
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/184693

Xu, H.; Li, X.; Ruiz García, R.; Zhu, H. (2021). Group Scheduling With Nonperiodical
Maintenance and Deteriorating Effects. IEEE Transactions on Systems, Man, and
Cybernetics: Systems. 51(5):2860-2872. https://doi.org/10.1109/TSMC.2019.2917446

https://doi.org/10.1109/TSMC.2019.2917446

Institute of Electrical and Electronics Engineers



1

Group scheduling with non-periodical maintenance
and deteriorating effects

Haiyan Xu, Xiaoping Li, Senior Member, IEEE, Rubén Ruiz and Haihong Zhu

Abstract—In this paper, we consider single machine group
scheduling with non-periodical maintenance and deteriorating
effects. Non-periodical maintenance, which has unfixed maintain-
ing interval or the number of jobs in each group is unfixed,
results in a variable number of groups. Deteriorating effects
lead to longer processing times of which the deterioration index
depends on job grouping. This problem is of significance in
different production settings and is much more difficult than
and general that other simpler single machine group schedul-
ing problems. Making use of historical processing times, we
construct the actual processing time model for jobs. We prove
that the problem under study is NP-hard. By transforming the
optimization objective, properties are discovered and two batch-
based heuristics are presented for small size problems. To further
improve the effectiveness for large size problems, an iterated
greedy algorithm is proposed being its main advantages simplicity
and effectiveness. The proposed methods are evaluated over a
large number of random instances with calibrated parameters
and components. Comprehensive computational and statistical
analyses demonstrate the superiority of the methods proposed
over adapted existing approaches.

Keywords—Group scheduling, Single machine, Deteriorating
effects, Non-periodical maintenance.

I. INTRODUCTION

Traditionally, processing times of tasks or jobs are known
in advance and assumed to be deterministic in scheduling
problems [1]–[3]. However, some factors make the processing
times of tasks or jobs stochastic: (i) Workers’ skills are usually
improved by repetitively processing similar activities over and
over. This phenomenon is known as the “learning effect” [4],
which results in actual processing times that are shorter than
normal ones. (ii) On the other hand, actual processing times
of jobs can be deteriorated because of frayed grinding wheels,
interruption of learning and changeovers between different
batches of product amongst other reasons. This phenomenon is
known as “deteriorating effect” [5], which results in processing
times that are longer than normal ones. Furthermore, these
factors are usually intertwined which make it much hard to
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estimate them in practical production manufacturing environ-
ments [6].

Maintenances are closely related to both learning and de-
teriorating effects. Though maintenance usually improves the
efficiency of the machines, they deteriorate jobs’ processing
times due to the interruption of the learning effect. In ad-
dition, more groups or more maintenances result in fewer
deteriorating effects or shorter actual processing times but
they lead to longer maintenance durations. Therefore, it is
desirable to strike a balance between actual processing times
and maintenance times. Maintenances are common in practical
productions. For example, the missile radome manufacturing
process is complex, hard, expensive, and precise. The genera-
trix is a continuous smooth curve which is placed on grinding
machines and processed by grinding wheels. Maintaining
grinding machines is necessary to keep them in good working
condition after processing some products. Moreover, there
are near 100 machines in an aircraft plant. Each machine is
maintained every month on average and the maintenance time
ranges from several hours to several days.

In this paper, we consider a number of jobs being processed
on a single machine with non-periodical maintenance and
deteriorating effects. This problem is different from the group
scheduling problems with a fixed number of groups and given
jobs in each group [7]–[11]. Usually learning effects are
human oriented while deteriorating effects are manufacturing
process oriented. The former has far more flexibility in terms
of control than the latter. It is hard to maintain a machine
with fixed maintenance intervals for unpredicted requirements
of jobs. Different numbers of groups and varying processing
times make maintenances non-preventive, i.e, maintenances of
machines are usually non-periodical (maintenance intervals or
the number of jobs in each group are unfixed) in practice. The
actual processing times of different jobs vary when they are
placed in different positions of a group because of deteriorating
effects. For jobs on each machine, different grouping manners
lead to distinct maintenance times and maintenance durations.
They interact on each other which make the problem under
study much complex.

The main contributions of this paper are: (i) The considered
problem is modelled mathematically and its NP-hardness is
proven. (ii) Two batch-based heuristics are proposed for the
considered problem for small size instances and an iterated
greedy algorithm is presented for large size ones. (iii) The use
of time series analysis techniques on historical real-time data
to create a time-dependent deteriorating effect.

The rest of this paper is organized as follows. Section II
summarizes related work. The considered problem is modelled
mathematically and its properties are analyzed in Section III.
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Section IV investigates two heuristics and their evaluation.
An iterated greedy algorithm is proposed in Section V. The
iterated greedy algorithm is evaluated in Section VI, followed
by conclusions in Section VII.

II. RELATED WORK

During the past decade, much attention has been paid to
scheduling problems concerning learning and/or deteriorating
effects. Basically, there are two types of learning and/or
deteriorating effects [12]: position-based and time-based. The
position-based ones [13] [14] depend on the number of pro-
cessed jobs while the time-based ones take into account the
processing time of all processed jobs so far. In addition,
most single-machine group scheduling problems with learning
and/or deteriorating effects assume a fixed number of groups
and also a fixed number of jobs in each group, i.e., periodical
maintenance.

Some single-machine group scheduling problems with spe-
cific learning and/or deteriorating effect functions have been
proved to be solvable in polynomial time. Yang et al. [7], Yang
[8] considered single machine group scheduling problems
involving deteriorating and/or learning effects. They assumed
that the group setup time or the actual processing time func-
tion of a job was time-based and/or position-based learning
and/or deteriorating. They proved that makespan and the total
completion time minimization problems could be optimally
solved in polynomial time under some given conditions. Yin
et al. [9], Yeh et al. [15] and He and Sun [10] studied single
machine scheduling problems with deteriorating and learning
effects. They showed that the addressed problems remained
polynomially solvable for some objectives (makespan, total
completion time and the total weighted completion time).
Huang et al. [11] considered single machine group scheduling
problems with learning and/or deteriorating effects in which
actual processing times depend on allocated resources. They
proved that the problems for some objectives were polynomi-
ally solvable under some conditions. Wu et al. [16] proposed a
generalized model with past-sequence-dependent learning and
deteriorating effect. The effects were assumed to be dependent
on both the sum of processing times and the scheduled posi-
tion. They investigated some single-machine problems with
various objectives: makespan, total completion time, weighted
completion time and maximum lateness. In addition, they
proved the problems to be solvable in polynomial time under
certain conditions.

Most single-machine group scheduling problems with learn-
ing and/or deteriorating effects have not been proved to be
solvable in polynomial time. Therefore, some exact and heuris-
tic algorithms have been proposed. Ji et al. [17] considered
several single machine scheduling problems with deteriorating
effects, slack due date assignment, resource allocation and a
rate-modifying activity. The actual processing time of a job
depends on both its position in a processing sequence and the
amount of resource allocated. Keshavarz et al. [18] investigated
a single machine sequence-dependent group scheduling prob-
lem to minimize the total weighted earliness and tardiness re-
spectively. Xu et al. [19] showed that the single machine group

scheduling problem with deterioration effects is solvable in
polynomial time. Rustogi et al. [20] proposed several heuristics
for single machine group schedule problems with generalized
positional deterioration effects to minimize makespan. They
considered machine maintenance between adjacent groups.
The deterioration factor of a position in a group is constant,
which is different from the problem under study in this paper.

Deterioration results in higher production costs and lower
product quality which can be increased by interrupting the
current manufacturing process and carrying out maintenance
over the machine. In other words, the efficiency of the ma-
chine can be restored or partially restored by maintenance
operations. Generally, there are two types of maintenance:
preventive and non-preventive. Preventive maintenance refers
to maintaining the machine after a given number of jobs or
after a given number of time periods (periodical maintenance)
[21]. At present, periodical maintenance is usually considered
in single machine group scheduling problems with learning
and/or deteriorating effects. Pan et at. [22], and Liu et al. [23]
considered the problem with both learning and/or deteriorating
effects and periodic maintenance to minimize makespan or
the number of tardy jobs respectively. Iranpoor et al. [24]
studied a single machine scheduling problem with a common
due date for all jobs, sequence dependent setup times and a
rate-modifying activity. The rate-modifying activity determines
whether to bring the machine completely or partially back to
normal after perfect or imperfect maintenance. The sum of
the earliness cost, the tardiness cost and the due date related
cost is minimized. They transformed the problem into a time
dependent traveling salesman problem. A B&B procedure was
presented for small problems and two robust heuristics were
proposed for larger problems. Though the single machine
group scheduling problem considered by Zhang et al. [25] is
similar to the considered problem in this paper to some extent,
they are different in two crucial aspects: (1) The deterioration
index of the former is constant in every group and each
position of every group while it is distinct for the latter. (2)
Deteriorating effects of the former depend on jobs while those
of the latter depend on the machine.

Because no job can be interrupted while it is being processed
(i.e., no preemption is allowed), it is hard to ensure that
jobs are finished before maintenance. In other words, non-
periodical maintenance is more practical. To the best of our
knowledge, there is no existing work considering both non-
periodical maintenance (non-fixed number of groups and non-
determined jobs in each group) and deteriorating effects. In this
paper, we consider a single machine group scheduling problem
with non-periodical maintenance and deteriorating effects with
the objective of minimizing makespan.

III. PROBLEM DESCRIPTION AND PROPERTIES

In this paper, we consider an n-job single-machine schedul-
ing problem. There is a job set J = {J1, J2, · · · , Jn}, where all
jobs are available at time zero and independent of each other,
i.e., there are no precedence constraints. Initially, the machine
is assumed to be in a perfect state and its processing capability
deteriorates after processing jobs. After maintenance, the ca-
pability of the machine can be partially or completely restored.
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Jobs cannot be processed on the machine during maintenance.
Processing times of jobs in each group have deteriorating
effects. The n jobs are partitioned into m (1 ≤ m ≤ n) groups
or m−1 maintenances. How many groups are partitioned and
how to allocate the n jobs to each group is crucial in getting
an optimal makespan for the considered problem. We first list
the notations to be used in Table I.

TABLE I: Notations employed in the paper

Gi : The ith group, i = 1, 2, ...,m.
ni : Number of jobs in Gi, i.e.,

∑m
i=1 ni = n.

Jj : The job j.
Ji,[j] : The jth job scheduled inside Gi.
si : Maintenance time between the processing of Gi and Gi+1 (i = 1, ...,m− 1).

p
(i)

[k]
: Actual processing time of the kth job in Gi,k = 1, 2, ..., ni.

pri,j : Actual processing time of Jj if it is scheduled at the rth position of Gi.
qj : Normal processing time of Jj .
qki : Normal processing time of the kth job in Gi.

fi,[j] : Completion time of Ji,[j].
Ci : Completion time of Gi, i.e., Ci = fi,[ni].

Cmax : Makespan of a schedule, i.e., Cmax = Cm.
bi : Deterioration index of Gi.

To improve the robustness of schedules, Liu et al. [26] used
a fuzzy variable with a continuous membership function and
finite expected value to estimate the actual processing time of a
job. Liu et al. [27] studied a loss-averse news-vendor problem
with random yield. For single-machine scheduling problems,
Kuo and Yang [28] first introduced the sum-of-processing-
time-based deteriorating effect with the function

pj,r = qj(1 +

r−1∑
k=1

p[k])
a, j = 1, 2, . . . , n. (1)

where qj is the normal processing time of Jj . pj,r is the actual
processing time of Jj if it is scheduled in position r in a
sequence, p[k] is the actual processing time of the job located
at the kth position and a is a constant learning index. This
model and its variants consider the processed jobs before Jj .
However, similar products or items are usually processed on
the same machine in practice which implies that deteriorating
effects can be predicted by historical real-time data, i.e., some
functions between the normal and actual processing times
could be constructed based on a large amount of data analyzed
by the time series analysis method. In this paper, we construct
the actual processing time model with deteriorating effects
using the time series analysis method which generally includes
the trend term, the periodic term and the stochastic term.
Only the trend term is usually employed. The fitting curve
of the trend term is a linear function which can be calculated
by existing statistical software packages or programming lan-
guages, e.g., R, S, SAS, SPSS, Minitab, Pandas (Python). In
terms of the time series analysis method [29], we construct the
following actual processing time model of Jj (j = 1, 2, . . . , n)
when it is placed at the rth (r = 1, 2, . . . , ni) slot of the ith
(i = 1, 2, . . . ,m) group as

pri,j = qj(1 + bi
∑r−1
k=1 p

(i)
[k]) (2)

where bi ≥ 0 is the deterioration index of Gi (assume∑0
k=1 p

(i)
[k] = 0). Obviously, the makespan of the problem

is the sum of the jobs’ processing times if bi = 0 for all
groups Gi (i = 1, 2, . . . ,m), i.e., the problem can be solved
in polynomial time. Therefore, bi > 0 are assumed in the
following. Compared to existing theoretical models, Equation
(2) is constructed using existing statistical software packages
or programming languages. In addition, the assumption that
different groups have various deterioration indices is reason-
able since it is almost impossible to restore machines to the
original state after maintenances.

Let TM denote the maintenance time and G represents
the group scheduling problem. The considered group schedul-
ing problem with both time-dependent deteriorating effects
and maintenance can be denoted as 1|pri,j = qj(1 +

bi
∑r−1
k=1 p

(i)
[k]), T

M , G|Cmax according to the three-field nota-
tion scheme introduced by Graham et al. [30]. Let ti be the
starting time of the first scheduled job in group Gi. It is not
hard to obtain the completion time of Gi with bi > 0 for the
considered probelm

Ci = ti +
1

bi
Πni
j=1(1 + biq

j
i )−

1

bi
(3)

Equation (3) implies that the makespan calculation can be
calculated by Theorem 1.

Theorem 1 The makespan of the 1|pri,j = qj(1 +

bi
∑r−1
k=1 p

(i)
[k]),

TM , G|Cmax problem can be calculated as

Cmax =

m∑
i=1

1

bi

ni∏
j=1

(1 + biq
j
i )−

m∑
i=1

1

bi
+

m−1∑
i=1

si (4)

Proof Equation (3) illustrates the completion time of the last
job (i.e the nith job ) in the group Gi is Ci = ti+

1
bi

Πni
j=1(1+

biq
j
i )− 1

bi
, i.e.,

C1 = 0 +
1

b1
Πn1
j=1(1 + b1q

j
1)− 1

b1

C2 = C1 + s1 +
1

b2
Πn2
j=1(1 + b2q

j
2)− 1

b2
· · ·

Cm = Cm−1 + sm−1 +
1

bm
Πnm
j=1(1 + bmq

j
m)− 1

bm

Then
∑m
i=1 Ci =

∑m−1
i=1 Ci +

∑m−1
i=1 si +

∑m
i=1

1
bi

∏ni
j=1(1 +

biq
j
i ) −

∑m
i=1

1
bi

, i.e., Cmax = Cm =
∑m
i=1

1
bi

∏ni
j=1(1 +

biq
j
i )−

∑m
i=1

1
bi

+
∑m−1
i=1 si. �

For simplicity, we denote ξi = 1
bi

∏ni
j=1(1 + biq

j
i ), ψ(m) =∑m

i=1 ξi =
∑m
i=1

1
bi

∏ni
j=1(1 + biq

j
i ), s0 = 0. Theorem 1

illustrates that the makespan of a schedule depends on both the
number of groups and the specific jobs in each group. Then we
can translate the proposed problem into the following model.

min

m∑
i=1

1

bi

n∏
j=1

(1 + biqjxi,j) +

m∑
i=1

(si−1 −
1

bi
) (5)
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Subject to:
m∑
i=1

xi,j = 1

n∑
j=1

xi,j ≥ 1

xi,j ∈ {0, 1}, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

where the binary decision variable xi,j = 1 means that job j
is assigned to group i.

Specifically,
∑m
i=1(si−1− 1

bi
) is a constant when the number

of groups is fixed [7]–[11]. In this case, minimizing Cmax is
equal to minimizing ψ(m), which implies that the completion
time of a group depends on the jobs’ normal processing times
scheduled in a group and does not depend on their relative
positions in the group. In terms of Equation (3), the time
complexity of calculating the processing time of the ith group
decreases from O(n2i ) to O(ni). The worst time complexity
of the total completion time decreases from O(n2 + m) to
O(n+m) by Theorem 1.

The problem represented by Equation (5) with a given
number of groups is an assignment 0-1 model which is NP-
hard [31]. However, the number of jobs in each group in our
considered problem can be any number in [1, n] which is more
general than the problem with a given number of groups.
Therefore, the problem considered in this paper is NP-hard.
The proposed problem is non-linear and very complex which
means that it is an NP-hard problem. We will solve it with
exact, heuristic and meta-heuristic algorithms.

IV. PROPOSED HEURISTICS

By Theorem 1, the considered problem 1|pri,j = qj(1 +

bi
∑r−1
k=1 p

(i)
[k]), T

M , G|Cmax is equivalently translated into the
following problem: A set of jobs π = (J1, J2, · · · , Jn) has
to be allocated m (1 ≤ m ≤ n) groups to minimize
Cmax = ψ(m)+

∑m
i=1(si−1− 1

bi
). The normal processing time

of job Jj is qji in group Gi. bi and ni are the deterioration index
and the number of jobs in group Gi respectively. Cmax depends
on the deterioration index bi, normal processing times qji ,
maintenance times si and the number of groups m. Theorem
1 implies that the makespan of a schedule depends on both
m and the specific jobs assigned to each group. The number
of groups m is closely related to the number of maintenance,
which has an influence on the deteriorating effect. A greater m
implies more maintenance or longer maintenance times while
it also means less deteriorating effect and shorter processing
times. Therefore, it is important to determine an appropriate m
to get a balance between maintenance times and deteriorated
processing times. On the other hand,

∑m
i=1(si−1 − 1

bi
) is a

constant for a given m.
It is natural to obtain a global optimum schedule by search-

ing for optimal values ψ(m) for all m (m = 1, . . . , n), which
is NP-hard. However, we can obtain the near-optimal value of
ψ(m) based on the following theorem, which is derived from
Hardy’s Lemma [32].

Theorem 2 For two sets {x1, x2, · · · , xn} and {y1, y2, · · · ,
yn},

∑n
i=1 xi × yi is minimum if elements of the former set

are ordered non-decreasingly by the value of xi and those of
the latter set are sequenced non-increasingly by the value of
yi.

Proof Assume x1 ≤ x2 ≤ · · · ≤ xn and y1 ≥ y2 ≥ · · · ≥ yn.
Let z1 = x1×y1 + · · ·+xi×yi+xi+1×yi+1 + · · ·+xn×yn
and z2 = x1×y1 + · · ·+xi×yi+1 +xi+1×yi+ · · ·+xn×yn.
Then z1 − z2 = (xi − xi+1) × (yi − yi+1) ≤ 0, i.e., z1 is
minimum. �

However, ξi (i = 1, . . . ,m) is the product of ni + 1 ≥
2 (because there is at least one item in each group) items
in ψ(m). Although we can calculate the products iteratively
(e.g., products of the first two items in each group are sorted
in non-decreasing order and are multiplied by the third items
according to Theorem 2), it is very difficult to divide the n
items into m groups to get the optimum ψ(m) because of
the NP-hardness of the problem. In terms of Theorem 2, we
propose two batch-based heuristics for the considered problem
in this paper: NBA (Near-balanced Batch Allocation) and UBA
(Unbalanced Batch Allocation).

All jobs of the set J = {J1, J2, · · · , Jn} are sorted into
a sequence π = (J[1], J[2], · · · , J[n]) by non-increasing order
of their normal processing times. The n jobs are partitioned
into d nme batches in the following way: The first m jobs
in π conform the first batch, i.e., B1 = (J[1], . . . , J[m]).
The last m jobs in π form the second batch, i.e., B2 =
(J[n−m+1], . . . , J[n]). The second m jobs after B1 in π con-
stitute the third batch, i.e., B3 = (J[m+1], . . . , J[2m]). The
second last m jobs before B2 in π form the fourth batch,
i.e., B4 = (J[n−2m+1], . . . , J[n−m]). The other jobs in π
are divided in this way and the remaining n − m × b nmc
jobs are included in the last batch. For simplicity, we append
d nme ×m− n dummy jobs with normal processing times 0 to
the end of batch Bd nm e so that this batch contains just m jobs
with no influence on the final ψ(m).

A. Near-Balanced Batch Allocation
The NBA (Near-balanced Batch Allocation) method assigns

every job in a batch to exactly one group, i.e., the difference
in the number of jobs inside any two groups is no more
than 1. All possible m (m = 1, . . . , n) are tested in the
following way: Let ξ(1)i = 1

b[i]
(i = 1, . . . ,m) and

−→
G (k) =

(G
(k)
[1] , G

(k)
[2] , . . . , G

(k)
[m]). Initially, maintenance coefficients are

sorted in non-increasing order and we get a non-decreasing
sequence ( 1

b[1]
, 1
b[2]
, . . . , 1

b[m]
) and the corresponding groups

form a sorted sequence
−→
G (1). The m jobs in B1 are se-

quentially assigned to groups of
−→
G (1). According to Theorem

2, the current ψ(m) =
∑m
i=1 ξ

(2)
i =

∑m
i=1 ξ

(1)
i (1 + b[i]q

1
[i])

is the minimum. All m groups are sorted in non-decreasing
order of ξ

(2)
i (i = 1, . . . ,m) and we obtain the group

sequence
−→
G (2). In terms of Theorem 2, the m jobs in B2 are

sequentially assigned to groups of
−→
G (2). The current ψ(m) is

calculated by ψ(m) =
∑m
i=1 ξ

(3)
i =

∑m
i=1 ξ

(2)
i (1 + b[i]q

2
[i]).
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Similarly, all m groups are sorted in non-decreasing order of
ξ
(k)
i (i = 1, . . . ,m; k = 2, . . . , d nme) before assigning the

jobs of Bk and we obtain the group sequence
−→
G (k). The m

jobs in Bk are sequentially assigned to groups of
−→
G (k) and

the current ψ(m) is calculated by ψ(m) =
∑m
i=1 ξ

(k+1)
i =∑m

i=1 ξ
(k)
i (1 + b[i]q

k
[i]).

The value minm=1,...,n ψ(m) is returned as the final
makespan Cmax. NBA is formally described in Algorithm 1.

Algorithm 1: NBA
/* Near-balanced Batch Allocation */

1 begin
2 Cmax ←∞;
3 Sort jobs {J1, J2, · · · , Jn} by non-increasing order of

their normal processing times;
4 for m = 1 to n do
5 x← 0;
6 Partition the sorted n jobs into batches B1, B2,

. . ., Bd nm e;
7 Sort groups by deterioration indexes b1,b2,. . .,bm

in non-increasing order and obtain sequence−→
G (1);

8 for i = 1 to m do
9 ξ

(1)
i ← 1

b[i]
;

10 for k = 1 to d nme do
11 Sequentially assign the m jobs in Bk to the

groups of
−→
G (k);

12 for i = 1 to m do
13 ξ

(k+1)
i ← ξ

(k)
i (1 + b[i]q

k
[i]);

14 Obtain
−→
G (k+1) by sorting ξ(k+1)

1 , ξ(k+1)
2 , . . .,

ξ
(k+1)
m in non-decreasing order;

15 for i = 1 to m do
16 x← x+ ξ

d nm e
i + si−1 − 1

bi
;

17 if x < Cmax then
18 Cmax ← x;

19 return Cmax.

The time complexity of step 3 is O(n log n), that of steps
7 and 14 is O(m logm) and that of step 14 is O(n logm).
Therefore the time complexity of NBA is O(n2 logm).

To illustrate the above procedure, the following example is
considered for m = 3: n = 10, q1 = 72, q2 = 40, q3 = 76,
q4 = 71, q5 = 42, q6 = 7, q7 = 41, q8 = 61, q9 = 6, q10 = 87,
b1 = 0.0005, b2 = 0.00049, b3 = 0.00051, s0 = 0, s1 = 12,
s2 = 40.

According to the NBA heuristic, the 10 jobs are
sorted by their processing times in non-increasing or-
der and we obtain the sequence (J[1], J[2], · · · , J[10]) =
(J10, J3, J1, J4, J8, J5, J7, J2, J6, J9). Using the above batch
partitioning method, the jobs are partitioned into four batches:
B1 = (J10, J3, J1), B2 = (J2, J6, J9), B3 = (J4, J8, J5),

B4 = (J7). Two jobs with processing times 0 are appended
to B4 i.e., B4 becomes (J7, 0, 0).

−→
G (1) = (G3, G1, G2)

is obtained by sorting deterioration indexes b1,b2,b3 in non-
increasing order. The procedure of the jobs allocated to the
groups is illustrated in Table II. The final schedule is G1 =
(J3, J6, J4), G2 = (J1, J9, J5), G3 = (J10, J2, J8, J7) with
the makespan being 569.877.

TABLE II: Allocating jobs to groups in the example of NBA
heuristic

Batch Group Job allocation ξ values

B1 = (J10, J3, J1)
−→G (1) = (G3, G1, G2)

G1 = (J3) 2076

G2 = (J1) 2112.816

G3 = (J10) 2047.784

B2 = (J2, J6, J9)
−→G (2) = (G3, G1, G2)

G1 = (J3, J6) 2083.266

G2 = (J1, J9) 2119.028

G3 = (J10, J2) 2089.559

B3 = (J4, J8, J5)
−→G (3) = (G1, G3, G2)

G1 = (J3, J6, J4) 2157.222

G2 = (J1, J9, J5) 2162.638

G3 = (J10, J2, J8) 2154.565

B4 = (J7, 0, 0)
−→G (4) = (G3, G1, G2)

G1 = (J3, J6, J4, 0) 2157.222

G2 = (J1, J9, J5, 0) 2162.638

G3 = (J10, J2, J8, J7) 2199.617

The schematic graph of the NBA procedure for the example
is illustrated in Figure 1.

G1 G2 G3

J3 J1 J10

B1 B2B3 B4

J5J8J4 J7 J2 J6 J9J1J10 J3 0 0

J[6]J[5]J[4] J[7] J[8] J[9] J[10]J[3]J[1] J[2]

J6 J9 J2J4 J5 J8 J70 0

Fig. 1: The schematic graph of NBA.

B. Unbalanced Batch Allocation
Unlike NBA, UBA (Unbalanced Batch Allocation) appends

each job in a batch to the group with the least sum of
actual processing times. All possible m (m = 1, . . . , n) are
tested in the following way: Initially, deterioration indexes are
sorted in non-increasing order and we get a non-decreasing
sequence ( 1

b[1]
, 1
b[2]
, . . . , 1

b[m]
) and the corresponding sorted

groups
−→
G = (G[1], G[2], . . . , G[m]). Let ξi = 1

b[i]
and ni = 1

(i = 1, . . . ,m). The m jobs in B1 are sequentially as-
signed to groups of

−→
G . According to Theorem 2, the current

ψ(m) =
∑m
i=1 ξi(1 + b[i]q

1
[i]) is the minimum. For each job

of batch Bk (k = 2, . . . , d nme), we append it to G[j] where
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j = arg mini=1,...,m{ξi}. n[j] = n[j] + 1 and ξj is updated by
ξj(1+b[j]q

n[j]

[j] ). After all jobs are allocated, ψ(m) is calculated
by ψ(m) =

∑m
i=1 ξi. The value minm=1,...,n(ψ(m) + si−1 −

1
bi

) is returned as the final makespan Cmax. UBA is formally
described in Algorithm 2.

Algorithm 2: UBA
/* Unbalanced Batch Allocation */

1 begin
2 Cmax ←∞;
3 Sort jobs {J1, J2, · · · , Jn} by non-increasing order of

their normal processing times;
4 for m = 1 to n do
5 x← 0;
6 Partition the sorted n jobs into batches B1, B2,

. . ., Bd nm e;
7 Sort groups by deterioration indexes b1,b2,. . .,bm

in non-increasing order and obtain sequence
−→
G ;

8 for i = 1 to m do
9 ξi ← 1

b[i]
; ni ← 1;

10 Sequentially assign the m jobs of B1 to the
groups of

−→
G ;

11 ξ∗ ←∞;
12 for i = 1 to m do
13 ξi ← ξi(1 + b[i]q

1
[i]);

14 if ξ∗ > ξi then
15 ξ∗ ← ξi; j ← i;

16 for k = 2 to d nme do
17 for i = 1 to m do
18 Append the current job of Bk to G[j];
19 n[j] ← n[j] + 1;
20 ξj ← ξj(1 + b[j]q

n[j]

[j] );
21 ξ∗ ←∞;
22 for l = 1 to m do
23 if ξ∗ > ξl then
24 ξ∗ ← ξl; j ← l;

25 for i = 1 to m do
26 x← x+ ξi + si−1 − 1

bi
;

27 if Cmax > x then
28 Cmax ← x;

29 return Cmax.

The time complexity of step 3 is O(n log n), that of step 7
is O(m logm), and that of steps 9, 15 and 26 is O(m). The
time complexity of step 24 is O(mn). Since n ≥ m, the time
complexity of UBA is O(mn2).

To illustrate the previous procedure, the above example
is used. According to the UBA heuristic, the 10 jobs are
sorted by their processing times in non-increasing order
and again we obtain the sequence (J[1], J[2], · · · , J[10]) =
(J10, J3, J1, J4, J8, J5, J7, J2, J6, J9). Using the above batch

partitioning method, the jobs are segmented into four batches:
B1 = (J10, J3, J1), B2 = (J2, J6, J9), B3 = (J4, J8, J5),
B4 = (J7, 0, 0).

−→
G = (G3, G1, G2) is obtained by sorting

deterioration indexes b1,b2,b3 in non-increasing order. J10, J3,
J1 are allocated to G3,G1,G2 respectively and the following
procedure of the jobs allocated to the groups is illustrated
in Table III. The final schedule is G1 = (J3, J6, J9, J4),
G2 = (J1, J5), G3 = (J10, J2, J8, J7) with the makespan
being 570.009.

TABLE III: Allocating jobs to groups in the example of UBA
heuristic

Batch Current Job Job allocation ξ values

B1 = (J10, J3, J1)

G1 = (J3) 2076

G2 = (J1) 2112.816

G3 = (J10) 2047.784

B2 = (J2, J6, J9)

J2

G1 = (J3) 2076

G2 = (J1) 2112.816

G3 = (J10, J2) 2089.559

J6

G1 = (J3, J6) 2083.266

G2 = (J1) 2112.816

G3 = (J10, J2) 2089.559

J9

G1 = (J3, J6, J9) 2089.516

G2 = (J1) 2112.816

G3 = (J10, J2) 2089.559

B3 = (J4, J8, J5)

J4

G1 = (J3, J6, J9, J4) 2163.694

G2 = (J1) 2112.816

G3 = (J10, J2) 2089.559

J8

G1 = (J3, J6, J9, J4) 2163.694

G2 = (J1) 2112.816

G3 = (J10, J2, J8) 2154.565

J5

G1 = (J3, J6, J9, J4) 2163.694

G2 = (J1, J5) 2156.298

G3 = (J10, J2, J8) 2154.565

B4 = (J7, 0, 0) J7

G1 = (J3, J6, J9, J4) 2163.694

G2 = (J1, J5) 2156.298

G3 = (J10, J2, J8, J7) 2199.617

The schematic graph of the UBA procedure for the example
is illustrated by Figure 2.

C. Intuitive Enumeration Method

To show how close the solutions obtained by the proposed
NBA and UBA are to the optimum solution of the problem,
in addition, the proposed problem is high non-linearity, we
develop an intuitive enumeration method. Note that the enu-
meration method is time-consuming when the problem size
increases in terms of the following theorem.

Theorem 3 The number of possible solutions to the problem
1|pri,j = qj(1 + bi

∑r−1
k=1 p

(i)
[k]), T

M , G|Cmax is (n!)2n−1.

Proof There are n! permutations for the job set J =
{J1, J2, · · · , Jn}. Each permutation contains n jobs and could
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G1 G2 G3

J3 J1 J10J6 J2J9 J5 J8 J7J4

B1 B2B3 B4

J5J8J4 J7 J2 J6 J9J1J10 J3 0 0

J[6]J[5]J[4] J[7] J[8] J[9] J[10]J[3]J[1] J[2]

0 0

Fig. 2: The schematic graph of UBA.

be represented as π = (J[1], J[2], · · · , J[n]). We denote the
set of job permutations as Ω. For a given π ∈ Ω, the n
jobs are segmented into m groups (m = 1, . . . , n). Let the
number of jobs in group i (1 ≤ i ≤ m) be ni (ni > 0).
The m groups of π = (J[1], J[2], · · · , J[n]) are denoted
as (J[1], J[2], · · · , J[n1]), (J[n1+1], J[n1+2], · · · , J[n1+n2]), · · · ,
(J[nm−1+1], J[nm−1+2], · · · , J[nm−1+nm]), as shown in Figure
3. We can regard the n jobs and m groups as being separated
by n − 1 and m − 1 slots respectively. For each m, the
segmentation can be viewed as selecting m−1 slots from n−1
slots and there are Cm−1n−1 candidates. For all m = 1, . . . , n,
there are

∑n
m=1 C

m−1
n−1 = 2n−1 candidates. Therefore, there

are (n!)2n−1 possible solutions for the 1|pri,j = qj(1 +

bi
∑r−1
k=1 p

(i)
[k]), T

M , G|Cmax problem. �

J[1] J[n]J[n1] J[n1+1] J[n1+...+nm-1]J[n1+n2] J[n1+...+nm-1+1]

G1 G2 Gm

Fig. 3: The jobs scheduled in the groups

Obviously, the most intuitive method for the 1|pri,j = qj(1+

bi
∑r−1
k=1 p

(i)
[k]), T

M , G|Cmax problem is enumeration, which is
called IEM (Intuitive Enumeration Method) in this paper and
formally described in Algorithm 3. In fact, IEM is only suitable
for small size instances according to Theorem 3 and it is time-
consuming when n > 10. Therefore, we only compare the
proposed NBA and UBA with IEM on small size instances.

D. Evaluation of the Proposed Heuristics
To the best of our knowledge, there is no scheduling problem

studied so far in the literature with the same features as the
problem considered in this paper. The three proposed algo-
rithms (NBA, UBA and IEM) are implemented in Java and run
on an Intel(R) Core(TM) i7-4770 CPU @3.40GHz computer
with 8GB RAM on Windows Server 2008 R2 standard.

Being a new problem, there are no existing benchmarks.
To fairly compare different procedures, instances are ran-
domly generated according to the characteristics of the

Algorithm 3: IEM
1 begin
2 Cmax ←∞, A← ∅;
3 π ← (J1, J2, · · · , Jn);
4 Construct the job permutation set A of π;
5 for m = 1 to n do
6 ~a← (a[1], a[2], · · · , a[n−1]) = (0, 0, · · · , 0);
7 for i = 1 to m do
8 a[i] ← 1;

9 B ← {~a};
10 Construct the combination set B of Cm−1n−1 ;
11 foreach (J[1], J[2], · · · , J[n]) ∈ A do
12 foreach (a[1], a[2], · · · , a[n−1]) ∈ B do
13 ψ(m)← 0 ;
14 for i = 1 to m do
15 Gi ← ∅, ξi ← 1

bi
;

16 j ← 1;
17 for i = 1 to n− 1 do
18 Gj ← Gj

⋃
{J[i]}, ξj ← ξj(1 + bjq[i]);

19 if a[i] = 1 then
20 j ← j + 1;

21 Gm ← Gm
⋃
{J[n]};

22 ξm ← ξm(1 + bmq[n]);
23 for i = 1 to m do
24 ψ(m)← ψ(m) + ξi + si−1 − 1

bi
;

25 if Cmax > ψ(m) then
26 Cmax ← ψ(m);

27 return Cmax.

problem. Considering the CPU time requirements of IEM,
we compare the three algorithms on small size instances
with n ∈ {3, 4, 5, 6, 7, 8, 9, 10} in this section (compar-
isons on large size instances will be conducted later). We
generalize the case given in [33] with fixed bi = 0.01
(i = 1, . . . ,m). In this paper, we consider the cases where
bi takes a value randomly from [0, U ] for each U in
{0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05,
0.06}. The processing time of each job is a randomly generated
integer in [1,99] with a uniform distribution. Maintenance
times are random integers respectively generated in [1, Q] with
a uniform distribution where Q ∈ {99, 199}, i.e., maintenance
times are randomly generated from [1,99] and [1,199] respec-
tively. For each combination of n, U and the maintenance time
type Q are randomly generated. In addition, considering the
proposed NBA, UBA and IEM are exact, we do not replicate
the experiment under the same combination. Therefore, there
are 8× 11× 2 = 176 instances in total.

The RPD (Relative Percentage Deviation) is adopted to
measure the effectiveness of the proposed NBA, UBA and
IEM. Let Cmax(H) be the makespan obtained by heuristic
H and C∗ be the optimum makespan for an instance. RPD is
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Fig. 4: Interactions between n and the three studied algorithms
at 95% confidence Tukey HSD intervals for RPD.

defined as follows:

RPD(H) =
Cmax(H)− C∗

Cmax(H)
× 100%

First, we show the influence of parameters n and U on
NBA and UBA. To test for statistical significance, a multi-
factor analysis of variance (ANOVA) method is carried out.
The response variable is the RPD. The three main hypotheses
(normality, homoscedasticity, and independence of the resid-
uals) are checked from the residuals of the experiments. All
three hypotheses are acceptable from this analysis. Since all
the p-values in the experiments are close to zero, they are not
given in this paper.

Interactions between n and the three studied algorithms at
the 95% confidence Tukey HSD intervals for RPD are depicted
in Figure 4. From Figure 4, we can see that RPDs of both NBA
and UBA increase with the number of jobs n with similar
tendencies. n has little influence on IEM because IEM is an
enumerative method and optimum solutions are obtained in all
cases. The differences are not significant when 3 ≤ n ≤ 10.

Interactions between U and the three studied algorithms at
95% confidence Tukey HSD intervals for RPD are depicted in
Figure 5. Figure 5 demonstrates that U has little influence on
the effectiveness of NBA and UBA with similar tendencies.
RPDs of both NBA and UBA increase with the increase in U .
However, the increasing differences are not significant except
in the U ∈ {0.008, 0.05} cases.

Interactions between Q and the three studied algorithms at
95% confidence Tukey HSD intervals for RPD are depicted
in Figure 6. Figure 6 illustrates that Q has a great influence
on the effectiveness of NBA and UBA with similar tendencies.
The RPDs of both NBA and UBA decrease dramatically when
Q increases from 99 to 199.

NBA, UBA, IEM are compared to PTA [25], NEW FF and
NEW BF [21] on average RPD (ARPD) and CPU time (in
seconds) in Table IV. ARPDs of NBA and UBA increase
with an increase in n which is in accordance with the results
indicated in Figure 4. On average, ARPDs of NBA and UBA

U

-3

7

17

27

37

47
Algorithm

IEM

NBA

UBA

R
el

at
iv

e 
P

er
ce

n
ta

g
e 

D
ev

ia
ti

o
n

(%
)

Fig. 5: Interactions between U and the three studied algorithms
at 95% confidence Tukey HSD intervals for RPD.
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Fig. 6: Interactions between Q and the three studied algorithms
at 95% confidence Tukey HSD intervals for RPD.

are 33.15% and 33.11% respectively. Although the differences
are big, this is not always the case with the absolute gaps. For
example, makespans of NBA, UBA, IEM, PTA, NEW FF and
NEW BF are 569.88, 570.01, 540.61, 568.17, 745 and 745
respectively for an instance with U = 0.008, Q = 199 and
n = 6 which are depicted in Figure 7. The gaps are merely
about 21. However, IEM is the most time-consuming algorithm
with the CPU time increasing exponentially depending on
the number of jobs n. 667.2s of CPU time is needed by
IEM when n = 10 while CPU times of the other compared
algorithms are negligible for all the n ≤ 10 cases. Although it
seems that NBA, UBA and PTA perform similarly for small
instances, it will be shown later than for the proposed IG
meta-heuristic, NBA is a superior heuristic when used for
initialization. NEW FF and NEW BF are outperformed by the
other four algorithms because they are heuristics for periodical
cases.
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TABLE IV: Performance comparisons on NBA, UBA, IEM, PTA, NEW FF and NEW BF.

n
NBA UBA IEM PTA NEW FF NEW BF

ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s)

3 13.13 < 1 13.13 < 1 0 < 1 13.18 < 1 30.64 < 1 30.64 < 1
4 23.63 < 1 23.48 < 1 0 < 1 23.48 < 1 38.88 < 1 38.92 < 1
5 31.05 < 1 31.04 < 1 0 < 1 30.81 < 1 46.17 < 1 46.28 < 1
6 34.71 < 1 34.63 < 1 0 < 1 34.64 < 1 47.26 < 1 47.28 < 1
7 38.24 < 1 38.21 < 1 0 < 1 38.10 < 1 50.27 < 1 50.34 < 1
8 40.00 < 1 39.98 < 1 0 1.71 39.87 < 1 51.80 < 1 51.87 < 1
9 42.08 < 1 42.07 < 1 0 36.23 41.95 < 1 53.00 < 1 53.05 < 1
10 42.35 < 1 42.31 < 1 0 667.22 42.20 < 1 53.09 < 1 53.19 < 1

Average 33.15 33.11 0 33.03 46.39 46.45

J3 J1 J4 J8 J5 J7J10 J2 J9J6

π=(J10, J3, J1, J4, J8, J5, J7, J2, J6, J9) 

J10 J3 J6J5 J1 J7 J9 J4 J8J2

NEW_FFJ10 J3 J1 J4 J8

UBAJ10J3 J1J4 J8J6 J9 J5 J2 J7

NBAJ10J3 J1J4 J8J6 J9 J5 J2 J7

J5 J7J6J9 J2

PTAJ10 J3J1 J4 J8J6 J9J5 J2J7

NEW_BF

Fig. 7: Gantt Charts of the example using NBA, UBA, IEM,
PTA, NEW FF and NEW BF.

V. PROPOSED ITERATED GREEDY HEURISTIC

The proposed heuristics NBA and UBA get near-optimal
solutions for small size problems. As shown in Figure 4, the
effectiveness of the two heuristics decreases quickly with the
increase in the number of jobs n. It is desirable to develop
effective algorithms for large size problems.

Ruiz and Stützle [34], [35], Pan and Ruiz [36] and Ribas et
al. [37] showed that IG (Iterated Greedy) algorithms are effec-
tive for flowshop machine scheduling problems with makespan
minimization. Rodriguez et al. [38] also demonstrated that
IG algorithms are effective for unrelated parallel machine
scheduling problems with makespan minimization. Therefore,
we present an IG framework based algorithm for the consid-
ered machine scheduling problem in this paper. This consists of
three basic phases: Initial Sequence Construction, Destruction
and Reconstruction and LocalSearch. The framework of the
proposed IG is depicted in Algorithm 4. The different operators
are explained in the following sections.

Algorithm 4: Iterated Greedy Heuristic
1 begin
2 π ← InitialSolution;
3 while (Termination criterion not satisfied) do
4 π

′ ← DestructionReconstruction(π, d);
5 π

′′ ← LocalSearch(π
′
);

6 π ← AcceptanceCriterion(π, π
′′

);
7 return π.

A. Initial Sequence Construction (ISC)
It is common to use effective heuristics to obtain good initial

solutions [37]. To construct an initial solution by allocating n
jobs to m groups, the proposed heuristics NBA and UBA are
adopted. In addition, a RSC (Random Sequence Construction)
method is used to construct random initial solutions for the
considered problem in this paper. In RSC, m is a random
number between 1 and n and all jobs are randomly allocated
to the m groups.

B. Destruction & Reconstruction
To enhance the intensification of the proposed IG algorithm,

the Destruction & Reconstruction (DR) process is carried
out on sequences. Sequence π is destructed by randomly
selecting and removing d different jobs. Two subsequences
πR = (πR[1], . . . , π

R
[d]) and πD denote the removed d jobs and

the remaining n−d jobs respectively. They keep the same order
as in π. In this paper, a new Destruction & Reconstruction is
proposed for the considered problem, of which the destruction
process is identical to that developed by Ruiz and Stützle [34],
[35] whereas the reconstruction process is different. When
a new job sequence π

′
is reconstructed, all jobs of πR are

sequentially reinserted back into πD during the reconstruction
process in the following way: m subsequences are generated
by trying to reinsert πR[i] (i = 1, . . . , d) into each group of πD.
Makespans of the m subsequences are calculated by Equation
(4). The subsequence with the minimum makespan is selected
as π

′
. The reconstruction stops after d iterations or πR[d] is

tried. The DR is formally described in Algorithm 5. Though
the makespan calculation of Step 8 can be done in O(1) based
on the result of the initial πD, the time complexity of the
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makespan calculation of πD is O(n− d). Therefore, the time
complexity of the proposed DR is O(mnd).

Algorithm 5: DR(π, d)
/* Destruction & Reconstruction */

1 begin
2 Generate subsequence πR by randomly removing d

jobs from π;
3 Denote the remaining subsequence with n− d jobs as

πD;
4 for i = 1 to d do
5 Temp←∞, $(0) ← πD;
6 for k = 1 to m do
7 Construct $(k) by inserting job πR[i] to group

Gk of πD;
8 Calculate Cmax($(k)) using Equation (4);
9 if Cmax($(k)) < Temp then

10 $(0) ← $(k), Temp← Cmax($(k));

11 πD ← $(0);

12 π ← πD;
13 return π.

C. LocalSearch
To improve the diversification of the proposed IG algorithm,

the LocalSearch procedure is conducted on a sequence. Every
job J[j] is selected from π. Construct π

′
by deleting Jj from

π. Construct π
′′

by inserting Jj into every group from π
′
. π

will be replaced by π
′′

if Cmax(π
′′
) is less than Cmax(π).

The time complexity of LocalSearch is O(mn). LocalSearch
is formally described in Algorithm 6.

Algorithm 6: LocalSearch
1 begin
2 for j = 1 to n do
3 if (the number of the group which Jj is inside do

not equal to 1) then
4 Construct π

′
by deleting Jj from π;

5 for i = 1 to m do
6 Construct π

′′
by inserting Jj in Gi from

π
′
;

7 Calculate Cmax(π
′′
) using Equation (4);

8 if Cmax(π
′′
) < Cmax(π) then

9 π ← π
′′

;
10 return π.

D. Acceptance Criterion
After performing the above three operators on an initial

solution π, a new solution π′ is obtained. If π′ is better than

the incumbent best solution π∗, both π∗ and π are replaced by
π′. If π′ is not better than π∗ but better than π, π is replaced by
π′. Otherwise π is replaced by π′ with a certain probability
e−

(Cmax(πc)−Cmax(π))
Temp , which is similar to the Simulated An-

nealing acceptance criterion adopted in [34], [35]. The process
is repeated until a certain termination criterion is met. The
acceptance criterion is presented in Algorithm 7.

Algorithm 7: Acceptance Criterion
Input: The current solution π, the incumbent best

solution π∗, the newly generated solution π′.
1 begin
2 if Cmax(π′) < Cmax(π) then
3 π ← π′;
4 if Cmax(π′) < Cmax(π∗) then
5 π∗ ← π′;
6 else
7 Generate a random number λ ∈ [0, 1];

8 if λ < e−
Cmax(π′)−Cmax(π)

Temp then
9 π ← π′;

10 return π, π∗.

VI. PERFORMANCE EVALUATION

Since no comprehensive benchmark of instances is avail-
able for the problem under study, we generate random in-
stances according to the same parameters as in the small
size case. The instance size n now takes values from
{10, 50, 100, 150, 200, 300}. The proposed algorithm is run
in the environment with the same configurations as in the
previous sections.

A. Parameter & Component Calibration

Before the algorithm evaluation, we calibrate the three
parameters and components to construct initial solutions. Three
ISC components (NBA, UBA and RSC) are tested to generate
initial solutions. The number of removed jobs d = γ × n
in the Destruction & Reconstruction phase takes values from
γ ∈ {5%, 10%, 20%, 40%}. The Temp in the acceptance
criterion Temp = η ×

∑n
i=1 qi
n takes values η ∈ {1, 2, 4}. We

use the number of consecutive iterations without improvement
θ ∈ {5, 15, 30} as the termination criterion. Therefore, there
are 3× 4× 3× 3 = 108 combinations. For each combination
and every size n, we generate 5 random instances different
from the final testing instances, Q and U take the same values
as in the small size case i.e., Q ∈ {99, 199} and U ∈
{0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05,
0.06}. Therefore, 108 × 6 × 5 × 2 × 11 = 71280 results
are obtained. ARPD defined above is adopted to measure the
performance. Experimental results show that Q has a similar
influence on the performance of the proposed IG as compared
with the small size case. The means plots and 95% confidence
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Fig. 8: Means plots and Tukey HSD confidence intervals at the 95% confidence level for ARPDs of ISC, γ, η and θ.

level Tukey HSD (Honest Significant Difference) intervals for
ISC, γ, η and θ are depicted in Figure 8.

Figure 8(a) demonstrates that the differences between the
three ISC component ARPDs are statistically significant. NBA
and UBA can always obtain better solutions than RSC. In
addition, ARPDs of the proposed IG with NBA and UBA
adopted to construct initial solutions yield superior solutions
than using RSC. Also, NBA is statistically similar to UBA.

Figure 8(b) illustrates that ARPD decreases with an increase
in γ. Though ARPDs are different for various γ, the differences
are not statistically significant. The average ARPD is only
0.31% when γ = 40% which is small enough to be acceptable.
Therefore, we take γ = 40% in the following experiments.

Figure 8(c) shows that η does not have a clear influence on
the proposed IG and the differences are small. The RPD is
about 0.33% when η = 2, which is adopted in the following
experiments.

Figure 8(d) implies that different termination criteria exert
a great influence on the performance of the proposed IG. This
is expected as with longer CPU times solutions improve. The
ARPD differences are statistically significant between 5 and
the other two (15 and 30). The average ARPD of the proposal
when θ = 30 is much better than that when θ = 5 because a
longer computation duration has a higher possibility of finding
better solutions.

The means plots and 95% confidence level Tukey HSD
intervals for θ is depicted in Figure 9 as an interaction with
the ISC algorithm. We can observe from Figure 9 that the
differences between the ARPDs of RSC and those of the other
two ISC components are statistically significant for θ cases.
ARPD of the proposed IG with NBA and UBA adopted to
construct initial solutions are clearly better than the algorithm
using RSC.

B. Performance Evaluation
To further illustrate the performance of the proposed

IG NBA and IG UBA algorithms, we compare them against
PTA [25], NEW FF and NEW BF [21] . In the proposed IG
algorithms, initial solutions are constructed by NBA and UBA,
γ = 40%, η = 2, θ = 30. The compared algorithms are
run on instances with all instance parameters n, Q and U as
mentioned above. 5 instances are randomly generated for each
combination of the involved 6 parameters. The effectiveness
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Fig. 9: Interactions between θ and the three studied algorithms
at 95% confidence Tukey HSD intervals for ARPD.

(measured by average ARPD) and efficiency (measured by
computation time in seconds) of the compared algorithms are
shown in Table V.

Table V indicates that APRDs of the proposed IG algorithms
are 0.16% on all instance sizes on average, the ARPD of
PTA is 0.27%, ARPDs of New FF and New BF are 13.23%
and 13.26% respectively. It seems the differences are big.
Moreover, the two proposed IG algorithms spend much less
time than PTA and New FF with an increase in n but a
little more than New BF. However, IG NBA, IG UBA and
New BF spend less than 30s even n = 300 which is much
acceptable in practical applications.

VII. CONCLUSIONS

In this paper, we considered time-dependent deteriorating
effects in a type of single machine group scheduling problem
which is closer to practical cases than previous studies. Ac-
cording to the time series analysis technique, a linear effect
function between the actual processing time and the normal
processing time of a job was constructed. We proved that the
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TABLE V: Performance comparisons on IG NBA, IG UBA, PTA, New FF and New BF.

n
IG NBA IG UBA PTA NEW FF NEW BF

ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s) ARPD(%) CPU Time(s)

10 0.32 < 1 0.32 < 1 0.31 < 1 16.92 < 1 16.98 < 1
50 0.23 < 1 0.22 < 1 0.29 < 1 14.05 < 1 14.11 < 1

100 0.10 1.77 0.10 1.80 0.26 1.31 13.56 < 1 13.59 < 1
150 0.11 4.86 0.11 4.85 0.26 6.24 10.98 4.75 10.99 1.44
200 0.09 10.50 0.09 10.01 0.25 20.40 10.41 14.96 10.44 3.82
300 0.13 28.81 0.14 29.33 0.26 96.80 13.45 64.99 13.46 21.47

Average 0.16 0.16 0.27 13.23 13.26

problem under study of allocating jobs into a variable number
of groups is NP-hard. Based on some obtained properties, we
proposed two batch-based heuristics NBA and UBA. Even
though they always provide worse solutions than the enumera-
tion method IEM, they are much faster. IEM is impractical for
large instances. After observing that the effectiveness of NBA
and UBA deteriorates with problem size, we presented two
iterated greedy algorithms which are more effective than the
adapted existing PTA, New FF and New BF for large sized
problems (New FF and New BF are effective for periodical
cases). The proposed IG algorithms spend acceptable compu-
tational time even for large size problems.

In the future, single machine group scheduling problems in
cloud computing and services computing are promising topics.
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