
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/183159

Girona, I.; Murillo Arcila, M. (2021). Maximal l(p)-regularity of multiterm fractional equations
with delay. Mathematical Methods in the Applied Sciences. 44(1):853-864.
https://doi.org/10.1002/mma.6792

https://doi.org/10.1002/mma.6792

John Wiley & Sons



Maximal `p-regularity of multi-term fractional equations with delay

Ivan Girona
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Abstract

We provide a characterization for the existence and uniqueness of solutions in the space of
vector-valued sequences `p(Z, X) for the multi-term fractional delayed model in the form:

∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) + f(n), n ∈ Z, α, β ∈ R+, τ ∈ Z, λ ∈ R

where X is a Banach space, A is a closed linear operator with domain D(A) defined on X,
f ∈ `p(Z, X) and ∆γ denotes the Grünwald-Letkinov fractional derivative of order γ > 0.
We also give some conditions to ensure the existence of solutions when adding nonlinearities.
Finally, we illustrate our results with an example given by a general abstract nonlinear model
that includes the fractional Fisher equation with delay.

Keywords: Maximal `p-regularity; multi-term fractional, delay, Grünwald-Letnikov
derivative.
2010 MSC: 35R20; 35R11; 39A14

1. Introduction

The study of time delay equations has been considered by many authors due to their ap-
plications in many fields of sciences such as biology for describing resource regeneration times,
maturity periods, or physics for describing reaction times; see for example [5], [20], [40], [35],
[36], [37] , [31] and the references therein. On the other hand, fractional calculus has attracted
the attention of many researchers thanks to the advantages of fractional derivatives which can
describe non local processes in their nature, see for instance, the recent work of Wu, Baleanu
and Xie [39] and Huang, Baleanu, Wu and Zeng in [19] where they analysed the chaotic behavior
of the fractional discrete logistic map.

It is a well-known fact that the analysis of maximal regularity is a really useful tool for
solving semilinear and quasilinear problems. Maximal regularity of evolution equations using
operator-valued Fourier multipliers was first studied by H. Amman [2] and L. Weis [38]. Other
authors as Arendt and Bu [3] studied maximal regularity of periodic problems for abstract
evolution equations in UMD-spaces. Some other references concerning this topic are the works
by Bu [10], [9] and [8]. Concerning delay equations, there is an increasing number of researchers
working on this topic. For instance, Poblete [32] analysed maximal regularity on vector-valued
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Hölder spaces. The fractional study was considered by Ponce in [33]. See also [16] and [12]
for the analysis of the well-posedness for a class of third order time evolution equations with
infinite delay in Lebesgue, Besov and Triebel-Lizorkin vector-valued Banach spaces.

In the discrete case, the first works of maximal regularity are due to Blunck ([6], [7]).
Other authors who continued this research line by studying the existence and uniqueness of
solutions for discrete systems that belong to the Lebesgue space of vector-valued sequences
are [11, 13, 21, 22, 24, 26, 34]. See also the recent work [14] and the references therein where
temporal regularity for second order difference equations is analyzed.

The first reference in the context of discrete maximal regularity for fractional equations
was given by Lizama in [25] where he handles this study for fractional difference differential
equations using methods of functional analysis and operator theory. Following this research
line the following references [24, 26, 27, 29] correspond to studies of maximal `p-regularity in
the context of fractional equations with time variable both in N and Z. See also [23, 30] where
a connection between maximal `p-regularity and non-local time steppings is established.

In this work we analyse for the first time in the literature the study of the existence and
uniqueness of solutions that belong to the Lebesgue space of vector-valued sequences `p(Z, X)
for multi-term fractional difference differential equations with delay and time variable on Z. See
[28] where these models without delay were considered. More concretely, we succeed obtaining
a maximal `p-regularity characterization for the multifractional model:

∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) + f(n), n ∈ Z, α, β ∈ R+, τ ∈ Z, λ ∈ R (1.1)

where X is a Banach space, A is a closed linear operator with domain D(A) defined on X,
f ∈ `p(Z, X) and ∆γ denotes the Grünwald-Letkinov fractional derivative of order γ > 0. It is
worthwhile to point out that the model (1.1) includes a delayed version of the Basset equation
[4] taking X = C, A = bI, α = 2 and β = 3/2 whereas it also includes a delayed version of the
linearized Klein-Gordon equation [18] choosing X = L2(Ω), A = ∂xx − bI, α = 2 and λ = 0.

This paper is organized as follows: In Section 2, we recall the notions of UMD-spaces,
R-bounded sets and the discrete time Fourier transform defined over the space of distributions.
We also recall Blunck’s Fourier multiplier theorems for operator-valued symbols on UMD-
spaces [6]. In Section 3, we prove among others the main result of the paper. More concretely,
we show that if:

{(1− e−it)α + λ(1− e−it)β − e−itτ}t∈(−π,π) ⊂ ρ(A),

where ρ(A) denotes the resolvent set of A then, the following assertions are equivalent:

(1) The equation ∆αu(n) + λ∆βu(n) = Au(n) + u(n − τ) + f(n) has a unique solution in
`p(Z, X) for each f ∈ `p(Z, X).

(2) M(t) :=
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
is an `p-multiplier from X to [D(A)].

(3) {M(t) : t ∈ (−π, π)} is R-bounded.

When X is a Hilbert space we obtain that maximal `p-regularity is equivalent to the fact that

sup
t∈(−π,π)

||M(t)|| <∞.

Finally, in Section 4 we provide sufficient conditions to ensure the existence of solutions in
`p(Z, X) for the nonlinear abstract model

∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) +G(u)(n) + g(n), n ∈ Z, 0 < ρ < 1, (1.2)
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where g ∈ `p(Z, X) and G : `p(Z, X) −→ `p(Z, X) are given. We prove that if condition (3)
holds and G is continuously Fréchet differentiable at u = 0 and G(0) = G′(0) = 0, the nonlinear
abstract equation (1.2) has at least a solution in `p(Z, X). Finally, in order to illustrate our
results we show that for all m < −(2α +λ2β + 1) we can find ε∗ > 0 such that for all ε ∈ (0, ε∗),
there exists uε ∈ `p(Z, L2(R)) that solves the equation:

∆αu(n, t) + λ∆βu(n, t) = uxx(n, t) +mu(n, t)(1− u(n, t)) + u(n− τ, t) + εf(n, t), t ∈ R, n ∈ Z

where λ ∈ R, m ∈ R and 0 < ε < 1. This model includes the discrete time fractional Fisher
equation with delay.

2. Preliminaries

In this section, we introduce the concepts of R-boundedness, the discrete time Fourier
transform in the space of p-summable vector-valued sequences and `p-multipliers. We also
recall Fourier multiplier theorems for operator valued symbols due to Blunck.

Definition 2.1. A Banach space X is called UMD if, for each 1 < p < +∞, it satisfies that∣∣∣∣∣
∣∣∣∣∣u0 +

N∑
j=1

εk(uk − uk−1)

∣∣∣∣∣
∣∣∣∣∣
Lp(Ω,Σ,ν;X)

≤ cp ||uN ||Lp(Ω,Σ,ν;X) ,

for some constant cp > 0, for all N ∈ Z+, (εj)j≥1 ⊂ (−1, 1) and all (uj)j≥0 ⊂ Lp(Ω,Σ, ν;X).

For more details on UMD spaces see [2, p.141–147].

Definition 2.2. Let B(X, Y ) denote the space of bounded linear operators from Banach spaces
X to Y endowed with the uniform operator topology. A set T ⊆ B(X, Y ) is called R-bounded
if there exists a constant c > 0 such that

||(T1x1, . . . , Tnxn)||R ≤ c||(x1, . . . , xn)||R,

for all {T1, . . . , Tn} ⊂ T , {x1, . . . , xn} ⊂ X, n ∈ N, where

||(x1, . . . , xn)||R :=
1

2n

∑
εj∈{−1,1}n

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

εjxj

∣∣∣∣∣
∣∣∣∣∣ (2.1)

for x1, . . . , xn ∈ X.

Some properties about R-bounded sets are analysed in [1, p.21-27].
Let us now recall the discrete time Fourier transform in `p(Z, X), where X denotes a Banach

space. Let S(Z, X) denote the space of rapidly decreasing sequences. A sequence f : Z −→ X
belongs to S(Z, X) if for each k ∈ N0, there exists a constant Ck > 0 satisfying

pk(f) := sup
n∈Z
|n|k||f(n)|| ≤ Ck.

The space S(Z, X) is norm dense in `p(Z, X) for all 1 ≤ p < +∞. Let us consider the space
Cn
per(R, X) defined by 2π-periodic functions f : R −→ X which are n times continuously

differentiable.
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In what follows, we will denote T := (−π, π) and T0 := (−π, π) \ {0}. It is well-known that
C∞per(T, X) endowed with the following countable family of seminorms:

qk(ϕ) = max
k∈N0

sup
t∈T
||ϕ(k)(t)||,

becomes a Fréchet space. If X = C, we simply denote C∞per(T, X) = C∞per(T) and S(Z, X) =
S(Z).

Let us now introduce the spaces of vector-valued distributions:

S ′(Z, X) := {T : S(Z) −→ X : T is linear and continuous}
and

D′(T, X) := {T : C∞per(T) −→ X : T is linear and continuous}.
Remark 2.3. For each f ∈ `p(Z, X), we can consider

Tf (ϕ) :=
∑
n∈Z

f(n)ϕ(n)

for all ϕ ∈ S(Z). It is clear that Tf ∈ S ′(Z, X). We can identify the space `p(Z, X) as a subspace
of S ′(Z, X), that is, every f ∈ `p(Z, X) will be identified with Tf ∈ S ′(Z, X). There also exists
a natural mapping that identifies the space C∞per(T, X) with a subspace of D′(T, X). Indeed,
we can define for each S ∈ C∞per(T, X), the linear map

LS(ϕ) :=< LS, ϕ >:=
1

2π

∫ π

−π
ϕ(t)S(t)dt

for all ϕ ∈ C∞per(T) and LS ∈ D′(T, X).

The above considerations suggest the following definition:

Definition 2.4. The discrete time Fourier transform F : S(Z, X)→ C∞per(T, X) defined by

Fϕ(t) ≡ ϕ̂(t) :=
∞∑

j=−∞

e−ijtϕ(j), t ∈ (−π, π]

is an isomorphism whose inverse is given by

F−1ϕ(n) ≡ ϕ̌(n) :=
1

2π

∫ π

−π
ϕ(t)eintdt, n ∈ Z, (2.2)

where ϕ ∈ C∞per(T, X). In particular, we have ϕ ∈ C∞per(T) =⇒ ϕ̌ ∈ S(Z).

This isomorphism, let us define the discrete time Fourier transform (DTFT) between the
spaces of distributions S ′(Z, X) and D′(T, X) as follows

〈FT, ψ〉 ≡ F(T )(ψ) := T̂ (ψ) ≡ 〈T, ψ̌〉, T ∈ S ′(Z, X), ψ ∈ C∞per(T), (2.3)

whose inverse F−1 : D′(T, X)→ S ′(Z, X) is given by

〈F−1L, ψ〉 ≡ F−1(L)(ψ) := Ľ(ψ) ≡ 〈L, ψ̂〉, L ∈ D′(T, X), ψ ∈ S(Z).

In particular, given f ∈ `p(Z, X), the following equality holds:

〈FTf , ϕ〉 = 〈Tf , ϕ̌〉 =
∑
n∈Z

f(n)ϕ̌(n), ϕ ∈ C∞per(T), f ∈ `p(Z, X). (2.4)
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Definition 2.5. Given u ∈ `p(Z, X) and v ∈ `1(Z) we define the convolution product

(u ∗ v)(n) :=
n∑

j=−∞

u(n− j)v(j) =
∞∑
j=0

u(j)v(n− j), n ∈ Z.

The convolution of a distribution T ∈ S ′(Z, X) with a function a ∈ `1(Z) is defined by

〈T ∗ a, ϕ〉 := 〈T, a ◦ ϕ〉, ϕ ∈ S(Z), (2.5)

where

(a ◦ ϕ)(n) :=
∞∑
j=0

a(j)ϕ(j + n).

For any α ∈ R, we set

kα(n) :=

{
α(α + 1) . . . (α + n− 1)

n!
n ∈ Z+,

0 otherwise.

Observe that if α ∈ R \ {−1,−2, . . . }, we easily obtain that kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
, where Γ is

the Euler gamma function.

Definition 2.6. Given α ∈ R+ and a sequence f : Z −→ X, the fractional sum of order α is
defined as

∆−αf(n) := (kα ∗ f)(n) :=
n∑

j=−∞

kα(n− j)f(j), n ∈ Z.

The fractional difference of order α is defined as

∆αf(n) := (k−α ∗ f)(n) :=
n∑

j=−∞

k−α(n− j)f(j) =
+∞∑
j=0

k−α(j)f(n− j), n ∈ Z.

We have the generation formula

∞∑
j=0

kβ(j)zj =
1

(1− z)β
, β ∈ R, |z| < 1,

see [41, p.42 formulae (1) and (8)]. In particular, for all α ∈ R+ we have that the radial limit
exists and

k̂−α(ω) = k̃−α(ω) =
∞∑
j=0

k−α(j)e−iωj =
1

(1− e−iω)−α
=
(

1− e−iω
)α
, ω ∈ T. (2.6)

We recall the following lemma which will be an important tool for proving the characteri-
zation of maximal `p-regularity.
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Lemma 2.7. [27, Lemma 2.2] Let u, v ∈ `p(Z, X) be given and a ∈ `1(Z+) which is defined by
0 for negative values of n. The following assertions are equivalent:

(i) a ∗ v ∈ `p(Z, X) and (a ∗ v)(n) = u(n) for all n ∈ Z.
(ii) 〈u, ϕ̌〉 = 〈v, (ϕ · â−)̌〉 for all ϕ ∈ C∞per(T),

where

(ϕ · â−)̌(n) :=
1

2π

∫ π

−π
â(−t)ϕ(t)eintdt, n ∈ Z.

To finish this section we introduce the notion of `p-multiplier and we recall Blunck’s theorems
[6] that establish a relation between the concepts of R-boundedness and `p-multipliers.

Definition 2.8. Let X, Y be Banach spaces, 1 < p < ∞. A function M ∈ C∞per(T,B(X, Y ))
is an `p-multiplier (from X to Y ) if there exists a bounded operator T : `p(Z, X) → `p(Z, Y )
such that ∑

n∈Z

(Tf)(n)ϕ̌(n) =
∑
n∈Z

(ϕ ·M−)̌(n)f(n) (2.7)

for all f ∈ `p(Z, X) and all ϕ ∈ C∞per(T). Here

(ϕ ·M−)̌(n) :=
1

2π

∫ π

−π
eintϕ(t)M(−t)dt, n ∈ Z.

Theorem 2.9. [6, Theorem 1.3] Let p ∈ (1,∞) and let X, Y be UMD spaces. Let M ∈
C∞per(T,B(X, Y )) such that the sets{

M(t), (1− eit)(1 + eit)M ′(t) : t ∈ T
}

are both R-bounded. Then M is an `p-multiplier (from X to Y ) for 1 < p <∞.

The converse of Blunck’s theorem also holds without any restriction on the Banach spaces
X, Y as follows:

Theorem 2.10. [6, Proposition 1.4] Let p ∈ (1,∞) and let X, Y be Banach spaces. Let
M ∈ L1,loc(T,B(X, Y )). Suppose that there is a bounded operator TM : lp(Z, X) → lp(Z, Y )
such that (2.7) holds. Then the set

{M(t) : t ∈ T}

is R-bounded.

3. A characterization of maximal `p-regularity

Let α, β ∈ R+, τ ∈ Z, λ ∈ R and A a closed linear operator defined on a Banach space
X. For each vector-valued sequence f : Z −→ X, let us consider the following abstract linear
discrete equation:

∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) + f(n), n ∈ Z. (3.1)

In this section we will provide a characterization for the existence and uniqueness of solutions
of the previous model (3.1).
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Definition 3.1. Let 1 < p < +∞ be given. The equation (3.1) has maximal `p-regularity if
for each f ∈ `p(Z, X), there exists a unique solution u ∈ `p(Z, [D(A)]) of (3.1), where [D(A)]
denotes the domain of A endowed with the graph norm.

Let us first show an equivalence between the R-boundedness of the symbol of the convolution
operator associated with the solution of the equation (3.1), given by(

(1− e−it)α + λ(1− e−it)β − e−itτ − A
)−1

,

and the fact of being an `p-multiplier on UMD spaces.

Theorem 3.2. Let X be a UMD space, 1 < p < ∞, α, β ∈ R+, λ ∈ R and τ ∈ Z. Suppose
that

{(1− e−it)α + λ(1− e−it)β − e−itτ}t∈R ⊂ ρ(A)

and denote M(t) :=
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
.

Then, the following assertions are equivalent:

1. M(t) is an `p-multiplier from X to [D(A)].

2. {M(t) : t ∈ T} is R-bounded.

Proof. We first show (2)⇒ (1). Let fα(t) := (1−e−it)α, fλβ (t) := λ(1−e−it)β and δτ (t) := e−itτ .
Thus, we have that M(t) can be denoted as follows:

M(t) = (fα(t) + fλβ (t)− δτ (t)− A)−1.

By Theorem 2.9, it is enough to prove that {M ′(t)(1 + eit)(1 − eit)}t∈T is R-bounded. An
easy calculus shows that:

M ′(t) = −M2(t)

(
∂fα
∂t

(t) +
∂fλβ
∂t

(t)− ∂δτ
∂t

(t)

)
,

where
∂fα
∂t

(t) = iα(1− e−it)α−1e−it = iαfα(t)e−it
1

1− e−it
= iαfα(t)

1

eit − 1
,

∂fλβ
∂t

(t) = iβfλβ (t)
1

eit − 1
,

∂δτ
∂t

(t) = −iτδτ (t).

Thus,

M ′(t) = M2(t)

(
i

1

1− eit
(
αfα(t) + βfλβ (t)

)
+ iτδτ (t)

)
,

and consequently,

(1 + eit)(1− eit)M ′(t) = iαM2(t)(1 + eit)fα(t) + iβM2(t)(1 + eit)fλβ (t) + iτM2(t)δτ (t).

From [1, Proposition 2.2.5], we get that {M ′(t)(1 + eit)(1− eit)}t∈T is R-bounded. Finally,
we conclude that M(t) is a `p-multiplier by Theorem 2.9.

To conclude, (1)⇒ (2) follows immediately as a consequence of Theorem 2.10.
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Next theorem will be useful for proving the main result of the paper.

Theorem 3.3. Let X be a UMD space. Let 1 < p < +∞, τ ∈ Z, α, β ∈ R+ and λ ∈ R.
Suppose that

{(1− e−it)α + λ(1− e−it)β − e−itτ} ⊂ ρ(A)

and the set {((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1}t∈T is R-bounded. Then, the sets

N(t) := (1− e−it)α((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1,

S(t) := λ(1− e−it)β((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1

and
Q(t) := e−itτ ((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1,

are `p-multipliers.

Proof. Proceeding in a similar way as in Theorem 3.2, we obtain that N(t) = fα(t)M(t),
S(t) = fλβ (t)M(t) and Q(t) = δτ (t)M(t) and the R-boundedness of N(t), S(t) and Q(t) follows.
After some computations we get that

(1− eit)(1 + eit)N ′(t) = −iαN(t)(1 + eit) + iαN(t)2(1 + eit) + iβN(t)S(t)(1 + eit)

(1− eit)(1 + eit)S ′(t) = −iβS(t)(1 + eit) + iβS(t)2(1 + eit) + iαN(t)S(t)(1 + eit)

(1− eit)(1 + eit)Q′(t) = −iτ(1 + eit)(1− eit)Q(t) + iαQ(t)N(t)(1 + eit)

+ iβQ(t)S(t)(1 + eit) + iτQ(t)2,

and they are R-bounded since N(t), S(t) and Q(t) are R-bounded. Finally, according to
Theorem 2.9, N(t), S(t) and Q(t) are `p-multipliers and the proof is finished.

We now show one of the main results of the paper that provides a characterization of
maximal `p-regularity for the equation (3.1) in terms of the R-boundedness of the symbol.

Theorem 3.4. Let A be a closed linear operator defined on a UMD space X. Let α, β ∈ R+,
τ ∈ Z and λ ∈ R. Suppose that

{(1− e−it)α + λ(1− e−it)β − e−itτ}t∈T ⊂ ρ(A)

and define M(t) :=
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
.

Then, the following assertions are equivalent:

1. The equation
∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) + f(n)

has maximal `p-regularity.

2. M(t) is an `p-multiplier from X to [D(A)].

3. {M(t) : t ∈ T} is R-bounded.
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Proof. By Theorem 3.2, (2)⇔ (3) follows immediately.
We now prove (1) ⇒ (2). Given f ∈ `p(Z, X), by assumption, there exists a unique solution
uf ∈ `p(Z, [D(A)]) of the equation (3.1). Let Tα,λ,β,τ : `p(Z, X) → `p(Z, [D(A)]) be defined by
Tα,λ,β,τ (f) = uf . It is not difficult to see that this operator is bounded as a consequence of
the closed graph theorem. Our aim is proving that the following identity < Tα,λ,β,τ (f), ψ̌ >=<
f, (ψ ·M−)ˇ>, holds for all f ∈ `p(Z, X) and ψ ∈ C∞per(T).

Indeed, let ψ ∈ C∞per(T), f ∈ `p(Z, X) and u := Tα,λ,β,τ (f). Since k−α ∈ `1(Z) by [41, p. 42,
formula (2)], we have

(k−α ◦ Š)(n) =
∞∑
j=0

k−α(j)Š(j + n) =
∞∑
j=0

k−α(j)
1

2π

∫ π

−π
ei(n+j)tS(t)dt

=
1

2π

∫ π

−π
eint
( ∞∑
j=0

eijtk−α(j)
)
S(t)dt

=
1

2π

∫ π

−π
eintk̂−α(−t)S(t)dt = (k̂−α− · S )̌(n), (3.2)

for all S ∈ C∞per(T,B(X, Y )). Now, using the hypothesis and the fact thatM ∈ C∞per(T,B(X, [D(A)])),
we obtain

< Tα,λ,β,τ (f), ψ̌ >=< u, ψ̌ >=
∑
n∈Z

u(n)ψ̌(n) =
∑
n∈Z

u(n)
1

2π

∫ π

−π
ψ(t)eintdt

=
∑
n∈Z

1

2π

∫ π

−π
(1− eit)αeintψ(t)((1− eit)α + λ(1− eit)β − eitτ − A)−1u(n)dt

+ λ
∑
n∈Z

1

2π

∫ π

−π
(1− eit)βeintψ(t)((1− eit)α + λ(1− eit)β − eitτ − A)−1u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
eitτeintψ(t)((1− eit)α + λ(1− eit)β − eitτ − A)−1u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
Aeintψ(t)((1− eit)α + λ(1− eit)β − eitτ − A)−1u(n)dt

=
∑
n∈Z

1

2π

∫ π

−π
k̂−α(−t)ψ(t)M(−t)u(n)dt+ λ

∑
n∈Z

1

2π

∫ π

−π
k̂−β(−t)ψ(t)M(−t)u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
δ̂τ (−t)ψ(t)M(−t)u(n)dt−

∑
n∈Z

1

2π

∫ π

−π
ψ(t)M(−t)Au(n)dt

=< u, (k̂−α− · ψ ·M−)ˇ> +λ < u, (k̂−β− · ψ ·M−)ˇ> − < u, (δ̂τ− · ψ ·M−)ˇ> − < Au, (ψ ·M−)ˇ>

= 〈u, k−α ◦ (ϕ ·M−)̌〉+ λ〈u, k−β ◦ (ϕ ·M−)̌〉 − 〈u, δτ ◦ (ϕ ·M−)̌〉 − 〈Au, (ϕ ·M−)̌〉.

where δ̂τ (t) = e−iτt and in the last equality we have used (3.2) with S = ψ ·M−. Moreover,
from (2.5) and definition 2.6 we get:

< u, ψ̌ > =< k−α ∗ u, (ψ ·M−)ˇ> +λ < k−β ∗ u, (ψ ·M−)ˇ> − < δτ ∗ u, (ψ ·M−)ˇ>

− < Au, (ψ ·M−)ˇ>=< ∆αu+ λ∆βu− uτ − Au, (ψ ·M−)ˇ>=< f, (ψ ·M−)ˇ>
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where δτ ∗ u(n) = u(n− τ) := uτ (n) and we then conclude that M(t) is an `p-multiplier.

We now show that (2) ⇒ (1). Let f ∈ `p(Z, X) be given. By assumption, there exists
u ∈ `p(Z, [D(A)]) such that ∑

n∈Z

u(n)ψ̌(n) =
∑
n∈Z

(ψ ·M−)ˇ(n)f(n), (3.3)

for all ψ ∈ C∞per(T). According to Theorem 3.3, we infer that there exist v, w, s ∈ `p(Z, [D(A)])
such that ∑

n∈Z

v(n)φ̌(n) =
∑
n∈Z

(φ ·N−)ˇ(n)f(n)∑
n∈Z

w(n)ξ̌(n) =
∑
n∈Z

(ξ · S−)ˇ(n)f(n)∑
n∈Z

s(n)η̌(n) =
∑
n∈Z

(η ·Q−)ˇ(n)f(n),

(3.4)

for all φ, ξ, η ∈ C∞per(T) with

N(t) = (1− e−it)α
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
= k̂−α(t)M(t)

S(t) = λ(1− e−it)β
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
= λk̂−β(t)M(t)

Q(t) = e−itτ
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
= δ̂τ (t)M(t).

(3.5)

We now obtain

(φ ·N−)ˇ(n) =
1

2π

∫ π

−π
φ(t)k̂−α(−t)M(−t)eintdt

(ξ · S−)ˇ(n) =
1

2π

∫ π

−π
λξ(t)k̂−β(−t)M(−t)eintdt

(η ·Q−)ˇ(n) =
1

2π

∫ π

−π
η(t)δ̂τ (−t)M(−t)eintdt.

Choosing ψ(t) = φ(t)k̂−α(−t) ∈ C∞per(T) in (3.3), we get∑
n∈Z

u(n)(k̂−α− · φ)ˇ(n) =
∑
n∈Z

(φ · k̂−α− ·M−)ˇ(n)f(n)

=
∑
n∈Z

(φ ·N−)ˇ(n)f(n) =
∑
n∈Z

v(n)φ̌(n),

where we used (3.4) in the last equality. Hence, we have:

< u, (k̂−α− · φ)ˇ>=< v, φ̌ >

for all φ ∈ C∞per(T). Proceeding similarly and choosing first ψ(t) = ξ(t)k̂−β(−t) ∈ C∞per(T) and

later η(t)δ̂τ (−t) ∈ C∞per(T) in (3.3) we get:

< u, (k̂−β− · ξ)ˇ>=< w, ξ̌ >
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< u, (δ̂τ− · η)ˇ>=< s, η̌ >

for all ξ, η ∈ C∞per(T). Then, according to Lemma 2.7 we arrive to the following identities:

∆αu(n) = (k−α ∗ u)(n) = v(n)

∆βu(n) = (k−β ∗ u)(n) = w(n)

u(n− τ) = (δτ ∗ u)(n) = s(n).

(3.6)

Since N(t) + S(t) = Q(t) + AM(t) + I, after multiplying by eintψ(t) and integrating between
−π and π, we get

(N− · ψ)ˇ(n) + (S− · ψ)ˇ(n) = (Q− · ψ)ˇ(n) + A(M− · ψ)ˇ(n) + ψ̌(n)I,

for all ψ ∈ C∞per(T). As a consequence, we obtain

< f, (N− · ψ)ˇ> + < f, (S− · ψ)ˇ>=< f, (Q− · ψ)ˇ> + < f,A(M− · ψ)ˇ> + < f, ψ̌ >, (3.7)

and replacing (3.3) and (3.5) in the last equation (3.7), we arrive to∑
n∈Z

v(n)ψ̌(n) + λ
∑
n∈Z

w(n)ψ̌(n) =
∑
n∈Z

s(n)ψ̌(n) +
∑
n∈Z

Au(n)ψ̌(n) +
∑
n∈Z

f(n)ψ̌(n) (3.8)

for all ψ ∈ C∞per(T). Finally, taking into account (3.6) we have succeed proving that u is a
solution of the equation (3.1).

It only remains to prove uniqueness. Let u : Z −→ [D(A)] be a solution of the equation
(3.1) with f ≡ 0. For all ϕ ∈ C∞per(T), and (3.4) we arrive to the following identity:

〈u, ϕ̌〉 = 〈∆αu+ λ∆βu− uτ − Au, (ϕ ·M−)̌〉 = 0.

Taking ψk(t) := e−ikt, k ∈ Z, we obtain u ≡ 0, and the proof is concluded.

Next corollary is a direct consequence of Theorem 3.4 and the closed graph theorem.

Corollary 3.5. If the hypothesis of Theorem 3.4 hold, we have that u, ∆αu, ∆βu, Au ∈
`p(Z, X) and there exists a constant C > 0 such that:

||∆αu||`p(Z,X) + |λ|||∆βu||`p(Z,X) + ||u||`p(Z,X) + ||Au||`p(Z,X) ≤ C||f ||`p(Z,X). (3.9)

The following corollary follows immediately from Theorem 3.4 since R-boundedness is
equivalent to norm boundedness for Hilbert spaces.

Corollary 3.6. Let H be a Hilbert space, α, β ∈ R+, τ ∈ Z and λ ∈ R. Suppose that
{(1− e−it)α + λ(1− e−it)β − e−itτ}t∈T ⊂ ρ(A). Then, the following assertions are equivalent:

1. For all f ∈ `p(Z, H), there exists a unique solution u ∈ `p(Z, H) of (3.1) such that
u(n) ∈ D(A) for all n ∈ Z;

2. supt∈T ||
(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1 || <∞.

11



4. Maximal `p-regularity of nonlinear multi-term fractional delayed equations

In this section we provide a positive answer for the problem of the existence of solutions
for multi-term fractional delayed equations when adding a nonlinear term. More concretely, we
consider the following equation:

∆αu(n) + λ∆βu(n) = Au(n) + u(n− τ) +G(u)(n) + ρf(n), n ∈ Z, (4.1)

where 0 < ρ < 1, f ∈ `p(Z, X) and G : `p(Z, X) −→ `p(Z, X) are given.
Next theorem shows that the nonlinear equation (4.1) has a solution, under some

hypothesis on the nonlinear term G and the valued operator symbol of the equation defined by(
(1− e−it)α + λ(1− e−it)β − e−itτ − A

)−1
.

Theorem 4.1. Let X be a UMD space, 1 < p < +∞, τ ∈ Z, λ ∈ R, α, β ∈ R+. Suppose that{
(1− e−it)α + λ(1− e−it)β − e−itτ

}
t∈T ⊂ ρ(A),

and

(1) The set
{

((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1
}
t∈T is R-bounded.

(2) G is continuously Fréchet differentiable at u = 0 and G(0) = G′(0) = 0.

Then, there exists ρ∗ > 0 such that the equation (4.1) has a solution in `p(Z, X) for each
ρ ∈ [0, ρ∗), denoted by u := uρ.

Proof. Let ρ ∈ (0, 1) be given and let us define the following one-parameter family:

H[u, ρ] = −Au+G(u) + ρf,

with Au(n) := ∆αu(n) + λ∆βu(n) − u(n − τ) − Au(n) and D(A) := `p(Z, [D(A)]). By (2),
we obtain that H[0, 0] = 0, H is continuously differentiable at (0, 0) and the partial Fréchet
derivative is H1

(0,0) = −A, which is invertible. Indeed, the space `p(Z, [D(A)]) endowed with
the norm

|||u||| := ||∆αu||`p(Z,X) + |λ|||∆βu||`p(Z,X) + ||u||`p(Z,X) + ||Au||`p(Z,X),

becomes a Banach space. Thus, according to the inequality (3.9) in Corollary 3.5, |||u||| ≤
C||Au|| holds. Moreover ||Au|| ≤ |||u||| trivially. Therefore, A is an isomorphism. By as-
sumption and Theorem 3.4, the operator A has maximal `p-regularity and then A is an onto
isomorphism.

An application of the implicit function theorem (see [17, Theorem 17.6]) let us conclude that
there exists ρ∗ > 0 such that the equation (4.1) is solvable in `p(Z, X) for all ρ ∈ [0, ρ∗).

Finally, we illustrate the previous theorem with the following example.

Example 4.2. We consider the following nonlinear abstract model:

∆αu(n, t) + λ∆βu(n, t) = uxx(n, t) +mu(n, t)(1− u(n, t)) + u(n− τ, t) + ρf(n, t), n ∈ Z, t ∈ R,
(4.2)
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where λ ∈ R, m ∈ R and 0 < ρ < 1. Note that if α = 1 and λ = 0, the equation (4.2)
corresponds to the discrete time Fisher equation with delay [42].

Equation (4.2) labels into the scheme of (4.1) for Au = u′′ + mu defined on L2(R) and
G(u, n) = −mu(n)2. It is clear that the operator Bu = u′′ with domain D(B) = H2

0 (R)
generates a contraction C0-semigroup on L2(R). Then, from [15, Theorem 3.5] the following
inequality

||(ν − A)−1|| ≤ 1

<(ν)−m
, (4.3)

holds whenever <(ν)−m > 0. On the other hand, we get that

<((1− e−it)α + λ(1− e−it)β − e−itτ )

= (2− 2cos(t))
α
2 cos

(
α arctan

(
sin(t)

1− cos(t)

))
+ λ(2− 2 cos(t))

β
2 cos

(
β arctan

(
sin(t)

1− cos(t)

))
− cos(tτ)

> (2− 2 cos(t))
α
2 cos

(απ
2

)
+ λ(2− 2 cos(t))

β
2 cos

(
βπ

2

)
− 1

> −(2α + λ2β + 1).

(4.4)

By inequality (4.3), if m < −(2α + λ2β + 1), we have that

sup
t∈T

∣∣∣∣((1− e−it)α + λ(1− e−it)β − e−itτ − A)−1
∣∣∣∣ ≤ 1

−m− (2α + λ2β + 1)
<∞.

Moreover, it is clear that G is a Fréchet differentiable function at u = 0 and it satisfies that
G(0) = G′(0) = 0. Finally, the assumptions of Theorem 4.1 hold, and there exists a constant
ρ∗ > 0, such that the problem (4.2) has a solution in `p(Z, L2(R)) for all ρ ∈ [0, ρ∗).
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