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Neboǰsa MUDRINSKI

THE LARGEST HIGHER COMMUTATOR

SEQUENCE

A b s t r a c t. Given the congruence lattice L of a finite algebra

A that generates a congruence permutable variety, we look for

those sequences of operations on L that have the properties of

higher commutator operations of expansions of A. If we introduce

the order of such sequences in the natural way the question is

whether exists or not the largest one. The answer is positive. We

provide a description of the largest element and as a consequence

we obtain that the sequences form a complete lattice.

.1 Introduction

In 1948 Birkhoff in [4] considered lattices expanded with one binary oper-

ation that satisfies the basic properties of the commutator. Such lattices
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have been studied later by Czelakowski in [6, 7, 8]. Here, if we restrict

our investigation to lattices that are congruence lattices of an algebra that

belongs to a congruence modular variety, then we know that there are at

least one expansion of such a lattice with such a binary operation, namely

the commutator operation defined for example in [10, p.256], [9] or [13].

One can introduce an order in the set of all possible such binary operations

in a natural way using the lattice order, see Definition 2.2. According to

this order there exists the largest binary operation that expands the given

complete lattice and satisfies the isolated properties of the commutator that

we are going to explain in the sequel: (HC1), (HC2), (HC4) and (HC7).

Czelakowski has proved that it is the join of all such binary operations, see

[6, Corollary 1.5].

Generalizing the binary commutator operation, A. Bulatov introduced

multi-placed commutators for an algebra A [5, Definition 3]. For each

k ∈ N, and each k-tuple (α1, . . . , αk) ∈ (Con(A))k, he defined a congruence

[α1, . . . , αk]A of A and named it the k-ary commutator of α1, . . . , αk. When

A has a Mal’cev term, [12, 1] discuss several properties of these higher

commutators.

As in [2], with each algebra A, we can associate the commutator struc-

ture of A. This is the structure (Con(A),∧,∨, (fi)i∈N), where

fi : (Con(A))i → Con(A), (α1, . . . , αi) 7→ [α1, . . . , αi]A;

f1(α1) = [α1]A is defined to be α1. The sequence (fi)i∈N is then called

the commutator sequence of A. If A belongs to a congruence permutable

variety, then for all n, k ∈ N with k ≤ n, and for all α1, . . . , αn, β1, . . . , βn ∈
Con(A) and {ρj ||| j ∈ J} ⊆ Con(A), we have

• (HC1) fn(α1, . . . , αn) ≤
∧n
j=1 αj .

• (HC2) if α1 ≤ β1, . . . , αn ≤ βn, then fn(α1, . . . , αn) ≤ fn(β1, . . . , βn).

• (HC3) fn+1(α1, . . . , αn+1) ≤ fn(α2, . . . , αn+1).

• (HC4) fn(α1, . . . , αn) = fn(ασ(1), . . . , ασ(n)) for all σ ∈ Sn.

• (HC7) fn(α1, . . . , αk−1,
∨
j∈J ρj , αk+1, . . . , αn)

=
∨
j∈J fn(α1, . . . , αk−1, ρj , αk+1, . . . , αn).

• (HC8) fk(α1, . . . , αk−1, fn−k+1(αk, . . . , αn)) ≤ fn(α1, . . . , αn).
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We note that the properties (HC3) and (HC8) do not make sense for

the binary commutators, because they connect the commutators of distinct

arities. Also, the properties (HC5) and (HC6) listed in [1] are missing from

our list here. The property (HC5) relates higher commutators to a cer-

tain centralizing relation, and (HC6) relates the commutator operations of

an algebra to the commutator operations of a homomorphic image. All

the properties (HC1) to (HC8) for algebras in congruence permutable vari-

eties has been proved in [1]. A. Moorhead has proved (HC1) to (HC7) for

congruence modular varieties in [11].

Let us now consider an arbitrary sequence (fi)i∈N of operations on

a complete lattice L such that for each i ∈ N, the function fi is an i-ary op-

eration on L. We shall call such a sequence an operation sequence on L. An

operation sequence (fi)i∈N is admissible if it satisfies the properties (HC1),

(HC3), (HC4), (HC7) and (HC8). Such a sequence of operations satisfies

also (HC2) by Proposition 2.1. In [2] has been proved that the number

of such sequences even on a finite lattice can be infinite and the authors

have constructed examples of infinitely many admissible sequences, see the

proof of [2, Theorem 3.5]. For an algebra A in a congruence permutable

variety, the commutator sequence is an admissible sequence on the lattice

L := Con(A) by [1]. The order among all such sequences of operations on

L we induce in the following way. First, for all n ∈ N we introduce the

order ≤o among all n-ary members of all operation sequences in the same

way as it has been introduced for binary operations by Czelakowski. Then

this order induces the natural order ≤s of all the operation sequences, see

Definition 2.4. One can observe that the sequence of joins of operations of

the same arity is not an admissible sequence, because the property (HC8)

fails. In the present note we will investigate the following problem:

Given a complete lattice L, is there the largest admissible se-

quence on L?

This question is natural from lattice theoretic point of view. Namely,

in many algebraic structures, if one look at the set of properly chosen func-

tions over it, endowed with operations that naturally arise from the starting

structure then we obtain the same algebraic structure. For example, the set

of all mappings over a vector space forms again a vector space if addition

of mappings and multiplying a mapping by a scalar are both induced by

corresponding operations from the given vector space. In this note, we start
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from the complete lattice and we want to know whether those sequences

form again a complete lattice. The positive answers of the proposed ques-

tions are given in the Corollary 3.8 and Theorem 3.7. This theorem states

that the set of all admissible sequences together with the order induced by

the lattice order forms a complete lattice.

.2 Preliminaries

The next proposition is an easy observation that generalizes the same fact

for binary operations from [6, p.111].

Proposition 2.1. Let L be a complete lattice and let n ∈ N, n ≥ 2. If

f : Ln → L satisfies (HC7) then f satisfies (HC2).

Proof. Let n ≥ 2 and let f : Ln → L be such that it satisfies (HC7).

First we prove that for all i ∈ {1, . . . , n} and all x1, . . . , xn, yi ∈ L we have

xi ≤ yi ⇒ f(x1, . . . , xn) ≤ f(x1, . . . , yi, . . . , xn). (1)

We suppose xi ≤ yi. Then we have yi = xi∨yi. Now using (HC7), we obtain

f(x1, . . . , xn) ≤ f(x1, . . . , xi, . . . , xn)∨f(x1, . . . , yi, . . . , xn) = f(x1, . . . , xi∨
yi, . . . , xn) = f(x1, . . . , yi, . . . , xn). The property (HC2) follows from n

applications of (1). 2

Definition 2.2. Let (L,∧,∨) be a complete lattice and let n ∈ N. If

f, g : Ln → L then we write f ≤o g if f(x1, . . . , xn) ≤ g(x1, . . . , xn), for all

(x1, . . . , xn) ∈ Ln.

Note that ≤o is a partial order on the set of all operations On on L of

the same arity n ∈ N.

Proposition 2.3. If (L,∧,∨) is a complete lattice and n ∈ N then

(On,≤o) is a complete lattice.

Proof. We define f ∧ g, f ∨ g ∈ On such that

(f ∧ g)(x1, . . . , xn) := f(x1, . . . , xn) ∧ g(x1, . . . , xn)

and

(f ∨ g)(x1, . . . , xn) := f(x1, . . . , xn) ∨ g(x1, . . . , xn)
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for all (x1, . . . , xn) ∈ Ln. Clearly the lattice is complete because we define

arbitrary joins and meets in the same manner. 2

For a given lattice (L,∧,∨) we denote the set of all operation se-

quences by Seq(L) and the set of all admissible operation sequences by

SeqComm(L). We observe that
⋃
Seq(L) =

⋃
n∈NOn. If the lattice L

is complete, we denote the smallest element of L by 0. For each n ∈ N
the n-ary operation 0n : Ln → L is defined such that 0n(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ L. The sequence (0n)n∈N we call the zero sequence.

Obviously, (0n)n∈N ∈ SeqComm(L) and therefore SeqComm(L) 6= ∅. In

the following definition we introduce a partial order ≤s on Seq(L) that is

naturally induced by the partial order ≤o.

Definition 2.4. Let (L,∧,∨) be a complete lattice and n ∈ N. If

(fn)n∈N and (gn)n∈N are sequences of operations on L such that fn and gn
have the same arity n, for all n ∈ N then we write (fn)n∈N ≤s (gn)n∈N if

fn ≤o gn for all n ∈ N.

Proposition 2.5. Let (L,∧,∨) be a complete lattice. Then (Seq(L),≤s)
is a complete lattice.

Proof. We define ((f ∧ g)n)n∈N, ((f ∨ g)n)n∈N ∈ Seq(L) such that

(f ∧ g)n := fn ∧ gn and (f ∨ g)n := fn ∨ gn for all n ∈ N. Clearly the

lattice is complete because we define arbitrary joins and meets in the same

manner. 2

In the next proposition the binary operations on the lattice that satisfy

the properties (HC1), (HC2), (HC4) and (HC7) are denoted by [•, •]i. In

the rest of the note we denote them by f i2.

Proposition 2.6. [6, Lemma 1.4] Let L be a complete lattice and let

Comm(L) := {[•, •]i | i ∈ I} be the family of all binary operations on L

that satisfy (HC1), (HC2), (HC4) and (HC7). If ∅ 6= J ⊆ I, then∨
i∈J [•, •]i ∈ Comm(L).

.3 The Result

Obviously for each complete lattice (L,∧,∨) we have SeqComm(L) ⊆
Seq(L). We denote elements of SeqComm(L) by (f in)n∈N, i ∈ I, where
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I enumerates the elements of SeqComm(L). The next proposition one can

prove straightforward.

Proposition 3.1. Let (L,∧,∨) be a complete lattice.

Then (SeqComm(L),≤s) is a partial order with the zero sequence as the

smallest element.

In the next definition we construct the admissible sequence that is the

largest element of SeqComm(L). This is going to be proved in the rest of

the section. Each permutation σ ∈ Sn of the set {1, . . . , n} we write in the

form (i1, . . . , in), where σ(k) = ik for all k ∈ {1, . . . , n}.

Definition 3.2. Let L be a complete lattice and let ∅ 6= J ⊆ I. We

define (d, eJn)n∈N ∈ Seq(L) by: if n ∈ {1, 2}, then d, eJn :=
∨
i∈J f

i
n (the join

of the n-ary members of the sequences) and for each n ≥ 3 we have

dx1, . . . , xneJn :=

:=
∨

k∈{2,...,n−1}

∨
(i1, . . . , in) ∈ Sn
i1 ≤ · · · ≤ ik
ik+1 ≤ · · · ≤ in

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k

∨
∨
i∈J

f in(x1, . . . , xn), (2)

for all (x1, . . . , xn) ∈ Ln. If J = I we omit the superscript J with no

confusion.

Example. For the case n = 3 we take x1, x2, x3 ∈ L and observe that

there is only one possibility for k, so k = 2. Therefore we look for all

permutations of the set {1, 2, 3} such that the first two places do not make

an inversion. Hence we take the permutations (1, 2, 3), (1, 3, 2), (2, 3, 1) and

obtain:

dx1, x2, x3e3
= ddx1, x2e2, x3e2 ∨ ddx1, x3e2, x2e2 ∨ ddx2, x3e2, x1e2 ∨

∨
i∈I

f i3(x1, x2, x3).

Lemma 3.3. Let L be a complete lattice and let ∅ 6= J ⊆ I. Then d, eJn
satisfies (HC1), (HC2), (HC4), and (HC7) for every n ∈ N.
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Proof. We prove the statement by induction on n. For n = 1 the

properties (HC1), (HC2), (HC4) and (HC7) follow directly from the fact

that for each i ∈ J f i1 satisfies the same properties. For n = 2 we use

Proposition 2.6. Let n ≥ 3.

(HC1) Let (x1, . . . , xn) ∈ Ln, let k ∈ {2, . . . , n−1} and let (i1, . . . , in) ∈
Sn be such that i1 ≤ · · · ≤ ik and ik+1 ≤ · · · ≤ in. Then by the induction

hypothesis we have dxi1 , . . . , xikeJk ≤
∧k
j=1 xij and

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k ≤ dxi1 , . . . , xike
J
k ∧

n∧
j=k+1

xij .

Hence

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k ≤
k∧
j=1

xij ∧
n∧

j=k+1

xij =
n∧
j=1

xj .

Since f in satisfies (HC1) for all i ∈ J we obtain dx1, . . . , xneJn ≤
∧n
j=1 xj .

(HC4) We are going to prove the property for the case of transposition.

Let (x1, . . . , xn) ∈ Ln, and let m, p ∈ {1, . . . , n} be such that m < p. We

have to prove that

dx1, . . . , xp, . . . , xm, . . . , xneJn = dx1, . . . , xm, . . . , xp, . . . , xneJn.

If we fix k ∈ {2, . . . , n − 1} then for each (i1, . . . , in) ∈ Sn such that

i1 ≤ · · · ≤ ik and ik+1 ≤ · · · ≤ in we have the following cases. If

m, p ∈ {i1, . . . , ik} or m, p ∈ {ik+1, . . . , in} we apply the induction hy-

pothesis on d, eJk or d, eJn+1−k, respectively. If neither m, p ∈ {i1, . . . , ik} nor

m, p ∈ {ik+1, . . . , in} we observe that for each permutation (i1, . . . , in) ∈ Sn
such that i1 ≤ · · · ≤ ik, ik+1 ≤ · · · ≤ in and p ∈ {i1, . . . , ik} and

m ∈ {ik+1, . . . , in} there is the unique permutation (j1, . . . , jn) ∈ Sn such

that j1 ≤ · · · ≤ jk, jk+1 ≤ · · · ≤ jn and {j1, . . . , jk} = {i1, . . . , ik}\{p}∪{m}
and {jk+1, . . . , jn} = {ik+1, . . . , in}\{m}∪{p}. Therefore the both disjuncts

occur in ∨
(i1, . . . , in) ∈ Sn
i1 ≤ · · · ≤ ik
ik+1 ≤ · · · ≤ in

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k.
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Since all f in satisfy (HC4) we obtain that the form (2) is the same for both

dx1, . . . , xp, . . . , xm, . . . , xneJn and dx1, . . . , xm, . . . , xp, . . . , xneJn.

(HC7) Without loss of generality we are going to prove the distribu-

tivity on the first argument. Let {xj1 | j ∈ J1} ∪ {x2, . . . , xn} ⊆ L, let

k ∈ {2, . . . , n − 1} and let (i1, . . . , in) ∈ Sn be such that i1 ≤ · · · ≤ ik and

ik+1 ≤ · · · ≤ in. Then 1 = it for a t ∈ {1, . . . , n}. We analyze the most

complicated case t ∈ {1, . . . , k}. By the induction hypothesis we have

dx1, . . . , xit−1,
∨
j∈J1

xj1, xit+1, . . . , xkeJk

=
∨
j∈J1

dx1, . . . , xit−1, x
j
1, xit+1, . . . , xkeJk

and therefore

ddx1, . . . , xit−1,
∨
j∈J1

xj1, xit+1, . . . , xkeJk , xk+1, . . . , xneJn−k+1

= d
∨
j∈J1

dx1, . . . , xit−1, x
j
1, xit+1, . . . , xkeJk , xk+1, . . . , xneJn−k+1

=
∨
j∈J1

ddx1, . . . , xit−1, x
j
1, xit+1, . . . , xkeJk , xk+1, . . . , xneJn−k+1

Also f in(
∨
j∈J1 x

j
1, x2, . . . , xn) =

∨
j∈J1 f

i
n(xj1, . . . , xn) for all i ∈ J .

(HC2) follows from (HC7) by Proposition 2.1. 2

Lemma 3.4. Let L be a complete lattice and let ∅ 6= J ⊆ I. Then

(d, eJn)n∈N satisfies (HC3).

Proof. We prove the statement by induction on n. For n = 1 the state-

ment is true as a consequence of (HC3) for each f i1 and f i2 for all i ∈ J .

Let n ≥ 2. Let x1, . . . , xn ∈ L. We have to prove that dx1, . . . , xneJn ≤
dx2, . . . , xneJn−1. For every k ∈ {2, . . . , n − 1} and every permutation

(i1, . . . , in) of the set {1, . . . , n} such that i1 ≤ · · · ≤ ik and ik+1 ≤ · · · ≤ in
we have two cases:

(1) 1 = it, t ∈ {1, . . . , k}: By the induction hypothesis and (HC4) we

know that

dxi1 , . . . , xike
J
k = dxit , xi1 , . . . , xit−1 , xit+1 , . . . , xike

J
k

≤ dxi1 , . . . , xit−1 , xit+1 , . . . , xike
J
k−1.
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Using (HC2) and also (HC1) if k = 2, we obtain

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k

≤ ddxi1 , . . . , xit−1 , xit+1 , . . . , xike
J
k−1, xik+1

, . . . , xineJn+1−k

≤ dx2, . . . , xneJn−1,

by the definition of d, eJn−1.

(2) 1 = it, t ∈ {k + 1, . . . , n}: Using (HC4) we have

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k

= dxit , dxi1 , . . . , xike
J
k , xik+1

, . . . , xit−1 , xit+1 , . . . , xineJn+1−k.

By the induction hypothesis and the definition of d, eJn−1 we know

that

dxit , dxi1 , . . . , xike
J
k , xik+1

, . . . , xit−1 , xit+1 , . . . , xineJn+1−k

≤ ddxi1 , . . . , xike
J
k , xik+1

, . . . , xit−1 , xit+1 , . . . , xineJn−k
≤ dx2, . . . , xneJn−1.

Since (f in)n∈N ∈ SeqComm(L) we have f in(x1, . . . , xn) ≤ f in−1(x2, . . . , xn)

for all i ∈ J by (HC3). Therefore, we obtain∨
i∈J

f in(x1, . . . , xn) ≤ dx2, . . . , xneJn−1

by the definition of d, eJn−1. 2

Lemma 3.5. Let L be a complete lattice and let ∅ 6= J ⊆ I. Then

(d, eJn)n∈N satisfies (HC8).

Proof. Let n,m ∈ N and let x1, . . . , xn ∈ L. If 1 < m < n then

ddx1, . . . , xmeJm, xm+1, . . . , xneJn−m+1 ≤ dx1, . . . , xneJn

by the definition of d, eJn. If m = 1 < n then we obtain the inequality

by (HC1) and (HC2). Finally, if m = n the inequality follows just from

(HC1). 2
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Proposition 3.6. Let L be a complete lattice and let ∅ 6= J ⊆ I. Then

(d, eJn)n∈N ∈ SeqComm(L).

Proof. We use Lemma 3.3, 3.4, and 3.5. 2

Theorem 3.7. Let L be a complete lattice. Then (SeqComm(L),≤s)
is complete lattice.

Proof. Using Proposition 3.1 and [3, Theorem 4.2] it is enough to

prove that there is a supremum of arbitrary subset of SeqComm(L). We

let J ⊆ I. If J = ∅ then
∨
∅ is the smallest element and it is the zero

sequence as we have already stated in Proposition 3.1. Now, let J 6= ∅.
We know that the sequence (d, eJn)n∈N ∈ SeqComm(L) by Proposition 3.6.

Let j ∈ J . Obviously, for each n ∈ N, f jn ≤o
∨
i∈J f

i
n ≤o d, eJn by the

definition of d, eJn and therefore (f in)n∈N ≤s (d, eJn)n∈N for all i ∈ J . Let us

suppose that (gn)n∈N ∈ SeqComm(L) is such that (f in)n∈N ≤s (gn)n∈N for

all i ∈ J . We prove by induction on n that d, eJn ≤o gn for all n ∈ N. For

n ∈ {1, 2} and for all i ∈ J we have f in ≤o gn by the assumption and hence

d, eJn =
∨
i∈J f

i
n ≤o gn. Therefore, the base is true. Let n ≥ 3. For every

k ∈ {2, . . . , n − 1} and every permutation (i1, . . . , in) of the set {1, . . . , n}
such that i1 ≤ · · · ≤ ik and ik+1 ≤ · · · ≤ in we have dxi1 , . . . , xikeJk ≤
gk(xi1 , . . . , xik) and

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k

≤ gn+1−k(dxi1 , . . . , xike
J
k , xik+1

, . . . , xin)

for all (x1, . . . , xn) ∈ Ln by the induction hypothesis. Hence by (HC2),

(HC8) and (HC4) we obtain

ddxi1 , . . . , xike
J
k , xik+1

, . . . , xineJn+1−k

≤ gn+1−k(gk(xi1 , . . . , xik), xik+1
, . . . , xin)

≤ gn(xi1 , . . . , xin) = gn(x1, . . . , xn)

for all (x1, . . . , xn) ∈ Ln. Of course
∨
i∈J f

i
n ≤o gn by the assumption for

(gn)n∈N and therefore we obtain d, eJn ≤o gn. This finishes the induction

proof. Therefore, (d, eJn)n∈N ≤s (gn)n∈N. 2

Corollary 3.8. Let L be a complete lattice. Then there is the largest

element in (SeqComm(L),≤s).

Proof. The largest element is (d, en)n∈N. 2
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