and reverse channel in the same facilities possibly reduces overhead
costs. At the same time, these opportunities raise a compatibility issue. In
many cases, closed-loop supply chains are not designed in a single step but
are realized by adding reverse logistics activities to an existing distribution
network. It is not clear, however, whether such a sequential approach yields
a good solution or whether one should consider an integral redesign of the
entire closed-loop network.

In what follows, we review quantitative models that aim at supporting
the above network design decisions. Throughout, we pay particular attention
to the atorementioned characteristics of reverse logistics networks and discuss
how they are captured in the different modeling approaches. In analogy with
traditional network design models, we focus on location-allocation decisions
and, to a lesser extent, capacity selection. Transportation and the collection
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strategy are considered on a rather aggregated level here. Chapter 5 zooms in
on the transportation operation in more detail. Similarly, Chapter 6 details
warehousing and material handling aspects.

4.3 Mixed Integer Location Models for Reverse Logistics
Network Design

4.3.1 Literature Review of Reverse Logistics Location Models

The most widespread modeling approach to logistics network design problems
in various contexts concerns facility location models based on mixed integer
linear programming (MILP). Throughout the decades, an extensive body of
literature has been established that ranges from simple uncapacitated plant
location models to complex capacitated multi-level, multi-commodity models.
At the same time, powerful solution algorithms have been proposed, relying
on combinatorial optimization theory. For a detailed overview of models and
solution techniques, we refer to Mirchandani and Francis (1989) and Daskin
(1995).

Given this extensive body of research, MILP location models appear to
be a natural starting point for quantitative approaches to reverse logistics
network design. Several authors have followed this route and have presented
MILP location models adapted to a reverse logistics context. Table 4.1 pro-
vides an overview of the corresponding literature. We distinguish models that
encompass the entire network between the two market interfaces sketched n
Figure 4.1 and models with a scope restricted to the ‘reverse’ network part
in a strict sense. Moreover, we indicate whether supply of used products is
modeled as a push or a pull process, i.e. whether there is a given collection
volume that needs to be processed or whether collection primarily responds
to demand.

The summary in Table 4.1 indicates that most of the models published
to date address the entire network scope and treat supply as a push pro-
cess. The model of Kroon and Vrijens (1995), which is applied in the context
of reusable packaging, essentially is a conventional uncapacitated warehouse

Table 4.1. Reverse Logistics Facility Location Models

supply push supply pull
integral network Kroon and Vrijens (1995) Realff et al. (1999)
Thierry (1997) Jayaraman et al. (1999)

Spengler et al. (1997)

Barros et al. (1998)

Marin and Pelegrin (1998)

Fleischmann et al. (2001)
reverse network Berger and Debaillie (1997)| Krikke et al. (1999)
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location model with lateral transshipments. Similarly, Marin and Pelegrin
(1998) consider a special case of a warehouse location model where each cus-
tomer’s supply equals a fixed fraction of his demand. Jayaraman et al. (1999)
analyze a multi-product variant of this model with general supply and demand
volumes. Moreover, the supply process is governed by limited core availability
rather than by collection obligations.

Thierry (1997) considers a linear programming model that corresponds
with the structure outlined in Figure 4.1 with facility locations being fixed.
The disposal volume arising at the testing stage is modeled as a fixed fraction
of the volume processed. Berger and Debaillie (1997) include location deci-
sions in this model while at the same time limiting its scope to the ‘reverse’
network part. Moreover, they model the disposal volume as a lower bound
rather than a fixed fraction. Krikke et al. (1999) apply a similar model in a
case study on copier remanufacturing. In Fleischmann et al. (2001), we an-
alyze a generalization of Thierry’s model, including location decisions. This
model is discussed in detail in Section 4.3.2 below.

The model presented by Barros et al. (1998) captures a more detailed
picture in that it explicitly includes an alternative recovery path rather than
an external scrap process for material rejected at the testing stage. Spengler
et al. (1997) and Realff et al. (1999) take an even broader perspective by
modeling multi-commodity flows in general processing networks. While both
cases are motivated by applications in the process industry, they differ in their
view of the supply process. The former considers a supply push in a waste
recycling context whereas the latter focuses on the recoverable value of the
potentially available supply.

The above contributions exhibit much similarity with traditional multi
level location models. From a mathematical perspective, the particular char-
acteristics of reverse logistics identified in the previous section appear to entail
only minor modifications. Specific features include additional flow constraints.
reflecting supply restrictions. Other variations are due to multiple return flow
dispositions and to a possible interaction between forward and reverse chan-
nels. As a consequence, most of the models use multi -commodity How formu-
lations. In the next section, we discuss these aspects in more depth on the
basis of a specific model.

4.3.2 A Basic Facility Location Model

To make things specific, let us take a look at a concrete MILP formulation of
a reverse logistics network design problem. To this end. we discuss a variant
of the model we introduced in Fleischmann et al. (2001). The model picks
up the general scheme sketched in Figure 4.1. Specifically, it encompasses the
processes between the two market interfaces discussed in Section 4.2. In this
setting, the model considers three levels of facilities for a single type of prod-
uct, namely test centers, factories, and distribution warehouses. Moreover, it
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Fig. 4.2. Structure of the Recovery Network Model (adapted from Fleischmann et
al., 2001)

includes two generic dispositions for the flow of used products, namely re-
covery and disposal, where recovery is restricted to a certain maximum yield.
Figure 4.2 displays the general structure of this model. The MILP formulation
below uses the following notation.

Index sets

7T = set of potential plant locations
R — set of potential warehouse locations
K = set of fixed customer locations
L = set of potential test center locations
Variables
Yo = indicator opening plant i € Z
}'}h = indicator opening warchouse j € J
) — indicator opening test center [ € L
X;; = product flow from plant 7 to warehouse j (in product units)
Xj*k = product flow from warehouse j to customer & (in product units)
X1 = product flow from customer £ to test center [ (in product units)
AJ = product flow from test center [ to plant 7 (in product units)
Vi —  unsatisfied demand of customer £ (in product units)
Ui —  excess supply of used products from customer £ (in prod. units)
Costs
fE = annualized fixed costs for opening plant ¢ € Z
h = annualized fixed costs for opening warehouse j € 7
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i _  annualized fixed costs for opening test center [ € L

¢’ =  sum of unit production cost at plant 7 and
transportation cost from plant 2 to customer Y

cj?k_ —  sum of unit handling and storage cost at warehouse j and
transportation cost from warehouse j to customer k

¢¢, = sum of unit transportation cost from customer & to test center [
and test, inspection, and disposal cost

¢, = sum of unit transportation cost from test center [ to plant ¢
and reprocessing cost minus production cost

Ci’_ = unit penalty cost for not serving demand of customer £

Cy —  unit penalty cost for not collecting returns of customer &

Parameters

d}. = annual demand of customer k& € K (in product units)

U = annual returns of used products from customer k € K (in

product units)
0 average recovery yield
D, annual capacity of plant 2 € Z
h annual capacity of warehouse j € J
annual capacity of test center [ € L

|

|

We then formulate the general reverse logistics network design (RLND) model
as
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In this formulation, Equations 4.2 and 4.3 ensure that all customer demand
and returns are taken into account. Equations 4.4 through 4.6 represent bal-
ance constraints at the warehouse, plant, and test center levels respectively.
At the warehouse level, inbound and outbound flows need to be equal. At the
plant level, a potential excess outbound volume corresponds with new pro-
duction. Similarly, the excess inbound volume at the test center level, which
is constrained by the recovery yield, corresponds with the disposal volume.
Finally, Equations 4.7 through 4.9 are the usual facility opening conditions
coupled with capacity constraints.

[n order to speed up the solution process, the above formulation can be
strengthened by adding the following valid inequalities (compare Bloemhot et
al., 1996).

VA

rh
!
{'i-
X¢

min(dy. h;) };—“ VieJ, kek (4.12)
min(ug,7;) Y, Vke K,l e L (4.13)

VAN

[t should be noted that this model is rather general and can capture a large
variety of reverse logistics situations. For example, closed-loop and open-loop
structures both can be represented and are reflected in different settings ot the
parameters dj. and wuy. Specifically, a closed -loop situation is characterized by
dr. - up > 0 for at least some customer k. Similarly, push and pull drivers for
used product collection are reflected in different penalty costs ¢f. Furthermore,
it is worth emphasizing that the ‘disposal’ route may include any form of
recovery that is outsourced to a third party, e.g. material recycling,.

Mathematically, the above formulation does not differ much from multi-
level facility location models in a more traditional production-distribution
context. A particular aspect concerns the two sets of exogenous parame-
ters d;. and wuy. which are linked by the different balance conditions. This
reflects the need in reverse logistics for matching market conditions on the
supply and the demand side. Another element worth pointing out concerns
the additional degree of freedom introduced by the yield condition 4.6. By
constraining the disposal volume by a lower bound rather than by a hxed
fraction. the recovery strategy and the network design are optimized simul-
taneously. A relevant question concerns the impact of these features on the
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performance of specific solution methods. To our knowledge. results on this is-
sue are few to date. Verter et al. (2003) have recently presented a Lagrangean
decomposition method that exploits the specific problem structure of a com-
bined forward /reverse logistics network design. Initial numerical results seem

promising.

4.3.3 Extensions

The (RLND) model introduced above can be extended in manifold ways.
Analogous with traditional facility location models, the formulation can be
generalized to a dynamic, capacity selection, multi-product setting. We do
not elaborate on these features here since they are well known from other
contexts. Instead, we indicate a number of additional elements that appear to
be specific to a reverse logistics context. For mathematical details, we refer to

Fleischmann et al. (2001).

o Integrating forward and reverse channel facilities
As discussed in Section 4.2, integration versus separation of different pro-
cesses is an important issue in reverse logistics. For example, co-locating a
warehouse and a test center may allow for sharing fixed assets and thereby
exploiting economies of scale. This effect can be captured in the model by
introducing additional indicator variables for combined facilities.

e [ntegrating forward and reverse transportation flows
Similar synergies may arise from combining transportation routes for for-
ward and reverse goods movements (see also Chapter 5). In the above
setup, this can be modeled by means of additional flow variables repre-
senting simultaneous flows in both directions between two locations.

e [Distinguishing demand for new and recovered products
The above formulation includes only one class of demand, which may be
fulfilled through either new production or recovery. Alternatively, one may
wish to distinguish between markets for new and recovered products. In
essence, this comes down to explicitly including the leftmost part of the
scheme in Figure 4.1. Mathematically, this approach results in a multi-
commodity network flow formulation.

o Multiple recovery options
The above formulation uses the most basic representation of a recovery
strategy n that it distinguishes two return dispositions, namely internal
Tecover' versus external ‘disposal’. In order to capture a more refined pic-
ture, one may wish to distinguish more recovery options. Mathematically.
this extension again results in a multi-commodity formulation.
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4.4 Stochastic Location Models for Reverse Logistics
Network Design

4.4.1 Stochastic Mixed Integer Modeling Approaches

As discussed in Section 4.2, growing uncertainty on the supply side in particu-
lar is frequently named as a major characteristic of reverse logistics networks.
[n the mixed integer network design approaches presented in the previous
section, uncertainty is, in general, addressed by means of scenario analyses.
Thus a model is solved repeatedly for a set of scenarios and the solution with
the best ‘overall performance’, according to some multi-criteria measure, 1s
retained. In this section, we review modeling approaches that incorporate the
aspect of uncertainty more explicitly.

For a general introduction to stochastic programming, we refer to Birge
and Louveaux (1997). A stochastic mixed-integer linear program seeks to
minimize the expected costs over a given set of scenarios with associated
probabilities, subject to linear and integrality constraints. In the model def-
inition, one needs to specify which decision variables need to be fixed before
the realization of a scenario is known and which ones can be adjusted af-
terwards. Let us denote the vectors of both types of decision variables by Y
and X . respectively. Moreover, let w € {2 denote the set of scenarios. Then a
stochastic mixed—-integer linear program can be written as

min ¢' Y + E,[c*(w,Y)]. st. ¥ =0, Yr € {0,1} (4.14)

where ¢* is the optimal value of a MILP in decision variables X, which depends
on w and Y. ¢ is a vector of objective coefficients, and Y7 is some sub-vector of
Y. If 2 is finite then (4.14) can be rewritten as an ordinary MILP, though at
the expense of an increasing problem size, by introducing scenario-dependent
decision variables X_. This approach is known as linear programming ‘with
recourse .

[t is important to note that the optimal solution of (4.14) need not be
optimal for any single scenario. In this sense, stochastic programming 1s more
powerful than a simple scenario analysis. This expansion comes at a cost how-
ever, since the problem size of the corresponding MILP formulation mcreases
significantly.

In the context of logistics network design, stochastic programming mod-
els have been presented to capture the impact of demand uncertainty and
price variations (see, e.g. Louveaux, 1986). Typically, these models assume
that location decisions are fixed for a longer planning horizon (corresponding
to variables Y in our formulation) whereas transportation flows can be ad-
justed in the short term, according to demand realizations (corresponding to
variables X).

Stochastic programming models require a probability to be specified for
each scenario. Since in practical applications these probabilities often are hard
to define, some authors have argued that other optimality criteria may be
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more relevant. Instead of expected costs, they suggest considering worst-case
criteria. such as minimizing the maximum cost across all scenarios or mini-
mizing the maximum ‘regret’, 1.e. the cost deviation from the corresponding
scenario—optimal solution. These approaches do not require any probability
specification but seek solutions that provide a cood performance guarantee
in all cases. For a general introduction to these so—called ‘robust’ optimiza-
tion models. we refer to Kouvelis and Yu (1997). It should be noted, however,
that despite their name, these approaches may be highly sensitive to the set
of scenarios considered since extreme scenarios may strongly dominate the
solution.

To our knowledge, two groups of authors have presented robust and/or
stochastic extensions to network design models in a reverse logistics context.
Realff et al. (2002) report on a case study on the design of a carpet recy-
cling network in the USA. The authors extend a corresponding MILP facility
location model to a multi-scenario setting, involving different levels of sup-
ply volumes and material prices, and seek to minimize the maximum regret
across all scenarios. All binary variables, which represent location choices and
capacity levels, are fixed at the beginning of the planning horizon whereas the
values of all continuous variables are scenario dependent. In a numerical ex-
ample, the authors illustrate that the optimal robust solution is not optimal.
in general, for any of the individual scenarios considered. Information on the
cost deviation between both approaches is not provided. however.

Listes and Dekker (2001) build upon the work of Barros et al. (1998) con-
cerning a case study on the design of a sand recycling network in the Nether-
lands (see also Section 4.2). The authors extend the original MILP model to
a stochastic model that maximizes expected profit under demand and supply
uncertainty. In a first approach, they consider uncertain demand locations and
volume. Location decisions for cleaning and storage facilities are assumed to
be fixed at the beginning of the planning period, whereas all transportation,
processing, and storage decisions may be adjusted to the demand realization.
In a second approach, supply volumes are also uncertain. Decisions are now
taken in three stages as the scenario realization is revealed successively. In a
numerical study the authors document that the optimal stochastic solution
need not coincide with the solution for any individual scenario. However, the
cost deviation between the stochastic solution and the best solution obtained
from a scenario analysis is within a few percentages in each of the cases pre-
sented.

4.4.2 A Stochastic Location Model for Reverse Logistics

We now apply the above stochastic modeling approaches to the reverse lo-
gistics network design model introduced in Section 4.3. To this end. let (2
denote a finite set of scenarios, and for each scenario w € 2 let T denote its
probability. We assume that scenarios differ in terms of demand and return
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volumes and recovery yields, which we denote by dj.,, ur,, and 7,, in anal-
ogy with Section 4.3. Then a stochastic version of the model in (4.1)-(4.11)
can be formulated by adding a scenario index to the continuous variables
XP Xh Xce X" V., and U, taking the expected value of the objective func-
tion across all scenarios and imposing restrictions (4.2)-(4.9) per scenario.

It is worth noting that the uncertain volume parameters concern the right-
hand side of the MILP formulation, whereas the uncertain recovery yield af-
fects the coefficient matrix. In contrast, all cost parameters are assumed to be
fixed. Since all continuous variables depend on w whereas the binary variables
do not. location decisions are taken under uncertainty whereas transportation
and processing flows can be adjusted to individual scenario realizations, in
line with the above motivation. Furthermore, note that setting Vi, = dgu.
and U, = up, for all k and w always provides a feasible solution. Hence,
each location decision is feasible for all scenarios.

Comparing this formulation with the original deterministic model in Sec-
tion 4.3. we observe that the number of continuous variables and the number
of constraints has increased with a factor of |§2|. To improve numerical solu-
tion procedures, the MILP formulation can be strengthened by means of valid
inequalities analogous with Equations (4.12)-(4.13). We illustrate the relation
between solutions of the deterministic and the stochastic model in Section 4.6.

4.4.3 Extensions

The above model can be modified in manifold ways, e.g. to allow for different
scenario definitions or information evolution. As an illustration, we take a brief
look at alternative optimality criteria and multi-stage decision approaches.

[f the minimal costs vary largely across scenarios, then the expected cost
criterion used in Section 4.4.2 may result in a biased solution in the sense
that it is dominated by a few high-cost scenarios. In this case, minimizing
the expected ‘regret’ may be a relevant alternative. To this end, the term
— Y e o Tw €y should be added to the expected cost function, where ¢ de-
notes the minimal costs for scenario w in the original deterministic model.

The expected cost criterion may be difficult to apply since estimating
the probabilities 7, may not be straightforward in practical situations. As
discussed above, optimizing the worst—case behavior may therefore be a use-
ful alternative. For our model, this so-called ‘robust’ optimization approach
comes down to introducing an additional decision variable Z, which is to be
minimized under the additional constraint

€T j€T leL
O 1/ h h NSRS S P
T E ((“)‘c Vﬁ-‘w E , Cik “X’jk‘m ) 35 2 / 2 , ('-ij ‘xiju.?
keX 1€TJ e gEJ
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Analogously, one may choose to minimize the maximum regret by combining
both of the above approaches. We illustrate the efttect of the different cost
criteria in Section 4.0.

Finally, it is worthwhile to take another look at how the scenario is revealed
and hence at which information is available for which decision. As explained
before, the above formulation implicitly assumes that all location decisions
are taken before the actual scenario is known, whereas all other decisions
are based on its realization. In this sense, the model captures a two-stage
decision process. However, as discussed in Section 4.2, the design of a reverse
logistics network may involve more stages, in particular if recovery activities
are integrated into an existing ‘forward’ distribution network. One way to
capture such a sequential decision process is to separate the scenario space
into two independent sets {2 = = x ¥ concerning demand-related information
(captured by parameters di¢) and return-related information (captured by
.y and 7y ), respectively. The degree of information that is available for the
different decisions can then be modeled by indexing the decision variables

P vvh. yP ~h 7 7 Y.C Y T ; : . SR . s
as Yi", Y Xies Xiker Ve Yigs Xiieys Xiiey» and Urey and modifying (4.1)

(4.11) accordingly.

4.5 Continuous Approximation Models for Reverse
Logistics Network Design

4.5.1 Approximating Reverse Logistics Costs and Revenues

MILP-based location models as discussed in the preceding sections provide
a powerful tool which can be tailored to a variety of different settings. Yet
these approaches have some drawbacks when it comes to establishing general
insights into the economics of logistics systems. Capabilities for sensitivity
analyses in MILP models are limited and, even more importantly, the interre-
lation between various parameters is not made explicit. Therefore. conclusions
on the behavior of a given real-life system often rely on extensive numerical
experiments rather than on analytic arguments.

In view of this shortcoming, several authors have considered continuous
cost expressions as a basis for alternative approaches to investigating logistics
costs and optimizing the design of logistics systems. In particular, Daganzo
has promoted this route in what has become known as the ‘continuous ap-
proximation methodology’ (Daganzo. 1999). The key element of this approach
1s the representation of demand by a continuous density function. as opposed
to the discrete demand representations in traditional MILP approaches. If the
demand density and other system parameters vary sufficiently slowly across
the given service region (which may have spatial and temporal dimensions),
logistics costs can be reasonably approximated by appropriately chosen aver-
ages, which can be expressed as fairly simple functions in a limited number of
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parameters. In this way, the cost impact of critical system parameters can be
revealed and guidelines for the design of logistics structures can be derived.

In this section, we follow our reasoning in Fleischmann (2003) in applying
the ‘continuous approximation’ approach to the analysis of reverse logistics
networks. We consider a setting analogous to the one in Section 4.3. However,
for the time being we restrict the modeling scope to the ‘reverse’ network
part in a strict sense, i.e. the logistics structure conveying used products from
collection points via inspection and sorting centers to a given recovery facility
(compare Figure 4.1). An extension of the model to the entire network, includ-
ing the redistribution stage, is discussed at the end of this section. Our goa
Is to approximate the total reverse logistics costs for serving a given area, and
eventually to minimize these costs by choosing an appropriate reverse logis-
tics network design. To this end, assume that the return rate of used products
per time per unit surface is given by a location-dependent continuous density
function, which varies slowly within the service area. The subsequent devel-
opment is facilitated by considering costs on a per product returned basis.
(Note that this criterion differs from total costs just by a scaling factor.) The
core idea of the ‘continuous approximation’ approach then is to express these
costs in ‘local” problem parameters only and to approximate the overall costs
by integrating over the service area.

To assess the unit reverse logistics costs, we distinguish two cases, depend-
ing on whether the testing and sorting is carried out at the recovery facility
or at a separate location. In what follows, we refer to these cases as ‘central’
and ‘local’ testing, respectively. For both cases, one may decompose the total
reverse logistics costs into a number of components, namely inbound trans-
portation costs to the test and sort process, outbound transportation costs
after sorting, variable sorting and handling costs, and fixed installation costs
for the test facility. In what follows, we go through all of these components
and discuss the parameters on which they depend. In addition to the symbols
introduced earlier, we use the following notation.

A = overall service area

p(x) = return rate of used products per time per unit surtace
at location r € A

Cr(?, p) = reverse logistics costs per returned product for a service

area with constant return rate p at a distance ¢
from the corresponding recovery facility

— in the case of local testing

— in the case of central testing

L &
DI =
T
g
I
S
||

Ct = low volume vehicle transportation cost per distance
Ct — high volume vehicle transportation cost per distance
v = low volume vehicle capacity

3 = high volume vehicle capacity

Cii = disposal costs per product

Ap =; size of a test facility’s service area
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A% = optimal size of a test facility’s service area
¢ = opt. distance for switching from central to local testing

The first cost component concerns inbound transportation costs to the test
and sort process. We assume that used products are collected in milk runs.
The length of a tour can be assessed through a probabilistic analysis of the
standard vehicle routing problem. Specifically, it can be approximated by a
line-haul distance from and to the test and sort installation plus the sum of the
expected distances between two consecutive collection stops (see e.g. Daganzo
1999). Assuming full vehicle loads, we get in the case of central testing

e C = L b2
unit inbound transp. cost (central) =~ 2 = 04 057 ¢ ' i (4.16)
v

In the case of local testing and sorting, the line-haul distance depends on
the size Ar of the area covered by the test facility. Assuming this area to
have a circle-like shape with the test facility located at its center, the average
line-haul distance approximately equals 2y/Ag/3\/7 and one obtains

e 4 e 4 .
unit inbound transp. cost (local) = - -z: VAR +0.57¢ p 1% .

(4.17)
The next chapter presents more detailed versions of these expressions, which
also take into account inventory accumulation (see Section 5.4).

The second cost component concerns outbound costs from the test loca-
tion. In the case of central testing, this term encompasses merely the disposal
costs for rejected products, which equal ¢,,(1 — ) per unit. For local testing,
one also needs to consider the flow of accepted products to the recovery fa-
cility. Recognizing the consolidation function of the test centers. we assume
those shipments to be line-hauls rather than multi-stop tours. In the same
vein, we assume a larger vehicle capacity than for the collection tours. and
a corresponding mileage cost. For full vehicle loads. the outbound costs can
then be expressed as

=

. _ (
unit outbound transp. and disposal cost (local) =~ 2 - ¢~ + ¢, (1 —17).

T
(4.18)

As a third cost term we consider the annualized fixed costs for a local test

and sort installation. These can be approximated on a per product basis by

Ir

unit fixed installation cost (local) =~ . (4.19)
PAR

Finally, any variable handling and processing costs may be aggregated into a
term ¢;,. Summing up the four cost components vields an expression for the
reverse logistics cost per collected product. Specifically, in the case of central
testing and sorting, one obtains

L e & "
C'RC’({*'ﬂ) =6 ;_‘:: £+ 0.57 ¢ p—lX._ Few (L="1)+Fch ("120)
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For the local testing case, the corresponding expression still depends on the
size of the collection area Ag. Equations (4.17) and (4.19) characterize the
optimal size Aj, of this area. First order conditions imply

! 3w fr 0 23 Al T 4/3

Ap = 4.21
2 2¢ p Ct P ( )

[nserting this expression for Ag and summing up leads to the following cost
function:

= D 1'/3

Cie - . ¢s 1.

Crr (b, p) =12 — 0y+057¢c p 2+ ¢y (1 —7)+cp+1.56 f},f
: Ve P

i

(4.22)
Comparing C'rc(.) and Cry(.) yields an appropriate service area for the cen-
tral test and sort operation. Specifically, (4.20) and (4.22) define a critical
distance (* from the recovery facility up to which central testing is preferable
over local testing. Equating the cost functions yields

- 1/3 = =l
= U C¢ U
J | =i . (4.23)

Ct P ¥ ('t

G ==l0:18

Putting the above results together, one finally obtains the overall reverse
logistics unit cost function Cr(.) as Cr(¢,p) = min{Crc(¥¢,p).Crr(f,p)}.
As discussed above, total reverse logistics costs are then approximated by
1 20T 1 ¥ roT 3 *_'r‘ AEELAR M AL . t. /’.-- b g
integrating over the service area |, p(x) Cr(l(x), p(a )_)d..z.

In Section 4.6 we compare the above cost expressions with the results of
the previously discussed discrete models and interpret them in the light of the
reverse logistics issues identified in Section 4.2. Before doing so, we discuss a
number of extensions and refinements to the above approach.

4.5.2 Extensions

The above formulas reflect a very basic cost model which can be extended
in manifold ways. In particular, they do not include any inventory consider-
ations and assume all vehicles to operate at full capacity. These assumptions
can be relaxed by including decisions on lot sizes and dispatching frequencies.
We refer to Chapter 5 for a detailed discussion of this issue. Furthermore, the
formulas can be extended to a multi-product setting. However, since these
refinements do not appear to exhibit any particular reverse logistics elements,
and since they do not change the core of our argumentation, we content our-
selves by referring to Daganzo (1999) for a more in-depth discussion ot the
‘continuous approximation’ technique.

In a similar fashion. we can also derive cost expressions for the ‘forward’
parts of the network (see Figure 4.1). To this end, assume that products are
shipped from the factory to the customers via distribution centers. Following
the above analysis, one obtains the same formulas, where p is replaced by an
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appropriate demand density 0 and v equals one. In fact, this is the original
model discussed by Daganzo (1999). In what follows, we denote these ‘forward’
logistics costs by C'p(.).

By putting together C'r(.) and C'g(.) one may address the overall network
structure. In particular, by considering C'g(.) as inbound and C'g(.) as out-
bound costs and including investments one may assess the size of a factory’s
service area. If () and p(x) are roughly proportional, one can derive expres-
sions similar to (4.21) with p replaced by d+ pv. However, a critical look seems
advisable. On the one hand, the distance approximations may be less accurate
since the number of distribution centers and test centers is much smaller than
the number of customer locations in the original model. On the other hand.
Equation (4.21) assumes the facility to be located close to the center of its
service area. While this seems reasonable for a distribution center, it may not
be evident for the location of a factory, which depends on additional factors

such as tax rates and labor costs.

Finally, note that we have assumed return and disposal rates to be given
and therefore have not included any revenues in the analysis. However. the
above cost expressions can also be used to assess profitability of a recov-
ery operation. In particular, the tradeoff between reverse logistics costs and
production cost savings or additional revenues can be made explicit. To this
end, denote by C'rxn (.) the unit cost for any used product that is not recovered
(which may include, for example, lost revenues and/or fees for local recycling).
T'he unit reverse logistics cost function C'r(.) is then obtained by selecting the
cheapest among the three options Crc. Cry. and C'iry for each value of £ and
0.

4.6 Quantitative Analysis of Reverse Logistics Network
Design Issues

Having reviewed alternative modeling approaches for supporting reverse lo-
gistics network design decisions, we now return to the issues highlighted in
Section 4.2. In what follows, we exploit the above quantitative tools to analyze
these issues and highlight the impact of key parameters on the economics of
reverse logistics networks.

We illustrate the analysis in a numerical example adapted from Fleis-
chmann et al. (2001). All computational results are based on an installation
of the CPLEX 7.0 standard MILP solver on a Pentium 4. 1495 MHz PC.
Consider the situation of an electronic equipment manufacturer operating in
the European market (recall the case of IBM from Section 4.1; see also the
copier business in Chapter 11 and in Thierry et al.. 1995). Assume that used
equipment, stemming, for example, from expiring lease contracts. is collectec
from the customers, remanufactured, and resold. To allow for remanufactur-
Ing, used equipment must meet specified quality standards. To this end. all
collected equipment is inspected and tested. Rejected equipment is disposed
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Table 4.2. Parameter Settings of Network Design Example

Description Value| Model Parameter
discrete |continuous
Fixzed cost per factory 5,000,000 i i
Fized cost per warehouse 1,500,000 A fh
Fixed cost per test center 500,000 il i
Transportation costs per km per product
factory—warehouse 0.0045 e" —~
warehouse——customer 0.0100 ch —~
customer—test center 0.0050 € 2c” Jv
test center—plant 0.0030 " 2.¢° /D
Penalty cost unsatisfied demand 1,000 ¢’
Penalty cost uncollected returns 1,000 c?
Capacity factory 500,000 D
C'apacity warehouse 150,000 h
Capacity test center 150,000 T
Low volume vehicle capacity 20 v
Demand per 1,000 inhabitants 10|dy /#1inh. |0 x pop.density
Return ratio 0,0.9 A A
Recovery yield 0.5 v Y
Distance from factory 1,000 - 4

of locally, while the remainder is shipped to the remanufacturing operation,
which is co-located with an original manufacturing site.

To implement this example as a MILP model, we assume that customers
are located in 50 major European cities (capitals plus cities larger than
500.000 inhabitants) and that demand is proportional to the population size.
Moreover, we restrict the potential (re-)manufacturing locations to 20 main
metropolitan areas, whereas distribution warehouses and test operations may
be located in any of the 50 cities. Table 4.2 summarizes the parameter settings
for this example.

We assume that all equipment that passes the test operation has a suffi-
cient contribution margin to be remanufactured rather than disposed of. How-
ever, to avoid the cost figures being distorted by large blocks of sunk costs, we
do not include variable (re-)manufacturing, handling, and disposal costs. To
assess the overall profitability of the remanufacturing operation, these costs
as well as sales revenues should be added to the results below.

As a starting point, we compute the optimal ‘forward’ distribution network
for the above example, ignoring any reverse logistics activities. To this end,
we solve the conventional two-level facility location model obtained by setting
wr. = 0 for all & in the MILP model in Section 4.3. The solid lines in Figure
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Table 4.3. Results of Network Design Example

Scenario A Test Centers/Min. Cost|Regret in Case of Design

Scen. 9  Scen. 3 Robust

€-10°| €-10° €-10° €-10°

0 0.0 ' 0 4.000 1,500 2,000

| 0.1 D 2,600| 2,580 603 951

2 0.2 D 4.700f 1,660 206 402

3 0.3 GB.D.E 6,610 933 () 44

4 0.4 GB.D.E.I.HU 8,140 592 182 74

5 0.5 GB,D,E.I.HU 9,550 365 477 218

6 0.6 GB,D,.E.I.HU 11,000 139 773 361

7 0.7 S,GB,D,F.E.I1.HU 12,200 54 1,210 647

8 0.8(S,GB,D,;,D2.E. I, HU BG 13,500 () 1,680 964

9 0.9|1S,GB,D;,D> . E. 1, HU BG 14,600 0 2,200 1,330
stochastic GB.,D,E.I.HU o 8,850

robust B,D,EHU < 2,000

4.3(a) illustrate the resulting network structure, which includes one central
manufacturing site in Frankfurt and seven regional warehouses. For the sake
of clarity, flows from warehouses to customers are omitted. The corresponding
annual costs equal € 44.8m.

4.6.1 Impact of Supply Uncertainty

As discussed in Section 4.2, reverse logistics network design typically faces
significant uncertainty concerning the supply of recoverable resources. In the
above MILP model, the supply side is characterized by the parameters 1, and
7. In what follows, we analyze their impact on the optimal solution.

In the model formulation (4.1)-(4.11), the volume parameters u; occur
only on the righthand side. Therefore, standard MILP theory implies that
the cost function depends on them piecewise linearly (see e.g. Jenkins, 1982).
Moreover, for fixed binary variables, i.e. fixed facility locations. the cost func-
tion is convex in wuy for each k. A parametric analysis can be carried out by
means of Jenkins’s heuristic (Jenkins, 1982).

Let us now assume that u, = \dy. for all k. i.e. the return ratio \ is identical
across locations. Table 4.3 summarizes the results for different values of ).
More specifically, we vary the return ratio in steps of 0.1 in the interval [0,
0.9] and compute for each scenario the optimal reverse logistics network while
keeping the forward network fixed to the above layout. The solution time for
each scenario is in the order of a few seconds. The dashed lines in Figure
4.3(a) illustrate the solution for A = 0.4, which encompasses five regional test
centers.

Not surprisingly, the optimal number of test centers and the relevant re-
verse logistics costs increase with the return volume. However, as discussed
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Fig. 4.3. Optimal Forward and Reverse Network Versus Optimal Integral Network

before, the actual return volume is not known, in general, when the location
decision is to be taken. In Section 4.4, we have discussed modeling approaches
that explicitly take this uncertainty into account. The next-to-last row of Ta-
ble 4.3 characterizes the network design which minimizes the expected costs for
the case of a uniform probability distribution across the above scenarios. The
solution turns out to be identical to the optimal design for A € [0.4,0.6]. As an
alternative to this stochastic approach, we also compute an optimal ‘robust’
solution, which minimizes the maximum cost deviation from the scenario-
optimal solution across all scenarios (see Section 4.4). Note that this solution
is not optimal for any single scenario.

For conventional facility location models, it is well known that the cost
function is fairly ‘flat’ around its minimum, in the sense that a deviation
from the optimal network design entails a rather small cost penalty (see, e.g.
Daganzo, 1999). An analysis of the continuous cost model developed in Section
4.5 supports a similar conclusion in a reverse logistics context.

To this end, Figure 4.4 illustrates the relation between the discrete and the
continuous model for the above example by depicting the corresponding unit
reverse logistics costs per product as a function of the return rate. For the
discrete model, this cost curve is obtained by dividing the results in Table 4.3
by the return volume. For the continuous model, the curves display the func-
tions C're and Crp, defined in (4.20) and (4.22). The parameter settings are
listed in Table 4.2. Note that to make both modeling approaches compatible
one needs to adjust ¢; and ¢; to account for vehicle capacities and line-haul
return trips. The values of ¢ and 0 approximate the overall averages. Note
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Fig. 4.4. Unit Reverse Logistics Costs

that the eventual unit reverse logistics cost function C'p in the continuous
model is a mixture of C're and Cry. Since the discrete cost function also lies
in this interval, Figure 4.4 suggests the results of the discrete model and the
continuous model to be compatible.

To quantify the impact of supply uncertainty on the network design, let
CRrL(AR) denote the unit reverse logistics costs as a function of the test service
area Ap in the case of local testing. From Equations (4.19) and (4.17) one
gets that Crr(Ag) can be written as a + by/Ar + ¢/Ag, with some positive
constants a, b, and ¢. Similar to the well-known case of the EOQ formula this
function is very flat around its minimum. Specifically, for € > 0 one gets

Crr((1+ e)AR) — Cri(. r) /CFRL(AF?) < 52/3(1 +-£) . (4.24)

Furthermore, Equation (4.21) implies. for example, that a relative error of =
In p causes a relative error of at most 0.67 ¢ in A% and therefore by (4.24) a
relative cost penalty of at most 0.22¢2 /(1.5+¢). This implies that a forecasting
error of 50% in the return rate results in an eventual cost penalty of less than
3% in the network design decision.

For the design parameter ¢*, which characterizes the domain of central
testing, one observes a similar robust behavior. Equation (4.23) shows that
the impact on £* of an error in p is limited. Moreover, moving to a critical
distance ¢’ different from ¢* only affects the costs for customers located at a
distance between (" and ¢*, which again has a dampening effect on the overall
cost deviation.

So far, we have restricted our attention to variations in the return volume.
To round off our analysis, let us take a brief look at the impact of the return
quality, characterized by the yield parameter . An exact sensitivity analysis
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in the MILP model is more cumbersome in this case, since v occurs in the
coeficient matrix and the relation with the optimal cost value may therefore
be nonlinear. However, the continnous model suggests the network structure to
be fairly robust again: the local test area A7, turns out even to be independent
of v, whereas for the cost impact through a deviation from ¢*, the same
argument holds as for p above.

The above robustness property is good news from a practical perspective
in that it documents that supply uncertainty, which is characteristic of many
reverse logistics environments, does not really hamper logistics network design.
At the same time, one should note that variations in supply volume and quality
do affect total and unit reverse logistics costs, as illustrated in Table 4.3, Figure
4.4, and in Expressions (4.20) and (4.22). Therefore, supply uncertainty is
certainly a relevant factor when it comes to estimating the profitability of a
reverse logistics operation and taking an overall go/no-go decision. However,
its impact is largely independent of the specific network design.

This observation also relates to the proficiency of the different modeling
approaches. Specifically, it explains why in this context performance differ-
ences tend to be small between the solution of a scenario analysis and those
of theoretically more powerful yet computationally more demanding methods,
such as stochastic or robust models (see also Table 4.3). 1t is worth underlining
the impact of the scenario selection, however. A scenario analysis may require
a much finer gradation of scenarios than a stochastic or a robust model. For an
illustration, consider the last three columns of Table 4.3. For a given network
structure, the ‘maximum regret’ will, in general, be assumed for one of the
extreme scenarios A = 0 or A = 0.9. For the robust model, a scenario space
consisting of these two cases is therefore sufficient. For a conventional scenario
analysis, however, this is not true. Choosing only between the optimal design
for A = 0 and A = 0.9 respectively yields a 100% increase in the maximum
regret. However, there does exist an intermediate scenario (A = 0.33), whose
corresponding optimal solution performs equally well across all scenarios as
the optimal robust solution.

4.6.2 Compliance with Forward Networks

The robustness property analyzed in the previous subsection also plays an
important role when it comes to the compliance of reverse logistics networks
with ‘forward’ logistics infrastructure already in place. As discussed in Section
4.2, this is an important issue since companies, in many cases, do not set up
reverse logistics networks from scratch but on top of an existing ‘forward’
network.

In this vein. the forward and reverse network parts have been optimized
sequentially in the above examples. To assess the consequences of such a two-
stage approach, let us compare its outcome with an integral design, which
optimizes both network parts simultaneously. Figure 4.3(b) illustrates the
optimal solution in this case for A = 0.4. All parameters are kept equal to
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the values in Table 4.2. Comparing Figures 4.3(a) and (b), one observes that
an integral design approach indeed leads to a significantly different network
structure. However, the costs of both solutions are almost identical, namely
€52.9m in the sequential approach versus € 52.7m in the integral approach.
This result generalizes to other values of A. Specifically, the cost penalty for
adding the reverse logistics network on top of a previously designed forward
network rather than optimizing both parts together increases from 0% for
A = 0 to not more than 1.6% for A = 0.9. We have observed similar results for
many other parameter settings, including the case that demand and return
volumes are not proportional (see Fleischmann et al., 2001).

One can explain this observation as follows. First, forward flows outweigh
reverse goods flows, in general. in terms of volumes and costs. Therefore. the
overall optimal solution can be expected to be ‘close’ to the optimal forward
network. A deviation from this structure must allow for substantial savings
per unit in the reverse channel in order to set off against the resulting in-
crease in distribution costs. Second, the flat cost structure highlighted in the
previous subsection results in a very limited cost penalty for deviating from
the optimal reverse network structure due to constraints imposed by existing
infrastructure. This is the more true if demand and returns have a similar
geographical distribution.

This observation is again good news from a business perspective since it
suggests that setting up an efficient reverse logistics network in many cases
does not require a fundamental redesign of a company’s existing logistics net-
works. In addition to limiting investment costs, this conclusion simplifies the

customer customer
] pla_n[ s . plﬂﬂl L
v warehouse T~y v warehouse A~
A disassembly center 5 j‘w A disassembly center bR
— forward flow f Vil Ee) —— forward flow rJ { \
- reverse flow .-"f ") l e TEVErse flow of e }

Fig. 4.5. Sequential Versus Integral Network Design With Regional Cost Differences
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organizational implementation of reverse logistics initiatives. From a modeling
perspective, this observation results in a significant reduction of complexity
by optimizing forward and reverse network structures separately.

In Fleischmann et al. (2001), we have indicated the limits of the above
observation by means of an example of a paper recycling network. In that case,
the recycling operation does have a fundamental impact on the entire logistics
network by reducing the impact of virgin raw material sources. While the
structure of the original forward network is strongly dominated by pulp wood
production close to the Scandinavian forests, recycling ‘pulls’ the business
activities closer to the main markets in Western Europe. We illustrate the
underlying economics in the context of our previous example.

To this end, consider the potential differences in labor and investment costs
across Europe. To make things specific, assume that salaries and tax effects
result in a manufacturing cost advantage of €2.- per unit in Ireland and of
€ 1.50 in Eastern Europe, compared to the remaining countries. Moreover,
assume that these cost differences are less prominent in the recovery channel
due to a lower level of labor skills. For the sake of argument, let us assume that
effective differences in remanufacturing costs across countries are negligible.
In what follows, we set ¢ = €7.0m and v = 0.8, while all other parameters
remain unchanged with respect to the previous examples.

Figures 4.5 (a) and (b) depict the optimal network structures according to
a sequential and an integral design, respectively (A = 0.4). Moreover, Figure
4.6 shows the corresponding cost functions. Apparently, the cost advantage
of an integral design approach is much more significant in this case than in
the previous examples. This can be explained as follows. The structure of the
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Fig. 4.6. Cost Penalty of Sequential Design With Regional Cost Differences
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original forward network is dominated by the labor cost differences, which
cause the production facility to be located in Ireland. However, when mov-
ing towards remanufacturing this factor is losing importance and the network
structure is determined by transportation distances primarily. In other words.
it is the substitution of virgin products by recovered ones that have structurally
different cost drivers, which is key to the above result. It is under these condi-
tions that one can expect reverse logistics to have a more fundamental impact
on a company's overall logistics network.

4.7 Conclusions and Outlook

In this chapter, we have considered the design of appropriate infrastructure
for companies engaged in reverse logistics programs. In Sections 4.1 and 4.2,
we have argued that logistics network design is a key determinant of the over-
all profitability of closed—loop supply chains. By comparing this setting with
more traditional production—distribution networks, we have distilled three im-
portant issues that appear to be characteristic of reverse logistics networks.
First, the supply side is subject to significant uncertainty. Second, the need
for testing and sorting used products before assigning them to an appropriate
recovery option leads to a particular centralization—decentralization tradeoff.
Third, reverse logistics requires the coordination and integration of different
inbound and outbound flows.

The core part of this chapter, encompassing Sections 4.3 through 4.5.
reviews quantitative models for supporting reverse logistics network design.
Analogous with traditional network design problems, many of the approaches
rely on MILP formulations. We pointed out that these models, in general.
very much resemble conventional multi-level facility location models. Specific
features that can be attributed to reverse logistics are few. They include a
set of balance equations that link exogenous conditions on the supply and
the demand side and an additional degree of freedom in optimizing the logis-
tics network structure and the recovery policy simultaneously. A few models
explicitly incorporate the aspect of uncertainty through a stochastic program-
ming approach. The richer solution space of these models comes at a cost in
terms of significantly larger problem sizes. We have pointed out that a net-
work design that maximizes average or worst-case performance may not be
optimal for any of the underlying scenarios. However, the eventual cost benefit
compared to a scenario-based approach seems small in many cases. Finally,
we have discussed how approximate, continuous cost models may be applied
In a reverse logistics context. This approach is particularly helpful in mak-
ing explicit the impact of various context parameters. From a mathematical
perspective, the resulting reverse logistics model again turned out to be very
similar with its corresponding ‘forward’ counterpart.

In Section 4.6, we have compared the different modeling approaches on the
basis of an extended numerical example. The key observation of this analysis
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concerns the robustness of reverse logistics costs with respect to moderate
changes in the network structure. This result, which concurs with what is
known about conventional production—distribution networks, has important
practical implications. On the one hand, it limits the impact of the aforemen-
tioned supply uncertainty when it comes to choosing an appropriate network
structure. On the other hand, it indicates that in many cases reverse logistics
networks are flexible enough to comply with existing network structures.

(Given the short history of reverse logistics research, it goes without saying
that many issues are yet to be explored. We conclude this chapter by high-
lighting a number of issues that we believe to be important for furthering the
understanding of reverse logistics networks.

From a methodological perspective, the research focus to date has been
on model formulations and on output analyses. In contrast, attention to al-
corithmic aspects has been limited so far. As consensus about the modeling
foundations is growing, looking for eflicient solution algorithms is gaining rel-
evance. In particular, the question arises whether solution methods from tra-
ditional location theory are also adequate in a reverse logistics context, and
which features may require modified approaches. Although the results in this
chapter hint at a close similarity between reverse logistics network design and
traditional location models, a thorough understanding of algorithmic implica-
tions is still lacking. Recent work by Verter et al. (2003) provides a promising
starting point for future research in this direction.

Regarding the modeling choices, an important aspect that has, to date,
been left aside in reverse logistics network design is the role of inventories. Note
that none of the models reviewed throughout this chapter accounts for inven-
tory effects, except possibly as part of some constant unit handling cost term.
Yet, inventory is well known to be an important parameter in distribution
network design. Risk-pooling and postponement are major factors in the cen-
tralization /decentralization trade-off. We see a clear need for corresponding
analyses concerning the effects of inventory considerations on reverse logistics
networks.

Another aspect that deserves extra attention in future research concerns
the multi-agent character of reverse logistics networks. All of the models pre-
sented in this chapter take the perspective of a central decision-maker. Given
the lessons learned from supply chain coordination studies (see also Chapter
12), it seems advisable to take a closer look at the incentives and the chan-
nel power of the different players involved, such as collectors, logistics service
providers, processors, and OEMs. In particular, such an approach would help
underpin the characterization of different types of reverse logistics networks.
as sketched in Section 4.2.

Finally, we mention globalization as another issue that has not yet received
the attention in reverse logistics research that it seems to deserve. Global
sourcing has become a key factor in many supply chains. Intuitively, one may
doubt whether globalization is equally beneficial for reverse chains. Some of
the immediate obstacles include cross-border waste transportation and tax re-
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quirements. However, there may be even more fundamental arguments against
olobal reverse logistics Hows, which relate to the contribution of each player
within the chain. A thorough analysis of these issues, which seems instrumen-
tal for a good understanding of the differences between forward and reverse
logistics networks, again calls for a broadening of the modeling approaches
available to date.



