
129

Real-time Video Processing in Web Applications

Cristian Ionita

Academy of Economic studies

Bucharest, Romania

crionita@ie.ase.ro

Alexandru Barbulescu

Academy of Economic studies

Bucharest, Romania

alexbarbulescu@ie.ase.ro

ABSTRACT

The OpenGL ES standard is implemented in modern

desktop and mobile browsers through the WebGL API.

This paper explores the potential for using OpenGL ES

hardware acceleration for real time video processing in

standard HTML5 applications. We analyze the WebGL

performance across device types and compare it with the

standard JavaScript and canvas performance.

Author Keywords

WebGL; GLSL; OpenGL ES; kernel; convolution matrix;

JavaScript

ACM Classification Keywords

H.5.2 User Interfaces

INTRODUCTION
The present paper proposes a method of using hardware

acceleration available in existing devices in order to enable

real time video analysis and processing in standard web

applications. It measures the performance of the proposed

solution, compares it with existing techniques and

determines the range of devices and algorithm types that are

feasible using the current methods.

HARDWARE ACCELERATION IN WEB APPLICATIONS

WebGL (Web Graphics Library) is a JavaScript API

(Application Programming Interface) which offers access to

2D and 3D rendering in any compatible web browser. One

of its advantages is that no add-on or plugin is necessary.

This is used in HTML <canvas> elements. WebGL was

initially developed by Vladimir Vukićević ([1]) working for

Mozilla Foundation [3]. Initial release was in March 2011

but a stable release has been made two years later in March

2013. WebGL is a cross platform library also based on

OpenGL ES [4]. The first experiments of the author were

made in 2006 and in 2007 Mozilla and Opera did their

individual experiments in order to prove the usability of the

concept. In 2009 the Kronos Group started the WebGL

Working Group and in 2011 the first version of the standard

was published. The standard was adopted by the major web

browsers developers in 2013.

Although the standard was adopted in 2013 the technology

was widely adopted by the industry only in the last year.

The rapid adoption in the last 12 months (May 2014 – May

2015) confirms the industry’s interest in the technology

across all device types: desktop 62%  90% and mobile

29%  78% ([5]). The Kronos Group also published the

WebCL – Web Computing Language standard in March

2014, but currently no browsers natively support it.

One important concept is that WebGL allows using low

level programming and the power of the hardware graphics

processing unit. The library makes use of two buffers:

frontbuffer which is the image currently visible and

backbuffer which is the image being rendered. The browser

can move the backbuffer to the frontbuffer at any time

except during the execution of JavaScript code.

WebGL can draw points and lines but the basic shape for

2D and 3D drawings is the triangle. This is a primitive

figure for 3D drawings because a plane is uniquely defined

by 3 points. WebGL uses the parallel power of the GPU

(graphics processing unit) and the integrated or shared

memory to compute the final image.

In the last ten years the evolution of computer graphic cards

transformed them from a component that renders images

processed by CPU to one that delivers graphics processing

units being able to make real time processing and

transformation. In programming concepts, these moved

from Fixed Function Pipeline (FFP) to Programmable

Pipeline (or shaders) as in [2]. In a programmable pipeline

with GPU the programmer establishes the vertex

transformation and fragment processing using high level

programming languages like GLSL. The compiled

programs are loaded to the GPU and the tasks are

automatically executed. This is done by a complex system

consisting of hardware and drivers. The drivers are

exposing the hardware functionalities to the programmers

and graphics libraries.

The modern GPU exposes fully programmable hardware

units (also named shaders units). The name came from the

idea that the units are connected in a pipeline and the output

of one shading unit is the input for the next. The Vertex

Shader is the programmable Shader stage in the rendering

pipeline that handles the processing of individual vertices.

According to OpenGL documentation Vertex shaders are

fed Vertex Attribute data, as specified from a vertex array

object by a drawing command. A vertex shader receives a

single vertex from the vertex stream and generates a single

vertex to the output vertex stream. A Geometry Shader

(GS) is a Shader program written in GLSL that governs the

processing of Primitives. Geometry shaders reside between

the Vertex Shaders (or the optional Tessellation stage) and

the fixed-function Vertex Post-Processing stage. The

geometry shader is optional and does not have to be used.

After creation of vertices geometry we need to create

pixels. This is done by the rasterization process. This

process takes all the primitives and splits them into

130

individual fragments which are colored by fragment shader

and are turned into frame buffer. The programmable

fragment shader unit takes the fragments produced by the

rasterization process and executes an algorithm provided by

a graphics developer to produce the final color, depth and

stencil values for each fragment. This part can be used to

achieve special visual effects, including post-processing

filters.

One special part of the image processing is the use of

parallelization. Processing the images involves many

repetitive operations that are very time consuming. The

architecture of modern GPUs is based on many parallel

execution units and is appropriate for data parallel

algorithms.

KERNEL IMAGE PROCESSING

The bitmap image is represented by a matrix of pixels.

Many image processing algorithms can be expressed using

a convolution process to apply a kernel to an image. This is

done by applying a mask also named filter matrix or kernel.

It involves performing matrix operations in order to

calculate the result matrix. In the result matrix every pixel

value is calculated from the initial matrix multiplied with

the kernel matrix. In most of the cases the kernel matrix

consists of 5x5 or 3x3 values. These are enough for

obtaining most of the effects.

10 52 63 42 74

86 24 45 28 82

62 91 17 24 2

49 19 18 36 75

41 15 78 17 14

0 1 0

0 0 1

0 0 0

Figure 1. Convolution matrix

The new value for 45 is calculated in the following manner:

52x0+63x1+42x0+24x0+45x0+28x1+91x0+17x0x24x0=91

The method can be used for implementing edge detection

algorithms such as Sobel [6] and Frei-Chen [7]. The goal of

an edge detection algorithm is to identify points of an image

where the intensity changes abruptly. There are many

factors that need to be taken into consideration, such as

surface orientation, discontinuities, lightning changes, very

similar textures, etc. The aim of edge detection is to apply

edge detectors to an image and to receive a set of lines or

curves that delimits objects. The result is a gray-scale image

where each pixel value indicates whether it is or not on the

boundary of an object. There are many algorithms and the

results are very sensitive to image characteristics. Usually it

is better to try multiple edge detection algorithms and

choose the one that is best for the case. In every algorithm

there is a need to establish the threshold. For every pixel, if

the value is above the threshold it is considered part of the

edge, otherwise not. After this step named binarization we

can use other algorithms to discover the edges in the image.

The Sobel filter uses two 3x3 convolution matrices to detect

vertical and horizontal gradients of the image.

Figure 2. Sobel edge detection matrix.

These masks are applied to the 3x3 footprint of every RGB

color in the image. The results are then used to obtain the

gradient value.

Another algorithm used for edge detection is Frei-Chen

edge detector. The algorithm uses nine 3x3 convolution

masks. The weighted sum of all convolution results is used

to determine the final value for each pixel.

Figure 3. Frei-Chen edge detection matrices. [7]

The first four kernels are used for edges, the next four are

used for determining lines and the last one is used for

smoothing out the result. The projection equation used by

the algorithm is presented in figure 4.

Figure 4. Frei-Chen projection equation. [7]

In practice the results of Frei-Chen algorithm are better

because the algorithm is less sensitive to noise and is able

to detect edges with small gradients. Also Sobel can be

improved by a normalization factor which in Frei-Chen is

represented by the ninth mask [7].

CANVAS IMAGE PROCESSING

Using HTML5 canvas element to render the processed

video image involves two steps.

In the initialization step the canvas element is created and

added to the DOM tree. The canvas has the same size as the

source video. The context object is also created in this step

and saved for using in the display loop.

The second step is setting the display loop. The display

loop is based on the requestAnimationFrame method. For

each animation frame the current video frame is drawn on

the canvas. Before being displayed, the image is processed

by applying one or more convolution operators. Processing

131

is performed on the ImageData objects obtained by using

the getImageData method of the canvas context object.

GLSL PROCESSING

The proposed WebGL solution uses the OpenGL ES

rendering pipeline to process the source video frames.

Figure 5 shows the solution architecture.

Figure 5. OpenGL pipeline for image processing [8]

In the WebGL initialization phase we create the GLSL

program and the necessary attributes and uniforms (video

frame texture, kernels …). The program consists of two

shaders. The first one is a simple pass-through vertex

shader that processes the quad used to display the processed

frame. The second one is the fragment shader that applies

the convolution operators for every pixel of the texture. The

simplified single matrix variant:

precision mediump float;

uniform sampler2D u_image;

uniform vec2 u_textureSize;

uniform float u_kernel[9];

varying vec2 v_texCoord;

void main() {

vec2 onePixel = vec2(1.0, 1.0) / u_textureSize;

vec4 colorSum = texture2D(u_image, v_texCoord +

onePixel * vec2(-1, -1)) * u_kernel[0] + ...;

float kernelWeight = u_kernel[0] + u_kernel[1] +

...;

...

gl_FragColor = vec4((colorSum / kernelWeight).rgb,

1.0); } }

The video frame processing loop is constructed using the

requestAnimationFrame method. For each video frame the

following operations are performed: the current video frame

is transferred from the video element to the GPU texture

memory and the OpenGL ES pipeline is executed in order

to process and display the video frame.

BENCHMARK SETUP

In order to determine the merits and performance

characteristics of the two image processing techniques

across devices we set up a benchmark.

The hardware used for benchmarking is representative for

desktop, laptop and smartphone devices.

 Desktop Laptop Phone

Description

i7-920,

18GB, HD

7870 XT

i7-4500U,

8GB,

HD

Graphics

4400

HTC One

M8 - Krait

400, 2GB,

Adreno

330

CPU Cores 4 2 4

CPU Frequency 2.67 GHz 1.8 – 3 GHz 2.3 GHz

GPU Cores 1536 20 4

GPU Frequency
925 – 975

MHz

200 – 1100

MHz
550 MHz

Table 1. Hardware used for benchmarking.

For measurement we used DOMHighResTimeStamp objects

(accurate to the thousandth of millisecond) obtained

through Performance API. This technique was used to

measure image acquisition and processing times. The actual

WebGL drawing / processing time cannot be measured

directly from the browser. Because of this we used an

indirect method based on the fact that the browser will

honor a requestAnimationFrame request only after the

current drawing operation is completed. This technique

allows us to obtain an adequate measurement for the

WebGL performance for values >16ms.

PERFORMANCE ANALYSIS

Real time webcam edge detection

The first test was performed using the webcam as a video

source. The video was obtained using the getUserMedia

method. The resulting 640x480 video stream was channeled

to a visible video element on the page and used as source

for WebGL and canvas processing.

 Desktop Laptop Phone

WebGL FPS 60 60 34

Acq. / Proc. 0.4 / * 1.3 / * 5.2 / *

canvas FPS 37 32 7.2

Acq. / Proc. 0.4 / 24.6 1.1 / 26.6 4.8 / 111

Table 2. Sobel edge detection on 640x480 webcam video.

Acquisition and processing times in milliseconds.

From the results presented in Table 2 we can see that even

the application of a relatively simple convolution operator

in real time is possible only with the more powerful x86

CPUs. Only those CPUs have the necessary speed to apply

the operators in the required 30ms time frame using a single

thread.

The use of the GPU shaders for applying the operator in

real time is possible on all devices. Even the low power

Adreno 330 is able to finish the task in under 30ms.

132

The image acquisition time (transfer from the video stream

to canvas or GPU texture memory) is similar for WebGL

and canvas across devices.

In the following two subsections we analyze the most

important factors that influence the performance for this

class of problems: video size (total number of pixels that

need processing) and number of operations per pixel.

Sensitivity to video source size

In order to determine the sensitivity of the processing with

respect to the number of processed pixels we use the same

video re-encoded at 4 standard resolutions. The video was

streamed from the web server and the processing was

performed in real time on the client.

 Desktop Laptop Phone

320x240 (0.1 mp) 60 / 60 35 / 60 16 / 50

640x480 (0.3 mp) 30 / 60 19 / 60 7 / 45

1280x720 (0.9 mp) 16 / 60 10 / 58 3 / 40

1920x1080 (2.1 mp) 7 / 60 4 / 40 1.5 / 35

Table 3. Average number of frames per second using canvas /

WebGL.

Unlike the canvas processing time which evolves linearly,

the WebGL processing time remains almost constant.

Almost all FPS differences in the WebGL case are caused

by variations in HTTP transfer, video decoding and frame

drawing time.

Sensitivity to processing complexity

All the tests performed up to now used the relatively simple

Sobel operator (2 matrices). Other operators (like the Frei-

Chen presented above – 9 matrices) and filter combinations

can require a larger number of operations. In order to

determine the canvas / WebGL sensitivity to the number of

operations performed per pixel we apply the same

convolution matrix multiple times per pixel.

Operators Desktop Laptop Phone

2 60 60 53

10 60 60 48

20 60 60 43

50 60 60 55

100 60 60 20

500 60 51 3.5

Table 4. Average number of frames per second using WebGL.

The results show that the WebGL processing technique

presented above can be used to apply at least 50

convolution operators even on a mobile phone. The desktop

computer was able to process up to 25000 matrix operations

maintaining a frame rate above 30 FPS. The canvas results

are not presented in the table because the performance

degraded sharply after 2 operations.

FUTURE RESEARCH

Because the results of the proposed WebGL processing

technique are very promising we plan to extend our

research on more complex image processing and computer

vision algorithms. The next two types of problems we plan

to address are motion detection (control UI using webcam)

and object recognition (especially 1D and 2D barcode

scanning).

Another future direction of research is combining the

presented GLSL processing technique with the new Web

Workers API for exploiting the multiple CPU cores

available in modern devices for algorithms that cannot be

parallelized efficiently on the GPU.

CONCLUSION

In this paper we presented an improved method of

processing images in the context of HTML applications.

Our measurements show that WebGL is much better suited

for real time video processing even on mobile devices. The

standard canvas-based processing is not fast enough for

most video processing tasks. In the future the performance

gap between the two techniques will probably increase even

more based on the fact that the number of GPU cores

available in mobile devices will grow much faster than the

number of cores and the performance improvements in

WebGL 2 / OpenGL ES 3.0.

REFERENCES

1. ***.WebGL. 2013, OpenGL ES 2.0 for the Web.

Retrieved May 12, 2015 from

https://www.khronos.org/webgl/

2. ***.2015. WebGL Earth. Retrieved May 12, 2015 from

http://data.webglearth.com/doc/webgl-earthch1.html

3. ***.2015.MDN (Mozilla Developer Network),

Retrieved May 12, 2015 from

https://developer.mozilla.org/en-US/docs/Web/WebGL

4. ***.2013.The OpenGL ES Shading Language, The

Khronos Group Inc., Retrieved May 12, 2015 from

https://www.khronos.org/registry/gles/

specs/2.0/GLSL_ES_Specification_1.0.17.pdf

5. ***, WebGL Stats, Retrieved July 17 2015 from

http://webglstats.com/

6. Samta Gupta, Susmita Ghosh Mazumdar. 2013. Sobel

Edge Detection Algorithm, International Journal of

Computer Science and Management Research, Vol 2,

Issue 2, pp. 1578-1583, February 2013

7. Daniel Rakos. 2011, Frei-Chen edge detector,

Retrieved May 12, 2015 from

http://rastergrid.com/blog/2011/01/frei-chen-edge-

detector/

8. Gábor Sörös. 2014. GPU-Accelerated Joint 1D and 2D

Barcode Localization on Smartphones, Proceedings of

the 39th International Conference on Acoustics,

Speech, and Signal Processing (ICASSP 2014),

Florence, Italy. IEEE, pp. 5095-5099, May 2014

http://data.webglearth.com/doc/webgl-earthch1.html
https://developer.mozilla.org/en-US/docs/Web/WebGL
https://www.khronos.org/registry/gles/%20specs/2.0/GLSL_ES_Specification_1.0.17.pdf
https://www.khronos.org/registry/gles/%20specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://webglstats.com/
http://rastergrid.com/blog

