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a b s t r a c t

Geographic routing strategies used in wireless communication networks require that each
transmitting node is aware of its location, the locations of its neighbors, and the destina-
tion. With this information, the message is routed by choosing intermediate nodes, or
relays, which allow the destination to be reached with the maximum possible transmitted
information rate and with minimum delay. However, this strategy needs to take into
account the uncertainties of the relays locations in order to avoid an important perfor-
mance degradation of the link, or even a routing failure.

Taking into account the presence of uncertainties in the relays locations, each possible
geographic routing strategy is able to recognize a subset of nodes that can be candidates
for relays. Furthermore, the transmission range between nodes not only depends on the
distance between them, but also the communication channel fading. Based on the effect
that these uncertainties have on the link channel capacity, a minimization of a cost func-
tion is proposed to decide the next hop relay, which optimizes, in mean, the maximum rate
of information transmitted with the minimum number of hops. Using the location statis-
tics, this optimal strategy is applied for both one-hop decisions and two-hops decisions.
Working expressions for on-line fast calculations are provided and used for results
illustrations.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solid wireless sensor networks information pro-
cessing approach is based on a canonical problem formula-
tion of localizing and tracking moving objects [1].
Location-aware personal devices and location-based ser-
vices have become ever more prominent in the past few
years (see [2,3]). Moreover, geographic routing protocols
show high performance and are considered as promising
candidates for large-scale ad hoc networks. These proto-
cols carry low overhead as they do not require a route
management process. These routings use location informa-

tion, so that each transmitting node is aware of its location,
the locations of its neighbors – called relays – and the des-
tination. The routing decision is made locally, where every
node forwards the packet to the most promising neighbor
towards the destination.

Geographic routing protocols use geographic forward-
ing by assuming ideal conditions [4]. However, under real-
istic situations such as location errors, obstacles, and radio
irregularity the performance degrades or may lead to rout-
ing failures. In [5] the authors concludes that a reception-
based forwarding strategies in realistic conditions are gen-
erally more effective than distance-based strategies but
this could be at the cost of lower energy efficiency. The
performance of geographic routing, based on the assump-
tion that the location of each node is accurate, can be
greatly improved when location uncertainties and channel
transmission properties are taken into account.
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Taking into account the presence of uncertainties in the
relays locations, and also the communication channel fad-
ing, in this work, a minimization of a cost function is pro-
posed to decide the next hop relay. The factors to consider
in defining appropriate metrics in the cost function are: (i)
Low probability of data loss; (ii) maximum rate of informa-
tion arrival to the destination; and (iii) minimum impact of
signaling and control on effective data rate. In order to
achieve an efficient relay selection that takes into account
all these factors, in this paper the channel capacity, to-
gether with the uncertainties statistics, will be considered
as a basis to derive formal expressions of two metrics. One
is the probability of error, defined as the relative amount of
information lost when nodes have uncertainty in position
and are subject to fading noise. The other is the progress
of information in terms of the expected distance between
hops toward the destination. Since a greater progress infor-
mation implies an increase in the probability of error, the
optimal selection of the next relay toward the destination
should be a trade off between the two metrics. In this pa-
per, by using these two quantities, we define a cost, which
weighs in a relative way both the probability of error and
the progress of the information. Based on a subset of pos-
sible relays, the one which optimizes the proposed cost
function is selected. In this way, we obtain optimal relay
selections, in the sense of minimum probability of error
and maximum information progress.

The remainder of this paper is organized as follows: In
Section 2, a discussion of recent works that address strate-
gies to improve geographic routing in networks subject to
uncertainty, and the relationship with our approach, is per-
formed. In Section 3, based on the location statistics and
their influence on the channel capacity we define and de-
rive the proposed metrics. In Section 4 we propose the cri-
terion for the cost evaluation in order to decide optimally
the relays. Also working equations useful to on line evalu-
ate the metrics for one-hop and the two-hops cases are de-
rived. The results for both selection cases using simulations
for different uncertainties levels and different numbers of
possible relay are shown in Section 5. Furthermore, these
results are compared with other two different criteria,
the greedy routing scheme (GRS), and the maximum
expectation within transmission range (MER). Finally, we
conclude the paper in Section 6.

2. Related work

The analysis in [6] shows that one of the main reasons
of failures in face routing happen due inconsistency in
the distance between two nodes caused by location errors.
Their study shows that realistic location errors can in fact
lead to incorrect (non-recoverable) behavior and notice-
able degradation of performance on geographic routing.
They find that in some cases, more than 10% storage failure
of sensor network events can occur in the presence of 10%
location error. These failures can be reduced by using im-
proved protocols based on using extra local information
exchange between nodes. They analyze and identify the er-
ror scenarios and propose modifications to eliminate the
error and enhance the performance in both Greedy Perim-

eter Stateless Routing and in Geographic Hash Table proto-
cols. In addition, to study the effect of location inaccuracy
on greedy forwarding, an enhancement using mobility pre-
diction models is proposed in [7]. Based on a stochastic
decisions, in which each node performs on-line probing
of its neighbors in order to decide the next hop, in [8] a
strategy is proposed obtaining significant improvements
with respect to the deterministic decision. In the cited ref-
erences, the proposal to mitigate the problem of uncer-
tainty in the location consists of reducing uncertainties
either by adding predictive models, by improving mea-
sures, or by checking connectivity.

A different approach on how to mitigate the impact of
location errors is discussed in [9]. Since it is assumed that
each node knows its position and the position error vari-
ance, the authors propose to attach an error information
field in a message for geographic routing and to announce
the statistical characteristics of the location error to neigh-
bors together with location information. With this infor-
mation, they propose to choose the relay that maximizes
the expected progress of information within the transmis-
sion range.

In this paper, we will also follow a stochastic approach,
but we will consider different metrics and cost function,
from those used in [9]. It is important to note the similar-
ities and differences between both approaches. (i) As pro-
posed in [9], we also consider that each node informs its
neighbors about its own location error bound. Also, we
use the progress in the cost function, but unlike [9], which
uses the expected progress within the transmission range,
our progress is the conditional expected value, given that
the message was successfully received by the relay. This
is a major difference, because the progress is calculated
only considering the messages that are successfully re-
ceived by the relay. (ii) Differently from [9], our cost in-
cludes a second metric, which is the probability that the
message was actually received by the relay. This strategy
allows us to get the optimal selection of relays that com-
bine the maximum possible progress with the maximum
number of messages successfully received. (iii) Addition-
ally, our approach includes the uncertainty in the trans-
mission range due to the fading of the communication
channel. Formally speaking, the transmission range of a
node, defined as the maximum distance within which a re-
lay can receive messages, is given by the channel capacity
of the link [11]. The channel capacity of the link depends
on the signal-to-noise power ratio at the receiving node.
The signal-to-noise ratio depends on the distance between
the transmitter and the receiver, the thermal noise, the
transmission power, the signal propagation constants,
and also largely on the channel fading. In real conditions,
the received signal strength at the relay is affected by mul-
ti-path or shadowing fading, which is usually modeled by a
stochastic process with log-normal distribution. As a con-
sequence, the transmission range must be considered as
a stochastic variable for performance evaluation purposes.
To this end, it is important to consider the channel capacity
for each relay in order to evaluate the quality for routing
information. In the presence of location uncertainties
and fading, the channel capacity is a random variable
from which both the probability that information reaches
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a given relay and the most probable distance reached, can
be obtained. It is worth noting that, by considering our cost
function together with the channel fading, the results dif-
fer considerably from [9], as it will be shown in the simu-
lation section.

3. Metrics derivation

Let us assume a scenario where a sensor network is
governed by a predetermined geographic routing protocol.
If the locations of the nodes were perfectly known, the gi-
ven protocol is designed to decide the next relay. However,
if the positions are uncertain, the next relay decision is not
uniquely defined and a decision within a subset of possible
relays is required. Assuming that the statistics of the
uncertainties are known, they can be used to select the
next relay in the subset optimally.

Suppose that a source sends r messages per second, and
the entropy of a message is H bits per message. The infor-
mation rate is R = rH bits/s. The Shannon’s theorem states
that (i) a given communication system has a maximum
rate of information C, known as the channel capacity; (ii)
if the information rate R is less than C, then one can ap-
proach arbitrarily small error probabilities by using intelli-
gent coding techniques. In the case of Gaussian channels,
the capacity is given in bits/s by

C ¼ Blog2ð1þ SNRÞ; ð1Þ

where B is the bandwidth of the channel and SNR is the sig-
nal to noise power ratio. In order to quantify the degrada-
tion of the channel in terms of uncertainties, we first
analyze the channel capacity as a function of the distance
between transmitter and receiver. We consider the case
where the channel is affected by multipath or shadowing
fading with log-normal distribution. The received power
at distance d is governed by the following log-normal path
loss model [17]:

PlðdÞ ¼ Plðd0Þ þ 10clog10ðd=d0Þ þ g; ð2Þ

where Pl(d) is the power loss in dB after the signal propa-
gates through distance d; Pl(d0) is the power loss in dB at
the reference distance d0; c is the path loss distance
exponent (typically between 2 and 4); and g is a random
variable expressed in dB representing the slow fading
noise (shadow noise), which is normal distributed,

g � N 0;r2
g

� �
.

The received power, Pr(d), is equal to the transmitting
power Pt minus the path loss Pl(d), all in dB, such that
Pr(d) = Pt � Pl(d). By taking the reference distance equal
to the unity, it can be written as

PrðdÞ ¼ j� 10clog10ðdÞ � g; ð3Þ

where j = Pt � Pl(d0) is a constant, and the Gaussian sha-
dow noise g has zero mean and variance between 3 dB
and 8 dB [3]. Thus, using these definitions, the signal-to-
noise ratio in dB is given by

SNRdB ¼ PrðdÞ � N ¼ j� 10clog10ðdÞ � g� N; ð4Þ

where N is the power in dB of the thermal additive white
Gaussian noise n(t). Due to the presence of n(t) the com-

munication channel is called AWGN channel. The signal-
to-noise ratio in (4) is given by SNR ¼ 10SNRdB=10, using the
relationship above we have

SNR ¼ 10ðj�NÞ=10d�c10�g=10 ¼ ad�ce�ag; ð5Þ

where a = ln(10)/10 and a = 10(j�N)/10. The distance d is a
iid variable, statistically independent from g, Rician distrib-
uted d � Rðl;r2Þ (see [13,14]), with mean l and variance
r2. The Rician distribution is due to the assumption that, in
the two dimensional case, coordinated (x,y) of both
transmitter and receiver have iid uncertainties Normal
distributed with xt � Nðlxt ;r2

t Þ; yt � Nðlyt ;r2
t Þ for the

transmitter, and xr � N lxr ;r2
r

� �
; yr � Nðlyr ;r2

r Þ for the
receiver. Then, the euclidean distance d = jxt � xr,yt � yrj,
is Rice distributed d � Rðl;r2Þ with mean l = jlxt � lxr,
lyt � lyrjand variance r2 ¼ r2

r þ r2
t (see [15,13]). Then,

the statistics of distance d can be obtained from the mean
and variance of the transmitter and the receiver location.
These parameters depend on the method of estimating
the position and are assumed to be known.

In what follows we will consider that (i) The nodes to be
considered as possible relays are pre-selected using some
protocol that ensures the forward direction of the message
toward the destination. (ii) The average distance between
the transmitter and relay l is much larger than its standard
deviation r. For relationship l/r P 3, using the Hankel
approximation of the modified Bessel function of the first
kind and zero order, see [16], it can be shown that the rice
distribution is approximately equal to a normal one such
that the following fulfills [14]:

Rðl;r2jl=r P 3Þ � N ð~l;r2Þ; ð6Þ

where ~l ¼ ðl2 þ r2Þ1=2. Thus, we consider the uncertain
distance as normal distributed on the imaginary line to
the destination address constrained to l/r P 3.

Assuming a value of bandwidth B = ln(2), using (5) in
(1), the channel capacity can be expressed by

C ¼ lnð1þ ad�ce�agÞÞ: ð7Þ

The capacity of a transmission channel gives us the limit, in
terms of bits of information per unit of time, which cannot
be exceeded without loss of information. We are interested
in evaluating the link quality using (7) for efficient relay
decisions. To do this, we will use two important metrics.
The first is called error probability, which is the probability
that the transmission rate (R) exceeds the capacity of the
link (C). It is worth noting that if part of the transmitted
data are used for channel signaling and control, it is possi-
ble to consider a smaller effective capacity. The other is the
expected distance reached by the information at the cho-
sen relay, which we call progress. In order to write such
metrics formally let us first define, using (7), the constant
zc as which

zc ¼ lnððeC � 1Þ=aÞ ¼ �ag� c lnðdÞ; ð8Þ

The constant zc define a bound in the domain (g,d). Given a
transmission rate R, the corresponding constant zr is ob-
tained by replacing R in place of C in (8). Note that zr and
zc are negative definite values. Thus, zr needs to be greater
than or equal to, zc so that information can be transmitted.
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Let us consider the set D ¼ fðg; dÞjzr > zcg, shown in Fig. 1
where the values of the couple (g,d) allow the information
to reach the relay. Note that the critical distance �d in the
figure is the maximum distance, at g = 0, where transmis-
sion is possible, usually called transmission range, and is
given by

�d ¼ e�zc=c: ð9Þ

The first metric we consider is the error probability Pe, de-
fined as the volume of the density function bounded by the
area defined by D in Fig. 1. Formally, we can express this
probability as

Pe ¼ Pfzr 6 zcg ¼ 1�
Z Z

D
fgdðg; dÞdgdd; ð10Þ

where fgd(g,d) is the joint distribution of the random vari-
ables pair (g,d). Considering the independence between g
and d, and calling DðgÞ the subset of D for a given value
of g, the error probability can be obtained as

Pe ¼ 1�
Z 1

�1
fgðgÞ

Z
DðgÞ

fdðdÞdd

" #
dg; ð11Þ

where fg(g) and fd(d) are the distribution of variables g and
d.

The second metric we consider is the progress Pr, which
is defined as the expected value of the distance covered by
the message subjected to the message has passed. It can be
written as

Pr ¼
Z 1

�1
fgðgÞ

Z
DðgÞ

dfdðdÞdd

" #
dg=ð1� PeÞ: ð12Þ

We shall now see how to use these metrics to decide
the relay within a subset of possible candidates. To this
end, we need to define the decision criterion.

4. The optimality criterion

If the distance between the transmitter and the relay in-
creases, it is more likely that the information does not

reach the relay, and vice versa. Thus, both metrics, error
probability and progress, are inversely related. In order to
derive a criterion to optimally decide the best relay, we
propose to weigh the error probability and the inverse of
progress. The way to achieve the optimal relay decision,
using these two metrics, is by minimizing the following
cost function:

JðqÞ ¼ Peþ q
Pr
; ð13Þ

where q is a positive scalar. The value of q weighs the
importance of both metrics for the optimum selection.
Thus, the choice of the weight reflects the tradeoff between
the requirements of low probability of error and progress
information. Values of q close to zero prioritize a low prob-
ability of error at the expense of low progress. This will
bring a greater number of hops to reach the destination
but will ensure that the message reaches the destination
with high probability. Conversely, a high value of q priori-
tizes the selection of remote relays, decreasing the number
of hops, even if the probability that the message reaches
the destination is low. However, it is important to note that
the relay which minimizes the cost function, for any value
of the weight, is always an optimal solution in the sense
that there is no other relay to achieve more progress for
the same error, and vice versa. Setting a value of q, it is
possible to calculate the cost function for each one of the
admissible relays.

Now, we show how to proceed for one-hop or two-hops
decisions. Let us assume that each node is able to define a
cone toward the destination in which a number of possible
relays lies, as shown in Fig. 2. In the case of one-hop strat-
egy, starting from A, an optimal decision must be made be-
tween B and C, which are within the transmission range of
A. In general, by denoting Ji(q) the cost function of each one
of the N admissible relays that belong to the set C, the opti-
mal relay is given by

arg min
i2C
fJiðqÞg: ð14Þ

For node A, the set is C ¼ fB;Cg. To proceed with the next
hop, if B was selected, the optimal relay decision must be
made in the set C ¼ fD; Eg. On the other hand, if it was C,
a decision must be done in the set C ¼ fE;G; Fg. We call this
strategy one-hope twice, since each of the two hops are
decided by using the strategy of one-hop used twice.
Now, in the case of the joint two-hops strategy, in the
example, the optimal decision must be made considering
the set C ¼ fðA;B;DÞ; ðA;B; EÞ; ðA; C; EÞ; ðA;C;GÞ; ðA;C; FÞg.

Fig. 1. Joint (g,d) distribution and set D ¼ fðg;dÞjzr > zcg, the area below
the curve which defines the probability that the information reaches the
next relay. The concentric circles represent the levels of the relay
uncertainty with normal distribution. Fig. 2. Forwarding cone.
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Author's personal copy

Now, we will obtain useful expressions for practical cal-
culations of Pe and Pr, for two cases. The first one is for one-
hop relay decision, and in the second one we extend the
approach for two-hops relays decision.

4.1. One-hop case

Considering the independence between distance and
fading, the metrics given by Eqs. (11) and (12), for the case
of one-hop decision are well approximated as follows:

Pe � 1� 1
2prrg

Z 1

�1
e
�1

2
g
rg

� �2 Z eð�ag�zc Þ=c

�1
e�

1
2

d�l
rð Þ

2

dddg; ð15Þ

Pr � 1
2prrg

Z 1

�1
e
�1

2
g
rg

� �2 Z eð�ag�zc Þ=c

�1
de�

1
2

d�l
rð Þ

2

dddg=ð1

� PeÞ; ð16Þ

where the lower limit of the integration interval extends
from zero to �1 to be consistent with the gaussian
approximation, and up to the bound given by (8). Is worth
noting that, because we are considering that the uncer-
tainty is bounded proportionally to the distance, the con-
tribution to the metric when extending the integration
interval from zero to �1 is negligible. In order to obtain
working equations suitable for real time with low compu-
tational cost, we need to solve and obtain simple expres-
sions for both metrics. In the appendix, we develop the
approaches needed to obtain the following simple
expressions:

Pe � 1� C ~l;r2
g ;

�d
� �

; ð17Þ

Pr � ~l� r2

ð1� PeÞN ð
~l;r2

g ;
�dÞ; ð18Þ

where Cð~l;r2
g ;

�dÞ and Nð~l;r2
g ;

�dÞ are the normal cumula-
tive and the normal probability distribution function, with
mean ~l and variance r2

g ¼ r2 þ a2 �d2

c2 r2
g, evaluated at dis-

tance �d. Note that the parameters required to calculate
these expressions for each relay are ðC; c;rg; ~l;rÞ, where
(C,c,rg) are channel parameters and ð~l;rÞ are obtained
as it was described before using the mean and variance
of the transmitter and the receiver location uncertainties.
Moreover, for an efficient evaluation of the cumulative
function in (18), there are abundant methods which range
from tables to modern software, and fast calculation of
normal pdf in (18) can be obtained directly from its math-
ematical expression.

4.2. Two-hops case

The joint normal distribution between two consecutive
distances, one between the transmitter node and the first
relay – that we call d1 – and the other, between the first re-
lay and the second – that we call d2 – is as follows:

fd1d2 ðd1;d2Þ ¼
1

2pjRj1=2 e�
1
2hR�1hT

; ð19Þ

where h ¼ ½d1 � ~l1; d2 � ~l2�, and R is the covariance ma-
trix between both stochastic variables. It is assumed that

the distance between the first relay and destination is
greater than the distance between the second relay and
destination. Thus, both quantities, d1 and d2, are positive
scalar. Calling r2

1 the variance of distance d1;r2
2 the vari-

ance of distance d2, and r12 the cross-covariance between
d1 and d2, the covariance matrix is given by

R ¼
r2

1 r12

r12 r2
2

" #
: ð20Þ

In the case that r2
A; r2

B, and r2
C are the variances of loca-

tions at nodes A, B, and C, the variances of distances d1 and
d2 are given by r2

1 ¼ r2
A þ r2

B; r2
2 ¼ r2

B þ r2
C , and r12 ¼ �r2

B.
Now, taking into account this joint distribution, the met-
rics (11) and (12) can be well approximated by

Pe � 1�
Z 1

�1

e
�1

2
g
rg

� �2

ffiffiffiffiffiffiffi
2p
p

rg

�
Z Z eð�ag�zc Þ=c

�1
fd1d2
ðd1; d2Þdd1dd2dg: ð21Þ

Pr �
Z 1

�1

e
�1

2
g
rg

� �2

ffiffiffiffiffiffiffi
2p
p

rg

Z Z eð�ag�zc Þ=c

�1
ðd1

þ d2Þfd1d2 ðd1;d2Þdd1dd2dg=ð1� PeÞ: ð22Þ

In the appendix, we derive the following simple expres-
sions for fast computation of the metrics:

Pe � 1� C ½~l1; ~l2�;Rg ; ½�d; �d�
� �

; ð23Þ

Pr � ð~l1 þ ~l2Þ

� h1b1Nð~l1;r2
g11;

�dÞ þ h2b2Nð~l2;r2
g22;

�dÞ
� �

=ð1� PeÞ:

ð24Þ

where

b1 ¼ C ~l2 �
r2

g12

r2
g11

ð�d� ~l1Þ;
jRg j
r2

g11

; �d

 !
;

b2 ¼ C ~l1 �
r2

g21

r2
g22

ð�d� ~l2Þ;
jRg j
r2

g22

; �d

 !
;

½h1;h2� ¼ ½1;1�R; and Rg ¼
r2

g11 r2
g12

r2
g21 r2

g22

 !
¼Rþ

1 1
1 1

� � �darg

c

 !2

:

The parameters required to calculate these expressions
for each relay, are ðC; c;rg; ~l1; ~l2;rA;rB;rCÞ. Note, first,
that considering rg12 = rg21 = 0 both metrics one-hop
twice and two-hops give the same decision. Secondly, note
that the improvement obtained by considering the
two-hops design, compared to the one-hop twice can be
obtained analytically by subtracting Eq. (23), for the error
performance, and (24), for the progress performance, from
the same equations but with rg12 = rg21 = 0.
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5. Simulation results and discussion

In this section, we present simulations to illustrate
the performance of the method and also comparisons
with other strategies. In the simulations, it is assumed
that the admissible relays are pre-selected using a proto-
col that ensures the advance direction of the message to-
ward the destination. Moreover, the used protocol is able
to select relays that fulfill the relationship l/r P 3. Any
other relay that does not satisfy this condition is dis-
carded, eliminating, in this way, the possibility of consid-
ering those that are farther away from the destination
than the transmitter, i.e. behind the transmitter. We also
assume that each node broadcasts its own location, both
mean value and standard deviation, periodically and
proactively.

The communication channel considered is Gaussian,
and is affected by shadowing fading with log-normal dis-
tribution. The channel capacity between transmitter and
relay, (7), is given by

C ¼ B lnð1þ ad�ce�agÞ; ð25Þ

where B = 100/ln(2) kHz, c = 2, and a = 106. Using these
parameters, the signal-to-noise level at distance
�d ¼ 250 m, without fading, is SNRdB = 12 dB. The adopted
transmission rate is R = 200 Kbits/s which corresponds to
the channel capacity at distance �d, the transmission range
without fading noise.

To illustrate the results, we will consider a wireless sen-
sor network using two different simulation softwares. On
the one hand, we developed a source, using MATLAB’s
built-in functions, which simulate random distances be-
tween nodes, linked by transmission channels affected by
fading noise. On the other hand, we developed C++ func-
tions inside the Network Simulator (NS2). In both cases,
three strategies are compared, greedy routing scheme
(GRS), the maximum expectation within the transmission
range (MER), and our approach. For each criterion used a
one-hop relay is chosen within the admissible set.

The next hop selection in GRS consists in choosing the
relay that minimizes the distance to the destination within
the transmission radius [12]. In the proposed scenario,
considering N admissible relays, GRS chooses the relay
which maximizes the distance �d� di, given di <

�d, where
di is the distance from transmitter to ith relay. Formally,

arg max
i¼1;...;N

�d� di
	 


; st : di <
�d: ð26Þ

The second strategy considered is the MER [9], which con-
sists in choosing the relay that maximizes the expected
progress, given by the following expression:

arg max
i¼1;...;N

di 1� e�u2=2r2
� �n o

; st : di <
�d: ð27Þ

u ¼minðdi;
�d� diÞ

The third strategy implies to choose the relay that mini-
mizes the cost (13) for an adopted value of weight q P 0,
as follows:

JðqÞ ¼ arg min
i¼1;���;N

fJiðqÞg; st : di <
�d: ð28Þ

5.1. Failure rate vs progress

First, the one-hop relay decision using MATLAB’s built-
in functions is simulated in several different scenarios.
Within this setup, for each relay selected, the channel
capacity is calculated by using Eq. (25). If the channel
capacity is greater than R, the message is considered suc-
cessfully received by the relay; otherwise, the message
has failed. When the message has failed, no retransmission
method is considered. The relationship between the num-
ber of lost messages and the number of messages sent
gives the failure rate. The progress is computed as the aver-
aged distances between transmitter and relay for each
message successfully received at each hop.

In the simulations, each one of the N admissible relays
are uniformly distributed within the distance interval
d 2 ½0; �d�. The standard deviation ri, representing the dis-
tance uncertainty of each relay, is chosen randomly and
proportionally to the distance di, as follows:

ri ¼ qrdi; ð29Þ

where q 2 [0,0.2], so that the variance remains within the
range l/r P 5, and r is a random variable uniformly dis-
tributed in the interval [0,1]. Three cases of fading with
standard deviation noises of rg = 0 dB, rg = 1 dB, and
rg = 2 dB are considered.

In Fig. 3, the failure rate versus progress for the one-hop
decision case, considering 10 relays for each hope at differ-
ent fading noises and uncertainty standard deviation
levels, are depicted. These values were obtained by averag-
ing 3000 transmitted packages. The same, but considering
20 relays, is shown in Fig. 4. It can be seen from the figures
that for low fading the signal-to-noise ratio increases, and
so does the channel capacity. Thus, for every selection cri-
teria, when fading decreases, progress increases and failure
rate decreases, as it was expected. In all cases MER, has a
lower failure rate than GRS at the expense of a decrease
in progress. However, there always exist weights q in our
cost that improve the relay selection, as regards tradeoff
between failure and progress, for both GRS and MER. Thus,
for the same progress obtained with GRS or MER, our opti-
mal selection reaches lower failures and for the same fail-
ure rate, more progress. With increasing uncertainties, the
differences between our cost with respect to GRS and MER
become significant. As expected, these differences are
greater when more relays are considered to decide, as it
can be seen from the figures for 10 and 20 relays. In the fig-
ures, only a limited range of weight values q in our cost is
depicted. In Fig. 5, the performance of the optimal cost, for
an extended rank of weights q, different number of relays,
and fading noise are shown.

Now, we present the performance for the two-hops
decision. In this case, it is assumed that the nodes have
the location information of their neighbors beyond their
transmission range, so that the metrics for two consecutive
hops toward the destination can be calculated. The same
scenario as in the one-hop case is considered. The two-
hops decision performance is compared with the one-hop
decision twice. In a first case, we consider two relays for
the first hop and three, for the second hop. Each one of
the first hop can reach two of the second hop. Thus, there
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is one relay that is reached by both of the first hop. In
Fig. 6a, failure rate versus progress is depicted. In a second
case, the same scenario but using 10 relays in the first hop
and 55 in the second, is shown in Fig. 6b. In this case, each
one of the first hop can reach ten of the second hop. Thus,
five relays are reached by two relays from the first hop. As
was already explained in Section 4.2, the improvement

between two-hops considered jointly and one-hop twice
lies in how much the value of rg12 affects the normal dis-
tribution and cumulative functions in metrics (23) and
(24). In the case that rg12 = rg12 = 0, both cases give the
same decision. In our example, rg12 = rg12 is a random va-
lue within the interval (0,0.2d), which gives improvements
up to 10% in the full range of q.

(a)

(b)

(c)

Fig. 3. Failure rate versus progress for 10 relays, (a) without fading noise
rg = 0; (b) with fading noise standard deviation rg = 1; (c) with rg = 2.
The square stands for GRD, the circle for MER, the solid line for optimal
cost J(q), for different values of q.

(a)

(b)

(c)

Fig. 4. Failure rate versus progress for 20 relays, (a) without fading noise
rg = 0; (b) with fading noise standard deviation rg = 1; (c) with rg = 2.
The square stands for GRD, the circle for MER, the solid line for optimal
cost J(q), for different values of q.
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5.2. Network simulator 2

Our goal in this section is to perform comparative sim-
ulations between the three methods by using the network
simulator NS2, developed by University of California at
Berkeley. In order to complement the results obtained in
the previous section, now a different scenario has been
chosen. Settings include: MAC layer, IEEE 802.11; peer-
to-peer 64 bytes packets; 914 MHz Lucent WaveLAN DSSS
radio interface; node velocity in the interval 0–5 m/s;
number of transmitted packages 1000; number of nodes
50 and 100; simulation area 300 � 600 m; random desti-
nation; protocol used to define the forward cone, DREAM
(distance routing effect algorithm for mobility [18]); trans-
mission range �d ¼ 40 m; fading noise, rg = 0. The uncer-
tainties in location follows the criterion given in (29)
with q = 0.2. The metrics to be evaluated are the failure
rate, the average delay from packet submission to recep-
tion at the destination (end-to-end transmission), and the
average number of hops to reach destination. The latter
is a metric proportional to the expected progress of the
message. In Table 1, the comparative results between
GRS, MER, and the optimal cost with q = 1, are presented.

From the tables, the same trends as in the previous sim-
ulations obtained with the Matlab’s building-functions are
observed. The MER improves the GRS but our proposed
method improves MER. In the working scenario, we can
see that the failure rate is high. This is because it has been
considered a low transmission range, d = 40 m, thereby,
many destinations that are far from the sender cannot be
reached. As a consequence, progress, or equivalently the

(a)

(b)

Fig. 5. Failure rate versus progress for q 2 [10�2,104], in cost J(q), with
fading noise rg = 0, rg = 1, and rg = 2. (a) For 10 relays; (b) For 20 relays.

(a)

(b)

Fig. 6. Failure rate versus progress for (a) two relays for the first hop and
three, for the second hop, each one of the first hop can reach two of the
second hop; and (b) 10 realys in the first hop and 55 in the second, each
one of the first hop can reach ten of the second hop. The square for two-
hops selections and the circle for one-hop selection twice.

Table 1
Table I: NS2 simulation with \rho = 1, node velocity in the interval 0–5 m/s;
simulation area 300 � 600 m; random destination; protocol DREAM;
transmission range �d ¼ 40 m; fading noise, rg = 0;q = 0.2; number of nodes
(a) 50 and (b) 100.

Method GRS MER J

a
Failure rate 0.85 0.82 0.74
End to end delay (s) 0.21 0.19 0.19
Averaged number of hops 1.74 1.74 1.2

b
Failure rate 0.82 0.80 0.66
End to end delay (s) 0.22 0.22 0.22
Averaged number of hops 1.7 1.68 1.4
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average number of hops, is also low. This improves when
the number of nodes increases from 50 to 100. The end-
to-end time delay are approximately the same for all the
strategies.

6. Conclusion

Given a subset of possible relays for geographic routing
subjected to location uncertainties and fading conditions,
we have presented a selection strategy which consists in
minimizing a criterion that weighs the probability of error
and the progress of the transmitted information. Both met-
rics were calculated considering the channel capacity as a
random variable due to the random characterization of
the node location. The uncertainties considered are the
fading and the location of the relay.

We analyzed two cases, one where the decision is made
by using a one-hop statistic. The other, when deciding
every two-hops by using joint statistics between the first
and the second hope. The improvements from the one-
hop design to the two-hops design can be known analyti-
cally. The information required for each decision is the
mean and the variance of the location of each relay and
also the degree of channel fading. Working expressions
with low computational load for both cases were derived.
The expressions are suitable to be used in real time compu-
tation in order to decide the optimal relays.

The proposed method was compared to other existing
ones, the GRS, which does not take into consideration the
uncertainties, and to MER, which does. The three ap-
proaches were compared by using two different simula-
tors; one, using Matlab built-in functions; and the other,
using Network Simulator 2. As expected, MER, which opti-
mizes the progress within the transmission range outper-
forms GRS by reducing the failure rate. According to our
theoretical results and the simulations, our proposal im-
proves MER by optimizing both the rate of failure and
the conditional expected progress, given that the message
was successfully received by the relay, simultaneously.
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Appendix A

The solution of Eqs. (15) and (16) are computationally
expensive for using in real time. In this section, suitable
working approaches will be derived. Taking into account
that the density function fgd is concentrated around g = 0,
a convenient approximation is obtained by linearizing
the integration limit of the inner integral in (11) around
this value. The error, using this linearization, increases as

we move away from g = 0, but at the same time, the den-
sity function decreases rapidly, so that when using the
approximation, we can expect a very small error in the
integral. The approximation is obtained by taking the lin-
ear term of the Taylor series expansion of the integration
limits of d, at coordinates g = 0, accordingly with the fol-
lowing expression:

d ¼ eð�ag�zr Þ=c � �dð1� a
c
gÞ: ð30Þ

Then, taking into account that the left side of the shaded
portion of Fig. 1 does not contribute significantly to the
probability of error, the expression of Pe in (15) can be
used. Making the following change of variable:
s ¼ dþ ð�da=cÞg, the last term of the right side of the
approximation (15) can be written, using matrix formula-
tion, as

1

2pjUj1=2

Z �d

�1

Z 1

�1
e�

1
2ðhfþbgÞU�1ðhfþbgÞT dgds; ð31Þ

where j.jmeans the determinant and

h ¼ s� ~l; f ¼ ½1;0�; b ¼ �
�da
c
;1

" #
; U ¼

r2 0
0 r2

g

 !
:

ð32Þ

To proceed, we need the following lemma:

Lemma 1. Given row vectors X and Y, and scalars s and t, the
following equality holds:

Z t

�1
e�

1
2ðXsþYÞU�1ðXsþYÞT ds ¼ e

�1
2 a0�

a2
1

a2

� �

�

ffiffiffiffiffiffiffi
2p
a2

s
C �a1

a2
;

1
a2
; t

� �
; ð33Þ

where

a0 ¼ YU�1YT ; a1 ¼ XU�1YT ; a2 ¼ XU�1XT ; ð34Þ

Proof. Eq. (33) can be written as

Z t

�1
e�

1
2ða2s2þ2a1sþa0Þds ¼

Z t

�1
e
�a2

2 ðsþ
a1
a2
Þ

2
�1

2 a0�
a2

1
a2

� �
ds ð35Þ

¼ e
�1

2 a0�
a2

1
a2

� � Z t

�1
e�

a2
2 ðsþ

a1
a2
Þ

2

ds: ð36Þ

Taking into account that

ffiffiffiffiffiffiffi
a2

2p

r Z t

�1
e�

a2
2 ðsþ

a1
a2
Þ

2

ds ¼ C �a1

a2
;

1
a2
; t

� �
; ð37Þ

and replacing in (36), the equality (33) fulfils. h

By applying this lemma, the marginalization of the
bi-variate pdf in (31) with respect to g is given by

1

ð2pjUjbU�1bTÞ
1=2

Z �d

�1
e
� h2

2r2
g ds; ð38Þ
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where

r�2
g ¼ fðU�1 �U�1bT bU�1

bU�1bT ÞfT
: ð39Þ

By denoting the scalar b = bfT, it follows that fU�1fT = r�2,
and bU�1fT = br�2. Thus, by replacing in (39), we find that
r2

g ¼ r2 þ b2r2
g. Also, we find that

jUjðbU�1bTÞ ¼ r2 þ b2r2
g ¼ r2

g : ð40Þ

By using this equality, we find that (38) is equal to
C ~l;r2

g ;
�d

� �
and (17) succeeds.

In order to obtain a working expression for the progress,
let us first use the derivative of the following exponential
function with respect to d:

e�
1
2
ðd�~lÞ2

r2

� �0
¼ � ðd�

~lÞ
r2 e�

1
2
ðd�~lÞ2

r2 : ð41Þ

Dividing by
ffiffiffiffiffiffiffi
2p
p

r in both sides and rearranging, the fol-
lowing equality holds

dfdðdÞ ¼ ~lfdðdÞ � r2f 0dðdÞ: ð42Þ

By replacing in (12) the first term of the right side of (42)
givesZ 1

�1
fgðgÞ

Z
DðgÞ

~lfdðdÞdd

" #
dg=ð1� PeÞ; ð43Þ

which is equal to ~l according with (11). Thus, the first term
of expression in (18) is obtained. For the second term we
use the linearized expression, as before, for the integral
limit, as follows:Z 1

�1
fgðgÞ

Z
DðgÞ

r2f 0dðdÞdd

" #
dg

¼
Z 1

�1
fgðgÞr2fdðdÞjDðgÞdg

� rffiffiffiffiffiffiffi
2p
p

Z 1

�1
fgðgÞe�

1
2

ð�dð1�a
cgÞ�~lÞ2

r2 dg: ð44Þ

By denoting �h ¼ �d� ~l the above approximation can be
written as

1
2prrg

Z 1

�1
e�

1
2ð

�hfþbgÞU�1ð�hfþbgÞT : ð45Þ

Using the lemma, it can be written as

r2ffiffiffiffiffiffiffi
2p
p

rg

e
�1

2
�h2

r2
g : ð46Þ

Finally, dividing by the factor (1 � Pe), the second term of
expression in (18) is obtained.

Working expressions can be derived for the two-hops
case in a similar way as for one-hop case. By using the fol-
lowing change of variables, s1 ¼ d1 þ ð�da=cÞg and
s2 ¼ d2 þ ð�da=cÞg, the inner double integral of (21), simi-
larly to (38) but now considering two dimensions, can be
approximated by

1

ð2pjUjbU�1bTÞ
1=2

Z Z �d

�1
e�

1
2hR�1

g hT
ds1 ds2; ð47Þ

where

U ¼
R 0
0 r2

g

 !
; ð48Þ

R�1
g ¼ F U�1 �U�1bT bU�1

bU�1bT

 !
FT ; ð49Þ

b ¼ �
�da
c
;�

�da
c
;1

" #
; ð50Þ

h ¼ ½s1 � ~l1; s2 � ~l2�; ð51Þ

F ¼ ½I;0�: ð52Þ

where I is the identity of dimension two and 0 = [0,0]T.
By denoting �b ¼ � �da

c ;�
�da
c

h i
, it follows that

bU�1FT ¼ �bR�1, and taking into account that FU�1FT = -
R�1, we find that

R�1
g ¼ R�1 � R�1 �bT �bR�1

�bR�1 �bT þ r�2
g

¼ Rþ �bTr2
g
�b

� ��1
; ð53Þ

where the matrix inversion lemma was used to obtain the
last equality. By using properties of the determinant, the
following holds:

jUjbU�1bT ¼ jRjð�bR�1 �bTr2
g þ 1Þ ¼ jI þ r2

g
�bT �bR�1jjRj

¼ jRþ �bTr2
g
�bj ¼ jRg j: ð54Þ

By using (53) and (54) we find that (47) is equal to
C ½~l1; ~l2�;Rg ; ½�d; �d�
� �

and (23) succeeds.
In order to obtain the working expressions for progress

in the two-hops case we need first to use the following
derivatives:

h1

d e�
1
2hR�1hT

� �
ds1

þ h2

d e�
1
2hR�1hT

� �
ds2

¼ �e�
1
2hR�1hT

½h1; h2�R�1hT
: ð55Þ

Let [h1,h2] = [1,1]R and define d ¼ ½d1 � ~l1; d2 � ~l2�. Thus,
the above can be written as

ðd1 þ d2Þe�
1
2dR�1dT

¼ ð~l1 þ ~l2Þe�
1
2dR�1dT

� h1

�
d e�

1
2dR�1dT

� �
ds1

� h2

�
d e�

1
2dR�1dT

� �
ds2

: ð56Þ

Dividing both sides by 2pjRj the following holds:

ðd1 þ d2Þfd1d2 ¼ ð~l1 þ ~l2Þfd1d2 � h1
d fd1d2

� �
ds1

� h2

�
d fd1d2

� �
ds2

: ð57Þ

By replacing in (22), for similarity with (21), the first term
on the right is equal to ð~l1 þ ~l2Þ. The second term can be
solved in a similar way as it was done to obtain (47), giving
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h1

Z Z �d

�1

dfd1 ;d2
ðs1; s2Þ

ds1
ds1ds2

¼ h1

2pjRg j1=2

Z �d

�1
e�

1
2
�hR�1

g
�hT

ds2; ð58Þ

where �h ¼ ½�d� ~l1; s2 � ~l2�. This integral can be solved by
applying the lemma, which gives the second term of (24).
Finally, using a similar procedure, the third term of (24)
is obtained by replacing the third term of (57) in (12)
and solving.
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