

H2020—ICT—732410

ROBMOSYS
COMPOSABLE MODELS AND SOFTWARE

FOR ROBOTICS SYSTEMS

DELIVERABLE D2.2:
INITIAL PREPARATION OF (META-)MODELS, PROTOTYPICAL DSLS,

TOOLS AND IMPLEMENTATION

Christian Schlegel (Hochschule Ulm)

Alex Lotz (Hochschule Ulm)

Dennis Stampfer (Hochschule Ulm)

THIS PROJECT HAS RECEIVED FUNDING FROM THE ​EUROPEAN UNION’S HORIZON 2020 RESEARCH AND
INNOVATION PROGRAMME​ UNDER GRANT AGREEMENT NO. 732410

Ref. Ares(2017)3321727 - 03/07/2017

ROBMOSYS D2.2 H2020—ICT—732410

Project acronym​: RobMoSys

Project full title​: Composable Models and Software for Robotics Systems

Work Package​: WP 2

Document number​: D2.2

Document title​: Initial preparation of (meta-)models, prototypical DSLs, tools and implementation

Version​: 1.0

Due date: ​June 30th, 2017

Delivery date​: June 26th, 2017

Nature​: Report (R)

Dissemination level​: Public (PU)

Editor: Alex Lotz (HSU), Dennis Stampfer (HSU), Christian Schlegel (HSU)

Author(s)​: Alex Lotz (HSU), Dennis Stampfer (HSU), Christian Schlegel (HSU),
Enea Scioni (KUL), Nico Huebel (KUL), Herman Bruyninckx (KUL),
Matteo Morelli (CEA), Chokri Mraidha (CEA), Sara Tucci (CEA),
Marie-Luise Neitz (TUM),
Daniel Meyer-Delius (SIE)

Reviewer: Sergi Garcia (PAL Robotics)

PAGE 2 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

Executive Summary

This is an accumulative Deliverable for Tasks T2.2 to T2.7. The individual contributions of the
respective Tasks are highlighted in the individual sections in this Deliverable document. This
Deliverable provides the ​initial ​preparation of (meta-)models, prototypical DSLs, tools and
implementations. Improved versions will follow in the successive Deliverable D2.3 in M27 and the
final Deliverable D2.4 in M48.

This Deliverable D2.2 is about robotics (software) component (meta-)models for
composition-oriented (software) engineering and their prototypical implementations (exploiting
existing background of the partners as much as possible). It serves as a software baseline for the
other WPs and for preparing the first wave of open calls.

The RobMoSys consortium uses a Wiki for the content of this document. This allows for a living
document with a continuous publishing process following the principles of composition for its
content. While the basic principles expressed in this initial version will remain stable, refinements
and extensions as well as improvements will be added continuously.

Thus, this document serves as a guide through that material of the Wiki visible on the RobMoSys
website which is relevant to this Deliverable. A snapshot of the content of the Wiki at the time of
delivery of this document is attached in the appendix.

PAGE 3 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

Content

Executive Summary 3

Content 4

Introduction 5

Approach 6

Introduction 6

Behavioral Modeling (Task T2.2) 7

Composition, Composability, Compositionality (Task T2.3) 7

Separation of Roles and Separation of Concerns (Task T2.4) 8

Non-functional Properties and QoS Management (Task T2.5) 8

Tooling 9

Introduction 9

Integration of Modeling Principles in a Meta-model (Task T2.6) 10

Tooling and Run-time Execution (Task T2.7) 10

Appendix 11

PAGE 4 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

1 Introduction
RobMoSys is about managing the interfaces between different roles (robotics expert, domain
expert, component supplier, system builder, installation, deployment and operation) and separate
concerns in an efficient and systematic way by making the step change to a set of fully model-driven
methods and tools for composition-oriented engineering of robotics systems.

This Deliverable D2.2 has the focus on the RobMoSys composition structures considering the
different roles and adhering to the generic meta-structures defined in the Deliverable D2.1.

An initial version of a ​Glossary ​provides definitions for the most relevant terms in the context of
RobMoSys. See

● Wiki Page on “​Glossary​”

This document refers to the RobMoSys wiki. A snapshot is attached in the appendix of this
document for simple printing. Additionally, it can be accessed online at

● http://www.robmosys.eu/wiki-sn-01/

We refer to specific wiki pages like this: ​Wiki Page on “<Title of wiki page>”​. These wiki pages can
be accessed via its title in the appendix and in the RobMoSys Wiki Jump-Page at

● http://www.robmosys.eu/wiki-sn-01/jumppage

The live version of the wiki at ​http://www.robmosys.eu/wiki ​also reflects updates and ongoing
additions after the submission of this document. An up-to-date jump-page can be found at

● http://www.robmosys.eu/wiki/jumppage

Figure 1: Tiers of an Ecosystem, their elements and the elements in terms of modeling.

Tier 1 distinguishes generic composition structures (Modeling Foundation Guidelines and
Meta-Meta-Model Structures such as scientific grounding and block port connector concepts) and
the RobMoSys composition structures (concepts for robotics building blocks). These structures are
refined for the robotics sub-domains (e.g. manipulation, object recognition) to provide guidance and
structure for users of the ecosystem on tier 3 (for example, building blocks suppliers and users).

PAGE 5 June 26th, 2017

http://www.robmosys.eu/wiki
http://www.robmosys.eu/wiki-sn-01/
http://www.robmosys.eu/wiki-sn-01/jumppage
http://www.robmosys.eu/wiki/jumppage

ROBMOSYS D2.2 H2020—ICT—732410

While Deliverable D2.1 focusses on ​generic composition structures, this Deliverable D2.2 focusses on
the ​RobMoSys composition structures (which are both at Tier 1) and its meta-models to be used by
Tier 2 and Tier 3.

2 Approach
2.1 Introduction

The term “meta” in relation to a model refers to the abstraction between a model and its
meta-model where the model conforms to its more abstract representation in a meta-model.
Thereby, the meta-model by itself might be a model that conforms to yet another meta-model.
Therefore, the meta-relation is not absolute but relative. In some cases, it makes sense to add
further meta levels (such as in the term meta-meta-model in figure 1) in order to represent a
hierarchy that is visible at once. However, the relative relation remains. Moreover, each individual
meta-level by itself might be subdivided into further “sub” meta-levels such as e.g. the three
meta-levels on tier 1 (see figure 2). Again, because the meta relation is relative there is no need to
distinguish between a top-level (meta-)model and its “sub” (meta-)models as this distinction would
be purely artificial. In this document the ​RobMoSys composition structures on the lowest level of
composition Tier 1 will be referred to as ​RobMoSys meta-models​.

Figure 2: Details of the structure of Tier-1.

One of the benefits of the RobMoSys composition structures is to support role-specific views for
both other tiers 2 and 3. It is important to notice that while the individual views focus on isolated
aspects of an overall system, the views by themselves are not isolated but are interlinked over the
RobMoSys composition structures. This is important for ensuring the overall system consistency,
composition, composability and compositionality even if the individual roles independently

PAGE 6 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

contribute to the overall system.

The following list of Wiki pages provide further technical details with respect to the RobMoSys
composition structures and views:

● Wiki page on “​RobMoSys Composition Structures​”

● Wiki page on “​Views​”

Another aspect of the RobMoSys composition structures is that they serve as an intermediate
abstraction level between the ​generic​ composition structures (i.e. the blocks-ports-connectors, the
entity-relation model and the hypergraph meta-level) and the models on tiers 2 and 3. This lowest
abstraction level on tier 1 is where the structural, behavioral and workflow knowledge is formalized.
Model-driven tools are realized on composition Tier 1, but they cross all tiers to support creating and
working on models of the respective tiers.

The following sections 2.2, 2.3, 2.4 and 2.5 accordingly address the Tasks T2.2, T2.3, T2.4 and T2.5
and individually refer to the according Wiki pages that describe the role-based composition
structures in RobMoSys.

2.2 Behavioral Modeling (Task T2.2)

The Task T2.2 refers to robotics behavior models that allow modeling situation-specific and dynamic
behavior of the robot which can be realized through Task coordination, different forms of process
networks or finite state automatons. As an initial baseline in the Deliverable D2.2, this Task T2.2
contributes with the SmartTCL language that can be used for defining robotic behaviors in open
calls and for realizing the pilots in RobMoSys. The following Wiki pages provide further technical
details:

● Wiki page on “​Robotic Behavior Metamodel​”
● Wiki page on “​Gazebo/Tiago/SmartSoft Scenario​” (this page provides examples of working

behavior models)

2.3 Composition, Composability, Compositionality (Task T2.3)

The Task T2.3 deals with challenges of - and around - software component (meta-)models. This
includes the relationship between functional blocks and behavior models, their configurations and
interplay within a component and the interaction between components on system level.

This Task T2.3 contributes to the initial baseline of the Deliverable D2.2 with the RobMoSys
component meta-model that also addresses the definition of services that again rely on a clear
definition of communication patterns and communication objects. The following Wiki pages provide
additional technical details with respect to the Task 2.3:

● Wiki page on “​Component Metamodel​”
● Wiki page on “​Service Metamodel​”
● Wiki page on “​Communication-Pattern Metamodel​”
● Wiki page on “​Communication-Object Metamodel​”
● Wiki page on “​System Component Architecture Metamodel​”

It is important to notice, that a component meta-model in isolation is virtually useless as long as it
ignores all the other (meta-)models around it. For instance, the component (meta-)models are used
(i.e. referenced) in system (meta-)models for composing the systems out of flexibly configurable
building blocks. Therefore, the RobMoSys component meta-model allows the definition of
structures with purposefully left open variation points that are used in later development phases

PAGE 7 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

(such as e.g. during system composition) to adjust the components to the application-specific
system needs. This enables a systematic match-making (also referred to as management of
constraints) between required application-specific system constraints and offered variability in
components. This match-making ranges from syntactic matches, over matching intervals, up to
matching constraints in the most generic form. As an initial baseline in D2.2 it is considered already
a great step forward to support the involved developer roles in manually managing the constraints.
Some of these match-makings can also be automated using constraint solvers in later refinements in
e.g. the Deliverable D2.3 or D2.4.

The match-makings as described above appear on different levels such as:

● refining task-net and considering their resource constraints
● matching task-nets with services over skills
● selection of components with their services according to an architectural service design
● matching activity constraints of individual components with application-specific end-to-end

requirements of system-level cause-effect-chains
● matching offered and required quality (e.g. accuracy) to minimize resources

Using these composition structures enables traceability of individual design choices and improves
exchangeability and composability of individual building blocks because their properties (i.e.
variability and constraints) are known and thus can be brought together between the original and
exchanged parts.

2.4 Separation of Roles and Separation of Concerns (Task T2.4)

This Task T2.4 is about finding meaningful combinations of related concerns considering the needs
of the involved developer roles. These needs and role-specific use-cases are collected in so called
“architectural patterns” which serve as input for the definition of the RobMoSys composition
structures (see also section 2.3).

The following Wiki pages provide additional technical details with respect to Task T2.4:

● Wiki page on “​Architectural Patterns​”
● Wiki page on “​Roles in the Ecosystem​”
● Wiki page on “​Separation of Levels and Separation of Concerns​”

These definitions already provide an initial baseline within the Deliverable D2.2. However, as in the
other Tasks above, these definitions will be iteratively refined in the successive Deliverables D2.3
and D2.4.

2.5 Non-functional Properties and QoS Management (Task T2.5)

In contrast to many other approaches in robotics, RobMoSys considers the management of
non-functional (i.e. QoS) aspects as a first class citizen from the very beginning in the overall
robotics software development. This is reflected by the Task T2.5.

As an initial baseline for the Deliverable D2.2, this Task contributes a novel performance view that
can be used to design and manage performance-related system aspects without violating with the
component-internal implementation constraints. Further technical details for the performance view
can be found in the Wiki page:

● Wiki page on “​Cause-Effect-Chain and its Analysis Metamodels​”

● Wiki page on “​Architectural Pattern for Stepwise Management of Extra-Functional
Properties​”

PAGE 8 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

Task T2.5 will be further refined in the successive Deliverables D2.3 and D2.4 by e.g. a
reservation-based approach for resource management.

3 Tooling
3.1 Introduction

While the RobMoSys composition structures by themselves are independent of any realization
technology, there are different realization options that can be used. The RobMoSys consortium
provides a reference implementation of model-driven tooling using Eclipse Ecore as the underlying
technology (see figure 3).

Figure 3: Realization alternative using Ecore

Moreover, various (graphical and textual) model editors as well as code generators can be
implemented that all conform to the RobMoSys Ecore meta-models (see figure 4). For
implementing the model editors the Sirius, Papyrus and Xtext Eclipse plugins can be used. As an
initial software baseline for other WPs and for the open-calls, the initial modeling tools in RobMoSys
(as part of this Deliverable D2.2) provide SmartSoft-based code generators that conform to the so
far specified RobMoSys composition structures. Some existing Papyrus -based modeling tools
provide a rich baseline that will be made conformant with the RobMoSys structure over that
run-time of the project. The following Wiki page provides technical details for the current software
baseline for development-environments and tools including statements on conformance to the
RobMoSys composition structures:

● Wiki page on “​The SmartSoft World​”
● Wiki page on “​Papyrus for Robotics​”

PAGE 9 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

Figure 4: Modeling Tool Implementation Options

The successive Deliverables D2.3 and 2.4 will iteratively refine the RobMoSys composition structures
as well as their realization in the conformant modeling tools. In this way, an initial software baseline
is provided for both the open call applicants and the RobMoSys core consortium partners. At the
same time, these initial software baseline is meant to be refined and extended throughout the open
calls and by the RobMoSys consortium itself in the upcoming Deliverables D2.3 and D2.4.

3.2 Integration of Modeling Principles in a Meta-model (Task T2.6)

The Task 2.6 is about enabling composition not only for the software aspects but in particular for the
modeling tools and the meta-model realizations themselves. Therefore, as introduced above,
RobMoSys separates the definition of the RobMoSys composition structures from their realizations
using e.g. Eclipse Ecore. Moreover, even the Ecore-based realizations are independent of their
actual implementations using e.g. Xtext/Sirius Eclipse plugins. This clear separation of technologies
enables dedicated contributions from open calls and independent refinement of the MDSE tooling
on different levels.

● Wiki page on “​Realization Alternatives​”
● Wiki page on “​Modeling Principles​”
● Wiki page on “​Modeling Twin​”

These technology-separation-structures provide an initial baseline as part of the Deliverable D2.2.
Successive Deliverables D2.3 and D2.4 will refine and extend these structures.

3.3 Tooling and Run-time Execution (Task T2.7)

The Task T2.7 is about the realization of prototypical tooling that underpins the feasibility of
modeling approaches from the preceding Tasks T2.2 to T2.6. The following Wiki page provides
technical details for the roadmap and current status of the RobMoSys tooling:

● Wiki page on “​Roadmap of Tools and Software​”
● Wiki page on “​The SmartSoft World​”
● Wiki page on “​Papyrus for Robotics​”

The conformance of these tools and software baseline to the RobMoSys composition structures is

PAGE 10 June 26th, 2017

ROBMOSYS D2.2 H2020—ICT—732410

described in the above wiki pages. In order to ensure that the tools themselve are usable considering
the different roles on tier 2 and tier 3, some early system examples are developed using these tools.
The following Wiki page provides details for the TIAGO navigation scenario:

● Wiki page on “​Gazebo/Tiago/SmartSoft Scenario​”

Further system examples using the recent tooling evolutions will be developed throughout the
lifetime of the RobMoSys project as part of the deliverables D2.3 and D2.4. A collection of
components is readily available under Open Source Licenses for immediate use. Moreover, the
recent version of existing baseline can be used within the open calls and within the other WPs. This
ensures conformance to the overall RobMoSys composition structures as detailed above.

4 Appendix
A snapshot as of June 23rd, 2017 of the RobMoSys Wiki is attached in the appendix for simple
printing. The snapshot can be accessed online via ​http://robmosys.eu/wiki-sn-01​. The live version of
the wiki can be found at ​http://www.robmosys.eu/wiki​.

PAGE 11 June 26th, 2017

http://robmosys.eu/wiki-sn-01
http://www.robmosys.eu/wiki

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Wiki
This is the RobMoSys Wiki for technical content and structures. For general information of the project or its
open calls, please refer to the project website [http://www.robmosys.eu].

Please note: The RobMoSys consortium is continuously updating this wiki to provide early insights. See the
changelog. If you came here through a RobMoSys document, please see the jumppage to find referred pages.

RobMoSys will enable the composition of robotics applications with managed, assured, and maintained
system-level properties via model-driven techniques. It will establish structures that enable the management of
the interfaces between different robotics-related domains, different roles in the ecosystem, and different levels
of abstractions. Two documents provide an overview and introduction:

“Section 1 / Excellence”: excerpt of RobMoSys Grant Agreement, Annex 1 (part B)

Presentation of the RobMosys project at European Robotics Forum 2017, Edinburgh

Glossary

The glossary contains descriptions of used terms.

Your Role in the RobMoSys Ecosystem

Start reading here to see what your role is in the RobMoSys
ecosystem or learn more about Roles in the Ecosystem. Main
ecosystem users are:

Behavior Developer
Component Supplier
Function Developer
Performance Designer
Safety Engineer
Service Designer
System Architect
System Builder

In addition to the regular RobMoSys ecosystem participants, there are also other roles in the RobMoSys
ecosystem like the Model-Driven Engineering tool developers (see RobMoSys Composition Structures) and

http://robmosys.eu/wiki-sn-01/start 2017-06-26

http://www.robmosys.eu
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/changelog
http://robmosys.eu/wiki-sn-01/jumppage
http://robmosys.eu/download/section-1-excellence-excerpt-of-robmosys-grant-agreement-annex-1-part-b/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
http://robmosys.eu/wiki-sn-01/_detail/glossary.png?id=start
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:roles-ecosystem.png?id=start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:behavior_developer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:performance_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:safety_engineer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start

framework builders (see Software Baseline).

General Principles

RobMoSys manages the interfaces between different roles
(robotics expert, domain expert, component supplier, system
integrator, installation and deployment, operation) and
separates concerns in an efficient and systematic way by
making the step change to a set of fully model-driven methods
and tools for composition-oriented engineering of robotics
systems. The following list of pages provide some fundamental principles in RobMoSys.

Separation of Levels and Separation of Concerns
Architectural Patterns
Ecosystem Organization and Tiers
User-Stories
PC Analogy: Explaining RobMoSys by the example of the PC domain

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The Wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

Roadmap of MetaModeling
Modeling Principles

Modeling Twin
Realization Alternatives

Tier 1 Structure
Scientific Grounding: Hypergraph and Entity-Relation model
Block-Port-Connector
RobMoSys Composition Structures
Views which are used by roles

Tier 2: Examples of Domain Models

RobMoSys allows the definition of domain-specific models and
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

Flexible Navigation Stack
Active Object Recognition
Motion Stack
Perception Stack
etc.

Tools and Software Baseline
http://robmosys.eu/wiki-sn-01/start 2017-06-26

http://robmosys.eu/wiki-sn-01/baseline:start
http://robmosys.eu/wiki-sn-01/_media/general_principles:ecosystem:composition-tiers.png
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start
http://robmosys.eu/wiki-sn-01/_media/modeling:composition-tier1-detail.png
http://robmosys.eu/wiki-sn-01/modeling:roadmap
http://robmosys.eu/wiki-sn-01/modeling:principles
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives
http://robmosys.eu/wiki-sn-01/modeling:tier1
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/_media/system-examples:intralogistic.jpg
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start
http://robmosys.eu/wiki-sn-01/domain_models:active-object-recognition:start
http://robmosys.eu/wiki-sn-01/domain_models:motion-stack:start
http://robmosys.eu/wiki-sn-01/domain_models:perception-stack:start
http://robmosys.eu/wiki-sn-01/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png

RobMoSys provides a set of tools and a software baseline that
already conform to the RobMoSys approach. This set can serve
as a starting-point for implementations or demonstrations.

Tooling Baseline

Roadmap of Tools and Software
Development Environments and Tools

SmartSoft World
Papyrus for Robotics
to be extended

Tier 3: Existing Building Blocks and Scenarios

Components
SmartSoft Components

Scenarios and Systems
Gazebo/Tiago/SmartSoft Scenario

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing
approaches should be used wherever possible. The following
list provides some common approaches that are considered
relevant within the RobMoSys context.

General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.)
Robotics Approaches (ROS, YARP, RTC, etc.)
Middlewares (DDS)

start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/start

http://robmosys.eu/wiki-sn-01/start 2017-06-26

http://robmosys.eu/wiki-sn-01/baseline:roadmap
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics
http://robmosys.eu/wiki-sn-01/baseline:components:smartsoft
http://robmosys.eu/wiki-sn-01/baseline:scenarios:tiago_smartsoft
http://robmosys.eu/wiki-sn-01/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=start
http://robmosys.eu/wiki-sn-01/other_approaches:modeling_languages

RobMoSys Wiki
http://www.robmosys.eu

Changelog
The RobMoSys consortium is continuously updating this wiki to provide early insights. This changelog will
help you to track major changes.

June 23rd, 2017

Major improvements of the RobMoSys composition structures
Severall corrections and refinements of multiple pages in the Wiki
Wiki snapshot freeze [http://robmosys.eu/wiki-sn-01/]

June 13st, 2017

Improvement of the main page/front page

June 6st, 2017

Several small improvements of pages in the Modeling section
Refined description of architectural pattern for Bundling Components

June 1st, 2017

Added Service Metamodel
Added Communication-Pattern Metamodel
Added Communication-Object Metamodel
Updated Component Metamodel

May 29th/31st, 2017

Updated Glossary
Added Roles and Views in the Ecosystem
Added General Principles
Added Modeling details
Added other approaches in context of RobMoSys
Added Tools Tools and Software Baseline

May 3rd, 2017

Initial public release of
RobMoSys Glossary
Architectural Patterns
Separation of Levels and Separation of Concerns
Service-Based Composition Approach/Ecosystem Organization

http://robmosys.eu/wiki-sn-01/changelog 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/
http://robmosys.eu/wiki-sn-01/modeling:start
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start

changelog · Last modified: 2017/06/26 10:39
http://www.robmosys.eu/wiki-sn-01/changelog

http://robmosys.eu/wiki-sn-01/changelog 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Glossary
The glossary contains descriptions of used terms.

General Terms

Ecosystem

A collaboration model (cf. Bosch20101), Iansiti20042)), which describes the many ways and advantages in
which stakeholders (e.g. experts in various fields or companies) network, collaborate, share efforts and costs
around a domain or product.

Robotics is a diverse and interdisciplinary field, and contributors have dedicated experience and can contribute
software building blocks using their expertise for use by others and system composition.

Participants in an ecosystem do not necessarily know each other, thus the challenge is to organize the
contributions without negotiating technical agreements and without adhering to a synchronized development
process to organize the contributions.

See Ecosystem Organization

Digital Platform

There are two different definitions of digital platforms:

Economical Definition: Multi-sided market gateways creating value by enabling interaction between
two or more complementary customer groups.
Innovation Definition: Reference architecture/implementation with an innovation ecosystem triggering
broad value creation.

Platform is not to be confused with the MDA's [http://www.omg.org/mda/] definition. This definition relates to
a concrete technology (in most cases referring to a communication middleware technology such as e.g.
CORBA).

System Composition (Activity)

The action or activity of putting together a service robotics application from existing building blocks (here:
software components) in a meaningful way, flexibly combining and re-combining them depending on the
application's needs.

System composition puts a focus on the new whole that is created from existing parts rather than on making
parts work together only by glueing them together: the whole still consists of its parts, they do still exist as
entities and are thus still exchangeable. This is in contrast to integration.

Software components that are subject to composition shall be taken as-is (and only configured on model level
within predefined configuration boundaries). Software components thus have to be built with this intention
right from the beginning. The context in which they will later be composed is unknown, which puts special
requirements on their composability and the overall workflow.

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://www.omg.org/mda/

Composition is about guiding the roles via superordinate composition-structures. It is about about adhering to
a composition structure, thus gaining immediate access to all other parts that also adhere to this (same)
structure. In contrast, integration is about building adapters between (all) parts or even modifying the parts
themselves.

Composition is about the management of the interfaces between different roles (participants in an ecosystem)
in an efficient and systematic way.

Composition is about explicating and managing properties.

Composition is about access restrictions and views for roles.

System Integration (Activity)

The activity that requires effort to combine components, requiring modification or additional action to make

them work with others (see Petty20133)).

A distinction between integration and composition can be drawn by the effort (see 4)): the ability to readily
combine and recombine composable components distinguishes them from integrated components, which are
modified with high effort to make them work with others, essentially by writing adapters. The integrated part
amalgamates with the whole (i.e. the whole becomes one part, individual parts blend together, as red and
green water will mix), thus making it hard to remove or exchange individual parts from the whole. If they are
removed, it requires new adapters/adjustments.

We distinguish integration as an activity and integration as in “integration-centric”.

Composability

The ability to combine and
recombine building blocks as-
is into different systems for
different purposes in a
meaningful way.

It is the basic prerequisite for
system composition since it is
the property that makes parts
become building blocks.
Composability has aspects
both between components (parts) and the application (whole). Composability comprises syntactic and
semantic aspects.

Composability requires that properties of sub-system are invariant (“remain satisfied”) under
composition

Splittability is “inverse” relationship of composability

Compositionality

The ability to compose different modules in a methodological way in order to meet predictable
functional and extra-functional requirements.
Compositionality is a system-level design concern, that reflects the extent to which system designers
are able to predict the behaviour of their system on the basis of the formally known behaviour of each
of the system’s components.

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/building-blocks-and-systems.png?id=glossary

Component

A component is the unit of composition that provides functionality to the system through formally defined

services at a certain level of abstraction (cf. Szyperski20025)).

A component holds the implementation to bridge between services and functions. A component is defined
through a component model and can realize one or more services and interacts with others through services
only. When speaking of components, we refer to explicit software components as in the SmartSoft World, in
contrast to component as a synonym for an arbitrary piece or element of something (as e.g. in AADL
[http://www.aadl.info/]).

A component comprises several levels. It is the unit of composition that is being exchanged in the ecosystem.

See also:

Architectural Pattern for Bundling Components
Component Metamodel
Component Supplier role
Component Development View

Service

A service can be defined in two different ways:

a service in the sense of service-oriented architectures (SOA) that provides a self-contained business
functionality to a consumer independent of its realization
one concrete form of a service that is targeted at composition of software components for robotics (see
Service Level)

System

A combination of interacting elements organized to achieve one or more stated purposes. 6)

System-of-systems

Any system should, in itself, be usable as a building block in a larger system-of-systems. In other words,
being a component or a system is not an inherent property of any set of software pieces that are composed
together in one way or another.

Architecture

An organizational structure of a system that describes the relationships and interactions between the system's
elements. Architectural aspects can be found at different levels of abstraction.

Extra-Functional Properties

Extra-functional properties (see Sentilles20127)) are system-level requirements that rule the way in which the
system must execute a function, considering physical constraints as time and space. Typical extra-functional
properties specify constraints on progress, frequency of execution, maximum time for the execution, mean
time between failures, etc.

Synonyms

non-functional properties

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://www.aadl.info/
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/modeling:views:component_development

Modeling Twin

A modeling twin describes the packaging of a software/hardware artefact with its model-based representation
in order to ship it as a whole (i.e. bundle) to other participants in an ecosystem. The model part of the
modling twin is mandatory while the software/hardware part is optional (depending on the current artefact at
hand).

See: Modeling Twin

View

RobMoSys foresees the definition of modeling views that cluster related modeling concerns in one view,
while at the same time connecting several views in order to be able to define model-driven tooling that
supports in the design of consistent overall models and in communicating the design intents to successive
developer roles and successive development phases.

In this sense, a view establishes the link between primitives in the RobMoSys composition structures and the
RobMoSys roles. Views enable roles to focus on their responsibility and expertise only. The RobMoSys
composition structures ensure composability of building blocks contributed and used by the role.

See: RobMoSys Views

Engineering Model

In contrast to Scientific Modelling [https://en.wikipedia.org/wiki/Scientific_modelling], engineering models
additionally need to be machine-processable in order to enable composition and usage of this model in other
models. This is a fundamental feature that improves scalability and modularity of models and model-driven
engineering methods. In other words, engineering models always need to provide a benefit and serve a clear
purpose with respect to all the other surrounding models of the overall system where this model is part of.

General Principles

Separation of Roles

A principle that enables and supports different groups of stakeholders in playing their role in an overall
development workflow without being required to become an expert in every field (in what other roles cover).

A role has a specific view on the system at an adequate abstraction level using relevant elements only.

It is closely related to separation of concerns and a necessary prerequisite for system composition towards an
robotics ecosystem.

Separation of Concerns

A principle in computer science and software engineering that identifies and decouples different problem

areas to view and solve them independent from each other (see Dijkstra19828)).

It is the basis for separation of roles and a necessary prerequisite for system composition towards an robotics
ecosystem.

Freedom OF choice vs. freedom FROM choice

System development tools generally follow one of the two following approaches:

One approach is called freedom of choice. One tries to support as many different schemes as possible
http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/modeling:views:start
https://en.wikipedia.org/wiki/Scientific_modelling

and then leaves it to the user to decide which one best fits his needs. However, that requires huge
expertise and discipline at the user side in order to avoid mixing noninteroperable schemes. Typically,
academia tends towards preferring this approach since it seems to be as open and flexible as possible.
However, the price to pay is high since there is no guidance with respect to ensuring composability and
system level conformance.

Freedom from choice (see Lee20109)) gives clear guidance with respect to selected structures and can
ensure composability and system level conformance. However, there is a high responsibility in coming
up with the appropriate structures such that they do not block progress and future designs.

Architectural Pattern

A selection of a (sub)set of concerns and levels to fulfill an objective
An architectural pattern addresses a single level, may connect two related levels or may involve several
levels
See Architectural Patterns
e.g. extra-functional property

Objectives for Architectural Patterns

Facilitate building systems by composition
Support Separation of Roles

Block, Port and Connector

A recurring principle for structuring meta-models at different levels of abstraction. It can be applied on the
same level and between different levels.

See Block-Port-Connector

Concerns

Computation (Concern)

Computation is related to active system parts that consume CPU time

Communication (Concern)

Communication concerns the exchange of information between related entities on the same level and also
between the levels themselves

Coordination (Concern)

Design and modeling of robot behaviors
i.e. what happens when and who is involved

it includes:
execution order, (system) states
error-handling, resp. error propagation
run-time adaptation and (online) reconfiguraiton
contingency handling and adaptation rules and strategies

Configuration (Concern)

Configuration involves several entities (in contrast to parametrization which typically involves one
entity)

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector

for example: a set of components (path planning, localization, motion execution) that is
configured to work together (move to a destination)

includes static/dynamic parameter-settings of individual components
includes static/dynamic wiring between interacting components

Cross-Cutting Concern

A concern that cannot be separated from others or decomposed and influences or affects multiple properties
and areas in a system possibly at different levels of abstraction. For example, security cannot be considered in
isolation and cannot be added to a given application by introducing a security-module; it rather has to be
considered in all areas of the system.

Example

Non-Functional Properties involve several concerns

Roles

A certain task or activity with associated concerns that someone (individual, group or organization) takes in
the composition-workflow using a view. For example, the Component Supplier role uses the Component
Development View view to come up with a component model that conforms to the Component Metamodel.

Someone that takes a particular role typically is an expert in a particular field (e.g. object recognition). A role
takes a particular perspective or view on the overall workflow or application. It is associated with certain
tasks, duties, rights, and permissions which do not overlap with other roles.

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A role
is responsible for supplying a part of the system. “Role” in the sense of a participant of the ecosystem.

See also:

Roles in the Ecosystem
RobMoSys Views

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

References

1)

Jan Bosch, Petra Bosch-Sijtsema. “From integration to composition: On the impact of software product lines,
global development and ecosystems”, in Journal of Systems and Software, Volume 83, Issue 1, January 2010,
Pages 67-76, ISSN 0164-1212, DOI: 10.1016/j.jss.2009.06.051 [http://doi.org/10.1016/j.jss.2009.06.051]
2)

Iansiti, Marco, and Roy Levien. “Strategy as Ecology”, in Harvard Business Review 82, no. 3 (March 2004).

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/modeling:views:component_development
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://doi.org/10.1016/j.jss.2009.06.051

3)

Mikel D. Petty and Eric W. Weisel. “A Composability Lexicon”, in Proc. Spring 2003 Simulation
Interoperability Workshop, March 2003, Orlando, USA.
4)

Petty2013
5)

Clemens Szyperski. “Component Software: Beyond Object-Oriented Programming (2nd ed.)”. In Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
6)

ISO/IEC 15288:2008 (IEEE Std 15288-2008
7)

Séverine Sentilles. “Managing Extra-Functional Properties in Component-Based Development of Embedded
Systems”. Dissertation. Mälardalen University, Västerås, Sweden, 2012.
8)

E. W. Dijkstra. “On the role of scientific thought”. In Selected Writings on Computing: A Personal
Perspective, pages 60–66. Springer-Verlag, 1982.
9)

Edward A. Lee. “Disciplined Heterogeneous Modeling”. In: MODELS 2010. Invited Keynote Talk. Oslo,
Norway, 2010.

glossary · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/glossary

http://robmosys.eu/wiki-sn-01/glossary 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

General Principles
RobMoSys manages the interfaces between different roles
(robotics expert, domain expert, component supplier, system
integrator, installation and deployment, operation) and
separates concerns in an efficient and systematic way by
making the step change to a set of fully model-driven methods
and tools for composition-oriented engineering of robotics
systems. The following list of pages provide some fundamental principles in RobMoSys.

Separation of Levels and Separation of Concerns
Architectural Patterns
Ecosystem Organization and Tiers
User-Stories
PC Analogy: Explaining RobMoSys by the example of the PC domain

general_principles:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:start

http://robmosys.eu/wiki-sn-01/general_principles:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_media/general_principles:ecosystem:composition-tiers.png
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start

RobMoSys Wiki
http://www.robmosys.eu

Separation of Levels and Separation of Concerns
The figure below illustrates the separation of levels and the separation of concerns. Please also refer to the
glossary for descriptions of used terms. The levels indicate abstractions in a robotics system.

The levels can be seen as an analogy to “ISO/OSI model” for robotics that addresses additional concerns
beyond communication. The analogy is interesting, because ISO/OSI partitions the communication aspect in
different levels of abstraction that then help to discuss and locate contributions. The ISO/OSI separations in
levels allows to develop efficient solutions for each level. Establishing such levels for robotics would clearly
help to communicate between robotics experts–as ISO/OSI does in computer science.

The levels and concerns can be used to identify and illustrate architectural patterns. An architectural pattern
combines several levels and several concerns. The blue line is an abstract example.

About the Levels

The lower levels address more concerns and are more cross-cutting in their nature
The higher levels are more abstract and address less concerns / individual concerns. They thus allow a
better separation of concerns and separation of roles.
By definition, a level can not be defined on its own, since its semantics is the relationships between the
items at this “level” and those at the other levels. This exercise to get these relationships well-defined is
a tough one, this is of high priority though, since “level”/“layer” is one of the most often used term in
(software) architecture.
A layer is on top of another, because it depends on it. Every layer can exist without the layers above it,
and requires the layers below it to function. A layer encapsulates and addresses a different part of the
needs of much robotic systems, thereby reducing the complexity of the associated engineering
solutions.
A good layering goes for abstraction layers. Otherwise, different layers just go for another level of
indirection. An abstraction layer is a way of hiding that allows the separation of concerns and
facilitates interoperability and platform independence.

On the number and separation of levels

Individual levels always exist but are not always explicitly visible.
Transition between layers can be fluent
There are single layer approaches (clear separation between layers offering full flexibility in
composition) but also hybrid ones (combining several adjacent layers into one loosing flexibility). For
example, ROS1 implemented both the middleware and execution container while in ROS2, the
middleware level is planned to be separated.
Different levels might require different technologies
Individual levels may also be separated horizontally (e.g. fleet of robots vs. an individual robot, or
group of components vs. an individual component)

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start

The individual Levels

Mission (Level)

A higher level objective/goal for the robot to achieve.
At run-time, a robot might need to prioritize one mission over another in order to rise the probability
of success and/or to increase the overall quality of service

Examples

In logistics: do order picking for order 45
serve customer
serve as butler

Synonyms

goal
objective

Task (Level)

A task (on the Task level) is a symbolic representation of what and how a robot is able to do
something, independent of the realization.
A job that is described independent of the functional realization.
Includes explicit or implicit constraints.
tasks might be executed in sequence or in parallel
task-sets might be predefined statically (at design-time) or dynamically generated (e.g. using a
symbolic planner)
tasks might need to be refined hierarchically (i.e. from a high-level task down to a set of low-level

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/general_principles:levels-concerns2.png?id=general_principles%3Aseparation_of_levels_and_separation_of_concerns

tasks)
not to be confused with tasks in the sense of processes/threads (see Execution Container)

Examples

Move to room nr. 26
Grasp blue cup
Get a cup from the kitchen
deliver coffee

Synonyms

job

Skill (Level)

Defines basic capabilities of a robot. The area of transition between high-level tasks and concrete
configurations and parameterizations of components on the service-level.

Skills enable tasks to become independent of the actual realization in components.

A collection of skills is required for the robot to do a certain task. For example, a butler robot requires skills
for navigation, object recognition, mobile manipulation, speaking, etc. A component often implements a
certain skill, but skills might also be realized by multiple components.

Skill-level often interfaces between symbolic and subsymbolic representations.

Examples

An abstract high level task (e.g. move-to kitchen) is mapped to concrete configurations and services
that components offer (e.g. parameterize path planning, localization and motion execution components
with destination set to kitchen).
grasp object with constraint

Synonyms

capability
system-function

Service (Level)

A service is a system-level entity that serves as the only access point between components to exchange
information at a proper level of abstraction.

Services follow a service contract and separate the internal and external view of a component. They describe
the functional boundaries between components. Services consist of communication semantics, data structure
and additional properties.

Components realize services and might depend on existence of a certain type of service(s) in a later system.

Function (Level)

a coherent set of algorithms, for example implemented in libraries, that serve a unique functional
purpose
a piece of software that performs a specific action when invoked using a certain set of inputs to achieve

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

a desired outcome1)

Example

A function implemented in an library, e.g. OpenCV Blob Finder
An implemented algorithm, e.g. PID-controller
Functions developed or modeled in Matlab, Simulink, etc.
Inverse kinematics (IK) solver

Synonyms

functional block

Execution Container (Level)

provides the infrastructure and resources for the functional level
provides mappings towards the underlying infrastructure (e.g. operating system, communication
middleware).

Example

Access to scheduler
Threads, eventually processes

Operating System and Middleware (Level)

e.g. phread, socket, FIFO scheduler

Operating System

An Operating System is, for example, responsible for:

Memory management
Inter-Process-Communication
Networking-Stack, e.g. TCP
Hardware Abstraction Layer

Examples

Linux, Windows
FreeRTOS, QNX, vxWorks

Middleware (Communication Middleware)

A communication middleware is a software layer between the application and network stack of the operating
system. Communication middlewares are very common in distributed systems, but also for local
communication between applications. They provide an abstract interface for communication independent of
the operating system and network stack.

There are many distributed middleware systems available. However, they are designed to support as many
different styles of programming and as many use-cases as possible. They focus on freedom of choice and, as
result, there is an overwhelming number of ways on how to implement even a simple two-way
communication using one of these general purpose middleware solutions. These various options might result
in non-interoperable behaviors at the system architecture level.

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

For a component model as a common basis, it is therefore necessary to be independent of a certain
middleware.

Examples

OMG CORBA
OMG DDS
ACE

Hardware (Level)

Solid pieces of bare metal that the robot is built of and uses to interact with the physical environment. It
includes actors/sensors and processing unit.

Examples

Sensors: laser scanner, camera
Actuators: manipulator, robot base/mobile platform
Processing units: embedded computer, cpu architecture

Example: Levels

Below are examples for each of the levels.
They demonstrate the level of abstraction that can be found in each layer.

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

Example: Composition of Tasks

Below is an example of how tasks can be composed.
It shows how tasks and skills can be composed flexibly
Several tasks can be composed to be executed in sequence or in parallel (horizontal composition)
A task can be refined with other tasks (vertical composition): Abstract tasks are refined to more
concrete tasks.
Refinement of tasks may be static or dynamic

Static: The tasks and eventually the order is known. E.g. making coffee always involves
approaching the machine, putting a cup into the machine, pressing the button, etc.
Dynamic: The tasks and the order are not known in advance (i.e. to be solved by symbolic
planning): E.g. it is not known what is the best way to clean up the table after customers left
(what order, what to stack into each other, what to carry at once/first/next/last, etc.)

Skills will finally translate to configurations of one or more components (lower right). E.g. moving
the manipulator requires to configure the component for collision-free manipulation-planning in a
certain environment and the manipulator component to move along these collission-free trajectories.
Grasp cup relies on the existence of a task “recognize-object” which is later bound to “recognize-cup”.
There are constraints that have to be maintained during the execution of a task, for example: the robot
is not moving while manipulating.
There are results of a task that effect execution of other tasks, even after the current task was finished.
For example, grasping a cup means that the cup still is in the gripper after the execution is done.

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/general_principles:layers_and_examples2.png

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

1)

“Systems and software engineering – Vocabulary,” in ISO/IEC/IEEE 24765:2010(E) , vol., no., pp.1-418,
Dec. 15 2010 DOI: 10.1109/IEEESTD.2010.5733835https://doi.org/10.1109/IEEESTD.2010.5733835
[https://doi.org/10.1109/IEEESTD.2010.5733835]

general_principles:separation_of_levels_and_separation_of_concerns · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/general_principles:task_composition.png
https://doi.org/10.1109/IEEESTD.2010.5733835

RobMoSys Wiki
http://www.robmosys.eu

Architectural Patterns

Introduction

Buschmann et. al.1) provides the following descriptive definition of a pattern in general:

“A pattern describes a particular recurring design problem that arises in specific design contexts, and
presents a solution to it. The solution scheme is specified by describing its constituent components, their

responsibilities and relationships, and the ways in which they collaborate.” 2)

Moreover, Buschmann et. al.3) lists some common properties of a pattern:

“Patterns document existing, well-proven design experience.”
“Patterns provide a common vocabulary and understanding for design principles.”
“Patterns support the construction of software with defined properties.”
“Patterns help you build complex and heterogeneous software. Patterns help you manage software
complexity.”

The proposed scheme by Buschmann for describing a software pattern consists of a Context, Problem and
the Solution. This triple is used below to also describe individual architectural patterns which analogously
address recurring design problems in robotics software development, each occurring in a specific design
context, and present a well-proven solution to the design problem. There are two fundamental objectives that
drive the design of all presented architectural patterns, namely:

Facilitate building systems by composition
Support Separation of Roles

Each architectural pattern needs to contribute towards these two objectives.

Template for an Architectural Pattern

This is a template for describing an architectural pattern including the required sections that the description
must comprise.

Context

A context describes a situation in which the design problem occurs. Also relate the context to:

the Levels and Concerns
involved Roles

Problem

This part describes a recurring problem that repeatedly arises in a given context. This can start with a
general, open ended problem and get more concrete with driving forces and concrete requirements that the
solution must fulfill. Also, constraints to consider and desired properties of the sokution can be expressed
here.

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu

Solution

The solution describes how the problem is solved, thereby balancing the driving forces. In some cases,
available technologies can be listed here that solve the given problem.

Optional: Discussion

Any discussion of shortcomings, differences or references to other patterns can be described here.

Optional: Example(s)

Specific scenarios or technologies that help to understand the problem and/or solution can be listed here.

List of Architectural Patterns

(alphabetical order)

Architectural Pattern for Bundling Components
Architectural Pattern for Communication
Architectural Pattern for Component Parametrization
Architectural Pattern for Managing Transitions of System States
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Service Definitions
Architectural Pattern for Stepwise Management of Extra-Functional Properties

Further Candidates for Architectural Patterns

Architectural Pattern for Coordination-Frame Transformation
Transformation tree (e.g. TF in ROS, Time-Stamps, Pose-Stamps, etc.)

Subsidiarity Principle
at any time a clear control hierarchy
delegate decision spaces top-down in the hierarchy

Knowledge Representation
central Knowledge Base
synchronize and conflate distributed system-models over global IDs

Reservation based Resource Management
in KB through Tasks and Skills for coordination of Components

1) , 2) , 3)

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. “Pattern-Oriented
Software Architecture, Volume 1, A System of Patterns”. Wiley Press, 1996, ISBN: 978-0-471-95869-7
[http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html]

general_principles:architectural_patterns:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:start 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:communication
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:component_parameterization
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:managing_transitive_system_states
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:service_definitions
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:stepwise_management_nfp
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Stepwise Management of
Extra-Functional Properties

Context

Besides of “pure” functions, realistic systems also need to specify and to manage extra-functional properties
that might involve different system parts at different levels of abstraction. Extra-functional system properties
specify how well a system performs given a certain system configuration.

There are two main developer roles that are involved in the specification of extra-functional properties:

Component Supplier specifies functional constraints of individual building blocks (i.e. components)
System Builder defines extra-functional properties within the predefined boundaries by the involved
components

Extra-functional properties are cross-cutting in nature (i.e. combining communication, computation and
coordination) and relate to several levels of abstraction:

Task Plot (level) provides the run-time context for the extra-functional properties
Service (level) link components and is mainly related to the communication concern of extra-
functional properties
Function (level) is related to the computation concern of extra-functional properties
Execution Container (level) relates to the coordination concern of extra-functional properties
Hardware (level) finally does both, computation and communication of extra-functional properties

Problem

Extra-functional system properties such as e.g. end-to-end response times are cross-cutting in nature
and typically involve knowledge and contributions from different developer roles (e.g. component
developers and system builders) who are often working independently in different places and at
different points in time. This easily leads to inconsistencies in the system. Resolving inconsistencies
typically requires expert knowledge and deep insights into all the distributed system parts
Extra-functional properties bridge between functional constraints in individual building blocks and
application-specific system requirements
Extra-functional properties might be grounded in several system parts that are distributed over several
components
Tracing and assuring extra-functional properties might involve additional (dedicated) analysis tools

Solution

The specification of functional aspects of individual building blocks must be linked with the definition
of application-specific, extra-functional system aspects on model level
Individual building blocks specify functional constraints that restrict the remaining design space to be
exploited for a later system design
System-specification allows only those design options that do not conflict with the individual building-
block constraints

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:stepwise_management_nfp 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/glossary#extra-functional_properties
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns

Dedicated analysis tools simulate run-time conditions and predict extra-functional system behavior (i.e.
the run-time performance quality of a system)
Optionally: a run-time monitoring mechanism can assure compliance with specified extra-functional
properties

Example

End-to-end response time from sensing until acting in a service robot can be considered as one particular
extra-functional property

this end-to-end response time typically involves several interconnected components forming a data-
flow chain of components
each component in a chain contributes with a certain delay to the overall end-to-end time
the component’s internal delay might be the result of the internally used device driver with certain
execution characteristics or otherwise result from the internally configured activities (i.e. tasks/threads)
individual components should leave as much configuration freedom as possible and only specify really
needed functional constraints (such as an unchangeable device driver behavior)
a specified system-level end-to-end response time needs to be checked with respect to predefined
functional constraints in individual components and the overall end-to-end run-time behavior of the
entire chain of components

for analysing the run-time behavior of the entire chain of components at design-time, dedicated,
matured and powerful analysis tools such as SymTA/S can be used
run-time behavior can also be directly monitored in an executed robotic system using a
dedicated monitoring infrastructure

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:stepwise_management_nfp · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:stepwise_management_nfp

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:stepwise_management_nfp 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Bundling Components

Context

A common way to handle system complexity is Component-Based Software Engineering
Individual components are composable building-blocks that can be (re-)used in different applications
(i.e. systems)
Components in a system are not independent of each other but need to exchange data
Interconnected components realize (and collaboratively execute) overall system functions (e.g. the
navigation stack)

Component bundling is the main responsibility of Component Suppliers.

This architectural pattern relates to the following abstraction levels:

Skill (level) requires a coordination interface for each component
Service (level) specifies interaction points to other components (i.e. the communication concern)
Function (level) realizes the component’s internal functionality
Execution Container (level) links functionality with the execution platform (i.e. the computation
concern)
Hardware (level) allows to directly interact with sensors and/or actuators within a component

Problem

The overall system behavior at run-time is the result of sets of interconnected components that need to
be executed in a systematic and deterministic way.
Real-world environments are open-ended and unpredictable in nature which requires a certain
adaptability and flexibility of the robot system behavior.

System flexibility in turn requires run-time reconfigurability of individual components.
Configuration options of individual components might involve design-time and run-time
configurability and depend on the internal (i.e. functional) realization of a component.

There are cases where several provided services might need to be realized in a single component (e.g.
because the used library cannot be separated into several components)
The overall role of a component is manifold:

to realize a coherent set of provided services
to specify dependencies to other services (provided by other components)
to encapsulate (i.e. decouple) the functional (internal) realization of services from their general
representation on system level
to specify allowed configuration options and possible run-time modes (i.e. to be used from the
skill level)
to hide platform-related details such as communication middleware, operating system and
internally used device drivers (i.e. mapping to the execution container and interacting with
sensors/actuators)

Solution

The concept of a component spans across several abstraction levels:
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/system_examples:navigation-stack
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns

From a functional point of view, a component spans over “Execution Container”, “Function”, “Service” and
optionally also the “Skill” levels. From the robotic behavior coordination point of view, a component is on

the level of robotic skills1).

A flexible component model that allows different bundlings of several provided services and that decouples
the service definition from its realization within a component:

a component can realize more than one provided service but a certain provided service is realized by
exactly one distinct component
a component should implement or use a service but not define it (service definition is a separated step)

In addition to the “regular” services a component also implements a generic configuration and coordination
interface that provides access to:

the component's life-cycle state automaton
admissible run-time modes (i.e. activity states)
the component's configuration parameters (i.e. allowed parameter sets)
the coordinated dynamic wiring of component’s services (i.e. without conflicting with the component's
internal functionality)

See also:

Component metamodel

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

1)

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller, and Mark G. Slack.
“Experiences with an architecture for intelligent, reactive agents”. In: Journal of Experimental & Theoretical
Artificial Intelligence, Volume 9, 1997, DOI: 10.1080/095281397147103

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Abundling_components
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://dx.doi.org/10.1080/095281397147103

[http://dx.doi.org/10.1080/095281397147103].

general_principles:architectural_patterns:bundling_components · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:bundling_components 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Managing Transitions of
System States
(To be extended)

(i.e. System-Mode Transitions)
synchronize system-modes over shared IDs
recognize (i.e. awareness about) transitive system-states

Context

…

Problem

…

Solution

…

Discussion

…

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:managing_transitive_system_states · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:managing_transitive_system_states

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:managing_transitive_system_states2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Component
Parametrization
(To be extended)

Run-time parameters
Unified/generic parameter service for components
Transaction model for consistent parameter sets

Context

…

Problem

…

Solution

…

Discussion

…

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:component_parameterization · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:component_parameterization

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:component_parameterization2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Communication

Context

Communication between entities (i.e. exchange of information). Communication is a concern and relates to
the following levels:

Service (level) structures communication
Execution container (level) provides resources for communication
Operating System / Middleware (level) realizes communication
Hardware (level) does communication

This architectural pattern relates to the following roles:

Service Designer: selects communication pattern (see below)
System Builder: selects communication middleware

Problem

A huge number of communication middlewares
A huge number of overlapping and conflicting communication schemes
Requirements that the solution must fulfill:

Realize vertical (i.e. layers) and horizontal (e.g. components) exchange of information (with the
goal to enable communication, coordination and configuration)
Support different schemes for data-flow oriented communication and
coordination/configuration concerns
At the minimum provide:

Publish/Subscribe (i.e. data-flow) communication semantics
Request/Response (i.e. on demand) communication semantics

Support independence of the underlying middleware solution (i.e. middleware abstraction layer)
Reduce the huge variety of overlapping communication semantics in order to improve
composability between components
Decouple the access to communication within a component (functional-level) from the
communication between two interacting components (service-level)

Solution

An essential set of communication patterns that is rich enough to cover common communication use-cases, yet
at the same time reduced enough to support composability.

CommunicationPatterns (for continuous data transfer)
Request/Response

e.g. SmartSoft-Query
Publish/Subscribe

e.g. SmartSoft-Push (sub-variants: PushNewest and PushTimed)
ConfigurationPattern (for component configuration)

Component Parametrization

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:communication 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder

e.g. SmartSoft-Parameter
Dynamic Wiring

e.g. SmartSoft-Wiring
CoordinationPattern (for skill realization)

Component Lifecycle Automaton
e.g. SmartSoft-State (generic lifecycle state automaton)

Component (activity) Modes
e.g. SmartSoft-State (user-defined states) and SmartSoft-Parameter (trigger)

Component Feedback
e.g. SmartSoft-Event

See also:

Communication Patterns

Discussion

Different middlewares allow for different middleware abstraction levels. For instance, message-based
middlewares require a protocol-based abstraction, while e.g. DDS allows for a higher level of abstraction (i.e.
directly using the publish/subscribe communication with accordingly preselected QoS attributes). In any case,
middleware details should be hidden from both, the component’s internal communication access and the
communication semantics between components.

The separation of patterns into groups for Communication (i.e. continuous data exchange), Configuration (i.e.
parametrization of individual components) and Coordination (i.e. skill-component interaction) provides
solutions for recurring communication problems and clarifies the purpose of a particular pattern.

The communication access from within a component (i.e. communication interface access) needs to be as
flexible as possible as long as it does not violate with the clearly specified communication semantics outside
of the component (resp. between interacting components).

Not every semantic detail needs to be made explicit on model level (some may come from “de-facto standard”
implementations). The focus in models need to be on a consistent representation and systematic management
of different communication schemes.

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:communication · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:communication

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:communication 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Service Definitions
(To be extended)

Granularity of components and services
Abstraction-level of services

Context

…

Problem

…

Solution

…

Discussion

…

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:service_definitions · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:service_definitions

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:service_definitions 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Task-Plot Coordination
(Robotic Behaviors)
A description of this architectural pattern can be found here [http://www.servicerobotik-ulm.de/drupal/?
q=node/86]. The architecture is a generic architecture for robotics behavior. Its implementation in the
SmartSoft World is SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] and Dynamic State
Charts [http://www.servicerobotik-ulm.de/drupal/?q=node/87]. In terms of the abstraction levels, this pattern
addresses task and skill levels; in terms of concerns, it addresses coordination and configuration.

To be extended. This architectural pattern is about:

continuous vs. discrete
task-plot description (i.e. hierarchical task-tree)
using external solvers as experts on demand (i.e. symbolic planer)

Context

…

Problem

…

Solution

…

Robotic Behavior spans across several levels:

Discussion
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Arobotic_behavior

…

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:architectural_patterns:robotic_behavior · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Ecosystem Organization
 add Max and Sally descriptions here; as presented at ERF

Composition Tiers

The general composition structure distinguishes three tiers.

RobMoSys envisions a robotics business ecosystem in which a large number of loosely interconnected
participants depend on each other for their mutual effectiveness and individual success. The modeling
foundation guidelines and the meta-meta-model structures are driven by the needs of the typical tiers of an
ecosystem and the needs of their stakeholders (see figure 1). The different tiers are arranged along levels of
abstractions. Figure 1 also illustrates the amount of experts or people contributing or using the particular tiers.

Tier 1 structures the ecosystem in general for robotics. It is shaped by the drivers of the ecosystem that define
an overall composition structure which enables composition and which the lower tiers conform to (similar to,
for example, the ecosystem of the Debian GNU/Linux OS and its structures). Tier 1 is shaped by few
representative experts for ecosystems and composition. This is kick-started by the RobMoSys project.
Structures defined on Tier 1 can be compared to structures that are defined for the PC industry. The personal
computer market is based on stable interfaces that change only slowly but allow for parts changing rapidly
since the way parts interact can last longer than the parts themselves and there is a huge amount of
cooperating and competing players involved. This resulted in a tremendous offer of composable systems and
components.

Tier 2 conforms to these foundations, structuring the particular domains within robotics and is shaped by the
experts of these domains, for example, object recognition, manipulation, or SLAM. Tier 2 is shaped by
representatives of the individual sub-domains in robotics.

Tier 3 conforms to the domain-structures of Tier 2 to supply and to use content. Here are the main “users” of
the ecosystem, for example component suppliers and system builders. The number of users and contributors is
significantly larger than on the above tiers as everyone contributing or using a building block is located at this
tier.

Tier 1: Composition-Structure – Meta-Structure
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:composition-tiers.png?id=general_principles%3Aecosystem%3Astart

Tier 1 structures the ecosystem in general for robotics, independent of the sub-domains. It is shaped by the
drivers of the ecosystem that define an overall structure which enables composition and which is to be filled
by the lower tiers. Tier 1 defines general concepts and models for system composition such as the concept of
service definitions, concept of components, and the composition-workflow that is tailored to service robotics.
See Tier 1 Details for more information.

In terms of meta-modeling, elements of this tier correspond to/are meta-meta-models

Elements on this tier

RobMoSys Composition Structures, e.g.

concept of service definitions
concept of components, i.e. the Component Metamodel
a set of communication semantics to choose from

Examples of roles on this tier

Content on this tier is defined by the ecosystem drivers, e.g. the RobMoSys consortium.

See also

Tier 1 Details

Tier 2: Robotics-Domain-Specific Structures – Robotics Domain Models

Tier 2 structures the particular domains within service robotics. It is shaped by the experts of these domains,
for example experts from object recognition, from manipulation, or from SLAM. This is a community effort
which structures each robotics domain by creating domain-models. Experts working at this level define
concrete service definition models, for example a service definition for robot localization.

Domain-models, for example, are “Service Definitions” that cover data structure, communication semantics
and additional properties for specific services such as “robot localization”. To find such a service definition,
domain experts of each particular domain discuss how to represent the location/position of a robot and what
additional attributes are required and how they are represented (e.g. how the accuracy is represented).

In terms of meta-modeling, elements of this tier correspond to/are meta-models

Examples of elements on this tier

service definitions for localization
definition of how a robot pose with uncertainty is represented

Examples of roles on this tier

These are experts in the particular domain (SLAM, object recognition, manipulation), for example the
manipulation domain to come up with domain-models for a composable motion stack based on the
RobMoSys composition structures on Tier 1.
Service Designer role

Tier 3: Ecosystem Content

Tier 3 uses the domain-structures from Tier 2 to fill them with content: to supply or to use content. It is
shaped by the users of the ecosystem, for example component suppliers and system builders. They use the
domain-models to create models as actual “content” of the ecosystem to be supplied and used. On this tier, for

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:tier1
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:tier1
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer

example, concrete Gmapping component for SLAM that provides a localization service is supplied to a system
builder to compose a delivery robot.

In terms of meta-modeling, elements of this tier correspond to/are models (of components/systems)

Examples of elements on this tier

Components for AMCL localization, Gmapping, etc. providing a localization service
Task plot: how to make coffee
Composed applications: A restaurant butler robot
Component model based on the Component Metamodel

Examples of roles on this tier

Component Supplier
System Architect
System Builder

Example: Service-based Composition Approach

The service-based composition approach is an example to illustrate the use of the composition tiers. Below is
the illustration that corresponds to the role descriptions. The service-based composition approach uses service-
definitions as central architectural element for composition of software components. We call the links between
service definition, service wish, and service with fulfillment the “service triangle”.

See also
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:service-based-composition-approach.png?id=general_principles%3Aecosystem%3Astart

Analogy: The PC Domain
Roles in the Ecosystem
Tier 1 Details

Acknowledgement

This document contains material from:

Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)

general_principles:ecosystem:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:start

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/modeling:tier1

RobMoSys Wiki
http://www.robmosys.eu

Roles in the Ecosystem
The participants in the ecosystem (see Ecosystem Organization) take one or several “roles” to use and supply
building blocks. The RobMoSys composition structures define which parts are variable and which parts are
fixed, i.e. guided by the structures to ensure composability. Each role uses dedicated views to work on models
and Modeling Twin

List of Roles

(alphabetical order)

Behavior Developer
Component Supplier
Function Developer
Performance Designer
Safety Engineer
Service Designer
System Architect
System Builder

Roles in Context of Composition Tiers

The figure below illustrates the roles and their corresponding activities that use or create models on each
composition tier.

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:roles-ecosystem.png?id=general_principles%3Aecosystem%3Aroles
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:behavior_developer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:performance_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:safety_engineer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start

See also

Ecosystem Organization to learn about Ecosystem and its Composition Tiers
RobMoSys Views to learn about the concept of views that roles use
Modeling Twin

general_principles:ecosystem:roles · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:roles-use-case-models.png?id=general_principles%3Aecosystem%3Aroles
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin

RobMoSys Wiki
http://www.robmosys.eu

System Builder
This role on Tier 3 puts together systems from building blocks (i.e. software components). Based on a system
architecture from a system architect, the system builder selects components (provided by component
suppliers) from the ecosystem that realize the needed services. Matchmaking must be made on the basis of
offered services and on other properties, e.g. the required accuracy. Another concern of system builders is to
package everything together such as e.g. also the robotic behavior models from behavior developers and
making the system ready for deployment.

Synonym:

Within the literature, this role is sometimes called “system integrator” which is considered
inappropriate within the RobMoSys context, because of its close relation to “system integration” which
contrasts to system composition (see glossary).

Related views and models:

System Component Architecture Metamodel

See also:

System Architect
Component Supplier
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:system_builder · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:behavior_developer
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Function Developer
Provides content on function-level to be used by component suppliers.

Synonym:

none

Related views and models:

 to be defined

See also:

Component Supplier
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:function_developer · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Service Designer
These are the domain experts on Tier 2 that design individual service definitions for use by Tier 3 roles
component supplier and system architect. This enables the definition of “de-facto” standard service definitions
within a specific robotics sub-domain such as “object recognition”, “mobile manipulation”, “SLAM”, etc. For
example, they can define what is a common (good) representation for a “localization” service that should be
used (and shared) within the “SLAM” domain.

Synonym:

none

Related views and models:

Service Design View
Service-Definition Metamodel

See also:

Component Supplier
System Architect
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:service_designer · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/modeling:views:service_design
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Performance Designer
Designs the overall system performance by considering several activities in combination and modeling causal
dependency chains. Further details can be found in:

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA,
USA, Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

Synonym:

none

Related views and models:

Performance Metamodel

See also:

User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:performance_designer · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:performance_designer

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:performance_designer 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
http://robmosys.eu/wiki-sn-01/modeling:metamodels:performance
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Component Supplier
A component supplier is a role on Tier 3 that offer software components as units of composition that provide
or require services (service-level) and contain functions. He/she models the component by using existing
service definitions and functions. He/she therefore uses models from the roles service designer and function
developer.

Synonym:

component developer

Related views and models:

Component Development View
Component-Definition Metamodel

See also:

Service Designer
Function Developer
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:component_supplier · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki-sn-01/modeling:views:component_development
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Behavior Developer
Develops task-plots to be used by system builders describing which sequences of tasks (i.e. actions) the robot
needs to perform for achieving certain goals at run-time. He/she acts on the level of task-plots.

Synonym:

none

Related views and models:

Robotic Behavior Metamodel

See also:

User Stories including this role
Roles in the Ecosystem
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

general_principles:ecosystem:roles:behavior_developer · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:behavior_developer

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:behavior_developer 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior

RobMoSys Wiki
http://www.robmosys.eu

Safety Engineer
The Safety Engineer is responsible to define safety-related system aspects and closely interacts with system
builders.

Synonym:

none

Related views and models:

… link view (to be defined)
… link model (to be defined)

See also:

User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:safety_engineer · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:safety_engineer

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:safety_engineer 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

System Architect
This role on Tier 3 designs a system architecture based on existing service definitions from service designers.
The resulting system architecture is independent of specific components and can be used by system builders to
select according components for realizing this system architecture. In other words, a system architect provides
a kind of “system blueprint” for system builders who can realize this system by selecting appropriate
components. For example, a system architect might design a robot navigation stack based on mapping,
localization, and motion-execution services.

Synonym:

none

Related views and models:

System Service Architecture Metamodel

See also:

Service Designer
System Builder
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:system_architect · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_builder
http://robmosys.eu/wiki-sn-01/general_principles:user_stories
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

User Stories
The following user-stories provide more detailed examples of the primary user-stories
[http://robmosys.eu/user-stories/] and the user-stories presented at the ERF 2017
[http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/].
The user-stories are supposed to guide RobMoSys consortium to provide the structures and the open call third
party partners to apply.

User-stories are described in the As user, I want-style:

As a (role), I want (goal, objective, wish), so that (benefit)
As a (role), I can (perform some action), so that (some goal is achieved)

Some user-stories are described in context of a specific ecosystem participant or role. Some are not described
in a specific context and can apply to multiple roles. For example what is of interest to an integrator can be of
interest to a supplier since the integrator might also supply a system (see system-of-system).

See also:

Roles in the Ecosystem

Composable commodities for robot navigation with traceable and
assured properties

A very generic but extremely important user story illustrating the full scope of RobMoSys by a single
example: Based on model-driven tools, develop and provide composable navigation components with all their
explicated properties, variation points, resource requirements etc. (the modeling twin / data sheet). Become
able to compose your navigation system out of these readily available commodity building blocks according
to your needs and be sure that your needs are being matched, that the properties become traceable etc.

I, as system builder, just want to become able to compose robotics navigation out of commodity
building blocks according to my needs with predictable properties, assured matching with my
requirements, free from interference. It is just astonishing that this is not yet possible in robotics. (with
MoveBase being exactly an example of 1how it should not be)

Description of building blocks via model-based data sheets

RobMoSys achieves a specific level of quality and traceability in building blocks, their composition and the
applications.

as a component supplier

I want my component to become part of as many systems as possible to ensure return-of-investment
for development costs and to make profit.
I need to offer my software component (building block) such that others can easily decide whether it
fits their needs and how they can use it.
I want to offer my software component with a data sheet in form of a digital model (see xxx). A data
sheet contains everything you need to know to become able to use that software component in a proper

http://robmosys.eu/wiki-sn-01/general_principles:user_stories 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/user-stories/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start

way (interface between the component and its environment) while protecting intellectual property. It
contains information about the internals of the software component only as long as this is needed for a
proper use.

as a system builder

I want to select from available components the one which best fits my requirements and expectations
(provided quality, required resources, offered configurability, price and licensing, etc.)
I want to check via the data sheet (in form of a digital model) whether that building block with all its
strings attached fits into my system given the constraints of my system and given the variation points
of the building block. Thereto, I want to be able to import it into my system design to perform e.g. a
what-if analysis etc.
I want to extract from my system design the specification of a missing building block such that
someone else can apply for providing a tailored software component according to my needs
I want to use components as grey-box, use them “as-is” and only adjust them within the variation
points expressed in the data-sheet without the need to examine or modify source code.

Replacement of component(s)

A hardware device is broken and the identical device is not available anymore (deprecated, discontinued, only
next version available). As a system builder,

I want to check whether all my relevant system level properties and constraints are matched when I use
the new device.
I also want to know how I need to configure it for that.

The very same holds true for software components where a software library used is not available anymore
with updates of other libraries etc.:

As a system builder, when I remove a software component from a system, I want to know which
constraints define the now white spot in my design in order to fill in another one with the proper
configuration to again match the system level properties.

Example:

From laser-based localization to visual localization
Replacing a 6 DOF manipulator with a 5 DOF manipulator

Composition of components

I want to be able to predict selected properties of the composition of various software components given their
individual properties, their configurations, their composition. For example, I want to know about the required
resources, whether there are bottlenecks somewhere, whether there are no unnecessarily high update rates
without consumers requiring them etc.

I want to know about the consistency of the overall settings in order to increase the trust into the system. I
want to know that critical paths are transformed from design-time into run-time monitors and sanity checks,
e.g.

Quality of Service

I would like to know whether the amount of resources and the achieved performance (in general, quality of
task achievement) is adequate. I want to know what kind of impact a decrease in resource assignment has on
the performance of the functionalities of the robot.

http://robmosys.eu/wiki-sn-01/general_principles:user_stories 2017-06-26

I want to make sure that properties are traceable through the system and are managed through the
development and composition steps. For example

qualities at service ports of components are linked with component configurations which are linked
with configurations of the execution container and the underlying OS and middleware
at deployment time (system builder), reservation based resource management should be tool supported

Determinism, e.g. for robot navigation

As system builder, I want my system (e.g. navigation system on a mobile robot) to work exactly the same
way again when I change the platform (e.g. change the mobile base or the laser ranger or the computing
platform in a mobile robot).

I want to know that the intended functional dependencies and intended processing chains are finally
realized within my system composition
I want to know that relevant functional dependencies are still valid even after replacing one of my
onboard computers by a different one

Free from hidden interference

When extending a system, I want to know that I do not interfere with the already setup components,
already used resource shares etc.
I want to be sure that deploying further components onto my system is free from hidden interference
or hidden side-effects.

Management of Non-Functional Properties

As system builder,

I want to be able to adhere to functional and, in particular, to non-functional properties when
composing software components.
I want to re-use software components as black (gray) boxes with explicated variation points such that
application-specific system-level attributes can be matched without going into the internals of the
building blocks.
I want to be able to work on explicated system level properties: allow to design system properties such
as end-to-end latencies and explicit data-propagation semantics during system composition without
breaking component encapsulation.
I want to be able to match / check / validate / guarantee required properties via proper configurations
of variation points, via sound deployments etc.

Separation of roles (in particular, between component providers (driven by technology) and system builders
(driven by the application domain) is considered a basic prerequisite towards the next level of market maturity
for software in robotics, and thus towards a software business ecosystem. Support for the system builder is
needed in order to know about the properties of resulting systems instead of wondering whether they match
the requirements or whether they are resource-adequate etc.

Gap between design-time assumptions and run-time situation

When a system is deployed, design-time assumptions might not hold. For many systems it is difficult to know
when the system fails during operation.

As a system builder, I want to generate sanity checks, monitors and watchdogs from my design-time
models to be able to detect unwanted behavior and to detect operation outside of specified ranges.

http://robmosys.eu/wiki-sn-01/general_principles:user_stories 2017-06-26

System analysis tools

There are analysis tools in related domains not yet accessible to robotics as they are complex to use. I would
like to have support from these tools during the design of components, their selection and composition etc. I
want to better address what-if questions, to perform trade-off analysis etc. These tools should be attached to
robotics via dedicated model transformations without requiring me to get into them.

Task modeling for task-oriented robot programming

Reusable and composable task blocks which express knowledge about how to execute tasks (action
plot) and what are good ways to execute tasks (qualities).
Management of the constraints such that composition for parallel and nested execution is free of
conflicts and that open variation points can be bound at run-time according to the given situation ways
to link generic task descriptions (with all their constraints and resource requirements) with software
components (with all their configurations etc.)

Safety

As safety engineer, I want to model limits for critical properties like the maximum speed when
carrying around a hot coffee, when maneuvering in a crowded environment, the maximum speed
dependent on visibility ranges etc.
As safety engineer, I model constraints for particular applications and environments.
As system builder, I want to be able to import these constraints such that tools help me to ensure
design-time consistency and run-time conformance with them (via generated hard-coded limits, via
monitors, via sanity checks etc.)

It is important to highlight what we are trying to say about system safety (not necessarily to prove), because
systems are safe in a particular context under a particular set of assumptions (e.g. by run-time monitors etc.).
The focus is possibly shifted from fail-safe to safe-operational, which may include some liveness in it. It is
about efficient falsification (the following things cannot happen) rather than costly verification (it always
behaves only like that).

general_principles:user_stories · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:user_stories

http://robmosys.eu/wiki-sn-01/general_principles:user_stories 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Analogy: The PC Domain
We use the analogy of hardware in the PC Domain to illustrate concepts of RobMoSys. Using an analogy, we
can describe particular concepts in a given context (the pc domain), which is easier to understand since the
context of the PC domain is widely known. One can then transfer information given to the robotics domain.
The PC domain is only an analogy that helps to illustrate concepts; the PC domain is different than robotics,
so do not read too much into the examples given here.

Configuration, Composition, and Integration

Using the PC Domain, we illustrate the terms Configuration, Composition, and Integration.

Configuration

Configuration is lik going to a retail store that is specialized in a certain range of products, e.g. Dell or Apple,
and as for a computer. What you get is a list of possible configurations of a computer where you can select its
components from a list of predefined components. This means going through a product configurator, selecting
the base product and selecting some extra options, e.g. hard drive capacity.

This essentially is a product line approach where parts of the product line and its variants is even visible to the
customer.

Composition

Composition is like going to a computer retail store and buying and assembling the parts in an assisted way:
for example, based on the items in the shopping cart, let the customer know:

that the five PCIe cards will not fit the mainboard with only 4 slots
that the power supply is not sufficient to power the system
that the graphics card has an additional power socket which is not provided by the power supply

There are some online computer retailers that provide this kind of features. All this information is available in
data sheets, but not all customers have the knowledge and experience to understand it. They need the support
described above. Even experts are lost in case there is no data sheet.

In robotics, there is neither a superordinate structure such as PCIe, no data-sheets for components, and no
support for selecting components.

Integration (in contrast to composition)

Integration is like assembling parts with non-standard interfaces that do not allow to separate and exchange
parts afterwards, for example, a battery that is soldered inside a laptop. Even after ripping out the battery, it
cannot be used as there is no knowledge about the battery, no data sheet: How much power? How about
electrical polarity/pin assignments? One starts to reverse-engineer to discover the properties using a voltmeter
and other tools.

Ecosystem Example: Graphics Cards

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu

In the PC industry, different ecosystem participants can supply and use building blocks to flexibly compose
systems based on their needs. There are graphics card suppliers that do not know where their product is being
used or for what purpose. They supply their graphics card and adhere to an specified interface (e.g. PCI
express) to make sure it can be used with any mainboard. They can build their graphics card using off-the-
shelf building blocks (e.g. Nvidia graphics chip and standard memory). They provide data sheets for the
graphics card that specifies the properties of the product which are necessary to use it. The data sheet does not
need to expose internal details or layouts (protected IP) of the graphics card.

Suppliers and Users collaborate and exchange building blocks in an ecosystem to flexibly compose systems
based on their need.

What Enables Composition in the PC Domain?

Enablers of composability in the PC domain are:

Building blocks adhere to superordinate structures (e.g. PCIe)
Building blocks explicate properties in data sheets (e.g. power supply, form factor, thermal
information)

Thanks to this enablers, the following is possible in the PC domain and RobMoSys aims at the same for
robotics:

Views

Thanks to explicated properties in data sheets, specific views on a system can be taken. They are independent
and each address concerns of the system. For example:

A form factor view: will everything fit into the case? Are there enough slots in the casing for
assembling the hard discs?
A thermal view: how is heat flowing through the system and is the ventilation sufficient?
A power supply view:

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart
http://robmosys.eu/wiki-sn-01/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart

General layout view: are there enough slots in the casing to access the PCI cards from the outside? Are
there enough slots PCIe slots on the mainboard?

RobMoSys uses Views to group elements of the composition structure which are addressed by one role.

Decoupling supply and use

Thanks to data sheets, one can plan a system and come up with a blueprint for later assembly since data sheets
contain all necessary information. The physical devices do not need to be present at that stage and can be
assembled by someone else based on the blueprint. The blueprint can be used to verify the system: for
example the performance might not be sufficient for the intended application.

IP is still flexible

Exposing properties in a data sheet does not mean to expose intellectual property (IP). It is only about
exposing the information that is relevant to use it (e.g. external view / interface), size of the device, power
supply, etc. Information about the internals of the building block (circuit layout, chipset used, capacitors used,
etc.)

Flexible composition Combinations and alternatives

Adhering to superordinate structures means gaining access to all other building blocks that adhere to the same
structure. This gives high flexibility in composing parts.

RobMoSys Composition Tiers in the PC Domain

The below picture illustrated the Ecosystem Organization in composition Tiers using examples of the PC
domain.

The RobMoSys composition Tiers illustrated with examples of the PC domain.

Data Sheets and The Modeling Twin

Data sheets in the PC domain are comparable to the Modeling Twin in RobMoSys. Data sheets represent a
physical building block. See What Enables Composition in the PC Domain to learn about the benefits.

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/_detail/general_principles:pc_analogy:analogy-composition-tiers.png?id=general_principles%3Apc_analogy%3Astart
http://robmosys.eu/wiki-sn-01/_detail/general_principles:pc_analogy:analogy-composition-tiers.png?id=general_principles%3Apc_analogy%3Astart
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin

general_principles:pc_analogy:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/general_principles:pc_analogy:modeling-twins-abstract-pcdomain.png?id=general_principles%3Apc_analogy%3Astart

RobMoSys Wiki
http://www.robmosys.eu

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The Wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

Roadmap of MetaModeling
Modeling Principles

Modeling Twin
Realization Alternatives

Tier 1 Structure
Scientific Grounding: Hypergraph and Entity-Relation model
Block-Port-Connector
RobMoSys Composition Structures
Views which are used by roles

modeling:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:start

http://robmosys.eu/wiki-sn-01/modeling:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_media/modeling:composition-tier1-detail.png
http://robmosys.eu/wiki-sn-01/modeling:roadmap
http://robmosys.eu/wiki-sn-01/modeling:principles
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives
http://robmosys.eu/wiki-sn-01/modeling:tier1
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Roadmap of MetaModeling
The RobMoSys project makes available a baseline of already existing metamodels. They sufficiently conform
to the RobMoSys composition structures. For example, the SmartMARS metamodel form the The SmartSoft
World and also metamodels in the Papyrus4Robotics World.

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures. RobMoSys Structures: Realization Alternatives describes this in more detail and also lists
alternatives.

See also

The given description also holds true for the Roadmap of Tools and Software
Conformance of SmartMARS Metamodel to RobMoSys composition structures

modeling:roadmap · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:roadmap

http://robmosys.eu/wiki-sn-01/modeling:roadmap 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics
http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives
http://robmosys.eu/wiki-sn-01/_detail/modeling:roadmap.png?id=modeling%3Aroadmap
http://robmosys.eu/wiki-sn-01/baseline:roadmap
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start

RobMoSys Wiki
http://www.robmosys.eu

Basic Modeling Principles
There is a subtle relationship between the (meta-)models, the actual modeling languages and the concrete
models. This relationship is depicted in the figure below.

A modeller (i.e. a modeling-tool user who creates models) always works with a concrete syntax. This syntax
can be textual, graphical, tabular or any combination thereof. The concrete syntax (sometimes also called
notation) is defined by (i.e. it conforms to) the modeling language. The concrete syntax of a modeling
language is independent of the abstract syntax of an actual meta-model. However, the structure of the
modeling language must adhere to the structures defined in a meta-model. In most cases, it makes sense to
first specify the meta-model, then to generate a modeling language out of the meta-model and then to adjust
only the syntax of the modeling language (without affecting the structure). A model created by the modeller
is typically only a representation for the in-memory model that uses the abstract syntax. The abstract syntax is
also used to serialize the models in order to make them persistent.

Finally, the model itself is an abstract representation of the actual system (which can be either software,
hardware or any combination thereof). Often, it makes sense to package the model with the related
software/hardware parts and to ship them together as a so called modeling twin.

Ecore-OWL language-bridge

There is a relation between meta-models and ontologies that can be bridged as described here
[http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html].

http://robmosys.eu/wiki-sn-01/modeling:principles 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_media/modeling:modeling-syntax.png
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html

This image is borrowed from twouse.blogspot.de [http://twouse.blogspot.de/2010/08/owl-ecore-language-
bridges.html]

The strength of ontologies is the representation of knowledge with extensible structures. Moreover, ontologies
allow reasoning on knowledge and the inference of further knowledge. The strength of meta-models is the
definition of clear and unambiguous structures. This is particularly useful to represent physical entities and
physical properties of the real-world. There are robotics use-cases where in some cases ontologies and in other
cases meta-models can be preferred. Therefore it is reasonable to allow using both of them in combination,
rather than restricting the usage of only one of them in isolation.

modeling:principles · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:principles

http://robmosys.eu/wiki-sn-01/modeling:principles 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:ecoreowlbridge.jpg
http://robmosys.eu/wiki-sn-01/_media/modeling:ecoreowlbridge.jpg
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html

RobMoSys Wiki
http://www.robmosys.eu

Modeling Twin
All entities in the market and all entities that are shared in the ecosystem come as twins. Twins consist of a
model (modeling twin) that represents the Software or Hardware artifact (SW/HW twin). Think of the
modeling twin as a bridge between traditional software artifacts and the modeling world. The modeling twin
is similar to data sheets in the PC Analogy.

The modeling twin is always supplied and handed over between roles in the ecosystem. The SW/HW twin
might be supplied later or might not exist at all. It might not exist, for example, when the artifact is purely
intended for modeling. Entities in the market will never be just HW/SW artifacts without a modeling twin as
then the artifact cannot be used. One can continue building a system independently with only the modeling
twin, then supplying the HW/SW twin later.

The modeling twin is a representative and abstraction of the artifact it represents. It explicates necessary
properties to work with it. Supplying a modeling twin does not equal to exposing all details: IP can still be
protected as the modeling twin only have to expose the information that is relevant to use it: internal
structures can remain hidden.

The modeling twin is is similar to the “digital twin”1) in IoT and industry 4.0. It, however, is beyond
bridging the physical world to the digital world: it focuses on having a representative of physical entities or
software entities for modeling purposes.

http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start
http://robmosys.eu/wiki-sn-01/_detail/modeling:principles:modeling-twins-abstract-robmosys.png?id=modeling%3Aprinciples%3Amodeling-twin
http://robmosys.eu/wiki-sn-01/_detail/modeling:principles:modeling-twin-example.png?id=modeling%3Aprinciples%3Amodeling-twin

See also

PC Analogy

1)

Dr. Michael Grieves and John Vickers. “Digital Twin: Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems (Excerpt)”, Excerpted based on: Trans-Disciplinary Perspectives on System
Complexity. Online
[http://research.fit.edu/camid/documents/doc_mgr/1221/Origin%20and%20Types%20of%20the%20Digital%20Twin.pdf]

modeling:principles:modeling-twin · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin

http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start
http://research.fit.edu/camid/documents/doc_mgr/1221/Origin and Types of the Digital Twin.pdf

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Structures: Realization Alternatives
This page describes alternatives for realizing the RobMoSys Composition Structures. This list of alternatives
shows examples and is not meant to be complete.

Example 1: Using Ecore

A meta-model is an abstract representation of a model. A meta-model in itself can be considered as a model
that may or may not have an even more abstract representation (i.e. a meta-meta-model). There are no
theoretical limits for going up the abstraction hierarchy. However, from a practical point of view, at a certain
abstraction level it simply does not make much sense to go further up the hierarchy. Instead, there often is a
meta-level that is abstract enough to define its own language. Example languages for such a level are: Eclipse
Ecore and Essential MOF (EMOF). Nevertheless, it might make sense to go higher up the abstraction
hierarchy above Ecore in order to define meta-levels that ease interfacing between the different realization
technologies. Such a higher meta-level is for instance the Hypergraph notation. The relation between e.g. the
Ecore based meta-models and the more abstract meta-levels is depicted in the figure below.

The left side of the figure shows a meta-level hierarchy starting with a Hypergraph on top, over Blocks-Ports-
Connectors and down to RobMoSys composition structures. This hierarchy allows formal definition of meta-
levels for the required structures independent of a particular realization technology. In the middle of the
figure, a specific realization technology (in this case Ecore) is used to implement the RobMoSys meta-models.
This is only an example and many other technologies can be used instead in a similar fashion. Moreover,
other existing modeling languages (such as AADL) can be easily interlinked with the RobMoSys structures by
defining model-to-model transformations. This is a powerful extension mechanism that allows usage of

http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/_media/modeling:robmosys-vs-general-modeling-variant1.png
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start

matured and powerful tools in robotics.

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures.

A preliminary implementation of Ecore meta-models for the two topmost abstraction levels within Tier 1 (on
the left in the figure above), namely the Entity-Relation and Block-Port-Connector meta-models, is available
at Preliminary Ecore implementation of ER and BPC meta-models.

Example 2: Using UML/SysML Profiling

The figure above shows another example of using a different realization technology, in this case the
UML/SysML and MOF as base structures. The RobMoSys structures on the left are unaffected by this
different technology choice. It is worth mentioning that while the UML standard also specifies the graphical
notation, the extension mechanism through profiling might be a bit more challenging when it comes to
restricting the already defined modeling structures. These pros and cons need to be traded off when choosing
a modeling technology.

modeling:realization_alternatives · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:realization_alternatives

http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives:ecore_implem
http://robmosys.eu/wiki-sn-01/_media/modeling:robmosys-vs-general-modeling-variant2.png

RobMoSys Wiki
http://www.robmosys.eu

Preliminary Ecore implementation of ER and BPC
meta-models

Entity-Relation (ER) meta-model

The concepts provided by the ER meta-model comply with the definitions in Scientific Grounding

Block-Port-Connector (BPC) meta-model

The following meta-model includes concepts that are defined in Block-Port-Connector

http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives:ecore_implem 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er
http://robmosys.eu/wiki-sn-01/_media/modeling:realization_alternatives:er.png
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/_media/modeling:realization_alternatives:bpc.png

Eclipse/Ecore implementation of ER and BPC meta-models

Eclipse/Ecore implementation of the above meta-models can be downloaded here

To access these meta-models you will need to:

1. Install Eclipse Neon Modeling [http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3].

2. Import the plugins in your workspace.

modeling:realization_alternatives:ecore_implem · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:realization_alternatives:ecore_implem

http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives:ecore_implem 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:realization_alternatives:robmosys_ecore_metamodels_plugins.zip
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3

RobMoSys Wiki
http://www.robmosys.eu

Tier 1 in Detail

Tier 1 provides the general structures for composition. Three levels can be distinguished:

Hierarchical Hypergraphs and Entity-Relation Model

Hierarchical Hypergraphs can be considered as the topmost abstraction level within Tier 1. It allows definition
of a sound scientific grounding and a formalization in a most flexible model. Any modeling structure can be
represented by a Hypergraph. The specific structures on the levels below are always specializations (i.e.
refinements) of a Hypergraph.

The Hypergraph and Entity-Relation Model page provides additional details.

Block-Port-Connector

The next level on Tier 1 is the definition of blocks, ports and connectors as a general meta-level that allows
definition of any domain-specific meta-model such as e.g. the RobMoSys composition structure (see below).

The Block-Port-Connector page provides a more detailed description.

RobMoSys composition structure

RobMoSys composition structures provide domain-specific meta-structures that are used on the lower Tier 2
and Tier 3 to design robotics models in specific robotics subdomains.

http://robmosys.eu/wiki-sn-01/modeling:tier1 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_detail/modeling:composition-tier1-detail.png?id=modeling%3Atier1
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector

The RobMoSys Composition Structures page provides further details.

RobMoSys Views

The RobMoSys views are a complementary technique to the RobMoSys composition structures. This
technique supports definition of role-specific modeling views that allow modification and refinement of
specific primitives without breaking the overall structures. This is a useful technique that directly supports
separation of roles and at the same time allows realization of model-driven tooling that ensures overall system
consistency.

The RobMoSys Views page provides further details.

modeling:tier1 · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:tier1

http://robmosys.eu/wiki-sn-01/modeling:tier1 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:views:start

RobMoSys Wiki
http://www.robmosys.eu

Scientific Grounding
The highest abstraction level that is considered in RobMoSys is related to Hierarchical Hypergraphs and

Entity-Relation models. The Entity-Relationship1) model was one of the first approaches for formal “data

base” models of knowledge.2) It has gained renewed interest because of the rising popularity of the “Semantic

Web”3).

One of the main challenges is to represent context, more in particular, to deal with the combinatorial
explosion in the number of relationships needed to represent – and interconnect – all relevant pieces of
information and knowledge in multi-domain ICT and engineering systems. Such interconnected knowledge
forms graph networks of links and properties. This fact poses difficulties to Lisp, Prolog, or other
“programming languages” for Artificial Intelligence (AI), since they only have representations for
relationship trees as first-class citizens. The same holds for the frame languages

[https://en.wikipedia.org/wiki/Frame_language] 4) in AI, which considered “multiple inheritance” as a key
feature. This last feature, together with “data encapsulation”, are two major aspects of strict object oriented

languages and models, that make “open world” 5)6) knowledge representations difficult; the SOLID
[https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)] principles of object orientation better support
knowledge representation, especially via its “D” feature, that is, the Dependency inversion principle, which
states that one should “depend upon abstractions, not on concretions”. However, none of these approaches
offers infinitely composable knowledge representations, because they only partially support the essential
features outlined in the sections below.

Hierarchical Hypergraph

The modern, higher-order, version of the Entity-Relationship model is that of a hierarchical (property)

hypergraph7)8):

hierarchical : every node and every edge can be a full graph in itself. In other words, any Relation can
be considered an Entity in itself, and can hence be used as an argument in another, higher-order
Relationship.
hypergraph: every edge can connect more than two nodes; that is, it is an n-ary “hyperedge”
property meta data: every node and every edge in the graph has a property data structure attached to it;
two (mandatory) parts of those properties are the following meta data:

unique node/edge identifier : other relationships in the graph can refer to this node or edge.
meta model identifier : each node or edge has a type, indicated by the unique identifier of the
graph that models that type.

Often used synonyms for the term “Entity” are: object, concept, atom, primitive. “Relationships” are also
called: rules, axioms, constraints, links, expressions. Often used extra meta data is the so-called provenance of
a model: who made it? when? what version is it? Etcetera. State of the art formal meta models to represent

such provenance are W3C provenance9), and Dublin Core10).

Entity-Relation Model

Each “thing” to be modelled will have a number of data structures that represent its properties. That can be
done via (possibly nested) key-value pairs, with each key having, a type, a unique identifier (with which

http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Relationships can refer to it), and a role to play in the “thing” properties. While efficient implementations of
those properties can be realised with the rich data structure primitives in computer programming langauges,
the meaning of such properties, as just described above, is a hierarchical hypergraph.

A Relationship between Entities is a named directed graph, representing the Role that each Entity plays as an
Argument in the Relationship:

the top node carries the meta data of the Relationship, of which the two major ones are: (i) its unique
“identifier ” (with which other Relationships can refer to it), and (ii) the context (all the externally
defined Entities and Relationships whose names are being used in the model of this Relationship).
Other meta data in the top node are: type and provenance. In addition to the identifier (which in
principle should only be computer-readable), models often carry human-readbale names and
description strings, possibly in various languages. However, these are not used in linking Entities
together into Relationships.
from the top node, there are Role edges towards each of the Entity nodes that figure as Arguments in
the relationship. Each Role edge also has similar meta data properties as the top node, but the most
distinguishing one represents the purpose (“role”) of a particular argument in the Relationship. This is
formally represented by a specific Relationship in itself.

Each “value” in an Argument has a domain (or “universe of discourse”): the type and the set(s) of possible
values that the “key” can have. In other words, that domain brings its own property data structure to each
argument. Remark the recurring pattern of “identifiers”, “types” and “contexts”, in the nodes and edges of a
hierarchical hypergraph. And also remark that the graph is directed : pointing from the Relationship to the
Entities, and down to the latters’ proeprties.

Natural modelling levels of abstraction

“Abstraction” is a key concept in modelling, but it is hard to define axiomatically. Below, three core “meta

meta” forms of modelling are described11):

mereology – parts: there is already quite some (mature) formalisation available in the state of the art,
to structure “Entities’; for example, the Wikipedia article [https://en.wikipedia.org/wiki/Mereology] in
the subject has a good overview and pointers to the literature. The key Relationship is has-a (also
called, “has-part” or similarly equivalent names), and is-equal.
topology – structure of interconnections between parts: this kind of structural model is a key property
of any system, and also here the state of the art insights and formalizations are sufficiently mature to
have unambiguous and consistent semantics of formal models, to the extent that it is realistic to
develop “standards” and “tools”.

Concretization (or specialization) can be considered as the opposite of abstraction. In this sense, raising the
level of abstraction means to get more general purpose while lowering the level of abstraction means to get
more specific with respect to e.g. a certain domain. It is only natural that the general purpose (i.e. higher)
abstraction levels tend to leave open some semantic variability. For instance, UML (as one representative for
general-purpose modeling languages) purposefully defines “semantic variation points”. These “semantic
variation points” can be fixed by e.g. deriving domain-specific models (in terms of UML by defining UML
profiles). In this sense, RobMoSys as well defines several levels of abstractions, with “Hierarchical
Hypergraphs” and “Entity-Relation” levels on top, over “Block-Port-Connector” and “RobMoSys composition
structures” and down to concrete realizations (sometimes “reference implementations”). Going gown this
abstraction hierarchy also means getting more domain-specific and narrowing semantic variability.

Formalization
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er 2017-06-26

https://en.wikipedia.org/wiki/Mereology

This section provides formal specifications for the Hierarchical Hypergraphs and for an Entity-Relation
model.

Hierarchical Hypergraph

“a hypergraph H is a pair H = (X,E) where X is a set of elements called nodes or vertices, and E is a
set of non-empty subsets of X called hyperedges or edges” Wiki:Hypergraph
[https://en.wikipedia.org/wiki/Hypergraph]
hyperedge: each vertex in the graph can connect more than two nodes
hierarchy: each node or edge in the graph can be a full graph in itself

Entity-Relation Model

Entity-Relation is a specialization of a Hypergraph. Therefore, Entity-Relation conforms-to a Hypergraph.

entity
the “things”
entity instantiates a node of its meta-model

uniquely referencing an element of its meta-model
entity has a unique identifier

uniquely referencing this primitive
relation

n-ary link between primitives
relation instantiates a hyper-edge of its meta-model

uniquely referencing an element of its meta-model
relation has a unique identifier

uniquely referencing this relation
property

attribute of a primitive or a relation

Basic set of standard relations for linking different levels of
abstraction

We do not introduce a RobMoSys specific definition for these relations. Instead, we just use their “common
sense definition”. The following explanations are just typical “common sense descriptions”:

is-a
this is inheritance
an element of a model derives from an element of a metamodel

instance-of
this is often just a synonym for “is-a”
one talks of an instance when it is the final element in an inheritance hierarchy. What is
considered a final element depends on what parts of the inheritance hierarchy you see.

conforms-to
a meta-model is a model that defines the language for expressing a model. A model represents
an abstracted representation of an artefact. A model conforms to a meta-model. One model can
have multiple models to which it conforms.

constraints
this is a particular relation
it can be applied to primitives, relations and properties

See next:

http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er 2017-06-26

https://en.wikipedia.org/wiki/Hypergraph

Block-Port-Connector

References
1)

P. P.-S. Chen. The entity-relationship model—Toward a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36, 1976.
2)

At more or less the same time, similar developments took place around knowledge representations via
“programming languages”, such as Lisp or Prolog.
3)

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43, 2001.
4)

M. L. Minsky. A framework for representing knowledge. In P. H. Winston and B. Horn, editors, The
psychology of computer vision. 1975.
5)

R. Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76. 1978.
6)

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition, 2009.
7)

G. Engels and A. Schürr. Encapsulated hierarchical graphs, graph types, and meta types. Electronic Notes in
Theoretical Computer Science, 2:101–109, 1995.
8)

M. Levene and A. Poulovassilis. An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering, 6:205–224, 1991.
9)

W3C. An overview of the prov family of documents. https://www.w3.org/TR/prov-overview/
[https://www.w3.org/TR/prov-overview/], 2013.
10)

Dublin Core Metadata Initiative. Dublin core metadata element set. http://dublincore.org/documents/dces/
[http://dublincore.org/documents/dces/].
11)

P. Borst, H. Akkermans, and J. Top. “Engineering ontologies”. International Journal on Human-Computer
Studies, 46:365–406, 1997.

modeling:hypergraph-er · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:hypergraph-er

http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
https://www.w3.org/TR/prov-overview/
http://dublincore.org/documents/dces/

RobMoSys Wiki
http://www.robmosys.eu

Block-Port-Connector
The Block-Port-Connector model is a specialization of the more abstract Hypergraph and Entity-Relation
model.

The following generic relations have been introduced already: is-a, instance-of, conforms-to and
constraints. There are two additional (i.e. more specific) relations that need to be introduced:

Relation Explanation Typical graphical
representation

Typical textual
representation

contains # can be applied to entities and can be applied to
relations
* this realizes hierarchical composition (nested
composition) in a hierarchical composition (i.e.
elements are enclosed by another element)
* the contained elements are not accessible (in
contrast to elements in a collection)
* the contained elements cannot exist without the
parent
* can be refined to composition association in
UML

a nested box with solid
border or a UML
composition arrow

contains(A,a,b,c)
contains(B,m,n)

has-a # can be applied to entities and can be applied to
relations
* this realizes aggregation
* in aggregation, elements remain at the same level
* elements linked with has-a can exist
independently
* can be refined to aggregation association in UML

a nested box with
dashed border or a
UML aggregation
arrow

has-a(A,a,b)

The generic entity is refined as follows:

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

block Model:
* is-a entity
* possibly has-a property (or many)
* possibly has-a port (or many)
* possibly contains property (or many)
* possibly contains block (or many)
* possibly contains collection (or many)
* possibly contains connector (or many)
* possibly contains relation (or many)

block(block-A)

Description:
the only interaction points of a block are ports

http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:hypergraph-er
http://robmosys.eu/wiki-sn-01/_media/modeling:principles:block.png

port Model:
* is-a entity
* has-a internal dock
* has-a external dock

port(Port-A)

Description:
it is the only interaction point over which a
block can interact with other blocks;
when attached to a block, the internal dock
becomes a private to the block (contains) and
the external dock becomes public (has-a)

Comment:
In textual representation, access to docks can be
represented e.g. like internal-dock(Port-A),
external-dock(Port-A)

dock Model:
* is-a entity

dock(Dock-A)

Description:
A dock is used to semantically differentiate
between the “internal” and “external” sides of a
port with respect to the port's parent block.

Comment:
In a graphical representation, the internal dock
and the external dock can be highlighted, for
example by different colors (be careful, not to
start an irrelevant activity in introducing such
graphical notions into existing tools which
cannot handle that).

connector Model:
* is-a entity
* connects ports (n-ary relation)

connector(connector-
A)

Description:
can connect ports as long as no block
boundaries are crossed

Comment:
In graphical representation, the connector itself
is represented by a dot. With the connects-
relation, star-shaped lines (connects-relations)
originate from the dot in the center.

collection Model:
* is-a entity
* possibly has-a entity (or many)
* possibly has-a relation (or many)

collection(collection-
C,k,l,m,n)

Description:
A collection can group any combination of
entities and / or relations. The enclosement
formed by a collection is just a virtual one
where the elements are openly accessible (in

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:principles:port.png
http://robmosys.eu/wiki-sn-01/_media/modeling:principles:dock.png
http://robmosys.eu/wiki-sn-01/_media/modeling:principles:connector.png
http://robmosys.eu/wiki-sn-01/_media/modeling:principles:collection.png

contrast to nesting).
A collection can pick any elements out of
blocks ignoring block boundaries ⇒ this is
particularly useful to specify modeling views

Comment:
In the graphical representation, the dotted box
can enclose entities and / or relations where you
can cross the dotted line to “enter” the
collection

connects Model:
is-a relation

connects(connector-
A,external-
dock(Port-A))

Description:
links a dock of a port to a connector (binary
relation)

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

There is a specific relation between the RobMoSys composition structures and the modeling views as is
discussed on the next page. The important point at this level here is to provide a base-level that allows
specification of both kinds. The specific part for specifying modeling views is the collection definition while
all the other specifications are used to define the RobMoSys composition structures.

Please note that while blocks and ports are semantically different, depending on the current role-specific
view with according level of abstraction, ports can contain additional structures and thus might appear as
blocks on that detailed abstraction level (see service-definition metamodel).

See next

RobMoSys composition structures

modeling:principles:block-port-connector · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector

http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/_media/modeling:principles:connection.png
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:views:start
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Composition Structures
The RobMoSys composition structures is a bottom abstraction layer on Tier 1 (see figure below). This layer
defines all the robotics meta-structures that are required to consistently model robotic systems throughout
several development phases and thereby supporting different developer roles. The meta-structures follow a
general composition-oriented approach where systems can be constructed out of reusable building blocks with
explicated properties. In other words, RobMoSys enables the composition of robotics applications with
managed, assured and maintained system-level properties via model-driven techniques. This enables
communication of design intent, analysis of system design before it is being built and understanding of design
change impacts. Therefore, the RobMoSys composition structures adhere to the general block-port-connector
meta-structures and can be considered as a further specialization thereof.

The figure (above) shows an exemplary list of possible composition structures (highlighted with the yellow
background color), which can be clustered into (a) specializations of blocks and (b) specializations of
relations. One of the central structures defined by RobMoSys is a consistent and rich enough component
model that considers the interaction with related structures around the component model (such as e.g. the
definition of communication services and the binding to different middlewares). These structures are
described below in separate pages. An interesting point is that RobMoSys by purpose does not aim at one
huge meta-model that covers all robotics aspects at once. Instead, RobMoSys foresees the definition of
modeling views that cluster related modeling concerns in dedicated views, while at the same time connecting
several views in order to be able to define model-driven tooling that supports the design of consistent overall
models and to communicate the design intents to successive developer roles and successive development
phases. In this sense, composition does not only apply to designing robotics software but is also applied to

http://robmosys.eu/wiki-sn-01/modeling:metamodels:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:tier1
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/_media/modeling:composition-tier1-detail.png
http://robmosys.eu/wiki-sn-01/modeling:views:start

designing the modeling tools, thus making them easily extensible and composable.

Overview of RobMoSys composition structures

The figure below provided an overview of the RobMoSys composition structures (i.e. the RobMoSys
Metamodels). Each block in the figure represents a separate Metamodel that is individually described in a
separate page (see below). There are high-level relations between the metamodels that are depicted with the
uses keyword.

The next pages individually describe the RobMoSys metamodels in a human-readable notation using the
general definitions of block-port-connector. There is a straightforward way to transform this representations
using a dedicated modeling technology as described here.

Each metamodel (presented next) addresses two main modeling needs namely structure and interaction.
Structure defines the structural relations (such as has-a and contains) between the individual model
elements. Structure can often be directly translated into a modeling technology such as Ecore. Interactions
define the important interaction relations (using port, connector and connects) between specific model
elements. In contrast to structure, interactions are often transformed into software APIs (e.g. through code
generation) and must not always be visible on model level.

See next:

http://robmosys.eu/wiki-sn-01/modeling:metamodels:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:composition-structures:compositionstructuresoverview.png
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/modeling:realization_alternatives

Robotic Behavior Metamodel
Communication-Object Metamodel
Communication-Pattern Metamodel
Component-Definition Metamodel
Deployment Metamodel
Cause-Effect-Chain and its Analysis Metamodels
Platform Metamodel
System Service Architecture and Service Fulfillment Metamodels
Service-Definition Metamodel
System Component Architecture Metamodel

See also:

RobMoSys Views

modeling:metamodels:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:start

http://robmosys.eu/wiki-sn-01/modeling:metamodels:start 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment
http://robmosys.eu/wiki-sn-01/modeling:metamodels:performance
http://robmosys.eu/wiki-sn-01/modeling:metamodels:platform
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:views:start

RobMoSys Wiki
http://www.robmosys.eu

Robotic Behavior Metamodel
The Robotic Behavior Metamodel is one part of the RobMoSys Composition Structures that is responsible for
specifying the overall run-time behavior of a robot acting in real-world environments.

The Robotic Behavior Metamodel defines structures for modeling task-plots of a robot (see figure below).
Task-plots define sequences of tasks required to achieve certain goals at run-time. Each task itself can contain
another task-plot. This introduces hierarchy into the task-plot modeling where high level tasks (such as e.g.
making-coffee) are refined into lower level tasks (such as e.g. approach the kitchen, operate the coffee
machine and bring the coffee back to the customer). At the lower end of the abstraction hierarchy, tasks
eventually operate (i.e. to coordinate and configure) according software components that do the actual “work”
of a task. In this sense, tasks are passive, they just delegate the work to components in the system and await
the results (i.e. success or failure). The interaction between task-plots and components is over skills. In this
sense, a skill abstracts the technical coordination interface of a component and makes it accessible for task-
plots. A skill by itself might “inject” additional task-plots. This feature is particularly useful for modeling
alternative behaviors in case of contingencies in the overall behavior. For example, a skill commanding a
navigation component to approach a room might get the result that the navigation component failed to do so
(e.g. due to a blocked hallway). In this situation, the according skill might inject an alternative strategy,
namely to first go to another location and to try the current task later (or whatever other strategy might be
appropriate here).

A service robot is a physical entity that needs to cope with the physical constraints of the real-world. For
instance, actions of the robot, once performed, might be irreversible and always can fail. This also means that
at each point in time, the control hierarchy on the robot must be clear. Simply speaking, a robot cannot decide

http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:behavior-metamodel.png

in parallel to go to left and to right at the same time (for most of the robots, this is physically impossible). In
consequence, there is typically only one entity on each robot that is responsible for executing the robotic
behavior models namely the sequencer (see this page [http://www.servicerobotik-ulm.de/drupal/?q=node/86] for
further details on sequencing).

For the interaction between the behavior model and the software components in a system, the robot behavior
uses the “Master-Behavior-Interface”. Each component in the system by default implements the counter part
“Slave-Behavior-Interface” (not displayed in the figure). Therefore, the robot-behavior depends on the
system-component-architecture for the interaction with the according component-instances.

One existing realization of the robotic behavior meta-model is SmartTCL [http://www.servicerobotik-
ulm.de/drupal/?q=node/84]. SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] conforms to the
above presented meta-model and can be used as an initial software baseline already now.

See next:

Deployment Metamodel

See also:

System Component Architecture Metamodel

modeling:metamodels:behavior · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior 2017-06-26

http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system

RobMoSys Wiki
http://www.robmosys.eu

Deployment Metamodel
The Deployment Metamodel (see figure below) is part of the overall RobMoSys Composition Structures. This
meta-model links (i.e. interfaces between) the three meta-models, namely System Component Architecture,
Platform and Robotic Behavior.

The main concerns of this meta-model are to define artefacts and to assign them to selected targets. This
meta-model is inspired by the UML deployment model. There are two artefact types namely component-
artefacts and robotic-behavior-artefacts. Component-artefacts represent typically the precompiled binary form
of component-instances (including generated ini-files and start scripts). The robotic-behavior-artefact is the
physical representation of the robotic-behavior model (often this is an interpretable model).

Depending on the used modeling tool, the deployment meta-model could also be connected with the actual
deployment action that copies the component and robotic-behavior artefacts to the according target platforms.
However, this is a matter of tooling and is independent of the deployment meta-model as such.

See also:

Platform Metamodel
System Component Architecture Metamodel
Robotic Behavior Metamodel

modeling:metamodels:deployment · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:deployment

http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:metamodels:platform
http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:deployment-metamodel.png
http://robmosys.eu/wiki-sn-01/modeling:metamodels:platform
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

System Service Architecture and Service Fulfillment
Metamodels
The System Service Architecture Metamodel is a particularly useful meta-model for System Architects. This
meta-model allows the definition of service-based reference architectures for specific (sub-)domains on Tier
2. This meta-model depends on service-definitions and itself can be used to check “conformance” of a system-
component-architecture to this service-based reference architecture. Checking this conformance is one of the
main concerns of the service-fulfillment meta-model (see the following section below).

The System Service Architecture Metamodel specifies service-wishes which are component-independent
definitions of service-requirements for a set of systems. Moreover, links between service-wishes specify
component-independent inter-service dependencies (i.e. a service-wish might depend on the existence of
another service-wish).

For example, a set of recurring services for a navigation stack (such as localization, mapping, path-planning,
obstacle-avoidance, etc.) can be specified in advance independent of a concrete system and independent of
concrete implementations in software components. In addition, it can be specified that a path-planning service
typically depends on the existence of a localization service which itself depends on a mapping service, etc.

In addition, a service-wish can instantiate several service-properties which allow definition of specific
Quality-of-Service (QoS) attributes. Examples for such attributes can be found here.

Please note, that the definition of service-based reference architectures seldom defines all services of one
concrete system. Instead, a service-based reference architectures typically defines only the recurring services
for (or from) a set of systems.

http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:system_architect
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:system-service-architecture-metamodel.png
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start#exampleservice-based_composition_approach

Service Fulfillment Metamodel

The Service Fulfillment Metamodel maps the service-wishes from a system-service-architecture (see above)
with the provided-service-instances from a system-component-architecture. This mapping of service-wishes to
provided-service-instances is called service-fulfillment. This is a powerful meta-model that allows definition
of domain-specific de-facto standard architecture and thus considerably increases reuse of recurring
specifications and at the same time fosters competition on implementation level (conforming to modeled
reference architectures).

While the Service Fulfillment Metamodel directly depends on the two meta-models “System Service
Architecture” (see above) and “System Component Architecture”, the order of usage of these two models is
not strict. For instance, an existing (i.e. fully specified) system-component-architecture can be used to check
whether it conforms to a later (or independently) defined system-service-architecture. Or, a specified system-
service-architecture can be used upfront to select conforming components (from a component repository) for
a current (i.e. new) system-component-architecture under development. Of course, all the intermediate
options are also possible with partial specifications of system-service-architectures and system-component-
architectures with intermediate checking of conformance.

An interesting option for this meta-model is to use constraint solvers to automatically pre-select existing
component-definitions from a component repository according to the specified system-service-architecture.
This is a powerful mechanism that considerably improves efficiency in designing new systems.

See next:

System Component Architecture Metamodel

See also:

Service-Definition Metamodel

Acknowledgement

This document contains material from:

Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)
Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:service-architecture · Last modified: 2017/06/23 18:16
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:service-fulfillment-metamodel.png
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service

http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture

http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

System Component Architecture Metamodel
The System Component Architecture Metamodel depends on the Component-Definition Metamodel as part of
the RobMoSys Composition Structures.

The System Component Architecture Metamodel (see figure below) is the platform-independent specification
of a software system consisting of instantiated components. This means that selected component-definitions
are instantiated and initially wired (i.e. connected). Please note, that at this point individual components can
still be distributed over (i.e. deployed to) different target platforms (i.e. PCs) without affecting this model.

An instantiated component also instantiates its (internal) structures such as the definition of parameters and the
component's provided/required services. By instantiating parameters, it is possible to define system-specific
and application-related parameter values (i.e. parameter refinement) that differ from the default parameter
values in the original component-definition. It is important to notice that a component-instance cannot
instantiate any structures that have not been defined in the component-definition (base-model). Moreover, all
the required services of a component-definition also need to be instantiated within the derived component-
instance. This can be easily supported by modeling tools that can pre-generate component-instance models
(using so called proposal-providers) out of selected component-definitions. This is an important functional
constraint that allows checking that each required service also is connected to an according provided service of
another component-instance in the system. Finally, a Connection defines initial wiring between provided and
required services of different components. It is worth mentioning that this initial wiring can be dynamically
changed at run-time (if needed) using the dynamic wiring pattern.

At this point, it is also worth mentioning that at the moment a system is built from components as basic
building blocks. In future versions of this meta-model the hierarchical definition for systems-of-systems (i.e.
composite components) will be introduced. Composite components will be introduced as an extension to the

http://robmosys.eu/wiki-sn-01/modeling:metamodels:system 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:system-metamodel.png
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern

current meta-model that allows building systems out of sub-systems which again can be built out of yet other
sub-systems and so forth.

See next:

Deployment Metamodel

See also:

Component-Definition Metamodel

modeling:metamodels:system · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:system

http://robmosys.eu/wiki-sn-01/modeling:metamodels:system 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component

RobMoSys Wiki
http://www.robmosys.eu

Service-Definition Metamodel
The Service-Definition Metamodel is one of the core composition structures of RobMoSys.

A Service allows interaction (i.e. regular exchange of information) between software components. A Service
consists of service-properties (defined in an external metamodel) and a communication-pattern-usage. The
communication-pattern-usage selects a certain Communication Pattern with a pattern-specific selection of
according number of communicated data-structures (i.e.Communication Objects).

The service-definition is used as a base meta-model for component-definition and for service-architecture.
The relation between these three service-related meta-models form a service triangle (see the example of a
Service Triangle).

Views of a Service

A service can be graphically represented as a port of a component (just like in UML). However, depending on
the current role-specific view with an according level of abstraction, a service “port” can reveal additional
details that are not visible (i.e. hidden/encapsulated) for another role. The more detailed view enrolls
additional internal structures of the port and the port itself might appear as a block for that role (see figure
below). This is a useful pattern to provide different levels of abstraction, each adequate for the according
developer role (with certain responsibilities and concerns).

This pattern can be applied recursively, where the ports of the currently more detailed view can again contain
additional internal structures (not visible for the current role). For instance, a the “external” port of a service
(see orange block on the right in the figure below) provides sufficiently detailed and stable communication
semantics between interacting components (defined through a selected Communication Pattern). Second, the
“internal” port of a service provides a clear API towards implementation within a component (also defined as
part of the Communication Pattern). Third, the “bottom” port of a service provides a generic middleware
abstraction layer that allows using any general purpose communication middleware without affecting the
communication semantics (see Communication Objects).

http://robmosys.eu/wiki-sn-01/modeling:metamodels:service 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:service-definition-metamodel.png
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start#exampleservice-based_composition_approach
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject

References:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

See next:

Component-Definition Metamodel

See also:

Communication-Pattern Metamodel
Communication-Object Metamodel
Service Triangle
Service Design View

modeling:metamodels:service · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:service

http://robmosys.eu/wiki-sn-01/modeling:metamodels:service 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:principles:ports-become-blocks.png
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start#exampleservice-based_composition_approach
http://robmosys.eu/wiki-sn-01/modeling:views:service_design

RobMoSys Wiki
http://www.robmosys.eu

Cause-Effect-Chain and its Analysis Metamodels
The Cause-Effect-Chain meta-model and the according Analysis Metamodel are two parts of the overall
RobMoSys Composition Structures. See also Architectural Pattern for Stepwise Management of Extra-
Functional Properties.

The main concern in these meta-models is to specify application-specific (often non-functional) system
properties. This is considered as an important aspect in RobMoSys, which is however sparsely addressed in
robotics research. One of the core publications that addresses this issue for a narrowed problem domain,
namely for designing causal dependencies and overall end-to-end delays in a system, can be found here:

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA,
USA, Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

This publication also provides an initial version of a meta-model that is used as first version in RobMoSys for
addressing the overall problem domain.

An open-source reference implementation of according model-driven tooling (see above figure) is publicly
available within the sourceforge git repository [https://sourceforge.net/p/smart-robotics/smartmdsd-
v3/ci/master/tree/]. Further information thereto can be found here [http://www.servicerobotik-ulm.de/drupal/?
q=node/83].

Later versions of the initial meta-model will be extended throughout the run-time of the RobMoSys project to
address a broader problem domain.

http://robmosys.eu/wiki-sn-01/modeling:metamodels:performance 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:stepwise_management_nfp
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
http://www.servicerobotik-ulm.de/drupal/?q=node/83

Acknowledgement

This document contains material from:

Stampfer2017 Dennis Stampfer, “Contributions to Composability using a System Design Process
driven by Service Definitions for Service Robotics,” 2017. (unpublished work)
Lotz2017 Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System,” 2017. (unpublished work)
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:performance · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:performance

http://robmosys.eu/wiki-sn-01/modeling:metamodels:performance 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Communication-Pattern Metamodel
Communication Patterns specify the communication semantics for the definition of Services.

The metamodel of the RobMoSys communication patterns is fully conformed by the SmartSoft
communication patterns
Thus, at this moment, the semantics of the RobMoSys communication patterns is specified by the
according SmartSoft documents (see details below)
Therefore, the SmartMDSD Toolchain already now allows to use RobMoSys compliant
communication patterns and also is an example of how to realize their metamodel with Ecore
See also Conformance of SmartSoft to RobMoSys composition structures

Component Communication Patterns

The four communication patterns (see table below) define the basic set of recurring communication semantics
that proved to be sufficient for all robotics use-cases for inter-component communication.

Pattern Name Interaction Model Description

Send Client/Server One way communication

Query Client/Server Two way request/response

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start#conformance_to_robmosys_composition_structures
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:communication-pattern-metamodel.png

Push Publisher/Subscriber 1-n distribution
Event Publisher/Subscriber 1-n asynchronous condition notification
Pattern Name Interaction Model Description

The figure below provides a schematic overview of the communication semantics.

The following list of core references provides detailed descriptions of communication patterns:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

Coordination and Configuration Patterns

The four coordination and configuration patterns (see table below) provide recurring semantics that proved to
be sufficient for robotics use-cases related to behavior coordination (which requires run-time coordination and
configuration of several components in a system from the skill and task level). Therefore, each component in
a system should by default implement the slave part of each of the four patterns. In addition, there is typically
one specific component per system that implements the master part of the patterns and that is responsible to
centrally coordinate the robot behavior (see Robot Behavior Coordination [http://www.servicerobotik-
ulm.de/drupal/?q=node/86] for further details). The SmartTCL [http://www.servicerobotik-ulm.de/drupal/?
q=node/84] language conforms to the RobMoSys composition structures and can be used already now for
Robot Behavior Coordination [http://www.servicerobotik-ulm.de/drupal/?q=node/86].

Pattern Name Interaction Model Description

Parameter Master/Slave Run-time configuration

State Master/Slave Lifecycle management and mode (de-)activation

Dynamic Wiring Master/Slave Run-time connection re-wiring

Monitoring Master/Slave Run-time monitoring and introspection
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:patternsemmantics.png
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/86

Pattern Name Interaction Model Description
Parameter

The Parameter pattern allows run-time configuration of components. The following links provide further
details:

Parameter Definition [http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s03.html]
Parameter Usage in a Component [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameters]

State

The state management of a component is one of the central patterns for run-time
coordination of components. On the one hand, state management is about the
generic lifecycle state-automaton (see figure on the right) that each component
implements by default and that allows coordinated handling of the component's
start-up and shutdown procedures as well as the component's fatal-error mode. In
addition, component's individual run-time modes can be specified as explained in
the following reference:

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State
Management of a Component”, in Technical Report 2011/01, Hochschule
Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

Dynamic Wiring

Dynamic Wiring is used to increase run-time robustness and flexibility by dynamically changing the wiring
between components. Additional details can be found here:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

Monitoring

Run-time Monitoring and Introspection of components is an important aspect in robotics that requires
dedicated interaction mechanisms. The following reference provides details of a concrete realization:

Alex Lotz, Andreas Steck, and Christian Schlegel. “Runtime Monitoring of Robotics Software
Components: Increasing Robustness of Service Robotic Systems”, in International Conference on
Advanced Robotics (ICAR '11), Tallinn, Estonia, June 2011. IEEE-Link
[http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736]

See next:

Service-Definition Metamodel

See also:

SmartSoft Baseline
Communication Pattern View
Component Metamodel

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern 2017-06-26

http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s03.html
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameters
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:lifecycle.png
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start
http://robmosys.eu/wiki-sn-01/modeling:views:communication_pattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component

modeling:metamodels:commpattern · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Component-Definition Metamodel
A Component-Definition Metamodel is one of the core composition structures of RobMoSys.

The Component Metamodel (shown in the figure below) combines two complementary concerns namely
structure and interaction. Individual blocks define the main entities of a component (including the
component root element itself, highlighted with the yellow background color). For specifying structure, the
blocks are connected using either the contains or the has-a relation (as defined in block-port-connector). For
specifying interaction, the blocks are additionally connected using dedicated ports, connectors and
connections (as also defined in block-port-connector). Moreover, two blocks (highlighted with the gray
background color and dashed border-line) represent model elements that are defined in a separate metamodel
(described in the next pages).

A component contains one Parameter structure, one Lifecycle state automaton and has-a Behavior
Interface. The Parameter structure can be a Metamodel (or a DSL) by itself and the Behavior Interface
allows run-time coordination and configuration from a higher robotics behavior coordination layer (see

JOSER20161) for further details on both elements). The Lifecycle state automaton coordinates the different
operational modes of a component. Some generic modes are for example Init, Shutdown and Fatal-Error (see

TR20112) for more details).

http://robmosys.eu/wiki-sn-01/modeling:metamodels:component 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:componentmetamodel.png

The next core element of a Component is the Activity which is an abstract representation of a thread. A
Component can define several Activities (depending on the component-internal functional needs). An Activity
is independent of a certain thread realization and can be later mapped to a certain implementation by the
selection of an according target platform. Moreover, an Activity provides a wrapper for the Functions. This
is important for gaining control over execution characteristics of a component. This also considerably
increases the flexibility (i.e. adjustability) of the component with respect to adapting the component to the
different needs of various (at this point even unforeseen) systems.

A Function represents a functional block that can be designed using any preferred engineering methodology.
From the component's internal point of view, a Function needs to be integrated into an Activity in order not
to prematurely define any computational models that are not really relevant from the local functional point of
view but might considerably restrict the compositionality of this component in different systems (see

SIMPAR20163) for an example). In some cases, a Function might need to interact with specific hardware
devices (such as e.g. sensors or actuators).

The last element of a Component is a Service. A Component can have several required and/or provided
Services. A Service is the only allowed interaction point of a component to interact with other (not yet
known) components. The definition of a service is described in a separate metamodel. Moreover, a Function
interacts with the component's services over the surrounding Activity only. Again, this is important to gain
control over execution characteristics as argued above.

See next:

System Service Architecture Metamodel
System Component Architecture Metamodel

See also:

Service-Definition Metamodel
Communication-Pattern Metamodel
Component Development View

References

1)

Dennis Stampfer, Alex Lotz, Matthias Lutz, Christian Schlegel. “The SmartMDSD Toolchain: An Integrated
MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”. In Journal of
Software Engineering for Robotics (JOSER 2016), Online [https://joser.unibg.it/index.php?
journal=joser&page=article&op=view&path%5B%5D=91]
2)

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State Management of a Component”, in
Technical Report 2011/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]
3)

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-Driven
Development with a Model-Based Performance Analysis”. In IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR 2016). San Francisco, CA, USA, 2016. DOI
[https://doi.org/10.1109/SIMPAR.2016.7862392]

modeling:metamodels:component · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:component

http://robmosys.eu/wiki-sn-01/modeling:metamodels:component 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service-architecture
http://robmosys.eu/wiki-sn-01/modeling:metamodels:system
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:views:component_development
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=91
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://doi.org/10.1109/SIMPAR.2016.7862392

RobMoSys Wiki
http://www.robmosys.eu

Platform Metamodel
The Platform Metamodel (see figure below) is one part of the overall RobMoSys Composition Structures. It
defines the target platforms on the robot where the software components are later deployed to. Please note
that the current version of the Platform Metamodel is reduced to the most basic elements that are sufficient
for deploying and executing software components. However, further versions of this metamodel might be
extended to reveal additional details.

The two core elements of the platform meta-model are the targets and the network-connections. A target is
basically a PC on the robot. Each target (i.e. a PC) has several CPUs and can have several network-interfaces.
In addition, a target can use a specific communication-middleware (optionally with a middleware-specific
naming-service). A network-connections links two network-interfaces and requires (as a constraint) that both
connected targets use the same communication-interface (otherwise the components from the two targets
would not be able to communicate).

See also:

Deployment Metamodel

modeling:metamodels:platform · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:platform

http://robmosys.eu/wiki-sn-01/modeling:metamodels:platform 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:platform-metamodel.png
http://robmosys.eu/wiki-sn-01/modeling:metamodels:deployment

RobMoSys Wiki
http://www.robmosys.eu

Communication-Object Metamodel
Communication Objects define data structures that are communicated through services between components.
The definition of communication objects requires primitive data types such as Int, Double, String, etc. and
complex data types (i.e. composed data types). The figure below shows a simple metamodel of
communication objects. A fully fledged communication objects modeling language that conforms to this
metamodel is the SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s02s02.html].

Typically, communication middlewares such as e.g. CORBA or DDS provide an Interface Definition
Language (IDL) that allows specification of communication structures. RobMoSys requires a middleware-
independent language. The SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s02s02.html] provides a fully fledged Xtext-based language that is compliant to the
metamodel in the figure above and that can be used already now for the definition of services.

At some point the communication object needs to be serialized (i.e. marshalled) into a middleware-specific
representation. The following references provide details for how this can be achieved for a CORBA-based and
a message-based middlewares:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]
Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”.
In Journal of Software Engineering for Robotics, Special Issue on Domain-Specific Languages and
Models for Robotic Systems, Vol 7, No 1 (2016). PDF [https://joser.unibg.it/index.php?
journal=joser&page=article&op=view&path%5B%5D=91]

See next:

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
http://robmosys.eu/wiki-sn-01/_media/modeling:metamodels:comm-object-metamodel.png
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=91

Communication-Pattern Metamodel
Service-Definition Metamodel

modeling:metamodels:commobject · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:metamodels:commobject

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject 2017-06-26

http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Views
Roles in the Ecosystem come with specific views. The benefit of a view to a role is to present only what is
relevant for the role's responsibility, thereby hiding the complexity that is not relevant for that role, but is still
relevant for the whole system in the end. The system in the end consists of many concrete models based on
the RobMoSys Composition Structures. These elements are contributed by roles that work through views and
interact such that the contributed elements are composable to form a system. As a result, the individual role
can focus on its responsibility and expertise alone, while working decoupled from other roles. This is enabled
by the RobMoSys Composition Structures.

Each role that participates in the ecosystem uses a dedicated view to focus on its responsibility and
expertise.

The concept of “views” groups basic primitives of the RobMoSys composition strucures. A view is related to
a role and establishes the link between primitives in the RobMoSys composition strucures and the RobMoSys
roles.

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A view
is not only in the sense of a perspective where one only sees a part of the system but does not see the rest,
even if it is there. Instead, a view shows an excerpt of the whole system that can be viewed independently of
the other parts. These other parts might even not exist at the time of having the view on the system, because it
is composed to other parts to form the complete system later.

http://robmosys.eu/wiki-sn-01/modeling:views:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
http://robmosys.eu/wiki-sn-01/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

Example: Consider a closed book. The view of a front cover is a certain perspective on the book. Even
though only the front cover is visible, the whole book is lying there. The book also consists of its pages and
the back cover which are not visible, even if they are there. It, however, makes perfect sense to only look at
the back cover of a book, its content pages or even the individual chapters separately (an excerpt of the book)
as both the front page and the back page can be designed differently (separation of roles) and then be put
together.

List of Views

(alphabetical order)

Communication Pattern View
Component Development View
Execution Container View
Service Design View

System Configuration View
Performance View
Deployment View
Service Architecture View
Service Fulfillment View
…

Links Between Views: Example 1

The figure below illustrates the link between several views. The Modeling Twin is handed over between one
view to the next. There is no strict order in the sense of a strictly order value chain. Instead, the interactions
form a network of collaborating roles consisting of various bilateral interactions between suppliers and
consumers.

http://robmosys.eu/wiki-sn-01/modeling:views:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/modeling:views:views.png?id=modeling%3Aviews%3Astart
http://robmosys.eu/wiki-sn-01/modeling:views:communication_pattern
http://robmosys.eu/wiki-sn-01/modeling:views:component_development
http://robmosys.eu/wiki-sn-01/modeling:views:execution_container
http://robmosys.eu/wiki-sn-01/modeling:views:service_design
http://robmosys.eu/wiki-sn-01/modeling:principles:modeling-twin

Links Between Views: Example 2

The figure below illustrates an example where two views are connected by a third view. The service
architecture can serve as a blueprint for system configuration.

http://robmosys.eu/wiki-sn-01/modeling:views:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/modeling:views:views-many-connected-views-example.png?id=modeling%3Aviews%3Astart

See also

Views in the RobMoSys Glossary
Views in RobMoSys Composition Structures
Views in the PC domain analogy
Roles in the Ecosystem

modeling:views:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:views:start

http://robmosys.eu/wiki-sn-01/modeling:views:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_detail/modeling:views:views-link-between-service-architecture-and-sysconfig.png?id=modeling%3Aviews%3Astart
http://robmosys.eu/wiki-sn-01/glossary
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/general_principles:pc_analogy:start
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Component Development View
The component developer view clusters elements of the Component Metamodel that are relevant to the
Component Supplier.

The component development view (shown in the figure below) needs to be rich enough and provide sufficient
structures such that this model can serve as a consistent baseline for all the successive development steps (such
as e.g. system composition/configuration) that rely on proper component models. At the same time, the
component development view should avoid definition of too many low level details that are more related to
internal knowledge that is not required for supporting composition with respect to the surrounding models. In
this way, the component development view always is a trade-off between providing enough structures where
needed and leaving enough design freedom for the internal realization.

The only interaction point of a component with other components is through services. Therefore, a
component can specify several provided and/or required services. A special kind of service is the behavior-
interface which is used by the behavior coordination layer to coordinate this component at run-time (i.e. to set
propper configurations, to activate/deactivate certain component modes, etc.). Therefore, the behavior-
interface interacts with the component's internal parameter structure and the component's lifecycle state
automaton which also defines the component-specific run-time modes.

The component's services interact within a component with Activities and the component's Lifecycle. The
component's Lifecycle affects the lifelines of services and the activation/deactivation of Activities.

Regarding a component's Services, as long as the component is initializing (during start-up) or as long as a
component is in a fatal-error mode, then the provided services might be physically available but not ready to
properly offer a service (i.e. not able to answer query requests).

The next component-internal structural element is an Activity, which is an abstract representation of a task (or
http://robmosys.eu/wiki-sn-01/modeling:views:component_development 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki-sn-01/_detail/modeling:views:component-development-view.png?id=modeling%3Aviews%3Acomponent_development

more precisely of a thread). An activity wraps a functional block which by itself is passive and only gets
active by the execution environment of its parent Activity. This is an effective decoupling of the design and
implementation of functional parts within a component and the execution of the functions. This even allows
configuration of the execution characteristics for individual functions even after the component has been fully
implemented and shipped to e.g. a system builder and without affecting the component's internal
implementation.

As mentioned above, it is important that a structural model provides enough details that are required to
communicate the structural knowledge of a component to other developer roles as well as to provide a sound
foundation for the later development steps. In this respect, it is equally important to mention which parts have
been omitted on purpose in order not to intermix the responsibilities and concerns that become relevant in
later development steps. The most important parts that have been omitted on purpose are: (1) the mapping of
services to a particular communication middleware (which is the responsibility of another developer role) (2)
the mapping of Activities to a particular execution container such as Windows/Linux threads, or QNX/RTAI
real-time threads (again a responsibility of another developer role) and (3) the definition of the services by
themselves (which might be the responsibility of domain experts).

modeling:views:component_development · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:views:component_development

http://robmosys.eu/wiki-sn-01/modeling:views:component_development 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start

RobMoSys Wiki
http://www.robmosys.eu

Communication Pattern View
The communication pattern view clusters elements of the communication pattern metamodel that defines a
fixed and stable set of recurring communication semantics.

This set of recurring communication semantics is defined for the robotics domain independent of an
underlying communication middleware which can be flexibly selected in another development phase.

It is important to have a fixed set of a few (e.g. around four) communication patterns that efficiently support
composition through unambiguous communication semantics and clearly defined communication interfaces.
In addition, the mapping to different communication middlewares becomes possible over a generic
middleware abstraction layer that is part of each communication pattern.

See also:

communication pattern metamodel

modeling:views:communication_pattern · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:views:communication_pattern

http://robmosys.eu/wiki-sn-01/modeling:views:communication_pattern 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/_detail/modeling:views:communication-pattern-view-robmosys.png?id=modeling%3Aviews%3Acommunication_pattern
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern

RobMoSys Wiki
http://www.robmosys.eu

Execution Container View
The Execution Container View shows the mapping from platform independent models (such as components
and services) into concrete platforms (i.e. Operating Systems and Communication Middlewares).

A component (see Component Metamodel) is at first independent of an actual execution environment. The
actual mapping towards a communication middleware and an operating system (OS) is done in a later
development step (such as e.g. the deployment step). For example, during the deployment phase of
component to a specific platform, an accordingly used operating system and communication middleware
become known which can then be mapped to the so far independent component.

At this point an Activity becomes a certain implementation of a thread (such as e.g. a Windows thread or an
RTAI real-time thread). Also, the actual marshaling (i.e. the serialization technique for the communicated
data structures) and the used communication environment are selected. This should not affect the possible
functional constraints of a component and different communication middlewares should be usable (as long as
there are no specific constraints such as e.g. a specific real-time requirements for communication, which then

http://robmosys.eu/wiki-sn-01/modeling:views:execution_container 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:component
http://robmosys.eu/wiki-sn-01/_detail/modeling:views:executioncontainerstructureview.png?id=modeling%3Aviews%3Aexecution_container

should be complied with).

modeling:views:execution_container · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:views:execution_container

http://robmosys.eu/wiki-sn-01/modeling:views:execution_container 2017-06-26

RobMoSys Wiki
http://www.robmosys.eu

Service Design View
The service design view clusters elements of the Service Metamodel that are relevant to the Service Designer.

A service definition (shown on the left in the figure) comprises of a selection of a communication pattern and
a selection of a communication object. A communication object is a data structure that is communicated
between a service provider and a service requestor. The exact direction of communication is defined by the
communication pattern (see also Communication Pattern View). The communicated data structure is
independent of the underlying communication middleware that is linked in another development phase as
explained in the preceding section above.

modeling:views:service_design · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/modeling:views:service_design

http://robmosys.eu/wiki-sn-01/modeling:views:service_design 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:metamodels:service
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:roles:service_designer
http://robmosys.eu/wiki-sn-01/_detail/modeling:views:service-design-view.png?id=modeling%3Aviews%3Aservice_design
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern
http://robmosys.eu/wiki-sn-01/modeling:views:communication_pattern

RobMoSys Wiki
http://www.robmosys.eu

Tier 2: Examples of Domain Models
RobMoSys allows the definition of domain-specific models and
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

Flexible Navigation Stack
Active Object Recognition
Motion Stack
Perception Stack
etc.

domain_models:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/domain_models:start

http://robmosys.eu/wiki-sn-01/domain_models:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_media/system-examples:intralogistic.jpg
http://robmosys.eu/wiki-sn-01/general_principles:ecosystem:start
http://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start
http://robmosys.eu/wiki-sn-01/domain_models:active-object-recognition:start
http://robmosys.eu/wiki-sn-01/domain_models:motion-stack:start
http://robmosys.eu/wiki-sn-01/domain_models:perception-stack:start

RobMoSys Wiki
http://www.robmosys.eu

Flexible Navigation Stack
The flexible navigation stack is a set of components specifically related to provide a flexibly applicable
navigation capability for a service robot. This navigation stack can be used on various robot platforms with
different kinds of sensors and is able to deal with unstructured and dynamic environments of variable scale.
The focus hereafter is to emphasize the general design choices and architectural decisions of the navigation
stack components. After that, the following section provides some technical details and references for the
concrete open-source components that can be used already now, e.g. with the Robotino3 platform.

The figure on the right illustrates the three main levels
of the navigation stack. These levels describe the
shared responsibilities between different parts of the
navigation stack. These responsibilities are assigned
top down according to the subsidiarity principle (as
explained next).

The bottom level defines components (a full list is
provided further below) related to the fast and reactive
obstacle-avoidance navigation loop. This loop ensures
that regardless of where the robot has to move next,
this movement will not cause a collisions and the robot
will not be commanded to execute a physically invalid
movement considering the robot's kinematic and
dynamic constraints. Therefore this loop will only
command navigation values that never lead to a
collision even if these commands might not directly
lead towards the next goal (e.g. because of the need to
avoid a suddenly appeared obstacle in between). In
consequence this loop might lead to a globally non-
optimal, yet collision-free, navigation.

On the middle level, a geometric path planner
calculates intermediate way-points based on a grid-map of the current environment. The planner relies on this
map, which is updated during the navigation to accommodate for changes in the environment. Localization
components need to estimate the current position of the robot within that maps. Several existing path-planning
algorithms (using A* for example) allow the generation of intermediate way-points to be individually
approached by the lower obstacle-avoidance level. In contrast to the lower obstacle-avoidance level, this
intermediate geometric path planing level has a global view on the mapped environment. This is useful to e.g.
avoid local minima (by generating intermediate way-points around them). It is worth mentioning that this
intermediate level does typically not generate full trajectories (to be exactly executed by the lower level), but
spares intermediate way-points. Sparse line of sight intermediate way points as a result from geometric path
planning enables a clear separation of concerns between the two lower levels and avoids several disadvantages
with respect to wasting resources (due to e.g. too frequent need for path re-planning) continuous velocity
changes and too tight (i.e. inflexible and hardly exchangeable) coupling with the lower level.

In some cases, even the intermediate level is not sufficient. For instance, if a robot needs to navigate in an
entire building consisting of several floors, maybe connected over elevators, then building a single huge grid
map becomes complicated, too inefficient and too resource consuming. In these cases, it is rather reasonable

http://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_media/domain_models:navigation-stack:navigation-stack.png

to calculate several smaller grid-maps (e.g. one for each level or room in the building) and to concatenate
these grid-maps in a topological map (which is typically a graph). The responsibility of this top level is to
provide a logical plan how to navigate through the separated maps, e.g. through levels or rooms of a building.

The separation of the navigation components into these three levels has several advantages. The levels can be
composed to individual navigation solutions best fitting the needs of the application or the current
environment a robot is navigating in. According to these needs the size of the stack can be changed, with the
bottom level being the most versatile and configurable one. For instance, some scenarios might require to
manually command a robot using a joystick. In that case, both upper levels would be replaced by a simple
joystick driver component, while the collision avoidance level still validates the navigation commands. In
other scenarios, a robot might always navigate in a single map only. For that the geometrical path-planner on
the middle level (without the topological path planner on top) is fully sufficient. Of course, there are also
scenarios where all three levels are needed. Even in these latter cases, components on the individual levels can
be flexibly exchanged (even at run-time, while moving) by alternatives because of a clear separation of
responsibilities on each level and due to the clear interfaces between the levels.

The SmartSoft navigation components and the Robotino3 robot
platform

The SmartSoft environment provides a set of flexible navigation components for all thee levels (as explained
above). These components are ready for immediate use and can be downloaded from the SmartSoft
Sourceforge repository [https://sourceforge.net/p/smartsoft-ace/code/HEAD/tree/trunk/src/components/]. The
following list of references provide documentation for the three core navigation components:

SmartCdlServer [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__SmartCdlServerGroup.html]: this is the main
obstacle-avoidance component that uses the Curvature Distance Lookup (CDL)

[http://ieeexplore.ieee.org/document/724683/]1) approach in its core
SmartPlannerBreadthFirstSearch [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__SmartPlannerBreadthFirstSearchGroup.html]: this
is geometrical path-planning component using a breadth-first-search algorithm
SmartMapperGridMap [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__SmartMapperGridMapGroup.html]: this
component calculates up to date occupancy grid maps

The SmartCdlServer [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__SmartCdlServerGroup.html] component (see figure
below) deserves some further explanations. In a nutshell, this component receives laser-scans and next goals
(which can be either a position, velocity, orientation or even undefined). Based on these inputs, the internal
CDL algorithm calculates a set of collision-free navigation-commands. Each of these navigation-commands is
equally valid, the selection of one “appropriate” one is performed upon a configurable navigation-strategy.
For example, one strategy might try to maximize the overall velocity, another might try to stay in the middle
of a hallway, yet another strategy might try reaching the next goal closest possible (often the default strategy).
This separation between the general obstacle-avoidance and the definition of different strategies adds
flexibility with respect to applicability of this component in different scenarios.

http://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start 2017-06-26

https://sourceforge.net/p/smartsoft-ace/code/HEAD/tree/trunk/src/components/
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__SmartCdlServerGroup.html
http://ieeexplore.ieee.org/document/724683/
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__SmartPlannerBreadthFirstSearchGroup.html
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__SmartMapperGridMapGroup.html
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__SmartCdlServerGroup.html

There is a list of further components related to different sensor types and robot platforms whose generated
documentation can be found here [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html].

A packaged set of several components for immediate use, including those from the navigation stack with the
Robotino3 platform can be downloaded from here [http://wiki.openrobotino.org/index.php?title=Smartsoft].

Another application that uses this navigation stack in a structured and coordinated fleet environment using e.g.

Robotino3 robots is described in the ETFA2016 paper [http://ieeexplore.ieee.org/document/7733602/]2).

Moreover, as one of the further baselines in RobMoSys, the SmartSoft navigation components can be used
with the PAL Robotics Tiago platform within the Gazebo simulation.

1)

Christian Schlegel. “Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile
robot”. In IEEE International Conference on Intelligent Robots and Systems (IROS). Victoria, Canada, 1998.
DOI: 10.1109/IROS.1998.724683 [https://doi.org/10.1109/IROS.1998.724683].
2)

Matthias Lutz, Christian Verbeek and Christian Schlegel. “Towards a Robot Fleet for Intra-Logistic Tasks:
Combining Free Robot Navigation with Multi-Robot Coordination at Bottlenecks”. In Proc. of the 21th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, September 6-
9, 2016. Electronic ISBN: 978-1-5090-1314-2, DOI: 10.1109/ETFA.2016.7733602
[https://doi.org/10.1109/ETFA.2016.7733602]

domain_models:navigation-stack:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start

http://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/domain_models:navigation-stack:cdl-component.png
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://ieeexplore.ieee.org/document/7733602/
http://robmosys.eu/wiki-sn-01/baseline:scenarios:tiago_smartsoft
https://doi.org/10.1109/IROS.1998.724683
https://doi.org/10.1109/ETFA.2016.7733602

RobMoSys Wiki
http://www.robmosys.eu

Tools and Software Baseline

RobMoSys provides a set of tools and a software baseline that
already conform to the RobMoSys approach. This set can serve
as a starting-point for implementations or demonstrations.

Tooling Baseline

Roadmap of Tools and Software
Development Environments and Tools

SmartSoft World
Papyrus for Robotics
to be extended

Tier 3: Existing Building Blocks and Scenarios

Components
SmartSoft Components

Scenarios and Systems
Gazebo/Tiago/SmartSoft Scenario

baseline:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:start

http://robmosys.eu/wiki-sn-01/baseline:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
http://robmosys.eu/wiki-sn-01/baseline:roadmap
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics
http://robmosys.eu/wiki-sn-01/baseline:components:smartsoft
http://robmosys.eu/wiki-sn-01/baseline:scenarios:tiago_smartsoft

RobMoSys Wiki
http://www.robmosys.eu

Roadmap of Tools and Software
The RobMoSys project makes a software baseline available to early work with concepts of RobMoSys
composition structures. This includes already existing metamodels and tooling, for example from the The
SmartSoft World and Papyrus4Robotics World.

See also

Roadmap of MetaModeling
Conformance of SmartSoft to RobMoSys composition structures

baseline:roadmap · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:roadmap

http://robmosys.eu/wiki-sn-01/baseline:roadmap 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics
http://robmosys.eu/wiki-sn-01/_detail/modeling:roadmap.png?id=baseline%3Aroadmap
http://robmosys.eu/wiki-sn-01/modeling:roadmap
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start

RobMoSys Wiki
http://www.robmosys.eu

The SmartSoft World
SmartSoft is an umbrella term for concepts and tools to build robotics systems. The
SmartSoft approach [http://www.servicerobotik-ulm.de/drupal/?q=node/19] defines a
systematic component-based robotics software development methodology and according
model-driven tools [http://www.servicerobotik-ulm.de/drupal/?q=node/20] that support
different developer roles in a collaborative design and development of robotic software
systems. The SmartSoft World includes (a non-complete list):

The SmartMDSD Toolchain: an Integrated Development Environment (IDE) for
robotics software development using model-driven software development.
The SmartMARS Meta-Model: It defines the structures behind the service-
oriented and component-based approach.
The SmartSoft Framework and implementation: two exchangeable reference implementations
(current: ACE middleware, former: CORBA middleware) and execution containers for several
platforms and operating systems.
A repository with open source software components for immediate reuse to compose new
applications (sensor access, skills, task sequencing, knowledge representation, etc.). They have been
built with the SmartSoft technologies and tools.

There are two main technology clusters in SmartSoft that adhere to the RobMoSys structures. One is the
SmartSoft robotics framework that provides a C++ library for programming robotics software components
independent of the underlying communication middleware. The other technology is the SmartMDSD
Toolchain that directly implements the RobMoSys metamodels and conforms to the RobMoSys structures. It
serves as a baseline for model-driven tooling.

SmartSoft is officially supported by FESTO Robotino [http://www.festo-didactic.com/int-en/learning-
systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-
edition.htm] (see also Robotino Wiki [http://wiki.openrobotino.org/index.php?title=Smartsoft]).

SmartMDSD Toolchain and the SmartSoft Framework

The SmartMDSD Toolchain has been introduced in 2009 and has been continuously refined and extended in
various public releases and three generations since then. The figure below shows the main generations of the
SmartMDSD Toolchain and the SmartSoft robotics framework.

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/lib/exe/fetch.php?tok=1dc3ed&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2FPoweredBySmartSoft-single_small.png
http://www.servicerobotik-ulm.de/drupal/?q=node/19
http://www.servicerobotik-ulm.de/drupal/?q=node/20
http://robmosys.eu/wiki-sn-01/baseline:components:smartsoft
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-edition.htm
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://robmosys.eu/wiki-sn-01/_detail/baseline:environment_tools:smartsoft:toolchainhistory.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Astart

Productive Releases

The 3rd generation of the SmartMDSD Toolchain (version 2.x) and the SmartSoft framework (version 2.x)
are the current productive versions that – among others – are used by FESTO Robotino.

See also:

Installation instructions [http://www.servicerobotik-ulm.de/drupal/?q=node/22]
User Manual [http://www.servicerobotik-ulm.de/toolchain-manual/html/]
Video Tutorials [https://www.youtube.com/playlist?list=PLJxdA4EZjZiWSlC4R_ChwH_UIcWXWJ8Te]

Next-Generation Technology Preview

A novel 4th generation for the SmartMDSD Toolchain (version 3.x) and the SmartSoft framework (version
3.x) are currently under development with a strong focus on specifically conforming to the RobMoSys
structures. Both technologies are scheduled to be released and productively used by the end of 2017.

See also:

Introduction to the Technology Preview/Toolchain version 3.x and SmartSoft Framework
[http://www.servicerobotik-ulm.de/drupal/?q=node/83]
Screencast [https://www.youtube.com/watch?v=JIYPJXmop3U]

Eclipse Modeling Tools

The SmartMDSD Toolchain has been using various Eclipse Modeling technologies. It started in 2009 with the
Itemis Open-Architecture Ware (OAW), then between 2013 and 2016 used Xtext, Xtend and UML Papyrus
and is currently moving towards using the latest Eclipse Modeling technologies based on latest Xtext, Xtend
and Sirius plugins. The figure below provides a schematic overview of the Eclipse technologies used for
version 2.x and the transformation with the recent Eclipse technologies for version 3.x.

Overall, the SmartMDSD Toolchain provides various textual and graphical model editors as well as code
generators to generate glue-logic for the SmartSoft framework and to generate configuration files.

Conformance to RobMoSys Composition Structures

The SmartSoft software baseline is continuously evolving to match the latest developments in robotics
software engineering methods. While many current SmartSoft structures already now fully conform to the
RobMoSys definitions, there are some necessary refinements that are summarized below.

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start 2017-06-26

http://www.servicerobotik-ulm.de/drupal/?q=node/22
http://www.servicerobotik-ulm.de/toolchain-manual/html/
https://www.youtube.com/playlist?list=PLJxdA4EZjZiWSlC4R_ChwH_UIcWXWJ8Te
http://www.servicerobotik-ulm.de/drupal/?q=node/83
https://www.youtube.com/watch?v=JIYPJXmop3U
http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:smartsoft:modelingtools.png

Further differences between the current SmartMARS Metamodel and the RobMoSys composition structures
will be described in the same way here.

Licenses: SmartSoft is open source

All SmartSoft framework versions are licensed under the LGPL v3 license. The SmartMDSD Toolchain v2.x
uses the LGPL v2.1 license. The SmartMDSD Toolchain v3.x uses a plugin-based mix of licenses as depicted
below. The SmartSoft components come in GPL/LGPL (see individual component).

Plugin Name Author License

org.ecore.component HSU (Alex Lotz) LGPL

org.ecore.system HSU (Alex Lotz) LGPL

org.ecore.deployment HSU (Alex Lotz) LGPL

org.xtext.commObj HSU (Alex Lotz) LGPL

org.xtext.component HSU (Alex Lotz) LGPL

org.xtext.system HSU (Alex Lotz) LGPL

org.xtext.deployment HSU (Alex Lotz) LGPL

org.xtext.param.[definition/compusage/sysusage] HSU (Alex Lotz) LGPL

org.sirius.component.design HSU (Alex Lotz) LGPL

org.sirius.system.design HSU (Alex Lotz) LGPL

org.sirius.deployment.design HSU (Alex Lotz) LGPL

org.sirius.tools HSU (Alex Lotz) LGPL

org.project.creation.wizards HSU (Alex Lotz) LGPL

org.robotics.update.site HSU (Alex Lotz) LGPL

org.xtend.smartsoft.generator HSU (Alex Lotz) LGPL

org.ecore.performExtension HSU (Alex Lotz) BSD

org.ecore.performance HSU (Alex Lotz) BSD

org.xtext.performance HSU (Alex Lotz) BSD

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:smartsoft:communication-pattern-view-smartsoft.png

org.sirius.performance.design HSU (Alex Lotz) BSD

org.ecore.[symtaBase/symtaConfig] HSU (Alex Lotz) + Bosch (Vincent Kessel) BSD

org.xtext.[symtaBase/symtaConfig] HSU (Alex Lotz) + Bosch (Vincent Kessel) BSD

org.xtend.symta.generator HSU (Alex Lotz) + Bosch (Vincent Kessel) BSD

action.symtaProject.Run HSU (Alex Lotz) + Bosch (Vincent Kessel) BSD

Plugin Name Author License

Separation of Levels and Concerns in SmartSoft

SmartSoft provides implementations for the individual levels listed in Separation of Levels and Separation of
Concerns:

Level Available/Accessible in the SmartSoft World

Mission SmartTCL HL Interface

Task Plot SmartTCL Task Block

Skill SmartTCL Skill Block

Service Service Definitions:
- Communication Object (data structure)
- Communication Patterns (comm. semantics)
SmartSoft Components

Function C++ Library (libOpenRave)

Execution Container SmartTask

OS/Middleware ACE, CORBA, DDS, Linux, Windows, iOS

Hardware UR5, Sick, ARM, x86, Robotino, Segway, MARS

Robotics Behavior in SmartSoft

SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] (and the concept of Dynamic State Charts
[http://www.servicerobotik-ulm.de/drupal/?q=node/87]) are realizations of the Architectural Pattern for Task-
Plot Coordination (Robotic Behaviors)

SmartSoft Terminology

To be extended

Communication Object

A self-contained entity to hold and access information that is being exchanged via services between
components in SmartSoft.
Communication objects are ordinary C++-like objects that define the data structure and implement
middleware-specific access methods and optional user access methods (getter and setter) for convenient
access.
See also the RobMoSys definition for Communication Objects

Communication Pattern

Communication Patterns are a set of few but sufficient characteristics for the exchange of information over
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:separation_of_levels_and_separation_of_concerns
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:robotic_behavior
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commobject
http://robmosys.eu/wiki-sn-01/modeling:metamodels:commpattern

services for component interaction in SmartSoft. Communication patterns are fix set of software patterns
defining recurring communication solutions for robotics software components. SmartSoft provides
communication patterns for the sake of composability, for example send, two-way request-response, and
publish/subscribe mechanisms on a timely or availability basis. SmartSoft communication patterns are an
implementation of the Architectural Pattern for Communication

Framework

Abstracts away platform-specific details such as independence of a particular operating-system (OS) and
communication middleware by providing a unified and platform independent API.

Quality of Service

Quality of Service (QoS) defines the ability of a system to meet application-specific customer needs and
expectations while remaining economically competitive. (see Wikipedia service-quality)

Further Resources

All about the SmartSoft World can be found at http://www.servicerobotik-ulm.de [http://www.servicerobotik-
ulm.de]. Selected links:

Getting started with SmartSoft [http://www.servicerobotik-ulm.de/drupal/?q=node/7] provides an
overview and starting point
Use SmartSoft and Gazebo to run the PAL robotics Tiago [http://www.servicerobotik-ulm.de/drupal/?
q=node/91] in simulation

Selected Publications

Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software.”
In: Journal of Software Engineering for Robotics (JOSER): Special Issue on Domain-Specific
Languages and Models in Robotics (DSLRob) 7.1 (2016). ISSN 2035-3928, pp. 3–19. LINK
[https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=91]
Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA,
USA, Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]
Matthias Lutz, Dennis Stampfer, Alex Lotz, and Christian Schlegel. “Service Robot Control
Architectures for Flexible and Robust Real-World Task Execution: Best Practices and Patterns.” In:
Workshop Roboter-Kontrollarchitekturen, co-located with Informatik 2014. Vol. P-232. GI-Edition:
Lecture Notes in Informatics (LNI). ISBN: 978-3-88579-626-8. Stuttgart: Bonner Köllen Verlag,
2014. LINK [https://www.gi.de/service/publikationen/lni/gi-edition- proceedings- 2014/gi-edition-lecture-
notes-in-informatics-lni-p-232.html]

See also: Further Publications [http://www.servicerobotik-ulm.de/drupal/?q=node/15] and Technical Reports
[http://www.servicerobotik-ulm.de/drupal/?q=node/18] in context of SmartSoft.

baseline:environment_tools:smartsoft:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:smartsoft:start 2017-06-26

http://robmosys.eu/wiki-sn-01/general_principles:architectural_patterns:communication
http://www.servicerobotik-ulm.de
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/drupal/?q=node/91
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=91
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://www.gi.de/service/publikationen/lni/gi-edition- proceedings- 2014/gi-edition-lecture-notes-in-informatics-lni-p-232.html
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://www.servicerobotik-ulm.de/drupal/?q=node/18

RobMoSys Wiki
http://www.robmosys.eu

Papyrus4Robotics

Presentation

Papyrus is an industrial-grade open source Model-Based Engineering tool. It is based on standards and
supports Model-Based Design in UML, SysML, MARTE, fUML, PSCS/SM, FMI 2.0 and many more.
Papyrus has been used successfuly in industrial projects and is the base platform for several industrial
modeling tools—read more about Papyrus Use Case Stories [https://eclipse.org/papyrus/testimonials.html].

To address the robotics domain according to the RobMoSys methodology and structures, a set of Papyrus-
based DSLs and tools are being collected under the Papyrus4Robotics umbrella.

It is important to emphasize that RobMoSys-compliant software baselines are not in competition. Indeed,
RobMoSys aims, as one of its primary goals, at the realization of a virtual integration platform built upon
existing tools and standards for the development of robotic systems.

Concretely, this means that the RobMoSys approach and structures can enable model exchange and
collaborative development between, e.g., safety engineers and system integrators who use different
RobMoSys-compliant software baselines. As an example, SmartSoft and its large set of software components
can be used to define the system's functional architecture. Then, a safety module in Papyrus4Robotics can be
used to perform dysfunctional analysis on the architecture's key components, including Hazard Analysis and
Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA).
Model-based safety analysis would be enabled by the following components. A dedicated modeling view; a
DSL with the main safety concepts for robotics, e.g., various hazards and safety requirements as specified by
ISO standards 10218-1/2 (industrial robots), 15066 (collaborative industrial robots) and 13482 (personal care
robots); a set of analysis and report generation modules. Read the Aldebaran's use case story
[https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf] to find out more on this subject.

Realization and tools

Papyrus4Robotics uses UML/SysML as underlying realization technology. The platform uses the UML profile
mechanism to enable the implementation of Domain-Specific Languages (DSLs) that assist RobMoSys's
ecosystem users in designing robotics systems.

RobotML is a DSL specifically oriented to modeling and design of mobile manipulation robotic systems.
RobotML conforms to RobMoSys's foundational principles of separation of roles and concerns. It provides

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
https://eclipse.org/papyrus/testimonials.html
https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf
http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:safety_example.png

several view points, including (but not limited to) those for the definition of State Machines, Hardware and
Software components , Controllers and Environment. RobotML domain models allow for the representation
of the system's architecture, control and communication aspects and span across all 5C concerns of
Computation, Coordination, Coordination, Configuration and Composition.

Further modeling views are provided by additional components of Papyrus4Robotics. For example, the
performance view is featured by Papyrus Architect, a Papyrus4Robotics module dedicated to explore quality
attributes of architectures, with a focus on timing properties in real-time applications of embedded (robotic)
systems. It leverages the MARTE (Modeling and Analysis of Real-Time Embedded systems) DSL for the
specification of system architecture (functional/physical) and of timing properties. The performance view
addresses the problem of evaluating the performance of candidate architectures with respect to attributes like
hardware resource utilization.

In addition to DSLs and modeling, Papyrus4Robotics also features code-generation capabilities. Papyrus
Designer [https://wiki.eclipse.org/Papyrus_Software_Designer] supports code generation from models of SW
including embedded and real-time and DDS-based distributed systems as potential targets. In Designer, the
generation starts from a model that includes the definition of software components, hardware nodes and
deployment information. The latter consists of a definition of the instances of components and nodes and an
allocation between these. Code generation is done by a sequence of transformations steps. The model
transformation takes care of some platform specific aspects (e.g. communication mechanisms or thread
allocation), based on non-functional properties.

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:robotml_example.png
http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:performance_view.png
https://wiki.eclipse.org/Papyrus_Software_Designer

RobotML includes generators that transform RobotML-compliant models into code for robotic middlewares
(e.g., Orocos-RTT [http://www.orocos.org/rtt]) or simulators (e.g., MORSE
[https://www.openrobots.org/wiki/morse/]).

Conformance to the RobMoSys structures

Some modeling concepts in Papyrus4Robotics are already aligned with the RobMoSys definitions. However,
further refinement and alignment of meta-models is in process and scheduled to be released and productively
used by the end of 2017.

Separation of Levels and tool coverage

Papyrus4Robotics provides implementations for the individual levels listed in Separation of Levels and
Separation of Concerns

Level Corresponding DSL or Tool in Papyrus4Robotics

Task Plot RobotML State Machine

Skill RobotML Inteface

Service RobotML operation (defined in the Skill interface)
Software Component representation in Papyrus Designer

Function C++ library (e.g., libOpenRave, etc.)

Execution Container Task and resource representation in Papyrus Designer

OS/Middleware DRM::SRM in UML MARTE

Hardware DRM::HRM in UML MARTE, RobotML’s sensors and actuators

Platform workbenches in the context of RobMoSys

One major project's focus is on models, software and tools that are generically useful for all possible robotic
systems and applications. This includes systems and applications that can, e.g., pass certification, monitor
their resource usage at runtime, or form systems-of-systems with just a reconfiguration of the available
models.

Building such systems and applications require multi-disciplinary competences (beyond robotics) and sets of
http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics 2017-06-26

http://robmosys.eu/wiki-sn-01/_media/baseline:environment_tools:papyrusdesignercodegen.png
http://www.orocos.org/rtt
https://www.openrobots.org/wiki/morse/

platform tools that support best-practices established in near and mature engineering-centric domains, such as
automotive or aerospace.

Possible modeling workbenches enabled by the RobMoSys's software baselines are for example SmartMDSD
Toolchain, the Papyrus4Robotics set of modeling tools. There are many more existing modeling tools that can
be made conformal to the RobMoSys's baseline. In a robotics ecosystem multiple users provide models by
using these workbenches and these models are interfaced over the RobMoSys's baseline.

Some workbenches allow for many different kinds of analysis that are strongly related to good practices to
employ during the development process—as recommended by experts in the complex and critical systems
design domain (read Annex 1 of D5.1 to find out more). This includes (and is not limited to):

verification and co-simulation activities (e.g., based on the FMI 2.0 standard) during early stage of
design, thanks to the definition of a model of computation (MoC) on system level;
handling safety and security aspects as soon as possible and not as an afterthought;
checking whether the amount of reserved resources (hardware/software) is adequate to meet given
performance criteria (e.g., respect of time constraints on end-to-end latencies)

It is unrewarding to define one single modeling workbench that covers all aspects of design, analysis and
synthesis (i.e. code-generation). Instead, because platform tools conform to the RobMoSys structures, models
can be exchanged from one modleing workbench to another to cover all the design needs of the ecosystem
users at all the phases of development.

Resources

Installation procedure
Papyrus [https://eclipse.org/papyrus/]
Papyrus RobotML [https://eclipse.org/papyrus/components/robotml/1.2.0/]
Papyrus Software Designer [https://wiki.eclipse.org/Papyrus/Designer/getting-started]

Documentation and tutorials
Papyrus Documentation [http://www.eclipse.org/papyrus/documentation.html]
Papyrus RobotML Documentation [https://eclipse.org/papyrus/components/robotml/1.2.0/]
Papyrus Software Designer User Guide [https://wiki.eclipse.org/index.php?
title=Papyrus_Software_Designer&redirect=no]

Videos
Model driven safety assessment for robotics [https://www.youtube.com/watch?v=CnklgQ7tWns]
Modeling and safety assessment for Nao [https://www.youtube.com/watch?v=-k1xWJr4wg0]
More videos on Papyrus Companions
[https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA]

Selected publications
Selma Kchir, Saadia Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes,
RobotML for industrial robots: Design and simulation of manipulation scenarios. ETFA 2016:
1-8
Nataliya Yakymets, S. Dhouib, Hadi Jaber, Agnes Lanusse, Model-driven safety assessment of
robotic systems. IROS 2013: 1137-1142
Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, Mikal Ziane, RobotML, a
Domain-Specific Language to Design, Simulate and Deploy Robotic Applications. SIMPAR
2012: 149-160

baseline:environment_tools:papyrus4robotics · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics

http://robmosys.eu/wiki-sn-01/baseline:environment_tools:papyrus4robotics 2017-06-26

https://eclipse.org/papyrus/
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/Papyrus/Designer/getting-started
http://www.eclipse.org/papyrus/documentation.html
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/index.php?title=Papyrus_Software_Designer&redirect=no
https://www.youtube.com/watch?v=CnklgQ7tWns
https://www.youtube.com/watch?v=-k1xWJr4wg0
https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA

RobMoSys Wiki
http://www.robmosys.eu

SmartSoft Components
A collection of SmartSoft components is readily available under Open Source Licenses. They have been
developed using the SmartMDSD Toolchain and are available for immediate reuse.

List of available components [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html]

baseline:components:smartsoft · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:components:smartsoft

http://robmosys.eu/wiki-sn-01/baseline:components:smartsoft 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html

RobMoSys Wiki
http://www.robmosys.eu

Gazebo/Tiago/SmartSoft Scenario
This scenario contributes to the Pilot “mobile manipulation for assistive robotics in a domestic environment or
in care institutions”.

The robot platform
Tiago from Pal-
Robotics is
accessible in the
SmartSoft World.
A scenario was set
up in which you
can use the
SmartSoft
navigation stack
and SmartTCL for
behaviour
coordination to
move Tiago around
in the Gazebo
simulator.

The Tiago robot platform in simulation can be used with the SmartMDSD Toolchain as available software for
the open calls where we emphasize: “do not re-invent in open call projects but build on existing technologies
and tools”.

The scenario includes:

Navigation Stack: obstacle avoidance (CDL), recording maps with Gmapping, localization, path
planning
SmartTCL for behavior coordination to move Tiago around in the gazebo simulator

The models and components to run the Pal-Robotics Tiago using SmartSoft/SmartMDSD Toolchain within
Gazebo are available including documentation and tutorial at http://www.servicerobotik-ulm.de/drupal/?
q=node/91 [http://www.servicerobotik-ulm.de/drupal/?q=node/91]

baseline:scenarios:tiago_smartsoft · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/baseline:scenarios:tiago_smartsoft

http://robmosys.eu/wiki-sn-01/baseline:scenarios:tiago_smartsoft 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
http://www.servicerobotik-ulm.de/drupal/?q=node/91

RobMoSys Wiki
http://www.robmosys.eu

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing
approaches should be used wherever possible. The following
list provides some common approaches that are considered
relevant within the RobMoSys context.

General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.)
Robotics Approaches (ROS, YARP, RTC, etc.)
Middlewares (DDS)

other_approaches:start · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/other_approaches:start

http://robmosys.eu/wiki-sn-01/other_approaches:start 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=other_approaches%3Astart
http://robmosys.eu/wiki-sn-01/other_approaches:modeling_languages

RobMoSys Wiki
http://www.robmosys.eu

General Purpose Modeling Languages and
Dynamic-Realtime-Embedded domains
SysML, SoaML, AADL, MARTE and others are flexible general purpose modeling approaches for systems.
They favor freedom of choice. While they often provide different modeling views, these views are not
connected such that overall system consistency can be ensured throughout all potential development phases.
This hinders separation of roles that is required for successful system composition and therefore is in contrast
with the overall needs for modeling in RobMoSys.

The focus of RobMoSys is on composability and consistency of the different views such that the different
roles contribute in a consistent and composable way to the system under specification and development. This
requires more elaborate structures to connect the different views in a consistent way. This can be achieved via
superordinated meta-model structures and via model-to-model transformations.

Of course, the structures of RobMoSys will be inspired by, for example, the above approaches wherever
appropriate. The RobMoSys structures might enable linking the different modeling views of the mentioned
modeling approaches.

For example, AADL requires more abstract, yet consistent, modeling views on top, while other approaches
such as SysML might be subprofiled, thus providing more detailed, yet again consistent, robotic-specific
views underneath. Many of the (meta-model) structures and abstractions in RobMoSys focus on
transformations (and exchange of knowledge) between well known and widely accepted modeling views.

Within the context of UML the term “semantic variation point” has been coined to express the purposeful
semantic ambiguity for certain UML elements. Because UML is a general purpose modeling language, this
semantic ambiguity makes sense and can be narrowed within the derived domain-specific models using e.g.
the UML profile mechanism. Moreover, even the domain-specific models can still expose some semantic
variability that is closed within concrete realizations (e.g. through code generation or reference
implementations). In this sense, RobMoSys as well offers different levels of abstraction for modeling where
the higher levels (such as e.g. the block-port-connector) are more general purpose (leaving open some
semantic variability) and lower (i.e. domain-specific) abstraction levels (such as e.g. the RobMoSys
composition structures) that narrow this semantic variability.

other_approaches:modeling_languages · Last modified: 2017/06/23 18:16
http://www.robmosys.eu/wiki-sn-01/other_approaches:modeling_languages

http://robmosys.eu/wiki-sn-01/other_approaches:modeling_languages 2017-06-26

http://robmosys.eu/wiki-sn-01/start
http://www.robmosys.eu
http://robmosys.eu/wiki-sn-01/modeling:principles:block-port-connector
http://robmosys.eu/wiki-sn-01/modeling:composition-structures:start

	RobMoSys Wiki
	RobMoSys Wiki
	Glossary
	Your Role in the RobMoSys Ecosystem
	General Principles
	Tier 1: Modeling Foundations
	Tier 2: Examples of Domain Models
	Tools and Software Baseline
	Tooling Baseline
	Tier 3: Existing Building Blocks and Scenarios

	Other Approaches in the RobMoSys Context

	RobMoSys Wiki
	Changelog
	June 23rd, 2017
	June 13st, 2017
	June 6st, 2017
	June 1st, 2017
	May 29th/31st, 2017
	May 3rd, 2017

	RobMoSys Wiki
	RobMoSys Glossary
	General Terms
	Ecosystem
	Digital Platform
	System Composition (Activity)
	System Integration (Activity)
	Composability
	Compositionality
	Component
	Service
	System
	System-of-systems
	Architecture
	Extra-Functional Properties
	Synonyms

	Modeling Twin
	View
	Engineering Model

	General Principles
	Separation of Roles
	Separation of Concerns
	Freedom OF choice vs. freedom FROM choice
	Architectural Pattern
	Objectives for Architectural Patterns

	Block, Port and Connector

	Concerns
	Computation (Concern)
	Communication (Concern)
	Coordination (Concern)
	Configuration (Concern)
	Cross-Cutting Concern
	Example

	Roles
	Acknowledgement
	References

	RobMoSys Wiki
	General Principles
	RobMoSys Wiki
	Separation of Levels and Separation of Concerns
	About the Levels
	On the number and separation of levels
	The individual Levels
	Mission (Level)
	Examples
	Synonyms

	Task (Level)
	Examples
	Synonyms

	Skill (Level)
	Examples
	Synonyms

	Service (Level)
	Function (Level)
	Example
	Synonyms

	Execution Container (Level)
	Example

	Operating System and Middleware (Level)
	Operating System
	Middleware (Communication Middleware)

	Hardware (Level)
	Examples

	Example: Levels
	Example: Composition of Tasks
	Acknowledgement

	RobMoSys Wiki
	Architectural Patterns
	Introduction
	Template for an Architectural Pattern
	Context
	Problem
	Solution
	Optional: Discussion
	Optional: Example(s)

	List of Architectural Patterns
	Further Candidates for Architectural Patterns

	RobMoSys Wiki
	Architectural Pattern for Stepwise Management of Extra-Functional Properties
	Context
	Problem
	Solution
	Example
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Bundling Components
	Context
	Problem
	Solution
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Managing Transitions of System States
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Component Parametrization
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Communication
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Service Definitions
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Ecosystem Organization
	Composition Tiers
	Tier 1: Composition-Structure – Meta-Structure
	Elements on this tier
	Examples of roles on this tier
	See also

	Tier 2: Robotics-Domain-Specific Structures – Robotics Domain Models
	Examples of elements on this tier
	Examples of roles on this tier

	Tier 3: Ecosystem Content
	Examples of elements on this tier
	Examples of roles on this tier

	Example: Service-based Composition Approach
	See also
	Acknowledgement

	RobMoSys Wiki
	Roles in the Ecosystem
	List of Roles
	Roles in Context of Composition Tiers
	See also

	RobMoSys Wiki
	System Builder
	RobMoSys Wiki
	Function Developer
	RobMoSys Wiki
	Service Designer
	RobMoSys Wiki
	Performance Designer
	RobMoSys Wiki
	Component Supplier
	RobMoSys Wiki
	Behavior Developer
	RobMoSys Wiki
	Safety Engineer
	RobMoSys Wiki
	System Architect
	RobMoSys Wiki
	User Stories
	Composable commodities for robot navigation with traceable and assured properties
	Description of building blocks via model-based data sheets
	Replacement of component(s)
	Composition of components
	Quality of Service
	Determinism, e.g. for robot navigation
	Free from hidden interference
	Management of Non-Functional Properties
	Gap between design-time assumptions and run-time situation
	System analysis tools
	Task modeling for task-oriented robot programming
	Safety

	RobMoSys Wiki
	Analogy: The PC Domain
	Configuration, Composition, and Integration
	Configuration
	Composition
	Integration (in contrast to composition)

	Ecosystem Example: Graphics Cards
	What Enables Composition in the PC Domain?
	Views
	Decoupling supply and use
	IP is still flexible
	Flexible composition Combinations and alternatives

	RobMoSys Composition Tiers in the PC Domain
	Data Sheets and The Modeling Twin

	RobMoSys Wiki
	Tier 1: Modeling Foundations

	RobMoSys Wiki
	Roadmap of MetaModeling
	See also

	RobMoSys Wiki
	Basic Modeling Principles
	Ecore-OWL language-bridge

	RobMoSys Wiki
	Modeling Twin
	See also

	RobMoSys Wiki
	RobMoSys Structures: Realization Alternatives
	Example 1: Using Ecore
	Example 2: Using UML/SysML Profiling

	RobMoSys Wiki
	Preliminary Ecore implementation of ER and BPC meta-models
	Entity-Relation (ER) meta-model
	Block-Port-Connector (BPC) meta-model
	Eclipse/Ecore implementation of ER and BPC meta-models

	RobMoSys Wiki
	Tier 1 in Detail
	Hierarchical Hypergraphs and Entity-Relation Model
	Block-Port-Connector
	RobMoSys composition structure
	RobMoSys Views

	RobMoSys Wiki
	Scientific Grounding
	Hierarchical Hypergraph
	Entity-Relation Model
	Natural modelling levels of abstraction

	Formalization
	Hierarchical Hypergraph
	Entity-Relation Model
	Basic set of standard relations for linking different levels of abstraction

	References
	RobMoSys Wiki
	Block-Port-Connector
	See next

	RobMoSys Wiki
	RobMoSys Composition Structures
	Overview of RobMoSys composition structures

	RobMoSys Wiki
	Robotic Behavior Metamodel
	RobMoSys Wiki
	Deployment Metamodel
	RobMoSys Wiki
	System Service Architecture and Service Fulfillment Metamodels
	Service Fulfillment Metamodel
	Acknowledgement

	RobMoSys Wiki
	System Component Architecture Metamodel
	RobMoSys Wiki
	Service-Definition Metamodel
	Views of a Service

	RobMoSys Wiki
	Cause-Effect-Chain and its Analysis Metamodels
	Acknowledgement

	RobMoSys Wiki
	Communication-Pattern Metamodel
	Component Communication Patterns
	Coordination and Configuration Patterns
	Parameter
	State
	Dynamic Wiring
	Monitoring

	RobMoSys Wiki
	Component-Definition Metamodel
	References

	RobMoSys Wiki
	Platform Metamodel
	RobMoSys Wiki
	Communication-Object Metamodel
	RobMoSys Wiki
	RobMoSys Views
	List of Views
	Links Between Views: Example 1
	Links Between Views: Example 2
	See also

	RobMoSys Wiki
	Component Development View
	RobMoSys Wiki
	Communication Pattern View
	RobMoSys Wiki
	Execution Container View
	RobMoSys Wiki
	Service Design View
	RobMoSys Wiki
	Tier 2: Examples of Domain Models
	RobMoSys Wiki
	Flexible Navigation Stack
	The SmartSoft navigation components and the Robotino3 robot platform

	RobMoSys Wiki
	Tools and Software Baseline
	Tooling Baseline
	Tier 3: Existing Building Blocks and Scenarios

	RobMoSys Wiki
	Roadmap of Tools and Software
	See also

	RobMoSys Wiki
	The SmartSoft World
	SmartMDSD Toolchain and the SmartSoft Framework
	Productive Releases
	Next-Generation Technology Preview

	Eclipse Modeling Tools
	Conformance to RobMoSys Composition Structures
	Licenses: SmartSoft is open source
	Separation of Levels and Concerns in SmartSoft
	Robotics Behavior in SmartSoft
	SmartSoft Terminology
	Communication Object
	Communication Pattern
	Framework
	Quality of Service

	Further Resources
	Selected Publications

	RobMoSys Wiki
	Papyrus4Robotics
	Presentation
	Realization and tools
	Conformance to the RobMoSys structures
	Separation of Levels and tool coverage
	Platform workbenches in the context of RobMoSys
	Resources

	RobMoSys Wiki
	SmartSoft Components
	RobMoSys Wiki
	Gazebo/Tiago/SmartSoft Scenario
	RobMoSys Wiki
	Other Approaches in the RobMoSys Context

	RobMoSys Wiki
	General Purpose Modeling Languages and Dynamic-Realtime-Embedded domains

