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ABSTRACT

A software application for automatic descriptive feature extraction from image-objects, FETEX
2.0, is presented and described in this paper. The input data include a multispectral high
resolution digital image and a vector file in shapefile format containing the polygons or objects,
usually extracted from a geospatial database. The design of the available descriptive features or
attributes has been mainly focused on the description of agricultural parcels, providing a variety
of information: spectral information from the different image bands; textural descriptors of the
distribution of the intensity values based on the grey level co-occurrence matrix, the wavelet
transform and a factor of edgeness; structural features describing the spatial arrangement of the
elements inside the objects, based on the semivariogram curve and the Hough transform; and
several descriptors of the object shape. The output file is a table that can be produced in four
alternative formats, containing a vector of features for every object processed. This table of
numeric values describing the objects from different points of view can be externally used as

input data for any classification software. Additionally, several types of graphs and images
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describing the feature extraction procedure are produced, useful for interpretation and
understanding the process. A test of the processing times is included, as well as an application
of the program in a real parcel-based classification problem, providing some results and
analyzing the applicability, the future improvement of the methodologies, and the use of
additional types of data sets. This software is intended to be a dynamic tool, integrating further
data and feature extraction algorithms for the progressive improvement of land use/land cover

database classification and agricultural database updating processes.

Keywords: feature extraction, parcel-based, image analysis, remote sensing, agricultural

database updating, semivariogram, Hough transform, texture.

1.- INTRODUCTION

Image classification techniques are frequently used in remote sensing to face a wide range of
applications, being traditionally focused on the analysis of independent pixels using multiple
spectral bands as input data, sometimes introducing additional information related to the spatial
distribution of the intensity values of the neighbourhood of the pixels, such as the case of the
texture based approaches. Much attention has been paid to the process of creating the
appropriate decision functions that optimize the accuracy results, and many different
methodologies for the classification itself have been tested. However, a crucial step to be taken
before the classification is the synthesis of the information or attributes that describe the image
element to be classified. This is usually called the feature extraction process, and much less
effort has been made in this sense, mainly because the classification has been fundamentally
pixel-based, and not object-based, thus restricting the options used to enrich the set of features

used as input for the classifiers.
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Geographic Object-Based Image Analysis (GEOBIA) has been defined as a sub-discipline of
Geographic Information Science devoted to partitioning remote sensing imagery into
meaningful image-objects, and assessing their characteristics through spatial, spectral and
temporal scale (Hay and Castilla, 2006). Before carrying out feature extraction and
classification steps, these techniques require image segmentation. Segmentation refers to the
process of partitioning a digital image into multiple segments, called image-objects or simply
objects, in order to simplify and/or change the representation of an image into a more
meaningful and homogeneous structure that is easier to analyze (Shapiro and Stockman, 2001).
These segments have additional spectral and spatial information when compared with single
pixels (Blaschke, 2010). Segmentation is the main problem of this analysis of the image because
it has multiple solutions (Hay and Castilla, 2006; Zhang et al., 2008). Depending on the method
and the parameters used, the results, that are the objects created, can substantially change
(Meinel and Neubert, 2004; Neubert and Herold, 2008; Smith and Morton, 2008; Van Coillie et
al., 2008). Differing from the automatic image segmentation algorithms, objects can be created
using the cartographic limits contained in spatial geodatabases. This approach is known as
Parcel-Based Image Analysis and has some advantages regarding to other image analysis
techniques, the most important being the possibility to directly link the information of the image
to the information contained in a database (Berberoglu and Curran, 2004; Walter, 2004).
Moreover, for many land use mapping applications, parcel-based classification has been
reported to be more accurate than pixel-based classification (Pedley and Curran, 1991; Janssen

and Molenaar, 1995; Aplin et al., 1999; Berberoglu et al., 2000; Volante et al., 2007).

Once object definition is resolved, the next step is to accurately describe each group of pixels in
order to facilitate the correct classification of the object. Different commercial software tools
have been made available over the last several years, providing a variety of features to describe
the properties of the objects and their mutual relations. These features can be grouped into
spectral, textural, shape, thematic attributes, relative to other objects in the same or different

segmentation levels and relative to the global image (Baatz et al., 2004). Our need for a tool to
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automate the descriptive feature extraction process, allowing us to design and incorporate new
sets of features describing objects from different perspectives, evaluating and comparing their
performance, led us to develop FETEX 2.0, an interactive computer program for image object-
oriented feature extraction. The software was written in IDL 6.2 and it can be used on ENVI 4.2
or higher. Our aim with this program is to develop new object descriptive features, some of
them not included in commercial software tools, designed to characterize specific types of
parcels, and with the capacity to adapt certain computation parameters to particular problems.
These features can eventually be used with any classifier in order to assign a class to each
object. The software requires, as input data, images and vectorial files containing the polygon

boundaries in ESRI shapefile (shp) format.

FETEX 2.0 does not include any segmentation algorithm, but it creates the objects according to
the limits contained in the vectorial file. From each one of the objects created, spectral, textural,
shape and structural features can be extracted. The structural features provide information about
the distribution of elements inside each object, detecting and quantifying possible spatial
patterns, very often relevant in identifying the land use/land cover of objects, especially when
working in agricultural areas. For each object, the output is a feature vector ready to be used
with the selected classifier. Information obtained with FETEX 2.0 can be used not only in the
classification of the database objects, but also as ancillary information in agricultural
inventories. Such ancillary information can be the number of trees in a parcel, their average size,
planting distances, etc. Additional images and explanatory graphs about the features extracted

that may be useful for interpretation of results can be obtained as well.

FETEX 2.0 is designed to work with land use/land cover databases in order to help in the
process of classification of the existing parcels, or also to determine the changes that have
occurred in a database comparing the current classified image with the old database. It has been
applied successfully in the feature extraction phase in several updating land use/land cover
cartography processes (Ruiz et al., 2009). Interested users are most likely to be among the

cartographic research community and official cartographical institutions devoted to updating



106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

and maintaining large land use/land cover databases. A limited version of FETEX 2.0 is
available at the Geo-Environmental Cartography and Remote Sensing Research Group (CGAT)

website (http://cgat.webs.upv.es).

2.- EXTRACTION OF DESCRIPTIVE FEATURES WITH FETEX 2.0

The main reason for developing the program was to create a tool for supporting the process of
classification and updating of land use/land cover spatial databases from an object-based
perspective. The extraction of valuable features for this process is essential. FETEX 2.0 is
designed to independently process each image-object to extract a variety of descriptive features
useful to characterize the current land use/land cover. These features can be grouped into five
categories: spectral, textural, structural, shape and those extracted from ancillary data. In this

section, the features are briefly described or referenced.

2.1.- Spectral features

Spectral features provide information about the spectral response of objects, which depends on
land coverage types, state of vegetation, soil composition, construction materials, etc. These
features are especially useful in the characterization of spectrally homogeneous objects, such as
herbaceous crops, fallow fields or compact industrial areas. This group of features constitutes
the traditional information derived from any type of multispectral imagery. In addition to the
original spectral bands, any combination, ratio, or transformation (principal components,
tasselled cap bands, etc) can be included as complementary bands in the input raster file to be

processed.

For each band contained in the input raster file, the values of mean, standard deviation,
minimum, maximum, range, sum and majority of the pixel values inside each object can be

calculated.

2.2.- Texture features



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

The texture informs about the spatial distribution of the intensity values in the image, providing
information about contrast, uniformity, rugosity, regularity, etc. A considerable number of
quantitative texture features and approaches have been reported using different methodologies.
Traditionally, they are computed considering the neighbourhood of each pixel on the image. In
our case, each texture feature value is referred to a particular object, since it is extracted from
each group of pixels that constitute an object. The simplest manner to characterize texture is
based on the first order histogram features. Features such as kurtosis and skewness, representing
the distribution of values of the histogram of an object, are included in FETEX 2.0. The most
widely used set of features is that proposed by Haralick et al. (1973), based on the grey level co-
occurence matrix (GLCM) and also called second order histogram features. Up to seven of these
features can be extracted by FETEX 2.0: contrast, uniformity, entropy, variance, covariance or
product moment, inverse difference moment, and correlation. Since an object-oriented approach
is used, only one GLCM is computed for each object, describing the co-occurrences of the pixel
values that are separated at a distance of one pixel inside the polygon, and considering the
average value of four principal orientations (0°, 45° 90° and 135°) in order to avoid the
influence of the orientation of the elements inside the objects, keeping in mind a potential
classification process. Therefore, only one value for every GLCM feature is computed for each
object. Although the mean of the GLCM is one of the most widely used features in texture
image classification problems at the pixel level, due to its very high correlation to the mean
value of the original band, this feature has been intentionally excluded from the set of GLCM

features.

Another powerful feature is the edgeness factor, that represents the density of edges present in a
neighbourhood. Sutton and Hall (1972) proposed the following formula to compute the

edgeness factor g:
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where g is computed as a function of the distance d between pixels of an image / in a
neighbourhood N. Due to the good performance of this feature in different landscape
classification problems (Ruiz et al., 2002; 2004), it has been included in the program, and the

mean and the standard deviation of the edgeness factor for each parcel is computed.
2.3.- Wavelet-based texture features

Although the basic ideas of wavelets existed since the beginning of last century, the applied
mathematical models were developed in the mid-eighties. A review and mathematical
description of wavelets can be found in Bultheel (1995), and Walker (1999). The use of the
wavelet transform for texture analysis was first proposed by Mallat (1989). Since the texture of
an image is a function of the scale, an advantage of wavelet decomposition is that it provides a
unified framework for multiscale analysis. The wavelet transform allows for the decomposition
of a signal using a series of elemental functions called wavelets and scaling, which are created

by the scaling and translation of a base function, known as the mother wavelet:

W(ﬂj seR", ueR (2)

N

1
‘//s,u - J;

where s governs the scaling and u the translation. The wavelet decomposition of a function is

obtained by applying each of the elemental functions or wavelets to the original function:

W (s =j%f(x>%w*["‘“jdx )

N

In the practice of image analysis, the extension to a 2-D discrete function is usually performed
by means of a product of 1-D low-pass and high-pass filters. As a result, the wavelet transform
decomposes the original image into a series of images with different scales, called trends and
fluctuations. The former are averaged versions of the original image, and the latter contain the
high frequencies at different scales or levels. Since the most relevant texture information is lost

in the lowpass filtering process, only fluctuations are used to calculate texture descriptors. If the
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inverse transform is applied to the fluctuations, three reconstructed images, or details, are

obtained: horizontal, vertical and diagonal. This process is called multiresolution analysis.

Different texture features have been extracted from wavelet details or fluctuations, such as the
local energy (Randen and Husoy, 1999), variance filter (Ferro and Warner, 2002), histogram
signatures (Simard et al., 1999), or co-occurrence features (Van de Wouwer et al., 1999; Ruiz et

al., 2004).

The application FETEX 2.0 includes some texture features based on the wavelet transform.
Seven families of wavelet functions (Haar, Daubechies, Coiflet, Meyer, Symlet, Shannon and
Battle-Lemarié¢) can be applied over the image objects. Defining the support of a wavelet
function as the smallest closed interval, outside of which the function is zero (Bultheel, 1995),
different supports have been defined for each wavelet family, following the work of Fernandez-
Sarria (2007). A total of eight Haralick’s features derived from the GLCM can be extracted
from the image containing the sum of the reconstructed details (mean, contrast, uniformity,
entropy, variance, covariance, inverse difference moment, and correlation), as well as the mean

and standard deviation of the edgeness factor.

However, applying the wavelet transform using an object-oriented approach may be a problem
when large supports are used, since a higher proportion of neighbour pixels located outside the
analyzed object will be considered in the transformation process. Two measures are followed to
reduce this effect: First, an erosion filter using a circular structuring element with a diameter
size equal to the support of the wavelet function is applied to the final image. A limitation of
this is that small and/or narrow objects will be completely eroded, and subsequently omitted
from the characterization of the features that belong to this group. Secondly, even if up to three
levels of decomposition are included for computation in FETEX, only the first level is enabled
in the current version, in order to avoid the decimation of the image to the point that the object
practically dissapears when the direct transform is applied. This effect will be negligible when

working with large objects.
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2.4.- Structural features

Structural features provide information of the spatial arrangement of different elements in the
object, in terms of randomness or regularity of the distribution of the elements. This is the case
of alignments or regular patterns that are present in different man-made lanscapes, such as the
planting patterns of crops and trees in agricultural plots (Recio et al., 2006; Ruiz et al., 2007).
The identification of regular planting patterns can be particularly useful in agricultural
classification, as reported by several authors (Trias-Sanz, 2006; Helmholz et al., 2007; Ruiz et
al., 2009; Recio, 2009; Hermosilla et al., 2010). Structural features computed in FETEX 2.0 are

divided into two groups: the semivariogram and the Hough transform derived features.
2.4.1.- Features extracted from the experimental semivariogram

The semivariogram quantifies the spatial associations of the values of a variable, and measures
the degree of spatial correlation between different pixels in an image. This is a particularly
suitable tool in the characterization of regular patterns. The expression which describes the

experimental semivariogram of a continuous variable is:

1 & ) 4)
_ﬁ;[z(xi) —z(x; + h)]

yh)

where z(x;) represents the value of the variable in position x;, N is the number of pairs of data

considered and /4 provides the separation between elements in a given direction.

The semivariogram has been widely employed in digital image processing. Its usefulness in
remote sensing has been demonstrated, complementing the spectral variables with information
related to the spatial structure of the image (Carr, 1996; Durrieu et al., 2005). The relationship
between the range of the semivariogram and the size of the pattern described by the objects of
an image has been studied by Woodcock et al. (1988a, 1988b). Carr and Miranda (1998) used
the slope in the origin as a feature directly related to the variability of the intensity values in

these objects. Other works are focused on the extraction of descriptive features from the
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semivariogram of remotely sensed images. Thus, Chica-Olmo and Abarca-Hernandez (2000)
computed the first value of that function in the neighbourhood of a pixel to characterize the
texture of that neighbourhood. Maillard (2003) used all the semivariogram values, conferring
more importance to the initial values, and less to the subsequent values. These and other authors
(Jakomulska and Clarke, 2000; Ashoori et al., 2008; etc.) used different features extracted from

the semivariogram computed in a window around a pixel in order to perform a classification.

The omnidirectional semivariogram can be obtained by averaging the semivariograms of all
possible directions. However, this approach requires a long processing time. This
semivariogram is obtained in FETEX 2.0 by computing, for each object, the mean of the
semivariograms calculated in six different directions, ranging from 0° to 150° with a step of 30°.
Afterwards, each semivariogram curve is smoothed using a Gaussian filter with a stencil of 3

positions, in order to reduce experimental fluctuations.

In homogeneous objects, semivariance values tend to be higher as the lag increases. However,
when the elements inside an object are spatially arranged following a regular pattern, the
semivariogram has a cyclic behaviour, and it is known as hole-effect semivariogram (Pyrcz and
Deutsch, 2003). This type of behaviour is common in areas with a high level of human
intervention, such as certain crops, urban or industrial landscapes. Figure 1 shows the
experimental semivariogram curves of four parcels with different land uses. Figure la and
Figure Ic present parcels containing tree crops that follow regular plantation patterns, their
semivariograms being examples of hole-effect semivariograms. On the other hand, Figure 1b
and Figure 1d do not present regular patterns or spatial cyclicity, and their semivariogram

curves follow a monotonous rising trend.

The features extracted by FETEX 2.0 are based on the zonal analysis defined by a set of
singular points on the semivariogram, such as the first maximum, the first minimum, the second
maximum, etc., and are fully described in Balaguer et al. (2010). The semivariogram derived

features are: ratio variance at first lag, ratio between semivariance values at second and first
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lag, first derivative near the origin, lag value corresponding to the first maximum, mean of the
semivariogram values up to the first maximum, variance of the semivariogram values up to the
first maximum, area between the semivariogram value in the first lag and the semivariogram
function until the first maximum, ratio between the semivariance at first local maximum and the
mean semivariogram values up to this maximum, distance between the location of the first local
maximum and the second local maximum, and distance between the first maximum and the first

minimum.

In terms of efficiency in processing time, instead of computing the semivariogram considering
all the pixels inside each object, only a random selection of pixels is used, in order to reduce the
processing time. A test was carried out in order to assess the influence of the percentage of
pixels used in two processes: in the calculation of the semivariogram curve, and in the
performance of the classification of a sample of N objects. The results show that
semivariograms calculated using a reduced number of random pixels are very similar to those

computed using all the pixels inside each object, as shown in the two examples of Figure 2.

Regarding the classification performance, Figure 3 shows a graph representing the overall
accuracies obtained in a per-object classification using the set of features derived from the
semivariogram described above. Ten classification processes have been compared. In each, a
different percentage of pixels has been randomly selected for semivariogram calculation. The
overall accuracy obtained using 100% of the pixels is 81.3%. The results reveal that the
semivariogram derived features computed when using only 15% of the pixels describe the
objects with an efficiency similar to that of when all the pixels are used, since they do not
produce a significant reduction in the classification accuracy. Besides, the processing time is

linearly reduced: 85% using only 15% of pixels, 75% considering a 25% and so on.

2.4.2.- Features derived from the Hough transform

The planting pattern and planting distances are key factors employed by photointerpreters to

distinguish different crop typologies. Thus, once the information about global regularity of the
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parcel is extracted from the semivariogram analysis, the plantation pattern can be more
profoundly analysed in order to obtain more specific descriptors that complement the
semivariogram derived features. For this purpose, a variety of features based on the Hough

transform are included in FETEX 2.0.

The first step in the extraction of these features is the location of trees, which is done using the
local maximum filtering (LMF) method (Gourgeon, 1999) from high spatial resolution imagery.
The LMF is based on the assumption that reflectance is highest at the tree apex and decreases
towards the crown edge (Wulder et al., 2000). Moving a kernel over the image, trees are found
when the central value in the kernel window is higher than all other values. The scene
illumination has an important influence on local maxima position, displacing their position from
the real apex location. However, this displacement has no negative effects because it equally

affects all the maxima.

LMF method is applied over NDVI images using a circular kernel with variable size to detect
adult trees. This size is automatically determined for each object by the position of the first
maximum on the semivariogram curve, being constrained by the interval defined between two
thresholds that are set by the user. If the first maximum is lower than the lower threshold, this
threshold will be used as the diameter of the kernel. In a similar way, if the first maximum is
greater than the upper threshold, the diameter of the kernel will be the upper threshold.
Assuming a regular distribution of trees in a parcel, the kernel diameter is related to the average

size of the trees contained in a parcel.

Most of these features are designed for the classification of agricultural tree orchards. In order to
facilitate this task, two main groups of trees can be considered: adult trees, having a
considerable canopy, and young trees, with almost no vegetation cover. A threshold defined
over the NDVI image is selected in order to distinguish those two groups of parcels. In those
parcels with a NDVI mean value lower than the defined threshold, instead of applying LMF

over the NDVI image, trees are searched by using a local minimum filtering (LmF) over the
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infrared (IR) band. This variation is used in order to locate the young trees recently planted. The
result is a binary image where each located tree is represented by a pixel. In both cases, adult
and young trees, pixel location must accomplish an additional condition: the maximum in NDVI
band must be greater than a threshold fixed by the user and the minimum in IR band must be
lower than a threshold, which must be empirically defined depending on the image
characteristics. From this binary image, main tree alignments are extracted and characterized

applying the Hough transform (Hough, 1962).

The Hough transform is a method that can be used in image processing to locate curves that
can be parameterized as straight lines, polynomials or circles. This method has been widely
used on images for row detection in agricultural crops (Reid and Searcy, 1986; Leemans and
Destain, 2006; Gée et al., 2008). Structural information derived from the Hough transform has
also been used for automatic classification and characterization of agricultural landscapes.
Chanussot et al. (2005) applied the Fourier transform over a vineyard image, and then, the
Hough transform for estimating and representing the crop orientation. Trias-Sanz (2006)
employed structural properties based on orientation features to discriminate between different
vegetation covers. He applied the variogram transformation and then, over the resultant image,
the Hough transform, obtaining the orientation histogram. Helmholz et al. (2007) used the
orientation information directly derived from the Hough transform to separate between tilled

and untilled plots based on the existence of a minimum number of parallel lines.

The principle of the Hough transform is based on the fact that an infinite number of straight
lines can go through a single point of the plane. The purpose of the method is to determine
which of these theoretical lines go through more points in the image, that is, to find the best
fitting lines to the set of points that are present in the image. The method is based on the
transformation of the coordinates from a Cartesian image space to a polar coordinate space. A
point in the Cartesian space corresponds to a sinusoid in the polar space, representing the
parameters of the lines passing through that point. A line in the Cartesian space is defined by the

intersection of two or more sinusoids in the polar space.
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After thresholding the polar space to remove lines passing through a small number of points,
remaining lines are grouped into a histogram of frequencies for all directions ranging from 0° to
180°. When some regularity in their spatial arrangement exists, two histogram maxima appear,
corresponding to the principal directions or alignments of trees in the parcel. Figure 4 shows an
example of this: a tree parcel (Figure 4a); the binary image with the local maxima representing
the location of trees, with the orientations of the two principal alignments superimposed (Figure
4b); the result of the Hough transform (Figure 4c¢). The existence of points where several curves
converge indicates the presence of alignments in the Cartesian domain. Grouping these values
in a histogram of frequencies, the two orientations of the principal alignments in the parcel are
easily differentiated at 75° and 161° (Figure 4d). By isolating these orientations, the angular
difference between them provides information about the orthogonality of the alignments. The
distance between the points where the curves converge on the same direction in the Hough
domain correspond to the distance between the lines following that direction. These distances
are used to describe the planting pattern size of tree crops along the two main orientations

(Figure 5).

A set of additional features related to the regularity in the distribution of trees are extracted from
this transformation and the histogram of orientations. These features are: proportion of points
included in the principal and secondary direction with respect to the total amount of points;
mean, median and standard deviation of the distances between straight lines in the principal
and secondary directions; proportion of straight lines in the principal and secondary

directions, and angular difference between the two principal directions.

2.5.- Shape features

The shape features computed in FETEX 2.0 inform about the shape complexity of the objects,
and are mainly based on ratios between the area and the perimeter of the objects. These

descriptors, extracted directly from the geometric definition of the polygons contained in the
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database (parcels) can help to distinguish and identify different elements with particular shapes,

such as roads, rivers, circular plots, etc.

The features available in the application are: compactness (Bogaert et al., 2000), shape index
and fractal dimension (Krummel et al., 1987; McGarigal and Marks, 1995) (see Table 1). The

area and perimeter of each object are also computed.

2.6.- Ancillary data

Depending on the algorithm used in a subsequent classification process, discrete variables can
be included as descriptive features. Some studies (Rogan et al., 2003; Recio et al., in press) have
shown that the combination of the historical land use of the parcels contained in an old database
with spectral features may increase the overall accuracy of the classification. Some other
discrete information, such as soil type and composition (Huang and Jensen, 1997), irrigation
type, etc. can sometimes be useful to better describe the parcels or polygons. If this information
is included in the spatial geodatabase as an input in FETEX 2.0, it can also be added as an

output to the descriptive feature vector of each parcel.

Any other georreferenced information in raster format can also be added as extra input to extract
information and characterize the objects. Thus, digital terrain models (elevation, slope or aspect)
(Hoffer, 1975; Hutchinson, 1982), distance maps (Debeir et al., 2002; Mas, 2003; Recio et al.,
2010), results of a per-pixel classification (Recio, 2009) or others, can be added as additional

bands in order to compute statistics to describe the parcels.

3.- THE PROGRAM

3.1.- Graphic User Interface

The Graphic user interface of FETEX 2.0 is a window menu divided in five frames (Figure 6):

1.- Input files, 2.- Output files, 3.- Feature selection, and 4.- Feature parameters definition.
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3.1.1.- Input files

Image formats supported by FETEX 2.0 must be georeferenced and are those supported by
ENVI (GeoTIFF, JPG2000, ENVI binary, ERDAS img, etc.). Limits of cartographic objects
(parcels) must be contained in a ESRI shapefile spatial data format (.shp). In order to correctly
superimpose both data, the image and the shapefile, they should be in the same spatial reference

system.

FETEX 2.0 is able to work with large datasets of several images and shapefiles. In the case that
a parcel (object) is represented along several image files, the program will internally build a

mosaic and extract the final descriptive features from this new composed image.

3.1.2.- Output files

As a result of processing the image for object information extraction, an output table containing
the values of the descriptive features selected (columns) for every object processed (rows) is
obtained. This table can be available in four different formats: dBase, shapefile, ASCII and the

format required by See5 software, which contains the C5.0 algorithm to generate decision trees.

In addition to the table with all the feature values needed for the classification of the objects,
FETEX 2.0 provides the option of generating a set of screenshots and graphs that may be
helpful for the interpretation of the results (Figure 7). The set of screenshots obtained for every
object includes a color or grey level image of the object, the image of the wavelet details, image
files of the GLCM of the original image and the wavelet details, the semivariogram graph, a
binary image of the tree locations automatically detected, its Hough transform graph, and the
binary image of the tree alignments. Additionally, a dbf file containing the semivariogram for

each analyzed object can be generated.

3.1.3.- Feature selection

In this frame, the user can select the groups of features to be extracted from the objects. There

are seven main groups of features: spectral, texture features based on the GLCM, wavelet
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derived texture features, descriptive parameters derived from the semivariogram, Hough

transform based features, shape features, and qualitative features from a database.

On the right side of the frame, there are three drop-down lists for the selection of the image

bands from which the GLCM, wavelet and semivariogram features will be computed.

The last item in this menu enables us to use descriptive information from the input shapefile
database as an additional descriptive feature. If the Database feature option button is enabled,
the field of the shapefile database containing the descriptive feature must be selected from the

adjoining drop-down list.

3.1.4.- Feature parameters definition

This frame is divided in three sections. In the first section, three general parameters of the
process can be fixed: Minimum parcel size controls the minimum area of a polygon to be
processed, avoiding very small polygons that may difficult a correct characterization. Parcel
perimeter buffer is used to reject the peripheral pixels of the polygon in the analysis, in order to
avoid the inclusion of pixels that are external to the object due to geo-referencing errors or
misregistration between the database and the image. The values of the droplist represent the
thickness of the rejecting buffer in pixels. NDVI bands droplist allows for the selection of the

two image bands required for computing the NDVI: the IR and red bands.

The second section of this frame (Analysis options) allows for the selection of the specific
features that can be obtained from the different feature groups, as well as the methodological

parameters involved.

In the first tab, seven statistical features can be selected to be computed from each object. These

features are computed for every band of the input image.

The second tab corresponds to the texture features. The number of grey levels to be considered
in the computation of the GLCM can be chosen. The selection of this parameter is important,

because the use of many grey levels does not necessarily mean an increase in the efficiency of
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the descriptors, but greatly increases the time consumed for computation. Furthermore, in
objects containing a low number of pixels, many grey levels in the computation of the GLCM

can make the characterisation of the distribution of the values in the matrix difficult.

The wavelet tab controls the wavelet function family and the support used to perform the
wavelet transform. Higher support values will require longer processing time. The number of

grey levels to be considered in the computation of the GLCM can also be chosen.

Two parameters can be controlled in the semivariogram tab: the maximum Semivariogram lag
size, and the Percentage of pixels from an object that are used to estimate its semivariogram, as

analyzed at the end of section 2.4.1.

In the Hough transform tab, several thresholds related to the automatic process to detect the
trees inside a parcel can be established. The Initial NDVI (parcel) parameter allows for the
definition of a threshold for the mean NDVI of the object. For those objects with a mean NDVI
higher than this value, the LMF method is applied using the NDVI image to locate the trees. On
the other hand, for the objects with a mean NDVI lower than this threshold value, the trees are
located applying the LmF method using the IR band. Afterwards, two conditional thresholds
must be established: those pixels located with the LMF method must have a NDVI value higher
than the NDVI threshold to be accepted as a tree, whereas the IR band values of the pixels

located with the LmF method must be lower than the IR band threshold.

Additionally, a selection of the threshold values used to define the size of the searching window
must be done, specifically the minimum and maximum Window diameter values. These values
must be in concordance with the minimum and maximum sizes of the trees, in pixels, that are

present in the specific geographic area.

The last tab corresponds to the selection of the shape features to be computed.

The last part of this frame (Attributes in the shapefile) first allows for the selection of the object

identifier field in the shapefile of the database (/D), which must be an integer number. In
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addition to this, when a field containing the class of the training samples exists in the database,
this can be selected in the last drop-down list (Samples). This information will be added at the
end of the row of the feature vector corresponding to each object. The parcels that are not
training samples will have a question mark at the end of the row. This field is required in order

to obtain a See file format output.

3.2 Future improvements

FETEX 2.0 has been designed to work with large datasets, including images and shapefiles. In
addition, some effort has been put to reduce the time needed to compute the different procedures
used in the program, this is particularly important when a high number of objects must be

processed.

The program allows for the extraction of a wide range of features from images and databases,
some of them mainly focused on agricultural landscapes, with the final goal of describing the
objects in depth in order to improve their classification. However, the program is intended to be
a dynamic tool that progressively incorporates new feature extraction algorithms, as well as
different types of spatial data which are currently more widely available,. The design and
analysis of new descriptive features coming from different sources of information (airborne
lidar systems, satellite radar images, etc.) will continue in order to advance in the description of
objects. Useful three-dimensional information about the objects and the elements they may
contain can be extracted from lidar data, complementing the current information available. In a
different way, high resolution radar imagery can provide extra information about the roughness
of the surfaces, which may complement the previous features. All these new sources of
information are becoming more widely available to the user, and new tools to integrate and

process the data will be needed.

4.- APPLICATION EXAMPLE: OBJECT-ORIENTED CLASSIFICATION OF

AN AGRICULTURAL DATABASE
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An object-oriented classification application example has been carried out using the descriptive
features extracted with FETEX 2.0. The test has been performed using data from a rural area in
the province of Castellon, on the Mediterranean coast of Spain. A series of aerial images
acquired in August 2005 with a Digital Mapping Camera (DMC) have been used, with a spatial
resolution of 0.5 m/pixel and three spectral bands (green: 0.50-0.65 pum; red: 0.59-0.675 um;
and near infrared: 0.675-0.85 um). A total of 616 training samples and 2438 evaluation samples
have been selected from the cadastral polygons. The reference data used for evaluation have
been obtained combining field work and photointerpretation. According to the type of
landscape, ten different classes have been defined in the classification: Arable fields, Buildings,
Carob-trees, Citrus orchards, Irrigated fields, Olive trees, Roads, Shrub-lands, and Young

citrus orchards. Figure 8 shows some image-object examples of each class.

A set of different descriptive features has been computed using FETEX 2.0. They can be
grouped as follows: (1) Spectral features: Mean, standard deviation, minimum and maximum
from each band, and NDVI; (2) Texture features: GLCM derived features, edgeness factor, 1*
order descriptors, and wavelet based features computed from the red band; (3) Structural
features: Hough transform and semivariogram derived features computed from the infrared

band; and (4) Shape features.

Two classification methods have been used: Linear discriminant analysis (LDA), and decision
trees computed using the C5.0 algorithm and combined with the boosting multi-classifier
method. The classifications obtained have been evaluated by means of the error matrix
(Congalton, 1991), from which the overall accuracy rate, the user’s and producer’s accuracies

for every class have been computed.

Four tests per classification method have been done to independently evaluate the performance
of each descriptive feature group. An additional classification has been performed combining all
features. Table 2 shows the overall classification accuracies obtained using the different groups

and combinations of descriptive features. In both classification methods, the use of all the
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features from the different groups together sharply increases the overall accuracy rate of the
classification. Additionally, no significant differences in overall accuracy are found between
both methods when all the feature groups are used, showing that the influence of the classifier is
not crucial when an exhaustive and complementary set of descriptive features is used. However,
the use of independent sets of features may introduce some differences in the overall accuracy
depending on the classification method used. Thus, using only spectral features, LDA provides
a better accuracy (65.5%) than decision trees (60%), but the latter increases the accuracy
(62.1%) with respect to the LDA method (57.8%) when only structural features are included for
classification. These differences may be due to the fact that the distribution of values of the two
groups of features, spectral and structural, are subject to specific ranges, and both classification

methods manage this information in different manner.

In order to study the influence or discriminant power that the variables (descriptive features)
have on the classification, two approaches have been employed: forward stepwise LDA and the
comparison of the percentage of use of each specific variable in all the decision trees created
using the method of boosting. Figure 9 shows the per-class average of user’s and producer’s
accuracies, and the overall classification accuracy when the 24 first features are progressively
included in the discriminant model. Figure 10 shows the percentage of use for the 24 descriptive

features most used by the classifier over the training objects.

The shape feature fractal dimension is the most frequently used in the decision trees and the
first discriminant feature selected in the stepwise LDA, allowing for the discrimination of class
Roads very efficiently, due to the characteristic long shape of the polygons that represent this
class. Particularly interesting is the fact that, always, some variables coming from the four
different groups considered are selected among the most relevant features. Using this short
group of variables the overall accuracy becomes stable, independently of the inclusion of
additional variables in the classification set (Figure 9). This illustrates again their

complementarity, as well as the possibility to increase the efficiency of the classification not
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only in terms of accuracy, but also in terms of reduction of the number of variables to be used,

by using only a selected group of features with low correlation.

5.- SUMMARY

A software program, FETEX 2.0, that extracts a set of descriptive features from image-objects
and geodatabases is presented. A description of the features, classified into seven different
groups and providing different and complementary information about the object, is carried out.
Some of them are particularly useful to characterize and classify agricultural landscapes and

have been presented for the first time here.

This software application generates an output table containing the object feature vectors
available in different formats, ready to use with different classifiers included in statistical
packages. Additionally, different types of descriptive graphs and images can be obtained to
facilitate the interpretation of processes and results. A classification example has been
performed, showing the wide range of information obtained from each object. In this application
example, it has been shown how the use of different types of variables provides a complete
description of the object, increasing the accuracy of the land use/land cover classification. The
software program presented here allows for the computation of all these variables for their

application to object-oriented classification, particularly interesting for agricultural mapping.

FETEX 2.0 can be considered to be a dynamic program in a continuous updating process in
order to incorporate new sources of data, new methods and features, and with the ability to be
oriented to specific applications. A limited version of FETEX 2.0 is available at the Geo-
Environmental Cartography and Remote Sensing Research Group (CGAT) website

(http://cgat.webs.upv.es).
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740  Annexe: Description and codification of the features extracted by FETEX 2.0

Spectral Features (number indicates the band)

Hough transform features

MEANI Mean value of band 1 ANG DIF Angular difference between the two principal directions
STDEV1 Standard deviation value of band 1 ANGIPERC Proportion of straight lines in the principal direction
MINI1 Minimum value of band 1 ANG2PERC Proportion of straight lines in the secondary direction

Mean of the distances between straight lines in the
MAX1 Maximum value of band 1 RHOIMEAN principal direction

Standard deviation of the distances between straight
RANGE!1 Range of values of band 1 RHOI STDEV lines in the principal direction.
SUMI Summatory of values of band 1 PTIPERC Proportion of points included in the principal direction

Proportion of points included in the principal direction
MAIJORITY Mode of values of band 1 PTINORM normalized by area

Median of the distances between straight lines in the
MEANNDVI Mean value of NDVI RHOIMEDIAN principal direction

Mean of the distances between straight lines in the
STDEVNDVI Standard deviation value of NDVI RHO2MEAN secondary direction

Standard deviation of the distances between straight
MINNDVI Minimum value of NDVI RHO2 STDEV lines in the secondary direction.
MAXNDVI Maximum value of NDVI PT2PERC Proportion of points included in the secondary direction

Proportion of points included in the secondary direction
RANGENDVI Range of values of NDVI PT2NORM normalized by area

Median of the distances between straight lines in the
SUMNDVI Summatory of values of NDVI RHO2MEDIAN secondary direction

Texture Features

Semivariogram based features

Ratio between the values of the total variance and the

MEAN_EDG Mean value of edgeness factor RVF semivariance at first lag
Ratio between semivariance values at second and first
STDEV_EDG Standard deviation of edgeness factor RSF lag
UNIFOR GLCM Uniformity FDO First derivative near the origin
ENTROP GLCM Entropy FML First maximum lag value
Mean of the semivariogram values up to the first
CONTRAS GLCM Contrast MFM maximum
Variance of the semivariogram values up to the first
IDM GLCM Inverse Difference Moment VFEM maximum
Ratio between the semivariance at first local maximum
and the mean semivariogram values up to this
COVAR GLCM Covariance RMM maximum
Distance between the first maximum and the first
VARIAN GLCM Variance DMM minimum
CORRELAT GLCM Correlation Shape features
SKEWNESS Skewness value of the histogram COMPACT Compactness
KURTOSIS Kurtosis value of the histogram SH INDEX Shape Index
Wavelet based features FRACTAL Fractal dimension
MEAN W1 GLCM Mean of the details image AREA Area
UNIFOR W1 GLCM Uniformity of the details image PERIMETER Perimeter
ENTROP W1 GLCM Entropy of the details image Ancillary data features
CONTRAS W1 GLCM Contrast of the details image ANCILLARY | Ancillary data from database
GLCM Inverse Difference Moment of the details
IDM_ W1 image Processing information
COVAR W1 GLCM Covariance of the details image PROCESSED | Processing information
VARIAN WI GLCM Variance of the details image Training sample identification

CORRELAT W1

GLCM Correlation of the details image

SAMPLE

Training sample class

MEAN EDG WI

Mean value of edgeness factor of the details image

STDEV _EDG WI

Standard deviation of edgeness factor of the

details image

741
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743 Figure 1. Parcels with different land use and their respective experimental semivariogram
744 superimposed. Distance in pixels is in abscissas, and semivariance values are represented in

745 ordinates.
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747  Figure 2. Semivariograms computed using different pixel percentages (10, 15 and 20) compared

748 to semivariograms computed using all pixels in object.
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751 Figure 3. Box and whiskers graph representing overall accuracies of a series of 10
752 classifications for each pixel percentage used to compute semivariogram. Whiskers represent
753 maximum and minimum values; boxes represent one standard deviation apart from mean

754 values.
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756  Figure 4. Example of application of the Hough transform method: (a) object in image space; (b)
757 local maxima detection; (¢) Hough transform space; (d) histogram of coincidences in different

758 directions. Main directions are extracted at 75° and 161°.
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760 Figure 5. Extraction of planting pattern distances.
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Figure 6. Graphic user interface of FETEX 2.0.
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Figure 7. Examples of screenshots generated by FETEX 2.0 in a citrus crop parcel: (a) Color
infrared image of object; (b) grey level image representation of the GLCM; (c¢) semivariogram
graph (with hole-effect presence); (d) sum of details of wavelet decomposition (Coiflet, size 24

pixels); (e) detail of (d); (f) local maxima detected representing trees; (g) Hough space
representation of local maxima; (h) Hough transform directions histogram; (i) alignments in

main direction; (j) alignments in second direction.
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772 Figure 8.- Image-object examples, in color infrared composition, of classes considered for

773 classification.
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Figure 10.- Feature percentage of use in decision tree construction.




779 Table 1.-Shape parameters computed in FETEX 2.0.

4.7 Area Perimeter log FPerimeter
C= — Sl =———— 4
Perimeter 4 drea Fp=2 log(Area)

a. Compactness b. Shape index c. Fractal dimension



780 Table 2. Overall classification accuracies using different groups and combinations of

781 descriptive features
Classification method
Linear ..
st . e . Decision trees
Descriptive feature groups discriminant
. (C5.0)
analysis
0, 0
Spectral features 65.5% 60.0%
0 0
Texture features 65.4% 66.7%
Y 0
Structural features 57.8% 62.1%
0, 0
Shape features 32.2% 35.4%
° 0
All features 81.7% 80.6%

782



