
Experiments with Two Approaches for Tracking Drifting

Concepts

Ivan Koychev

Department of Information Research

Institute of Mathematics and Informatics, Bulgarian Academy of Science,

Acad. G. Bonchev Street, bl.8, Sofia -1113, Bulgaria

ikoychev@math.bas.bg

Abstract. This paper addresses the task of learning classifier

from stream of labelled data. In this case we can face problem

that the underling concepts can changes over time. The paper

studies two mechanisms developed for dealing with changing

concepts. Both are based on the time window idea. The first one

forgets gradual, by assigning to the examples weight that gradu-

ally decreases over time. The second one uses a statistical test to

detect changes in concept and then optimizes the size of time

window, aiming to maximise the classification accuracy on the

new examples. Both methods are general in nature and can be

used with any learning algorithm. The objectives of the con-

ducted experiments were to compare the mechanisms and ex-

plore whether they can combined to achieve a synergetic effect.

Results from experiments with three basic learning algorithms

(kNN, ID3 and NBC) using four datasets are reported and dis-

cussed.

Keywords: Machine Learning; Concept Drift; Forgetting Models

1 Introduction

Many machine learning applications employ algorithms for learning classi-

fiers from examples. In those applications, new examples are obtained con-

tinuously and added to the training dataset. Then the classifier can be update

on the new set of examples, aiming to improve the classification accuracy

using a larger training set. However, these applications often face the problem

that real life concepts tend to change over time, i.e. a classifier learned on all

previous examples will increase its accuracy on the new data. Hence, some of

the old observations that are out-of-date have to be ‘forgotten’. This problem

is known as concept drift [ScG86]. A promising example are the systems that

learn from observations about user’s interests, aiming to help him/her to find

items, which are, expected to be interested to him/her. Usually, user’s inter-

ests and preferences are inclined to change over time (e.g. [MCFDZ94],

[MaM00] and [Koy02]). Another promising example is a typical data mining

task – knowledge discovery in market basket, where there have been also

observed that, the customers’ preferences tend to change over the time and

the association rules mined on historical data are likely to be out-of-date

[SpB04].

A number of forgetting mechanisms have been developed to coupe with

this problem. They can be divided in two major types depending on whether

they are able to forger only or whether they are also able to keep old

data/knowledge and remember them if they seem to be useful again.

The first ones have the advantage to be simpler, faster and there is no need

to maintain and search a large storage with old data or knowledge that could

be useful. It performs well with concept that do not change often and rather

gradual than abrupt, but it performs very pour on frequently changing and

recurring concepts.

The second ones have a clear advantage in case of recurring concepts (e.g.

caused by season changes), where the old data or acquitted knowledge can be

very helpful (e.g. [MCFDZ94] and [Koy02]). But it requires larger storage

space for the old information and extra time for retrieval of the old relevant

episodes of data or knowledge.

This study focuses on the first type of mechanisms. There are two basic

approaches suggested to improve the performance of the pure time window.

The first one, instate to consider all examples in the time window as equally

important, provides the example with weights, which decreases over time.

Thus it simulates a forgetting that is gradual, which seems to be a more natu-

ral one. The second one adapts dynamically the size of the time window ac-

cording to the current concept behaviour. The paper reported results from

experiments with two forgetting mechanisms, in particular the Gradual For-

getting as it is described in [Koy00] and Time Window Optimization pre-

sented in [KoL05]. The aims were to compare the approaches and to explore

the possibility to combine them for further improvement the performance.

The next section gives a short overview of the related work. The compared

mechanisms are described in section 3. The research questions and hypothe-

sises are raised in section 4. The experiment design is introduced in section 5.

The results from the experiments are reported and discussed in section 6.

2 Related Work

Different approaches have been developed to track changing (also known

as shifting, drifting or evolving) concepts. Typically it is assumed that if the

concept changes, then the old examples become irrelevant to the current pe-

riod. The concept descriptions are learned from a collection of most recent

examples called a time window. For example, Mitchell et al. [MCFDZ24]

developed a software assistant for scheduling meetings, which employs ma-

chine learning to acquire assumptions about individual habits of arranging

meetings, uses a time window to adapt faster to the changing preferences of

the user. Widmer and Kubat [WiK96] developed the first approach that uses

adaptive window size. The algorithm monitors the learning process and if the

performance drops under a predefined threshold it uses heuristics to adapt the

time window size dynamically. Maloof and Michalski [MaM00] have devel-

oped a method for selecting training examples for a partial memory learning

system. The method uses a time-based function to provide each instance with

an age. Examples that are older than a certain age are removed from the par-

tial memory. Delany et al. [DCTC04] employ a case base editing approach

that removes noise cases (i.e. the cases that contribute to the classification

incorrectly are removed) to deal with concept drift in a spam filtering system.

The approach is very promising, but is applicable for lazy learning algorithms

only. To manage the problems with gradual concept drift and noisy data, the

approach in [LVB04] suggests the use of three windows: a small (with fixed

size), a medium and a large (dynamically adapted by simple heuristics).

The above approaches totally forget the examples that are outside the given

window, or older than a certain age. The examples which remain in the partial

memory are equally important for the learning algorithms. This is an abrupt

forgetting of old examples, which probably does not reflect their rather grad-

ual aging. To deal with this problem it was suggested to weight training ex-

amples in the time window according to their appearance over time [Koy00].

These weights make recent examples more important than older ones, essen-

tially causing the system to gradually forget old examples. This approach has

been explored further in [Kuk03], [DuN04] and [Kli04].

Some systems use different approaches to avoid loss of useful knowledge

learned from old examples. The CAP system [MCFDZ94] keeps old rules as

long as they are competitive with the new ones. The FLORA system

[WiK96], also maintains a store of concept descriptions relevant to previous

contexts. When the learner suspects a context change, it will examine the

potential of previously stored descriptions to provide better classification.

The COPL approach [Koy02] employs a two-level schema to deal with

changing and recurring concepts. On the first level the system learns a classi-

fier from a small set of the most recent examples. The learned classifier is

accurate enough to be able to distinguish the past episodes that are relevant to

the current context. Then the algorithm constructs a new training set, ‘re-

members’ relevant examples and ‘forgets’ irrelevant ones. As we explained in

the introduction, the approaches explored in this paper, does not assume that

old examples or models can be retrieved.

Widmer [Wid97] assumes that the domain provides explicit clues to the

current context (e.g. attributes with characteristic values). A two-level learn-

ing algorithm is presented that effectively adjusts to changing contexts by

trying to detect (via meta-learning) contextual clues and using this informa-

tion to focus the learning process. Another two-level learning algorithm as-

sumes that concepts are likely to be stable for some period of time [HaS98].

This approach uses contextual clustering to detect stable concepts and to ex-

tract hidden context. The mechanisms studied in this paper do not assume that

the domain provides some clues that can be discovered using a meta-learning

level. They rather aim to get the best performance using a single learning

level.

An adaptive boosting method based on dynamic sample-weighting is pre-

sented in [ChZ04]. This approach uses statistical hypothesis testing to detect

concept changes. Gama et al., [GMCR04] also use a hypothesis testing pro-

cedure, similar to that used in control charts, to detect the concept drift, calcu-

lating on all of the data so far. The mechanism gives a warning at 2 standard

deviations (approximately 95%) and then takes action at 3 standard devia-

tions (approximately 99.7%). If the action level is reached then the start of the

window is reset to the point at which the warning level was reached. How-

ever, for this mechanism, it can take quite a long time to react to changes and

the examples that belong to the old concept are not always completely use-

less, especially when the concept drift is rather gradual.

To adapt the size of the window according to current changes in the con-

cept, the approach presented in [Kli04] uses a naïve optimisation approach,

which tries all possible window sizes and selects the one with the smallest

error rate. This work provides interesting results from experiments with dif-

ferent forgetting mechanisms applied for Support Vector Machines classifier,

using a textual data corpus.

To detect concept changes the TWO approach [KoL05] uses a statistical

test on selection population frond the time window, which excludes its’ beg-

ging and end. If a concept drift is detected an efficient optimisation algorism

is employed to detect the optimal window size. This approach is explained in

more details in the next section and studied in the conducted experiments.

3 Two Approaches for Tracking Drifting Concepts

Let us consider a sequence of examples. Each example is classified accord-

ing to underlying criteria into one of a set of classes, which forms the training

set. The task is to learn a classifier that can be used to classify the next exam-

ples in the sequence. However, the underlying criteria can subsequently

change and the same example can be classified differently according to the

time of its appearance, i.e. a concept drift takes place. As we discussed above

to deal with this problem machine learning systems often use a time window

i.e. the classifier is not learned on all examples, but only on a subset of recent

examples. The next to section describes to forgetting mechanisms that further

develop this idea.

3.1 Gradual Forgetting

This section describes a gradual forgetting mechanism earlier introduced in

[Koy00]. Just as the time window approach it assumes that when a concept

tends to drift the newest observations better represent the current concept.

Additionally, it aims to make the forgetting of old examples gradual. Let us

define a gradual forgetting function)(tfw = , which provides weights for

each instance according to its location in the course of time. The weights

assign higher importance value to the recent examples. Earlier, Widmer

[Wid97] suggests an “exemplar weighting” mechanism, which is used for the

IBL algorithm in METAL(IB), however it is not exploited for NBC in

METAL(B). The researcher in area of boosting also faced the need of weight-

ing examples. There are two ways, in which boosting employs the weights.

The first one is known as boosting by sampling - the examples are drawn with

replacement from the training set with a probability proportional to their

weights. However, this approach requires a pre-processing stage where a new

set of training examples should be generated. The better the sampling ap-

proximates the weights, the larger is the new training set. The second method,

boosting by weighting is used with learning algorithms that accept weighted

training examples directly. In this case the weight is constrained as follows:

0≥iw and 1'
1

=∑ =

n

i iw
(1)

where, n is the size of the training set. Most of the basic learning algorithms

are designed to treat all examples as equally important. For kNN it can be

easily implementing by multiplying the calculated distances with the weights

of the examples. For other algorithms it does not look so straight. When there

are no weights (i.e. all weights are the same) the formula (1) will provide

weights
n

wi

1
=∀ . However, as the weights are utilized by multiplication, it

seems to be better if we have 1=∀ iw in this boundary case. If we substitute

that ii nww '= then the constrains in equation (1) will be transformed as fol-

lows:

0≥iw
 and

11 =
∑ =

n

w
n

i i

(2)

Weights that obey the constrains (2), can be easily used in almost any learn-

ing algorithms requiring minor changes in the code i.e. every time when the

algorithm counts an example it should be multiplied by its weight.

Various functions that model the process of forgetting and satisfy con-

strains (2) can be defined. For example, the following linear gradual forget-

ting function has been defined:

ki
n

k
wi ++−

−
−= 1)1(

1

2
 (3)

where: i is a counter of observations starting from the most recent observa-

tion and it goes back in time (as the function is forgetting 1+≥ ii ww);

]1,0[∈k is a parameter that represents the percent of decreasing the weight

of the first and respectively increasing the weight of the last observation in

comparison to the average. By varying k the slope of the forgetting function

can be adjusted to reach better predictive accuracy.

The presented gradual forgetting mechanism is naturally integrating into a

time window, by weighting the examples in it (i.e. ln = , where l is the size

of the time window). The system will forget gradually inside the window.

When 0=k then all weights will be equal to 1, which means that we will

have a “standard” time window. When k is approaching 1 then the weights

of the examples in the end on the window approach 0 and there is not an

abrupt forgetting after the window’s end.

3.2 Time Window Optimisation

This section presents an approach that learns an up-to-date classifier on

drifting concept by dynamic optimisation of the time window size to gain

maximum accuracy of prediction [KoL05].

In case of dynamical adaptation of window size there are two important

questions that have to be addressed in case of concept drift. The first one is

how to detect a change in the concept? We are assuming that there is no

background information about the process and we use the decrease in predic-

tive accuracy of the learned classifier as an indicator of changes in the con-

cept. Usually the developed detection mechanism uses a predefined threshold

tailored for the particular dataset. However the underlying concept can

change with different speeds and extend. To detect the changes the approach

uses a statistical hypothesis test, which adapts the thresholds according to the

recently observed concept deviation. The second important question is how to

adapt if a change is detected? Other approaches use heuristics to decrease the

size of the time window when changes in the concept are detected (e.g.

[DuN04] and [WiK96]). This approach employs a fast 1-D optimisation to get

the optimal size of the time widow in a concept drift is detected. The next two

subsections describe the algorithm in more details.

3.2.1 Detecting the Concept Drift

To detect concept changes the approach monitors the performance of the

algorithm. For the presentation below we choose to observe the classification

accuracy as a measure of the algorithm performance, but other measures, such

as error rate or precision could have been used. The approach process the

sequence of examples on small episodes (a.k.a. batches). On each step, a new

classifier is learned from the current time window then the average accuracy

of this classifier is calculated on the next batch of examples [MCFDZ94].

Then the presented approach suggests using a statistical test to check whether

the accuracy of classification has significantly decreased compared with its

historical level. If the average prediction accuracy of the last batch is signifi-

cantly less than the average accuracy for the population of batches defined on

the current time window, then a concept drift can be assumed.

The significance test is done using a population from the time window that

does not include the first one or a few batches from the beginning of the time

window, because the predictive accuracy at can be low cause by a previous

concept drift. Also one or a few most recent batches are not included in the

test window, because if the drift is gradual the accuracy will be dropping

slowly. Such a test that uses a test population from the core of the time win-

dow works well for both abrupt and gradual drift.

The confidence level for the significance test should be sensitive enough to

discover concept drift as soon as possible, but not to mistake noise for

changes in the concept. The experience from the conducted experiments

shows that the “standard” confidence level of 95% works very well in all

experiments. This drift detection level is rather sensitive and it assists the

algorithm to detect the drift earlier. If a false concept drift alarm is triggered,

it will activate the window optimising mechanism, but in practice, this only

results in an insignificant decrease in the time window size.

This mechanism works as follows: If concept drift is detected then the op-

timisation of the size of the time window is performed (see the next section)

otherwise, the time window size is increased to include the new examples.

3.2.2 Optimising the Time Window Size

In general, if the concept is stable, the bigger the training set is (the time

window), the more accurately classifier can be learned. However when the

concept is changing, a big window will probably contain a lot of old exam-

ples, which will result in a decrease of the classification accuracy. Hence, the

window size should be decreased to exclude the out-of-date examples and in

this way to learn a more accurate classifier. But if the size of the window

becomes too small, it will also lead to a decrease in accuracy. The shape of

curve that demonstrates the relationship between the size of the time window

and the accuracy of the classification is shown in Figure 1.

To adapt the size of the window according to current changes in the con-

cept, the presented mechanism suggests using the Golden Section algorithm

for one-dimensional optimization. The algorithm looks for an optimal solu-

tion in a closed and bounded interval],[ba - in our case the possible window

sizes],[min cxxX = , where minx is a predefined minimum size of the win-

dow and cx is the current size of the time window. It assumes that the func-

tion)(xf is unimodal on X (i.e. there is only one max *x) and it is strictly

increasing on *),(min xx and strictly decreasing on)*,(cxx , which is the

shape that can be seen in Figure 1. In our case the function)(xf calculates

the classification accuracy of the learned model using a time window with

size x .

The basic idea of this algorithm is to minimize the number of function

evaluations by trapping the optimum solution in a set of nested intervals. On

each step the algorithm uses the golden section (618.0=τ) to split the inter-

val into three subintervals, as shown in Figure 1, where)(abbl −−= τ and

)(abar −+= τ . If)()(rflf > then the new interval chosen for the next

step is],[ra else],[bl . The length of the interval for the next iteration is

)(ab −τ . Those iterations continue until the interval containing the maxi-

mum reaches a predefined minimum size. *x is taken to lie at the centre of

the final interval.

The Golden Section algorithm is a very efficient way to trap the *x that

optimizes the function)(xf . After n iterations, the interval is reduced to

n0.618 times its original size. For example if 10=n , less than 1% of the

original interval remains. Note that, due to the properties of the golden sec-

tion, each iteration requires only one new function evaluation.

Window Size

A
c

c
u

ra
c
y

l ra
b

Figure 1 A sample shape of the correlation between the window size and

accuracy of the learned classifier

In conclusion, if we can assume that the classification accuracy in relation

to the time window is a unimodal function then the golden section algorithm

can be used as an efficient way to find the optimal size of the time window. It

is possible to find datasets for which the unimodal assumption is not true –

e.g. when the concept changes very often and abruptly. In such cases, we can

use other optimization methods that do not assume a unimodal distribution,

however they are much more expensive in time. The trade-off that we have to

take into consideration is to accept that we can occasionally be trapped in a

local maximum, but have a fast optimization; or find a global maximum, but

have significantly slower optimization.

4 Research Questions and Hypothesis

The aim of the conducted experiments is twofold:

• To compare the performance of the above mechanisms;

• To explore whether the present forgetting mechanisms can be com-

bine to achieve a synergetic effect (i.e. improving performance).

In the conducted experiments we decided to measure the performance of

the algorithms in classification accuracy on a test set that is formed by the

next batch in the sequence. It could be measured using other statistic such us

error rate, precision, etc.

The experiments conducted in [KoL05] provided strong evidence that the

Time Window Optimisation mechanism is able to improve the prediction

accuracy significantly in comparison with Fixed-size Time Window. The

gradual forgetting approach was developed earlier [Koy00, KoS00] and were

originally tested on an artificial dataset and data from a recommender system.

It was further explored in [DuN04, Kli04, etc.], but there are not extensive

tests with different algorithms and data sets whether it is able to improve

significantly the predictive accuracy in comparison with the pure Fixed-size

Time Window. Therefore the first hypothesis that we want to test is:

Hypothesis 1: Fixed-size Time Window with Gradual Forgetting is better

than pure Fixed-size Time Window, measured in classifica-

tion accuracy.

It was also interesting to compare both forgetting mechanisms. Since the

Time Window Optimisation mechanism come across more promising than the

approaches with fixed parameters the second hypothesis was formulated as

follows:

Hypothesis 2: Time Window Optimisation is better than Fixed-size Time

Window with Gradual Forgetting measured in classification

accuracy.

Furthermore it can be supposed that if both mechanisms are combined (i.e.

adaptive time window with gradual forgetting inside it) a synergetic effect

will appear. Thus if the Hypothesis 2 is true then the third hypothesis was

formulated a follows:

Hypothesis 3: Time Window Optimisation with Gradual Forgetting is better

than Time Window Optimisation measured in classification

accuracy.

In case the Hypothesis 2 fails then the Hypothesis 3 will be reformulate to

take in to account the results from the experiments.

5 Experiment Design

All experiments were designed to run iteratively, in this way simulating the

process of mechanisms’ utilisation. For this reason the data streams were

chunked on episodes/batched. On each iteration, a concept description is

learned from the examples in the current time window. Then the learned clas-

sifier is tested on the next batch (see Figure 2).

Figure 2 Iterations’ cross-validation design

To facilitate the presentation below the basic forgetting mechanisms are

abbreviated as follows:

FTW - Fixed-size Time Window

GF - Gradual Forgetting

TWO - Time Window Optimisation

For each data set, the window size for the FTW was chosen to approximate

the average time window size obtained in the experiments with the TWO

mechanism on the same dataset. This is extra help for the FTW that would

not be available in a real situation where the forthcoming sequence of events

is unknown. The aim here is to allow the FTW approach to show its best per-

formance.

Each hypothesis was tested on four experimental datasets; using three bas-

ing Machine Learning algorithms. The rest of this section describes them in

more details. The results from the experiments are reported and discussed in

the next subsection.

5.1 Datasets

This subsection explains how the data streams used in the experiments

were generated.

5.1.1 STAGGER problem

The first experiments were conducted with an artificial learning problem

that was defined and used by Schlimmer and Granger [ScG86] for testing

STAGGER, probably the first concept drift tracking system. Much of the

subsequent work dedicated to this problem used this dataset for testing pur-

poses (e.g. [Aha91], [DuN04], [HaS98], [Koy00], [Koy02], [MaM00],

[SpB04] and [WiK96]).

The STAGGER problem is defined as follows: The instance space of a

simple blocks world is described by three attributes: size = {small, medium,

large}, color = {red, green, blue}, and shape = {square, circular, triangu-

lar}. There is a sequence of three target concepts: (1) - size = small and color

Time

Time Window (i.e. Training set) Test Set

Data Stream

= red; (2) - color = green or shape = circular; and (3) - size = (medium or

large). 120 training instances are generated randomly and classified accord-

ing to the current concept. The underlying concept is forced to change after

every 40 training examples in the sequence: (1)-(2)-(3). The setup of the ex-

periments with the STAGGER dataset was done exactly in the same way us

in other similar works. The retraining step is 1, however there is a test set

with size 100, generated randomly and classified according to the current

concept. This differs from the other experiments where the retraining step and

the test set are the same - a batch. The size of the FTM is set up to 25, which

approximates the average size of the optimised windows.

5.1.2 German Credit Dataset

This subsection presents the results from the experiments conducted with

the German credit dataset, from the UCI Machine Learning Repository1. The

dataset contains 1000 Instances of bank credit data which are described by 20

attributes. The examples are classified in two classes as either “good” or

“bad”. To simulate hidden changes in the context the dataset was sorted by an

attribute then this attribute was removed from the dataset for the experiments.

Using an attribute to sort the data set and in this way simulate changing con-

text is a commonly used approach to set up experiments to study concept

drift. Two sorted datasets were created using the German credit dataset: The

first one was sorted by a continuous attribute: “age”, which would produce a

gradual drift of the “class” concept. The second one was sorted by the attrib-

ute “checking_status”, which has three discrete values. We aimed in this way

to create abrupt changes of the “class” concept. Thus using this source data-

set, two data stream are generated for the experiments. The datasets ware

divided into a sequence of batches, each of them containing 10 examples. The

size of the FTM is set to 200, which approximates the average size of the

optimised windows.

5.1.3 Spam dataset

Experiments have also been conducted with the Spam dataset from the UCI

Machine Learning Repository. Spam is an unsolicited email message. The

dataset consists of 4601 instances, 1813 (39.4%) of which are spam mes-

sages. The dataset is represented by 54 attributes that represent the occur-

rence of a pre-selected set of words in each of the documents plus three at-

tributes representing the number of capital letters in the e-mail. To simulate

1 http://www.ics.uci.edu/~mlearn/MLRepository.html

he changing hidden context the examples in the dataset are sorted according

to the “capital_run_length_total”, which is the total number of capital letters

in the e-mail. This attribute and the related two attributes “capi-

tal_run_length_average” and “capital_run_length_longest” are removed

from the dataset, because they can provide explicit clues for the concept

changes. The sorted dataset was divided into a sequence of batches with a

length of 10 examples each. For this dataset the fixed window size was set to

400 - an approximation of the average window size for this dataset used by

the TWO mechanism.

5.2 Machine Learning Algorithms

The experiments were conducted using three basic machine learning algo-

rithms:

− k Nearest Neighbours (kNN) - also known as Instance Based Learning

(IBL) [Aha91]. k=3 was the default setting for the experiments reported

below except for experiments with STAGGER dataset, where k=1 was

chosen, because it produces a more accurate classification than k=3;

− Induction of Decision Trees (ID3) [Qui86] (using an attribute selection

criteria based on the
2χ statistics);

− Naïve Bayesian Classifier (NBC) [Mit97].

6 Experimental Results and Discussion

The results from the conducted experiments are presented in Tables 1, 2

and 3 below. In all these tables, rows present the used learning algorithms:

kNN, ID3 and NBC. The columns present the results from the experiments

with different datasets. For a more compact presentation in the tables the

dataset are referred with numbers as follows:

1 – STAGGER dataset

2 – German dataset - sorted by the attribute “checking_status”

3 – German dataset - sorted by the attribute “age”

4 – Spam dataset - sorted by the attribute “capital_run_length_total”

We used the paired t-tests with 95% confidence level to see whether there

is significant difference in the accuracy of learned classifiers. The pairs are

formed by comparing the algorithms’ accuracies on the same iteration. In the

tables below, we are reporting the results from the experiments testing the

above formulated hypothesis. The cells represent the results from the signifi-

cance test comparing the results form the runs using the different forgetting

mechanisms. The used basic learner is presented in the row and the used

dataset stated in the column. The notation is as follows:

� - denotes that the second algorithm performs significantly better then the

first one;

� - denotes that the first algorithm performs significantly better then the

second one;

÷ - denotes that there is no difference in the performance of the compared

algorithms.

For example: the sign � in the first column and first row in Table 1 de-

notes that the experiments conducted using kNN as a basic algorithm and

using the STAGGER dataset (corresponds to the column 1), sows that FTW

with GF is significantly better than the plain FTM, measured in accuracy of

classification.

On the summarised results in tables below for each hypothesis we used

sing test to make a general conclusion about the tested hypothesises. The sign

test is designed to test the hypothesis that the median of the differences in the

pairs is zero. The test statistic is the number of positive differences. Usually,

if any observations are exactly equal to the hypothesized value they are ig-

nored and dropped from the sample size. If the null hypothesis is true, then

the numbers of positive and negative differences should be approximately the

same. The Sign test does not require the assumption that the population is

normally distributed.

algorithm dataset 1 2 3 4

kNN � � � �

ID3 � � � ÷

NBC � � � ÷

Table 1 Comparison of FTW versus FTW+GF forgetting mechanisms

Table 1 show the results from the experiment testing the first hypothesis

(i.e. FTW with GF provides a better classification accuracy in comparison to

pure FTW). The results show that for three of the four datasets, for any of the

algorithms the FTW with GF provides significantly better average classifica-

tion accuracy in comparison to pure FTW, however the GF fails to improve

the accuracy on the fourth data set. In comparison with other dataset, the

main difference of this dataset is its sparseness. Therefore, we can assume

that probably this is the reason for lack of improvement. Perhaps, using a

feature selection and adapted similar measure, which have been used for tex-

tual dataset, will diminish this problem. However, furthered indeed studies

are needed to find the correct answer on these quotations.

Despite of the lack success on the fourth dataset, applying the sign test we

obtaining a significant P-value (0215.0≤p), which confirms the first hy-

pothesis.

algorithm dataset 1 2 3 4

kNN � ÷ � �

ID3 � � � �

NBC � � � �

Table 2 Comparison of FTW+GF versus TWO forgetting mechanisms

Table 2 presents the results from the experiment testing the second hy-

pothesis (i.e. FTW with GF provide significantly better predictive accuracy in

comparison to pure FTW). The results show that in all experiments the TWO

mechanisms actives a significantly better classification accuracy than GF,

except one where there is no difference in performance. Appling the sign test

we obtaining a very significant P-value (000977.0≤p), which confirms the

second hypothesis.

algorithm dataset 1 2 3 4

kNN ÷ � � �

ID3 � � ÷ �

NBC � ÷ � ÷

Table 3 Comparison of TWO versus TWO+GF forgetting mechanisms

Table 3 show the result from the experiment testing the second hypothesis:

Appling GF with TWO improve the predictive accuracy in comparison to

pure TWO. i.e. both mechanisms are having synergetic effect. The results

from the experiments shows that there is no difference in the average perfo-

rate in the compared mechanisms. The sign test shows that there is no differ-

ence in the performance of the compared mechanisms (727.0≤p). Thus the

experiments fail to confirm the third hypothesis.

7 Conclusion

The paper presents an experimental study of two forgetting mechanism for

dealing with the concept drift problem. Both are general in nature and can be

added to any relevant algorithm. Experiments ware conducted with three

learning algorithms using three datasets. The results from the experiments

show that: applying Gradual Forgetting inside a fixed-size Time Window

leads to a significant improvement of the classification accuracy on drifting

concept; compare both mechanisms the advantage clearly is on the site of the

self-adapting algorithm - Time Window Optimisation; finally, applying both

mechanism together usually does not lead to an improvement in the classifi-

cation accuracy.

Further controlled experiments using common patterns from the space of

different type of drift (i.e. frequent – rare; abrupt - gradual; slow – fast; per-

manent – temporary; etc.) will provide clearer ideas for which pattern, what

kind of forgetting mechanism is most appropriate.

References

[Aha91] Aha, D., D. Kibler and M. Albert. Instance-Based Learning Algo-

rithms. Machine Learning 6, (1991) 37-66

[ChZ04] Chu, F. and Zaniolo, C.: Fast and light boosting for adaptive mining

of data streams. In: Proc. of the 8th Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Lecture Notes in Computer

Science, Vol.3056, Springer-Verlag, (2004) 282-292

[DCTC04] Delany, SJ., P. Cunningham, A. Tsymbal and L. Coyle. A Case-

Based Technique for Tracking Concept Drift in Spam Filtering. In:

Macintosh, A., Ellis, R. & Allen T. (eds.) Applications and Innova-

tions in Intelligent Systems XII, Proceedings of AI2004, Lecture

Notes in Computer Science, Springer (2004) 3-16

[DuN04] Ducatel, G. and A. Nürnberger. iArchive: An Assistant To Help

Users Personalise Search Engines. In Chapter 2. User Profiles in In-

formation Retrieva, Enhancing the Power of the Internet, Series:

Studies in Fuzziness and Soft Computing , Vol. 139, Nikravesh, M.;

Azvine, B.; Yager, R.; Zadeh, L.A. (Eds.) 2004, VIII, 406 p.,

Stinger-Verlag.

[GMCR04] Gama, J., P Medas, G. Castillo and P. Rodrigues. Learning with

Drift Detection. In: Ana, C., Bazzan, S. and Labidi (Eds.): Proceed-

ings of the 17th Brazilian Symposium on Artificial Intelligence.

Lecture Notes in Computer Science, Vol. 3171, Springer, (2004)

286-295

[HaS98] Harries, M. and C. Sammut. Extracting Hidden Context. Machine

Learning 32 (1998) 101-126

[Kli04] Klinkenberg, R. Learning Drifting Concepts: Example Selection vs.

Example Weighting. In Intelligent Data Analysis, Special Issue on

Incremental Learning Systems Capable of Dealing with Concept

Drift, Vol. 8, No. 3, (2004) 281-300

[KoL05] Koychev, I., Lothian R.: Tracking Drifting Concepts by Time Win-

dow Optimisation. In: Research and Development in Intelligent Sys-

tems XXII Proc. of AI-2005, the 25-th SGAI Int. Conference on In-

novative Techniques and Applications of Artificial Intelligence.

Bramer, Max; Coenen, Frans; Allen, Tony (Eds.), Springer-Verlag,

London p.46-59

[KoS00] Koychev, I. and I. Schwab. Adaptation to Drifting User's Interests.

In proc. of ECML2000 Workshop: Machine Learning in New In-

formation Age, Barcelona, Spain, p. 39-46

[Koy00] Koychev, I. Gradual Forgetting for Adaptation to Concept Drift.

Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-

Temporal Reasoning, Berlin, (2000) 101-107

 [Koy02] Koychev, I. Tracking Changing User Interests through Prior-

Learning of Context. In: de Bra, P., Brusilovsky, P., Conejo, R.

(eds.): Adaptive Hypermedia and Adaptive Web Based Systems.

Lecture Notes in Computer Science, Vol. 2347, Springer-Verlag

(2002) 223-232

[Kuk03] Kukar, M. Drifting Concepts as Hidden Factors in Clinical Studies.

In Dojat, D., Elpida T. Keravnou, Pedro Barahona (Eds.): Proceed-

ings of 9th Conference on Artificial Intelligence in Medicine in

Europe, AIME 2003, Protaras, Cyprus, October 18-22, 2003, Lec-

ture Notes in Computer Science, Vol. 2780, Springer-Verlag (2003)

355-364

 [LVB04] Lazarescu, M., Venkatesh, S. and Bui, H.: Using Multiple Win-

dows to Track Concept Drift. In the Intelligent Data Analysis Jour-

nal, Vol 8 (1), (2004) 29-59

[MaM00] Maloof, M. and R. Michalski. Selecting examples for partial mem-

ory learning. Machine Learning 41 (2000) 27-52

[MCFDZ94] Mitchell, T., R. Caruana, D. Freitag, J. McDermott and D.

Zabowski. Experience with a Learning Personal Assistant. Commu-

nications of the ACM 37(7) (1994) 81-91

[Mit97] Mitchell T. Machine Learning. McGraw-Hill (1997)

[Qui86] Quinlan, R. Induction of Decision Trees. Machine Learning 1 (1986)

81-106

[ScG86] Schlimmer, J. and R. Granger. Incremental Learning from Noisy

Data. Machine Learning 3, (1986), 317-357

[SpB04] Spiliopoulou M., S. Baron. Temporal Evolution and Local Patterns.

In Morik, K., Boulicaut, JF., and Siebes A. (Eds.): Local Pattern

Detection, International Seminar, Dagstuhl Castle, Germany, April

12-16, 2004, Revised Selected Papers. Lecture Notes in Computer

Science 3539, Springer 2005

[Wid97] Widmer, G. Tracking Changes through Meta-Learning. Machine

Learning 27 (1997) 256-286

[WiK96] Widmer, G. and M. Kubat. Learning in the presence of concept drift

and hidden contexts: Machine Learning 23 (1996) 69-101

