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Certain industries are characterized by obtaining non-homogeneous units of the 

same product. However, customers require homogeneity in some attributes 

between units of the same and different products requesting in their orders. To 

commit such orders, an estimation of the homogeneous product to be obtained 

can be used. Unfortunately, estimations of homogenous product quantities can 

differ considerably from real distributions. This fact could entail the impossibility 

of accomplishing the delivery of customer orders in the terms previously 

committed. To solve this, we propose a multi-objective mathematical 

programming model to reallocate already available homogeneous products in 

stock and planned production to committed orders. The main contributions of this 

model are the consideration of the homogeneity requirement between units of 

different lines of the same order, the allowance of partial deliveries of order lines, 

and the specification of some relevant attributes of products to accomplish with 

the customer homogeneity requirement. Different hypotheses are proved through 

experiments and statistical analyses applied to a ceramic tile company. The ε-

constraint method is used to obtain an implementable solution for the company. 

The weighted sum method is used when proving other hypotheses that offer some 

managerial insights to companies.  

Keywords: reallocation process; mathematical programming; lack of 

homogeneity in the product; homogeneity among order lines; deterministic 



 

 

1. Introduction 

Customers usually express requirements in their orders in terms of quantity and delivery 

date. However, several situations emerge where customers require homogeneity among 

units of the same product or different products for certain attributes that are relevant for 

them. These attributes refer to functional or aesthetical reasons because units of the 

same or different products need to be assembled, packed or presented together. For 

instance, customer orders in the agricultural sector should be served with units of the 

same fruit belonging to the same quality, size and weight.  This is also valid for the 

furniture sector, where colour uniformity among units of the same product (e.g. chairs) 

or among products (e.g. chairs and table) impacts the final value of the products 

perceived by customers. Thus, colour and grain sorting are necessary. 

Another example is the ceramic sector, where the nature of the raw material (clay) and 

components (frits and enamels) employed during ceramic tile production, and the 

variability of the environmental conditions during this process, means obtaining units 

with different tone, gage and quality attributes from a unique production batch 

(Alemany, Alarcón, Ortiz, & Lario, 2008; Grillo, Alemany, & Ortiz, 2016). In this 

sector, customers require product homogeneity for quality, tone and gage for all the 

units that compose an order line. Customers also require gage homogeneity for units of 

different order lines that are to be jointly installed for functional and aesthetic reasons. 

To ensure serving customer orders with the required homogeneity, classification stages 

are included during production processes. 

The causes that generate product heterogeneity are mainly uncontrollable 

because the non-homogeneity of the raw material and components usually coming from 

the nature or the productive process itself. The above aspects make the homogeneous 

quantities of each product in planned production batches to be uncertain. In such a way, 



 

 

that only the homogeneous quantities of stocked products are really known. However, 

the Order Promising Process (OPP) should decide based on both, the uncommitted 

availability of products in stock and in planned batches, which customer order proposals 

to be committed and an accurate due date for them (Kiralp & Venkatadri, 2010). For 

this reason, the distribution of production batches into homogeneous sublots should be 

estimated during the OPP. However, due to the inherent aforementioned uncertainty, 

discrepancies between the estimated homogeneous quantities in batches and real ones 

are quite likely to occur. This circumstance can lead to some orders committed during 

the OPP not being served as there is not enough quantity of homogeneous product, 

although enough total quantity exists. This shortage situation can occur even with high 

stock levels and causes a poor customer service level since it is caused by homogeneity 

requirements (HR). One solution would be to simply refuse any orders that cannot be 

served (Fung, Cheung, Lee, & Kwok, 2005). However, this decision could very 

negatively impact both the customer and the company, so better solutions for the 

shortage problem are necessary. 

One solution for minimising this problem is Shortage Planning (SP), which 

refers to the activities to be performed if stock becomes unavailable (Framinan & 

Leisten, 2010). Some examples of SP activities are negotiation with customers (late 

supply, partial shipments, etc.) and decisions about supply alternatives (outsourcing, 

substitutive products, etc.). Another possible solution to this problem is reallocating 

inventories to previously committed orders to improve the customer service level and to 

increase profits (Alarcón, Alemany, Lario, & Oltra, 2011; Lee, Jung, Eum, Parl, & 

Nam, 2006). Other strategies to improve customer satisfaction, such as postponement, 

are not possible in this case. The reason is that postponement attempts to delay product 

differentiation as much as possible until orders are received (Kisperska-Moron & 



 

 

Swierczek, 2011) in order to face uncertainty in customised orders. Delayed product 

differentiation has proven capable of reducing inventory requirements and ensuring 

high product availability at the same time (Lee, Billington, & Carter, 1993). However, 

in the problem under study, uncertainty is not on the customer orders’ side because we 

deal with already committed orders and, therefore, known with certainty. On the 

contrary, uncertainty is on the supply side, because of the final availability of 

homogeneous quantities cannot be known until they have been produced and classified. 

In this paper, a multi-objective mathematical programming (MOILP) model to 

reallocate available homogeneous stocked and planned quantities that are already 

committed orders in ceramic companies is proposed. Although some publications have 

addressed the SP problem in the ceramic sector (Alemany, Alarcón, Oltra, & Lario, 

2013b; Alemany, Grillo, Ortiz, & Fuertes-Miquel, 2015; Boza, Alemany, Alarcón, & 

Cuenca, 2014), none has considered HR among units that comprise different order lines, 

nor the allowance of partial deliveries of order lines, which are some of the novelties of 

this proposal. This requires not only the differentiation among the homogeneous sublots 

from the same batch (as previously done), but also the attributes specification for each 

sublot. This model pursues maximisation of profits and minimisation of order lines 

served with delays, plus minimisation of the partial deliveries of order lines. The 

consideration of the last two objectives, as well as the combination of all the objectives, 

is another contribution of this paper. Some hypotheses are proposed that provide some 

managerial insights. The model is executed for a different set of scenarios, whose 

results are statistically analysed to prove the proposed hypotheses. 

The rest of the paper is structured as follows: Section 2 describes the problem 

under study, while Section 3 presents a literature review on the SP problem. Section 4 

introduces the MOILP model, which is validated through an experimental design 



 

 

applied to a ceramic tile company in Section 5. Finally, Section 6 offers the main 

conclusions and the identified future research lines.  

2. Problem description 

The starting situation contemplates the existence of orders previously committed to 

customers by means of the OPP. In an ideal situation where the homogeneous planned 

and real quantities coincide, customer orders are delivered during execution activities as 

promised. However, discrepancies between the planned and real homogeneous 

quantities usually occur due to the uncertainty in the homogeneous quantities of the 

same product in planned production batches. When this happens, it is necessary to 

verify that the obtained homogeneous quantities are sufficient to serve already 

committed orders. If not, it will not be possible to serve all the committed orders as 

previously planned. 

To solve this situation, the reallocation of updated available homogeneous 

quantities both in stock and planned to already committed orders is proposed to 

minimise the negative impact for both the company and the customer. This reallocation 

process should meet not only the committed quantity and due date as usual, but also the 

HR among the units that comprise an order line in all its attributes, and among the units 

of different order lines that belong to the same series in the gage attribute. 

The characteristics of the company and products, customers, orders and delivery 

flexibility involved in the problem, as well as the reallocation objectives, are described 

below. 

Company and product characteristics: 

• The existence of a ceramic production plant composed of several parallel 

production lines that work according to a Make-To-Stock strategy is assumed. 



 

 

• The products, once produced, are classified into homogeneous sublots based on 

their attributes: quality, tone, and gage.  

• The products that can be assembled together belong to the same series (e.g. units 

of two ceramic tiles products which are combined to form a mosaic floor, or 

units of ceramic skirting boards and ceramic tiles for paving which are 

assembled together). 

Availability of products: 

• The existing stock and planned quantities to be produced in the Master 

Production Schedule (MPS) are used during the reallocation process, but only 

for first quality products. 

• The stocked quantities at the beginning of the planning horizon are already 

classified into homogeneous sublots. So, their attributes (tone and gage) are 

known. 

• The production batches defined in the MPS (planned batches) are divided into 

different homogeneous sublots by an estimated distribution. The sum of all 

homogeneous sublots of a batch must equal the batch size.  

Customers: 

• The orders previously committed during the OPP (firm orders) are considered 

for reallocation. 

• Two types of customers are distinguished when reallocating available 

homogeneous quantities to already committed orders: priority and non-priority 

customer orders.  

• An order can be composed of one order line or more. For each order line, the 

required product and the demanded quantity are detailed. The same finished 



 

 

product can be claimed in more than one order line (e.g. two lines of an order 

can demand the same product if these quantities are to be assembled separately), 

but only one product can be requested in each order line. 

• The committed due date for each order is known and previously agreed on with 

customers through the OPP. It is the same for all their order lines. 

• An order line must be reserved with a homogeneous product so that all units of 

the product must have the first quality, and the same tone, and gage, but 

customers do not specify the tone and gage requested in their orders. 

• The order lines with the products that belong to the same series must be booked 

with the products that present the same gage. 

• An order can be served only if all the lines that comprise it are served. 

Flexibility in delivery: 

• A maximum delivery delay is defined for each order. The real delivery date of 

an order after the reallocation process is comprised during the period defined by 

the committed due date and the maximum allowed delay. 

• Partial deliveries of order lines are allowed. This means that each line of the 

same order can be delivered on different dates if the maximum number of partial 

deliveries and the maximum delay defined by the customer for this order are not 

exceeded. 

• No partial deliveries of quantities of an order line are allowed. The entire 

quantity demanded by a customer in an order line must be served 

simultaneously. 

• The reallocation objectives are: maximisation of obtained profits, minimisation 

of the order lines served with delays, and minimisation of partial deliveries of 

order lines. 



 

 

To better understand the problem under study, let’s assume two products that 

belong to the same series: wall tiles (k1) and floor tiles (k2). For simplicity, let’s assume 

that each product can be classified into two tones (c1 and c2 for k1; c3 and c4 for k2) and 

two gages (g1 and g2 for both products). This implies that each batch of each product 

can be classified into four homogeneous sublots. Let’s also assume the existence of a 

planned production batch for k1 of 2,000 m2 that the company estimates is divided into 

four homogeneous sublots of 650, 350, 700 and 300 m2 with the tone (ci) and gage (gi) 

represented in Figure 1.  Finally, let’s also assume the existence of two planned 

production batches, each of 1,100 m2 for k2, which the company estimates will be also 

divided into four homogeneous sublots of 250, 400, 300 and 150 m2 with the tone (ci) 

and gage (gi) represented in Figure 1. 

Based on these planned homogeneous sublots, the ceramic company can commit 

during the OPP the request of 660 m2 of k1 and 300 m2 of k2 from a customer order 

proposal composed of two order lines. Given the HR among the units of the same 

product, the only possibility of committing this order is for the company to reserve 660 

m2 from the homogeneous sublot of k1 with tone c1 and gage g2 because it is the only 

homogeneous sublot whose size (700 m2) is bigger than the required quantity (660 m2). 

Since k1 and k2 belong to the same series, the homogeneous sublot used to reserve the 

300 m2 of k2 in the customer order should also be of gage g2. The only sublot of k2 with 

a size that equals or is bigger than 300 m2 and with gage g2 are both the sublots of 300 

m2 with tone c3 and gage g2. Therefore, the customer order proposal will be committed 

according to this estimation of the size of the homogeneous sublots.  

However, given the inherent uncertainty in such companies, when planned 

production lots are produced and classified, real homogeneous quantities are likely to 



 

 

differ from the initial estimated ones.  This can lead to a situation where if anything is 

made, the customer order cannot really be served.  

Following the previous example, let’s assume that once the three planned 

production batches have finally been manufactured, they are classified to provide the 

size of the homogeneous sublots depicted as “real situation” in Figure 1. In this new 

situation, the real homogeneous sublot of k1 with tone c1 and gage g2 is 670 m2 instead 

of the previously estimated 700 m2. Even so, this discrepancy does not affect being able 

to serve the requested quantity of product k1 because it is still enough to serve the 660 

m2 requested by the customer. However, for product k2, the real size of 280 m2 for the 

homogeneous sublot with tone c3 and gage g2 makes it impossible to serve the initial 

committed quantity of 300 m2 with the customer if nothing is done: a shortage situation 

occurs. Therefore, once the real homogeneous sublots are known, the initial assignment 

of customer orders becomes infeasible, which renders serving the customer impossible.  

Figure 1. Example of the problem under study 

 

If the possibility of orders reallocation to homogeneous sublots exists, we might 

think about reserving 300 m2 from the 390 m2 homogeneous sublot of the first batch of 

k2 with tone c4 and gage g1. However, this reallocation is not possible because product 

k2 delivered to the customer should be of the same gage g2 as product k1. If only the first 



 

 

batch of k2 had been manufactured, the customer order would not have been served. 

However, if all the quantities of the second batch of k2 are uncommitted, the 300 m2 of 

k2 requested by the customer would be served by reserving them from the 

homogeneous sublot of k2 with a size of 310 m2 and tone c3 and gage g2. Without the 

availability of this second batch of k2 only in case customer allows some delay, partial 

deliveries should be contemplated to solve the problem.   

If we consider that ceramic companies manage hundreds of customer orders 

from several order lines and each product presents more than two tones and gages, the 

task of finding only a feasible solution to this reallocation problem is no trivial one. 

This reallocation procedure becomes even more complicated when there are one or 

more objectives to be optimised. In these situations, mathematical programming models 

have proved their validity.  

3. Literature review 

A search of publications about mathematical models for SP was performed. As very few 

publications on this topic were found, the search was extended to mathematical 

programming models for the OPP that include some characteristic of the problem to be 

solved. The reason was that, according to Framinan & Leisten (2010), from a modelling 

point of view, SP deals with relaxing some constraints that have been previously 

considered in the OPP. 

Note that this literature analysis does not intend to provide in-depth details of the 

features of the reviewed models, but of those closely linked to the problem at hand. 

Therefore, the employed analysis framework was divided into nine dimensions related 

to the previously described problem: 1) problem type; 2) availability; 3) manufacturing 

strategy; 4) customer segmentation; 5) customer orders; 6) homogeneity requirements; 



 

 

7) flexibility in requirements; 8) objectives; 9) modelling approach. This literature 

review aims to identify which features have been addressed by existing models, and 

which represent a gap in the existing literature. The results of this analysis are shown in 

Tables 1 and 2, where the differences between existing models and the model proposed 

in this paper are also demonstrated. 

The analysis of publications per problem type shows that only three of the 35 

analysed articles address the SP problem, while the rest address the OPP. For SP 

problems, availability refers to the quantities used during the reallocation process. 

Alemany, Alarcón, Oltra, & Lario (2013b) and Boza, Alemany, Alarcón, & Cuenca 

(2014) consider the reallocation of available quantities in stock, while Alemany, Grillo, 

Ortiz, & Fuertes-Miquel (2015) consider the simultaneous reallocation of stocked and 

planned ones. For OPP problems, availability refers to the availability level checked 

when promising orders. 26 of the 32 OPP publications use the Available-To-Promise 

level, while the rest resort to other levels of availability, such as Capable-To-Promise, 

Deliver-To-Promise or Profitable-To-Promise (Abid, D’amours, & Montreuil, 2004; 

Baker, 2014; Behdani, Adhitya, Lukszo, & Srinivasan, 2011; Kirche, Kadipasaoglu, & 

Khumawala, 2005; Manavizadeh, Goodarzi, Rabbani, & Jolai, 2013; Zhang & Tseng, 

2009). 

When we examined the manufacturing strategy, we found that all the SP 

publications deal with the Make-To-Stock strategy, while OPP publications use 

different manufacturing strategies: Make-To-Stock in 41% of publications, Make-To-

Order in 56% of them, and Assemble-To-Order in 25%. Percentages sum more than 

100% as some references consider more than one manufacturing strategy (Fleischmann 

& Meyr, 2004; Khataie, Bulgak, & Segovia, 2011; Robinson & Carlson, 2007). 



 

 

In customer segmentation terms, only six papers consider it when treating some 

customers as priority (Alemany, Grillo, Ortiz, & Fuertes-Miquel, 2015; Manavizadeh, 

Goodarzi, Rabbani, & Jolai, 2013; Meyr, 2009; Pibernik & Yadav, 2009), when 

prioritising those customer orders with an early delivery date (Alemany, Lario, Ortiz, & 

Gómez, 2013a), or when assigning priority to customers depending on the order size 

(Jung, 2010). Furthermore, 31.4% of the analysed articles consider multiline orders, 

while the rest consider single line orders. 

On the other hand, 17.1% of the analysed publications have HR among units of 

the same final product. So, customer orders must be served with homogeneous products. 

In the ceramic field, homogeneity is measured by the quality, tone and gage attributes of 

the final product (Alemany, Lario, Ortiz, & Gómez, 2013a; Alemany, Alarcón, Oltra, & 

Lario, 2013b; Alemany, Grillo, Ortiz, & Fuertes-Miquel, 2015; Boza, Alemany, 

Alarcón, & Cuenca, 2014). In TFT-LCD production, homogeneity is given by the 

quality and materials used (Lin, Hong, Wu, & Wang, 2010). In the computers assembly 

field, different components have specifications that can make assembly compatible or 

incompatible (Zhao, Ball, & Kotake, 2005). No analysed reference deals with HR 

among the units that comprise different order lines. However, there are various sectors 

in which this requirement should be considered, such as the furniture industry or the 

ceramic sector. 

Regarding the flexibility in deliveries requirements, 45.7% of the publications 

contemplate the possibility of making delayed deliveries. In contrast, none of the 

analysed articles consider the possibility of making partial deliveries of order lines, 

which will be another novelty of this proposal. 

The analysis of the objectives proposed by previous literature works shows that 

51.4% of the publications seek to maximise profits after SP or OPP processes. 



 

 

However, the minimisation of the order lines served with delays, and the minimisation 

of the partial deliveries of order lines, are not addressed in the analysed literature. 

 

 



 

 

Table 1. Literature review (Part I) 
References Problem Availability Manufacturing strategy Customer 

segmentation 

Customer 

orders 

Homogeneity 

requirements 

Flexibility in 

requirements 

OP SP STOCK MPS ATP MTS MTO ATO Yes ML HP HL DA POL 

Abid, D’amours, & Montreuil (2004) X      X        

Alemany, Alarcón, Oltra, & Lario (2013b)   X X   X    X X  X  

Alemany, Grillo, Ortiz, & Fuertes-Miquel (2015)   X X X  X   X X X  X  

Alemany, Lario, Ortiz, & Gómez (2013a)  X    X X   X X X    

Baker (2014)  X      X        

Behdani, Adhitya, Lukszo, & Srinivasan (2011)  X      X      X  

Boza, Alemany, Alarcón, & Cuenca (2014)   X X   X    X X    

Bui & Sebastian (2010)  X    X  X        

Chen, Zhao, & Ball (2001)  X    X  X        

Chen, Zhao, & Ball (2002)  X    X  X   X     

Cheng & Cheng (2011)  X    X  X        

Chiang & Hsu (2014)  X    X  X   X     

Fleischmann & Meyr (2004)  X    X X X X  X   X  

Gharehgozli, Rabbani, Zaerpour, & Razmi (2008)  X    X  X      X  

Halim & Muthusamy (2012)  X    X X         

Jung (2010)  X    X X   X    X  

Khataie, Bulgak, & Segovia (2011)  X    X X X      X  

Kirche, Kadipasaoglu, & Khumawala (2005)  X      X        

Lin, Hong, Wu, & Wang (2010)  X    X X    X X    

Manavizadeh, Goodarzi, Rabbani, & Jolai (2013)  X      X  X    X  

Meyr (2009)  X    X X   X    X  

Okongwu, Lauras, Dupont, & Humez (2012)  X    X X    X   X  

Pibernik (2005)  X    X X         

Pibernik (2006)  X    X X       X  

Pibernik & Yadav (2009)  X    X X   X      

Rabbani, Monshi, & Rafiei (2014)  X    X  X   X   X  

Robinson & Carlson (2007)  X    X X X   X     

Tsai & Wang (2009)  X    X   X     X  

Venkatadri, Srinivasan, Montreuil, & Saraswat (2006)  X    X X       X  

Volling & Spengler (2011)  X    X  X        

Wang, Zhu, & Zhang (2011)  X    X  X        

Xu, Allgor, & Graves (2009)  X    X X         

Yang & Fung (2012)  X    X X       X  

Zhang & Tseng (2009)  X      X      X  

Zhao, Ball, & Kotake (2005)  X    X   X   X    

This paper  X X X  X   X X X X X X 

SP: Shortage planning; OP: Order promising; STOCK: Real quantities in stock; MPS: Planned quantities in MPS; ATP: Available-to-promise; MTS: Make-to-stock; MTO: Make-to-order; ATO: 

Assemble-to-order; ML: Multiline order: HP: Homogeneity between units of the same order line; HL: Homogeneity between units of different order lines; DA: Delivery delay allowed; POL: 

Partial deliveries of order lines. 



 

 

Table 2. Literature review (Part II) 
References Objectives Modelling approach 

MP MD MSOL LP MILP MOILP NLP INLP FMP HEU HYB SIM SPP DP 

Abid, D’amours, & Montreuil (2004)         X X     

Alemany, Alarcón, Oltra, & Lario (2013b)  X     X         

Alemany, Grillo, Ortiz, & Fuertes-Miquel (2015)  X        X      

Alemany, Lario, Ortiz, & Gómez (2013a)  X     X         

Baker (2014)         X   X  X  

Behdani, Adhitya, Lukszo, & Srinivasan (2011)             X   

Boza, Alemany, Alarcón, & Cuenca (2014)  X     X         

Bui & Sebastian (2010)  X    X          

Chen, Zhao, & Ball (2001)  X    X          

Chen, Zhao, & Ball (2002)  X    X          

Cheng & Cheng (2011)  X        X X X    

Chiang & Hsu (2014)  X   X           

Fleischmann & Meyr (2004)      X          

Gharehgozli, Rabbani, Zaerpour, & Razmi (2008)  X          X    

Halim & Muthusamy (2012)          X      

Jung (2010)     X           

Khataie, Bulgak, & Segovia (2011)  X     X         

Kirche, Kadipasaoglu, & Khumawala (2005)  X    X          

Lin, Hong, Wu, & Wang (2010)  X    X          

Manavizadeh, Goodarzi, Rabbani, & Jolai (2013)      X     X X    

Meyr (2009)  X    X          

Okongwu, Lauras, Dupont, & Humez (2012)      X          

Pibernik (2005)  X    X          

Pibernik (2006)      X          

Pibernik & Yadav (2009)             X   

Rabbani, Monshi, & Rafiei (2014)        X   X  X   

Robinson & Carlson (2007)      X       X   

Tsai & Wang (2009)  X    X          

Venkatadri, Srinivasan, Montreuil, & Saraswat 

(2006)  
   

X 
          

Volling & Spengler (2011)      X       X   

Wang, Zhu, & Zhang (2011)  X    X          

Xu, Allgor, & Graves (2009)      X          

Yang & Fung (2012)  X       X  X X X X X 

Zhang & Tseng (2009)  X    X          

Zhao, Ball, & Kotake (2005)      X          

This paper X X X   X         

MP: Maximise profit; MD: Minimise delayed deliveries; MSOL: Minimise partial deliveries; LP: Linear programming; MILP: Mixed integer linear programming; MOILP: Multi-objective integer 

linear programming; NLP: Non-linear programming; INLP: mixed integer non-linear programming, FMP: fuzzy mathematical programming; HEU: heuristics/metaheuristics; HYB: hybrid models; 

SIM: simulation; SPP: stochastic/probabilistic programming; DP: Dynamic programming. 



 

 

According to the analysed publications, the most widely used modelling 

approach for this problem is MILP, but other modelling approaches are used by some 

authors, such as linear programming, non-linear programming, integer non-linear 

programming, simulation, heuristics and metaheuristics, fuzzy mathematical 

programming models, multi-objective integer linear programming, stochastic 

programming and dynamic programming. 

To summarise, we conclude that, although there are publications that consider 

some of the characteristics of the problem, none addresses them all simultaneously. In 

addition, the joint consideration of the proposed objectives is a novelty as most are not 

addressed in the literature. Indeed, no publication addresses HR among order lines, nor 

the allowance of partial deliveries of order lines, which are the main novelties of this 

proposal. This requires not only the differentiation between homogeneous sublots from 

the same batch (as previously done), but also the attributes specification for each sublot. 

These features are the major contributions of the proposed model. 

4. Model 

This model is referred to hereinafter as the “Homogeneity Multi-Line Shortage-Planning 

Model” (HML-SP Model). 

4.1. Nomenclature 

The indices, sets of indices, parameters and decision variables that are subsequently used 

in the HML-SP Model are described in Table 3. As seen from the definition part of the 

model, to ensure achieving the HR among the units of the products that belong to the 

same and different order lines, the novel specification of the tones, gages, and series 

which characterise each product is necessary. This aspect obliges a new more complex 

formulation of the whole proposed model compared to others that consider HR and are 



 

 

reported in the literature review section. Furthermore, the modelling of the multiple 

objectives and the allowance of the partial deliveries of the order lines that belong to the 

same customer order constitute the other differentiation characteristic.  

Table 3. Nomenclature 

Indices 

𝑓  Reallocation objective 𝑔  Existing gage of the considered products 

𝑜  Customer order already committed 𝑐  Existing tone of the considered products 

𝑙, 𝑙′  Order line that composes customer orders 𝑚  Production line 

𝑘, 𝑘′  Finished product 𝑡  Time periods in the reallocation planning 

horizon (𝑡 = 1, … , 𝑇) 𝑠  Series to which a product can belong 

Set of indices 

𝑂𝑘  Set of orders o requesting product k 𝐶𝑘  Set of possible tones c for product k 

𝐿𝑜  Set of order lines l included in order o 𝐺𝑘  Set of possible gages g for product k 

𝐾𝐿𝑂𝑜𝑙   Set defining the product k required on 

order line l of order o 

𝑆𝑘  Set defining the serie s that product k 

belongs to.   

𝐿𝑂𝐾𝑜𝑘  Set of order lines l of order o requesting 

product k 

𝐾𝑆𝑠  Set of products k that belong to the same 

serie s 

Parameters 

𝑤𝑓  Weight assigned to objective f of the 

HML-SP Model 
𝛽𝑘𝑐𝑔  Fraction of the production lot of 

product k expected to have tone c and 

gage g after production 𝑝𝑜𝑙   Profit obtained when serving order line l of 

order o 𝐿𝐷𝑚𝑎𝑥𝑜  Maximum number of time periods 

that order o can be delayed ℎ𝑐𝑘  Per unit inventory holding cost of product 

k per period t 𝐷𝑂𝑚𝑎𝑥𝑜  Maximum number of partial 

deliveries allowed for order o 𝑞𝑜𝑙𝑘   Requested quantity of product k in order 

line l of order o 𝑠𝑡𝑜𝑐𝑘𝑘𝑐𝑔  Initial stock of product k 

characterised by tone c and gage g 𝑟𝑐𝑜  Cost of rejecting order proposal o 

𝑛𝑜  Total number of orders o  𝑚𝑝𝑠𝑘𝑚𝑡  Planned quantity of product k to be 

produced on production line m during 

period t  
𝑑𝑑𝑜  Committed due date for order o 

𝑛𝑙𝑜  Number of order lines included in order o 

Decision variables 

𝑌𝑜  Binary variable takes a value of 1 when the entire order o is served, and 0 otherwise 

𝑌𝐿𝑜𝑙   Binary variable takes a value of 1 when order line l from order o is served, and 0 otherwise 

𝐷𝑜𝑡   Binary variable takes a value of 1 when order o is partially or completely delivered during 

period t, and 0 otherwise 

𝐷𝐿𝑜𝑙𝑡   Binary variable takes a value of 1 when order line l from order o is delivered during period 

t, and 0 otherwise 

𝐴𝐷𝑜𝑙   Number of time periods during which the required product quantity in order line l of order 

o is reserved until it is delivered 

𝐿𝐷𝐿𝑜𝑙   Number of time periods of delay in the delivery of order line l of order o in relation to 

committed due date 𝑑𝑑𝑜 

𝑈𝐷𝐿𝑜𝑙     Binary variable takes a value of 1 when order line l from order o is served with delay, and 

0 otherwise 

𝐴𝑇𝑃0𝑘𝑐𝑔  Stock available to promise quantity (ATP) of product k with tone c and gage g after the 

reallocation of the real and planned available quantities to the committed orders 

𝐴𝑇𝑃𝑘𝑐𝑔𝑚𝑡   Planned available to promise quantity (ATP) of product k with tone c and gage g to be 

produced on production line m during period t after the reallocation of the real and planned 

available quantities to the committed orders 

𝑈0𝑜𝑙𝑘𝑐𝑔𝑠  Binary variable takes a value of 1 when the quantity of required product k on order line l 

of order o that belongs to series s is reserved from 𝑠𝑡𝑜𝑐𝑘𝑘𝑐𝑔, and 0 otherwise 

𝑈𝑜𝑙𝑘𝑐𝑔𝑚𝑡𝑠  Binary variable takes a value of 1 when the quantity of required product k on order line l 

of order o that belongs to series s is reserved from planned lot 𝑚𝑝𝑠𝑘𝑚𝑡 with tone c and 

gage g, and 0 otherwise 



 

 

4.2. HML-SP Model 

The HML-SP Model is presented in this subsection. Firstly, the different objective 

functions are detailed. Secondly, the restrictions given by the characteristics of the 

problem are formulated. 

4.2.1. Objective function 

The first objective (1), called 𝑍𝑃, consists in maximising profits during the reallocation 

process. Profits are made as the difference between the margin earned by serving order 

lines and the costs incurred when rejecting orders and holding quantities of product for 

an order until it meets its committed due date. 

𝑀𝑎𝑥[𝑍𝑃] = ∑ (∑ (𝑝𝑜𝑙 · 𝑌𝐿𝑜𝑙 − ∑ ℎ𝑐𝑘 · 𝐴𝐷𝑜𝑙 · 𝑞𝑜𝑙𝑘

𝑘∈𝐾𝐿𝑂𝑜𝑙

)

𝑙∈𝐿𝑜

− 𝑟𝑐𝑜 · (1 − 𝑌𝑜))

𝑜

                                      (1) 

The second objective (2), called  𝑍𝐷, consists in minimising the number of order 

lines served with delays.  

𝑀𝑖𝑛[𝑍𝐷] = ∑ ∑ 𝑈𝐷𝐿𝑜𝑙

𝑙∈𝐿𝑜𝑜

                                                                                                                                         (2) 

The third objective (3), called 𝑍𝑃𝐷, consists in minimising the number of partial 

deliveries of order lines. For an order, a partial delivery exists if the number of 

deliveries (∑ 𝐷𝑜𝑡𝑡 ) is higher than one when the order is delivered (𝑌𝑜 = 1). The total 

number of partial deliveries is calculated as the difference between the total number of 

deliveries and the number of served orders.  

𝑀𝑖𝑛[𝑍𝑃𝐷] = ∑ (∑ 𝐷𝑜𝑡 − 𝑌𝑜

𝑡

)

𝑜

                                                                                                                              (3) 



 

 

4.2.2. Constraints 

Set of constraints (4) establishes that the updated stocked quantity of product k with tone 

c and gage g equals the initial stock of this product with tone c and gage g, minus the 

quantities reserved to serve orders. 

𝐴𝑇𝑃0𝑘𝑐𝑔 = 𝑠𝑡𝑜𝑐𝑘𝑘𝑐𝑔 − ∑ ∑ ∑ 𝑞𝑜𝑙𝑘 · 𝑈0𝑜𝑙𝑘𝑐𝑔𝑠

𝑠∈𝑆𝑘𝑙∈𝐿𝑂𝐾𝑜𝑘𝑜∈𝑂𝑘

          ∀𝑘, 𝑐 ∈ 𝐶𝑘 , 𝑔 ∈ 𝐺𝑘                                (4) 

Set of constraints (5) indicates that the available planned quantity of product k 

with tone c and gage g produced on production line m during period t equals the master 

production schedule quantity to be produced for this product, production line and 

period, multiplied by the probability of obtaining tone c and gage g, minus the 

quantities reserved to serve orders. 

𝐴𝑇𝑃𝑘𝑐𝑔𝑚𝑡 = 𝛽𝑘𝑐𝑔 · 𝑚𝑝𝑠𝑘𝑚𝑡 − ∑ ∑ ∑ 𝑞𝑜𝑙𝑘 · 𝑈𝑜𝑙𝑘𝑐𝑔𝑚𝑡𝑠

𝑠∈𝑆𝑘𝑙∈𝐿𝑂𝐾𝑜𝑘𝑜∈𝐾𝑜

          ∀𝑘, 𝑐 ∈ 𝐶𝑘, 𝑔 ∈ 𝐺𝑘 , 𝑚, 𝑡         (5) 

Set of constraints (6) ensures that an order line can be reserved only once to thus 

avoid the possibility of serving an order line with heterogeneous quantities. 

∑ ∑ ∑ ∑ (𝑈0𝑜𝑙𝑘𝑐𝑔𝑠 + ∑ ∑ 𝑈𝑜𝑙𝑘𝑐𝑔𝑚𝑡𝑠)

𝑡𝑚𝑠∈𝑆𝑘𝑔∈𝐺𝑘𝑐∈𝐶𝑘𝑘∈𝐾𝐿𝑂𝑜𝑙

= 𝑌𝐿𝑜𝑙                   ∀𝑜, 𝑙 ∈ 𝐿𝑜                           (6) 

Set of constraints (7) indicates that an order can be served only if all its order 

lines are served. These constraints also act contrariwise. 

∑ 𝑌𝐿𝑜𝑙

𝑙∈𝐿𝑜

= 𝑛𝑙𝑜 · 𝑌𝑜                ∀𝑜                                                                                                                              (7) 

Sets of constraints (8) – (10) force the real delivery date of an order line to be 

comprised during the period defined by the committed due date and the maximum delay 

allowed for that order. 

∑ 𝐷𝐿𝑜𝑙𝑡 · 𝑡

𝑡

≥  𝑑𝑑𝑜 · 𝑌𝐿𝑜𝑙                ∀𝑜, 𝑙 ∈ 𝐿𝑜                                                                                                        (8) 



 

 

∑ 𝐷𝐿𝑜𝑙𝑡 · 𝑡

𝑡

= 𝑑𝑑𝑜 · 𝑌𝐿𝑜𝑙 + 𝐿𝐷𝐿𝑜𝑙                ∀𝑜, 𝑙 ∈ 𝐿𝑜 ,                                                                                     (9) 

𝐿𝐷𝐿𝑜𝑙 ≤ 𝐿𝐷𝑚𝑎𝑥𝑜 · 𝑈𝐷𝐿𝑜𝑙                ∀𝑜, 𝑙 ∈ 𝐿𝑜                                                                                                     (10) 

Set of constraints (11) ensures that, if an order line is served without delays, then 

the binary variable that indicates if an order line is delayed equals zero. 

𝐿𝐷𝐿𝑜𝑙 ≥ 𝑈𝐷𝐿𝑜𝑙                ∀𝑜, 𝑙 ∈ 𝐿𝑜                                                                                                                         (11) 

Set of constraints (12) indicates that an order cannot be delivered with delays if 

it is not served. 

𝑈𝐷𝐿𝑜𝑙 ≤ 𝑌𝐿𝑜𝑙                ∀𝑜, 𝑙 ∈ 𝐿𝑜                                                                                                                             (12) 

Set of constraints (13) ensures that an order line can be served only once if it is 

served. 

∑ 𝐷𝐿𝑜𝑙𝑡

𝑡

≤ 1              ∀𝑜, 𝑙 ∈ 𝐿𝑜                                                                                                                               (13) 

Set of constraints (14) calculates the number of time periods during which a 

requested quantity of product is reserved until its real delivery date.  

𝐴𝐷𝑜𝑙 = ∑ 𝐷𝐿𝑜𝑙𝑡 · 𝑡

𝑡

− ∑ ∑ ∑ ∑ (𝑈0𝑜𝑙𝑘𝑐𝑔𝑠 + ∑ ∑ 𝑈𝑜𝑙𝑘𝑐𝑔𝑚𝑡𝑠 · 𝑡

𝑡𝑚

)

𝑠∈𝑆𝑘𝑔∈𝐺𝑘𝑐∈𝐶𝑘𝑘∈𝐾𝐿𝑂𝑜𝑙

  ∀𝑜, 𝑙 ∈ 𝐿𝑜               (14) 

Set of constraints (15) ensures that when an order line is served during period t, 

then a partial or complete delivery of that order is made during this period. 

∑ 𝐷𝐿𝑜𝑙𝑡

𝑙∈𝐿𝑜

≤ 𝐷𝑜𝑡 · 𝑛𝑙𝑜               ∀𝑜, 𝑡                                                                                                                        (15) 

Set of constraints (16) indicates that when an order is completely or partially 

delivered during period t, then at least one line of this order is delivered during that 

period: 



 

 

∑ 𝐷𝐿𝑜𝑙𝑡

𝑙∈𝐿𝑜

≥ 𝐷𝑜𝑡                ∀𝑜, 𝑡                                                                                                                                  (16) 

Set of constraints (17) ensures that the quantity of partial deliveries made for an 

order is less than or equals the maximum of partial deliveries allowed for that order. 

∑ 𝐷𝑜𝑡

𝑡

≤ 𝐷𝑂𝑚𝑎𝑥𝑜                ∀𝑜                                                                                                                               (17) 

Set of constraints (18) ensures that the novelty requirement of two lines or more 

of the same customer order that belong to the same series s must be served with the 

quantities available with the same gage g: 

∑ (𝑈0𝑜𝑙𝑘𝑐𝑔𝑠 + ∑ ∑ 𝑈𝑜𝑙𝑘𝑐𝑔𝑚𝑡𝑠

𝑡𝑚

)

𝑐

= ∑ (𝑈0𝑜𝑙′𝑘′𝑐𝑔𝑠 + ∑ ∑ 𝑈𝑜𝑙′𝑘′𝑐𝑔𝑚𝑡𝑠

𝑡𝑚

)

𝑐

 

∀𝑜, 𝑠, 𝑘 ∈ 𝐾𝑆𝑠 , 𝑘′ ∈ 𝐾𝑆𝑠 , 𝑙 ∈ 𝐿𝑂𝐾𝑜𝑘 , 𝑙′ ∈ 𝐿𝑂𝐾𝑜𝑘 , , 𝑔                                                                                        (18) 

Finally, set of constraints (19) shows the definition of the decision variables: 

ADol,  LDLol   𝐼𝑁𝑇𝐸𝐺𝐸𝑅, 

ATP0kcg,  ATPkcgmt   𝐶𝑂𝑁𝑇𝐼𝑁𝑈𝑂𝑈𝑆,                                                                                                                     (19) 

𝑌𝑜 ,  𝑌𝐿𝑜𝑙 ,  Dot,  DLolt,  UDL𝑜𝑙 ,  Uolkcgmts,  U0olkcgs     𝐵𝐼𝑁𝐴𝑅𝑌 

4.3. Resolution methodology for the HML-SP Model 

MOILP models can be solved by different methods regarding the phase in which 

decision makers express their preferences about the objectives (Hwang & Masud, 

1979). In a priori methods, decision makers express their preferences before solving the 

model, while decision makers select the most satisfying solution from among a set of 

non-dominated solutions obtained by the model in a posteriori methods (Mavrotas, 

2009). Thus, in a posteriori methods, decision makers express their preferences after 

solving the model. In this subsection, a priori and a posteriori methods to solve the 

HML-SP model are presented. These methods are later applied in Section 5.3. 



 

 

4.3.1. A priori method: the weighted sum method 

The weighted sum method consists in constructing a single global objective function by  

assigning weights to each objective and summing their results. The sum of the weights 

assigned to each objective should equal the unit (𝑤𝑃 + 𝑤𝐷 + 𝑤𝑃𝐷 = 1). The closer the 

weight assigned to an objective is to one, the stronger incidence that this objective has 

on the global objective function. It is necessary to scale each objective value by dividing 

them between the highest value that they can reach so they acquire values between 0 

and 1. The benefit of serving all the committed orders with no cost, the total number of 

existing order lines, and the total number of allowed deliveries will be the maximum 

values for objectives 𝑍𝑃, 𝑍𝐷, and 𝑍𝑃𝐷, respectively. After applying the weighted sum 

resolution method, the resulting HML-SP model is formulated as follows: 

𝑀𝑎𝑥[𝑍] = 𝑤𝑃 ·
𝑍𝑃

∑ ∑ 𝑝𝑜𝑙𝑙∈𝐿𝑜𝑜

+ 𝑤𝐷 ·
𝑍𝐷

∑ 𝑛𝑙𝑜𝑜

+ 𝑤𝑃𝐷 ·
𝑍𝑃𝐷

∑ 𝐷𝑂𝑚𝑎𝑥𝑜𝑜

                                                                 (20) 

Subject to: Equations (4) – (19). 

Note that 𝑍𝑃, 𝑍𝐷, and 𝑍𝑃𝐷 are calculated through Equations (1) – (3).  

The disadvantage of this method is that decision makers hardly know what their 

preferences are and/or how to quantify them (Mavrotas, 2009). So it is difficult to 

establish weights to objectives. To solve this, a method like the Analytic Hierarchy 

Process (AHP) can be employed to determine the objectives’ weights (Saaty, 1990). 

4.3.2. A posteriori method: the ε-constraint method 

To transform the multi-objective model into a single-objective model, the ε-constraint 

method is used (Chankong and Haimes, 1983; Ehrgott, 2005; Mavrotas, 2009) in which 

one of the objectives is selected as the model’s objective function, while the other 

objectives are considered the model’s constraints. In this case, maximisation of profits 

is maintained as the model’s objective function, minimisation of the number of order 



 

 

lines served with delays, and minimisation of partial deliveries of order lines are 

transformed into the model’s constraints. The new model is formulated as follows: 

𝑀𝑎𝑥 𝑍 = ∑ (∑ (𝑝𝑜𝑙 · 𝑌𝐿𝑜𝑙 − ∑ ℎ𝑐𝑘 · 𝐴𝐷𝑜𝑙 · 𝑞𝑜𝑙𝑘

𝑘∈𝐾𝐿𝑂𝑜𝑙

)

𝑙∈𝐿𝑜

− 𝑟𝑐𝑜 · (1 − 𝑌𝑜))

𝑜

                                        (21) 

subject to: 

∑ ∑ 𝑈𝐷𝐿𝑜𝑙

𝑙∈𝐿𝑜𝑜

≤ 𝜀𝐷                                                                                                                                                   (22) 

∑ (∑ 𝐷𝑜𝑡 − 𝑌𝑜

𝑡

)

𝑜

≤ 𝜀𝑃𝐷                                                                                                                                        (23) 

and Equations (4) - (19). 

To apply this method, a payoff table that determines the ranges of values that 

each objective modelled as a constraint can assume needs to be calculated. In this paper, 

the lexicographic optimisation for the payoff table proposed by Mavrotas (2009) is used 

that provides with non-dominated solutions. It consists in solving the model each time 

for only one objective. Then, the model is solved for another objective, forcing the first 

objective to be equal to its optimal value by means of a constraint. This process is 

repeated for all the combination of objectives. For example, in a model with two 

objectives (𝑓1 and 𝑓2), the optimum value for 𝑓1 is obtained. Then objective 𝑓2 is 

optimised by considering that 𝑓1 must equal the optimal value obtained in the previous 

execution. To obtain another non-dominated solution, the process is repeated by firstly 

solving the model for objective 𝑓2. 

Then the grid points (𝜀𝑖) obtained when dividing the objective’s range of values 

into equal intervals are used to obtain the non-dominated solutions to the problem. 

Finally, decision makers select the non-dominated solution that most satisfies them. 

Note that the payoff table, and therefore the grid points, differ for each data instance.  



 

 

This approach is more appropriate for obtaining the solution to be implemented 

into a real company because it obtains non-dominated solutions, among which decision 

makers can choose. However, if the model needs to be executed for different sets of 

instances (scenarios), this approach becomes tedious, long and dependent on the 

decision maker’s preference. So the experimental design could not be automated for this 

last reason. To avoid these disadvantages for the experimental design, an a priori 

method seems more adequate. 

5. Experimental design: application to a ceramic tile company 

The aims of the numerical tests defined in this section are threefold: 1) to validate the 

HML-SP Model; 2) to analyse the model’s behaviour in different situations for the 

company under study to provide some managerial insights for the studied case and 3) to 

check computational efficiency by solving different scenarios. Before analysing these 

aspects, the data used in the experimentation are described.  

5.1. Input data 

The experimental design was conducted with data from a major company in the Spanish 

ceramic sector, and were slightly modified for confidentiality reasons, while 

maintaining the magnitude order. 

A planning horizon of 12-time periods (weeks) was contemplated, which is 

approximately a 3-month planning. Ten final products were considered and classified 

into two different tones and three different gages, with six homogeneous subtypes. In 

addition, each product belonged to a series so, if products from the same series were 

required in the same order, it was necessary to ensure that all their units were 

homogeneous for the gage attribute. 



 

 

There were 150 committed orders (firm orders) for the considered planning 

horizon. Fifty of these orders were considered priorities. Each order was made up of 

between one and ten order lines, with an average of 2.31 lines per order, and there were 

347 total order lines. For each line that belonged to an order, the final requested product 

and the demanded quantity were known and ranged from a minimum of 20 m2 to a 

maximum of 4,000 m2, with an average of 150 m2 per order line. The same final product 

could be requested on more than one order line of the same order. This is often done if a 

customer requires a very large amount of a given product and does not require all this 

quantity to be homogeneous, but only parts of it (for example, large builders).  

Each order was associated a committed due date, which was the same for all its 

order lines. For each order, the maximum delivery delay (one-time periods) and the 

maximum partial deliveries allowed (two for multiline orders and one for single line 

orders) were also known. 

It was assumed that current stocks were classified according to their attributes 

and the planned batches of the MPS were known. Current stocks varied by subtype, 

ranging from 0 m2 and 3,500 m2. In addition, the distribution of production batches into 

homogeneous sublots was estimated. 

Table 4 shows the unitary margin, unitary holding cost and unitary rejection cost 

per product. Note that unitary rejection costs were estimated as 75% of the unitary 

margin for each product. An increase of 20% in the rejection costs for priority orders 

was assumed to reflect the company’s preference for them to be firstly served. 

Table 4. Economic data per product 

Final product 

k 

Unitary profit 

(€/m2) 

Unitary rejection cost 

(€/m2) 

Unitary holding cost 

(€/m2·week) 

1 7.00 5.25 0.064 

2 18.00 13.50 0.052 

3 12.00 9.00 0.040 

4 10.00 7.50 0.036 

5 5.00 3.75 0.036 

6 11.00 8.25 0.052 



 

 

7 13.00 9.75 0.040 

8 12.00 9.00 0.036 

9 6.00 4.50 0.052 

10 15.00 11.25 0.045 

Two new data instances were created to assess the complexity of the HML-SP 

model in light of the different problem sizes and their respective resolution times. A 

smaller instance was built by considering the data for the first six time periods of the 

original instance. Similarly, a larger instance was generated by duplicating the data 

provided by the company and comprised a 24-time period planning horizon. To avoid 

equality between the data from the first 12 time periods and the other periods, the due 

dates between the 13th and 24th time periods were randomly attributed. 

5.2. Defining the hypotheses 

The purpose of the experimental design was to validate the HML-SP Model and to 

provide some managerial insights as the following hypotheses:  

H1.  There may be some conflict with the HML-SP model objectives when obtaining 

optimum values. 

H2.  Given a master plan, the greater the division of a batch into homogeneous 

sublots (more subtypes) and the more uniform its size, the more difficult it will 

be to serve the committed orders from the homogeneous product. 

H3.  The results should improve if the number of allowed partial deliveries and/or 

the maximum allowed delay for each order increases as these measures increase 

the feasible area and, therefore, the possibility of finding better solutions. 

H4.  The difficulty of serving orders should grow significantly when considering HR 

among order lines. 



 

 

The hypotheses were demonstrated by executing different sets of scenarios and a 

statistical analysis of the obtained results. For clarity reasons, these demonstrations are 

explained fairly in Section 5.3. 

In addition, an analysis of the model’s computational complexity was done in 

Section 5.4, where the problem size, the resolution time and the GAP for each execution 

are displayed. For the scenarios in which the optimal solution was not found during the 

time limit defined as 18,000 seconds, a GAP was obtained and represents the difference 

between the best-found solution and the best-bound explored one. The average GAP for 

the original data instance was 0.24%. The GAP varied from 0.00% to 0.63% in the 

proposed scenarios that came very close to zero. This denotes that the obtained 

solutions presented in next section are optimum solutions or come very close to them. 

5.3. Experimental results to prove the hypotheses 

In this subsection, different sets of scenarios were solved with the proposed model to 

prove the defined hypotheses. The original data instance provided by the company (a 12 

time-period planning horizon) was used for all the executions. 

5.3.1. Objectives’ conflict 

A partial correlation analysis of the non-dominated solutions for the HML-SP model 

was made to prove the existing conflict between the model’s objectives (H1). When the 

model was solved with the ε-constraint method, a payoff table comprised by the non-

dominated solutions was needed. To find out these non-dominated (Pareto optimal) 

solutions (Table 5), lexicographic optimisation, as explained in Section 4.3.2, was 

employed. 

 

 



 

 

Table 5. Payoff table 

# 𝑍𝑃 𝑍𝐷 𝑍𝑃𝐷 

1 267162.717 78 30 

2 267162.717 86 25 

3 222613.882 0 0 

4 266856.842 149 0 

A partial correlation analysis of these solutions can be made to study the 

relations between the results of the objectives, and to therefore discover if there is any 

conflict between the different objectives considered in the HML-SP model (Table 6). 

Table 6. Partial correlation coefficient 

 𝑍𝑃 𝑍𝐷 𝑍𝑃𝐷 

𝑍𝑃 1 0.9996 0.9990 

𝑍𝐷 0.9996 1 -0.9985 

𝑍𝑃𝐷 0.9990 -0.9985 1 

The values of the profits and order lines served with delays positively and 

perfectly correlated (0.9996 ≈ 1) in such a way that when profits increased, the number 

of required delayed order lines also increased. Similarly, profits and partial deliveries 

also perfectly and positively correlated (0.9990 ≈ 1), in such a way that the partial 

deliveries increased as profits improved. As the purpose of the model was to maximise 

profits while minimising the number of delayed order lines and partial deliveries, this 

analysis proved the conflict between maximisation of profits and the other objectives. 

The number of delayed order lines and the number of partial deliveries 

correlated perfectly and negatively (-0.9985 ≈ -1). This means that one of them 

increased, while the other decreased. As the model intended to minimise both 

objectives, this result ensured a conflict between them. This proved the existence of 

conflict among all the proposed objectives and proved Hypothesis H1. 

5.3.2. Distribution of batches into homogeneous sublots 

Five scenarios were proposed to prove Hypothesis H2, according to which it was more 

difficult to serve committed orders with homogeneous product when a production lot 



 

 

was divided into more sublots and their size was more uniform. These scenarios (Table 

7) differed in the considered distribution of a production batch into homogeneous 

sublots (𝛽𝑘𝑐𝑔). It was assumed that a maximum of three homogeneous sublots could be 

obtained by each production batch (𝛽𝑘11; 𝛽𝑘12; 𝛽𝑘23). The homogeneous sublot 𝛽𝑘11 was 

defined by tone 1 and gage 1, sublot 𝛽𝑘12 was defined by tone 1 and gage 2, and finally, 

the sublot 𝛽𝑘23 was defined by tone 2 and gage 3. 

Table 7. Distribution of batches into homogeneous sublot scenarios 

Scenario 𝛽𝑘11(%) 𝛽𝑘12(%) 𝛽𝑘23(%) 

1 homogeneous sublot 100 -- -- 

2 unbalanced homogeneous sublots 70 30 -- 

3 unbalanced homogeneous sublots 70 20 10 

2 balanced homogeneous sublots 50 50 -- 

3 balanced homogeneous sublots 40 30 30 

As explained in the last paragraph of Section 4.3.2, the weighted sum method 

was employed given its suitability for solving sets of scenarios. To determine the weight 

distribution between the objectives that comprised the global objective function, AHP 

was used. This technique is based on the paired comparisons of the elements among 

which weights were to be distributed. 

The scale used to make judgements was the proposed by Saaty (1990), where 1 

means that both elements are of the same importance, and 3, 5, 7, and 9 mean that one 

element is moderately, strongly, very strongly, or extremely important over another 

element, respectively. If one of the above numbers is assigned to element x when 

compared with the element y, then y has the reciprocal value when compared with x 

(Saaty, 1990). With this scale, the pairwise comparison matrix and weight distribution 

were obtained (Table 8). 

Table 8. Pairwise comparison matrix 

 𝑍𝑃 𝑍𝐷 𝑍𝑃𝐷 𝑤𝑓 

𝑍𝑃 1 5 5 0.66 

𝑍𝐷 1/5 1 1/3 0.09 

𝑍𝑃𝐷 1/5 3 1 0.25 



 

 

A maximum delivery delay of one period  (𝐿𝐷𝑚𝑎𝑥𝑜 = 1) and a maximum of two 

partial deliveries per order (𝐷𝑂𝑚𝑎𝑥𝑜 = 2) were allowed. Both HR were considered: 

homogeneity among units of the same order line and among units of different order 

lines. 

The results (Figure 2) show that the values of the profits and the global objective 

function became worse as the division of a batch into homogeneous sublots increased. 

This was because it is more difficult to serve orders with homogeneous product when 

lots were more heterogeneous. Therefore, the profits made in the “One homogeneous 

sublot” scenario practically duplicated those made in the scenarios where the lack of 

homogeneity in the product was considered.  

Figure 2. Results of the distribution of batches into homogeneous sublot scenarios 

 

This same logic was not seen in the other objectives partly since the weights 

assigned to them in the global objective function were relatively small compared to the 

profits weight. A scatter plot of the distribution of batches into homogeneous sublots 

and the number of orders served in each scenario (Figure 3) shows how the quantity of 



 

 

served orders decreased as the number of homogeneous sublots increased and 

consequently their size decreased. To obtain this scatter plot, it was necessary to first 

transform each homogeneity distribution, composed of three terms (𝛽𝑘11, 𝛽𝑘12, and 𝛽𝑘23), 

into a numerical value. The homogeneity coefficient value is supposed to be high when 

just one homogeneous sublot is obtained from the same production batch and to 

decrease its value as more sublots are obtained. Similarly, this coefficient should 

decrease its value as the different obtained sublots are more uniform in size. Thus, AHP 

was employed again, and conferred much preference to obtain only one homogeneous 

sublot rather than obtaining two, and even more preference rather than obtaining three 

sublots in the same lot. The weights obtained with this process (𝑤𝛽𝑘11
= 0.60; 𝑤𝛽𝑘12

=

0.36; 𝑤𝛽𝑘23
= 0.04) were multiplied to the different terms of each homogeneity 

distribution to obtain a homogeneity coefficient β (Table 9), which was used in the 

statistical analysis of the results.  

Table 9. Homogeneity coefficient β obtainment 

Homogeneity distribution 

𝛽𝑘11-𝛽𝑘12-𝛽𝑘23 

Homogeneity coefficient 

β 

100-00-00 100 * 0.60 +   0 * 0.36 +   0 * 0.04 = 60 

70-30-00   70 * 0.60 + 30 * 0.36 +   0 * 0.04 = 53 

70-20-10   70 * 0.60 + 20 * 0.36 + 10 * 0.04 = 50 

50-50-00   50 * 0.60 + 50 * 0.36 +   0 * 0.04 = 48 

40-30-30   40 * 0.60 + 30 * 0.36 + 30 * 0.04 = 36 

Figure 3. Scatter plot: Orders served vs. 𝛽 

 



 

 

A correlation coefficient of 0.97 demonstrated the clear relation between the 

number of orders served and the homogeneity coefficient. In addition, a scatter plot 

showing the relation between these variables is displayed in Figure 3. Thus, when the 

homogeneity coefficient rose, the number of served orders also increased. This proved 

hypothesis H2 and showed the importance of allocating product quantities to customer 

orders considering HR in those industries characterised by the lack of homogeneity in 

the product.  

5.3.3. Flexibility in order deliveries 

This subsection aimed to demonstrate that flexibility in order deliveries impacted the 

reallocating process. In the HML-SP model, flexibility in deliveries can be modified by 

allowing more/less partial deliveries per orders (𝐷𝑂𝑚𝑎𝑥𝑜) and/or shorter/larger delays 

(𝐿𝐷𝑚𝑎𝑥𝑜) of deliveries. For this reason, two sets of scenarios were proposed to prove the 

independent effect that partial and delayed deliveries had on the results (Table 10). In 

all, 22 scenarios were executed.  

Table 10. Conditions of “Flexibility in Order Deliveries” scenarios 

Set of scenarios Scenario Number of 

scenarios 

𝐷𝑂𝑚𝑎𝑥𝑜  𝐿𝐷𝑚𝑎𝑥𝑜 

Flexibility in the 

maximum allowed delay  

i periods delay allowed 

𝑖 ∈ (0, 𝑇 − 1) 

12 1 𝑚𝑖𝑛(𝑖, 𝑇 − 𝑑𝑑𝑜) 

Flexibility in partial 

deliveries 

𝑗 deliveries per order 

𝑗 ∈ (1, 10) 

10 𝑚𝑖𝑛(𝑗, 𝑛𝑙𝑜) 𝐷𝑜𝑚𝑎𝑥𝑜 − 1 

For these scenarios, the same weight distribution among the objectives was 

assumed (𝑤𝑃 = 0.66; 𝑤𝐷 = 0.09; 𝑤𝑃𝐷 = 0.25), as was the division of production batches into 

the most usual three unbalanced homogeneous sublots (𝛽𝑘11 = 0.7; 𝛽𝑘12 = 0.2; 𝛽𝑘23 = 0.1).  

In the “Flexibility in the Maximum Allowed Delay” scenarios, the maximum 

delay allowed per order had to equal the minimum between the general maximum delay 

allowed and the difference between the planning horizon and the due date for this order. 

This assumption ensured that any order could be served after the planning horizon. Only 



 

 

one delivery was allowed per order to study the independent effect that delays had on 

the model. 

The results showed how the profits and the objective function value improved as 

the general maximum allowed delay increased (Figure 4). The same relation was not 

found in the number of order lines served with delay because this objective had a lower 

weight in the objective function. The part of the partial deliveries in Figure 4 is empty 

because no partial deliveries were allowed.  

Figure 4. Results of the flexibility in the maximum allowed delay scenarios 

  

To statistically prove that the objective function value improved as the 

maximum delay allowed increased, a correlation analysis of these variables was run. 

This was proved with a correlation coefficient of 0.90, which determined that both 

variables would simultaneously improve or worsen. Figure 5 shows a scatter plot of 

these variables, where their relation can be seen. 

 

 

 



 

 

Figure 5. Scatter plot: Maximum delay allowed vs. Objective function value 

  

In the “Flexibility in Partial Deliveries” set of scenarios, the number of 

deliveries allowed per order was modified to analyse how this factor impacted on the 

results of the model. For each scenario it was assumed that the maximum delay allowed 

per order was equal to the partial deliveries allowed in this scenario, minus one. The 

objective of this assumption was to ensure that enough delivery periods were available 

to make us of all the allowed deliveries. In addition, it was assumed that the number of 

deliveries allowed per order could be at most equal to the number of lines that comprise 

the order (Table 10). 

The results (Figure 6) showed how both profits and the objective function value 

improved as the number of allowed deliveries per order increased. Besides, the number 

of order lines served with delays and the number of partial deliveries made did not seem 

to follow a pattern related to the flexibility in the allowed partial deliveries. As in the 

other scenarios, it was produced because the weight that the last two objectives had on 

the global objective function was low compared to maximisation of profits. 

 

 

 

 



 

 

Figure 6. Results of the flexibility in partial deliveries scenarios 

 

A correlation analysis between the global objective function value and the 

number of partial deliveries allowed and a scatter plot between these variables (Figure 

7) were done. The relation between these variables was proved by a correlation 

coefficient of 0.94, which demonstrates that when these variables improve, the value of 

the other one also increases. 

Figure 7. Scatter plot: Partial deliveries allowed vs. Objective function value 

 

We hence concluded that delivery flexibilities led to better results for the global 

objective function of the HML-SP Model, and Hypothesis H3 was demonstrated. So 



 

 

these results can be employed by manufacturers to decide which policy to apply to their 

customers as to delays and partial deliveries if negotiation is possible.  

5.3.4. Flexibility in the homogeneity requirement 

To prove Hypothesis H4, the scenarios solved in Section 5.3.3 when considering HR 

among units of different order lines were compared to the homologues without 

considering this requirement. For these scenarios, the real weight distribution among the 

objectives (𝑤𝑃 = 0.66; 𝑤𝐷 = 0.09; 𝑤𝑃𝐷 = 0.25) and the division of production batches into 

the most usual three unbalanced homogeneous sublots (𝛽𝑘11 = 0.7; 𝛽𝑘12 = 0.2; 𝛽𝑘23 = 0.1) 

were assumed.   

Figure 8 shows the comparison of these results for the scenarios proving the 

flexibility in the maximum allowed delay and the flexibility in partial deliveries. The 

scenarios that considered HR among order lines obtained worse global objective 

function values than the homologues scenarios that did not consider this requirement. 

This was because considering HR implies a reduced feasible area, which hinders the 

reallocation process. 

Figure 8. Results of Flexibility in the homogeneity requirements scenarios 

 

Box and Whiskers plots were used to show the main differences between the 

results distribution in those cases in which HR among the units of different order lines 

were or were not considered. For both cases, in the scenarios that proved flexibility in 



 

 

the number of deliveries allowed or in the allowed delay, the obtained values for the 

objective function were higher when HR was not considered. Also, in the scenarios 

where the flexibility in the allowed delay is analysed, the range of the objective function 

values was wider when HR were not considered.  

Figure 9. Box and Whiskers plots 

 

We conclude that absence of HR among order lines gave better results for the 

global objective function of the HML-SP Model and proved Hypothesis H4. 

5.4. Computational efficiency 

The proposed model was implemented in modelling language MPL® 5.0 and was 

resolved with solver GurobiTM 7.0.2. Input data and the values that the decision 

variables and objectives acquired after resolving the model were stored in a Microsoft 

Access database. The computer used to solve different scenarios had an Intel® Xeon® 

CPU E5-2640 v2 with two 2.00 GHz processor, with an installed capacity of 32.0 GB 

and a 64-bits operating system. 

The maximum time resolution was limited to 18,000 seconds (5 h) for each 

proposed scenario. The model was solved for the different instances comprised by a 6-, 

12- or 24-time period planning horizon to determine the model’s complexity regarding 



 

 

the size of the problem and its impact on both, the resolution time and the quality of the 

obtained solutions. 

Table 11 shows the problem size for each scenario set, which was evaluated by 

the number of constraints and the continuous, integer and binary variables. After 

analysing it, we found that all the scenarios corresponding to the same instance had the 

same number of continuous, integer and binary variables and these quantities 

augmented when the instance became bigger (more customer orders and larger planning 

horizon). The considerable presence of binary variables, which represented between 95-

98% of the variables in all instances, should be emphasised. We observed that the 

number of constraints lowered for all the instances when HR among the units of 

different order lines were not considered by the model. This confirmed that the model’s 

size was bigger in those scenarios that included this requirement and comprised more 

customer orders and larger planning horizon. 

Table 11. Problem size 

 Planning 

horizon 

Set of scenarios 

Distribution of batches 

into homogeneous 

sublots 

Flexibility in 

order deliveries 

Flexibility in 

HR: with 

HR 

Flexibility in 

HR: without 

HR 

Constraints 6 5,505 5,505 5,505 4,284 

12 10,795 10,795 10,795 8,896 

24 28,730 28,730 28,730 24,932 

Continuous 

variables 

6 1,140 1,140 1,140 1,140 

12 2,220 2,220 2,220 2,220 

24 4,380 4,380 4,380 4,380 

Integer 

variables 

6 450 450 450 450 

12 694 694 694 694 

24 1,388 1,388 1,388 1,388 

Binary 

variables 

6 28,122 28,122 28,122 28,122 

12 83,842 83,842 83,842 83,842 

24 329,516 329,516 329,516 329,516 

Total 

variables 

6 29,712 29,712 29,712 29,712 

12 86,756 86,756 86,756 86,756 

24 335,284 335,284 335,284 335,284 

If an optimal solution was not found for a particular scenario during the fixed 

resolution time (RT) of 18,000 seconds, a GAP was displayed. It represented the 

difference between the best-found solution and the best-bound explored one. Thus, a 



 

 

GAP of 0.5% meant that the global objective function value for this solution had to 

improve by 0.5% to reach the best bound. The resolution time and GAP obtained for 

each scenario and instance are shown in Table 12. 

When using the small instance (the 6-time period planning horizon), an optimal 

solution was found in 20 of the 27 scenarios, with an average resolution time of 7,895 

seconds (132 minutes). With the original instance (the 12-time period planning 

horizon), the optimal solution was reached only in 11 of the 39 scenarios. Finally, no 

optimal solution was found for any scenario when solving the large instance (the 24-

time period planning horizon), although the GAP was quite small and reached near 

optimal solutions. These results proved that the size of the instance influenced the time 

in which to optimally solve the model (Table 12). 

Table 12. Resolution time and GAP per scenario and instance 

Set of scenarios / Scenario 6 periods PH 12 periods PH 24 periods PH 

RT (s) GAP RT (s) GAP RT (s) GAP 

Distribution of batches into homogeneous sublots (HS): 

• 1 HS 663 - 18,000 0.11% 18,000 0.61% 

• 2 unbalanced HS 540 - 188 - 18,000 0.64% 

• 3 unbalanced HS 429 - 18,000 0.20% 18,000 0.95% 

• 2 balanced HS 2,597 - 2,396 - 18,000 0.53% 

• 3 balanced HS 895 - 680 - 18,000 0.33% 

Flexibility in the maximum delay allowed (with HR): 

• 0 periods of delay  84 - 148 - 18,000 0.25% 

• 1 period of delay 137 - 4,054 - 18,000 0.85% 

• 2 periods of delay 173 - 4,004 - 18,000 1.47% 

• 3 periods of delay 18,000 0.13% 18,000 0.17% 18,000 1.35% 

• 4 periods of delay 18,000 0.15% 18,000 0.34% 18,000 1.62% 

• 5 periods of delay 18,000 0.21% 18,000 0.49% 18,000 0.76% 

• 6 periods of delay - - 18,000 0.46% 18,000 0.87% 

• 7 periods of delay - - 18,000 0.39% 18,000 0.96% 

• 8 periods of delay - - 18,000 0.51% 18,000 1.15% 

• 9 periods of delay - - 18,000 0.52% 18,000 0.97% 

• 10 periods of delay - - 18,000 0.63% 18,000 1.00% 

• 11 periods of delay - - 18,000 0.43% 18,000 0.97% 

Flexibility in the maximum delay allowed (without HR): 

• 0 periods of delay  74 -  1,127   - 18,000 0.37% 

• 1 period of delay 137 -  18,000    0.11% 18,000 0.52% 

• 2 periods of delay 648 -  18,000    0.15% 18,000 0.43% 

• 3 periods of delay 2,389 -  18,000    0.28% 18,000 0.33% 

• 4 periods of delay 18,000 0.14%  18,000    0.21% 18,000 0.97% 

• 5 periods of delay 18,000 0.16%  18,000    0.17% 18,000 0.33% 

• 6 periods of delay - -  18,000    0.18% 18,000 0.38% 

• 7 periods of delay - -  18,000    0.17% 18,000 0.33% 



 

 

• 8 periods of delay - -  18,000    0.19% 18,000 0.38% 

• 9 periods of delay - -  18,000    0.28% 18,000 0.38% 

• 10 periods of delay - -  18,000    0.11% 18,000 0.49% 

• 11 periods of delay - -  18,000    0.12% 18,000 0.27% 

Flexibility in partial deliveries (with HR): 

• 1 delivery per order 84 -  148    - 18,000 0.25% 

• 2 deliveries per order 492 -  15,470    - 18,000 0.76% 

• 3 deliveries per order 2,434 -  18,000    0.50% 18,000 0.95% 

• 4 deliveries per order 18,000 0.15%  18,000    0.25% 18,000 1.21% 

• 5 deliveries per order 18,000 0.22%  18,000    0.42% 18,000 1.53% 

• 6 deliveries per order 18,000 0.24%  18,000    0.37% 18,000 1.59% 

• 7 deliveries per order - -  18,000    0.52% 18,000 1.65% 

• 8 deliveries per order - -  18,000    0.28% 18,000 1.20% 

• 9 deliveries per order - -  18,000    0.23% 18,000 1.16% 

• 10 deliveries per order - -  18,000    0.26% 18,000 1.25% 

Flexibility in partial deliveries (without HR): 

• 1 delivery per order 81 -  1,127    - 18,000 0.37% 

• 2 deliveries per order 221 -  4,845    - 18,000 0.27% 

• 3 deliveries per order 150 -  18,000    0.52% 18,000 0.23% 

• 4 deliveries per order 4,009 -  18,000    0.43% 18,000 0.40% 

• 5 deliveries per order 18,000 0.22%  18,000    0.37% 18,000  

• 6 deliveries per order 16,362 -  18,000    0.38% 18,000 0.50% 

• 7 deliveries per order - -  18,000    0.26% 18,000  

• 8 deliveries per order - -  18,000    0.22% 18,000  

• 9 deliveries per order - - 18,000 0.17% 18,000 0.40% 

• 10 deliveries per order - - 18,000 0.22% 18,000 0.30% 

The increasing complexity of solving the model with the size of the instance was 

also seen when comparing the GAP average for all the scenarios. For the small instance, 

an average GAP of 0.03% was obtained, whereas an average GAP of 0.24% and 0.73% 

were obtained for the original and large instance respectively. In addition, the GAP of 

almost all the scenarios with no optimal solution came close to zero, which denotes that 

the obtained solutions came close to the optimum solution. 

When comparing the resolution time and the GAP of each specific scenario, they 

increased as the instance became bigger. The difference between the average GAP of 

the scenarios that considered (0.05% for the small instance, 0.31% for the original 

instance and 1.08% for the large instance) or did not consider (0.02% for the small 

instance, 0.21% for the original instance and 0.41% for the large instance) HR among 

units of different order lines demonstrated that the computational efficiency was greater 

in those scenarios that did not take HR into account.  



 

 

5.5. Managerial insights 

As shown in the previous section, HML-SP model proved to be a suitable tool for 

decision makers in charge of delivering already committed orders to customers. During 

this process, it is usual that real quantities of homogeneous sublots do not match the 

planned ones in LHP contexts. If nothing is made, some orders could not be served with 

the initial assignation made. Therefore, an efficient resolution method is necessary to 

reallocate the real homogeneous availabilities to orders to find a satisfactory solution for 

both, customers and the company. 

From the managerial point of view, the HML-SP model allows an optimal or 

nearly optimal solution to be found within a very acceptable time range for this type of 

decisions. A maximum 5-hour execution implies that the model can be executed at the 

end of one period, in which discrepancies in homogeneous sublots are detected, to the 

next, for which a new solution for delivery is necessary. Proof of the conflicting 

objectives (H1) indicates that the final reallocation solution of availability to orders 

should be a trade-off among different objectives. Therefore, no solution exists that 

simultaneously optimises all the pursued objectives.  

From the customers’ relationship point of view, the positive impact on objective 

function when increasing flexibility of partial deliveries and/or of the maximum allowed 

delay, provides valuable information to negotiate delivery conditions with customers 

when it is not possible to serve all of them on time. Incrementing profits when allowing 

flexibility in deliveries can be used to define discounts for customers in case they are 

not served as promised, but to ensure them still being profitable for company. 

Management of priority orders/customers can be made by not allowing any delay and/or 

increasing rejection costs of them.     



 

 

The negative impact of heterogeneity on lots (H2) shows the importance of 

investing in technology to obtain more uniform product quantities. Unfortunately, this is 

not possible for all companies with LHP, especially for those that obtain products 

directly from nature.  

Until a technology solution that eliminates LHP is found, efforts should be made 

on the planning and product design sides. In line with this, it is very important when 

defining the master plan and executing the OPP that the heterogeneity in the production 

lots and customer order sizes and their uncertainty should be taken into account (Mundi 

et al., 2016). This provides more robust promised conditions with customers, as 

reflected by the minor reallocations required and the major fulfilment of the initial 

conditions committed with customers during the OPP.  

As Hypothesis H4 proved that the results worsened with HR among units of 

different order lines, efforts should be made when designing products that are jointly 

sold to avoid this additional homogeneity requirement.  

6. Conclusions and future research lines 

The uncertainty inherent to the lack of homogeneity in the product in the ceramic sector 

constantly leads to discrepancies between planned and available homogeneous 

quantities. This aspect can result in certain previously committed orders not being 

served under the conditions previously agreed on as there is not sufficient homogeneous 

quantity, which entails a shortage situation. To reduce the negative impact on both 

customers and company profitability, an optimisation model for SP in ceramic sector 

companies is presented in this article. The reallocation of planned and real available 

quantities to firm orders is proposed as a solution to possible shortage. Moreover, partial 

deliveries of order lines and delayed deliveries are allowed if the HR imposed by 



 

 

customers are respected during available quantities reallocation. What all this represents 

is an attempt to optimise different conflicting objectives. One of the main contributions 

of this article is to treat the above aspects as we are unaware of any previous study that 

has jointly addressed all the characteristics of the problem under study. Moreover, 

partial deliveries of order lines and HR among order lines/products have not been 

addressed as far as we know. 

Two resolution methods are applied to the model, depending on whether it is 

being used to obtain an implementable solution for the company (ε-constraint method) 

or to prove the behaviour of the shortage planning process (weighted sum procedure). 

In this paper, four hypotheses are proved by applying the model to a ceramic tile 

company: 1) conflict exists among the model’s objectives; 2) worse results are obtained 

as a batch is divided into many sublots and these are more uniform; 3) the results 

improve when more flexibility in deliveries is allowed; 4) HR among units of different 

order lines makes it more difficult to serve orders. The hypotheses were demonstrated 

by comparing the results obtained with the experiments and by a statistical analysis of 

these results. 

As a future research line, an uncertain modelling of the distribution of batches 

into homogeneous sublots can be considered. The model proposed in this paper is 

specifically designed for the ceramic sector as it considers the attributes that 

characterise it. However, the application of this model can be extended to other sectors 

by replacing the ceramic attributes with the new sector ones. One example would be to 

implement the HML-SP Model into the furniture sector where homogeneity among 

different products that make up a set (chairs, tables, etc.) is also required for raw 

material (e.g. pine wood, cherry wood, birch wood), colour (e.g. wood, red, white), and 

quality. In this case the sets or ambiences in furniture sector should be equivalent to the 



 

 

series in the ceramic sector, and each combination of material-colour-quality in the 

furniture sector should be equivalent to a specific gage.  
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