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Abstract: A wide variety of methods and techniques with multiple characteristics are used in solv-
ing replenishment, production and distribution planning problems. Selecting a solution method (ei-
ther a solver or an algorithm) when attempting to solve an optimization problem involves consid-
erable difficulty. Identifying the best solution method among the many available ones is a complex 
activity that depends partly on human experts or a random trial-and-error procedure. This paper 
addresses the challenge of recommending a solution method for replenishment, production and 
distribution planning problems by proposing a decision-making tool for algorithm selection based 
on the fuzzy TOPSIS approach. This approach considers a collection of the different most commonly 
used solution methods in the literature, including distinct types of algorithms and solvers. To eval-
uate a solution method, 13 criteria were defined that all address several important dimensions when 
solving a planning problem, such as the computational difficulty, scheduling knowledge, mathe-
matical knowledge, algorithm knowledge, mathematical modeling software knowledge and ex-
pected computational performance of the solution methods. An illustrative example is provided to 
demonstrate how planners apply the approach to select a solution method. A sensitivity analysis is 
also performed to examine the effect of decision maker biases on criteria ratings and how it may 
affect the final selection. The outcome of the approach provides planners with an effective and sys-
tematic decision support tool to follow the process of selecting a solution method. 

Keywords: fuzzy TOPSIS; algorithm selection; production planning; heuristics; metaheuristics; 
matheuristics 
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1. Introduction 
The supply chain comprises different sequential activities, such as replenishment, 

production and distribution, which must all be planned and optimized. The main man-
agement function of companies is planning [1]. Planning activities aim to effectively co-
ordinate and schedule a company’s available resources [2]. Planning is accompanied by a 
set of decisions to be made by the planning manager; for example, a planner must make 
decisions about the quantity of materials needed for production by taking into account 
storage capacity and production batches to reduce production and inventory costs, pro-
duction scheduling and sequencing on machines, and to finally make decisions about the 
delivery flow of finished products to customers or distribution centers [3]. 

Many real-world combinatorial optimization problems, such as those in transporta-
tion and logistics [4–6] and manufacturing [7–9], pose a huge challenge due to the high 
complexity of most companies’ operations given the type of industry to which they 
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belong. They are also subject to not only dynamic conditions, such as customer demands, 
processing times, returns on investment, but also to uncertainties, such as unavailability 
of items, changes in market conditions and shortages due to changes in demand [10]. 

Thus, planning problems seek to maximize profit or gain while minimizing costs and 
meeting market, environmental and societal constraints. For example, in supply planning 
problems, there is a direct relation between inventory costs and the costs associated with 
distribution planning, such as transportation costs and on-time delivery to customers [11]. 
Therefore, the difficulty of such problems is substantial due to the amount of data they 
handle [12], nonlinearities and discontinuities, complex constraints, possible conflicting 
objectives and uncertainty [13]. Hence, different types of solvers are used to solve these 
problems, as are algorithms because of their computational difficulty [14]. 

Given the large number of algorithms for solving replenishment [15], production [16] 
and distribution planning problems [17], how to effectively select an algorithm for a given 
task or a specific problem is an important, but also difficult issue. Peres and Castelli [18] 
highlight that rules which standardize the formulations of existing combinatorial optimi-
zation problems (COP) in planning are lacking, which means that researchers have to start 
building an algorithm from scratch, which thus limits the interoperability of this field be-
cause the algorithms in the literature must be adjusted to solve a specific problem. These 
authors conclude that the consolidation of combinatorial optimization problems is lacking 
and note that this is important for the field of COPs to reach a higher degree of maturity. 

The algorithm selection problem (ASP) is an active research area in many fields, such 
as operations research [19–21] and artificial intelligence (AI) [22,23]. For many decades, 
researchers have developed increasingly sophisticated techniques and algorithms to solve 
difficult optimization problems [18]. These techniques include mathematical program-
ming approaches, heuristics, metaheuristics, nature-inspired metaheuristics, matheuris-
tics and various hybridizations [24]. Literature reviews such as that presented by Jamalnia 
et al. [25], who reviewed the aggregate production planning problem under uncertainty 
between 1970 and 2018, detailed the use of approximately 24 different techniques to solve 
this type of problem out of 92 reviewed papers. Kumar et al. [26] presented a literature 
review covering the period from 2000 to 2019 of the quantitative approaches used to solve 
production and distribution planning problems. They found 13 different techniques and 
types of solvers, including CPLEX and LINGO, to solve this type of problem out of 74 
papers. Pereira et al. [27] analyzed the tactical sales and operations planning problem. To 
do so, they reviewed 103 papers, where the year was not limited. They detailed about 35 
different techniques to solve this type of problem. Hussain et al. [28] conducted a literature 
review of the applications of metaheuristic algorithms and found 140 different metaheu-
ristic algorithms in 1222 publications over a 33-year search period (1983 to 2016). 

Different research papers have conducted experimental studies to determine the per-
formance of an algorithm [29–32] or several algorithms according to a problem type with 
a collection of datasets available in the literature [33–35]. For example, Pan et al. [36] com-
pared three constructive heuristics and four metaheuristics (discrete artificial bee colony, 
scatter search, iterated local search, iterated greedy algorithm) for the distributed permu-
tation flowshop problem, for which they made extensive comparative evaluations based 
on 720 instances. However, these comparisons do not provide any enlightening results 
because they are generally limited to a set of algorithms and to a specific problem set [24]. 

In practice, algorithm performance vastly varies from one problem state to another. 
In many cases, heuristic [37], metaheuristic [28] and matheuristic [38] techniques involve 
randomization, such as genetic algorithm, particle swarm optimization, bee swarm opti-
mization, bat algorithm, artificial tribe algorithm and firefly algorithm [39–43], which re-
sults in performance variability, even across repeated trials in a single problem instance 
[44]. Risk is an important additional feature of algorithms because the planner or the per-
son in charge of selecting an algorithm for planning must be willing to settle for average 
or lower performance in exchange for a reasonable answer or may also find a better solu-
tion than that expected in the same resolution time. This situation is often encountered in 
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companies that attempt to maximize their profits because these problems are solved by 
constructing mixed strategies, i.e., strategies that meet the desired risk and return. 

Nowadays, if a study demonstrates the superiority of one algorithm over other algo-
rithms, that algorithm can be expected to be useful for other problem types for which it 
has not yet been tested. No-free-lunch (NFL) theorems [45] describe that there is no single 
algorithm that outperforms all algorithms in all the instances of a problem [24]. 

Therefore, the selection of the most suitable algorithm to solve an optimization prob-
lem for replenishment, production and distribution planning is a very difficult task. Al-
gorithm selection requires advanced knowledge of the efficiency of algorithms, the char-
acteristics of the problem, as well as mathematical and statistical knowledge. However, 
having the necessary knowledge to find a solution with algorithms does not guarantee 
success [46]. 

Algorithm selection depends mainly on the expected results and the data that the 
company has at the time. Therefore, the properties or characteristics of the business prob-
lem must be examined. For this purpose, the linearity of the problem, the number of pa-
rameters and the characteristics that the solution supports must be analyzed. 

Evaluating algorithms to solve a problem usually involves more than one criterion, 
such as problem type, problem knowledge, performance, computation time, the quality 
of the expected solution and programming knowledge. Therefore, algorithm selection can 
be modeled as a multicriteria decision making problem [22]. 

The objective of multicriteria decision making (MCDM) is to identify the most eligi-
ble alternatives from a set of alternatives based on qualitative and/or quantitative criteria 
with different units of measurement to select or rank them [47]. Different techniques such 
as AHP, ELECTRE, PROMETHEE, SAW, TOPSIS and VIKOR are used to solve MCDM 
problems [3]. Several studies have been conducted to compare the performance of these 
techniques; for example, that presented by Zanakis et al. [48], which compared eight 
MCDM techniques (four variations of AHP, ELECTRE,TOPSIS and SAW). It concluded 
that different techniques are affected mainly by the number of alternatives because as al-
ternatives increase, methods tend to generate similar final rankings. Opricovic and Tzeng 
[49] performed a comparative analysis of the VIKOR and TOPSIS methods. Both these 
methods are based on an aggregation function that represents the closeness to the ideal. 
The study revealed that the main differences between the two methods were the em-
ployed normalization method types. 

Opricovic and Tzeng [50] compared the extended VIKOR method to ELECTRE II, 
PROMETHEE and TOPSIS. The obtained results showed that ELECTRE II, PROMETHEE 
and VIKOR gave similar results, while TOPSIS presented different results in some alter-
natives. Chu et al. [51] made a comparison of the VIKOR, TOPSIS and SAW methods. The 
study revealed that SAW and TOPSIS presented similar classifications, while VIKOR pre-
sented different results. These authors concluded that VIKOR and TOPSIS provided re-
sults that were close to reality. Ozcan et al. [52] presented a comparative analysis of the 
TOPSIS, ELECTRE and Grey Theory techniques for the warehouse location selection prob-
lem, where the Grey Theory provided different results to TOPSIS and ELECTRE. Instead, 
the last two obtained similar results. 

In situations in which information is not quantifiable or incomplete, as in real-world 
problems where data may be incomplete or imprecise, i.e., nondeterministic, data can be 
represented in a fuzzy way using linguistic variables to represent decision makers’ pref-
erences in complex or not well-defined situations. Imprecision in MCDM problems can be 
modeled using the fuzzy Set Theory, which is used to extend different MCDM techniques. 
In this background, Ertuğrul and Karakaşoğlu [53] conducted a comparative study of the 
fuzzy AHP and fuzzy TOPSIS methods for the facility location selection problem. Both 
methods obtained the same results, i.e., the same rank order of alternatives. 

Other studies have used an extension of the classical fuzzy set called the intuitionistic 
fuzzy set, as proposed by Atanassov [54]. Intuitionistic fuzzy sets have been applied in 
many fields, such as facility location selection [55], supplier selection [56], evaluation of 
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project and portfolio management information systems [57,58], and personnel selection 
[59]. Büyüközkan and Güleryüz [60] compared the performance of ranked fuzzy TOPSIS 
and intuitionistic fuzzy TOPSIS by detailing how the alternatives ranking barely differed 
between the two approaches. 

From the above comparisons, it is clear that many techniques are available for multi-
criteria decision making [61]. These techniques have their advantages and limitations over 
others depending on the type of problem [62]. 

Different MCDM techniques have been used for the classification algorithm selection 
problem, such as the study by Lamba et al. [63] in which TOPSIS and VIKOR were used 
to evaluate 20 classification algorithms. Both methods obtained similar results. Peng et al. 
[22] used four different MCDM techniques (TOPSIS, VIKOR, PROMETHEE II and WSM) 
to select multiclass classification algorithms. The TOPSIS, VIKOR and PROMETHEE II 
methods achieved similar classifications, while WSM obtained slightly different ones. 
Peng et al. [64] evaluated ranking algorithms for financial risk prediction purposes. Using 
TOPSIS, PROMETHEE and VIKOR, they obtained similar results for the three main rank-
ing algorithms. They concluded that the followed techniques were advantageous for 
choosing a classification algorithm. 

Along these lines, TOPSIS stands out as a widely used technique that is efficient for 
selecting classification algorithms. It has been successful in different areas such as supply 
chain and logistics management, environment and energy management, health and safety 
management, business and marketing management, engineering and manufacturing, hu-
man resource management and transportation management [47,65–67] and, according to 
Chu et al. [51], is able to represent reality. It is also useful for companies because it can be 
run with a spreadsheet [68]. For all these reasons and given the fact that the choice of a 
solution method is subject to vagueness and uncertainty, we use the fuzzy TOPSIS 
method. 

In this context, the present paper aims to answer this question: which solution 
method is suitable for a replenishment, production and distribution planning problem 
given a portfolio of algorithms or solvers? 

To answer this question, and by taking into account that no research to date has an-
alyzed the selection of algorithms for planning with a multicriteria decision method, a 
decision-making tool to select algorithms for a planning problem based on fuzzy TOPSIS 
is presented. To validate the use of the tool herein proposed, an illustrative example is 
presented, which has been validated by four different manufacturing companies. This pa-
per is organized as follows. Section 2 deals with the literature review. The adopted meth-
odology is shown in Section 3 and the numerical application of the methodology is pre-
sented in Section 4. The sensitivity analysis of the results is provided in Section 5. Finally, 
Section 6 includes the conclusions and future research lines. 

2. Algorithm Selection Problem Literature Review 
Algorithm selection has been widely addressed by the scientific community in both 

the mathematics [69,70] and Artificial Intelligence (AI) [71,72] areas. In the mathematical 
area, Stützle and Fernandes [73] report how the characteristics of problem instances make 
the performance of metaheuristics relative to the properties of instances. Therefore, it is 
necessary to explore the relation between algorithms and instances. In the AI area, differ-
ent models have been developed to predict which algorithm is the best one for a problem 
instance, which is conducted by analyzing the relation between the characteristics of an 
instance and a set of training data used by an algorithm. In this way, with an algorithms 
portfolio it is possible to predict which algorithm in a new problem instance is most likely 
to work [74]. 

Growing interest has been shown in the ASP to put previously developed algorithms 
to best use to solve a specific problem instead of developing new ones [75]. According to 
Leyton-Brown et al. [76], some algorithms are better than others on average, and there is 
rarely a best algorithm for a given problem. Instead “it is often the case that different 
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algorithms perform well on different problem instances. This phenomenon is most pro-
nounced among algorithms for solving NP-Hard problems, because runtimes for these 
algorithms are often highly variable from instance to instance”. In this context, Rice [77] 
proposes the first description of methodologies to select algorithms. Kotthoff [75] defines 
this as the “task of algorithm selection involves choosing an algorithm from a set of algo-
rithms on a per-instance basis in order to exploit the varying performance of algorithms 
over a set of instances”. 

In this regard, algorithm selection approaches have been successfully applied in dif-
ferent problem domains [78]. The following table summarizes a literature review of the 
various papers that have approached ASP from different perspectives (Table 1). 

Table 1. Research studies addressing the algorithm selection problem. 

Author Proposal 
Lagoudakis and 
Littman [79] Algorithm selection using reinforcement learning. 

Xu et al. [80] 

A scalable and completely automated portfolio construction. The 
authors improve the ASP methodology by integrating local search 
solvers as candidate solvers by predicting performance scores instead 
of runtime, and by using hierarchical hardness models that take into 
account different types of instances. 

Smith-Miles [81]  

A unified framework to take the algorithm selection problem as a 
learning problem and to use this framework to tie together cross-
disciplinary developments in tackling the algorithm selection problem. 
The authors generalize metalearning concepts to algorithms that focus 
on tasks, including sorting, forecasting, constraint satisfaction and 
optimization. 

Bischl et al. [35] An algorithm selection problem as a cost-sensitive classification task 
that is based on an Exploratory Landscape Analysis. 

Hoos et al. [82]  A modular open-solver architecture that integrates several different 
portfolio-based algorithm selection approaches and techniques. 

Kotthoff [75]  An algorithm selection for combinatorial search problems. 

Tierney and 
Malitsky [83] 

An algorithm selection benchmark based on optimal search algorithms 
to solve the container premarshalling problem (CPMP), an NP-hard 
problem from the container terminal optimization field. 

Cunha et al. [84] 

A metalearning method is used to select the best recommendation 
algorithms within different scopes to allow to understand the relations 
between data characteristics and the relative performance of 
recommendation algorithms, which can be used to select the best 
algorithm(s) for a new problem. This work analyzes the algorithm 
selection problem for Recommender Systems by focusing on 
Collaborative Filtering. 

Bożejko et al. 
[85] 

A local and optima network analysis and machine learning is used to 
select appropriate algorithms on an instance-to-instance basis. 

Drozdov et al. 
[86] 

Graph convolutional network-based generative adversarial networks 
for the algorithm selection problem in classification terms. 

Vilas Boas et al. 
[87] 

Integer programming-based approaches to build decision trees for the 
algorithm selection problem. These techniques allow the automation of 
three crucial decisions by discerning the most important problem 
features to determine problem classes by grouping problems into 
classes, and then selecting the best algorithm configuration for each 
class. 
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Marrero et al.  
[88] 

An efficient parallel genetic algorithm (GA) is proposed as a first step 
to solve the algorithm selection problem. GA is able to attain 
competitive results in optimal objective value terms and in a short 
time. The computational results show that the approach is able to 
efficiently scale and considerably reduce the average elapsed time to 
solve Knapsack Problem (KNP) instances. 

De Carvalho et 
al. [21] 

A cross-domain evaluation for multi-objective optimization. The 
authors investigate how four state-of-the-art online hyperheuristics 
with different characteristics perform to find solutions for 18 real-
world multi-objective optimization problems. These hyperheuristics 
were designed in previous studies and tackle the algorithm selection 
problem from different perspectives: election-based, based on 
Reinforcement Learning and based on a mathematical function. 

In manufacturing environments, formulations are usually very complex [78] because 
they present a variety of specific constraints related to the company’s scope. Generally, 
these formulations can serve as blocks or subproblems for other formulations of other 
specific manufacturing environments. In this way, many formulations or algorithms can 
obtain similar results to the formulations proposed above. When selecting a formulation 
or algorithm, tuning the parameters of the different techniques is a very demanding task 
because each algorithm has different characteristics and the number of times that a pa-
rameter tuning has to be performed against different instances of a problem when per-
forming a comparison can exponentially grow [33]. Furthermore, to compare algorithms 
and select one, the feature set of the instances must be taken into account because the 
characterization of instances determines a solution approach’s performance. In practice, 
the information needed to establish the characteristics is not always available [89], and 
experimental results may lead to the fact that there is no single best or worst algorithm for 
all problem instances [46]. In this context, and as shown in Table 1, several approaches 
have been proposed to address the algorithm selection challenge, including heuristic al-
gorithms, metaheuristics, hybrid metaheuristics, hyperheuristics, and machine-learning 
techniques. Many of these approaches integrate similarities, such as using a set of in-
stances to learn, measuring or predicting the performance of the best algorithm. The suc-
cess of algorithm selection approaches for some problem domains has motivated us to 
develop a decision making tool to support planners of companies to select a solution 
method (algorithm or a solver) for replenishment, production and distribution planning 
problems. 

3. Solution Methodology 
For combinatorial optimization problems with realistic discrete decision variables, 

such as scheduling, sequencing, distribution and transportation planning problems, per-
forming an exhaustive search space for this problem type is not a realistic option despite 
having a finite search space. The literature includes several heuristic, metaheuristic and 
matheuristic algorithms, as well as tests with commercial and non-commercial high-per-
formance solvers to solve such problems. So, this question arises: which algorithm is to be 
chosen for a combinatorial optimization problem? 

Generally one way of finding an algorithm to solve a combinatorial optimization 
problem is to exhaustively run all the available algorithms and choose the best solution 
[90]. However, this method requires unlimited computational resources and companies 
have limited computational, programming and mathematical resources, which makes it 
impossible to test all the algorithms or to use several solvers to test one instance or several 
for a specific problem. Weise et al. [12] emphasize that there is a variety of methods to 
solve different types of problems with acceptable performance, but they can be outper-
formed by very specialized methods. 
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Weise et al. [12] consider that there is no optimization method that is better or can 
outperform others, and the NFL Theorem [45] corroborates this theory. This theorem 
states that no optimization algorithm is likely to outperform several existing types of 
methods in different types of problems. 

In turn, the same authors mention that the efficiency of an optimization algorithm is 
based on knowledge of a problem. Radcliffe [91] emphasizes that the algorithm’s perfor-
mance will improve with adequate knowledge of the problem. However, knowledge of 
one type of problem can be misleading for another type of problem [89] because there is 
no algorithm that outperforms others in all instances of a problem. Therefore, an algo-
rithm’s performance will be based on experience and empirical results. 

Algorithm selection schemes are based mainly on approaches that either run a se-
quence of algorithms in a limited execution time [80,82] or predict the performance of an 
algorithm for a given instance and select the algorithm with the best predicted perfor-
mance [92]. 

Real-world planning problems are subject to inaccuracies and uncertainties, conflicts 
between constraints and objectives, discontinuities and nonlinearities [13]. Therefore, de-
termining which algorithm is appropriate poses a challenge that can be analyzed using a 
multicriteria decision technique for ranking and prioritizing algorithms because algo-
rithm selection involves multiple decisions that require the simultaneous assessment of 
the various advantages and disadvantages. 

In most companies, the complexity of operations has several components that must 
be addressed at the same time. Evaluating an algorithm to solve a problem often involves 
more than one criterion, such as problem type, problem knowledge, performance, com-
putation time, the quality of the expected solution and programming knowledge. 

MCDM techniques integrate different criteria and an order of preference to evaluate 
and select the optimal option among multiple alternatives based on the expected outcome. 
The objective of these techniques is to obtain an ideal solution to a problem in which a 
decision makers’ experience does not allow them to decide among the various considered 
parameters. As a result, a ranking is obtained according to the selected criteria, their re-
spective values and the assigned weights [93]. 

There are many criteria in real-life problems that can directly or indirectly affect the 
outcome of different decisions. Decision making often involves inaccuracies and vague-
ness that can be effectively dealt with using fuzzy sets. This method is especially im-
portant for clarifying decisions that are difficult to quantify or compare, especially if de-
cision makers have different perspectives, as in this study. Therefore, we herein adopt the 
fuzzy TOPSIS methodology to model an algorithm or solver selection given a solution 
methods portfolio to solve replenishment, production and distribution planning prob-
lems. 

In decision making problems, the Fuzzy Set Theory was introduced by Zadeh [94] to 
overcome the ambiguity and uncertainty of human thought and reasoning by using lin-
guistic terms to represent decision makers’ choices. 

The TOPSIS method was originally proposed by Hwang and Yoon [95]. It is based 
on choosing an alternative that should have the shortest distance between the positive 
ideal solution (PIS) and the negative ideal solution (NIS), i.e., the selected alternative is 
obtained with the closest solution to the PIS and is farthest away from the NIS. The main 
limitation of this technique is that it cannot capture ambiguity in the decision making pro-
cess [96]. To overcome this limitation, Chen [97] developed the Fuzzy TOPSIS Method to 
quantitatively evaluate the score of different alternatives by conferring weight to the dif-
ferent criteria described with linguistic variables. This section briefly describes the em-
ployed Fuzzy Set Theory and Fuzzy TOPSIS Method. 

3.1. Fuzzy Set Theory and Fuzzy Numbers 
The Fuzzy Set Theory [94,98,99] is associated with the TOPSIS method, and are re-

lated to another by the degree of membership of the elements in fuzzy sets. A fuzzy set is 
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characterized by the membership function, which can come in different formats, e.g., tri-
angular, sigmoid or trapezoidal. The membership function assigns a degree of member-
ship to each object according to its relevance 𝜇𝜇𝐴𝐴(𝑥𝑥): 𝑥𝑥 → [0.0, 1.0]. To represent a fuzzy set, 
a tilde ‘∼’ is placed [68]. 

For our study, we consider a triangular fuzzy number, 𝐴̃𝐴, which is denoted by its 
vertices (l, m, u), as shown in Figure 1. Triangular fuzzy numbers are used to adapt deci-
sion makers’ preference to capture the vagueness of linguistic evaluations, where l, u and 
m, respectively, denote the lower bound, the upper bound and the crisp central value. 

 
Figure 1. Fuzzy triangular number. 

Membership function d of triangular fuzzy number 𝐴̃𝐴 is defined as: 

𝜇𝜇𝐴𝐴�(𝑥𝑥)  =

⎩
⎪
⎨

⎪
⎧ 𝑥𝑥 − 𝑙𝑙
𝑚𝑚 − 𝑙𝑙

, 𝑙𝑙 ≤  𝑥𝑥 ≤ 𝑚𝑚,
𝑢𝑢 − 𝑥𝑥
𝑢𝑢 −𝑚𝑚

, 𝑚𝑚 ≤  𝑥𝑥 ≤ 𝑛𝑛,

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1) 

where 𝐴̃𝐴 = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴) and 𝐵𝐵� = (𝑙𝑙𝐵𝐵,𝑚𝑚𝐵𝐵,𝑢𝑢𝐵𝐵) are two triangular fuzzy numbers with bases 
l, m, u. Then, the basic operational laws for triangular numbers are defined as: 

𝐴𝐴 � (+) 𝐵𝐵� = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴) (+) (𝑙𝑙𝐵𝐵,𝑚𝑚𝐵𝐵,𝑢𝑢𝐵𝐵) =  (𝑙𝑙𝐴𝐴 + 𝑙𝑙𝐵𝐵,𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵 ,𝑢𝑢𝐴𝐴 + 𝑢𝑢𝐵𝐵) (2) 

𝐴𝐴 � (−) 𝐵𝐵� = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴) (−) (𝑙𝑙𝐵𝐵,𝑚𝑚𝐵𝐵,𝑢𝑢𝐵𝐵) =  (𝑙𝑙𝐴𝐴 − 𝑙𝑙𝐵𝐵,𝑚𝑚𝐴𝐴 −𝑚𝑚𝐵𝐵 ,𝑢𝑢𝐴𝐴 − 𝑢𝑢𝐵𝐵 (3) 

𝐴𝐴 � (×) 𝐵𝐵� = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴) (×) (𝑙𝑙𝐵𝐵,𝑚𝑚𝐵𝐵,𝑢𝑢𝐵𝐵) = (𝑙𝑙𝐴𝐴 × 𝑙𝑙𝐵𝐵,𝑚𝑚𝐴𝐴 × 𝑚𝑚𝐵𝐵 ,𝑢𝑢𝐴𝐴 × 𝑢𝑢𝐵𝐵) for  𝑙𝑙𝐴𝐴 , 𝑙𝑙𝐵𝐵 > 0 ; 𝑚𝑚𝐴𝐴 ,𝑚𝑚𝐵𝐵 > 0; 𝑢𝑢𝐴𝐴 ,𝑢𝑢𝐵𝐵 > 0 (4) 

𝐴𝐴 � (÷) 𝐵𝐵� = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴) (÷) (𝑙𝑙𝐵𝐵,𝑚𝑚𝐵𝐵,𝑢𝑢𝐵𝐵) =  �𝑙𝑙𝐴𝐴
𝑢𝑢𝐵𝐵

, 𝑚𝑚𝐴𝐴
𝑚𝑚𝐵𝐵

, 𝑢𝑢𝐴𝐴
𝑙𝑙𝐵𝐵
� for 𝑙𝑙𝐴𝐴 , 𝑙𝑙𝐵𝐵 > 0 ; 𝑚𝑚𝐴𝐴 ,𝑚𝑚𝐵𝐵 > 0; 𝑢𝑢𝐴𝐴 ,𝑢𝑢𝐵𝐵 > 0 (5) 

𝑘𝑘𝐴𝐴 � = 𝑘𝑘𝑘𝑘𝐴𝐴, 𝑘𝑘𝑚𝑚𝐴𝐴, 𝑘𝑘𝑘𝑘𝐴𝐴 (6) 

𝐴𝐴 �−1  = (𝑙𝑙𝐴𝐴,𝑚𝑚𝐴𝐴,𝑢𝑢𝐴𝐴)−1  =  � 1
𝑢𝑢𝐴𝐴

, 1
𝑚𝑚𝐴𝐴

, 1
𝑙𝑙𝐴𝐴
� for 𝑙𝑙𝐴𝐴 , 𝑙𝑙𝐵𝐵 > 0 ; 𝑚𝑚𝐴𝐴 ,𝑚𝑚𝐵𝐵 > 0; 𝑢𝑢𝐴𝐴 ,𝑢𝑢𝐵𝐵 > 0 (7) 

By assuming that fuzzy numbers 𝐴̃𝐴 and 𝐵𝐵�  are real numbers, then the distance meas-
ure is identical to the Euclidean distance. Therefore, the vertex method is defined to cal-
culate the distance between two fuzzy numbers (see Equation (8)). Although there are 
several ways of measuring distances between fuzzy numbers [100], the vertex method is 
a simple and efficient method [97,101]. 

𝑑𝑑(𝐴̃𝐴,𝐵𝐵�) = �1
3

[(𝑙𝑙𝐴𝐴 − 𝑙𝑙𝐵𝐵)2 + (𝑚𝑚𝐴𝐴 −𝑚𝑚𝐵𝐵)2 + (𝑢𝑢𝐴𝐴 − 𝑢𝑢𝐵𝐵)2]  (8) 

µ( x)

1.0

0.0

l m u x

𝐴𝐴
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3.2. The Fuzzy TOPSIS Method 
The main fuzzy TOPSIS idea is based on defining the fuzzy positive ideal solution 

(FPIS) and the fuzzy negative ideal solution (FNIS). The chosen alternative should have 
the shortest distance to the FPIS and the farthest distance to the FNIS. TOPSIS follows a 
systematic process and logic that seek to express the logic of human choice [102]. The basic 
fuzzy TOPSIS method steps are described in the following way (see [97], [103], [104]): 

Step 1. Consider a set of k decision makers (D1, D2,..., Dk) with m alternatives (A1, 
A2,..., An) and n criteria (C1, C2,..., Cn) for which the decision matrix is established: 

 

           𝐶𝐶1        𝐶𝐶2      …    𝐶𝐶𝑛𝑛𝐷𝐷� =

𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴𝑚𝑚

 

⎣
⎢
⎢
⎡𝑋𝑋
�11 𝑋𝑋�12
𝑋𝑋�21 𝑋𝑋�22

… 𝑋𝑋�1𝑛𝑛
… 𝑋𝑋�2𝑛𝑛

⋮ ⋮
𝑋𝑋�𝑛𝑛1 𝑋𝑋�𝑛𝑛2

⋮ ⋮
… 𝑋𝑋�𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎤

 𝑖𝑖 =

 1, 2, . . . ,𝑚𝑚;  𝑗𝑗 =  1, 2, . . . ,𝑛𝑛 
           𝑊𝑊� = [𝑤𝑤�1,𝑤𝑤�2 , … ,𝑤𝑤�𝑛𝑛 ] 

(9) 

Considering that the perception of algorithms and solvers varies according to 
knowledge and experience with algorithms for planning, the average value method is ap-
plied; where 𝑥𝑥�𝑖𝑖𝑖𝑖𝑘𝑘  is the rating or score of the alternative Ai in relation to criterion Cj evalu-
ated by the K-th decision maker (Equation (10)). The weights of criteria are aggregated 
using Equation (11), where 𝑤𝑤�𝑗𝑗𝑘𝑘 describes the weight of each criterion Cj according to de-
cision makers Dk. 

𝑥𝑥�𝑖𝑖𝑖𝑖 =  
1
𝑘𝑘
�𝑥𝑥�𝑖𝑖𝑖𝑖1 +  𝑥𝑥�𝑖𝑖𝑖𝑖2 + ⋯+  𝑥𝑥�𝑖𝑖𝑖𝑖𝑘𝑘 � (10) 

𝑤𝑤�𝑗𝑗 =  
1
𝑘𝑘
�𝑤𝑤�𝑗𝑗1 +  𝑤𝑤�𝑗𝑗2 + ⋯+  𝑤𝑤�𝑗𝑗𝑘𝑘� (11) 

Step 2. Normalize the fuzzy decision matrix. Decision matrix 𝐷𝐷� with m alternatives 
and n criteria is normalized to eliminate inconsistencies with the different units of meas-
urement or scales to preserve the ranges of the normalized triangular fuzzy numbers. 𝑅𝑅� 
represents the normalized decision matrix (Equation (12)): 

𝑅𝑅�𝑗𝑗 =  �𝑟̃𝑟𝑖𝑖𝑖𝑖�𝑚𝑚 ×𝑛𝑛
, 𝑖𝑖 = 1, 2, … ,𝑚𝑚; 𝑗𝑗= 1, 2, … ,𝑛𝑛 (12) 

The normalization process is performed by Equations (13) and (14), where B and C 
represent the set of benefit and cost criteria, respectively. 

𝑟̃𝑟𝑖𝑖𝑖𝑖 =  �
𝑙𝑙𝑖𝑖𝑖𝑖
𝑢𝑢𝑗𝑗

+ ,
𝑖𝑖𝑖𝑖
𝑢𝑢𝑗𝑗

+ ,
𝑢𝑢𝑖𝑖𝑖𝑖
𝑢𝑢𝑗𝑗

+� , and  𝑢𝑢𝑗𝑗+ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖  𝑗𝑗 ∈ 𝐵𝐵  (13) 

𝑟̃𝑟𝑖𝑖𝑖𝑖 =  �
𝑙𝑙𝑗𝑗
−

𝑢𝑢𝑖𝑖𝑖𝑖
,
𝑙𝑙𝑗𝑗
−

𝑚𝑚𝑖𝑖𝑖𝑖
,
𝑙𝑙𝑗𝑗
−

𝑙𝑙𝑖𝑖𝑖𝑖
� , and  𝑙𝑙𝑗𝑗

− = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖  𝑗𝑗 ∈ 𝐶𝐶  (14) 

Step 3. Construct the weighted normalized fuzzy decision matrix 𝑉𝑉 � (Equation (15)). 
𝑣𝑣�𝑖𝑖𝑖𝑖 is obtained by multiplying the weights of criteria 𝑤𝑤�𝑗𝑗 and the normalized fuzzy deci-
sion matrix 𝑟̃𝑟𝑖𝑖𝑖𝑖 values: 

𝑉𝑉� =  �𝑣𝑣�𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
 , 𝑖𝑖 = 1, 2, … ,𝑚𝑚; 𝑗𝑗= 1, 2, … ,𝑛𝑛 (15) 

𝑣𝑣�𝑖𝑖𝑖𝑖 =  𝑟̃𝑟𝑖𝑖𝑖𝑖 ×  𝑤𝑤�𝑗𝑗   (16) 

Step 4. Obtain the FPIS (FPIS, A+) and the FNIS (FNIS, A-), as shown in Equations 
(17) and (18), respectively. The ideal solutions can be defined according to Chen [97] as: 
𝑣𝑣�𝑗𝑗+ = (1, 1, 1) and 𝑣𝑣�𝑗𝑗− = (0, 0, 0) 

𝐴𝐴+ =  �𝑣𝑣�1+,𝑣𝑣�𝑗𝑗+, … , 𝑣𝑣�𝑚𝑚+� (17) 
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𝐴𝐴− =  �𝑣𝑣�1−,𝑣𝑣�𝑗𝑗−, … , 𝑣𝑣�𝑚𝑚−� (18) 

Step 5. Calculate the distances for each alternative, where 𝐷𝐷𝑖𝑖+ indicates the distance 
between the scores of alternative Ai to the FPIS (Equation (19)), and 𝐷𝐷𝑖𝑖− denotes the dis-
tances between the values of alternative Ai to the FNIS (Equation (20)), where 𝑑𝑑(𝑣𝑣�𝑎𝑎, 𝑣𝑣�𝑏𝑏) 
represents the distance between two fuzzy numbers. 

𝐷𝐷𝑖𝑖+ = ∑ 𝑑𝑑(𝑣𝑣�𝑖𝑖𝑖𝑖,𝑣𝑣�𝑗𝑗+) 𝑛𝑛
𝑗𝑗=1 , 𝑖𝑖 = 1, 2, … ,𝑚𝑚; 𝑗𝑗= 1, 2, … ,𝑛𝑛 (19) 

𝐷𝐷𝑖𝑖− = ∑ 𝑑𝑑(𝑣𝑣�𝑖𝑖𝑖𝑖,𝑣𝑣�𝑗𝑗−) 𝑛𝑛
𝑗𝑗=1 , 𝑖𝑖 = 1, 2, … ,𝑚𝑚; 𝑗𝑗= 1, 2, … ,𝑛𝑛 (20) 

Step 6. Determine proximity coefficient 𝐶𝐶𝐶𝐶𝑖𝑖, which evaluates the rank order of all the 
alternatives Ai according to their overall performance. The proximity coefficient is calcu-
lated as shown in Equation (21). 

𝐶𝐶𝐶𝐶𝑖𝑖 =  
𝐷𝐷𝑖𝑖−

(𝐷𝐷𝑖𝑖+ + 𝐷𝐷𝑖𝑖−) (21) 

Step 7. Rank alternatives Ai, using a decreasing order of CCi values, the shortest dis-
tances from the FPIS, i.e., close to 1, to indicate that the overall performance of alternative 
Ai is better because it is farther away from the FNIS. Having obtained the ranking order, 
decision makers select the most feasible alternative Ai. 

4. The Methodological Approach for the Algorithm Selection Problem 
This paper employs a three-stage methodology to select an algorithm or solver to 

solve a replenishment, production and distribution planning problem (see Figure 2). The 
objective of this section is to present a numerical analysis to demonstrate the performance 
of the proposed methodology. 

The three stages of the proposed methodology are described in the following subsec-
tions. 
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Figure 2. A methodological approach for the algorithm selection problem. 

4.1. Stage 1—Define Criteria and Alternatives 
We first identify the different criteria that are taken into account when selecting a 

solution method; these criteria can be identified in the literature and are based on the 
opinion of experts in the field [105]. According to each identified criterion, the decision 
maker evaluates the suitability of a solution method for the type of problem; that is, how 
algorithms or solvers can be suitable and formulated for a given problem. 

In this research, 13 criteria are identified based on an exhaustive review of the litera-
ture (see [8,18,25,27,106,107]) and the assessments of experts in the field of operations re-
search. These criteria are presented in Table 2. 
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Table 2. Criteria for algorithm selection. 

Id  Criteria Definition  

C1 Problem type 

The replenishment (source), production (make) and distribution (deliver) 
planning problem type is determined by the SCOR (Supply Chain 
Operation Reference) methodology [106,108] (see Figure 3). Each problem 
type has its own characteristics and computational difficulty. 
According to Weise et al. [12], it is very difficult to make accurate 
estimates of a problems’ computational performance because a solution 
method’s performance will almost always depend on experience, the 
empirical results based on related research areas and the rules of thumb 
established for these problems. So, a problem’s computational 
performance depends on different factors. Some of the main factors of a  
problem’s complexity are: problem size, linearity, variables and presence 
of constraints [109]. Based on these considerations, criteria C2–C7 are 
proposed. 

C2 Equation type  It expresses the equations present in the problem. These equations can be 
linear or nonlinear. 

C3 Variable type 

It represents the elements to be modeled. Variables can be integer, binary 
and continuous. Planning problems generally contain a combination of 
variables: Continuous + Integer, Integer + Binary, Continuous + Binary, 
Continuous + Integer + Binary. These combinations normally generate 
greater computational difficulty. Each combination can generate a 
different behavior for the solution method because algorithm or solver 
performance is linked with the amount of resources used. These resources 
can be: amount of memory, processing time to deal with each type of 
variable [12]. 

C4 
Number of instantiated 
variables 

It determines the number of variables present in a problem, which is a 
determining factor when establishing the expected response time to 
obtain an answer. 

C5 Type of constraints and 
solutions 

The constraint type determines the computational difficulty that the 
problem will have because constraints express limitations of resources. 
Some constraints can be expressed as follows: 
 decision >= data (e.g., production >= demand) 
 decision <= data (e.g., load <= capacity) 
 decision == data (e.g., production >= demand) 
 decision >= decision (e.g., production of A >= production of B) 
 decision <= decision (e.g., load of M <= load of N) 
 decision == decision (e.g., inventory A == inventory B) 
 continuity equations of some variables (e.g., Inventory == Inventory 
prior period + Production - Demand) 
One factor that affects a problem’s difficulty is when the expected 
solutions to the problem contain a route or sequence. These routing 
planning or sequencing problems are generally NP-hard [110,111]. 

C6 Number of constraints 

The number of constraints contained in a problem can be a limiting factor 
for establishing the problem’s difficulty. Therefore, the evaluator analyzes 
whether the set of constraints can be adapted to an algorithm or to a 
solver. 

C7 Dataset size  When representing the problem input data size, a problem’s computation 
is directly related to the amount of data. 
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C8 Programming knowledge   

Programming knowledge is a determining factor when selecting an 
algorithm because it determines decision makers’ ability to program one 
algorithm or several algorithms when having to test different algorithms 
in the hope to obtain a solution that meets the company’s needs. 

C9 Mathematical knowledge   
Mathematical knowledge is important when choosing whether to express 
the problem as a mathematical model or to directly choose an algorithm. 
Algorithms generally require certain mathematical knowledge. 

C10 Knowledge of algorithms One aspect to take into account in companies is knowledge of the 
different algorithms. 

C11 Software 

This criterion is considered if the company has mathematical modeling 
software, but is not considered if the company does not.  
If the company has specific optimization software, the decision maker 
defines the scope of its performance against each alternative to solve a 
planning problem. 

C12 Quality of solutions 
This criterion establishes the quality of the expected solutions to the 
problem. These solutions can be optimal, near-optimal or good. 

C13 Calculation time 
The computation time sets the amount of expected time to obtain a 
solution for the problem. 

Second, we identify the portfolio of solution methods (alternatives). This portfolio is 
composed of a set of nine algorithms and four solvers, identified as the most commonly 
used ones in the planning problems reported in [107,112]. Alternatives are divided be-
tween different algorithm types, which are: 
 Heuristic algorithms (HA). They are used when solvers or exact techniques cannot 

reach solutions in acceptable computation times. These techniques do not provide 
optimal solutions, but can offer solutions that come very close to the optimum in 
acceptable computation times [113]; 

 Metaheuristic algorithms (MA). According to Swan et al. [114], these techniques are: 
“an iterative master process that guides and modifies the operations of subordinate 
heuristics to efficiently produce high-quality solutions. At each iteration, it manipu-
lates either a complete (or partial) single solution or a collection of such solutions”; 

 Matheuristic algorithms (MTA). They combine mathematical programming tech-
niques and heuristic or metaheuristic algorithms [115]. 
The alternatives in this classification are A1—HA/Benders’ decomposition, A2—

HA/LP and Fix, A3—HA/LP Relaxation, A4—MA/Tabu Search, A5—MA/Genetic Algo-
rithm, A6—MA/Simulated annealing, A7—MA/Variable Neighborhood Search, A8—
MTA/ Genetic Algorithm + Mathematical Model, A9—MTA/Simulated annealing + Math-
ematical Model. Different solver types used to solve planning problems are also consid-
ered. For this purpose, commercial and non-commercial solvers are identified to deal with 
mathematical models with linear and nonlinear equations. These are: A10—CPLEX (Com-
mercial), A11—CBC (Non-Commercial), A12—BONMIN (Non-Commercial—Nonlin-
ear), A13—LINDO (Commercial—Linear /Nonlinear). 



Mathematics 2022, 10, 1544 14 of 28 
 

 

 
Figure 3. Replenishment, production and distribution planning problem types. 

The hierarchical structure that has been defined and constructed to assist in the pro-
cess of selecting an algorithm or solver is shown in Figure 4. This structure is composed 
of four layers: the first one corresponds to the objective of this study; the second structure 
corresponds to the characterization of the different dimensions that have been proposed, 
which is composed of four dimensions (the problem type and its characteristics, program-
ming knowledge, the software and the expected performance of algorithms or solvers); in 
the third layer comes the categorization of the 13 identified criteria; in the last one, meth-
ods or solution alternatives appear. The correlation between layer 3 and 4 is related to the 
performance of an algorithm or a solution method. 
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Figure 4. Hierarchical structure for algorithm selection. 

4.2. Stage 2—Problem Statement 
In this stage, the type of planning problem to be addressed was defined, for which 

four expert decision makers working in different manufacturing companies in the plan-
ning area were invited to propose a planning problem. The decision makers proposed that 
the problem to be studied should be a production planning problem falling within the 
make classification, as shown in Figure 3. 

Once the problem type has been defined, a questionnaire is developed to obtain the 
weight of preference of criteria and to thus evaluate alternatives according to the criteria. 
To devise the questionnaire, it is necessary to construct a fuzzy linguistic scale. 

Linguistic scales are used to transform linguistic terms into fuzzy numbers [96]. Lin-
guistic terms are subjective categories of the linguistic variable [116]. Zadeh [117] intro-
duced the linguistic variable concept. A linguistic variable is a variable whose values al-
low computation with words instead of numbers [118]. Linguistic variables are used to 
represent decision makers’ assessments, estimates and subjectivity [119]. 

To evaluate the criteria, we use a scale between 0 and 1. To rate the alternatives, we 
employ a scale from 0 to 10 [97]. The linguistic scales that evaluate the weights of the 
criteria and alternatives are shown in Table 3. 

Algorithm selection  

Problem type and its 
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Algorithm - A1 

Equation type   

Variable type  

Number of instantiated variables  

Type of constraints and solutions 

Number of Constraints 
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Performance  
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Table 3. Linguistic scales to assess the criteria and alternatives (Chen [97]). 

Linguistic Expression for Rating Alternatives  
(Algorithms) Linguistic Variable for the Relative Importance Weight of Criteria 

Linguistic Expression l m u Linguistic Expression l m u 
Very Low (VL) 0.1 0.1 2.5 Very Low Importance (VLI) 0.01 0.03 0.25 
Low (L) 0.1 2.5 5.0 Low Importance (LI) 0.01 0.25 0.50 
Moderate (M) 2.5 5.0 7.5 Medium Importance (MI) 0.25 0.50 0.75 
High (H) 5.0 7.5 10.0 High Importance (HI) 0.50 0.75 1.00 
Very High (VH) 7.5 10.0 10.0 Very High Importance (VHI) 0.75 1.00 1.00 

Finally, decision makers were invited to review the questionnaire and to check its 
content. Based on this review, we were able to adjust the questionnaire. 

In this same stage, we invited the four decision makers who worked in the planning 
area to evaluate the alternatives and to determine the weights of the criteria. For this pur-
pose, we asked the decision makers to use the linguistic scale described in Table 3. An 
extract of the questionnaires used by the decision makers is shown in Tables A1 and A2. 

Table 4 details the fuzzy weights of each criterion based on the linguistic scales se-
lected by the decision makers. The decision makers’ ratings of the alternatives against all 
criteria are shown in Tables A3–A6. 

Table 4. Decision makers’ linguistic assessment of the criteria. 

 D1 D2 D3 D4 
C1 MI MI MI MI 
C2 LI LI LI LI 
C3 VHI VHI VHI VHI 
C4 HI HI HI HI 
C5 LI LI LI LI 
C6 HI MI MI MI 
C7 HI VHI VHI MI 
C8 LI MI HI HI 
C9 LI MI HI HI 
C10 MI MI LI HI 
C11 LI LI LI LI 
C12 VHI VHI VHI VHI 
C13 VHI VHI VHI VHI 

4.3. Stage 3—Application of the Fuzzy TOPSIS Method 
In this stage, the Fuzzy TOPSIS Method is used to analyze the different alternatives 

in relation to the identified criteria. The process used to apply the Fuzzy TOPSIS Method 
consists of five steps, which are detailed below. 

Step 1. Based on the linguistic assessments of the alternatives (see Tables A3–A6), the 
linguistic terms are converted into fuzzy numbers according to Table 3 and the fuzzy de-
cision matrix is constructed. The aggregation of the ratings is performed using the fuzzy 
arithmetic mean, and the aggregate ratings for each alternative are obtained using Equa-
tion (10) (see Table 5). 

In order to obtain the aggregate weights of each criterion, the fuzzy weights of each 
criterion are used, which are extracted by converting the linguistic terms of the four deci-
sion makers (see Table 4) into fuzzy numbers according to Table 3; for example, the fuzzy 
weights of criterion C7 of the four decision makers are D1 = (0.50, 0.75, 1.00), D2 = (0.75, 
1.00, 1.00), D3 = (0.75, 1.00, 1.00), D4 = (0.25, 0.50, 0.75), and applying Equation (11), the 
aggregate fuzzy weight of C7 = (0.56, 0.81, 0.93) is obtained. The results of the aggregate 
fuzzy weights of all the criteria are tabulated in Table 6. 

  



Mathematics 2022, 10, 1544 17 of 28 
 

 

Table 5. Decision matrix with the aggregated scores. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u 

A1 
0.1
0 

2.5
0 

5.0
0 

1.3
3 

3.1
5 

5.6
3 

0.7
0 

3.1
3 

5.6
3 

0.7
0 

1.9
3 

4.3
8 

1.3
0 

2.5
5 

5.0
0 

2.5
3 

5.0
0 

7.5
0 

4.3
8 

6.8
8 

9.3
8 

0.1
0 

2.5
0 

5.0
0 

0.1
0 

2.5
0 

5.0
0 

0.1
0 

1.9
0 

4.3
8 

0.1
0 

0.1
0 

2.5
0 

1.3
0 

2.5
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Table 6. Aggregate fuzzy weights for each criterion. 

Criteria Aggregate Fuzzy Weights 
C1 (0.25, 0.50, 0.75) 
C2 (0.01, 0.25, 0.50) 
C3 (0.75, 1.00, 1.00) 
C4 (0.50, 0.75, 1.00) 
C5 (0.01, 0.25, 0.50) 
C6 (0.31, 0.56, 0.81) 
C7 (0.56, 0.81, 0.93) 
C8 (0.32, 0.56, 0.81) 
C9 (0.32, 0.56, 0.81) 

C10 (0.25, 0.50, 0.75) 
C11 (0.01, 0.25, 0.50) 
C12 (0.75, 1.00, 1.00) 
C13 (0.75, 1.00, 1.00) 

Step 2 and Step 3. Using Equations (13) and (14), the normalized fuzzy decision ma-
trix is obtained. For criteria C1–12, Equation (13) is used because the objective of these 
criteria is to maximize. For criterion C13, Equation (14) is applied because the aim is to 
minimize the computation time criterion. Table A7 shows the results of the normalized 
matrix. 

After normalization, the weighted normalized decision matrix is calculated using 
Equation (16). The results are shown in Table A8. 

Step 4. It is followed to calculate the FPIS and the FNIS because the positive triangu-
lar fuzzy numbers fall within the range [0, 1], and the FPIS and the FNIS are obtained by 
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Equations (17) and (18). Then, the relative distance is calculated between the algorithms 
(alternatives) and is computed with Equations (19) and (20) (see Table 7). 

Table 7. Distances between alternatives. 

 𝑫𝑫+ 𝑫𝑫− 
A1 6.051 2.149 
A2 5.596 2.724 
A3 5.192 3.296 
A4 5.136 3.370 
A5 4.770 3.802 
A6 5.595 2.748 
A7 5.677 2.786 
A8 5.861 2.467 
A9 5.766 2.654 
A10 4.918 3.597 
A11 5.391 3.004 
A12 6.176 2.279 
A13 6.144 2.323 

Step 5. It is followed to determine the closeness coefficient using Equation (21). 𝐶𝐶𝐶𝐶𝑖𝑖 
The obtained values represent the total score of each algorithm for a production planning 
problem. Table 8 shows the obtained results. 

Table 8. Closeness quotient and algorithms ranking. 

Alternative Algorithm CCi Rank 
A1 HA/Benders decomposition 0.262 13 
A2 HA/LP and Fix  0.327 8 
A3 HA/LP Relaxation  0.388 4 
A4 MA/Tabu Search  0.396 3 
A5 MA/Genetic Algorithm 0.444 1 
A6 MA/Simulated annealing  0.329 6 
A7 MA/Variable Neighborhood Search  0.329 7 
A8 MTA Genetic Algorithm + Mathematical Model  0.296 10 
A9 MTA Simulated annealing + Mathematical Model  0.315 9 
A10 CPLEX (Commercial) 0.422 2 
A11 CBC (Non-Commercial) 0.358 5 
A12 BONMIN (Non-Commercial—Nonlinear) 0.270 12 
A13 LINDO (Commercial—Linear/Nonlinear) 0.274 11 

When applying the proposed methodological approach based on the Fuzzy TOPSIS 
Method for a production planning problem, the GA is the most suitable solution method. 
This finding is not new because the literature review by Guzman et al. [107] concludes 
that GAs are the most widely used for this problem. Second in the ranking is CPLEX, 
which is the most widespread solver [107]. 

5. Sensitivity Analysis 
This section evaluates the effects of the different weightings of the criteria, i.e., we 

aim to evaluate the answers given by decision makers and how they influence algorithm 
selection. The aim of the sensitivity analysis is to make minor variations in the weights 
and to observe the influence of this variation on algorithm choice. The weights for the 
rating of algorithms range from very low importance (VLI) to very high importance (VHI). 
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Using this rating, we performed an analysis of 10 combinations, where each combination 
was expressed as an experiment. 

The criteria that were evaluated with the highest weight were the type of variables 
(C3), the quality of solutions (C12) and computation time (C13) (see Table 4). These pa-
rameters in a planning problem are dominant when choosing an algorithm. Therefore, we 
made a minimal variation and looked for criteria with lower scores, such as: problem type 
(C1), knowledge of algorithms (C10), dataset size (C7), programming knowledge (C8). 
The details of the experiments are shown in Table 9, where the second column details the 
changes in the weights of the criteria, and the third column shows the results of the prox-
imity coefficient, while the last column expresses the alternatives ranking. 

Table 9. Quantitative results of the sensitivity analysis. 

Experiment 
No.  

Changes in 
Weights of 

Criteria 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 Alternatives Ranking 

E1 
C1 = (0.50, 
0.75, 1.00) 

0.267 0.337 0.402 0.409 0.457 0.338 0.337 0.302 0.321 0.433 0.366 0.274 0.279 
A5 > A10 > A4 > A3 > 

A11 > A6 > A7 > A2 > A9 
> A8 > A13 > A12 > A1 

E2 
C1 = (0.75, 
1.00, 1.00) 

0.268 0.341 0.410 0.418 0.465 0.341 0.341 0.304 0.323 0.439 0.370 0.275 0.279 
A5 > A10 > A4 > A3 > 

A11 > A6 > A2 > A7 > A9 
> A8 > A13 > A12 > A1 

E3 
C3 = (0.50, 
0.75, 1.00) 

0.260 0.322 0.383 0.395 0.438 0.327 0.328 0.295 0.314 0.417 0.355 0.268 0.273 
A5 > A10 > A4 > A3 > 

A11 > A7 > A6 > A2 > A9 
> A8 > A13 > A12 > A1 

E4 
C5 = (0.25, 
0.50, 0.75) 

0.268 0.335 0.398 0.408 0.455 0.338 0.337 0.304 0.323 0.434 0.367 0.274 0.279 
A5 > A10 > A4 > A3 > 

A11 > A6 > A7 > A2 > A9 
> A8 > A13 > A12 > A1 

E5 
C10 = (0.50, 
0.75, 1.00) 

0.266 0.336 0.396 0.406 0.455 0.335 0.336 0.301 0.323 0.434 0.366 0.278 0.282 
A5 > A10 > A4 > A3 > 

A11 > A2 > A7 > A6 > A9 
> A8 > A13 > A12 > A1 

E6 
C10 = (0.75, 
1.00, 1.00) 

0.267 0.339 0.399 0.410 0.461 0.338 0.336 0.302 0.324 0.440 0.370 0.278 0.283 
A5 > A10 > A4 > A3 > 

A11 > A2 > A6 > A7 > A9 
> A8 > A13 > A12 > A1 

E7 

C8 = (0.01, 
0.25, 0.50), 
C12= (0.50, 
0.75, 1.00) 

0.254 0.317 0.376 0.370 0.422 0.319 0.319 0.287 0.306 0.404 0.346 0.262 0.267 
A5 > A10 > A3 > A4 > 

A11 > A6 > A7 > A2 > A9 
> A8 > A13 > A12 > A1 

E8 

C10 = (0.75, 
1.00, 1.00), C11 

= (0.50, 0.75, 
1.00) 

0.268 0.342 0.402 0.411 0.473 0.342 0.339 0.305 0.326 0.448 0.375 0.280 0.285 
A5 > A10 > A4 > A3 > 

A11 > A6 > A2 > A7 > A9 
> A8 > A13 > A12 > A1 

E9 
C7 = (0.50, 
0.75, 1.00) 

0.262 0.327 0.388 0.396 0.443 0.329 0.329 0.296 0.315 0.422 0.358 0.270 0.275 
A5 > A10 > A4 > A3 > 

A11 > A6 > A7 > A2 > A9 
> A8 > A13 > A12 > A1 

E10 
C7 = (0.75, 
1.00, 1.00) 

0.268 0.333 0.394 0.402 0.449 0.335 0.335 0.302 0.321 0.428 0.364 0.272 0.277 
A5 > A10 > A4 > A3 > 

A11 > A6 > A7 > A2 > A9 
> A8 > A13 > A12 > A1 

The sensitivity analysis shows that alternatives A5 (GA), A10 (CPLEX), A4 (Tabu 
Search) have the best scores and occupy the first three positions. Hence, the variation in 
the weights in the chosen criteria minimally affects these alternatives; for example, A5 
reaches the first position in all the experiments. The main variations occur in the sixth, 
seventh and eighth positions with alternatives A2, A6 and A7. However, the last ranking 
positions remain unchanged in the classification. In this context, decision makers can use 
these variations or make other modifications to weightings to prioritize a criterion and to 
thus facilitate the evaluation process in decision making. 
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6. Conclusions 
The complexity of real-world problems should be seen not only as an obstacle, but 

also as a research challenge for effective solutions for large-scale planning problems. Rel-
atively small companies often face very complex problems. 

It is usually very difficult for production planners in companies to determine or 
choose an algorithm. The algorithm selection process normally involves the experimental 
evaluation of several algorithms with different dataset sizes. However, these sets of ex-
periments require considerable computational resources and long processing times. This 
adds to the disadvantage of having fewer resources to invest in commercial solvers. In 
addition, efforts often have to be duplicated when attempting to replicate the algorithms 
or models available in the literature. 

To overcome these drawbacks, the methodological approach based on the fuzzy 
TOPSIS proposed herein intends to be a support tool to select a solution method for re-
plenishment, production and distribution planning problems. To this end, 13 different 
criteria were defined and used to select nine different algorithm types (heuristic, metaheu-
ristic, and matheuristic) and four solvers (commercial and non-commercial) that are often 
employed in planning problems. All these criteria address several important dimensions 
when solving a planning problem. These dimensions are related to the computational dif-
ficulty of the planning problem, programming skills, mathematical skills, algorithmic 
skills, mathematical modeling software skills, and also to the expected computational per-
formance of the solution methods. These criteria were analyzed based on the linguistic 
values given by four planning experts from different manufacturing companies. The prob-
lem selected to apply the proposed approach was that of production planning. For this 
problem, the results of the methodology showed that the GA was the best alternative, 
while Benders’ decomposition was the worst. Given our study results, it can be concluded 
that it is possible to select a set of suitable candidate algorithms for solving optimization 
problems with the proposed approach. In this way, not only can one algorithm be selected, 
but so can other algorithms that provide similar solutions at the same time. The results of 
this methodology can guide companies to choose whether to use a commercial or non-
commercial algorithm or solver. This can help companies to determine whether they 
should invest in a solver or use mathematical modeling or algorithm programming soft-
ware and, at the same time, to understand planning staff’s training needs. 

There are different approaches for algorithm selection [44,70,75,79]. These ap-
proaches are heuristic, metaheuristic and AI, and they offer benefits and disadvantages. 
However, these techniques can be restrictive for companies because they involve a large 
number of computational resources and experiments that can be affected by accuracy, the 
number of tested instances, instance generation, consistency, AI techniques, and training 
time. The proposed approach requires very few resources, is very useful thanks to its sim-
plicity and is easily replicable. The main limitation of this technique is the appropriate 
selection of criteria and the balance between them, which is a subjective issue that requires 
experts in the planning problems field, not to mention the personal bias of experts’ opin-
ions. 

Future research could be conducted to experiment the proposed approach with the 
portfolio of algorithms and solvers defined in [107], where some 50 algorithms are identi-
fied, including optimizing, heuristic, metaheuristic and matheuristic algorithms, as well 
as different types of commercial solvers. Alternatives and criteria could be evaluated with 
more decision makers. Other MCDM techniques such as ELECTRE, PROMETHEE, intui-
tionistic fuzzy TOPSIS, or novel methods such as the performance calculation technique 
of the integrated multiple multi-attribute decision making (PCIM-MADM) [120], which 
incorporates four techniques (COPRAS, GRA, SAW and VIKOR) into a single final classi-
fication index, could be used. 
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Appendix A 
Table A1 shows a section of the questionnaire format used by decision makers to 

evaluate the algorithm selection criteria. Table A2 presents the questionnaire used to score 
the chosen alternatives, i.e., the selected algorithms and solvers against the 13 identified 
criteria. 

Table A1. Questionnaire used to know decision makers’ preferences for the identified criteria. 

 
Very Low 
Importance 
(VLI) 

Low Importance 
(LI) 

Medium 
Importance 
(MI) 

High 
Importance (HI) 

Very High 
Importance 
(VHI) 

C1           
C2           
C3           
C4           
C5           
C6           
C7           
C8           
C9           
C10           
C11           
C12           
C13           

Table A2. Questionnaire used to know the decision makers’ preferences for the 13 alternatives ac-
cording to the criteria. 

 C1 

 Very Low (VL) Low (L) Moderate (M) High (H) Very High 
(VH) 

A1      

A2      

A3      

A4      
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A5      

A6      

A7      

A8      

A9      

A10      

A11      

A12      

A13      

Tables A3–A6 show the decision makers’ alternatives ratings against all the criteria 

Table A3. Decision maker 1′s linguistic assessment. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
A1 L H M M M M M L L L VL M H 
A2 M H H M M M M L VL L L M H 
A3 VH H H M M M M L M L L M H 
A4 VH H VL M M M M VH VL H VL VH H 
A5 VH VH H M M M M H L H VH H VH 
A6 M M L M M M M L M L L M L 
A7 M M L M M M M L M VL L M M 
A8 L L L M M M M L L L L M M 
A9 L L L M M M M L M L L M M 
A10 H VH H M H M M M H H H VH VH 
A11 M M M M M M M L M M M M VH 
A12 L L L M L M M L L L L L L 

Table A4. Decision maker 2′s linguistic assessment. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
A1 L L L L VL L H L L VL VL VL M 
A2 H H H L M L H L VL M L VL M 
A3 VH H H H M M H L M M L M M 
A4 VH H VL H M M H VH VL H VL VH H 
A5 VH VH H H M M H H L H VH H VH 
A6 M M L M M L H L M L L M L 
A7 M M L M VL L H L M VL L M M 
A8 L L L M VL L H L L L L M M 
A9 L L L M VL L H L M L L M M 

A10 H VH H M H M H M H VH H VH VH 
A11 M M M M M L H L M M M M VH 
A12 L VL L VL VL L L L L L L L L 

Table A5. Decision maker 3′s linguistic assessment. 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

A1 L VL L VL VL M H L L L VL VL L 
A2 L M L L VL M H H H H L VL M 
A3 H M M L M M H VH H H L M M 
A4 H M M VL VH H H VH H VL VL VH H 
A5 H M M VH H VH H VH VH H VH H VH 
A6 M M L L M L H M M H H M H 
A7 M VL L L M M H M M L L M M 
A8 M VL L L M M H L L L L M M 
A9 M VL L L M M H L L L L M M 
A10 M H M H M M H H M M M M M 
A11 M M L M M M H M M M M M M 
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A12 VL VL L L L L L L VL L L L L 
A13 VL VL L L L L L L L L L L L 

Table A6. Decision maker 4′s linguistic assessment. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
A1 L L L VL M H H L L L VL M L 
A2 H H H VL M H H L VL L L M L 
A3 VH H H M M H H L M L L M M 
A4 VH H VL VH H H H VH VL H VL VH M 
A5 VH VH H H VH M H H L H VH H H 
A6 M M H M L M H L M L L M H 
A7 M M L M M M H L M VL L M L 
A8 L L L M M M H L L L L M L 
A9 L L L M M M H L M L L M L 
A10 H M M M M M H M H H H H H 
A11 M M M M M H H L M M M VH VH 
A12 L VL L L L L L L L L L L L 
A13 L L L L L L L L L L L L L 

Table A7. Normalized fuzzy decision matrix. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u 

A1 
0.0
1 

0.2
5 

0.5
0 

0.1
4 

0.3
4 

0.6
0 

0.0
7 

0.3
3 

0.6
0 

0.0
7 

0.2
1 

0.4
7 

0.1
5 

0.2
9 

0.5
7 

0.2
9 

0.5
7 

0.8
6 

0.4
7 

0.7
3 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
7 

0.5
3 

0.0
1 

0.1
9 

0.4
4 

0.0
1 

0.0
1 

0.2
5 

0.1
3 

0.2
6 

0.5
0 

0.0
1 

0.0
2 

0.0
5 

A2 
0.3
2 

0.5
6 

0.8
1 

0.4
7 

0.7
3 

1.0
0 

0.4
0 

0.6
7 

0.9
3 

0.0
7 

0.2
7 

0.5
3 

0.2
2 

0.4
3 

0.7
1 

0.2
9 

0.5
7 

0.8
6 

0.4
7 

0.7
3 

1.0
0 

0.1
3 

0.3
8 

0.6
3 

0.1
4 

0.2
1 

0.4
7 

0.1
9 

0.4
4 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.1
3 

0.2
6 

0.5
0 

0.0
1 

0.0
2 

0.0
4 

A3 
0.6
9 

0.9
4 

1.0
0 

0.4
7 

0.7
3 

1.0
0 

0.4
7 

0.7
3 

1.0
0 

0.2
7 

0.5
3 

0.8
0 

0.2
9 

0.5
7 

0.8
6 

0.3
6 

0.6
4 

0.9
3 

0.4
7 

0.7
3 

1.0
0 

0.2
0 

0.4
4 

0.6
3 

0.3
3 

0.6
0 

0.8
7 

0.1
9 

0.4
4 

0.7
5 

0.0
1 

0.2
5 

0.5
0 

0.2
5 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
3 

A4 
0.6
9 

0.9
4 

1.0
0 

0.4
7 

0.7
3 

1.0
0 

0.0
7 

0.1
4 

0.4
0 

0.4
0 

0.6
0 

0.8
0 

0.5
0 

0.7
9 

1.0
0 

0.4
3 

0.7
1 

1.0
0 

0.4
7 

0.7
3 

1.0
0 

0.7
5 

1.0
0 

1.0
0 

0.1
4 

0.2
1 

0.4
7 

0.3
8 

0.5
7 

1.0
0 

0.0
1 

0.0
1 

0.2
5 

0.7
5 

1.0
0 

1.0
0 

0.0
1 

0.0
1 

0.0
2 

A5 
0.6
9 

0.9
4 

1.0
0 

0.6
7 

0.9
3 

1.0
0 

0.4
7 

0.7
3 

1.0
0 

0.5
3 

0.8
0 

1.0
0 

0.5
0 

0.7
9 

1.0
0 

0.4
3 

0.7
1 

0.9
3 

0.4
7 

0.7
3 

1.0
0 

0.5
6 

0.8
1 

1.0
0 

0.2
1 

0.4
7 

0.6
7 

0.5
0 

0.7
5 

1.0
0 

0.7
5 

1.0
0 

1.0
0 

0.5
0 

0.7
5 

1.0
0 

0.0
1 

0.0
1 

0.0
1 

A6 
0.2
5 

0.5
0 

0.7
5 

0.2
7 

0.5
3 

0.8
0 

0.1
4 

0.4
0 

0.6
7 

0.2
0 

0.4
7 

0.7
3 

0.2
2 

0.5
0 

0.7
9 

0.1
5 

0.4
3 

0.7
1 

0.4
7 

0.7
3 

1.0
0 

0.0
7 

0.3
1 

0.5
6 

0.2
7 

0.5
3 

0.8
0 

0.1
3 

0.3
8 

0.5
0 

0.1
3 

0.3
8 

0.6
3 

0.2
5 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
4 

A7 0.2
5 

0.5
0 

0.7
5 

0.2
0 

0.4
0 

0.6
7 

0.0
1 

0.2
7 

0.5
3 

0.2
0 

0.4
7 

0.7
3 

0.2
2 

0.4
3 

0.7
1 

0.2
2 

0.5
0 

0.7
9 

0.4
7 

0.7
3 

1.0
0 

0.0
7 

0.3
1 

0.5
6 

0.2
7 

0.5
3 

0.8
0 

0.0
1 

0.0
7 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.2
5 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A8 
0.0
7 

0.3
1 

0.5
6 

0.0
1 

0.2
0 

0.4
7 

0.0
1 

0.2
7 

0.5
3 

0.2
0 

0.4
7 

0.7
3 

0.2
2 

0.4
3 

0.7
1 

0.2
2 

0.5
0 

0.7
9 

0.4
7 

0.7
3 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
7 

0.5
3 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
5 

0.5
0 

0.2
5 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A9 
0.0
7 

0.3
1 

0.5
6 

0.0
1 

0.2
0 

0.4
7 

0.0
1 

0.2
7 

0.5
3 

0.2
0 

0.4
7 

0.7
3 

0.2
2 

0.4
3 

0.7
1 

0.2
2 

0.5
0 

0.7
9 

0.4
7 

0.7
3 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.2
0 

0.4
7 

0.7
3 

0.0
1 

0.2
5 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.2
5 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A1
0 

0.4
4 

0.6
9 

0.9
4 

0.6
0 

0.8
7 

1.0
0 

0.4
0 

0.6
7 

0.9
3 

0.3
3 

0.6
0 

0.8
7 

0.4
3 

0.7
1 

1.0
0 

0.2
9 

0.5
7 

0.8
6 

0.4
7 

0.7
3 

1.0
0 

0.3
1 

0.5
6 

0.8
1 

0.4
7 

0.7
3 

1.0
0 

0.5
0 

0.7
5 

1.0
0 

0.4
4 

0.6
9 

0.9
4 

0.5
6 

0.8
1 

0.9
4 

0.0
1 

0.0
1 

0.0
2 

A1
1 

0.2
5 

0.5
0 

0.7
5 

0.2
7 

0.5
3 

0.8
0 

0.2
0 

0.4
7 

0.7
3 

0.2
7 

0.5
3 

0.8
0 

0.2
9 

0.5
7 

0.8
6 

0.2
9 

0.5
7 

0.8
6 

0.4
7 

0.7
3 

1.0
0 

0.0
7 

0.3
1 

0.5
6 

0.2
7 

0.5
3 

0.8
0 

0.2
5 

0.5
0 

0.7
5 

0.2
5 

0.5
0 

0.7
5 

0.3
8 

0.6
3 

0.8
1 

0.0
1 

0.0
1 

0.0
2 

A1
2 

0.0
1 

0.1
9 

0.4
4 

0.0
1 

0.0
7 

0.3
3 

0.0
1 

0.2
7 

0.5
3 

0.0
7 

0.2
7 

0.5
3 

0.0
1 

0.2
2 

0.5
0 

0.0
8 

0.3
6 

0.6
4 

0.0
7 

0.3
3 

0.6
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
0 

0.4
7 

0.0
1 

0.2
5 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
5 

0.5
0 

0.0
2 

0.0
4 

1.0
0 

A1
3 

0.0
1 

0.1
9 

0.4
4 

0.0
1 

0.2
0 

0.4
7 

0.0
1 

0.2
7 

0.5
3 

0.0
7 

0.2
7 

0.5
3 

0.0
1 

0.2
2 

0.5
0 

0.0
8 

0.3
6 

0.6
4 

0.0
7 

0.3
3 

0.6
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
7 

0.5
3 

0.0
1 

0.2
5 

1.0
0 

0.0
1 

0.2
5 

0.5
0 

0.0
1 

0.2
5 

0.5
0 

0.0
2 

0.0
4 

1.0
0 
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Table A8. Weighted normalized fuzzy decision matrix. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u 

A1 
0.0
0 

0.1
3 

0.3
8 

0.0
0 

0.0
8 

0.3
0 

0.0
6 

0.3
3 

0.6
0 

0.0
4 

0.1
5 

0.4
7 

0.0
0 

0.0
7 

0.2
9 

0.0
9 

0.3
2 

0.7
0 

0.2
6 

0.6
0 

0.9
4 

0.0
0 

0.1
4 

0.4
1 

0.0
0 

0.1
5 

0.4
3 

0.0
0 

0.1
0 

0.3
3 

0.0
0 

0.0
0 

0.1
3 

0.1
0 

0.2
6 

0.5
0 

0.0
1 

0.0
2 

0.0
5 

A2 0.0
8 

0.2
8 

0.6
1 

0.0
0 

0.1
8 

0.5
0 

0.3
0 

0.6
7 

0.9
3 

0.0
4 

0.2
0 

0.5
3 

0.0
0 

0.1
1 

0.3
6 

0.0
9 

0.3
2 

0.7
0 

0.2
6 

0.6
0 

0.9
4 

0.0
4 

0.2
1 

0.5
1 

0.0
4 

0.1
2 

0.3
8 

0.0
5 

0.2
2 

0.7
5 

0.0
0 

0.0
6 

0.2
5 

0.1
0 

0.2
6 

0.5
0 

0.0
1 

0.0
2 

0.0
4 

A3 
0.1
7 

0.4
7 

0.7
5 

0.0
0 

0.1
8 

0.5
0 

0.3
5 

0.7
3 

1.0
0 

0.1
3 

0.4
0 

0.8
0 

0.0
0 

0.1
4 

0.4
3 

0.1
1 

0.3
6 

0.7
5 

0.2
6 

0.6
0 

0.9
4 

0.0
6 

0.2
5 

0.5
1 

0.1
1 

0.3
4 

0.7
0 

0.0
5 

0.2
2 

0.5
6 

0.0
0 

0.0
6 

0.2
5 

0.1
9 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
3 

A4 
0.1
7 

0.4
7 

0.7
5 

0.0
0 

0.1
8 

0.5
0 

0.0
6 

0.1
4 

0.4
0 

0.2
0 

0.4
5 

0.8
0 

0.0
1 

0.2
0 

0.5
0 

0.1
3 

0.4
0 

0.8
1 

0.2
6 

0.6
0 

0.9
4 

0.2
4 

0.5
6 

0.8
1 

0.0
4 

0.1
2 

0.3
8 

0.1
0 

0.2
8 

0.7
5 

0.0
0 

0.0
0 

0.1
3 

0.5
6 

1.0
0 

1.0
0 

0.0
1 

0.0
1 

0.0
2 

A5 
0.1
7 

0.4
7 

0.7
5 

0.0
1 

0.2
3 

0.5
0 

0.3
5 

0.7
3 

1.0
0 

0.2
7 

0.6
0 

1.0
0 

0.0
1 

0.2
0 

0.5
0 

0.1
3 

0.4
0 

0.7
5 

0.2
6 

0.6
0 

0.9
4 

0.1
8 

0.4
6 

0.8
1 

0.0
7 

0.2
6 

0.5
4 

0.1
3 

0.3
8 

0.7
5 

0.0
1 

0.2
5 

0.5
0 

0.3
8 

0.7
5 

1.0
0 

0.0
1 

0.0
1 

0.0
1 

A6 
0.0
6 

0.2
5 

0.5
6 

0.0
0 

0.1
3 

0.4
0 

0.1
1 

0.4
0 

0.6
7 

0.1
0 

0.3
5 

0.7
3 

0.0
0 

0.1
3 

0.3
9 

0.0
5 

0.2
4 

0.5
8 

0.2
6 

0.6
0 

0.9
4 

0.0
2 

0.1
8 

0.4
6 

0.0
8 

0.3
0 

0.6
5 

0.0
3 

0.1
9 

0.3
8 

0.0
0 

0.0
9 

0.3
1 

0.1
9 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
4 

A7 
0.0
6 

0.2
5 

0.5
6 

0.0
0 

0.1
0 

0.3
3 

0.0
1 

0.2
7 

0.5
3 

0.1
0 

0.3
5 

0.7
3 

0.0
0 

0.1
1 

0.3
6 

0.0
7 

0.2
8 

0.6
4 

0.2
6 

0.6
0 

0.9
4 

0.0
2 

0.1
8 

0.4
6 

0.0
8 

0.3
0 

0.6
5 

0.0
0 

0.0
4 

0.7
5 

0.0
0 

0.0
6 

0.2
5 

0.1
9 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A8 
0.0
2 

0.1
6 

0.4
2 

0.0
0 

0.0
5 

0.2
3 

0.0
1 

0.2
7 

0.5
3 

0.1
0 

0.3
5 

0.7
3 

0.0
0 

0.1
1 

0.3
6 

0.0
7 

0.2
8 

0.6
4 

0.2
6 

0.6
0 

0.9
4 

0.0
0 

0.1
4 

0.4
1 

0.0
0 

0.1
5 

0.4
3 

0.0
0 

0.1
3 

0.3
8 

0.0
0 

0.0
6 

0.2
5 

0.1
9 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A9 
0.0
2 

0.1
6 

0.4
2 

0.0
0 

0.0
5 

0.2
3 

0.0
1 

0.2
7 

0.5
3 

0.1
0 

0.3
5 

0.7
3 

0.0
0 

0.1
1 

0.3
6 

0.0
7 

0.2
8 

0.6
4 

0.2
6 

0.6
0 

0.9
4 

0.0
0 

0.1
4 

0.4
1 

0.0
6 

0.2
6 

0.6
0 

0.0
0 

0.1
3 

0.7
5 

0.0
0 

0.0
6 

0.2
5 

0.1
9 

0.5
0 

0.7
5 

0.0
1 

0.0
2 

0.0
5 

A1
0 

0.1
1 

0.3
4 

0.7
0 

0.0
1 

0.2
2 

0.5
0 

0.3
0 

0.6
7 

0.9
3 

0.1
7 

0.4
5 

0.8
7 

0.0
0 

0.1
8 

0.5
0 

0.0
9 

0.3
2 

0.7
0 

0.2
6 

0.6
0 

0.9
4 

0.1
0 

0.3
2 

0.6
6 

0.1
5 

0.4
1 

0.8
1 

0.1
3 

0.3
8 

0.7
5 

0.0
0 

0.1
7 

0.4
7 

0.4
2 

0.8
1 

0.9
4 

0.0
1 

0.0
1 

0.0
2 

A1
1 

0.0
6 

0.2
5 

0.5
6 

0.0
0 

0.1
3 

0.4
0 

0.1
5 

0.4
7 

0.7
3 

0.1
3 

0.4
0 

0.8
0 

0.0
0 

0.1
4 

0.4
3 

0.0
9 

0.3
2 

0.7
0 

0.2
6 

0.6
0 

0.9
4 

0.0
2 

0.1
8 

0.4
6 

0.0
8 

0.3
0 

0.6
5 

0.0
6 

0.2
5 

0.5
6 

0.0
0 

0.1
3 

0.3
8 

0.2
8 

0.6
3 

0.8
1 

0.0
1 

0.0
1 

0.0
2 

A1
2 

0.0
0 

0.1
0 

0.3
3 

0.0
0 

0.0
2 

0.1
7 

0.0
1 

0.2
7 

0.5
3 

0.0
4 

0.2
0 

0.5
3 

0.0
0 

0.0
5 

0.2
5 

0.0
3 

0.2
0 

0.5
2 

0.0
4 

0.2
7 

0.5
6 

0.0
0 

0.1
4 

0.4
1 

0.0
0 

0.1
1 

0.3
8 

0.0
0 

0.1
3 

0.7
5 

0.0
0 

0.0
6 

0.2
5 

0.0
1 

0.2
5 

0.5
0 

0.0
2 

0.0
4 

1.0
0 
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