
REPORTS ON MATHEMATICAL LOGIC
41 (2006), 9–30
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A b s t r a c t. Given an arbitrary finite algebra, there exists a

(many-sided) sequent calculus satisfying the cut elimination prop-

erty and from which it is possible to define all finitely valued logics

determined by a matrix on the algebra. In this paper we study

some algebraic properties of these sequent calculi. Our starting

point is the definition of a Gentzen system as the consequence rela-

tion determined by a sequent calculus over the set of (many-sided)

sequents. For the Gentzen systems associated with an arbitrary fi-

nite algebra we characterize the algebraic reducts of their reduced

matrices as the quasivariety generated by the algebra. To prove

this result we define and study the basic properties of the finitely

equivalential Gentzen systems. Throughout the paper different re-

sults illustrate how to bridge the gap between the proof-theoretical

and the algebraic properties of a sequent calculus.
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1 Introduction and outline of the paper

A class of sequent calculi associated with finite algebras (and finitely valued
logics) is defined in [5]. In this paper we continue the study of the algebraic
properties of the Gentzen systems determined by these sequent calculi. This
study started in [16], where, generalizing a result of [18], the algebraizable
m-dimensional Gentzen systems were characterized. By using the notion
of satisfaction of sequents defined in [20] and [5], we define, for any finite
algebra, a semantical consequence relation on the set ofm-sequents, wherem
is the cardinality of the algebra. For the Gentzen systems determined by the
sequent calculi associated with the finite linear MV-algebras, it was proved in
[16], by using algebraic methods, that the semantical consequence relation
was exactly the consequence relation determined by the sequent calculus.
This result was called the Strong Completeness Theorem and was generalized
in [15] to the Gentzen systems associated with arbitrary finite algebras. As a
consequence, for every finite algebra only one Gentzen system is associated
with it by means of the sequent calculi defined in [5] (see Definition 3.8).
The computer system MUltlog ([4], [21] and [1]) provides a way to obtain
automatically an axiomatization of these consequence relations such that
the rules satisfy certain optimality conditions. A computer system called
MUltseq (see [11] and [2]) was developed on the basis of MUltlog to obtain
provers for equations and quasiequations in any finite algebra.

In this paper we define and study the basic properties of the finitely
equivalential Gentzen systems. These systems generalize the definitions of
congruential and finitely equivalential deductive systems introduced in [6, 8]
and studied in [9] and play an essential role in this paper, because all the
Gentzen systems associated with finite algebras mentioned in the previous
paragraph turn out to be finitely equivalential.

The general properties of the finitely equivalential Gentzen systems, to-
gether with the Strong Completeness Theorem make it possible to prove
that for each finite algebra, the class of algebraic reducts of the reduced
matrices of the Gentzen system associated with this algebra is exactly the
quasivariety generated by the algebra.

The paper is organized as follows: in Section 2 we recall the basic defini-
tions concerning many–sided sequents and the sequent calculi VL associated
with finite algebras. In Section 3 we introduce the notion of a Gentzen sys-
tem and its matrices, considering also the Gentzen systems determined by a
sequent calculus. Section 4 is devoted to the study of the Leibniz operator
and the reduced matrices of a Gentzen system, and we obtain some results
that show how the form of the rules of a calculus (and in particular the pres-
ence of the structural rules) may help to characterize the Leibniz congruence.
In Section 5 we define the finitely equivalential Gentzen systems and prove



FINITELY EQUIVALENTIAL GENTZEN SYSTEMS 11

the main result of the paper, which states that for a finitely equivalential
Gentzen system G complete with respect to a class K of reduced G–matrices,
the class of the algebraic reducts of the reduced matrices of the system is
precisely the quasivariety generated by the algebraic reducts of the matrices
in K. Finally in Section 6 we apply the general results to the matrices of
the Gentzen systems associated with arbitrary finite algebras.

2 Preliminary definitions and results

Let L be a propositional language (i.e. a set of propositional connectives).
By an L-algebra we mean a structure A = 〈A, {$A : $ ∈ L}〉, where A is
a non-empty set, called the universe of A, and $A is an operation on A of
arity k for each connective $ of rank k.

We denote by FmL the absolutely free algebra of type L freely generated
by a countable infinite set of variables. Its elements are called L-formulas
(or L-terms). If A is an L-algebra, the set of homomorphisms from FmL

to A (also called valuations) will be denoted by val(A). The set of homo-
morphisms from FmL to FmL (also called substitutions) will be denoted
by Hom(FmL,FmL).

2.1 m-sequents and m-sequent calculi

Let L be a propositional language. An m-sequent, also called m-dimensio-
nal sequent or m-sided sequent, is a sequence (Γ0,Γ1, . . . ,Γm−1) where each
Γi is a finite sequence of L-formulas, which is called the i-th component
(or place) of the sequent. Those sequents have been taken into account in
[20], [4], [5], [22] and [16]. As in these works we will write Γ0 | Γ1 | · · · | Γm−1

for (Γ0,Γ1, . . . ,Γm−1). We denote by m-SeqL the set of m-sequents.

Thus in the 2-dimensional case we will write Γ | ∆ instead of the more
common notations Γ`∆ or Γ → ∆. The use of the symbol | as a separator of
the components prevents us from thinking of entailment relations between
the components of a sequent.

If we have two or more sequents, we will separate them by the symbol
“;”. In this way there will be no confusion between, for instance, the 3-
sequent Γ, x | ∆, y | Π and the sequence of two 2-sequents Γ, x | ∆ ;
y | Π. The comma will be reserved for the juxtaposition operation on
sequences: that is, expressions such as Γ, δ will stand for (γ0, . . . , γk−1, δ),
where Γ = (γ0, . . . , γk−1).

To increase the readability of some of the results of this paper in which
we use simultaneously formulas, sequences of formulas, sequents and sets of
sequents, we will use the following notation: lowercase letters from the end
of the alphabet, possibly with subindex and superindex (p, q, pj

i , x, y, z,. . . )
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to denote propositional variables; lowercase Greek letters (ϕ,ψ, ϕj
i , . . . ,) to

denote formulas; uppercase Greek letters (Γ,∆,. . . ) to denote sequences and
sets of formulas; boldface uppercase Greek letters (Γ,∆,∆i,. . . ) to denote
sequents, and boldface slanted uppercase letters of the end of the alphabet
(T ,S, . . . ,) to denote sets of sequents.

If Γ is an m-sequent and i < m, then Γ(i) denotes the i-th component
of Γ. If ∆ is a finite sequence of formulas and I ⊆ {0, . . . ,m−1}, we denote
by [I : ∆] the m-sequent whose i-th component is ∆ if i ∈ I and is empty
otherwise, that is:

[I : ∆](i) =











∆ if i ∈ I

∅ if i 6∈ I.

We will write [i1, . . . , in : ∆] for [{ii, . . . , in} : ∆].
If Γ and Π are m-sequents then we denote by [[Γ,Π]] the m-sequent

Γ(0),Π(0) | · · · | Γ(m− 1),Π(m− 1).

Note that while Γ1,Γ2 . . . are sequents, the expression Γ(i) stands for
the i-th component of the sequent Γ, which is a sequence of formulas.

If I ⊆ {0, . . . ,m− 1}, then we will write IC for the set {j < m : j 6∈ I}.
For every h ∈ Hom(FmL,FmL)

h(γ0
0 , . . . , γ

t0−1
0 | γ0

1 , . . . , γ
t1−1
1 | · · · | γ0

m−1, . . . , γ
tm−1−1
m−1 )

stands for the sequent

h(γ0
0), . . . , h(γt0−1

0 ) | h(γ0
1), . . . , h(γt1−1

1 ) | · · · | h(γ0
m−1), . . . , h(γ

tm−1−1
m−1 ).

An m-rule of inference is a set (r) of ordered pairs of the form 〈T ,Γ〉,
where T ∪ {Γ} ⊆ m-SeqL and T is finite, such that it is closed under
substitutions, i.e., for every h ∈ Hom(FmL,FmL), if 〈T ,Γ〉 ∈ (r) then
〈h(T ), h(Γ)〉 ∈ (r) where h(T ) = {h(∆) : ∆ ∈ T }. Rules having all pairs of
the form 〈∅,Γ〉 are called axioms and, in this case, Γ is called an instance
of the axiom. Rules are often written in a schematic form; for instance,

Γ
[[Γ, [i : ϕ]]]

denotes the rule {〈{Γ}, [[Γ, [i : ϕ]]]〉 : Γ is an m-sequent and ϕ is a formula}.
An m-sequent calculus is a set of m-rules of inference.
The following are called structural rules (as introduced in [22] and [5]),

where Γ and ∆ are arbitrary sequents and ϕ and ψ are arbitrary L-formulas:

• Axiom: [0, . . . ,m− 1: ϕ].
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• Weakening rule (w : i) for the place i < m:

Γ
[[Γ, [i : ϕ]]]

(w : i)

• Contraction rule (c : i) for the place i < m:

[[Γ, [i : ϕ,ϕ]]]

[[Γ, [i : ϕ]]]
(c : i)

• Exchange rule (x : i) for the place i < m:

[[Γ, [i : ϕ,ψ],∆]]

[[Γ, [i : ψ,ϕ],∆]]
(x : i)

• Cut rule (cut : i, j) for the places i < m, j < m, i 6= j:

[[Γ, [i : ϕ]]] [[∆, [j : ϕ]]]

[[Γ,∆]]
(cut : i, j)

Note that we have a structural rule of each kind for each component
of the sequents (or pair of components, in the case of the cut rule). Note
also that the rules (cut : i, j) and (cut : j, i) are equivalent in presence of the
exchange rules.

2.2 The VL-sequent calculi

Each finite L-algebra of cardinal m induces a semantical interpretation on
the set ofm-sequents, in such a way that several m-sequent calculi are known
to be complete with respect to this semantical interpretation. We will now
recall some of the basic definitions involved.

Definition 2.1. Let L be a finite L-algebra with universe

L = {v0, . . . , vm−1}.

(i) Let h ∈ val(L). h L-satisfies an m-sequent Γ(0) | · · · | Γ(m − 1) if

there is an i < m such that, for some formula γ ∈ Γ(i), h(γ) = vi. If Γ

is an m-sequent, we denote by s(Γ) the set of valuations that L-satisfy

the sequent Γ.

(ii) Γ ∈ m-SeqL is L-valid s(Γ) = val(L).
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The above definition of validity is the restriction to the propositional
case of [5, Def. 3.2] and of the definitions given in [4] and [22]. It is always
possible to find sequent calculi complete with respect to this definition of
L-validity (see [5] and [22] for historical remarks). The calculi we will deal
with were defined by some of the members of the Vienna Group of Many
Valued Logics in [5], and will be denoted in this paper as VL-calculus, that
is, preceding the name of the algebra with the letter V (which stands for
Vienna). We will now recall the definition of the introduction rules of the
VL calculi,

Definition 2.2. (cf. [5, Definition 3.3]) and [4]). Let L be a finite

L-algebra with universe L = {v0, . . . , vm−1}. A VL-introduction rule

($ : i) for a connective $ at place i is a schema of the form:

{Γ0,∆
j
0 | · · · | Γm−1,∆

j
m−1}j∈I

Γ0 | · · · | Γi, $(ϕ0, . . . , ϕn−1) | · · · | Γm−1
$ : i

(1)

where ∆j
l ⊆ {ϕ0, . . . , ϕn−1}, for every l < m and j ∈ I, $ is a propositional

connective of rank n, I is a finite set, and, for each h ∈ val(L), the following

properties are equivalent:

(VL1) h L-satisfies the sequent ∆j
0 | · · · | ∆j

m−1 for every j ∈ I.

(VL2) h($(ϕ0, . . . , ϕn−1)) = vi.

The existence of such rules for an arbitrary finite algebra is proved in
[20, Lemma 1]. As pointed out in [5], it should be stressed that for any
connective $ and any i < m, there may be different rules that satisfy the
definition of a VL introduction rule ($ : i). In [5] there is a description of
how to find these rules from the partial normal forms in the sense of [19]
(see also [22, p. 8–9]).

A procedure to find rules that are minimal with respect to the number of
premises and the number of formulas per premise has been implemented in
the system MUltlog already mentioned; by applying this system to the truth
tables of the connectives of the three-element MV-algebra S(3), the sequent
calculus shown in Appendix A is obtained. To give the reader a better
intuition of the rules we will briefly discuss the rule (→: 1) for the three-
element MV-algebra S(3) where the elements are v0 = 0, v1 = 1/2, v2 = 1,
and the operation → is defined as a → b = min{1, b + 1 − a}, which yields
the following truth table

→ 0 1/2 1

0 1 1 1
1/2 1/2 1 1
1 0 1/2 1.
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The corresponding rule (→: 1) which has this form

Γ | ∆, ϕ | Π, ϕ Γ | ∆, ϕ, ψ | Π Γ, ψ | ∆ | Π, ϕ

Γ | ∆, ϕ→ ψ | Π
(→: 1)

expresses (in a conjunctive normal form) under which values of the variables
the expression ϕ→ ψ equals 1/2. More precisely,

a→ b = 1/2 iff (a = 1/2 or a = 1) and (a = 1/2 or b = 1/2) and (b = 0 or
a = 1).

So, if h ∈ val(S(3)), h(ϕ → ψ) = 1/2 iff h satisfies the sequents ∅ | ϕ | ϕ,
∅ | ϕ,ψ | ∅ and ψ | ∅ | ϕ.

Definition 2.3. (see [5]). Let L be a finite L-algebra of cardinal m. A

VL-sequent calculus consists of

(i) A VL-introduction rule ($ : i) for every connective $ ∈ L and every

place i < m,

(ii) All the structural rules, that is, the axiom and the rules (w : i), (c : i),

(x : i) for all i < m, and the rules (cut : i, j) for all i, j < m, i 6= j.

This definition corresponds to the propositional fragment of the sequent
calculi LM defined in [4, 22, 5]. Among the properties of the sequent calculi
just defined we are interested in the restriction to the propositional case of
the following result:

Theorem 2.4 (Completeness and Cut Elimination). Let L be a

finite algebra of cardinal m, then the following properties hold:

(i) If an m-sequent is provable in a VL-sequent calculus, then it is L-valid.

(ii) If an m-sequent is L-valid, then it is provable without cuts in any

VL-sequent calculus.

Proof. (i) See [5, Theorem 3.1]. (ii) See [5, Theorem 3.2]. �

This completeness theorem makes it possible to define all the (finitely
valued) logics that can be obtained from the algebra L and a set of distin-
guished values; we proceed as follows:

Definition 2.5. Let L be a finite L-algebra with universe

L = {v0, . . . , vm−1}

and let L+ ⊆ L a set of distinguished truth values. The finitely valued

logic |=〈L,L+〉 is defined by the following condition: for any set of formulas

Γ ∪ {ϕ}, Γ |=〈L,L+〉 ϕ iff for all h ∈ val(L), h(Γ) ⊆ L+ implies h(ϕ) ∈ L+.
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Next result is easy to prove:

Proposition 2.6. [13, Theorem 2] Let L be a finite L-algebra with uni-

verse L = {v0, . . . , vm−1} and let L+ = {vi : i ∈ I} ⊆ L. For any set of

formulas Γ ∪ {ϕ},

Γ |=〈L,L+〉 ϕ iff the sequent [[[IC : Γ], [I : ϕ]]] is VL-provable. �

3 Gentzen Systems

In order to study the consequence relations determined by the VL-sequent
calculi, we first recall the abstract definition of an m-dimensional Gentzen
system. These systems were introduced in [16] and can be seen as a gener-
alization of the 2-dimensional Gentzen systems introduced in [18], and also
as a generalization of the m-dimensional deductive systems in the sense of
W. Blok and D. Pigozzi ([7]).

An m-dimensional Gentzen system is a pair G = 〈L,`G〉 where
`G is a finitary consequence relation on the set of m-sequents, m-SeqL,
which is also substitution invariant 1 in the following sense: for every
h ∈ Hom(FmL,FmL), T `G Γ implies h(T )`G h(Γ). A set of m-sequents
T is called a G-theory if T = {Γ ∈ m-SeqL : T `G Γ}.

Note that every m-sequent calculus LX determines a Gentzen system
GLX = 〈L,`LX〉 by using the rules of the calculus to derive sequents from
sets of sequents, not just from the axiom alone, as stated in the following
definition (cf. [18, p.14] and [3, p. 267]):

Definition 3.1. Given T ∪{Γ} ⊆ m-SeqL, we say that Γ follows from

T in GLX , in symbols T `LX Γ iff there is a finite sequence of sequents

Γ0, . . . ,Γn−1, n ≥ 1, called a proof of Γ from T , such that Γn−1 = Γ and

for each i < n one of the following conditions holds:

(i) Γi is an instance of an axiom;

(ii) Γi ∈ T ;

(iii) Γi is obtained from {Γj : j < i} by using a rule (r) of LX, i.e.,

〈S,Γi〉 ∈ (r) for some S ⊆ {Γj : j < i}.

Definition 3.2. Let L be a finite L-algebra. A VL-Gentzen system

is a Gentzen system determined by a VL-sequent calculus.

1This consequence relations are also called structural, but we reserve this expression

for the structural rules.
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As examples of these Gentzen system we can mention the Gentzen sys-
tems determined by a VS(m)-sequent calculus, where S(m) is the linear
MV-algebra of m elements and which are studied in [16]. As a particular
case we have the VS(3)-Gentzen system determined by the sequent calculus
given in Appendix A.

Definition 3.3. An m-dimensional Gentzen system satisfies an m-rule

(r) if T `G Γ for every 〈T ,Γ〉 ∈ (r).

3.1 Matrices for Gentzen systems

Now we recall the definitions related with the concept of a matrix for a
Gentzen system, together with some results obtained in [12, 15, 14].

Let m ∈ ω and let A be a set. An m-sequent on A is an m-tuple of
finite sequences of elements of A. We will denote by m-Seq(A) the set of
all m-sequents on A and we will use boldface lowercase letters to denote
m-sequents on A. If a,b ∈ m-Seq(A) we define a(i), [[a,b]], [I : a] (for any
a ∈ A) etc. in the same way as for m-sequents.

Let A be an L-algebra and let h ∈ val(A). If Γ is the sequent

γ0
0 , . . . , γ

t0−1
0 | · · · | γ0

m−1, . . . , γ
tm−1−1
m−1 ,

then h(Γ) stands for

((h(γ0
0 ), . . . , h(γt0−1

0 )), . . . , (h(γ0
m−1), . . . , h(γ

tm−1−1
m−1 ))) ∈ At0 × · · · ×Atm−1 .

Let Γ(p0, . . . , pn−1) ∈ m-SeqL. If h is a valuation such that h(pi) = ai,
for all i < n, then we write ΓA(a0, . . . , an−1) = h(Γ(p0, . . . , pn−1)).

An m-relation on A is a set R ⊆ m-Seq(A), that is, a set of m-tuples
formed by finite sequences of elements of A; Rm(A) will be the set of all
m-relations on A. If there is no risk of confusion we write Rm instead of
Rm(A).

An m–matrix, or just a matrix, is a pair 〈A, R〉 where A is an L-
algebra and R is an m-relation on A. If 〈A, R〉 is an m-matrix, let |=〈A,R〉

be the consequence relation on the set m-SeqL defined by: T |=〈A,R〉 Γ
iff for every h ∈ val(A), h(T ) ⊆ R implies h(Γ) ∈ R. This consequence
relation is always substitution invariant, but it may not be finitary.

Let G be an m-dimensional Gentzen system, 〈A, R〉 an m-matrix and
(r) an m–rule of inference. R is closed under the rule (r) if for every pair
〈T ,Γ〉 ∈ (r), T |=〈A,R〉 Γ.

A matrix 〈A, R〉 is called a matrix model of G (or G-matrix) if for
every set of sequents T ∪{Γ}, T `G Γ implies T |=〈A,R〉 Γ. Then R is called
a G-filter. We denote by FiGA the set of G-filters on A. When G is defined
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by means of some axioms and inference rules, R is a G-filter iff R contains all
the interpretations of these axioms and is closed under each of these rules.
The G-filters on the algebra FmL are just the G-theories.

If K is a class of m-matrices, then |=K denotes the consequence relation
on the set of m-SeqL defined by: T |=K Γ iff T |=〈A,R〉 Γ for every 〈A, R〉 ∈
K.

Definition 3.4. Let G be a Gentzen system and let K be a class of

G-matrices. We say that G is complete with respect to K if

T `G Γ ⇔ T |=K Γ,

for any T ∪ {Γ} ⊆ m-SeqL.

Now we are going to define a semantical consequence relation over the set
of m-sequents based on the definition of L-satisfaction. This consequence
relation is defined from an m–matrix on the algebra L. So we start by
defining the following m–relation, which contains the interpretation of the
valid sequents:

Definition 3.5. Let L be a finite algebra with universe

L = {v0, . . . , vm−1}

of cardinal m, then

DL = {a ∈ m-Seq(L) : there is i < m such that vi ∈ a(i)}.

The connection between the m-matrix 〈L, DL〉 and the definition of L-
validity and L-satisfaction is shown in the following

Proposition 3.6. Let T ∪ {Γ} ⊆ m-SeqL. The following properties

hold:

(i) If h ∈ val(L), then h ∈ s(Γ) iff h(Γ) ∈ DL.

(ii) ∅ |=〈L,DL〉 Γ ⇐⇒ Γ is an L-valid sequent.

(iii) T |=〈L,DL〉 Γ ⇐⇒
⋂

Π∈T

s(Π) ⊆ s(Γ).

Proof. Straightforward. �

Since the VL introduction rules for a given connective are not unique,
for any finite L-algebra L there may be several calculi that satisfy the def-
inition of a VL-sequent calculus. Next result states that the consequence
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relation associated to any VL-sequent calculus and the semantical conse-
quence relation |=〈L,DL〉 are equal; so it provides, from the semantical point
of view, a characterization of the Gentzen systems GVL, and from the syn-
tactical point of view an axiomatization of the relation |=〈L,DL〉. This result
is known in [15] as the Strong Completeness Theorem.

Theorem 3.7. Let L be a finite algebra of cardinal m and let G be any

VL Gentzen system. Then G is complete with respect to the class {〈L, DL〉},

that is, if T ∪ {Γ} ⊆ m-SeqL, then

T `G Γ ⇐⇒ T |=〈L,DL〉 Γ. �

The proof of this result is based in the finitariety of the semantical op-
erator |=〈L,DL〉 and the fact that the VL-Gentzen systems and the Gentzen
system 〈L, |=〈L,DL〉〉 satisfy the same particular case of the deduction detach-
ment theorem for Gentzen systems (see [15, Thm. 4.1] for details).

So it follows from Theorem 3.7 that each VL-sequent calculus determines
the same consequence relation over the set of m-sequents, that is, the same
Gentzen system: the one defined by the m-matrix 〈L, DL〉.

Definition 3.8. Let L be a finite algebra. The Gentzen system

associated with L is the one determined by any VL–sequent calculus; this

Gentzen system is denoted by GL = 〈L,`L〉.

Theorem 3.7 plays a central role in this paper and its following straight-
forward corollary will be repeatedly used in the last part of this paper:

Corollary 3.9. Let L be a finite algebra of cardinal m. If T ∪ {Γ} ⊆

m-SeqL, then

T`LΓ ⇐⇒
⋂

∆∈T

s(∆) ⊆ s(Γ). �

4 The Leibniz operator and reduced matrices

The Leibniz operator was first defined in [6] for deductive systems. In this
section we extend this definition to the context of Gentzen systems.

Definition 4.1. Let R ∈ Rm(A) and θ ⊆ A2. We say that θ is compat-

ible with R if for all (a, b) ∈ A2, if (a, b) ∈ θ then, for all a,a′ ∈ m-Seq(A),

[[a, [i : a],a′]] ∈ R implies [[a, [i : b],a′]] ∈ R.
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For all R ∈ Rm(A), we define ΩA(R) as the largest congruence of A
compatible with R. Such a congruence always exists and will be called
the Leibniz congruence associated with R. The map ΩA, with domain
Rm(A), is called the (m-dimensional) Leibniz operator. We write Ω
instead of ΩFmL

.
The following sequents play an essential role in the sequel:

Definition 4.2. Let i < m, then

Ξi(p, q) = [[[{i}C : p], [i : q]]]

All the components of the sequent Ξi(p, q) are p, except the i-th one,
which is q.

In the presence of some structural rules, the sequents Ξi(p, q) make it
possible to characterize the Leibniz congruence, as proved in the following
results:

Lemma 4.3. Let G be a Gentzen system which satisfies the cut rules

(and contraction and exchange if m > 2). For all Γ ∈ m-SeqL, all pair of

formulas ϕ, ψ, and every i < m,

[[Γ, [i : ϕ]]] ; Ξi(ϕ,ψ)`G [[Γ, [i : ψ]]].

Proof. By using (cut : i, 0) we have that

[[Γ, [i : ϕ]]] ; Ξi(ϕ,ψ)`G [[Γ, [{0, i}C : ϕ], [i : ψ]]].

Now, by (cut : i, 1) we have that

[[Γ, [i : ϕ]]] ; [[Γ, [{0, i}C : ϕ], [i : ψ]]]`G [[Γ,Γ, [{0, 1, i}C : ϕ], [i : ψ]]].

Applying (cut : i, 2), . . . (cut : i, i − 1), (cut : i, i + 1), . . . , (cut : i,m − 1) we
obtain the sequent [[Γ, . . . ,Γ, [i : ψ]]]. Finally the result follows by successive
applications of the exchange and contraction rules. �

Note that, if m = 2, by the cut rule we have that

Γ, ϕ | ∆ ψ | ϕ

Γ, ψ | ∆
(cut : 0, 1)

and

Γ | ∆, ϕ ϕ | ψ

Γ | ∆, ψ
(cut : 1, 0)

Thus, if m = 2, Lemma 4.3 and the next proposition can be proved
without using neither the contraction nor the exchange rules (as was done
in [18, prop. 2.21]).

Proposition 4.4. Let G be a Gentzen system that satisfies the axiom

and cut rules (and contraction and exchange if m > 2). Then we have that
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(i) ∅`G Ξi(x, x).

(ii) {Ξi(x, y) : i < m}`G Ξj(y, x) for all j < m.

(iii) {Ξi(x, y); Ξi(y, z) : i < m}`G Ξj(x, z) for all j < m.

Proof. These properties follow easily from axiom and Lemma 4.3. �

Proposition 4.5. Let G be a Gentzen system that satisfies the axiom

and the exchange and the cut rules (and contraction if m > 2). If 〈A,R〉 is

a G–matrix, then the set

θR = {(a, b) ∈ A2 : ΞA

i (a, b) ∈ R for all i < m},

satisfies the following properties

(i) θR is an equivalence relation and ΩA(R) ⊆ θR.

(ii) θR is compatible with R.

(iii) If θR is a congruence relation then ΩA(R) = θR.

Proof. (i) It follows straightforward from the previous Proposition. To
prove (ii) note that since R is closed under the exchange and cut rules (and
contraction if m > 2) then, by Lemma 4.3,

[[a, [i : a]]] ∈ R and ΞA

i (a, b) ∈ R⇒ [[a, [i : b]]] ∈ R. (2)

Let us see that θR is compatible with R. Let [[a, [i : a],a′]] ∈ R and (a, b) ∈
θR. Since R is closed under exchange we get that [[a,a′, [i : a]]] ∈ R. As
ΞA

i (a, b) ∈ R, by using (2) we obtain that [[a,a′, [i : b]]] ∈ R, and by the
exchange rules [[a, [i : b],a′]] ∈ R. The proof of (iii) is straightforward. �

Corollary 4.6. Let G be a Gentzen system that satisfies the axiom and

the exchange and cut rules (and contraction if m > 2). Then we have:

(i) T 1 ⊆ T 2 implies ΩT 1 ⊆ ΩT 2, for all T 1,T 2 ∈ ThG.

(ii) If we also assume that for every T ∈ ThG, the equivalence relation

θT = {(ϕ,ψ) ∈ Fm2
L : Ξi(ϕ,ψ) ∈ T and Ξi(ψ,ϕ) ∈ T for all i < m}

is a congruence on FmL then

ΩT = θT for every T ∈ ThG.
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Proof. (i) Let T 1 ⊆ T 2. It is enough to see that ΩT 1 is compatible
with T 2. By Proposition 4.5.(i), ΩT 1 ⊆ θT 1

; since T 1 ⊆ T 2 we have that
θT 1

⊆ θT 2
. Thus ΩT 1 ⊆ θT 2

and by Proposition 4.5(ii), θT 2
is compatible

with T 2. Hence ΩT 1 is compatible with T 2. (ii) follows straightforward
from Proposition 4.5. �

A Gentzen system that satisfies condition (i) of Corollary 4.6 is called
protoalgebraic in [14], where the concept of a protoalgebraic Gentzen sys-
tem was deeply investigated. Nevertheless, the analysis of the previous
results makes it possible to state this

Corollary 4.7. Let G = 〈G,`G〉 be a Gentzen system and let {Πi(x, y) :

i ∈ I} be a finite a set of sequents in two variables such that

(i) ∅`GΠi(x, x) for every i ∈ I.

(ii) [[Γ, [j : ϕ],Γ′]] ; {Πi(ϕ,ψ) : i ∈ I}`G [[Γ, [j : ψ],Γ′]] for every j < m,

{Γ,Γ′} ⊆ m-SeqL and {ϕ,ψ} ⊆ FmL.

Then G is protoalgebraic. �

The matrices whose Leibniz congruence is the identity relation are called
reduced matrices and play a very important role in Abstract Algebraic Logic
(see [10] for a survey on this subject). This motivates the following defini-
tions: if G is a Gentzen system, a G–matrix 〈A, R〉 is a reduced G-matrix
if ΩA(R) = ∆A = {(a, a) ∈ A2}. If A is an L-algebra, A is an algebraic
reduct of a G-reduced matrix if there exists R ∈ m-Seq(A) such that 〈A, R〉
is a reduced G-matrix. We denote by MatrG the set of all G-matrices and
by Matr∗G the set of all G-reduced matrices. If K is a class of matrices,
Alg(K) denotes the set of all algebraic reducts of the matrices in K.

If K is a class of algebras, Q(K) will denote the quasivariety generated
by the class K.

5 Finitely equivalential Gentzen systems

One of the objectives of the paper is to characterize the algebraic reducts
of the reduced GL-matrices. Although a direct proof of this characterization
based on the properties of the sequents Ξi(p, q) and the rules (structural
and logical) of the sequent calculi could be supplied (as was done in [12]),
we present here a more general proof inspired in some results obtained by
J. Czelakowski ([9, Thm. 3.2.2]) and H. Herrmann ([17]) concerning what
is known as equivalential or congruential deductive system. So we start
by providing the notion of finitely equivalential Gentzen system and then
we define and characterize the algebraic reducts of the reduced matrices
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of a finitely equivalential Gentzen system. The results of this section are
concerned more with the properties of the consequence relation than with the
influence of the structural rules in the concept of and equivalential Gentzen
system. This is because it seems not possible to derive the propertes of this
kind of Gentzen systems only from the form of the rules of a calculus (as
was done for protoalgebraic Gentzen systems in [14]).

Definition 5.1. A Gentzen system G is finitely equivalential if there

exists a finite set of m-sequents in two variables {∆i(p, q) : i < n} such that,

for any G-matrix 〈A,R〉,

ΩA(R) = {(a, b) ∈ A2 : ∆A

i (a, b) ∈ R for all i < n}.

The set {∆i(p, q) : i < n} ⊆ m-SeqL is called a set of equivalence se-

quents for G.

Lemma 5.2. Let G be a finitely equivalential Gentzen system with a

set {∆i(p, q) : i < n} of equivalence sequents. Then, if 〈A, R〉 ∈ Matr∗G,

h ∈ val(A) and {ϕ,ψ} ⊆ FmL, we have that

h(ϕ) = h(ψ) ⇐⇒ {h(∆i(ϕ,ψ) : i < n} ⊆ R.

Proof. Note that

h(ϕ) = h(ψ) iff (h(ϕ), h(ψ)) ∈ ΩA(R) iff ∆A

i (h(ϕ), h(ψ)) ∈ R,

for all i < n. Then observe that ∆A
i (h(ϕ), h(ψ)) = h(∆i(ϕ,ψ)). �

Now we will see how to establish a link between certain finitely equiv-
alential Gentzen systems and certain classes of algebras. First we recall the
concept of the relative equational consequence relation associated with a
class of algebras. An L-equation is a pair of L–formulas {ϕ,ψ}, usually
written as ϕ ≈ ψ. If K is a class of algebras, the relative equational
consequence relation determined by K is the consequence relation on the
set of L-equations defined as follows: Σ |=K ϕ ≈ ψ iff for all A ∈ K and
every h ∈ val(A), if h(χ) = h(η) for every χ ≈ η ∈ Σ then h(ϕ) = h(ψ), for
every set of L–equations Σ ∪ ϕ ≈ ψ.

Lemma 5.3. Let G be a Gentzen system complete with respect to a class

K of reduced G-matrices, such that G is finitely equivalential with {∆j(p, q) :

j < n} ⊆ m-SeqL a set of equivalence sequents. Then for every set Σ∪{ϕ ≈

ψ} of L–equations

Σ |=AlgK ϕ ≈ ψ iff {∆j(ξ, η) : ξ ≈ η ∈ Σ, j < n}`G ∆l(ϕ,ψ), for all l < n.
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Proof. Since G is complete with respect to K, we will show that Σ |=AlgK

ϕ ≈ ψ iff {∆j(ξ, η) : ξ ≈ η ∈ Σ, j < n} |=K ∆l(ϕ,ψ) for all l < n. And this
is true because by Lemma 5.2 we have that for every matrix 〈A,R〉 ∈ K,
Σ |={A} ϕ ≈ ψ iff {∆j(ξ, η) : ξ ≈ η ∈ Σ, j < n} |=〈A,R〉 ∆l(ϕ,ψ), for all
l < n. �

In the terminology of [17] (for logics) and [16] (for Gentzen systems),
we say that the sequents ∆j(p, q), j < n provide an interpretation of the
consequence relation |=AlgK into the consequence relation `G .

Now we prove the main result of the paper that will be further applied
to the algebraic reducts of the reduced GVL-matrices.

Theorem 5.4. Let G be a finitely eqivalential Gentzen system complete

with respect to a class K of reduced G-matrices. Then we have that

Alg(Matr∗G) = Q(AlgK).

Proof. Let {∆j(p, q) : j < n} ⊆ m-SeqL be a set of equivalence sequents
for G.

⊆ Let 〈A, R〉 ∈Matr∗G and let Σ∪{ϕ ≈ ψ} be a set of L–equations. To
show A ∈ Q(AlgK) we will prove that Σ |=AlgK ϕ ≈ ψ implies Σ |=A ϕ ≈ ψ.
Consider h ∈ val(A) such that h(ξ) = h(η) for any ξ ≈ η ∈ Σ. By Lemma
5.2 {∆A

j (h(ξ), h(η)) : j < n, ξ ≈ η ∈ Σ} ⊆ R. Since by Lemma 5.3 we have
that for all l < n {∆j(ξ, η) : j < n, ξ ≈ η ∈ Σ}`G ∆l(ϕ,ψ), we obtain that
if l < n, then h(∆l(ϕ,ψ)) ∈ R and again by Lemma 5.2 h(ϕ) = h(ψ).

⊇ Since AlgK ⊆ Alg(Matr∗G), it is enough to prove that the class
Alg(Matr∗G) is a quasivariety, i.e., it is closed under the operators S (sub-
algebra), P (product) and PU (ultraproduct).2

(i) The fact that Alg(Matr∗G) is closed under S follows from the fol-
lowing Lemma (similar to [9, Thm. 3.2.2] but replacing A by m-Seq(A)),
whose proof is straightforward.

Lemma 5.5. Let G be a finitely equivalential Gentzen system. If A ∈

S(B) and R ∈ FiGB, then

m-Seq(A) ∩R ∈ FiGA and ΩA(m-Seq(A) ∩R) = A2 ∩ ΩB(R). �

(ii) To prove that Alg(Matr∗G) is closed under P we consider a set
{〈Ai, Ri〉 : i ∈ I} of reduced G-matrices. We consider now the matrix

M =

〈

∏

i∈I

Ai, R

〉

.

2Note that, if we are only interested in the Gentzen systems GL, there is no need to

consider the operator PU, since we are dealing with the quasivariety generated by a single

finite algebra.
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where, by definition, for all (n0, . . . , nm−1) ∈ ωm and every k < m, l < nk

and al
k ∈

∏

i∈I Ai,

((a0
0, . . . , a

n0−1
0 ), . . . , (a0

m−1, . . . , a
n0−1
m−1 )) ∈ R

if and only if for all i ∈ I,

((a0
0(i), . . . , a

n0−1
0 (i)), . . . , (a0

m−1(i), . . . , a
n0−1
m−1 (i)) ∈ Ri.

Obviously R is a G-filter. To prove that M is reduced, notice that if

((ai)i∈I , (bi)i∈I) ∈ (
∏

i∈I

Ai)
2,

then
((ai)i∈I , (bi)i∈I) ∈ Ω∏

i∈I
Ai

(R) ⇐⇒

{∆
∏

i∈I
Ai

j ((ai)i∈I , (bi)i∈I) : j < m} ⊆ R ⇐⇒

{∆Ai

j (ai, bi) : j < m} ⊆ Ri for all i ∈ I ⇐⇒

ai = bi for all i ∈ I, ⇐⇒
(ai)i∈I = (bi)i∈I .

(iii) To prove that Alg(Matr∗G) is closed under PU we consider a set
{〈Ai, Ri〉 : i ∈ I} of reduced G-matrices and an ultrafilter U on I. We
consider now the matrix

M =

〈

∏

i∈I

Ai

/

U , D

〉

.

where, by definition, for all (n0, . . . , nm−1) ∈ ωm and every k < m, l < nk

and al
k ∈

∏

i∈I Ai,

((a0
0

/

U , . . . , a
n0−1
0

/

U ), . . . , (a0
m−1

/

U , . . . , a
n0−1
m−1

/

U )) ∈ D

if and only if

{i ∈ I : ((a0
0(i), . . . , a

n0−1
0 (i)), . . . , (a0

m−1(i), . . . , a
n0−1
m−1 (i)) ∈ Ri} ∈ U .

Now, it is straightforward to prove that M is a reduced G-matrix. �

6 The GL-matrices

In order to apply Proposition 4.5 to the Gentzen systems GL we will prove
that for any GL-theory T , the relation θT is a congruence. First we state the
following result that shows that the sequents defined in 4.2 satisfy a result
similar to Lemma 5.2, when considering the matrix 〈L, DL〉:
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Lemma 6.1. Let h ∈ val(L) and {ϕ,ψ} ⊆ FmL, then

h(ϕ) = h(ψ) ⇐⇒ h ∈
⋂

i<m

s(Ξi(ϕ,ψ)) ⇐⇒ {h(Ξi(ϕ,ψ)) : i < m} ⊆ DL.

Proof. For the first equivalence ⇒) is straightforward and ⇐) is proved
as follows: if h(ϕ) = vj and since h ∈ s({Ξj(ϕ,ψ)) = s([[[{j}C : ϕ], [j : ψ]]]),
we get that h(ψ) = vj. The second equivalence follows from Lemma 3.6(i).

�

Theorem 6.2. Let A be an L-algebra. Let R be a GL-filter on A. Then

ΩA(R) = {(a, b) : ΞA

i (a, b) ∈ R for all i < m}.

Proof. First we prove that if $ is an n-ary connective, then for all
j < m

{Ξi(xk, yk) : i < m, k < n}`L Ξj($(x0, . . . , xn−1), $(y0, . . . , yn−1)) (3)

Let h ∈ Hom(FmL,FmL) such that h ∈ ∩i<m,k<ns(Ξi(xk, yk)); by Lemma
6.1 we have that h(xk) = h(yk) for all k < n. Hence

h($(x0, . . . , xn−1)) = h($(y0, . . . , yn−1)),

so

h ∈ s(Ξj($(x0, . . . , xn−1), $(y0, . . . , yn−1))),

by Lemma 6.1 again. With (3) and Proposition 4.4 we have proved that the
set

θR = {(a, b) : ΞA

i (a, b) ∈ R for all i < m}

is a congruence relation, so by Proposition 4.5 we are done. �

Theorem 6.3. Let L be a finite algebra of cardinal m. The Gentzen

system GL is finitely equivalential and the set {Ξi(p, q) : i < m} is a set of

equivalence sequents for it.

Proof. This is just Theorem 6.2. �

Now we finally come to the study of the algebraic reducts of the re-
duced GL-matrices. First we note that the matrix 〈L, DL〉 satisfies another
interesting property:

Proposition 6.4. For any finite algebra L, the matrix 〈L, DL〉 is a

reduced GL-matrix.
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Proof. 〈L, DL〉 is a GL-matrix by Theorem 3.7. Now let a, b ∈ L
and h ∈ val(L) such that h(p) = a and h(q) = b. We have the following
equivalences:

(a, b) ∈ ΩL(DL) ⇐⇒ ΞL
i (a, b) ∈ DL for all i < m (by Theorem 6.2)

⇐⇒ h(Ξi(p, q)) ∈ DL for all i < m
⇐⇒ h(p) = h(q) (by Lemma 6.1)
⇐⇒ a = b,

which closes the proof. �

Now, as a corollary we obtain the following

Theorem 6.5. Let L be a finite algebra. Then

Alg(Matr∗GL) = Q(L).

Proof. By Theorem 5.4 and the fact that GL is complete with respect
to the class {〈L, DL〉} (Theorem 3.7) of reduced matrices (Proposition 6.4)
and finitely equivalential (Theorem 6.3). �

7 Conclusions

Throughout the paper we have shown how the rules of a sequent calculus
encode in a certain sense some properties that have a clear algebraic coun-
terpart. In this sense this paper follows the results presented in [14] where
the relation between the cut rule and the protoalgebraicity of a system was
clearly established.

Some other results concerning the relative equational consequence rela-
tion determined by a finite algebra can be obtained. In the paper we have
proved that given a finite algebra L, the class of the algebraic reducts of the
reduced matrices of the Gentzen system GL is the quasivariety generated by
L. As an easy corollary of Lemma 5.3 and Proposition 6.4, we have that

Corollary 7.1. Let L be a finite algebra of cardinal m; for every set

Σ ∪ {ϕ ≈ ψ} of L–equations,

Σ |=Q(L) ϕ ≈ ψ ⇔ {Ξi(ξ, η) : ξ ≈ η ∈ Σ, i < m}`L Ξj(ϕ,ψ), for any j < m.

(4)

which means that we have an interpretation of the relative equational
consequence relation associated to the quasivariety generated by L in the
Gentzen system GL. But the Gentzen system satisfies the Deduction De-
tachment Theorem for Gentzen Systems ([15, Definition 3.1 and Thm. 3.4
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and 3.6]), which means that checking the right hand side of the equivalence
in (4) reduces to check if a certain set of sequents consists only of derivable
sequents. If we take into account now that the sequent calculi VL enjoy the
cut elimination property, we obtain, by using (4) a decision procedure for
the relative equational consequence determined by the algebra L. Since the
process that produces the rules of the corresponding sequent calculus is fully
automatized (via the system MUltlog), the decision procedure (described in
[11]) for the relative equational consequence relation is easy to implement,
and in fact can be used through [2].

A. A S(3)-sequent calculus

Let S(3) = ({0, 1, 2},¬,∨,∧,→) be the three element MV -algebra. By
applying the system MUltlog to the truth tables of the connectives of S(3)
we obtain the following VS(3)-sequent calculus

• Introduction rules for the negation

Γ | ∆ | Π, ϕ

Γ,¬ϕ | ∆ | Π
(¬ : 0)

Γ | ∆, ϕ | Π

Γ | ∆,¬ϕ | Π
(¬ : 1)

Γ, ϕ | ∆ | Π

Γ | ∆ | Π,¬ϕ
(¬ : 2)

• Introduction rules for the disjunction

Γ, ϕ | ∆ | Π Γ, ψ | ∆ | Π

Γ, ϕ ∨ ψ | ∆ | Π
(∨ : 0)

Γ | ∆, ϕ, ψ | Π Γ, ϕ | ∆, ϕ | Π Γ, ψ | ∆, ψ | Π

Γ | ∆, ϕ ∨ ψ | Π
(∨ : 1)

Γ | ∆ | Π, ϕ, ψ

Γ | ∆ | Π, ϕ ∨ ψ
(∨ : 2)

• Introduction rules for the conjunction

Γ, ϕ, ψ | ∆ | Π

Γ, ϕ ∧ ψ | ∆ | Π
(∧ : 0)

Γ | ∆, ϕ, ψ | Π Γ | ∆, ϕ | Π, ϕ Γ | ∆, ψ | Π, ψ

Γ | ∆, ϕ ∧ ψ | Π
(∧ : 1)

Γ | ∆ | Π, ϕ Γ | ∆ | Π, ψ

Γ | ∆ | Π, ϕ ∧ ψ
(∧ : 2)
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• Introduction rules for the implication

Γ | ∆ | Π, ϕ Γ, ψ | ∆ | Π

Γ, ϕ→ ψ | ∆ | Π
(→: 0)

Γ | ∆, ϕ | Π, ϕ Γ | ∆, ϕ, ψ | Π Γ, ψ | ∆ | Π, ϕ

Γ | ∆, ϕ→ ψ | Π
(→: 1)

Γ, ϕ | ∆, ϕ | Π, ψ Γ, ϕ | ∆, ψ | Π, ψ

Γ | ∆ | Π, ϕ → ψ
(→: 2)

• Structural rules: all of them (see Section 2.1).
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30 ÁNGEL J. GIL and JORDI REBAGLIATO

[11] A. J. Gil and Gernot Salzer, MUltseq: a generic prover for sequents and equations,

In Collegium Logicum: Annals of the Kurt-Gödel-Society, 4 (2001), pp. 238–242.
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