Automated Requirements Analysis for a Molecular
Watchdog Timer

Samuel J. Ellis, Eric R. Henderson, Titus H. Klinge, James |. Lathrop, Jack H. Lutz,
Robyn R. Lutz, Divita Mathur, and Andrew S. Miner

lowa State University
Ames, IA 50011, U.S.A.

{sjellis, telomere, tklinge, jil, lutz, rlutz, divita, asminer}@iastate.edu

ABSTRACT

Dynamic systems in DNA nanotechnology are often pro-
grammed using a chemical reaction network (CRN) model
as an intermediate level of abstraction. In this paper, we
design and analyze a CRN model of a watchdog timer, a de-
vice commonly used to monitor the health of a safety critical
system. Our process uses incremental design practices with
goal-oriented requirements engineering, software verification
tools, and custom software to help automate the software
engineering process. The watchdog timer is comprised of
three components: an absence detector, a threshold filter,
and a signal amplifier. These components are separately de-
signed and verified, and only then composed to create the
molecular watchdog timer. During the requirements-design
iterations, simulation, model checking, and analysis are used
to verify the system. Using this methodology several incom-
plete requirements and design flaws were found, and the fi-
nal verified model helped determine specific parameters for
biological experiments.

Keywords

probabilistic model checking; requirements engineering; molec-

ular programming; chemical reaction networks

1. INTRODUCTION

Molecular programming, also called DNA nanotechnology,
uses the information processing capabilities of DNA to en-
gineer the self-assembly of nanoscale structures and devices.
Born in the pioneering research of Seeman in the 1980s [42],
molecular programming is now a large, multifaceted field in
which teams of investigators from computer science, chem-
istry, molecular biology, mathematics, physics, and various
engineering disciplines collaborate to design ever more elab-
orate nanosystems. Many envisioned DNA molecular pro-
gramming applications will be safety critical. Examples in-
clude nanoscale bio-sensors to detect the presence of disease
markers in the human body and of dangerous pollutants in
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

ASE ’14, September 15 - 19 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ... $15.00.
http://dx.doi.org/10.1145/2642937.2643007.

air or water, and nanoscale drug therapy capsules that re-
lease their contents only when they encounter and bind to
an associated tumor cell [31]. One such advance is a barrel-
shaped DNA nanorobot programmed to autonomously nav-
igate to a tissue sample, unlock its cargo compartment when
it encounters the proper antigen key, and dispense appropri-
ate antibody fragments [14]. Other applications to medicine,
computer electronics, and biological instrumentation are an-
ticipated, and many of these applications will be safety crit-
ical.

This paper concerns the reliable molecular programming—
programming in the literal sense of computer science—of nano-
systems that are dynamic and nonstructural. By “dynamic”
we mean that the objective is not the self-assembly of static
structures, but rather the self-assembly of devices that carry
out desired processes at molecular scales. By “nonstructural”
we mean that the devices are not internally connected struc-
tures, but are rather diffuse collections of molecules that
carry out their tasks in well mixed solutions. To make
these distinctions concrete by example, we do not in this
paper consider the use of DNA tiles or DNA origami to cre-
ate (static, not dynamic) two- and three-dimensional nanos-
tructures [40, 41, 19, 51, 24, 35], and we do not consider
the creation of (dynamic, but structural) molecular robots
that walk on DNA origami tracks or deliver molecular pay-
loads [32, 14]. We instead focus our attention on nanosys-
tems that, like recently engineered logic circuits [38, 39] and
many natural biological circuits [8], operate amorphously
and probabilistically according to the laws of chemical ki-
netics.

A dynamic, nonstructural molecular process in which the
presence or absence of very small numbers of certain types of
molecules (e.g, a single copy of a viral genome in a living cell)
may be significant is mathematically modeled by a (stochas-
tic) chemical reaction network or, briefly, a CRN. (All CRNs
in this paper are stochastic, so we omit “stochastic” from the
terminology.) The CRN model, which goes back at least to
1940 [12], has three desirable features. First, it is mathemat-
ically simple. A CRN is a finite collection of reactions, each

of which has a simple form such as A+ C * B+ D, where
the letters A,B, etc., represent abstract molecules that hide
all other properties of the molecular species that they rep-
resent. Such a reaction says that a molecule of A and a
molecule of C' may collide and be consumed to produce a
molecule of B and a molecule of D, where the rate at which
the reaction occurs is determined by the positive real num-
ber k, the rate constant of the reaction. A state of a CRN

is a vector specifying the number of each species present,
and the dynamics of the CRN proceed as a continuous time
Markov process with rates derived from the rate constants
[2]. (See Appendix A for more details) A second feature of
CRNs, discovered only recently, is that they are very gen-
eral. Every algorithm can, in at least one sense, be simulated
by a CRN [45].

A third desirable feature of CRNs, also discovered re-
cently, is that they can be implemented in a uniform way
using DNA strand displacement reactions [46]. This is for-
tuitous, because dynamic systems in DNA nanotechnology,
including DNA walkers and logic circuits, are typically im-
plemented using DNA strand displacement reactions [44,
54]. The details of strand displacement reactions are not
crucial for this paper, but it is relevant to note that they are
relatively easy to implement in the laboratory, and that they
are easy to specify. In fact, there is a programming language,
DSD, in which a large, expressive class of such reactions can
be specified and compiled into explicit DNA sequences [37,
28]. Moreover, CRNs have recently been used as a higher
level programming language that can be compiled into DSD
[9].

Monitoring a dynamic, nonstructural molecular process
for the occurrence of an event is relatively easy, because
matters can be arranged so that molecules that are indica-
tive of the event react in chance encounters with molecules
of the monitoring process, thereby triggering a desired re-
sponse to the event. In sharp contrast, monitoring such a
molecular process for the nonoccurrence of an event involves
timing issues that can be very hard to resolve [13]. This
is why the above-mentioned logic circuits and many others
use a “dual rail” scheme in which the presence of a signal
is represented by the presence of one species, and the ab-
sence of this signal is represented by the presence of another
species. Such dual rail schemes are useful and convenient
for the ordinary operation of a process, but they cannot be
relied upon to monitor the process for failures.

A watchdog timer is a device often used to monitor a
safety-critical system and to issue an alarm if the system
fails. In simple but typical instances, the watchdog timer
monitors the system for expected, periodic “heartbeats” that
indicate the system’s well-being. If a heartbeat does not oc-
cur for too long, the system has failed, and the watchdog
timer detects this and trips an alarm (i.e., it “barks”) [25,
30].

In this paper we engineer a molecular watchdog timer,
which is a chemical reaction network that monitors an ex-
ternal system for a regular heartbeat, indicated by the pe-
riodic introduction of “H” molecules into the ambient solu-
tion, and trips an alarm if a heartbeat does not occur for
too long a time. Since the absence of a heartbeat is indica-
tive of a system failure, it is not reasonable to assume that
the system is representing its heartbeats in dual rail form.
(If the systems fails to produce a heartbeat, it is also apt
to fail to produce an indicator of the absence of the heart-
beat.) Hence our molecular watchdog timer must, despite
the above-mentioned difficulties, monitor for the prolonged
absence of a heartbeat and respond accordingly.

The design of our molecular watchdog timer entailed a
rigorous process of specifying the high-level reliability re-
quirements (including very low probabilities of both false
positives and false negatives); refining these high-level re-
quirements into a detailed requirements model; proving the

implications implicit in the requirements model; designing
the molecular watchdog timer to achieve the low-level re-
quirements; and model checking that it does so. In addition,
the design of our molecular watchdog timer is modular, with
each low-level requirement satisfied by one of the three com-
ponents (absence detector, threshold filter, and signal ampli-
fier); and the overall process was iterative and incremental,
with both the requirements model and the design repeat-
edly revised in response to defects discovered by the pro-
cess. Moreover, our entire process was adapted to the novel
“computing in soup” environment of dynamic, nonstructural
DNA nanotechnology. The final product, a fully verified,
CRN-level design for a reliable molecular watchdog timer
together with the process that achieved it, demonstrates the
crucial role that rigorous software engineering processes and
automated software engineering tools will play in the coming
age of nanotechnology.

2. GOAL MODELING

The requirements for the molecular watchdog timer (MWT)
were identified, refined, and validated incrementally using
a goal-oriented requirements engineering approach, KAOS,
in concert with automated formal analysis tools [15, 49].
The goal-based requirements engineering framework that we
used produces as its initial artifact an AND/OR goal graph
in which the top-level node describes the high-level func-
tional requirement for the system to be built.

2.1 Goal graph refinement

Figure 1 shows an initial goal graph for the MWT, with
the top-level goal of Achieve[Alarm iff no Heartbeat is pro-
vided within t time]. This goal describes the prescriptive
intent that: If and only if the monitored application does
not provide the appropriate signal within a specified time,
then the system shall issue an alarm. The top-level goal
is AND-refined into two subgoals, since it can be satisfied
if and only if both of the two second-level goals are met.
These subgoals are subsequently refined until each subgoal
can be assigned to an agent. An agent is a system compo-
nent with responsibility for satisfying the goal(s) assigned to
it [49]. The goal graph was refined incrementally, both from
the top down and from the bottom up, as our understanding
of what was needed grew. As described in the next section,
automated analysis tools (especially MATLAB’s SimBiology
package and the probabilistic model checker PRISM [26])
played essential roles in evaluating the realizability of the
goals for the MWT, given the dynamic, non-deterministic
CRN environment.

There are four environmental assumptions that must hold
for satisfaction of the subgoals to mean that the parent goal
is satisfied. These environmental properties are: (1) the en-
vironment controls when heartbeats are present; (2) a heart-
beat is a “dose” of molecules of species “H”, and the size of
the heartbeat dose must be within a certain range; (3) no
molecules in the environment other than the heartbeats in-
teract with our system; and (4) the solution is well mixed.
In other words, the MWT molecules do not react with other
molecules in the environment. The correct formalization of
the first and third of these properties emerged from the pro-
cess of proving that satisfaction of the subgoals implies the
satisfaction of the top-level goal. The allowable range of the
size of the heartbeat dose in the second property depends
on the values assigned to several other parameters, such as

ACHIEVE
AlarmTripped iff
no Heartbeat provided
in € time

ACHIEVE
/Alarm iff AlarmTripped
and within - time of
the first Alarm Tripped,

Y

ACHIEVE
Hdet Correetly tracks the

presence of Heartbeats
within t*-t” time

Y Y I Y

ACHIEVE AVOID ACHIEVE MAINTAIN

pped iff no Alarm if Not Alarm if AlarmTripped
tected AlarmTripped

Alarm if the Alarm
has been issued

v

ACHIEVE
Correct timer Reset

AVOID ACHIEVE
Hdet when Heartbeat
i t

Hdet when Heartbeat
is nt is presen

not preses

ACHIEVE
Correct Delay

ACHIEVE

AlarmTripped iff
Threshold met

v ! v

ACHIEVE
Initialize to Reset

ACHIEVE
Reset if Hdet

ACHIEVE
Threshold delay if

ACHIEVE AVOID ACHIEVE AVOID
Threshold if Hdet is AlarmTripped if
threshold for some
time

AlarmTripped if AlarmTripped until

first threshold

Figure 1: Goal graph refinement.

the number of each species of molecule in the model, and
was investigated and confirmed using model checking. An-
other early environmental assumption, that at initialization
there is no heartbeat in the system, was later removed as
the MWT design evolved to become more robust. The cur-
rent goal graph and design handle both the presence and the
absence of the heartbeat as the MW begins execution.

2.2 Tool-assisted obstacle analysis

To analyze the risks of not being able to achieve the in-
tended system, we used obstacle analysis [49]. This tech-
nique challenges the goal graph by identifying candidate ob-
stacles to the satisfaction of the goals, assessing the likeli-
hood and criticality of those obstacles, and controlling or re-
solving them, e.g., by adding or modifying goals. We found
in previous work on a product family of DNA nanopliers
that the use of a goal oriented requirements engineering ap-
proach, with a focus on early analysis of the risks to satis-
fying the goals [50], worked well in helping find and remedy
missing and unrealistic requirements [33, 34].

With the obstacle analysis we sought to determine whether
the goals are robust and realizable in a CRN. In fact, we will
see below that the automated formal analysis performed
to assess the likelihood and impact of candidate obstacles
showed that our initial requirements for the MWT were both
inaccurate and incomplete. The next section gives examples
of how SimBiology and PRISM helped identify goals that
were missing and goals that were not realizable by the agents
to which they were initially assigned.

The gaps in the requirements arose largely from the non-
deterministic nature of CRN reactions, from the very large
number of molecular agents operating in parallel, and from
the uncertainties of the probabilistic environment in which
the MWT operates. Other, related solutions to specifying
goals in uncertain environments formalize the required de-

gree of goal satisfaction, as in [29], or the required proba-
bility of goal satisfaction, as in [7]. The MWT differs in
that all possible failures inevitably will occur in some pro-
portion of the individual agents, but the system must be
robust enough to keep the occurrence of failures acceptably
low and to operate correctly with probability approaching 1,
even in the presence of some component faults. The watch-
dog timer that we design must be one of which we can say
with confidence that if the application it is monitoring fails,
that the MWT will detect and notify us, and that if the
MWT notifies us that the application has failed, that we
can trust it.

2.3 Formal specification of goals in CSL

The goals in the goal graph are formally specified in con-
tinuous stochastic logic (CSL) [5, 6]. CSL is expressive
enough to reason about the continuous time Markov chains
(CTMCs) that form the semantics of our chemical reaction
networks. As an example, the goal Achieve [Reset if Hdet]
is specified in CSL as

P>10 [H(iet - ’P21_>\1<>5w%nReset]

where Reset is a boolean that is true when the absence de-
tector’s timer is reset, and Hget is a boolean that is true
when the absence detector has detected that a heartbeat is
present. In other words, the goal is satisfied if every time a
heartbeat is detected, then with probability 1 — A; the timer
will reset within w,,, time.

The formal specification and proofs were developed incre-
mentally as the goal graph was refined and corrected. We
have proven that satisfaction of the conjunctive subgoals
satisfies the CSL specification of the top-level goal in the
goal diagram. The complete CSL specifications for the goal
graph appear in Appendix B.

2.4 Setting the Goal Parameters

Constructing a model satisfying all the constraints on the
parameters provided in the goal diagram would have been
prohibitively time-consuming without the aid of automation.
We developed custom MATLAB scripts that both generated
models of arbitrary paramters and allowed smooth integra-
tion with the model checkers PRISM [26] and SMART [10].
These scripts along with some features provided by PRISM
automated the exploration of the parameter space to dis-
cover models that provably satisfy our requirements.

3. DESIGN OF THE MOLECULAR WATCH-
DOG TIMER

Our molecular watchdog timer consists of three separate
components, which are the agents to which leaf goals are
assigned. These three components—the absence detector,
the threshold filter, and the signal amplifier—are mathe-
matically modeled by stochastic chemical reaction networks
(CRNs). CRNs serve as a high-level programming language
to specify the behavior for a computational subsystem im-
plemented in DNA. For example, the absence detector com-
ponent is assigned responsibility for the goal Achieve [Reset
if Hdet].

3.1 The Absence Detector

This component detects when a heartbeat signal has not
been present for a specified period of time. The heartbeat is
a “dose” of a specific molecular species “H” that is expected
to be periodically output by the molecular application that
is being monitored by the MWT. If the heartbeat is not
detected by the MWT for an extended period of time, we
can conclude that the molecular application being monitored
has failed. The absence detectors are assigned responsibil-
ity for achieving the leaf goals Avoid [Hdet when Heartbeat
is not present], Achieve [Hdet when Heartbeat is present],
Achieve [Initialize to Reset], Achieve [Reset if Hdet], Achieve
[Threshold delay if Reset], and Achieve [Threshold if Hdet is
absent].

The CRN model for the absence indicator component is:

Li+U — L1 +U
L,+U—=Y+U
L;+H — L1

Y+ H— 14

The CRN specifies a cascade, or “ladder” such that, at any
rung, “L;”, binding of the rung molecule with a “U” causes
the cascade to climb a rung, to “L;+1”, and binding with a
heartbeat molecule “H” knocks the cascade back down to
the bottom rung. In the absence of binding of the rung with
a heartbeat, the ladder climbs to the next rung. (This is
an implementation of the “frog in the well” Markov process
[4].) Upon reaching the top rung, the ladder releases a “Y”
molecule into solution. The “Y” molecule can then reach
and bind to the threshold filter unless it first encounters a
heartbeat molecule. In the latter case, the ladder is returned
to the bottom rung.

3.2 The Threshold Filter

This component detects when a target number of absence
detectors have each reached the “Y” state, releasing a signal
that is received by the threshold filter. If and only if enough

absence detectors are in a “Y” state, will the threshold filter
trip an alarm. The threshold filters are assigned to the leaf
goals Avoid [AlarmTripped if Reset], Achieve [AlarmTripped
if threshold for some time], and Avoid [AlarmTripped until
first threshold].

The CRN for the threshold filter component is:

Ti4+Y —=>Tin+Y
Te +Y - T +Y +D
T;+R—>T1+ R

The threshold filter CRN creates a cascade similar to that
of the absence detector. Binding of a “T;” molecule with a
“Y” molecule causes the cascade to climb a rung to “T;4+1”,
and binding with a “R” molecule causes the cascade to fall to
the bottom rung. Unlike the absence detectors, all reactions
involved with the threshold filters are catalytic, meaning
that they do not consume any molecules. When a threshold
filter is at its top rung, reacting with “Y” molecules releases
“D” molecules, which are consumed by the signal amplifiers
to release alarms.

3.3 The Signal Amplifier

This component takes a tripped alarm and increases it to
make it more noticeable by another external system. The
signal amplifier cannot create an alarm by itself; it requires
the threshold filters to trip the alarm. The signal amplifiers

are assigned to the leaf goals Avoid [Alarm if Not AlarmTripped],

Achieve [Alarm if AlarmTripped], and Maintain [Alarm if
the Alarm has been issued).
The CRN for the signal amplifier component is:

D+ Ca— Al+Ca
Al + Da — 2Al

The signal amplifier CRN consumes “D” molecules to pro-
duce “Al” molecules, representing an alarm. “Al” molecules
then interact with “Da” molecules to produce more “Al”
molecules. “Da” is initialized to a finite number to place
an upper bound on the number of “Al” molecules allowed in
the model. Without a bound, the model contains an infinite
number of possible states.

4. VERIFICATION OF THE MOLECULAR
WATCHDOG TIMER

Many of the intended uses of the MWT system are in
situations where the absence of a heartbeat indicates an un-
safe state. In such applications it is critical that the MWT
be robust, reliable, and correct. These requirements for
the MWT drove the software process towards verification
of the CRN MWT model. Ensuring that it is highly proba-
ble that the MWT will issue an alarm when it should (and
not alarm when it should not) is complicated by the concur-
rency and large number of individual devices that comprise
the MWT system, the exceedingly dynamic DNA environ-
ment, the fault-proneness of the individual devices, and the
very small size of each MWT. Due to the small size and in-
dividual signal strength, any signal must be amplified to be
externally observable, further complicating debugging and
analysis.

Consistent with the assignment of responsibilities for sat-
isfaction of the leaf subgoals in the goal diagram to the three

Heartbeats

Concentration (normalized)

|
Absent heartbeat | Alarm T
detected |

I
250 300 350 400

Time (seconds)

Figure 2: MWT ODE Simulation using MATLAB’s SimBiology package

agents—the absence detector, the threshold filter, and the sig-
nal amplifier—the system model describes the three agents
in the CRN language. The properties to be checked against
the CRN model are the CSL properties that are the formal
specification of the goals and subgoals.

To build confidence in the correctness and robustness of
the planned system, we followed an incremental development
process of simulation of the system model for sanity checks
(see Figure 2) and selection of likely parameter value ranges,
followed by model checking of the goal diagram leaf-node
properties for which the agents were responsible. Since we
had previously proven that the high-level goals were implied
by the lower-level goals, we did not need to verify the higher-
level goals. We also injected faults that had been previously
discovered by analytical reasoning to confirm that the model
checking found them.

We describe below some specific examples of how incor-
porating model-driven automated analysis into the develop-
ment process helped identify missing requirements, explore
design alternatives, and make the MW'T more robust.

Clock Agent Cannot Achieve Assigned Goal: Our
first implementation of absence detection for the MWT used
a binary counting device introduced in [23]. This design
seemed promising, but testing and simulation in MATLAB’s
SimBiology package revealed that this device fails to meet
our specifications.

The problem with this binary counting design for absence
detection is that it was designed to work in a setting in which
it is assumed that all reactions are “fast” or “slow”, and that
all “fast” reactions occur before all “slow” reactions. The
stochastic (and more realistic) model in which we work here
violates this assumption, allowing slow reactions to interfere
with the clock’s function. Over time the accumulation of
such violations inexorably leads to failure of the clock.

To resolve this obstacle, we investigated an alternative re-
finement in which the delay is achieved by a programmed
cascade of interactions. In this case, the goal remained un-

changed, and we simply changed the agent used to satisfy
the goal.

Missing Domain Property: In refining a goal into two
subgoals, we had to introduce the domain property that it
takes an expected amount of time after a heartbeat arrives
to detect its arrival. This is because the detection occurs
via the chemical binding of the heartbeat molecules to the
absence detectors. The subgoals did not satisfy the goal
without this domain property. This stochastic reality was
handled by introducing a “grace period” before the heartbeat
detection is required. However, we initially failed to propa-
gate the addition of the grace period back up to the parent
goal. Model checking with PRISM was able to detect this
omission, and it was corrected in the subsequent version.

Missing Initialization Case: Model checking revealed
a failure mode that can occur just after the MWT begins ex-
ecution. The initial intent was that execution of the MWT
begin at time zero, i.e., when the MW'T was “poured into the
test tube”. However, as specified, the MWT could violate
this intent by alarming before the external application had a
chance to input a heartbeat. To resolve this, we added a new
CSL property to the high level goal specifying that alarm
must be off for a period of time after initialization. This
new goal trickled down through the goal diagram until it
created the new leaf-goal Achieve[Initialize to Reset], which
specifies that the timer must be considered in a reset stage
at initialization. Along with the leaf-goal Achieve[Threshold
delay if Reset], this implies that the alarm will not be active
upon initialization. We proved manually that the impli-
cation holds after the change and used model checking to
confirm that it was possible for this failure mode to occur
before the change. This was confirmed using model checking
by verifying that a model with an alarm in the initial state
satisfies the goals.

Goal Too Strict: Automated verification of the goals
assigned to the threshold filter revealed that they were in-
sufficient to prove the correctness of their parent. The ob-
stacle derived from the fact the threshold filter was required
to prevent the alarm from tripping if the threshold number
of absence detectors was not reaching the “Y” state. How-
ever, an insufficient threshold could be arbitrarily close to

Gys A* A% Ik

R —
7ICTTTCCTACACCCTACG
_GAAAGGATGTGGGATGC AGAG

Cy3 A T

A* T* Qs A*
.
CTTTCCTACACCCTACG TCTC CTTTCCTACACCCTACG TCTC CTTTCCTACACCCTACG

\\'@AAAGGATGTGGGATGC AGAG
o3 A T

Figure 3: DNA strands used in the simple DNA experiment

a sufficient threshold. Therefore, the threshold filter could
not both satisfy the requirement to prevent the alarm from
tripping during an insufficient threshold and trip the alarm
during a sufficient threshold.

The obstacle was resolved by tightening the constraint on
the absence detector to not only enforce that the theshold
was not high, but also to enforce that it was low. This en-
abled the threshold filter to satisfy both requirements and
satisfy the parent goal. We verified in PRISM that our
MWT satisfies the the new CSL specifications.

Goals Coupled Too Tightly: PRISM verification re-
vealed an error in the specification of a leaf goal assigned to
the absence detector that was responsible for maintaining
a high threshold in the absence of a heartbeat. This goal
enforced that the threshold be maintained until a heartbeat
is detected. However, in the implementation of the absence
detector, the mechanism for detecting the heartbeat was too
tightly coupled to the thresholding process. Therefore, the
threshold would not be maintained until a heartbeat was
detected.

The obstacle was resolved by relaxing the CSL property,
allowing the absence detector to turn the threshold off once
a state is reached which has a high probability of detecting a
heartbeat within a specified time. PRISM verification con-
firmed that the change to the property corrected the error.

5. TOOL-ASSISTED DESIGN OF PRELIM-
INARY EXPERIMENT

In this section we show how the final verified model helped
determine specific parameters and molecules for initial labo-
ratory experiments. Specifically, we used the SMART model
to determine what length of DNA toeholds to use in the im-
plementation. Here, a toehold is a short length of unpaired
nucleotides at the end of a DNA strand. Since the toehold
length changes the rate and therefore expected time of a re-
action, we wanted to specify a toehold length that allowed
enough time for sufficient observation of the experiment, but
was short enough to minimize the overall length of the exper-
iment. Simply put, we wanted the experiment to run for the
shortest length of time where we could still perform enough
observations. We also used SMART to generate an expected
time until a threshold percentage of reactions completed,
which gave insight into how long the experiment should be
run. This tool-supported automatic analysis of the design
for the experiment saved laboratory time and cost.

The work described in this section was a simple, prelim-
inary experiment designed to check that we could achieve
observable climbing of a single ladder rung. This experi-
ment is in no way novel, but the experimental setup was
new to us, which motivated the effort. What is interesting
in the context of this paper is that, even with this very simple

experiment, the model checking proved useful in correcting
two inadvertent errors in our original design.

We defined a single, dynamic strand displacement reaction
as a CRN: AB+C — AC+ B. Briefly, two single stranded
DNA strands A and B are initially bound together, form-
ing species AB. Strand C' attaches to a toehold on A and
displaces strand B, leaving A and C bound together, form-
ing species AC', with strand B now unbound. We created a
model of this single reaction in PRISM and in SMART; both
model checkers were used to increase confidence in the accu-
racy of our models. We defined the DNA strands needed to
implement the reaction in an experiment but before order-
ing the strands from the commercial provider, we used the
models to gain information about the experiment.

The automated analysis provided two unique benefits. First,
the automated analysis of design alternatives helped answer
the question of what the DNA strands’ toehold length should
be for the reaction behavior to be slow enough that it would
be observable with the equipment we were using (described
below). Analysis with the SMART model checker showed
that we needed to decrease the planned length of the DNA
toeholds in order for the experiment to be observable. The 6-
nucleotide (nt) DNA toeholds that we had initially planned
to use would cause the experiment to complete too rapidly
for samples to be taken during its progression. The PRISM
and SMART models return the same values and agree with
the ODE solution [15]. Using these results, we chose a toe-
hold length of 4 nt to implement the reaction.

Second, the automated analysis of design alternatives helped
answer the question of what the time-to-imaging should be
for good observability. We were unsure when the reactions
would complete and, based on our reading of the literature,
expected to run the experiment for a few hours. Automated
analysis showed that with a toehold of length four, the reac-
tion takes approximately 112 seconds to reach 90% comple-
tion according to the SMART model, giving enough time to
take multiple observations of the reaction while being short
enough that there is little downtime. Based on the modeling
results, 4-nt toehold strands were ordered and worked well
in the experiments. Sampling intervals for the experiment
also were chosen based on the information from the model.

Figure 3 shows the DNA strands used in the experiment.
Here, Strand 1 is a domain A and a toehold T'; Strand 2 is
the complementary domain of A; and Strand 3 is the comple-
mentary domains of A and T. Cy3 and Cy5 are fluorophores
that absorb and emit light at wavelengths of 550/570 nm and
649/670 nm, respectively. Importantly, there is sufficient
overlap in the emission spectrum of Cy3 and the absorbance
spectrum of Cy5 that proximity-dependent fluorescence res-
onance energy transfer (FRET) can occur between the two
fluorophores. Thus, if the two dyes are separated by less
than about 10 nm, irradiation of Cy3 with 550 nm light will

Time-course fluorescence output
0.08
0.07
=0 sec
=-20 sec
0.06 =40 sec
=60 sec
‘;.‘ 0.05 =3=80 sec
_E: =®-100 sec
‘E 0.04 =+=120 sec
@
5 ——140 sec
c "
= 0.03 - 160 sec
=4-180 sec
=200 sec
0.02 |
=220 sec
240 sec
0.01 260 sec
/ 280 sec
0 - T T 300 sec
M O O N O W1 o WS O N~
O R N 00 00 O O O d N ™~
N 1 1N W1 N N O © © W »
Wavelength (nm)

Figure 4: Results of simple, initial experiment.

result in emission of photons from Cy5 (670 nm). A FRET
signal between Cy3 and Cy5 is, therefore, a very useful mea-
sure of the proximity of DNA strands to which the dyes are
chemically coupled. A change in FRET signal was used to
determine the rate of displacement of one strand by another
in the experiments.

Initial results (see Figure 4) indicate that the reaction
progressed as intended. However, we are not yet certain
that the results match our model. The fluorophores attached
to the DNA strands suffer from photo-bleaching; when they
are exposed to light multiple times, they start to give off less
light. To avoid photo-bleaching, we created a new sample
for each observation and waited the specified amount of time
before exposing the sample to light. This eliminates the
photo-bleaching, but also introduces the possibility of error
due to the multiple samples.

Compared to the initial longer expected time to equilib-
rium, the model checking indicated that we only needed to
run the experiment for a few minutes. The time estimates
are based on the length of the toeholds. Through model-
ing, we were able to determine before experimentation be-
gan what was likely to be an appropriate length to enable
observability. It is telling that even with an experiment as
simple as this, early model checking reduced the overall de-
velopment effort. We reduced the need to do trial and er-
ror experiments in the laboratory to find the right toehold
length. This lowered the development cost by saving labo-
ratory time and by reducing the number of different DNA
strands that had to be ordered.

6. RELATED WORK

Probabilistic model checking permits the analysis and for-
mal verification of systems that exhibit stochastic behavior.
Nanosystems, such as the molecular watchdog timer, are in-
herently stochastic. Probabilistic model checkers allow the
verification of the correctness of the modeled behavior at ei-
ther the individual device level or at the higher level of the
behavior of the assemblage (population) of devices. In our
work on the MW'T we have used the open-source, probabilis-
tic model checkers PRISM [26] and SMART [10], to analyze
the behavioral and performance requirements for the MWT.

PRISM has been used previously to model a variety of
biological case studies, including DNA circuits and DNA
nanorobotic walkers [11, 27]. PRISM also is used widely
to model probabilistic protocols, e.g., in distributed sensor
networks, and stochastic multi-player games [26]. PRISM
interfaces with Visual DSD, a design tool for DNA strand
displacement [28].

SMART has been used to model other types of stochas-
tic systems, e.g., in a NASA-funded study to evaluate an
airport runway safety monitor protocol for false alarms [43].
Stochastic Petri net formalisms have also been used to model
signal transduction in biological pathways [20]. A good
overview of the formalisms used in population models, in-
cluding the stochastic petri nets used in SMART, appears
in [21]. Model checking in support of the preliminary exper-
imental work reported here was performed using SMART.
To the best of our knowledge, this was the first time that
SMART was used in molecular programming [15]. The rest
of the model checking reported in this paper was done using
PRISM in order to take advantage of its CSL support.

Our work differs from most of the previous work in prob-
abilistic model checking by focusing more on the identifica-
tion, specification and analysis of requirements. An excep-
tion is work by Filieri, Ghezzi and Tamburrelli to use prob-
abilistic model checking to verify reliability requirements
[16]. Non-probabilistic model checkers also have been used
for goal-oriented obstacle analysis during the requirements
phase. For example, Alrajeh et al. have recently used model
checking and machine learning to automatically generate
obstacles for the safety-critical London Ambulance Service
from model checking counterexamples [1].

Our work also differs from previous computational ap-
proaches on molecular systems in that we formally specify
and validate the requirements. Goal oriented requirements
engineering, including KAOS [49] and TROPOS [3], repeat-
edly has shown benefits in eliciting, specifying and validating
requirements for a wide variety of safety-critical, secure, and
high-availability systems. However, despite the difficulty of
“getting the requirements right” for a new molecular device,
the requirements engineering of molecular programming is
rarely considered as a separate activity from design.

More broadly, there has been significant recent progress
in modeling biological or chemical systems. Yordanov et al.
have formalized and encoded DNA computing to allow use
of Satisfiability Modulo Theories (SMT) [53]. Fisher, Harel
and Henzinger have done computational modeling of biologi-
cal systems as reactive systems [17]. Hetherington et al. and
Sumner et al. have composed an advanced computational
model of a biological system from sub-models describing its
different aspects [22, 48].

Our experience developing the molecular watchdog timer
is consistent with the “T'win Peaks” idea, described by Nu-
seibeh [36], that requirements and architecture should co-
evolve. We used the probabilistic model checker extensively
and incrementally to check the alignment of goals with de-
sign alternatives. The obstacle analysis gave us a framework
for selecting among alternative designs [49]. It was hard to
correctly specify the requirements, and the automated anal-
ysis of the formal models revealed multiple instances of infea-
sible goals or inadequate agent assignments, given the reali-
ties of the stochastic environment in which the DNA device
operates. Often, the physical constraints drove our revision
(de-idealization) of the requirements. Whalen et al., report
similar experience with large avionic systems, in which the
requirements were as likely to be wrong as the models [52].
They found, as we did, that the analysis of formal models
was effective in uncovering inconsistencies between the re-
quirements and implicit assumptions about the environment
in which the system was to be deployed.

7. DISCUSSION

The tool-supported, incremental, requirements-design pro-
cess described here was developed to be general enough to
be applicable to other molecular programmed systems. The
intent is for this to support the development of other new
nanosystems by formally specifying an intended system and
applying automated tool support to identify unforeseen risks
to its achievement early on. Early, computational resolution
of missing and unrealizable goals saves time and cost by re-
ducing the number of experiments needed. The process also
appears to be applicable beyond molecular programmed sys-
tems to other systems in which the system goal is achieved
by the interactive behavior of a very large number of dis-

tributed, autonomous agents that execute in a probabilistic
environment and must be shown to satisfy key properties.
Examples of such systems include distributed, adaptive sen-
sor networks and coalitions of systems that display proba-
bilistic, nondeterministic behavior [47].

The framework we used is incremental in that the obsta-
cle analysis, including of the feasibility of the requirements
given the agents operating in the probabilistic environment,
forces consideration of the physical (here, chemical) limita-
tions, and the associated design constraints. The approach
provides a growing understanding of the feasibility or infea-
sibility of the design alternatives, and this drives the refine-
ment of the requirements to match reality.

8. CONCLUSION

The work reported here shows how programmed molecu-
lar systems can benefit from automated requirements anal-
ysis and verification. During incremental goal-oriented re-
quirements/design refinements, the use of model-based sim-
ulation, probabilistic model checking, and formal analysis
identified requirements flaws and latent design constraints
and helped us explore better alternatives. The final, veri-
fied model of the molecular watchdog timer was then used
to help select parameter values for initial laboratory exper-
iments. The verified model provides a baseline for a future
family of molecular watchdog timers whose robustness must
be assured in their envisioned uses.

9. ACKNOWLEDGMENTS

We thank Samik Basu, Gianfranco Ciardo, Anthony Finkel-
stein, Carlo Ghezzi, Axel van Lamsweerde, and the review-
ers for useful suggestions. This work was supported by NSF
Grant 1247051. Part of this work was performed while the
fifth author was on sabbatical at Caltech and the Isaac New-
ton Institute for Mathematical Sciences at the University of
Cambridge and the sixth author was on sabbatical at Cal-
tech and the Open University.

10. REFERENCES

[1] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo,
and S. Uchitel. Generating obstacle conditions for
requirements completeness. In ICSE, pages 705-715,
2012.

[2] D. F. Anderson and T. G. Kurtz. Continuous time
Markov chain models for chemical reaction networks.
In H. Koeppl, G. Setti, M. di Bernardo, and
D. Densmore, editors, Design and Analysis of
Biomolecular Circuits, pages 3—42. Springer New
York, 2011.

[3] Y. Asnar, P. Giorgini, and J. Mylopoulos. Goal-driven
risk assessment in requirements engineering. Requir.
Eng., 16(2):101-116, 2011.

[4] K. B. Athreya and S. N. Lahiri. Measure Theory and
Probability Theory. Springer, New York, NY, USA,
2006.

[5] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton.
Model-checking continous-time Markov chains. ACM
Trans. Comput. Log., 1(1):162-170, 2000.

[6] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P.
Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software
Eng., 29(6):524-541, 2003.

[7]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

A. Cailliau and A. van Lamsweerde. Assessing
requirements-related risks through probabilistic goals
and obstacles. Requir. Eng., 18(2):129-146, 2013.

L. Cardelli and A. Csikasz-Nagy. The cell cycle switch
computes approximate majority. Sci. Rep., 2, 2012.
Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips,

L. Cardelli, D. Soloveichik, and G. Seelig.
Programmable chemical controllers made from DNA.
Nat Nano, 8:755-762, 2013.

G. Ciardo, R. J. I1I, A. S. Miner, and

R. Siminiceanu. Logic and stochastic modeling with
SMART. Perform. Eval., 63(6):578-608, 2006.

F. Dannenberg, M. Z. Kwiatkowska, C. Thachuk, and
A. J. Turberfield. DNA walker circuits:
Computational potential, design, and verification. In
DNA, pages 31-45, 2013.

M. Delbriick. Statistical fluctuations in autocatalytic
reactions. The Journal of Chemical Physics,
8(1):120-124, 1940.

D. Doty. Timing in chemical reaction networks. In
SODA, pages 772-784, 2014.

S. M. Douglas, I. Bachelet, and G. M. Church. A
logic-gated nanorobot for targeted transport of
molecular payloads. Science, 335(6070):831-834, 2012.
S. J. Ellis. Designing a molecular watchdog timer for
safety critical systems. Master’s thesis, lowa State
University, 2014.

A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In ICSFE 11,
pages 341-350, 2011.

J. Fisher, D. Harel, and T. A. Henzinger. Biology as
reactivity. Commun. ACM, 54:72-82, Oct. 2011.

D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. The Journal of Physical
Chemistry, 81(25):2340-2361, 1977.

D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, and
H. Yan. DNA origami with complex curvatures in
three-dimensional space. Science, 332:342-346, 2011.
M. Heiner, D. Gilbert, and R. Donaldson. Petri nets
for systems and synthetic biology. In M. Bernardo,
P. Degano, and G. Zavattaro, editors, Formal Methods
for Computational Systems Biology, volume 5016 of
Lecture Notes in Computer Science, pages 215—-264.
Springer Berlin Heidelberg, 2008.

T. A. Henzinger, B. Jobstmann, and V. Wolf.
Formalisms for specifying Markovian population
models. Int. J. Found. Comput. Sci., 22(4):823-841,
2011.

J. Hetherington, T. Sumner, R. M. Seymour, L. Li,
M. V. Rey, S. Yamaji, P. Saffrey, O. Margoninski,

I. D. L. Bogle, A. Finkelstein, and A. Warner. A
composite computational model of liver glucose
homeostasis. I. building the composite model. Journal
of The Royal Society Interface, 9(69):689-700, 2012.
H. Jiang, M. Riedel, and K. Parhi. Synchronous
sequential computation with molecular reactions. In
Proceedings of the 48th Design Automation
Conference, pages 836-841. ACM, 2011.

Y. Ke, L. Ong, W. M. Shih, and P. Yin.
Three-dimensional structures self-assembled from
DNA bricks. Science, 338(6111):1177-1183, 2012.

[25]

(26]

27]

(28]

29]

30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

J. Knight. Fundamentals of Dependable Computing for
Software Engineers. Chapman & Hall/CRC, 2012.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd
International Conference on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages
585-591. Springer, 2011.

M. R. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska,
and A. Phillips. Design and analysis of DNA strand
displacement devices using probabilistic model
checking. Journal of The Royal Society Interface,
pages 1470-1485, 2012.

M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and

A. Phillips. Visual DSD: a design and analysis tool for
DNA strand displacement systems. Bioinformatics,
27(22):3211-3213, 2011.

E. Letier and A. van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design
engineering. In SIGSOFT FSE, pages 53—62, 2004.

N. G. Leveson. Safeware: System Safety and
Computers. ACM, New York, NY, USA, 1995.

X. Liu, Y. Liu, and H. Yan. Functionalized DNA
nanostructures for nanomedicine. Isr. J. Chem,
53:555-556, 2013.

K. Lund, A. Manzo, N. Dabby, N. Michelotti,

A. Johnson-Buck, J. Nangreave, S. Taylor, R. Pei,

M. Stojanovic, N. Walter, E. Winfree, and H. Yan.
Molecular robots guided by prescriptive landscapes.
Nature, 465(7295):206-210, 2010.

R. R. Lutz, J. H. Lutz, J. I. Lathrop, T. Klinge,

E. Henderson, D. Mathur, and D. A. Sheasha.
Engineering and verifying requirements for
programmable self-assembling nanomachines. In ICSE,
pages 1361-1364, 2012.

R. R. Lutz, J. H. Lutz, J. I. Lathrop, T. Klinge,

D. Mathur, D. M. Stull, T. Bergquist, and

E. Henderson. Requirements analysis for a product
family of DNA nanodevices. In RE, pages 211220,
2012.

D. Mathur and E. R. Henderson. Complex DNA
nanostructures from oligonucleotide ensembles. ACS
Synthetic Biology, 2(4):180-185, 2013.

B. Nuseibeh. Weaving together requirements and
architectures. IEEE Computer, 34(3):115-117, 2001.
A. Phillips and L. Cardelli. A programming language
for composable DNA circuits. Journal of the Royal
Society Interface, 6:5419-S436, 2009.

L. Qian and E. Winfree. A simple DNA gate motif for
synthesizing large-scale circuits. J Royal Soc Interface,
8:1281-1297, 2011.

L. Qian, E. Winfree, and J. Bruck. Neural network
computation with DNA strand displacement cascades.
Nature, 45:368-372, Oct. 2011.

P. W. Rothemund, N. Papadakis, and E. Winfree.
Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biology, 2(12), 2004.

P. W. K. Rothemund. Folding DNA to create
nanoscale shapes and patterns. Nature, 440:297-302,
2006.

[42] N. Seeman. Nucleic acid junctions and lattices.
Journal of Theoretical Biology, 99:237—247, 1982.

[43] R. Siminiceanu and G. Ciardo. Formal verification of
the NASA runway safety monitor. International
Journal on Software Tools for Technology Transfer,
9(1):63-76, 2007.

[44] D. Soloveichik. Molecules computing : self-assembled
nanostructures, molecular automata, and chemical
reaction networks. PhD thesis, California Institute of
Technology, 2008.

[45] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck.
Computation with finite stochastic chemical reaction
networks. Natural Computing, 7(4):615-633, 2008.

[46] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a
universal substrate for chemical kinetics. Proc Natl
Acad Sci, 107(12):5393-5398, 2010.

[47] 1. Sommerville, D. Cliff, R. Calinescu, J. Keen,

T. Kelly, M. Kwiatkowska, J. McDermid, and
R. Paige. Large-scale complex IT systems. Commun.
ACM, 55(7):71-77, July 2012.

[48] T. Sumner, J. Hetherington, R. M. Seymour, L. Li,
M. Varela Rey, S. Yamaji, P. Saffrey, O. Margoninski,
I. D. L. Bogle, A. Finkelstein, and A. Warner. A
composite computational model of liver glucose
homeostasis. II. exploring system behaviour. Journal
of The Royal Society Interface, 9(69):701-706, 2012.

[49] A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software
Specifications. Wiley, Chicester, England, 2009.

[50] A. van Lamsweerde and E. Letier. Handling obstacles
in goal-oriented requirements engineering. IEEE
Trans. Software Eng., 26(10):978-1005, 2000.

[51] B. Wei, M. Dai, and P. Yin. Complex shapes
self-assembled from single-stranded DNA tiles. Nature,
485(7400):623-626, 2012.

[52] M. W. Whalen, A. Gacek, D. D. Cofer, A. Murugesan,
M. P. E. Heimdahl, and S. Rayadurgam. Your “What”
is my “How”: Iteration and hierarchy in system design.
IEEE Software, 30(2):54-60, 2013.

[53] B. Yordanov, C. M. Wintersteiger, Y. Hamadi, and
H. Kugler. SMT-based analysis of biological
computation. In NASA Formal Methods, pages 7892,
2013.

[54] D. Y. Zhang and G. Seelig. Dynamic DNA
nanotechnology using strand-displacement reactions.
Nature Chemistry, 3:103-113, 2011.

APPENDIX

A. CHEMICAL REACTION NETWORKS

We very briefly review the CRN abstraction. Let A be
a finite set, whose elements we call (molecular) species. A
state over A is an element ¢ € N*, i.e., a function ¢ : A — N,
Intuitively, for each species S € A, the value c(S) is the
number of molecules of S that are present in the solution in
state c. We often think of a state ¢ € N* as a vector whose
components are the natural numbers c¢(.5).

A reaction over A is an expression « of the form

A1+A2L>B1+"'+Bm, ()

where Ay, Az, Bi, ..., By are (not necessarily distinct)
elements of A, and k is a positive real number. We call A;

and As the reactants of a, B1,- -+ , By, the products of o, and
k the rate constant of a. Note that (*) requires all reactions
in this paper to be bimolecular, i.e., to have exactly two
reactants. We freely use convenient, obvious abbreviations

such as writing 24 Ay B4+Ctor A+ A B+C.

A reaction « is applicable in a state c if the reactants of
« are present in c. In this case, the reaction @ may at some
time be applied to c, resulting in the new state ¢’ obtained
from ¢ by subtracting the appropriate numbers of reactants
and adding the appropriate numbers of products. For exam-
ple, if there are initially a; molecules of A1, a2 molecules of
A, and no molecules of B in solution, then repeated appli-

cations of a reaction A; + A i) B will eventually increase
the number of molecules of B to min{a1,az}.

A chemical reaction network (CRN) is an ordered pair
C = (A, R), where A is a finite set of species and R is a finite
set of reactions on A. The rate of a reaction o € R as in
(*) in a state c is ke(e) = EX where v is the volume of
the solution, and N = if A; # As then c(A1) - ¢(A2) else
c(A1) - (c(Ar) —1)/2 . (Note that kc(a) > 0 if and only if
« is applicable in ¢.) The CRN C operates probabilistically
as a continuous time Markov process with these rates [18,
2]. This determines, for any state ¢ the probability distri-
bution on the next reaction and the expected time until this
reaction.

The informed reader may notice that the CRN model is
closely related to three other models, namely Petri nets,
vector addition systems, and population protocols. These
connections are useful in many contexts, but they need not
concern us here.

B. CSL FORMALIZATIONS

Below are the CSL formalizations of the goal diagram in
Figure 1. These goals are ordered in breadth first order
following the order of the figure.

Our specification is designed such that domain specialists
can specify parameters according to their needs that will
then constrain the goal diagram. The parameters the user
must provide are:

u - Alarm should not be issued within u-time of the last
heartbeat

v - Alarm should be issued at least by v-time of the last
heartbeat

€ - Probability of error allowed by the u-delay
0 - Probability of error allowed by the v-alarm
Below is the top-level goal of our diagram. Given param-
eters, u,v,¢,d, the following constraints are placed on the
top-level goal:
(l—e)l-e)=(1—¢)
(1-61)(1=62)=(1-9)
ACHIEVE: Alarm iff no HB is provided within ¢-time

P1—cO<y—Asrip A
P210[Hpres = P21-6,9<g (P21-e;O<u—Atrip)]
P>10["Hpres = P>1-5,C<v—w, (Atrip V Hpres)]
P>10[Alarm = P>0Alarm)

P>1(mAlarm W Airip)

P10 [At”‘p - ’P21_52<>§waAla7‘m]

A
A
A
A

Below are the direct subgoals of the high-level goal. The Below are the subgoals of “AlarmTripped iff no Heartbeat

subgoals are simply partitions of the six individual proper- detected”. This refinement specifically enabled us to ver-
ties of the parent-goal, and their equivalence is clear. ify the components of the MWT individually by isolating
ACHIEVE: AlarmTripped iff no HB provided in ¢’ time their roles. The introduced variables are constrained in the
following way:
’le—el:‘gu_‘AtMp A\ & y
P>10[Hpres = P31-6,0<g (P>1—;O<uAtrip)] A (1-7m)1-7)=01-¢
PZlD [_‘Hpres — PZl—él Ogu—wa (At'rip \ Hp'res)] (1 - ’yl)(]‘ -)\1)(1 -)\2)(1 -)\3)(1 -)\4) (1 - 61)(6/2)
ACHIEVE: Alarm iff AlarmTripped and within ¢ — ¢’ (T=m)(1 —n2)(1 —n3) = (1= &)
time of the first AlarmTripped Wropp < g—wh
P>10[Alarm = P> 0Alarm) A ACHIEVE: Correct timer reset
P>1 (mAlarm W Agrip) A Reset A
P>10[Atrip = P>1-6,C<w, Alarm] P10 [Hdet = P>1-2,C<uwr,, Reset]
Below are the subgoals of “AlarmTripped iff no HB pro- ACHIEVE: Correct delay
vided in ¢’ time”. This refinement abstracts the role of de-
tecting the presence of a heartbeat from the rest of the goals P>10[Reset = Pxi1—y,0<uThi] A
and imposes the following constraint on the introduced vari- Th;, = —-Thyg
ables: , 'lelj[_‘Hdet - 'lefnl Ou—wa—Q*u)h—wthV‘P217n2
el-ea<(1l-a)(1-8)1-¢) (Tha W P>1-nsC<wnHaet)]

o 1l—6<1-— 6/2 . .
ACHIEVE: AlarmTripped iff Threshold met

e wp,<yg
e1-6 <(1—a)(1-p8)(1-05) P10 [ThL = 7’21—A2<>§w7-,,ff7’zl—xsDguﬁAm‘p] A
ACHIEVE: Heartbeat Detected correctly tracks the pres- P>10[Thy = P>1-n<w (Atrip V -Thpy)] A
ence of Heartbeats within ¢’ — " time Poi, (~Arip W —Thy)
P10 [Hpres = P21-pC<uw;, Pr1-aHae] A ACHIEVE: Initialize to Reset

PEID [_‘Hpres - le—ﬁowhrpzl—a (_‘Hdet w Hp'res)]
ACHIEVE: AlarmTripped iff no Heartbeat detected

Reset

ACHIEVE: Reset if Heartbeat detected
PZl*EDSu“Atrip A

P>10 [Hiet = P>1-1,<uw,,, Reset]
’lelj |:Hdct — ’PZlfe'l <>§9—wh (lefe'zmgu_‘At'rip)] A

ACHIEVE: Threshold delay if Reset

P10 [_'Hd” = P15 O<v-wa—uwy (Atrip V H‘M)} P>10[Reset = P>1—~,O<uThi]
AVOID: Alarm if not AlarmTripped ACHIEVE: Threshold if Heartbeat Detected is absent
Px1 (-Alarm W Avrip) P10 Hict = P1—n Cvwo—2wp,—win P1-ns
ACHIEVE: Alarm if AlarmTripped (Thag W P>1-nsO<whHaet)]
P>10[Apip = P1-5,C<w, Alarm] AVOID: AlarmTripped if reset
MAINTAIN: Alarm if AlarmTripped Poi0 [ThL — ’PZI—AQ<>§wroff’P21—>\3D§u_‘AtTip:|

a[Al = gAl
P10 [Alarm Pz arm] ACHIEVE: AlarmTripped if threshold for some time

P>10[They = P>1-5C<wy, (Atrip V Thu)]
AVOID: AlarmTripped until first threshold
P>1—v (Atrip W =Thr)

AVOID: Heartbeat Detected if Heartbeat not present
P>10[Hpres = P>1-8w, P>1—a (" Haet W Hpres)]
ACHIEVE: Heartbeat Detected if Heartbeat present
P>10[Hpres = P>1-8C<w, P>1-aHdet

