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Geometric Properties and Continuity of the Pre-duality

Mapping in Banach Space

Z.H. Zhang∗, V. Montesinos†, C.Y. Liu‡, and W.Z. Gong§

Abstract

We use the preduality mapping in proving characterizations of some geometric
properties of Banach spaces. In particular, those include nearly strongly convexity,
nearly uniform convexity —a property introduced by K. Goebel and T. Sekowski—,
and nearly very convexity.

1 Introduction

Let (X, ∥ · ∥) be a Banach space. The duality mapping D : SX → P(X∗), where SX∗ is

the unit sphere and P(X∗) is the family of all subsets of X∗, is a multivalued mapping

defined by D(x) := {f ∈ SX∗ : f(x) = 1} for x ∈ SX . Geometric properties of the norm

have been characterized in terms of the continuity of this mapping or of its selectors.

For example, the norm ∥ · ∥ is Gâteaux (Fréchet) differentiable at x0 ∈ SX if and only

if every selector of the duality mapping is norm-weak∗-continuous (respectively, norm-

norm-continuous) at x0 (see, e.g., [?, Theorems II§1.1 and II§2.1]; see also [?]).

The purpose of this note is to complete some previous results by characterizing some

other geometric properties of Banach spaces, this time in terms of the so-called pre-

duality mapping. This multivalued mapping, denoted by D−1 for obvious reasons, sends

f ∈ S0(X
∗) (where S0(X

∗) denotes the subset of SX∗ consisting of all functionals that

attain their supremum on BX) to the set {x ∈ SX : f(x) = 1}. Predecessors of the

results here, formulated in terms of the duality mapping are, e.g., in [?], and of the

pre-duality mapping D−1 : S0(X
∗) → SX , in [?].
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The geometric concepts we deal with are presented below. They have been used

in fixed point theory, approximation theory, and in other branches of the general and

applied theory of Banach spaces. References will be provided in due term.

The techniques used here range from the proof of the Brøndsted-Rockafellar theorem

to James’ reflexivity theorem, among some others related to compactness and to convex-

ity. The terminology and notation follow standard texts in Banach space theory, e.g.,

[?]. Concepts and symbols not defined there will be introduced along the text.

2 Definitions, notation, and an earlier result

We collect here some definitions that will be used along this note.

As usual, BX (SX) denotes the closed unit ball (the unit sphere, respectively) of a

Banach space (X, ∥ · ∥).

In [?] (see also [?]), S. Rolewicz introduced a property of the norm of a Banach space

related to the so-called drop property (see op. cit. for definitions). He called this property

α, since it was formulated in terms of the Kuratowski index α of non-compactness. This

last concept fits naturally in the metric space context: If M is a metric space and B is

a bounded subset of M , the Kuratowski index of non-compactness α(B) of B is

α(B) := inf{r > 0 : B can be covered by a finite family of sets of diameter less than r}.

If f ∈ SX∗ and 0 < δ < 1, the set S(BX , f, δ) := {x ∈ BX : f(x) > 1 − δ} is called a

slice of BX determined by f . Rolewicz says that a Banach space X has property α at

f ∈ SX∗ whenever

lim
δ→0+

α(S(BX , f, δ)) = 0,

and that X has property α whenever it has property α at every f ∈ SX∗ . It was proved

in [?] that every space with the drop property has property α, and in [?] that both

properties are indeed equivalent. A uniform version of property α follows: If for any

ε > 0, there exists δ > 0 such that α(S(BX , f, δ)) < ε for all f ∈ SX∗ , then X is said

to have property Uα. It is known [?] that a Banach space X is NUC if and only if it

has property Uα. For some other references on NUC spaces see also [?], [?], [?], and

references therein.

We list below some definitions concerning continuity of set-valued mappings.

Definition 2.1. Let Φ be a set-valued mapping from a topological space X into a

topological space Y .

(i) Φ is said to be upper semicontinuous at x ∈ X if for any open setN in Y containing

Φ(x), there exists an open neighborhood U of x in X such that Φ(U) ⊂ N . Further, Φ

is said to be usco at x ∈ X if Φ is upper semicontinuous at x ∈ X and the set Φ(x) is



Geometric properties and continuity of the pre-duality mapping 3

nonempty and compact. The mapping Φ is said to be usco if it is usco at every point

x ∈ X.

(ii) If Y is a metric space, the mapping Φ is said to be α-upper semicontinuous at

x ∈ X if for any ε > 0, there exists an open neighborhood U of x such that α(Φ(U)) < ε.

Assume now that X and Y are normed spaces. The following are some uniform

geometric concepts used in this note.

(iii) Φ is said to be nearly uniformly upper semicontinuous on SX if Φ is usco and

for any ε > 0 there exists δ > 0 such that whenever {xn} is a sequence in SX and

diam ({xn}) < δ, then {xn} has a subsequence {xni} which satisfies Φ(xni) ⊂ Φ(xnj ) +

εBY for all i, j ≥ 1.

(iv) Φ is said to be uniformly α-upper semicontinuous on SX if for any ε > 0, there

exists δ (= δ(ε)) ∈ (0, 1) such that α(Φ(B(x, δ))) < ε for all x ∈ SX .

The following definition collects several geometric properties of a Banach space that

will be used below. They have been studied, e.g., in [?, ?, ?, ?, ?, ?]. In particular,

[?, ?, ?, ?] contain applications to approximation theory.

Definition 2.2 ([?]). A Banach space X is said to be strongly convex (very convex /

nearly strongly convex / nearly very convex) if for any x ∈ SX and any sequence {xn}
in BX such that for some x∗ ∈ D(x) we have x∗(xn) → 1 as n → ∞, then xn → x as

n → ∞ (respectively xn
w−−→ x as n → ∞ / the set {xn : n ∈ N} is relatively compact

/ the set {xn : n ∈ N} is weakly relatively compact).

By [?, ?] it is known that if a Banach space X is strongly convex, then X is midpoint

locally uniformly rotund and has the Kadec–Klee property, and also that if a Banach

space X is very convex, then X is weakly midpoint locally uniformly rotund (for defini-

tions, see op. cit.). It is clear that strongly convex ⇒ nearly strongly convex ⇒ nearly

very convex, and that strongly convex ⇒ very convex ⇒ nearly very convex. None of

the implications can be reversed (see [?, Examples 2.4, 2.5, and 2.7]).

The following result characterizes those geometric properties in terms of continuity

properties of the duality mapping.

Theorem 2.3 ([?]). Let X be a Banach space. Then

(i) X is nearly strongly convex if and only if D−1 is norm-norm-upper semicontinuous

on S0(X
∗) with norm-compact images.

(ii) X is nearly very convex if and only if D−1 is norm-weak-upper semicontinuous

on S0(X
∗) with weakly compact images.

(iii) X is strongly convex if and only if D−1 is norm-norm-continuous on S0(X
∗)

and single-valued.

(iv) X is very convex if and only if D−1 is norm-weak-continuous on S0(X
∗) and

single-valued.
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3 The Results

3.1 Nearly strong convexity

The following lemma is a straightforward consequence of the Brøndsted-Rockafellar The-

orem (see, e.g., [?, Theorem 3.17]). It will be used in the proof of Theorem ?? below.

Lemma 3.1. Suppose ε > 0, x0 ∈ SX , f0 ∈ SX∗ , and f0(x0) > 1 − ε. Then there are

xε ∈ SX and fε ∈ D(xε) such that

∥xε − x0∥ < 2
√
ε, ∥fε − f0∥ < 2

√
ε.

Theorem ?? below is an extension, in a localized setting, of characterization (i) of

nearly strong convexity in Theorem ??. Observe that a multi-valued mapping from a

normed space into another normed space that at some point is norm-upper semicontin-

uous and has a compact value, is norm-α-upper semicontinuous at that point.

In its proof we shall need the following simple lemma:

Lemma 3.2. Given a non-empty subset A of a Banach space X, n ∈ N, In := {1, 2, . . . , n},
and a subset {fi : i ∈ In} of X∗, and real numbers α1, α2, . . . , αm,

{x∗∗ ∈ A
w∗

: fi(x
∗∗) > αi : i ∈ In}

⊂ {x ∈ A : fi(x) > αi : i ∈ In}
w∗

(3.1)

⊂ {x∗∗ ∈ A
w∗

: fi(x
∗∗) ≥ αi : i ∈ In}, (3.2)

and the second inclusion is an equality if A is convex and the intermediate set in (??) is

non-empty.

Proof. The two inclusions are almost obvious. We shall prove then the last state-

ment. Assume that A is convex and that there exists a0 ∈ A such that fi(a0) > αi

for i ∈ In. Find ε > 0 such that fi(a0) − ε > αi for i ∈ In. Put H := {a ∈ A :

there exists i ∈ In such that fi(a) = αi} (hence A \H = {a ∈ A : fi(a) ̸= αi, for all i ∈
In}. We claim that A

w∗

= A \H
w∗

. Indeed, if a ∈ H, we can find a sequence {am} in

the segment [a0, a) such that am ∈ A\H for every m ∈ N, and am → a (in the norm and

in the weak topology). It follows that A ⊂ A \H
w∗

, so A
w∗

⊂ A \H
w∗

, and the claim

is proved.

Fix now x∗∗ ∈ A
w∗

such that fi(x
∗∗) ≥ αi for all i ∈ In. Put P := {i ∈ In :

fi(x
∗∗) = αi}. The previous claim allows us to build a net {xj : j ∈ J,≤} in A \ H

(hence fi(xj) ̸= αi for i ∈ In and j ∈ J) that weak∗-converges to x∗∗. In particular,

fi(xj) →j fi(x
∗∗) for i ∈ In. Thus, without loss of generality we may assume that, for

all j ∈ J , we have fi(xj) > αi for all i ∈ In \ P and fi(a0) − fi(xj) > ε for all i ∈ P .

Note that fi(xj) ̸= αi (= fi(x
∗∗)) for each i ∈ P and j ∈ J . Choose

λj ∈
(
max

{
|αi − fi(xj)|

fi(a0)− fi(xj)
, i ∈ P

}
,min

{
2|αi − fi(xj)|
fi(a0)− fi(xj)

, i ∈ P

})
, j ∈ J,
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and put cj := λja0 + (1 − λj)xj for all j ∈ J . It is simple to see that the following

properties hold:

(i) cj ∈ A for all j ∈ J .

(ii) The net {λj : j ∈ J, ≤} converges to 0.

(iii) fi(cj) > αi for all i ∈ In and j ∈ J .

Thus, the net {cj : j ∈ J, ≤} is in {a ∈ A : fi(a) > αi, i ∈ In} and weak∗-converges

to x∗∗. This proves the statement. �

Theorem 3.3. Let X be a Banach space, and let f0 ∈ S0(X
∗). Then the following are

equivalent.

(i) For any sequence {xn} in SX with f0(xn) → 1, the set {xn : n ∈ N} is relatively

compact (i.e., X is nearly strongly convex at f0).

(ii) D−1 is norm-upper semi continuous at f0, and D−1(f0) is norm-compact.

(iii) X has property α at f0.

(iv) D−1 is norm-α-upper semicontinuous at f0.

(v) For any sequence {Fn} in SX∗∗ such that Fn(f0) → 1 as n → ∞, the set {Fn :

n ∈ N} is norm-relatively compact.

Proof We shall proceed in the following way:

(i) ⇐ (v) ⇐ (iii) ⇒ (i) ⇒ (ii) ⇒ (iii) ⇔ (iv)

(iii)⇒(v). Assume that X has property α at f0. Then, given ε > 0, there exists δ > 0

such that α(S(BX , f0, δ)) < ε. This implies that S(BX , f0, δ) can be covered by a finite

number of closed balls B(xi, ε), i = 1, 2, · · · , n. Use inclusion (??) in Lemma ?? above

to get

S(BX∗∗ , f0, δ) ⊂
n∪

i=1

B(xi, ε)
w∗

. (3.3)

Since the weak∗-closure of a ball in X is a ball in X∗∗ with the same center and the same

radius, from (??) we get that {Fn : n ∈ N} is relatively compact if {Fn} is a sequence

as in (v).

(v)⇒(i) is trivial.

(iii)⇒(i) Assume that X has property α at f0. Let {xn} be a sequence as in (i). Since

α(S(BX , f0, δ)) → 0 as δ → 0, we get that the set {xn : n ∈ N} is relatively compact.

(i)⇒(ii) Assume that D−1 is not norm-upper semicontinuous at f0. Then there exists

a norm-open subset U ofX such thatD−1(f0) ⊂ U and for every norm-open (relatively to

S0(X
∗)) subset V and containing f0, we have D

−1(V ) ̸⊂ U . This shows in particular the

existence, for each n ∈ N, of fn ∈ S0(X
∗) and xn ∈ D−1(fn) such that ∥fn − f0∥ < 1/n

and xn ̸∈ U . Since f0(xn) = 1+(f0−fn)(xn) for all n ∈ N, we get f0(xn) → 1 as n → ∞,

hence {xn : n ∈ N} is a norm-relatively compact subset of X by (i). The sequence {xn}
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has a norm-convergent subsequence, say {xnk
}∞k=1. Let x0 (∈ D−1(f0)) be its limit. This

contradicts that xn ̸∈ U for each n ∈ N.

That D−1(f0) is norm-relatively compact follows from the very definition of the near

strong convexity at f0.

(ii)⇒(iii) This is true for any multivalued mapping between normed spaces, as we

mentioned above. We spell out the details: Assume that D−1 is norm-upper semicon-

tinuous at f0 and D−1(f0) is norm-compact. Fix ε > 0. Find a norm-open (relatively

to S0(X
∗)) subset V of X∗ such that f0 ∈ V and D−1(V ) ⊂ D−1(f0) + (ε/2)BX . Since

D−1(f0) is norm-compact, we get that α(D−1(V )) ≤ ε.

(iii)⇒(iv) Assume X has property α at f0. For any ε > 0, there exists δ > 0

such that α(S(BX , f0, δ)) < ε. Let g ∈ S0(X
∗) be such that ∥f0 − g∥ < δ. Then,

if x ∈ D−1(g) we have f0(x) = g(x) + f0(x) − g(x) = 1 + (f0(x) − g(x)) > 1 − δ,

hence D−1(B(f0, δ) ∩ S0(X
∗)) ⊂ S(BX , f0, δ). Since α(S(BX , f0, δ) < ε, this proves the

α-upper semi-continuity of D−1 at f0.

(iv)⇒(iii) If D−1 is α-upper semicontinuous at f0 then for all ε > 0 there exists δ > 0

(and we may assume, without loss of generality, that δ < ε/2) such that α(D−1(B(f0, δ)∩
S0(X

∗))) < ε/2. Take η = δ2/16 and x0 ∈ S(BX , f0, η). Then, by Lemma ??, there

exist g ∈ B(f0, 2
√
η) ∩ S0(X

∗) and x ∈ D−1(g) such that ∥x0 − x∥ < 2
√
η, hence

x ∈ D−1(B(f0, 2
√
η) ∩ S0(X

∗)). It follows that

S(BX , f0, η) ⊂ D−1(B(f0, 2
√
η) ∩ S0(X

∗)) + 2
√
ηBX ,

hence α(S(BX , f0, η)) < ε/2 + 4
√
η < ε. �

Remark 3.4. If f ∈ S(X∗) satisfies statement (i) in Theorem ??, then f is called a

strong support functional in [?]. It was proved there that (i) implies (ii) in the aforesaid

theorem. Theorem ?? above shows that in fact (i) and (ii) are equivalent.

A useful result due to G. Choquet (see, e.g., [?, Lemma 3.69]) ensures that if X is

a Banach space and x is an extreme point of a convex weakly compact subset C of X,

then every weak-neighborhood of x in BX contains a slice that contains x. We shall

prove below that a similar result holds for the (extremal) subset D−1(f0) of BX . We

stress that no compactness conditions are assumed on the closed unit ball of X. Since

the result has two similar versions, one for the norm topology and the other for the weak

topology, we think it better to unify the statement by using a topology τ , that stands

for both. When τ is the norm topology, Theorem ?? completes Theorem ??, while when

τ is the weak topology, it provides a localized version of (ii) in Theorem ??.

Theorem 3.5. Let X be a Banach space, let f0 ∈ S0(X
∗), and let τ be either the norm

or weak topology. Then, the pre-duality mapping D−1 is τ -usco at f0 ∈ S0(X
∗) if and

only if the set D−1(f0) is τ -compact and, simultaneously, for every τ -neighborhood N of

the origin in X, the set D−1(f0) +N contains a slice of BX determined by f0.
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Proof. Necessity. If D−1 is τ -upper semicontinuous at f0 ∈ S0(X
∗), then given a

τ -neighborhood N of the origin, there exists δ′ > 0 such that

D−1(B(f0, δ
′) ∩ S0(X

∗)) ⊂ D−1(f0) +
1

2
N.

Choose δ ∈ (0, δ′) such that δBX ⊂ 1
2N . Given x ∈ S(BX , f0, δ

2/4), by Lemma ?? there

exist gδ ∈ B(f0, δ) ∩ S0(X
∗) and yδ ∈ D−1(gδ), such that ∥x − yδ∥ < δ. It follows that

x ∈ D−1(B(f0, δ
′) ∩ S0(X

∗)) + δBX , hence S(BX , f0, δ
2/4) ⊂ D−1(f0) +N . Note that

the τ -compactness of D−1(f0) is guaranteed by the τ -usco character of D−1.

Sufficiency. Assume that W is a τ -neighborhood of D−1(f0). Consider the family

of sets {D−1(f0) + N : N ∈ N}, where N is the family of all τ -neighborhoods of

the origin in X. Then
∩

N∈N D−1(f0) + N = D−1(f0) ⊂ W . It follows from the τ -

compactness of D−1(f0) that there is N ∈ N such that D−1(f0) + N ⊂ W . We know

that D−1(f0) +N contains the slice S(BX , f0, δ) determined by f0 for some δ. Then for

all g ∈ B(f0, δ) ∩ S0(X
∗) and x ∈ D−1(g),

f0(x) = g(x) + f0(x)− g(x) ≥ 1− ∥f0 − g∥ > 1− δ.

Therefore,

D−1(B(f0, δ) ∩ SX∗) ⊂ S(BX , f0, δ) ⊂ D−1(f0) +N ⊂ W.

This shows that D−1 is τ -upper semicontinuous at f0 ∈ S0(X
∗). �

The nearly strong convexity at some f0 ∈ S0(X
∗) is defined in terms of sequences

contained in slices of BX determined by f0. It is not completely evident that in fact it

implies something formally stronger, the existence of convergent subnets of nets in slices.

This is the content of the next result. As a consequence, it will follow that nearly strongly

convex Banach spaces have Kadec property (see Corollary ??).

Theorem 3.6. Let X be a Banach space, and let τ be either the norm or weak topology.

Let f0 ∈ S0(X
∗). Then the pre-duality mapping D−1 is τ -usco at f0 if and only if for

every net {xi : i ∈ I, ≤} in SX such that f0(xi) → 1, there exists a τ -convergent subnet.

Proof. Necessity. Since f0(xi) → 1, for any n ∈ N we can choose in such that

f0(xi) > 1− 1
n for any i ≥ in. Without loss of generality, we may assume that i1 ≤ i2 ≤

· · · ≤ in ≤ · · ·
If there exists j0 ∈ I such that j0 ≥ in for all n ∈ N, then f0(xi) = 1 for every

i ≥ j0. Therefore, {xi : i ∈ I, i ≥ j0, ≤} ⊂ D−1(f0). Due to the fact that D−1(f0) is

τ -compact, the subnet {xi : i ∈ I, i ≥ j0, ≤} has a further subnet that converges.

Further, assume that for every i ∈ I there always exists some in such that in ≥ i,

then {xin : n ∈ N} is a subnet of {xi : i ∈ I, ≤}. Let V be a τ -open covering

of {xin : n ∈ N} ∪ D−1(f0). Since D−1(f0) is τ -compact, V has a finite subcovering

{V1, V2, · · · , Vm} of D−1(f0). Again by the τ -compactness of D−1(f0), there exists a
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τ -neighborhood N of the origin in X such that D−1(f0) + N ⊂
∪m

k=1 Vk. By Theorem

??, there exists δ > 0 such that S(BX , f0, δ) ⊂ D−1(f0) + N (⊂
∪m

k=1 Vk), and so

{xin : n ≥ n0} ⊂ S(BX , f0, δ) (⊂
∪m

k=1 Vk) for some n0 ∈ N. This shows that {xin : n ∈
N} ∪D−1(f0) is τ -compact. Consequently, {xin : n ∈ N} has a τ -convergent subnet.

Sufficiency. By the assumption, D−1(f0) is τ -compact. Assume that D−1 is not τ -

usco on S0(X
∗) at f0. By Theorem ??, there exists a τ -open neighborhoodN of the origin

in X such that no slice determined by f0 is contained in the τ -open set D−1(f0) + N .

We can define then a sequence {xn} in SX such that f0(xn) → 1 and xn ̸∈ D−1(f0) +N

for n ∈ N. The sequence {xn} has a subnet that τ -converges to some x ∈ X. It follows

that x ̸∈ D−1(f0) +N ; however, f0(x) = 1, a contradiction. �

Corollary 3.7. Let X be a Banach space, and let f0 ∈ S0(X
∗). If the pre-duality

mapping D−1 is norm usco at f0, then for any x ∈ D−1(f0) and any net {xi : i ∈ I, ≤}
in SX , the condition xi

w−−→ x implies xi
∥·∥−→ x.

Recall that a Banach space X has the Kadec property whenever the weak and norm

topologies coincide on SX . From the equivalence (i)⇔(ii) in Theorem ?? and Corollary

?? we get the following result.

Corollary 3.8. If X is a nearly strongly convex Banach space, then X has Kadec prop-

erty.

3.2 Nearly uniform convexity

Given a nonempty subset M of a Banach space X, sepM := inf{∥x−y∥ : x, y ∈ M, x ̸=
y} is called the separation of the set M . The following notion was introduced by R. Huff

and, independently, by K. Goebel and T. Sekowski.

Definition 3.9 ([?], [?]). A Banach space X is said to be nearly uniformly convex (NUC,

in short) if for any ε > 0 there exists δ ∈ (0, 1) such that for every countable set C in

BX with sep(C) ≥ ε, we have conv (C) ∩B(0, δ) ̸= ∅.

In [?], a characterization of the near uniform convexity of a Banach space was given

in terms of the duality mapping on the space X∗, i.e., the mapping D from SX∗ into

SX∗∗ . Precisely, the following result holds.

Theorem 3.10 ([?]). For a Banach space X, the following statements are equivalent:

(i) X is NUC.

(ii) The duality mapping D from SX∗ into SX∗∗ is nearly uniformly norm-upper

semicontinuous on SX∗ .

(iii) The duality mapping D from SX∗ into SX∗∗ is uniformly α-upper semicontinuous

on SX∗ .
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Every NUC space is reflexive (an argument uses James’ reflexivity theorem: Given ε >

0 find δ ∈ (0, 1/2) according to the definition of NUC. For f ∈ SX∗ , the slice S(BX , f, δ)

is disjoint from δBX , hence no ε-separated sequence can be found in S(BX , f, δ). Since

ε > 0 is arbitrary, this shows that f attains its supremum on BX). It turns out that

the aforesaid characterization really deals with the preduality mapping. However, it is a

priori somehow inconvenient to check near uniform convexity by looking at the second

dual. We provide here a similar characterization, formulated right away in terms of the

pre-duality mapping. It is based on Theorem ?? and the fact, proved below, that each

of conditions (ii) or (iii) there already imply reflexivity.

Theorem 3.11. For a Banach space X, the following statements are equivalent:

(i) X is NUC.

(ii) The pre-duality mapping D−1 is nearly uniformly norm-norm-upper semicontin-

uous on S0(X
∗).

(iii) The pre-duality mapping D−1 is uniformly α-upper semicontinuous on S0(X
∗).

Proof. Since every NUC space is reflexive, D−1(f) = D(f) for every f ∈ SX∗ , and

Theorem ?? shows (i)⇒(ii) and (i)⇒(iii).

(ii)⇒(i). Let us show that (ii) already implies reflexivity —and so Theorem ?? will

finalize the proof of the implication. Let f ∈ SX∗ . For n ∈ N, find xn ∈ SX such that

f(xn) > 1 − 1/n. Lemma ?? shows the existence of yn ∈ SX and fn ∈ D(yn) such

that ∥xn − yn∥ < 2/
√
n and ∥f − fn∥ < 2/

√
n. Given ε > 0, find δ > 0 according

to the nearly uniform norm-norm-semi-continuity of D−1. Let n0 ∈ N be such that

2/
√
n < δ/2 for all n ≥ n0. Since diam {fn : n ≥ n0} < δ, there exists a subsequence

{fnk
} of {fn} that satisfies D−1(fnk

) ⊂ D−1(fnj ) + εBX for all k, j ∈ N. Observe

that, for all j ∈ N, the set D−1(fnj ) is compact. This works for all ε > 0. A diagonal

procedure allows to select a subsequence {zn} of {yn} such that the set {zn : n ∈ N}
has the property that for every ε > 0 there exists a compact subset Kε of X such that

{zn : n ∈ N} ⊂ Kε + εBX . This shows that {zn : n ∈ N} is relatively compact, hence

{zn} has a convergent subsequence. Therefore, {xn} has a convergent subsequence, too,

and this shows that f attains it supremum on BX . James’ weak compactness theorem

ensures that X is reflexive.

(iii)⇒(i). It is enough to show that (iii) already implies the reflexivity of X, as in

the proof of (ii)⇒(i) above. The technique is similar to the one used there. �

3.3 Nearly very convexity

The following result gives a sufficient condition for a Banach space being nearly very

convex. Note that D on SX∗ has set-values in SX∗∗ .
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Proposition 3.12. Let X be a Banach space. If dimD−1(f) = dimD(f) < +∞ for all

f ∈ S0(X
∗), then X is nearly very convex.

Proof. Let {xn} be a sequence in BX such that f(xn) → 1 for some f ∈ S0(X
∗).

Assume that the set {xn : n ∈ N} is not relatively weakly compact, and let x∗∗ ∈ X∗∗\X
be a weak∗ cluster point of the set {xn : n ∈ N}. Then x∗∗ ∈ D(f), and so dimD(f) >

dimD−1(f). �

Theorem 3.13. Let X be a Banach space. Then, the pre-duality mapping D−1 is weak

usco at f ∈ S0(X
∗) if and only if D(f) = D−1(f).

Proof. Necessity. Assume that D−1 is weak usco at f . Let x∗∗ ∈ D(f) \ D−1(f).

Due to the fact that D−1(f) is weakly compact, there exists a weak∗-closed weak∗-

neighborhood N∗∗ of D−1(f) such that x∗∗ ̸∈ N∗∗. The set N∗∗ ∩ X is a weak neigh-

borhood of D−1(f). An argument similar to the one used in the proof of sufficiency

in Theorem ?? shows that there exists a weak neighborhood N of the origin in X

such that D−1(f0) + N ⊂ N∗∗ ∩ X. By Theorem ??, D−1(f0) + N contains a slice

S(BX , f, δ). It follows from Lemma ?? and the fact that N∗∗ is weak∗-closed that

(x∗∗ ∈) S(B(X∗∗), f, δ) ⊂ N∗∗, a contradiction.

Conversely, if D−1(f) = D(f) the statement follows trivially, as D is always weak∗-

usco. �

By (i) in Theorem ??, we have the following corollary:

Corollary 3.14. A Banach space X is nearly very convex if and only if D(f) = D−1(f)

for all f ∈ S0(X
∗).
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