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Abstract—This article focuses on the traffic coordination
problem at traffic intersections. We present a decentralized
coordination approach, combining optimal control with model-
based heuristics. We show how model-based heuristics can lead
to low-complexity solutions that are suitable for a fast online
implementation, and analyse its properties in terms of efficiency,
feasibility and optimality. Finally, simulation results for different
scenarios are also presented.

Index Terms—Conflict resolution techniques, autonomous sys-
tems, cooperative control, safety systems, intelligent transporta-
tion systems

I. INTRODUCTION

The road traffic system constitutes one of the cornerstones
of modern society, but is burdened with several fundamental
problems. In particular, as more vehicles are expected to
enter the transportation system, traffic congestion and traffic
accidents are pushing road infrastructure to its limits [1]. These
problems are particularly pronounced at traffic zones where
roads cross or merge, such as intersections, roundabouts, and
onramps [2], [3].

Even though intersections represent a small part of the
entire road system, they account for a significant part of traffic
accidents. For instance, according to a European report, 20 %
of fatalities within the last decade are said to be intersection-
related in the EU [4]. Similar numbers have also been pre-
sented for the United States [5]. Therefore, intersection man-
agement is one of the most pressing and challenging problems.
It is envisioned that emerging technologies such as vehicle-to-
vehicle (V2V), vehicle-to-infrastructure communication (V2I),
and vehicle automation can help mitigate performance and
safety issues at intersections [6]. For example, communication
among vehicles can avoid stop-and-go traffic and provide aug-
mented situational awareness. In combination with cooperative
automation, vehicles could explicitly coordinate their actions
in order to avoid collisions and optimize performance, thereby
improving both safety and efficiency [7].

In general, there has been an increasing level of interest
in intelligent, autonomous control and decision-making al-
gorithms, as they are expected to lead to a more efficient,
comfortable and virtually accident-free traffic system. In a
medium to long-term perspective, vehicles are expected to be
able to drive autonomously and leverage their communication
capabilities for cooperative perception, situational awareness,
and ultimately path planning and control. However, such

autonomous systems are naturally complex, as they rely on the
interplay between sophisticated sensing, communication, and
control units, see Fig.1. For collision avoidance at intersections
in particular, the technical challenges are numerous [7]. From
the computational perspective, the underlying coordination
problem is combinatorial, as it includes the determination
of optimal crossing orders. From a control-theoretic point
of view, the problem structure and size are continuously
changing as vehicles enter and exit the traffic conflict zone.
Hence, solutions need to be adapted and recomputed, so as to
guarantee persistent feasibility. Finally, robustness to various
sources of uncertainty must be considered, including model
uncertainty, state (position, velocity, etc) uncertainty due to
imperfect sensors or due to V2V and V2I communication
(packet drops, random delays).

Several solutions have been proposed for conflict resolution
at traffic intersections [8]–[12], [12]–[32]. For instance, rule-
based methods are addressed in [9]–[17], hybrid-systems based
approaches in [18]–[21], and scheduling-based methods in
[22]–[25]. Other works, instead, explore constrained optimal
control techniques [12], [26]–[29]. For example, [12] utilizes
a optimal controller combined with a first-come-first-served
policy, while [30] proposes a new paradigm transforming the
problem from the original time domain to a space domain.
Also, constrained, non-linear optimization techniques are used
in [31], [32], assuming that a dedicated controller/infrastucture
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Fig. 1: Illustration of the interaction between the different dis-
ciplines involved in autonomous conflict resolution techniques.
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exists that is responsible for computing the best maneuvers for
all vehicles. Although general collision avoidance algorithms
exist, they are limited by numerical complexity to handle small
problems involving just a few vehicles. Also, most of the ex-
isting rule-based approaches lack formal analysis tools. Hence,
recent works have tried to combine optimal control with
heuristics and/or approximation-based approaches to design
efficient decision-making procedures, that formally guarantee
both performance and safety. For instance, [26] proposes a
hierarchical decomposition of the problem in combination with
approximations of the local cost functions while [27], [33]
impose a priority-based ordering, where vehicles solve local
control problems based on the decisions made by vehicles with
higher priority.

In this paper, we consider a scenario where multiple vehicles
need to autonomously coordinate through a traffic intersection
in a decentralized fashion, see Fig. 2. We abstract from
the communication, sensing and implementation aspects, and
focus on the fundamental issues of the underlying control
problem. We will build upon the results of [27], [33], [34]
and combine optimal control with sequential decision making.
We will show how to use tools from reachability theory to
derive model-based heuristics and to coordinate the vehicles.
The goal of this paper is to provide a comprehensive overview
of our line of research, and to complement our previous works
with further results and explanations.

The paper is organized as follows. First, we present in
Section II the problem formulation. We then describe our
control approach: a decentralized, sequential agreement so-
lution is given in Section III, while Section IV presents a
receding horizon strategy. Finally, simulations results are given
in Section V, and a discussion and conclusions are presented
in Section VI.

II. PROBLEM STATEMENT

We consider a scenario where multiple vehicles approach
a traffic intersection and need to coordinate, as illustrated
in Fig. 2. Our goal is to find the best individual control
input trajectories that allow each vehicle to safely reach its
destination in finite time. Consider the discrete-time system:

x(t+ 1) = f(x(t), u(t)), (1)

where x ∈ X is the state of N vehicles moving on N different
paths, u is a vector of control inputs and f represents a linear
function. The system is given by the parallel composition of
N different systems:

xi(t+ 1) = fi(xi(t), ui(t)), (2)

describing the longitudinal dynamics of each vehicle,
where xi = [pi vi]

T ∈ Xi := Pi × Vi ⊆ R2, and ui ∈
Ui ⊆ R, i ∈ N = {1, . . . , N}, are the state and input
vectors, respectively, and pi(t) and vi(t) denote the vehicle’s
position and velocity over the path Γi, respectively. Hereafter,
we will use the index i to denote i-th vehicle’s parameters,
variables or vectors. For each vehicle i, the sets Ui and Vi
are respectively given as Ui = { ui : ui ∈ [umin

i , umax
i ] }

and Vi = { vi : vi ∈ [vmin
i , vmax

i ] }. Moreover, given
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Fig. 2: Illustration of the considered scenario. Several au-
tonomous vehicles approach an intersection defined by a
range of positions over pre-defined paths. Note that all safety
conditions (5) are presented for cases where vehicle’s paths
overlap. Naturally, if two paths do not overlap (e.g., vehicles 1
and 4), there is no collision threat.

the model dynamics (2), we will denote by (·)(t + k) the
value of variable (·) at time t + k predicted at time t,
where k ∈ K = {0, 1, 2, . . .} indicates the number of integer
multiples of the discrete-time step size ∆t. We assume that
the path of each vehicle i is known, and that the intersection
can be modeled as an interval [Li, Hi] along each path, see
Fig. 2. Note that the interval [Li, Hi] should be defined in such
a way that the size of vehicles and the intersection itself are
accounted for.

Our goal is to design a conflict resolution algorithm for
avoiding side-collisions1, as they capture the major challenges
and safety aspects of the coordination problem at intersections.
We further assume that the initial condition of the multi-
vehicle system is such that there exists at time zero a feasible
control input solving the coordination problem, given the
control structure proposed in this paper. We introduce the
following definition.

Definition 1 (Critical set): For each vehicle i ∈ N , let Ci
denote the critical set, i.e., the set of all states corresponding to
positions along the i-th path where side-collisions are possible
and be defined as:

Ci , { xi ∈ Xi : pi ∈ [Li, Hi] } . (3)

Hence, the set of all conflicting configurations representing
a side collision is given as:

S := {x ∈ Rn : ∃ (i, j) ∈ E , xi ∈ Ci and xj ∈ Cj , i 6= j},
(4)

1Even though not considered here, the proposed formulation could be
extended in the future to handle rear-end collisions between vehicles travelling
in the same path. In this case, the set of all conflicting configurations S
should be reformulated to include all states for which vehicles in the same
lane are closer than a prescribed safe distance. Thus, precedence conditions
need to be included in the optimization problems, and safety constraints to be
reformulated in a coherent way in order to guarantee perpetual safety. Note
that in this case the set of feasible crossing orders is naturally constrained by
traffic flow conditions, i.e., by the topological order of vehicles in the same
path.
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where E is the set of all pairs of indices i, j ∈ {1, . . . , N}.
Therefore, safety is ensured if, for all vehicles i and j
travelling on intersecting paths:

pi(t) ∈ [Li, Hi]⇒ pj(t) /∈ [Lj , Hj ], ∀j 6= i. (5)

In the following, we formulate the coordination problem
within a constrained optimal control framework. Such a frame-
work allows to conveniently accommodate performance and
safety arguments, and to leverage the formal analysis tools
available in the literature. Let the cost for vehicle i be generally
expressed as:

Ji(Xi, Ui) =

∞∑
k=0

Λi(xi(t+ k), ui(t+ k)), (6)

where Λi(xi(t + k), ui(t + k)) is the stage cost, Xi =
[xTi (t), xTi (t + 1), xTi (t + 2), ...]T and Ui = [uTi (t), uTi (t +
1), uTi (t + 2), ...]T are i-th vehicle’s state and control trajec-
tories, respectively. Finally, define the (closed) set of the i-th
vehicle’s admissible states before the intersection as:

Ωi = {xi ∈ Xi : vi ∈ [vmin
i , vmax

i ], pi ∈ [0, Li)},
while Υi = Xi/{Ci ∪ Ωi} encloses the set of states beyond
the intersection.

Assuming the presence of a central node in the network,
functioning as coordinator, the centralized optimal coordina-
tion problem can be formulated as follows:

min
Ui,i∈N

N∑
i=1

Ji(Xi, Ui) (7a)

s.t.
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀i ∈ N , ∀k ∈ K

(7b)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀i ∈ N , ∀k ∈ K (7c)
∃ k <∞ : xi(t+ k) ∈ Υi, ∀i ∈ N , k ∈ K (7d)
x(t+ k) /∈ S, ∀k ∈ K. (7e)

Note that, if all vehicles reach in finite time a configuration
xi(t) ∈ Υi, t < ∞, then the coordination is said to be
successful and deadlock-free, i.e., vehicles will eventually
clear the coordination region.

The major challenge stems from the collision avoidance
constraint (7e), which renders the problem combinatorial. For
a given initial configuration of vehicles, a multitude of feasible
temporal crossing orders (i.e., different orders in which one
vehicle crosses the intersection before another) might exist,
see Fig. 3. More precisely, for a scenario with N vehicles and
N different roads, there are N ! different orders under which
the vehicle’s can cross the intersection.

Unsurprisingly, the centralized problem as been shown to
be NP-hard [35], [36] and therefore exact solutions become
intractable for practical problem sizes. Hence, either heuristics
or approximations are needed for the design of efficient
decision-making procedures that could be implemented in
real vehicles, guaranteeing both performance and safety in a
critically time-constrained environment.
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Fig. 3: Schematic illustration of a two vehicle collision. The
red area contains the infeasible (forbidden) configurations, i.e.,
the set S for a two vehicle system. The red trajectory illustrates
the option where vehicle 2 crosses the intersection before
vehicle 1, the blue trajectory the opposite case.

III. A DECENTRALIZED SOLUTION STRATEGY

In this section we present an optimal control-based strategy.
We avoid the exponential complexity of the problem induced
by the collision avoidance constraints (7e) through a heuristic,
and present a coordination scheme that scales linearly with the
number of vehicles. In particular, we introduce the notion of
a decision order [37], based on which we let the vehicles
sequentially solve local optimal control problems. In this way,
each vehicle avoids collisions by adapting to the already
computed plans by vehicles preceding it in the order. Hence,
our scheme consists of two stages: i) the selection of an order,
and ii) the sequential computation of vehicle controls. We
formally define the decision order O as follows.

Definition 2 (Decision order): Let N = {1, . . . , N} be the
set of vehicle indices. The decision order O is a permutation
of the indices in N . Denote with (O)c the c-th element in the
order, and let Obi and Oai be the sets containing the indices of
all vehicles j 6= i appearing before and after i = (O)c in O
respectively.

Next, we detail the two steps of our approach. In Sec-
tion III-A, we first formulate the vehicle level optimal control
problems, and show how to solve them so that collision
avoidance is guaranteed for a given order. In Section III-B,
we present a heuristic based on reachability analysis tools.

A. Sequential Optimal Control

In this subsection we show how the sequential solution
of optimal control problems, performed in a given order O,
gives feasible (yet suboptimal) solutions to the coordination
problem (7).

The main idea is explained as follows. Given an order O,
the first vehicle in the order (with index (O)1) finds the
optimal control action that takes it across the intersection.
The second vehicle in the order ((O)2) solves two problems:
one constrained to cross the intersection before vehicle (O)1,
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one constrained to cross the intersection after. Of the two
alternatives, vehicle (O)2 selects and applies the control
action with the lowest cost. The third vehicle in the order,
indexed (O)3, similarly solves two problems, one constrained
to cross the intersection before both (O)1 and (O)2, and one
constrained to cross the intersection after both (O)1 and (O)2.
More generally, the cth vehicle in the decision order, indexed
i = (O)c, is required to solve:
• Problem A (Informal Statement): Finding the optimal

control policy such that vehicle i enters the intersection
only after all preceding vehicle(s) j ∈ Obi have crossed
the intersection.

• Problem B (Informal Statement): Finding the optimal
control policy such that vehicle i exits the intersection
before any preceding vehicle(s) j ∈ Obi enters the
intersection.

To formalize Problem A and B, we first define the set of time
instances during which a vehicle occupies the intersection.

Definition 3 (Occupancy times): For each vehicle i ∈ N ,
the (expected) occupancy times of the intersection at time t,
given an initial state xi(t) and a control sequence Ui, can be
expressed as:

Ii (xi(t), Ui) = {k ∈ K : xi(t+ k) ∈ Ci}. (8)

For notation simplicity, throughout the rest of the paper we
will consider Ii as the shorthand form of Ii (xi(t), Ui). We
also denote the union of the occupancy times of all preceding
vehicles of vehicle i as

Ψi =
⋃
j∈Ob

i

Ij . (9)

Therefore, we have that:
1) For Problem A, the earliest intersection entry time for

vehicle i is given by:

ξai = max
c∈Ψi

{c}+ δai , (10)

2) For Problem B, the latest intersection exit time for
vehicle i is given by:

ξbi = min
c∈Ψi

{c} − δbi . (11)

where δbi , δ
a
i ∈ Z+ are parameters guaranteeing a time-gap

between two vehicles at the intersection. Problems A and B
can then be formally defined as the two following quadratic
programs (QPs):

Problem A1:

min
Ui

Ji(Xi, Ui) (12a)

s.t.
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀k ∈ K

(12b)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀k ∈ K (12c)
∃ k <∞ : xi(t+ k) ∈ Υi, k ∈ K (12d)
xi(t+ ξai − 1) ∈ Ωi, (12e)
xi(t+ ξai ) ∈ Ci, (12f)

(12g)
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Fig. 4: For vehicle i, illustration of the critical set Ci, the sets
Ωi and Υi, and the attraction sets Ai. Here, Ai1 = Ai(Ci,Ui),
where the target set is the intersection area Ci. Starting from all
positions and velocities within the green set Ai1, the vehicle
will enter the intersection in one time step. By iterating the
computation of Prer(., .), one can then compute the j-step
attraction set Aij = Ai(Ai(j−1),Ui), j > 1, until the back
propagation of Ai(F ,Ui) eventually results in an empty set.

Problem B1:

min
Ui

Ji(Xi, Ui) (13a)

s.t.
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀k ∈ K

(13b)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀k ∈ K (13c)
∃ k <∞ : xi(t+ k) ∈ Υi, k ∈ K (13d)

xi(t+ ξbi ) ∈ Υi. (13e)

In problems (12), (13), the state dynamics and the input,
state and deadlock constraints are the same as in problem (7).
The collision avoidance constraint (7e), however, has been
replaced for the two problems by the constraints (12e), (12f)
and (13e). Constraint (12e), (12f) force vehicle i to enter the
intersection after all higher priority vehicles have cleared it.
Constraint (13e), instead, imposes clearing the intersection
before the higher priority vehicles start entering it. Hence,
constraints (12f) and (13e) require the i-th vehicle state to
belong to the sets Ci and Υi at the time instants t + ξai
and t + ξbi , respectively. If vmin

i ≥ 0 in Vi (vehicles cannot
reverse), the position is monotonically increasing and the
conditions (12f) and (13e) are sufficient to ensure that the
vehicle i is outside the intersection within the time interval Ψi.

To complete the procedure, (2N − 1) QPs need to be
solved. We emphasize that for a given decision order O, the
actual crossing order is an implicit function of the sequential
decisions made by the vehicles. More precisely, the procedure
does not explore the combinatorial solution space, but uses
the order heuristic to build up piece-by-piece the one solution
that it outputs. Hence, the resulting control policy may no
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longer be the optimal solution of (7), but an approximation
of it. Note, however, that the quality of the approximation is
dependent on an appropriate definition of the decision order.
We will discuss this aspect in the following section.

B. Decision order heuristic
In this section we motivate and present a model-based

decision heuristic for obtaining O, first proposed in [33].
Since the vehicles crossing the intersection could span from
compact cars to large trucks, the decision order heuristic
needs to be designed such that the dynamics and constraints
of the involved vehicles are considered. If not, a decision
order might be defined such that, for instance, ten city cars
are prioritized over a large truck. Since later vehicles are
potentially forced to perform larger adaptations under the
sequential scheme presented in the previous section, the result
might be undesirable or even infeasible.

For this reason, we proposed a model-based heuristic
in [33]. This heuristic sorts the vehicles in ascending order
based on the Time To React ∆i(Ui), which is defined as the
time the vehicle has until it reaches a state from which it can
no longer stop before the intersection. More precisely, based
on models of the vehicles dynamics and their constraints, we
use the intersections attraction sets, i.e., the set of states with
positions before the intersection from which the exists no input
that can prevent the vehicle from reaching the intersection. We
can formally define an attraction set Ai as:

Ai(F ,Ui) = Prer(F ,Ui) (14)
= {xi(t) ∈ Xi : xi(t+ 1) ∈ F ,∀ui ∈ Ui} ,

where F denotes a desired target set and Ui the set of feasible
inputs. In the previous equation, the Prer set can be defined
using the reachable and controllable sets explained in [38]. In
words, Ai defines the set of states of system (2) which evolve
into the target set F in one time step for all possible control
input signals ui ∈ Ui.

Note that when (14) is applied recursively, a sequence of
sets is generated satisfying the property that, once entered,
the system is guaranteed to reach F regardless of the input
command. For collision avoidance at intersections, we are then
specifically interested in computing Ai,m(Ai,m−1,Ui), where
Ai,m denotes the m-step attraction set and

Ai,1 = Prer(Ci,Ui). (15)

An illustration and interpretation of the attraction set is given
in Fig. 4. Note that both Ci and Ai,m,∀m, i ∈ N are time
invariant sets, and can therefore be computed offline.

Given a control vector Ui we define the time to react ∆i(Ui)
as the time until an attraction set is reached. Formally, we have

∆i(Ui) = min{k ∈ K : xi(t+ k) ∈ Ai,m, ui = 0}.
The vehicles in the decision order O is thereafter sorted by
ascending values of ∆i(Ui), i.e., such that:

∆i(Ui) < ∆j(Uj) < . . . < ∆n(Un)⇒


i = (O)1,

j = (O)2,

...
n = (O)N .
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Fig. 5: Illustration of the proposed control strategy. Each
local problem is decomposed as: a finite-time optimization
problem guaranteeing collision avoidance; an infinite-time
control problem defining the cost-to-go.

In other words, highest priority will be given to the vehicle
closer to its attraction set (i.e., the vehicle with the lowest ∆i

value), then to the vehicle with the second smallest ∆i and so
on. The reader can refer to [33] for further details.

It is worth mentioning that alternative heuristics to deter-
mine the decision order O exist. For instance:
• First In First Out (FIFO) protocols, also known as first-

come-first-served, were considered in [39], [40]. Such
policy favours vehicles very close to the intersection or
those travelling at high speeds.

• Distance to intersection, as in [41]. Such algorithm
has the advantage of handling closer vehicles first, while
keeping far-way vehicles at the end of queue.

• Traffic rules that govern interactions between vehicles,
motorbikes and pedestrians. They result from the inter-
play between human drivers, signal infrastructure and
lane markings, and constitute themselves a heuristic way
of finding a solution to the coordination problem (7). A
basic rule of today’s traffic legislation is, for instance, the
priority to the right.

• Random orders considered in [37], for instance, in the
context of conflict resolution in air traffic control. Such
protocols may, however, easily compromise feasibility,
as consecutive decisions under different orders may be
contradictory and render the system unsafe.

Nevertheless, all of the above mentioned criteria neglect
actuation and dynamic constraints, unlike the proposed model-
based heuristics. For a more thorough discussion on decision
order heuristics, we refer the reader to [34].

IV. A RECEDING HORIZON APPROACH

In Section III-A, we showed how the solution to problem (7)
can be approximated as the combination of 2N −1 decoupled
infinite horizon optimal control problems. But constrained
infinite horizon problems cannot be easily treated in practice.
However, the problem structure provides a natural way to
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decompose the problem into smaller, easily solvable subprob-
lems. In order to illustrate such decomposition, we introduce
in this section an additional approximation to problems (12)
and (13). We further show how the coordination is done in
closed-loop using a receding horizon scheme, and thereafter
discuss the conditions under which the closed-loop coordina-
tion controller gives feasible solutions.

A. Problem reformulation

Problems (12) and (13) can be compactly written as follows:

min
Ui

Ji(Xi, Ui) (16a)

s.t.
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀k ∈ K

(16b)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀k ∈ K (16c)
∃ k <∞ : xi(t+ k) ∈ Υi, k ∈ K (16d)
xi(t+M) ∈ Fi, (16e)

with, respectively, M = ξai , Fi = Ci and M = ξbi , Fi = Υi.
As mentioned before, conditions (12f) and (13e) are sufficient
to ensure that the vehicle i is outside the intersection within
the time interval Ψi. Hence, no particular safety requirements
apply anymore after t+ ξai and t+ ξbi for the local problems
A1 and B1, respectively. Therefore, problem A1 can be seen
as the combination of:

1) an optimization problem, defining a collision-free tra-
jectory up to time t+ ξai ;

2) an optimization problem, defining the trajectory for all
times after t+ ξai .

The same holds for problem B1, if one replaces t + ξai by
t + ξbi in the previous statements. An illustration is given in
Fig. 5. In the following, we consider a particular cost function
Ji(Xi, Ui), that is equal to all vehicles i and given as:

Λi(xi(t+k), ui(t+k)) = ‖vi(t+k)−vdi‖
2
Qi

+‖ui(t+k)‖2Ri
, (17)

where Ri � 0 and Qi � 0 are weights penalizing the control
signal and the deviation of the vehicle’s speed from the desired
value, respectively. Note, however, that different metrics can
be used. Define KM = {0, 1, . . . ,M}. For a general M and
Fi, the subproblems 1) and 2) are defined as follows:

min
Ui

Jfi (Xi, Ui) (18a)

s.t.
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀k ∈ KM

(18b)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀k ∈ KM (18c)
∃ k <∞ : xi(t+ k) ∈ Υi, k ∈ KM (18d)
xi(t+M) ∈ Fi, (18e)

defining the optimal trajectories up to a time (t+M) with

Jfi (Xi, Ui) =

M∑
k=0

Λi(xi(t+ k), ui(t+ k)) + Ji
∞∗

(t+M),
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Fig. 6: Cost function of problem (19) for vehicle 3 in Table I.
The blue line and the colored x-axis represent the explicit,
piecewise quadratic solution and the associated state partition,
respectively, computed using the MPT Toolbox for Matlab.
The dashed line represents the considered quadratic approxi-
mation that upper-bounds the explicit cost function.

where Ji∞
∗
(t+M) represents the cost-to-go and corresponds

to the following optimization problem:

Ji
∞∗

(t+M) = min
Ui

Ji(Xi, Ui) (19a)

s.t.
x(0) = xi(t+M), (19b)
xi(t+ k + 1) = fi(xi(t+ k), ui(t+ k)), ∀k ∈ K

(19c)
xi(t+ k) ∈ Xi, ui(t+ k) ∈ Ui, ∀k ∈ K (19d)
∃ k <∞ : xi(t+ k) ∈ Υi, k ∈ K (19e)

that determines the optimal trajectories after time (t + M).
Note that problem (19) corresponds to a constrained linear
quadratic regulator (LQR), for which no safety constraints are
imposed. Moreover, and assuming that the stage cost function
penalizes deviations from the desired speed as in equation (17),
problem (19) is reduced to a simple velocity regulator. Hence,
its solution is a piecewise affine function of the velocity and
the associated cost function piecewise quadratic, see Fig. 6.

However, finding a solution to (18) with a piecewise
quadratic cost-to-go function is a hard problem to solve. To
address this, a quadratic approximation can be used to upper-
bound the explicit solution of (19), as shown in Fig. 6. The
approximated cost function is then simply given as:

Ĵ ∞
∗

i (xi(t+M)) = xi(t+M)TP∞ xi(t+M)

−2vTdiP∞xi(t+M) + vTdiP∞vdi, (20)

where vdi is the desired speed and P∞ the upper-bounding
quadratic approximation, see Fig. 6. In this case, problem
(18) given the cost-to-go function (20) becomes a standard
constrained, finite-time optimization problem with a terminal
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cost that can be easily solved. Note that the explicit cost
function and feedback control map corresponding to (19) can
be computed offline using multi-parametric control tools, and
therefore also the approximated cost function. This allows
us to reduce the computational load and to derive a control
approach suitable for fast online implementation. The reader
can refer to [38] for further details.

We will show now how to compute an approximation to the
infinite horizon optimal problems A1 and B1. More precisely,
each local problem is formulated as a finite time horizon
problem where safety is enforced as terminal constraints, given
a quadratic upper-bound of the optimal cost-to-go function. In
a similar way as before, the optimal control signal allowing
a given vehicle to cross the intersection before or after
the remaining vehicles can be retrieved by solving the two
following problems:

• Problem A2:
– Offline:

Solve (19) and obtain the explicit feedback
control map and cost function;

– Online:
Solve (18) with the cost-to-go function (20)
and M = ξai , and Fi = Ci ;

• Problem B2:
– Offline:

Solve (19) and obtain the explicit feedback
control map and cost function;

– Online:
Solve (18) with the cost-to-go function (20)
and M = ξbi and Fi = Υi ;

In practice, the infinite time optimal solution to these problems
corresponds to the optimal solution U∗i of problem (18)
applied up to t + M , complemented with the explicit (and
offline computed) solution of (19) from this instant onwards.
An illustration is provided in Fig. 7.

B. Receding horizon control
In order to find a solution to the infinite dimensional

problem (18), a receding horizon computational scheme can

Algorithm 1 Receding horizon implementation

Define a decision order O.
For vehicle i = (O)c, where c > 1:

measure the state xi(t) at time t;
collect Ij , ∀j ∈ Obi ;
compute ξai and ξbi ;
verify feasibility of Problem A2 and B2 (eq. (23a), (23b))
if xi(t) ∈ K

(ξai −t)
i (Ci,Ui) and/or xi(t) ∈ K

(ξbi−t)
i (Υi,Ui)

solve Problem A2 and/or Problem B2;
compare Jf∗i (Xi, Ui) and choose the solution Ui∗ with
the lower cost;
apply the first element of Ui∗ to the system;

else Trigger a mitigation manoeuver (e.g., emergency braking)
broadcast the expected occupancy intervals Ii to all
elements of Oai ;
wait for the new sampling time t+ 1 and new measurements
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Fig. 7: Illustration of the control principles of the proposed
approach. In the upper figure, the optimal solution to problems
A2 or B2 is composed of a finite time component and a
infinite-time part defining the cost-to-go. In the lower figure,
the cost of both problems A2 or B2 are represented: here,
the optimal local solution (i.e., with the lowest cost Jf∗i )
corresponds to “going before” the previous vehicles.

be used. More precisely, at every sampling time, a finite time
optimization problem is solved and only the first element of
the computed control input sequence is applied. At the next
time step, the problem is formulated and solved again over a
shifted time horizon [38].

A sketch of the receding horizon implementation of our
sequential approach is presented in Algorithm 1 and illustrated
in Fig. 8. It can be explained as follows. Given a cooperatively
defined order defined at time t, every vehicle in O solves
problems A2 and B2 (if feasible), and obtains the optimal
solution Ui∗ with the lowest associated cost Jf∗i (Xi, Ui). The
first element of Ui∗ is applied and the expected occupancy
times corresponding to that control signal transmitted to fol-
lowing vehicles in the decision order. Once all N vehicles have
chosen their optimal trajectories, the procedure is repeated at
next time instant, yielding a receding horizon control scheme.

Note that our approach reduces the communication bur-
den, as vehicles are only required to transmit the expected
occupancy interval to the following vehicles. Moreover, when
implemented in a receding horizon fashion, the prediction hori-
zon of the online part of (18) shrinks at each time step, and will
eventually vanish as vehicles reach the intersection. This yields
that the solution of the local problem will eventually converge
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to the explicit solution of (19), that has been computed offline.

C. Feasibility analysis

Since constraint (18e), with M = ξai and Fi = Ci for
problem A2 and with M = ξbi and Fi = Υi for problem
B2, is sufficient to ensure that each vehicle i is outside the
intersection within the time interval Ψj , the feasibility of a
decision order is then characterized by the capacity of each
vehicle of reaching Ci in ξai steps and/or the set Υi in ξbi steps.

Let the one-step (forward) controllable set to the set F ⊆ Xi
be defined as [38]:

Ki(F ,Ui) := Pre(F ,Ui) (21)
= {xi(t) ∈ Xi : ∃ui ∈ Ui s.t. xi(t+ 1) ∈ F} .

Moreover, the R-step controllable set KR
i (F ,Ui) is recursively

given as:

Km
i (F ,Ui) , Pre(Km−1

i (F ,Ui)) ∩ Xi, K0
i (F ,Ui) = F ,

(22)
where m ∈ {1, . . . , R}. For notation simplicity, KR

i (F) will
be used as the shorthand form of KR

i (F ,Ui). The following
conditions on the feasibility of a decision order hold.

Proposition 1 (Local feasibility): Let vehicle i ∈ N be
driven by dynamics (2) and xi(t) ∈ Xi be the state at time t.
Given a decision sequence O, vehicle i = (O)c, c > 1 has a
feasible solution if and only if at least one of the following
conditions is satisfied:

xi(t) ∈ K
(ξai −t)
i (Ci,Ui), (23a)

xi(t) ∈ K
(ξbi−t)
i (Υi,Ui). (23b)

It follows from definition (22) that if condition (23a) is
satisfied, then ∃ ui ∈ Ui such that vehicle i can enter Ci in ξai
steps. On the other hand, if condition (23b) is satisfied, then
there exists a feasible control input that can drive the system
to the target set Υi in ξbi steps. Thus, if one of these conditions
is satisfied, there exists at least one feasible control sequence
satisfying the safety constraints (18e).

Proposition 2 (Global feasibility): Consider a set of N
systems driven by dynamics (2) such that x(t) ∈ X . At time t,
a decision order O is feasible if and only if Proposition 1 is
satisfied for each vehicle (O)c, ∀c > 1.

In an identical way as in the definition of the model-based
heuristics presented in Section III-B, Propositions 1 and 2
exploit reachability tools to verify feasibility conditions. Given
the time-invariant nature of Ci and Ui, the derivation of the
backward controllable sets KR

i (Ci,Ui) can be locally pre-
computed and kept as a look-up table, for instance, turning
the feasibility analysis into set-membership tests. Note that if
none of the previous conditions is satisfied, a collision cannot
be avoided by the proposed approach. Hence, collision miti-
gation solutions must be applied as, for example, emergency
braking or steering manoeuvres. Note, however, that mitigation
solutions are beyond the scope of this paper.

V. RESULTS

In this section we present results that demonstrate the
control principles described in previous sections. Throughout
several scenarios, we discuss efficiency, feasibility and op-
timality aspects of the proposed algorithm. We consider an
intersection scenario as illustrated in Fig. 2, for which the
simulation settings are summarized in Table I. The dynamics
along the paths of all vehicles are taken as

xi(t+ 1) = A xi(t) +B ui(t), (24)

where A = [1 1; 0 1] and B = [0 1]
T . Furthermore, we

consider that as part of the assigned driving task, each vehicle i
has a known, constant reference/desired velocity denoted by
vdi ∈ Vi, and initial state given by xi(0) = [pi(0) vdi]

T . The
control bounds are non-identical, i.e., Ui 6= Uj , ∀i, j ∈ N , and
the safety parameter δ is equal to δ = [ δb δa ]T = [1 1]T .

A. Efficiency

Consider a collision scenario involving vehicles 1, 2 and 3
from Table I. In absence of a suitable avoiding manoeuver, a
collision may occur for t ∈ [10, 24]. Take a decision order O
defined according to the individual Time to React ∆i(Ui), as
proposed in [33]. This yields a higher priority to vehicles with
a lower ∆i(Ui), i.e., an order O = {1, 3, 2}. The reader can
refer to [33] for further details.

Fig. 9 shows the resulting trajectories according to the
proposed sequential control strategy, in accordance to Algo-
rithm 1. The costs associated with each local control problem
A2 and B2 are presented in Table II. In this figure, the critical
set Ci is represented by the horizontal red lines while the black
dashed lines represent the entrance and exit times, therefore
defining Ii, ∀i ∈ N . As one can observe, collisions are
avoided (i.e., the different Ii never intersect) and vehicles
reach, safely and in finite time, their destination Υi. In
accordance to the Algorithm 1, vehicle 1 follows its prede-
fined motion profile, crossing the intersection in the interval
t ∈ [12, 17]. It follows from Table II that the solution with
the lowest cost for vehicle 3 is to decelerate and wait until
vehicle 1 exits the intersection. This yields that I3 = [18, 33],
as seen in Fig. 9. Finally, vehicle 2 crosses the intersection for
t ∈ [34, 43], i.e., after the two previous vehicles. Note that,
as shown by the Table II and the feasibility tests presented in
Fig. 11, decelerating and crossing last the intersection is in fact
the only feasible solution, as vehicle 2 is incapable of reaching
its destination earlier without violating safety constraints.

Parameters Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
Initial state (4,8.2) (5,5.95) (70,3.3) (8,5)

Li [m] 100 100 100 100
Hi [m] 150 150 150 150
Ii [s] 12-17 16-24 10-24 19-29

∆i 8 15 10 18
umin
i [m/s2] -0.3 -1 -2 -3

umax
i [m/s2] 0.3 1 2 2

TABLE I: Settings and parameters
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Fig. 9: Trajectory evolution for a three vehicle collision involving vehicle 1, 2 and 3 from Table I, according to the proposed
sequential approach and for an order O = {1, 3, 2}. The intersection is represented by the horizontal red lines while the grey
dashed lines delimit Ii,∀i.

B. Feasibility

Clearly, the number of feasible crossing orders decrease
as the vehicles get closer to the coordination zone, since a
larger part of the combinations are ruled out by the vehicle
dynamics, state and input constraints. Though one is naturally
interested in starting the coordination procedure as early as
possible, whenever vehicles are within communication range,
it may occur that by the time vehicles establish communication
several decision orders should already be discarded.

Vehicle Cost of (19)
Cost-to-go Cost of (18)

2 Prbl. A2
Prbl. B2

3.86
-

371.81
∞

3 Prbl. A2
Prbl. B2

2.48
13.82

57.03
234.43

TABLE II: Optimality analysis: costs associated with the local
problems A2 and B2 for a decision order O = {1, 3, 2}.

Previously, we shown how the proposed control strategy can
be effectively applied to a three-vehicle system, in particular
when the decision order is established with respect to the
∆i(Ui). In order to support our claims on the pertinence of this
model-based heuristics, we will analyse in the sequel different
decision orders and their feasibility properties. Our goal is to
highlight the merits of the proposed model-based heuristics
for a sequential decision-making procedure.

Consider a collision scenario involving vehicles 1, 2 and 3.
Table III summarizes the feasibility results for different or-
ders. According to Proposition 2, only the decision order
mathcalO = {1, 3, 2} defined with respect to ∆i is globally
feasible, while all remaining orders are locally infeasible for
vehicle 1. In other words, both problems A2 and B2 do not
have a solution, as illustrated in Fig. 10. For an order O =
{3, 1, 2}, vehicle 1 is unable to cross before or after vehicle 3,
i.e., x(t) /∈ K9

1 (Υ1,U1) and x(t) /∈ K25
1 (C1,U1) in Fig. 10.

On the other hand, for O = {3, 2, 1} x(t) /∈ K9
1 (Υ1,U1)

and x(t) /∈ K34
1 (C1,U1) in Fig. 10. This means that vehicle

1 is unable cross the intersection either before vehicle 3 or
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Fig. 11: Feasibility constraints verification for vehicle 2, for a
collision scenario involving vehicles 1, 2 and 3 from Table I
and for O = {1, 3, 2}.

after vehicles 3 and 2. Note that for this particular case the
sets K25

1 (C1,U1) for O = {3, 1, 2} and K34
1 (C1,U1) for

O = {3, 2, 1} overlap exactly in Fig. 10.
For the considered examples, Table III and Fig. 10 high-

light the potential advantages of the proposed model-based
heuristics in terms of feasibility. An exhaustive analysis of the
impact of the heuristics’ choice on the feasibility properties of
the control algorithm is currently under consideration.

C. Optimality

Now we analyse the optimality properties of the proposed
sequential approach when compared to the optimal solution of

the centralized coordination problem (7).
Consider Table I. We take as example two collision sce-

narios: (i) a conflict between vehicles 2 and 4, see Fig. 12;
(ii) and a conflict between vehicle 3 and 4, see Fig. 13. In
both figures, we present the vehicles’ position trajectories both
for the centralized problem (7) (blue line) and the sequential
approach presented in Section IV-B (red line). In particular,
Fig. 12a,13a consider a decision order defined with respect to
∆i(Ui), i.e., O = {2, 4} and O = {3, 4}, respectively, while
Fig. 12b, 13b assume a decision order defined according to
the distance to collision [41] and to right-hand priority rules,
respectively. See Section III-B.

In both figures, one can see that for different heuristics the
resulting crossing order is inverted. Indeed, while in Fig. 12a,
13a the model-based heuristic approach provides an identical
crossing order to the one resulting from the implementation of
the (centralized) optimal solution of (7), the crossing order is
inverted when different decision criteria are considered. Most
important, the difference in terms of optimality for different
orders is striking. Though formal sub-optimality bounds are
still to be provided, these results show however that, for
the considered examples, the optimality gap between the
centralized approach and the proposed sequential scheme is
reduced.

VI. CONCLUSIONS

In this paper, we presented our recent works on cooperative
conflict resolution approaches. We first described a model-
based heuristic, conveniently translating into the decision order
a comprehensive description of the conflict itself. We then
formulated and analysed the coordination problem within an
optimal control framework, where the decentralized solution
of the local optimization problems is divided in two parts: a
finite-time problem where collision avoidance is enforced as
terminal constraints, and an infinite horizon problem defin-
ing the cost-to-go that can be calculated offline. Though
sub-optimal by design, the proposed solution offers several
advantages, trading off optimality with low complexity and
scalability. First, the per vehicle complexity with respect to the
number of vehicles remains constant since collision avoidance
is enforced through local state constraints at two specific time
instants. Second, the proposed structure can be cast into a
receding horizon framework, partially relying on the explicit
solution of an optimization problem. Finally, simple feasibility
conditions can be derived by leveraging reachability tools. We
also presented several results (for a variety of collisions setups
and problem sizes) and discussed optimality, efficiency and
feasibility of the proposed algorithm.

The extension to more complex scenarios is non-trivial
and is ongoing. In particular, we are currently working on

Criteria ∆i ‖pi(t)− Li‖ FIFO
Order O {1, 3, 2} {3, 2, 1} {3, 1, 2}

Feasibility Feasible Infeasible Infeasible

TABLE III: Feasibility analysis according to Proposition 1 and
2, for different decision criteria.
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Fig. 12: Trajectories of vehicle 2 and 4: original profile in green, centralized solution in blue and the sequential solution in
red for an order O = {2, 4} defined according to ∆i in subfigure (a) and O = {4, 2} in subfigure (b).
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Fig. 13: Trajectories of vehicle 3 and 4: original profile in green, centralized solution in blue and the sequential solution in
red for an order O = {3, 4} defined according to ∆i in subfigure (a) and O = {4, 3} in subfigure (b).

extensions so one can formally include rear-end collision
avoidance between vehicles on the same lane, or to handle
continuously traffic flows. Such cases require the adaptation
of the current approach, as the information given by the
occupancy intervals is no longer sufficient to avoid rear-end
collisions.
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