

MyBand – a software system for music performances
assistance

Cosmin Beniamin Cristea
Ovidius University of Constanta

124 Mamaia Bd, 900527,
Constanta, Romania

cosmin0009@gmail.com

Dorin-Mircea Popovici
Ovidius University of Constanta

124 Mamaia Bd, 900527,
Constanta, Romania

dmpopovici@univ-ovidius.ro

ABSTRACT
In our paper we introduce MyBand, a software system
dedicated to assisting a band during musical performances.
After presenting our motivation related to current state of
the art, we give short insights concerning software design
process and technical aspects of our work. After a section
dedicated to two research issues that lead us to the
implementation of two algorithms for chords recognition
and transposing, we conclude by discussing the MyBand’s
usability and some future directions we focus on.

Author Keywords
Software system; interaction; music performance.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Human Factors; Design; Measurement.

INTRODUCTION
In the purpose of improving musical rehearsals, a good
organization and management of dossiers containing scores,
tabs or song lyrics are needed, and there are few systems to
do that. However, any of these systems are useless when the
information needed to be saved increases or changes are
needed to be made because the sheets are always lost or
mixed, the editing cannot be done efficiently because each
sheet has to be changed, and a lot of time is wasted in doing
so.

As we know, a musical group which has a weekly activity,
must play song covers, so every week they need to learn 6
new songs. Therefore, there are already lyrics, tabs or
scores for these songs, or if they cannot find them, they
make them. As in any other fields, time is very precious,
and the disorganization of rehearsals reduces the quality of
the music they sing.
After analyzing all the songs and stand file factors that
disrupted a musical group rehearsal, as consequence
productivity and quality, we created a list of features the
app should have to eliminate the disorganization, but at the
same time to offer other features that the classic stand could
not provide, in order that group’s productivity will increase.

CURRENT EFFORTS
One of the most popular application to assist in musical
rehearsals is OnSong [1]. By storing thousands of songs,
translating the songs’ key or applying a capo, formatting the
chords and lyrics for optimal viewing, adding notes and
drawings, creating songs or editing existing ones, OnSong
permits to quickly set lists and organizing events. Other
essential facilities that this application offers are sharing
easily with other members of the band, viewing chords
diagrams for multiple instruments when holding on them,
the auto scroll mode, or the use of a pedal for hands-free
operation, playing audio files for rehearsals or just the
instrumental for solo singers, setting the metronome tempo
by tapping successively on the screen, integrating online
chords libraries of quality and legal content, and all of these
features are assumed to have a lower total price than the
cost of dossiers with files.

SongBook is the most complex application for
administration of songs collections with lyrics and chords,
and it can be used on most mobile platforms, but also, they
are available on Macs or Windows PC’s, for more
comfortable use [2]. The SongBook contains all the base
features for this kind of application like transposing the key,
creating song lists used for rehearsals or concerts,
formatting the lyrics and chords, but it has also some
unique features or some of them are better developed than
any other application, on them is the access to an extended
library of chords diagrams for different instruments like
guitar, ukulele, mandolin, using of chordpro format [12],
consisting in formatting the text and chords of a song with
higher precision. One of the biggest disadvantages of this
app is the lack of a common library with songs.

Planning Center Music Stand is a part of a larger suite of
applications that are dedicated to churches to ease the
organization various services, and the library of songs is
also only with religious songs [3]. To be able to use this
application, you need a monthly subscription to the full
suite of applications, and for the various bonus features, it
pays in addition. Being part of a larger suite, it has some
unique features, such as syncing with all the applications in
the package, which is necessary and useful for those who
need the whole package, also offers a web platform to help
with better management, this being an asset to other
applications. Music Stand has more features that offer an

15

Proceedings of RoCHI 2019

edge, including a metronome that adjusts by itself when the
song is changed, but also the ability to connect a pedal for
changing the songs.

My Band’s actual position towards these applications is
below their level, but the goal is to combine what they have
the best, and the result will be the most complete
application of its kind. In the moment we are writing our
paper, we already developed the main features of it.

The rest of this paper is organized as follows. The 3rd
section presents some design issues of our application
development and we highlight general architecture of our
solution. Section 4 presents some research challenge we
face with concerning chords’ recognition and transposing.
Then, we discuss on MyBand’s system usability and we
conclude with future work.

OUR SOLUTION – MYBAND SYSTEM
The proposed system, My Band offers a pack of features to
fill the main functional and nonfunctional requirements, and
has a modular architecture [9], making it very easy to

maintain or add new features. My Band is designed for
mobile devices, especially for tablets, and one of its
objectives is to be independent of other applications, with
that we mean the ability of managing everything about a
band, song, plan or live session.
In the following we will focus on some software design and
technical aspects.

Software design
From the beginning, we established that our software
solution’s main functional requirements are to create an
account, login, add/edit/delete/view songs,
add/edit/delete/view plans, download/upload songs, refresh
plans list and session connection. We also consider some
important non-functional requirements as follows:

1.Easy to use. The user does not need to be trained to use
the system. In terms of usability, learnability and efficiency
issues are addressed by using the constantly displayed main
menu consisting of the main modules of the application, so
the user is easy to find the action he/she wants to execute,

Figure 1: The Complete Use Cases Diagram (designed using LiveUML [9]).

16

Proceedings of RoCHI 2019

and once they learned the menu they are on a click distance
from any of functionalities. Also using this kind of menu, it
helps with memorability issues, by seeing the menu it is
easy to remember all the functionalities and steps to follow.
There are not many errors which could be made and the
existing consists in saving a song or plan with wrong data,
but any of these can be edited later, so it can be fixed the
errors. The satisfaction of using it is given by the short
number of actions the user needs to do to accomplish its
needs and by the quick response of the system [14].

2.Portability. The system can run on any operating systems

3.Security. Interruption of program execution does not
compromise the accuracy and integrity of the data. The
server must resist a large data traffic

4.Robustness. The system checks the date entered by the
software actors and displays the error messages and
requests the correct data entry.

All these requirements were used in visually designing a
complete use-case diagram (Figure 1), which models the
system functionality using actors and usage cases,
according Unified Modeling Language (UML) standard [7].

The use cases are a set of actions, services, and functions
the system needs to work. In this context, our system
develops and operates, such as a website. Actors are
individuals or entities that operate under defined roles
within the system [4].

In order to create a supplement description of some use
cases, as for “add song” one, we created the corresponding
activity diagram (Figure 2), that may take the place of the
activity flow section of a use case description. This diagram
describes the interaction between the system and the actor
[5].

In this specific Activity Diagram has described the
interaction between system and user when a new song is
added. The flow starts with the user’s request in order to
add a new song, followed by the system response by
creating a form where the user can enter all the information
needed to create a song. Finally, when the user has entered
all the information and requested to save the song, the
system applies the algorithms for chords recognition,
transpose to the chosen key, and format the given text with
the detected chords, and makes a version with just lyrics.
All these formatted texts are saved in the song details.

Figure 2: Activity Diagram for Use Case Add Song. (designed
using draw.io [13]).

In order to structurally describe our system, we designed
the class diagram depicted in Figure 3.

After analyzing the functionality requirements, we detected
the real-life entities on which the system models should be
developed. In this diagram, the attributes of each class are
described, but also the type of relationship between them.
The main entity is the Song, which has its attributes and
methods. The Song is saved in SongRegister, and every
Song contains a Key. Every Key contains more Chords.
Every Song is created and used by a User. Every User is
making part of a Band, can create and use Plans of a Band,
and these Plans are saved in a PlanRegister. Also, every
user can open a Session, and this Session can use a created
Plan.

17

Proceedings of RoCHI 2019

Figure 3: The complete class diagram (designed using
LiveUML [8]).

Technical aspects
The whole ecosystem of this application is based on the
.NET libraries (Figure 4). For developing the cross-
platform mobile application we used the Xamarin
framework, building a Xamarin.Forms project. Xamarin is a
framework developed by Microsoft for developing cross-
platform applications, whose performance, and feel are
close to native.

Figure 4: General MyBand’s system architecture.

For the connection with an external database, we created a
RESTful API with ASP.NET Web API to assure a secure
connection. RESTful API is way architectural. RESTful
API is an architectural style used for communication in web
services, using HTTP requests like GET, POST, UPDATE,
DELETE.

For the real-time communication between devices, we used
SignalR with ASP.NET Core. The external database is a
MySQL database, and the local one (on device) is an
SQLite database. We found these technologies to be
compatible with both operating systems, iOS and Android.
The songs page is filled with a list of songs, saved in
SQLite database founded on the device. On this page, you
can view songs, delete them, add new songs, or edit the
existing ones.

Everything done on this page affects only what is saved on
the device, later the user can upload the changes to
everyone (Figure 5).

Figure 5: Songs page and SongView page.
On the left is an image showing the song's view page. This
page has a section of content that in this case is filled with
the webpage created by the run of the algorithm for
detection and formatting of the chords. This page contains a
song edit button. At the click of the button will be displayed
a form with all the current details of the song, these details
can be modified and saved later.

RESEARCH CHALLENGES
The main reason for this application is to replace the classic
dossiers with files and to stop printing thousands of files
every time when we need a new song or we need to edit an
old one, but also it has a second more challenging feature
needed, and this is to detect from a given plain text which
are the chords, to transpose them in the chosen key, and to
format 2 different pages, the first one with chords and the
second one just with lyrics. To make that possible we
created two algorithms, for chords’ recognition and
transposing.

18

Proceedings of RoCHI 2019

The Chords Recognition Algorithm
This algorithm has as an input a plain text, which should
contain the lyrics and chords together.

The first step of this algorithm is to split the input text in
words, so it creates an array of words.

The second step is to check every word in the array if it is a
chord or not. To make that possible we created a regular
expression for standard chords format. A regular expression
(RegEx) [6], is a string which describes a model/pattern to
search in another string, or even an entire file. To build this
regular expression, we first created finite state automata
(FSA) that contain different final states (Figure 6).

In order to reach one of these states, it is necessary that the
text entered conforms to one of the standard formats of the
chords.

We will briefly describe how this FSA diagram works. The
chord can start with many white spaces. To reach the first
final state (q1) it needs to have at least one basic note
between A and G. Once this state is reached the input will
be accepted as a chord.

From (q1) it can reach 4 more states. The first one will be
(q2) when after the basic note, it has #, ##, b or bb, and the
chord will look like A#. The second one(q3) is when the
chord is not basic anymore, and it has after the basic note
one of the following tags: sus, add, maj, min, aug, dim, m.
Each of these tags means, a different pattern of this chord,
for example, m comes from minor, so the chord will have
first a minor third, and second a major third. We will
discuss this later, in the section with music theory needed to
build these algorithms.

The third state is (q4) and it can be reached when after the
basic note is a number from 1 to 9, for example, one of the
most used is 7, so the chord will be A7.

The last one is not a final state, and basically from each
state reached already it should be able to reach state (q5),
state (q2) can only be reached from the state (q1) when the
state (q3) can be also reached from (q2). State (q4) can be
reached from both (q2) and (q3). The state (q5) is a
delimiter between basic chord and bass note, so everything
before reaching this state is a chord, and what is after (q5)

is a single note, the bass note.

Based on this FSA, we created a RegEx, which can be
translated and used in any programming language.
If the word checked is found to be a chord, the third step of
the algorithm is to transpose the found chord from the input
key to the current key. To do that we used the second
algorithm for transposing, which we will explain it later.

After the chord is transposed, there will be HTML markers
applied to the returned chord, to make it look like a chord.
If the checked word is not a chord, it will create a string
with all the words found before a chord, and this string will
be marked with HTML markers as lyrics.
When the algorithm ends, all the information processed is
parsed into a string of words and tags and saved into the
database. When the saved song is opened, it loads all the
information it needs from this string, in this way the
algorithm should run only once.

The Chords Transposing Algorithm
This algorithm has as an input the original key, the chord,
and the current key. Its job is to find the equivalent chord of
the given chord in the current key. To do so we have
created a dictionary [10] with all the keys and their chords,
also a dictionary with all the keys and their notes (Figure 7).

Each key has its order for chords, so the first step of the
algorithm is to check if the given chord is making part of
given key chords. If it is so, it will return the position of the
chord in the original key, and the chord found in the same
position for the current key. When a chord is transposed, it
will be saved in a dictionary, so it will not be a need to
translate that chord again.

The problem is when the input chord is not making part of
original key chords, so the algorithm needs to transpose it
as a simple note. Each note has a value, for example, the
first one is A and has the value 1, but after is A# and Bb
which have equal value, 2. So the algorithm must decide
which one of them to use.

Figure 6: FSA for standard chords.

19

Proceedings of RoCHI 2019

Figure 7: The circle of keys (adapted from [11]).

For that, we created a dictionary with all the keys and their
signs # or b. so if the current key has the sign # it will
choose A#.

Figure 8: Text formatted with and without chords.

Finally, based on the same RegEx, we can decide if a word
is a chord or not. When a chord is found it will delete
everything, including white spaces, and newline markers
until it finds a word which is not a chord.

Music Theory
Part of the theory of music used in the development of the
application consists of detecting and manipulating a song's
chords. Any song is made up of a sequence of notes with
different duration and height. These notes are made up of
several tones and sub-tones, which may differ depending on
the sound source. In turn, several notes form chords, which
can take different forms, depending on the style of the song.

A simple example is the difference between a minor chord
and a major one, a minor chord has on the first position the
base note, on the second position a note with 3 semitones
higher than the base note, and on third position a note with

7 semitones higher than the base note, whereas a major
chord has on the second position a note with 4 semitones
higher than the base note.

A group of chords forms a key, following simple rules that
can be seen from the Circle of Key (Figure 7). Each Key is
based on a basic chord, which also determines the height of
this key.

By detecting chords, the position of the chord is also
determined in its key, or whether or not the chord is part of
this key, which is very useful when we want to change the
height of a key, the chord taking the value of the chord that
is on the same position in the new key.

SYSTEM TESTING AND EVALUATION
Usability testing of our application was performed by
means of an experiment that involved 26 users, aged
between 19 and 63, with 73% of the users under 30 years
old. The sample of users was selected among members of a
Pentecostal church, after a Sunday service. Questions were
designed with answers on a Likert scale from 1 to 7.

Figure 9: The extent of users’ experience with musical
instruments.

From the mobile devices use point of view, all users stated
they used the mobile phone very frequently (score 7,
meaning very frequent use, obtained from 80% of the
users).

Given the specific of the app, we were also interested in the
degree of experience in working with a musical instrument
(Figure 9), as well as the existence of previous experience
with similar application to the one proposed. The results are
presented in Figure 10.

It can be noted that all users with experience in using
musical instruments (except for 1), also had experience
with similar apps.

The answers to item “I consider that using the app allowed
me to focus better during the artistic representation.” of the
questionnaire were scored 6 and 7 by all participants, and
only 2 users considered the information displayed to be
confusing.

20

Proceedings of RoCHI 2019

Figure 10: Distribution of users according to experience in
using a musical instrument and experience in using a similar

app.

The users’ feedback was positive, among the comments we
received, we mention: “I liked introducing new songs
straight from the phone, without using a computer.”,
“Automatic switch of scales is great”, “Easy to use, I like
the ability to change colors to musical accords”.

Also, it helped us gather some ideas regarding new features
to be included in the application, such as: “It should offer a
way to connect more devices together synchronously”,
“Export words together with musical accords in pdf
format”.

CONCLUSIONS
MyBand can easily ensure the minimum necessary for any
band, filling its goal of replacing the dossiers, and
providing extra features to help the musicians in their daily
activities. It offers a community database of songs so every
user can share their songs.

Our users are satisfied with the fact that the system requires
no devices other than the mobile device for all the
functionality, and that the chords transposition and
detection function does not use a web service, this makes it
much faster than other applications.

It is very helpful for bands to create their list of songs for
concerts and rehearsals, and it is user-friendly with a simple
and intuitive user interface.
It offers also the possibility to connect multiple devices for
real-time sessions, being a very helpful feature for
instrumentalists.

The goals for the near future are to implement all the
missing feature and make it the most complete mobile
application for musicians.
A goal that has not been met at the moment is that the live
session does not work independently from the internet,
which sometimes makes it work slower than we want
because of the bad connection.

We want for this functionality to find a solution that does
not use the Internet. We also want access to a database of
songs with massive and legal content in the future, so users
do not have to add too many songs.

REFERENCES
1. Jason Kichline. Onsong for android.
https://www.indiegogo.com/projects/onsong-for-android#/
 Accessed:2019-06-10.

2. Descriere songbook.
https://www.linkesoft.com/songbook/index.html
Accessed:2019-06-10.

3. Planning center music stand.
https://planning.center/music-stand/ Accessed:2019-06-10.

4. Use case diagram. https://www.smartdraw.com/use-case-
diagram/ Accessed:2019-06-12.

5. Activity diagram for use case.
https://sis.binus.ac.id/2016/12/13/activity-diagram-for-use-
case/ Accessed:2019-06-12.

6. Shaili Dashora. Regular expression in c#. https://www.c-
sharpcorner.com/UploadFile/955025/regular-expression-in-
C-Sharp/ Accessed:2019-06-13.

7. OMG: Unified Modelling Language Superstructure,
version 2.0, ptc/03-0802, 2003.

8. LiveUML: https://liveuml.com
9. Modular Architecture:
https://www.webopedia.com/TERM/M/modular_architectur
e.html
10. Musical chords and keys:
http://www.guitaristsource.com/lessons/chords/keys/
11. Circle of Fifths: https://www.libertyparkmusic.com/the-
circle-of-fifths/
12. ChordPro: https://www.chordpro.org/
13. draw.io: https://www.draw.io/
14. HCI and Design: http://www.nixdell.com/classes/HCI-
and-Design-Spring-2017/Lecture14.pdf

21

Proceedings of RoCHI 2019

