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Uniform product deliveries are required in the ceramic, horticulture and leather sectors 

because customers require product homogeneity to use, present or consume them 

together.  Some industries cannot prevent the Lack of Homogeneity in Products (LHP) in 

their manufacturing processes, hence they cannot avoid non-uniform finished products 

arriving at their warehouses and, consequently, fragmentation of their stocks. Therefore, 

final uniform product amounts do not match planned production ones, which frequently 

makes serving previous committed orders with homogeneous quantities impossible. This 

paper proposes a model-driven decision support system (DSS) to help the person in 

charge of delivery management to reallocate the available real inventory to orders to 

satisfy homogenous customer requirements in a collaborative supply chain. The DSS has 

been validated in a ceramic tile collaborative supply chain. 

Keywords: decision support system, lack of homogeneity in products, delivery 

management, collaborative supply chain 

1. Introduction 

Lack of homogeneity in products (LHP) appears in those industries whose productive 

processes cannot eliminate the heterogeneity of their inputs (i.e., raw material obtained 

from nature). LHP also appears in the productive processes that introduce some 

variability into their outputs due to uncontrolled productive factors, even when their 

inputs are homogeneous (Alemany et al. 2013). LHP may become a considerable 

problem when customers acquire several units of a given product and require product 

homogeneity to use, present, arrange or consume them together in order to avoid 



functional or aesthetical problems.  A slight difference in a part is easily seen in 

products such as parquet strips, leatherwear, floor tiles or pearl necklaces (Alarcón et 

al., 2011).  

Companies with LHP cannot foresee the final characteristics of those products in lots 

defined by the production plan because they cannot prevent non-uniform finished 

products arriving at their warehouses and, consequently, fragmentation of their 

inventories. These companies are obliged to include one or several classification stages 

along the production process. In the classification stage, units of the same product are 

sorted into homogeneous subgroups (subtypes) based on certain attributes (classification 

criteria) that depend on each sector where each subtype includes uniform final products. 

Hence, the products included in each subtype meet customer expectations in terms of 

functional and/or aesthetics homogeneity. In LHP contexts, customer orders 

management becomes more complex and therefore the order promising (OP) process 

plays an important role in this task. The OP process includes the set of business 

activities that are triggered to provide a response to customer order requests (quantity, 

delivery date ...). In this process is necessary to compute if there are enough real or 

planned products available that have not been previously committed (ATP – available to 

promise).  

Traditional ATP assignment systems assume product homogeneity; therefore they allow 

the accumulation of current uncommitted stocks from warehouses (real ATP) and from 

planned amounts (planned ATP) of different manufacturing lots and periods. However, 

companies with LHP obtain non-uniform lots and the real homogeneous quantities 

remain unknown until production has finished. This aspect becomes a problem when 

customer orders should be promised based on the planned ATP quantities where real 

homogenous quantities are not known in advance. This means that, more often than not, 



some ATP-based orders cannot be fulfilled once the production of lots has finished 

because the amount of available homogeneous product does not suffice. This situation 

causes problems in committed orders with immediate delivery dates. For such cases, by 

reallocating the available inventory of each subtype in warehouses (real inventory) 

among all the orders, it is possible to prioritise those orders with immediate delivery 

dates.  

The decision to reallocate current stock to customer orders becomes complicated 

in those companies with lots of orders that have different delivery dates and several 

products in each order (order lines). Furthermore, this situation becomes even more 

complicated in the LHP context given the fragmentation of inventory because several 

subtypes of the same product exist and given the homogeneity requirements imposed by 

the customer. This means having to introduce new constraints when reallocating stock 

to orders.  

Therefore, LHP increases not only the volume of information to be used, but 

also the number of possible combinations when serving orders, and all of them with 

different profits. All these factors complicate the task of obtaining solutions that are not 

just optimum, but also feasible. These additional complexity aspects for reallocating 

stock justify the use of tools to help with decision making; i.e., mathematical 

programming models. The solutions obtained with such tools may help the supply chain 

(SC) minimise the impact of LHP on the customer service level. Hence for the purpose 

of providing support to delivery management tasks, a model-driven decision support 

system (DSS) to optimally reallocate the inventory of homogeneous subtypes to LHP-

characterised promised orders in collaborative make-to-stock (MTS) environments is 

proposed. The model solution provides the orders that can be served with real inventory 



and from which subtype of uniform product they can be delivered, following the 

maximisation of profits and orders completed with earlier delivery dates. 

The rest of the paper is outlined as follows: Section 2 includes a review of the 

relevant literature relating to the paper. Section 3 describes the developed model-driven 

DSS for delivery management in collaborative SCs with LHP. Section 4 presents the 

DSS application to a collaborative ceramic tile SC case. Finally, Section 5 offers the 

main conclusions and future research lines.  

2. Literature review 

The creation of SCs has offered firms new business opportunities based on 

collaboration and coordination. Multiple benefits have been identified thanks to 

collaboration and coordination in SCs (Bititci et al., 2007).  

For collaboration to be effective, it is necessary to adapt the distinct SC 

processes; for instance, the Demand Forecasting process (Poler et al., 2008) , the 

Demand Management process (Abid et al., 2004) or the Reverse Logistic (Hernandez et 

al., 2010). In the Demand Management domain, the Order Promising Process (Abid et 

al., 2004) and the ATP allocation are extremely important matters.  

In the short term, the customer orders previously committed by ATP allocation 

should be completed for delivery in order to meet the promised due date. Yet owing to 

unforeseen events, there may not be enough available stock in the right quantities to 

cover these orders and to meet the promised due dates. In order to find a satisfactory 

solution for both customers and SC, some shortage planning models (Pibernik 2006, 

Zschorn 2006) have been developed. Indeed, shortage planning deals with the activities 

to be accomplished should stock not be available and includes certain decisions, like 

customer negotiation (Framiñán and Leisten, 2009),  outsourcing (Bhakoo et al., 2012) 

or substitutive products (Balakrishnan and Geunes, 2000). 



Nonetheless, despite collaboration being important in the order management, 

very few works have addressed this issue (Alemany et al. 2008, Alarcón et al. 2009 ), 

perhaps due to the added complexity that coordination and collaboration entail. This 

complexity may be further complicated if, besides, the OP Process must consider LHP 

problems (Alarcón et al., 2011). In such cases, the vast quantity of up-to-date 

information to be processed, and in real time, plus the swift, reliable requirements 

involved in replying to customers, render the use of decision-making tools, like DSSs, 

virtually compulsory. 

DSSs can be developed so they can utilise knowledge and handle knowledge 

sources as effectively as possible (Kubat et al., 2007). One important advantage of 

DSSs is that the Decision-Maker does not need to understand the complexities of 

mathematical modelling (Gomes da Silva et al., 2006). The capacity of DSSs to be able 

to dynamically respond to changes and to communicate with the affected SC nodes 

could also be stressed, and is a basic requirement for SC collaboration to work (Jagdev 

and Thoben, 2001) and the technological advances in the Internet make available these 

collaborative DSS (Boza et al., 2010). 

Although relevant research has been done on DSSs in relation to topics such as 

order planning (Azevedo and Sousa, 2000), order management (Abid et al., 2004) and 

shortage planning (Okongwu et al., 2012), to our knowledge, there are no works that 

propose mathematical programming models either in isolation or within the DSS 

framework, which address reallocating inventories for shortage planning in 

collaborative contexts with LHP. Thus there is a gap in the literature which justifies the 

proposal set out in the next section.  



3. Model-driven DSS architecture for collaborative delivery management in 

SCs with LHP 

This section not only describes the context and problems involved in delivery 

management in SCs with LHP, but proposes their management within a collaborative 

framework. Then, it identifies LHP stock reallocation as a solution for shortage 

situations when delivering orders and proposes a mathematical programming model 

precisely for this purpose integrated into a DSS.  

3.1. Context: towards a new collaborative framework 

The physical SC configuration is assumed to be composed of three kinds of nodes: 

several production plants; one central warehouse; several selling points (Figure 1). On 

the one hand, production plants manufacture in lots following an MTS strategy. All the 

products may be processed in any production plant and, owing to LHP, each 

manufactured lot of a given product may give rise to different product subtypes of this 

product. Once classified, quantities of the same subtype are placed into the central 

warehouse with other equal subtypes. 

Customers place orders at selling points (SPs), while orders to be dispatched and 

delivered to each SP are prepared in the central warehouse. There are two kinds of SPs 

(Figure 1); those belonging to own enterprise selling networks (own selling points – 

OSPs); other SPs that belong to the independent selling network (independent selling 

points – ISPs). These ISPs also commercialise other products from other SCs. 

The initial relation of ISPs with the rest of the SC is limited to orders delivery. In order 

to avoid problems with customers owing to delays or failures in supply, ISPs tend to 

outsize orders and request an earlier delivery date to that agreed on with the customer. 

Indeed one usual practice consists in grouping orders, which entails having to deliver 



larger homogeneous quantities than those each customer actually ordered at ISPs. This 

makes inventory allocation a complex issue because, if the LHP is taken into account, 

then the larger the amount of homogeneous units required, the more difficult it is to 

serve the order. These ISPs practices generate reserves of “fictitious” inventory and 

leave a larger amount of product unavailable for OSPs, which are obliged to delay due 

dates, which worsens customer service. These practices involve significant drawbacks 

for the SC as a whole.  

‘Insert Figure 1 here’ 

In order to improve this situation, greater collaboration of ISPs and the rest of 

the SC is considered necessary. That is, moving towards a collaborative SC where 

entities agree on a set of commonly defined objectives, and use their complementary 

assets to gain long-term competitive advantage (Lejeune and Yakova, 2005). Along 

these lines, it is worth bearing in mind the determinant role of collaboration and 

coordination in improving the SC’s logistic processes; for instance in Lambert and 

Cooper (2000), Romano (2003), Holweg and Pil (2008), or in the many works cited in 

the review by Arshinder et al. (2008). 

According to (Akkermans et al., 2004), it is important that SC members share 

information, basically on current orders, the production status, plans and forecasts. In 

line with this, the proposed new collaborative framework is based on the ISPs’ 

increased trust in the SC and on the improved information flow which allows the central 

warehouse to obtain real and accurate knowledge on the orders (quantities and due 

dates) managed at the ISPs. Within this new collaborative framework, ISPs share 

information and the central warehouse can centralise decision making about the 

allocation and reallocation of stocks to orders coming from the OSPs and ISPs, which 



may be considered the maximum degree of collaboration (Alemany et al., 2011) to help 

achieve the highest level of customer service. 

In this way, and if required, with the new DSS proposed, it is possible to use the 

products reserved by ISPs to cover more urgent orders from OSPs, and vice versa.  This 

has important managerial implications; this new framework of relations based on trust 

in coordination and collaboration permits ISPs to be completely integrated into the SC 

as a whole. 

The following section describes the mixed integer linear programming model 

proposed for stock reallocation, which is used by the DSS should there be shortages. 

3.2. Mathematical Programming Model for LHP stock reallocation (SR-LHP) 

This section presents the main characteristics, assumptions and limitations of the LHP 

stock reallocation problem. Then, the mathematical programming model proposed by 

the authors to solve it is described. The components of the mathematical programming 

model are introduced along with the problem presentation to facilitate the later model 

formulation understanding. The nomenclature used for the SR-LHP-1 model appears in 

Figure 2. 

‘Insert Figure 2 here’ 

As planned production lots are manufactured and received in the central warehouse, 

they arrive classified into the corresponding subtypes. At this time, checks are made to 

see if there is a sufficient amount of the uniform subtypes obtained to serve the 

promised orders. Owing to LHP, it is quite usual that all orders with immediate delivery 

dates cannot be completely served with the reserved stock because the obtained amount 

of the different quantities of uniform products differs from those planned, so there is not 

enough to complete all them. Due to manufacturing lead times, it is not possible to 



obtain new production lots on time in order to complete these orders. An alternative to 

avoid or minimise delays due to LHP as much as possible consists in reallocating the 

current inventory of each subtype (b) of each product (k) in the warehouse (qkb) from 

orders with no immediate delivery dates to those with immediate delivery dates. When 

reallocating the LHP current stock and preparing orders for delivery, the following 

assumptions and limitations should be considered:  

• Each customer order i is composed of several order lines l. For each order line l, the 

quantity of a specific product k in order i (dkli) is known. All the lines of the same 

order have the same due date, implying the time bucket when the customer requests 

goods to be received. Due to transportation times, the order may have to be delivered 

before the due date, thus rendering it necessary to differentiate between due dates 

and delivery dates (fdi).   

• Orders with immediate delivery dates are those with a delivery date (fdi) lower than 

the delivery horizon (he), i.e., fdi<=he. The delivery horizon (he) represents a period 

length immediately after the current point of time needed to prepare orders to be 

immediately delivered. This concept helps identify the orders that should be prepared 

immediately for delivery (I(he)) in order to meet promised customer due dates, and 

should consequently be completed with the current LHP stock because there is no 

time to launch new production lots. 

• The overall customer orders considered when reallocating the current LHP stock are 

the committed orders with a delivery date within the delivery horizon (fdi<=he), and 

other orders with some order lines reserved with the current LHP stock with a 

delivery date within the reallocation horizon (h). 

• Partial deliveries are not allowed; that is, all the order lines of an order are jointly 

served.  



• The requested quantity of a certain product in an order line (dkli) should be served 

through homogeneous units of this product. Hence, each order line is completed with 

a unique subtype (b) and it is not possible to mix different subtypes to serve an order 

line in order to guarantee homogeneity.  

Given the huge volume of orders, solving the above reallocation problem becomes a 

very difficult and consuming time task. In this context, mathematical programming 

models have proven useful tools. In this paper, the authors propose a mixed integer 

programming model (MILP) to support the decision-making process of reallocating 

LHP stock to orders with immediate delivery, dubbed SR-LHP-1 (Stock Reallocation-

LHP-1), as the core of a more sophisticated DSS. The SR-LHP-1 model reallocates 

available LHP stock among all the input orders by following two objectives: 1) 

maximise the profits of served orders with the LHP stock; 2) maximise the number of 

orders served with early delivery dates. The SR-LHP-1 model output provides the 

decision maker with already committed orders i that must be served from the LHP stock 

(Yi=1); for all their order lines l, the specific subtype b of product k from the current 

LHP inventory is used (Uklib=1). The SR-LHP-1 model also computes each subtype’s 

remaining current inventory for all the products that has not been reserved by any order 

after reallocation, thus it becomes available to promise other customer orders (ATP0kb). 

The model formulation proposed to reallocate the current inventory to immediate 

delivery orders is as follows:   

Objective function: 

As previously noted, the objective function includes two objectives. The first 

objective (1) aims to maximise the total profits obtained from reallocations because 

only those orders finally reserved with the current LHP stock (Yi=1) contribute to the 

total profits.  
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The second objective (2) attempts to maximise the number of orders reserved from the 

current inventory with earlier delivery dates, which is the equivalent to maximising the 

total sum of the difference between the reallocation horizon and the delivery date, 

because if h is a fixed quantity, then the lower fdi, the greater the h-fdi difference. Based 

on this objective, priority is given to those orders with earlier delivery dates despite 

their associated profits because it is assumed that for those with later delivery dates, 

there is more flexibility to find other solutions to serve them (i.e., modifying the master 

plan with additional production lots). In order to avoid the SR-LHP-1 model not serving 

those orders with maximum delivery dates (fdi=h), and as their contribution to the 

maximisation of z2 is zero (h-fdi=0), parameter ε (a positive value lower than the unit) is 

used to induce the model to serve as many orders as possible. Through parameter ε, the 

above orders also contribute to the maximisation of z2. Therefore, if there is enough 

LHP stock, the solution first chooses to serve them (Yi=1).  
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To avoid allocating current LHP stock to orders with very high associated profits, but 

also very long delivery dates before other orders with lower associated profits, but with 

earlier delivery dates, the simultaneous consideration of both objectives is proposed. To 

that end, they are placed together in a single objective by the complete aggregation 

procedure, which consists in the sum of the two objectives according to weights p1 and 

p2. These weights are assigned by the decision maker in such a way that the heavier the 

weight, the greater the importance for the decision maker. As both profits and delivery 

dates are terms of a very different significance, it is necessary to grade them so that both 



objectives fall within a comparable range which, in this case, is [0,1]. Finally, the 

overall objective function appears as in (3).  
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Constraint (4) forces orders with delivery dates within the delivery horizon to be 

served. That is, absolute priority is given to reserve the current available LHP stock for 

these orders. 

Constraints (5) ensure that the orders with a number of reserved lines below its 

number of order lines are not served (Yi=0). Through these constraints, the orders 

whose lines have all been allocated can or cannot be served (Yi=0,1). Therefore, 

additional constraints (6) are necessary to force orders whose order lines have all been 

completed with the current LHP inventory to be served (Yi=1). Only these orders 

contribute to the objective function. Furthermore, Constraints (6) act in such a way that 

should an order not be served (Yi=0), none of its order lines are reserved with the LHP 

stock.  



Constraints (7) represent balance equations by ensuring that the amount of each 

subtype b of product k allocated to the different order lines, plus the amount not 

allocated (uncommitted: ATP0kb), must equal the amount of that product subtype 

available in the warehouse. As variable ATP0kb is non-negative, the allocated LHP stock 

can never exceed the initial available quantity (qkb) in the warehouse.   

Constraints (8) force each single order line to be completed only with a product 

subtype. This constraint ensures the required product uniformity in LHP environments, 

and along with considering several subtypes of each product, it allows LHP 

characteristics to be properly modelled. 

Constraints (9) define decision variables Uklib and Yi as binary variables.  

Finally, Constraints (10) indicate that the remaining current stock of product k 

and subtype b not allocated to any order is a continuous variable that should be non-

negative (ATP0kb).  

Owing to Constraint (4), the model solution may not be feasible if there is not 

enough uniform product available in the warehouse to cover all the order requirements 

with immediate delivery dates. In this case, it is possible to remove Constraint (4) from 

the model SR-LHP-1 and to solve the resulting model again, dubbed as SR-LHP-2. This 

new SR-LHP-2 model always provides the decision maker with a feasible solution that 

also gives priority to orders with earlier delivery dates.  

3.3. DSS architecture  

To facilitate the utilisation of the above models by managers and to provide additional 

functionalities, a model-driven DSS is proposed (SR-LHP-DSS). In this section, the SR-

LHP-DSS architecture for the delivery management of LHP SCs is described in 

accordance with the modules presented in Figure 3 (extraction, pre-processing, solver, 

post-processing and analysis).  



Extraction: 

The input data for SR-LHP models (parameters, indices and sets) originate from 

different information systems belonging to the company and the SPs. In the proposed 

SR-LHP-DSS, information about customer orders is extracted from sales information 

systems. In the new collaborative framework, the ISPs provide the DSS with the real 

orders placed by customers (real quantities and due dates) instead of consolidating all 

the orders, enlarging them and requesting an earlier delivery date. For SCs with LHP is 

very important to know the exact order size to facilitate the achievement of the 

homogeneity requirement. Sharing information among collaborative SC members is 

essential for better decision making. This information includes: the delivery date of each 

order, the profits obtained and the amount of product requested for each order line. 

Information about the amounts of products and their subtypes is obtained from the 

information systems of each production plant and  the transport time is obtained from 

the logistics information system.   

‘Insert Figure 3 here’ 

Pre-processing: 

Before running the model, it is necessary to perform previous data processing. This 

involves calculating the number of order lines in each order (nli) , the number of orders 

whose delivery date is within the delivery horizon( nI(he)) , the delivery date of each  

order  from the central warehouse (fdi) computed as the difference between the order 

due date (fei) and transport time (tsp) from the central warehouse to the SP (fdi=fei-tsp), 

the maximum (smax) and minimum (smin)  profit of the orders processed to scale profit 

and, finally, the total amount of subtypes of products as the sum of the amounts of 

subtype (b) of products (k) in the production plants (p): ∑=

p

kbpkb qpq . 



Solver: 

Before reaching the solving stage, the decision maker should introduce the weights 

allocated to each objective considered. Firstly, the SR-LHP-1 model is solved: if a 

solution is obtained, this means that all the orders in the delivery horizon can be served. 

If an unfeasible solution arises, model SR-LHP-2 is run, which always provides a 

feasible solution but, in contrast, some orders are not served.  The solution obtained 

includes information about if  one order will be completely reserved or not, the subtype 

of product be reserved for each order line and the amount of the physical stock of each 

subtype of product be unreserved. The decision maker may confer different values to 

the weights of each objective and can run the corresponding model several times 

generating a “what-if” scenario.  

Post-processing: 

Post-processing is proposed to provide additional information by comparing the 

different solutions obtained from modifying the weights allocated to each objective. The 

SR-LHP-DSS calculates specific performance parameters for each solution (Figure 4), 

which allow the decision maker to compare them.  

‘Insert Figure 4 here’ 

Analysis: 

The analysis stage must enable the decision maker to consult the results of the model in 

as much detail as possible for each solution generated. Through this module, the 

decision maker may analyse how sensitive the solution is to these weights and to 

compare them with other solutions.  

To this end, having executed the model and obtained the performance parameter 

values, the distance of these parameters to the best value of the performance parameters 



obtained in the solutions to that time is measured and saved from each parameter in the 

post-treatment stage. This stage involves calculating not only the best value of all the 

values saved for each parameter until that time (Figure 5), but also deviation in terms of 

the best values for each solution and for each parameter of the solution (Figure 6).   

‘Insert Figure 5 here’ 

‘Insert Figure 6 here’ 

Decision: 

As explained, during the stock reallocation process, the information shared among 

collaborative SC members is used to obtain a solution. Therefore from a collaborative 

perspective, this aspect facilitates better decision making. However, it is possible to 

execute the decision process should unforeseen events occur (event-driven); i.e., arrival 

of urgent orders. Finally, based on the analysis of the results, the decision maker 

chooses a solution from the existing ones for being implemented. 

4. SR-LHP-DSS validation: case of a ceramic tile supply chain  

The model-driven SR-LHP-DSS is validated by developing a prototype for a real 

ceramic tile SC. The SR-LHP-DSS results are compared with the manual stock 

reallocation process carried out by the company. For confidentially reasons, a factor is 

applied to the overall profits in both cases.    

The ceramic tile SC includes three production plants, a central warehouse and 28 SPs, 

of which 11 are OSP and 17 are ISP. The LHP in the ceramic SC brings about changes 

in the tone and gage of ceramic tiles. As customers require the same tone and gage in 

their orders, product subtypes (combination of product-tone-gage) are identified, stored 

and managed separately in the central warehouse. Besides, orders are prepared in this 



central warehouse to be dispatched and delivered to the SPs (OSP and ISP) where final 

customers place their orders. 

Currently, the ATP policy is First Come - First Committed; i.e., orders are 

committed as they arrive. Due to this ATP commitment policy and the own LHP 

effects, the person in charge of deliveries usually needs to reallocate inventories should 

stock shortage take place to complete orders for immediate delivery. Although the 

person in charge of managing deliveries has a computer tool that quickly locates 

product lines for which there is not enough stock (incomplete lines), finding a new 

solution to complete these lines through the manual reallocation of current stock is very 

time-consuming, and it is even possible that this solution does not exist.  

Data on the manual stock reallocation carried out by the ceramic SC are 

captured to compare them with the SR-LHP-DSS solutions. The considered reallocation 

horizon is 1 year.  This manual process is performed with 2,274 orders in the planning 

horizon, with 9,389 lines and an average of 4.12 lines per order, a maximum of 108 

lines and a minimum of 1 line per order. The profit made with these orders is 

€8,648,346.05. However, there are 934 orders in the order book within the delivery 

horizon (2 weeks) with a total profit of €4,808,518.84, and the manual reallocation 

completes 787 of these orders, implying a profit of €3,237,986.38.  

  The SR-LHP-DSS helps managers complete those orders with immediate 

delivered, thus fulfilling order delivery dates in the collaborative SC. The technologies 

used to construct the SR-LHP- DSS prototype are: Java v7 and the ECLIPSE platform 

to develop dialog components; MPL 4.2 and the solver CPLEX to translate the 

mathematical programming models to a readable-machine format; a Microsoft Access 

database to store the corresponding data. 



The extraction and pre-processing processes are carried out to obtain the input 

from the ceramic tile information systems in order to provide the SR-LHP models with 

the same data used in the manual process. Next, the solver is executed to evaluate these 

data in three solution scenarios generated through different objective function weight 

definitions (Figure 7).  

‘Insert Figure 7 here’ 

With these input data, the SR-LHP-1 model solution proves unfeasible for the all 

scenarios because there is not enough homogeneous stock to serve all the order lines in 

the horizon, so it is not possible to fulfil Constraint [4] of this model. Hence, the SR-

LHP -2 model is executed and optimal solutions are found. For this second model, the 

computational time of 4.62 seconds spent to find the optimal solution of W_B case 

shows the model’s utility for real size problems. 

The interface design for capturing the performance parameters of the solutions 

obtained by the SR-LHP DSS for the various scenarios in the post-treatment phase are 

shown in the following screen (Figure 8). As illustrated in Figure 8, we find: the W_DD 

scenario, which produces optimal with early delivery dates, completes 1,857 orders with 

a profit of €5,338,811.74; the W_B scenario obtains the same number of completed 

orders, but these orders provide more profit (€5,438,283.74); finally, the W_P scenario 

completes 1,774 orders (4.47% less than the W_DD scenario), but its profit is 

€5,546,099.32 (3.88% more than the W_DD scenario). Thus, the W_P scenario 

completes fewer orders than the W_DD scenario, but it chooses orders that provide a 

higher profit. After analysing these findings, as expected, the weights assigned to each 

objective affect the obtained results, thus validating the proposed SR-LHP models. 

Furthermore, the possibility for the decision maker to generate multiple solutions by 



changing the objective weights provides a “what-if” scenario, which has proved to be 

one of the main functionalities for each DSS.   

 ‘Insert Figure 8 here’ 

The decision maker may also be interested in obtaining more details of the 

results for the delivery horizon because he/she requires an immediate decision (profits, 

orders completed and uncompleted in he in Figure 8). The validation allows the 

comparison of the DSS results obtained by the manual reallocation process carried out 

in the delivery horizon by the company.  Figure 9 offers this  comparison using the 

different objectives weights.  

‘Insert Figure 9 here’ 

As observed in Figure 9, manual reallocation completes 787 of the 934 customer 

orders in the delivery horizon, with a profit of €3,237,986.38. However, the SR-LHP-

DSS reallocation obtains more profit than the manual one for all the scenarios. The W-

DD scenario includes the largest number of completed orders (832), that is 5.72% more 

orders than the manual reallocation, as well as 9.32% more profit than the manual 

reallocation. The W-B scenario completes fewer orders than the previous scenario 

(824), but obtains more associated profits (10.27% more than the manual reallocation). 

The W-P scenario completes the smallest number of orders (766), but makes the most 

profits (12.06% more than the manual reallocation). The superiority of the SR-LHP-

DSS results in all the generated scenarios as compared to the manual reallocation 

procedure, plus the reduced solution time of the SR-LHP models for real cases, prove 

the validity of DSS and its convenience in real problems. 

Finally, based on the DSS analysis functionality, the decision maker must decide 

on satisfying more customers (more completed orders) - the solutions have many orders 



not completed - or gaining more benefits not only during the current time period (he), 

but also possibly in the future (h).  

5. Conclusions and future research  

Due to LHP, differences between planned homogeneous quantities and the 

finally manufactured ones are frequent, which made impossible to serve all promised 

orders on time with the initial ATP allocation. This paper describes a model-driven DSS 

to overcome shortage situations during the delivery management of customer orders for 

collaborative SCs with an MTS strategy characterised by LHP. The DSS core is 

composed by two novel mathematical programming models with multiple weighted 

objectives to support LHP-stock reallocations. To facilitate mathematical models 

utilisation by managers, different functionalities are included in the DSS. Along these 

lines, and before making a definitive decision, the decision maker can perform different 

“what-if” simulations (scenarios) by modifying the weight allocated to each objective, 

and by assessing and comparing different solutions based on diverse performance 

parameters.  

This model-driven DSS has been validated in a collaborative ceramic SC where 

LHP materialises in the form of different tones and gages in ceramic tiles. The stock 

reallocations obtained from the DSS in various scenarios have been compared with the 

ceramic tile company’s current procedure. The results demonstrate that the DSS 

outperforms the manual procedure employed by the ceramic company for all the 

scenarios generated.  

Therefore, the main implications for managers deduced from its use are the 

following:   

1) Considerable time saving in solving the reallocation problem and better quality of 

solutions obtained; the DSS immediately allows knowing if there is enough 



homogeneous available inventory to deliver all the orders within the delivery horizon 

and, if so, it provides the optimal solution. When no feasible solution exists, the DSS 

allows determining the orders to be allocated with the homogeneous inventory to obtain 

an optimal solution. 

2) Support for generating different scenarios and optimal solutions in a user friendly 

way; by changing the weights of the objectives, the DSS generates as many solutions as 

the decision maker desires. 

 3) Support for analysing and comparing the different solutions in order to choose the 

most satisfactory one.  

  

Furthermore, the DSS also favours the development of a new collaborative 

context based on greater trust through information sharing and a centralized decision-

making. In this new context, ISPs no longer transfer information on consolidated orders, 

which are often inflated, to the central warehouse, but information about their 

customers’ real orders. This information is incorporated into the DSS for supporting the 

centralized decision making process of reallocating available homogeneous stocks to 

orders coming from both, the OSPs and ISPs, when shortage situations occurs. 

From a practical point of view, the real customers’ orders are much smaller than 

those consolidated by the ISPs that makes easier to find homogeneous units to complete 

them. Because shortage situations are frequent due to LHP, better reallocation of 

available stock is made to serve more priority orders. All these aspects will improve SC 

efficiency by reducing SC inventory holding costs, stocks fragmentation and increasing 

the customer service level.    

Future research lines should consider other objectives derived by applying the 

SR-LHP-DSS to other sectors. Furthermore, a goal programming model that provides 



the decision maker with non-dominated solutions should be included in the SR-LHP-

DSS for future implementations. Finally, in order to minimise future stock reallocation 

due to LHP as much as possible, a knowledge database that collects past patterns of 

homogeneous quantities in production lots can be designed to predict homogeneous 

outcomes. This information can be used in production planning to define lot sizes and 

can be used later during the OP process as a proactive action to LHP.  
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Figure 1. The Physical SC Configuration and the DSS Collaboration Framework 
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Figure 2. Nomenclature  

Indices Sets 

i each order with a delivery date within the  horizon 

(i=1...I) 

l  each order line that makes up the orders being 

considered (l=1...L) 

k  each existing product in considered orders (k=1...K) 

b each existing product subtype in considered products 

(b=1...B) 

 I(he) the  set  of orders whose delivery date is 

within the delivery horizon 

L(i,k) the set of order lines l, which contain product 

k and correspond to order i. 

 B(k)  the  set of existing subtypes of product k 

K(i)  the  set of products k which are included in 

order i 

Parameters 

p1 A specific weight that the decision-maker confers to the profit in the objective function 

p2 A specific weight that the decision maker confers in order to serve orders with earlier delivery dates in the 

objective function 

si  Profits from order i 

h Reallocation horizon. This is the delivery deadline date which determines the orders to be considered by the 

model; orders whose delivery dates are equal to or before the horizon 

 Orders delivery horizon. This date determines which orders should be prepared in the warehouse to be 

subsequently dispatched and delivered to the customer: orders whose dispatch dates are equal to or before 

the delivery horizon 

fdi Dispatch date of order i from the central warehouse 

nI(he)         Number of orders whose dispatch date are within the delivery horizon ( ). 

nli Number of order lines that order i has 

dkli The ordered amount of product k, in line l of order i 

qkb The amount of product k and subtype b available in the warehouse 

smax               Maximum of . 

smin Minimum of . 

ε A positive and lower value than the unit  
Decision variables  

Yi Binary variable that takes a value of 1 if order i is completely reserved (all its L(i) lines are reserved with 

the real  inventory), and a value of 0 otherwise  

Uklib      Binary variable that takes a value of 1 if line l of order i has a current inventory reserve of product k and 

subtype b and a value of 0 otherwise  

 ATP0kb The real inventory amount of product k and subtype b, which is not reserved after having reassigned the 

current inventory and, therefore, it remains available to compromise with other orders. 
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Figure 3. The SR-LHP-DSS architecture 

 

 

 

 

Figure 4. The parameters obtained with the post-treatment 

 



z(j) 
Objective function value in 
solution “j”.   

SO(j)= 

 

Number of orders 
completed in 
reallocation horizon 
(h) in solution “j”.   

p1(j) 

Weight conferred by the 
decision maker to the 
profits in the objective 
function in solution “j”.   

NSO(j)= 

I-  

Number of orders to 
still be completed in 
reallocation horizon 
(h) in solution “j”.   

p2(j) 

Weight conferred by the 
decision maker to serve 
orders with an earlier 
dispatch date in the 
objective function in 
solution “j”.   

SO he (j)= 

 

Number of orders 
completed in the 
delivery horizon (he) 
in solution “j”.   

z1(j) 

The objective function 
value in relation to the 
profits of completed orders 
in reallocation horizon (h) 
in solution “j”.   

NSO he (j)= 

 

Number of orders to 
still be completed in 
the delivery horizon 
(he) in solution “j”.   

z1he(j) 

The objective function 
value in relation to the 
profits of completed orders 
in delivery horizon (he) in 
solution “j”.   

ATP0max(j)k= Maximum amount not 
assigned from the real 
inventory for product 
k in solution “j”.   

z2(j) 

The objective function 
value in relation to the 
delivery dates in 
reallocation horizon (h) in 
solution “j”.   

ATP0min(j)k=

 

Minimum size of that 
which has not been 
assigned from the real 
inventory for product 
k in solution “j”.   

z2he(j) 

The objective function 
value in relation to the 
delivery dates in delivery 
horizon (he) in solution “j”.  

ATP0med(j)k=

 

Average size of that 
which has not been 
assigned from the 
current inventory for 
product k in solution 
“j”.   
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Figure 5.  Calculation of the best values of each parameter in the post-treatment of all 

the saved solutions j.  



 Maximum value of the objective function of 
all the saved solutions j 
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=  Maximum value of the objective related to 
the profits of all the saved solutions j in the 
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)](2[z2max jzMax
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=  Maximum value of the objective related to 
the delivery date of all the saved solutions j 
in the reallocation horizon (h) 
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=  Maximum value of the objective related to 
the profits of all the saved solutions j in the 
delivery horizon (he)  
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=  Maximum value of the objective related to 
the delivery date of all the saved solutions j 
in the delivery horizon (he) 
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saved solutions j in the reallocation horizon 
(h) 
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Figure 6.  Calculation of the deviations for each parameter and solution in relation to the 

best values of each parameter in the post-treatment.  
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Figure 7: Scenarios definition for the SR-LHP DSS 



Solution Name 
Weights 

Profits  (p1) Delivery Date (p2) 

(W-DD)    Weight in delivery dates 0 1 
(W-B)       Weights balanced 0.5 0.5 
(W-P)       Weight in profits 1 0 
 

 Figure 8. The performance parameter values for W_DD, W_B and W_P. 

 

 

Figure 9. The manual and SR-LHP-DSS reallocations inside he. 

Orders 

Completed 

inside h e

Manual & DSS 

Difference
Profits

Manual & DSS 

Difference

Company Manual 787 --- 3,237,986.38 € ---

W_DD 832 5.72% 3,539,720.29 € 9.32%

W_B 824 4.7% 3,570,618.21 € 10.27%

W_P 766 -2.67% 3,628,407.22 € 12.06%

DSS Scenarios

 

 


