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ABSTRACT
This paper presents an approach to creating a human readable,
flexible and extendable API for gesture-based interaction in
Virtual Reality using the LeapMotion controller. The Fluent-
Motion API integrates a variety of modern technologies, such
as C# LINQ (Language Integrated Query), Reactive Exten-
sions and SteamVR. FluentMotion comes as an extension of
the basic LeapMotion API, meant to facilitate the integration
of gesture-based interaction in Virtual Reality projects. The
API integrates with the Unity Game Engine, which provides
the means of creating cross-platform Virtual Reality applica-
tions, allowing the definition of new, custom gestures using a
human readable description (based on already existing ones)
and creating interaction callbacks. FluentMotion works on
HTC Vive and Oculus Rift for VR-enabled application and
can also be used in desktop mode. This work improves the
rudimentary API offered by LeapMotion and offers a more
natural, powerful and flexible way of detecting and composing
hand and finger gestures.
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INTRODUCTION
The concept of Virtual Reality (VR) has been around since the
late 20th century, with many prototypes being developed as
early as the 1960s. In 2016, the first two consumer headsets
were released by HTC and Oculus. Since then, the Virtual
Reality industry grew exponentially, being used in a variety of
applications ranging from entertainment to space exploration.

One of the main shortcomings of the current virtual reality
setups is the interaction through handheld controllers, which,
to many, feels unnatural and unintuitive to use. To solve
this issue, LeapMotion released Orion [13] in 2016 for its
already existing LeapMotion Controller. The controller is a

USB device meant to capture hand and finger motions without
actually touching it. LeapMotion’s basic API for Unity is
straightforward, extensible and very well integrated with the
game engine, but it lacks flexibility, complex compositions
and natural, human-readable description. Thus, the need for a
more advanced API arised and FluentMotion was researched
and developed with this need in mind.

FluentMotion is an extension of the LeapMotion API, based
on Reactive Extensions [1], meant to facilitate the integration
of gesture-based interaction in VR applications, that offers
a more natural, powerful and flexible way of detecting and
composing hand and finger gestures. Reactive Extensions is an
implementation of the observer and iterator design patterns [5],
available in many popular languages, such as C#, Java, C++
and Swift. Reactive Extensions use functional programming in
order to reduce the amount of boilerplate code one has to write.
The API was partially inspired from ReactiveUI [3], a .NET
framework for model-view-viewmodel (MVVM) applications
based on Reactive Extensions. Some of the gesture detectors’
syntax is based on the one of ReactiveUI’s ReactiveObject.

FluentMotion was built for the Unity Game Engine, a very
popular game engine, used to empower a large number of
VR projects. This provides increased usability, as it can be
easily downloaded and integrated in any Untiy project straight
from the built-in Unity Package Manager. The user simply
adds the LeapMotion "prefab" to his project, then builds the
FluentMotion hands rig on the LeapMotion one. On the new
rig, the user can add any gestures (as Unity scripts) to be
detected for the hand the script is attached to. Base gestures
are defined in abstract classes that must be extended. Only
one method needs to be implemented, namely the OnDetect
callback. Once this is done, the detector is ready for usage.

A custom made application serves as a testbed for the Flu-
entMotion API. The application features a set of icons repre-
senting one of the eight tested custom gestures the user has
to perform. The icons dynamically change as the gestures are
performed and correctly recognized.

The main limitations identified are mainly the ones that affect
the LeapMotion controller, namely that hand gestures can
only be recognized when performed in the user’s field of view.
However, one of the shortcomings of the API is the detection
of complex moving gestures, which proves difficult. As of the
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current implementation, the only moving gestures supported
are simple swipes.

RELATED WORKS
Ever since it was introduced to the public, LeapMotion
promised to offer that which no other controller could do,
namely provide natural, gesture-based interaction in VR envi-
ronments. Even with studies that concluded that LeapMotion
was not yet suited to compete with traditional input devices in
desktop environments, for example as a contact-free pointing
device [2], in VR it was quickly adopted as a much waited
alternative to traditional, unnatural and obtrusive handheld
controllers and thus LeapMotion enabled VR applications be-
gan to appear in the scientific world. Most attempts at using
the LeapMotion controller in VR either implement the full
gesture recognition logic based on a complex, low-level com-
position and detection API [8], or use the complex gesture
composition mechanism developed for Unity [7], involving
basic detectors and logic gates.

Kerefeyn and Maleshkov [9] used LeapMotion to control and
manipulate objects in a VR scenario. Their solution splits
the VR logic and the interaction logic and, while the overall
interaction style proved to be a success, programming the
interaction logic was cumbersome and strictly hard-coded for
their application.

Vaitkevičius et al. [12] used LeapMotion to recognize the
American Sign Language, building a system that is capable of
learning gestures. The detection logic is implemented through
the low-level API provided by the controller, extracting four
types of hand features and manually composing either station-
ary or motion enabled gestures.

Khundam [10] use LeapMotion to control the movement of
a first-person avatar in a VR scene. Movement is controlled
by predefined gestures through LeapMotion’s SDK for Unity,
detected through complex composition of basic detectors using
logic gates. The same gesture composition and detection
approach is employed by Pop and Sabou in their work on
dynamic data visualization and manipulation in VR [11].

While excellent results were obtained in all cases from inte-
grating LeapMotion in various VR research, the process of
complex gesture composition and detection is encumbering,
both through the low-level API and the LeapMotion SDK for
Unity, the resulting programming logic being restricted to
specific use-cases, difficult to extend and, most importantly,
difficult to understand by other programmers. As far as we are
aware, no other high-level libraries exist that implement the
LeapMotion gesture recognition logic in a natural, powerful
and flexible way, although various hints at possible such ways
for structuring such APIs have been identified [6].

THE LEAPMOTION CONTROLLER
The LeapMotion controller (Figure 1) is a device that consists
of two stereo cameras which track infrared light with a wave-
length of 850 nanometers (allowing it to work even in dark
rooms) [4]. The device has a large interaction space, about
0.37 m3. Its range is limited by LED light propagation through
space, which is roughly 60cm from the sensor [4].

After the hardware does its job of recording the images, the
software starts doing some heavy mathematical lifting. De-
spite what most users think, the LeapMotion controller uses
raw sensor data for tracking, not depth maps.

The LeapMotion service is responsible for processing this
sensor data. Every application that uses LeapMotion has a
reference to an implementation of this service, either for Vir-
tual Reality or for desktop mode. First, the service removes
background objects and compensates for ambient lightning,
and then reconstructs a 3D representation of the raw device
data.

The tracking layer then extracts information from the 3D rep-
resentation and feeds these results as frames to a transport
protocol. From thereon, each application uses this frames as
input.

On June 11, 2018, LeapMotion released the latest generation
of Orion - version 4. It has been in beta since, but it came with
major improvements over the past iterations of LeapMotion’s
tracking software. These include:

• increased range of the sensor from 60 to 80cm

• faster hand initialization

• better hand pose stability and reliability

• more accurate shape and scale for hands

However, the core of the LeapMotion API remains the same
and, even though it is straightforward, extensible to a certain
degree and very well integrated with the Unity game engine,
it still lacks flexibility, complex compositions and natural,
human-readable description [8].

LEAPMOTION GESTURES
The LeapMotion API [8] defines mappings for four human
body parts:

• arm (from elbow to wrist) - has one hand attached

• hand - has five fingers attached

• finger - has three joints (for attaching objects) and four
bones

• bone - different types of bones in a finger

Figure 1. The leapmotion controller
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Figure 2. Leap Thumb extended detector

The LeapMotion API notifies client applications with updates
on the position, direction and velocity of hand elements de-
tected by the controller on average every 10-14 milliseconds.
It is thus the task of the client application to detect patterns
which constitute the desired gestures in this stream of events,
which can lead to highly complex detection logic.

The LeapMotion SDK for Unity offers a variety of gesture
detectors already implemented, which can also be combined
by the use of a Logic Gate. The logic gate is a higher level
detector, combining two or more basic detectors.

As an example, a "thumbs up" gesture would be detected as
combination of the following detectors:

• Finger Extended Detector - configured to detect a thumb
extended and other fingers not extended (Figure 2)

Figure 3. Leap Thumb pointing up detector

Figure 4. Leap Thumb pointing up detector

• Finger Pointing Detector - configured to detect that the
thumb is pointing up (Vector3(0, 0, 1)) relative to the hori-
zon (Figure 3)

• And Logic Gate - to combine the other two detectors and
have callbacks (C# scripts) attached to it (Figure 4)

This approach requires adding three components to a game
object and referencing the first two detectors (Finger Extended
Detector and Finger Pointing Detector) from the Logic Gate.
This can quickly get out of hand when requiring a high number
of combined gestures.

REACTIVE EXTENSIONS
ReactiveX is a powerful library for asynchronous and event-
based programming, which allows expressing complex event
handling logic using functional programming concepts. It is
an implementation of the observer pattern meant for event-
driven programming. It also extends the observer pattern with
operators that allow the user to compose sequences declar-
atively without worrying about low-level concepts (such as
multithreading and the problems that come with it).

Figure 5 shows how an operator works on an observable. In the
example, the operator is filter. Filter takes as input a predicate,
a function that maps a value to a boolean (true or false). So,
from the source observable [2, 30, 22, 5, 60, 1], by filtering
the elements greater than 10, we are left with only [30, 22,
60]. Note that the elements are emitted in the same order that
they were in the source, almost instantly. The vertical line at
the end represents the end of the observable stream. One can
attach a callback to that, called OnComplete.

Figure 5. Example of a RX operator
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The main data structure used by ReactiveX is Observables. As
stated on their intro page:

You can think of the Observable class as a “push” equiv-
alent to Iterable, which is a “pull.” With an Iterable, the
consumer pulls values from the producer and the thread
blocks until those values arrive. By contrast, with an
Observable the producer pushes values to the consumer
whenever values are available. This approach is more
flexible, because values can arrive synchronously or asyn-
chronously. (ReactiveX intro)

The following figures illustrate the resemblance between the
iterable and observable.

Algorithm 1 Iterable
GETDATAFROMLOCALMEMORY()
.SKIP(10)
.TAKE(5)
.MAP(s ! s+ ”trans f ormed”)
.FOREACH(println(”next ! ”+ it))

Algorithm 2 Iterable
GETDATAFROMLOCALMEMORY()
.SKIP(10)
.TAKE(5)
.MAP(s ! s+ ”trans f ormed”)
.SUBSCRIBE(println(”onNext ! ”+ it))

One might say that the only difference is the call to subscribe
instead of forEach. While, indeed, both of the code snippets
produce the same result, the real difference is the data flow.

In the forEach example, the thread is blocked until 15 elements
arrive from the getDataFromNetwork call (first 10 are skipped,
then only 5 are processed by the map).

In the subscribe example, the only delay in the thread’s ex-
ecution is the creation of the observable stream, after which
other instructions are executed. When data arrives from the
getDataFromNetwork, the thread which created the observable
is interrupted and data is processed.

FLUENTMOTION GESTURES
From LeapMotion’s human body parts, FluentMotion makes
use only of hands and fingers, and defines the following basic
gestures.

Finger Gestures
• IsExtended - selected finger is extended

• IsPointingTo - selected finger is pointing to a given target
(Unity Game object or a hand)

• AreExtended - selected fingers are extended (the others are
marked as don’t care, so they could be extended or not)

Hand Gestures - single hand
• IsPinching - hand is pinching (as of Orion 4.4, i.e. when

PinchStrenght > 0.8)

• PalmIsFacing - palm is facing a given target (can be any
object that has a mapping to a Unity Vector3) with a given
angle tolerance

• IsFist - hand is making a fist (i.e. FistStrenght > 0.8)

• IsMoving - hand is moving in a given direction (expressed
as a Unity Vector3) with a given speed (in millimeters per
second) and angle tolerance (for the direction)

Hand Gestures - both hands
• PalmsAreFacing - both palms are facing a target object or,

if no object is given, facing each other with a given angle
tolerance

• AreMakingFists - both hands are making fists

• AreMoving - both hands are moving in a given direction
(Vector3) and with a given angle tolerance

FluentMotion also supports selecting only some fingers from a
hand for extra processing, like checking which is extended and
which is not or more complex predicates like finger pointing
in a dynamically changing direction.

Besides the already defined gestures, users can create their
own gesture detectors by implementing the IReactiveDetector
or by inheriting from one of its three base implementations:
ReactiveFingerDetector, ReactiveHandDetector or Reactive-
HandsDetector.

The main advantage of FluentMotion is that all gestures -
basic and user defined - can be chained indefinitely. Through
chaining, more complex gestures can be defined, like swiping
right with your left hand while your thumb is up and your
index is pointing towards some game object or towards the
sky.

Unity integration
FluentMotion integrates easily with Unity through attaching
ReactiveHand and ReactiveHands scripts to three new empty
game objects as illustrated in figures 6 and 7. The parent-
children hierarchy is recommended, though not mandatory.

Figure 6. Setting up FluentMotion game objects

Creating Gesture Detectors
Detectors can be created by simply extending the Reactive-
HandDetector class in a script. As an example, a possible
implementation for the "L" gesture - thumb and index are ex-
tended, while the others are not (table 1) - is shown in Figure
8.

The code in Figure 8 is one of many ways for composing
this gesture. Alternatively, an implementation using the When
construct is shown in Figure 9
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Figure 7. Script attached to the right ReactiveHand

The When operator is a very powerful construct available in
FluentMotion. The first argument to this operator is an optional
reduction (combination) lambda function which takes two
boolean values as input and returns one boolean value. The
default value for this reduction function is the AND operator
(the returned boolean value is the logical "and" between the
two inputs). Then comes a variable number of predicates,
lambda expressions that take as input one value (of the same
type as the underlying data stream) and return a boolean value.
The combination lambda is applied to each of the predicates’
outputs, left to right. If one of the values changes the result of
the reduction from true to false, the reduction process stops
(due to the shortcircuit property of boolean operators) and the
whole data stream cancels.

Figure 8. The ReactiveHand script start function

Figure 9. The ReactiveHand script start function, using the When opera-

tor

Figure 10. Mixing gesture composition methods

Of course, a mix of the two methods described in figures 8
and 9 can be used - say, for when you also want the thumb to
point upwards (Figure 10).

Adding callback functions to be executed when a gesture is
correctly recognized is as easy as implementing the OnDetect
method. One possible implementation is shown in Figure 11.
The params object[] others are variable arguments - you can
pass any extra parameters to this function.

Figure 11. OnDetect function

These custom scripts can then be added to one of the Reactive-
Hands in the scene - for example, the right hand - as shown
in Figure 7. The Interval field represents the sampling rate
expressed in seconds. The sampling rate means how often the
same gesture should be detected. The field is of type double,
so values less than 1 second can be set. The default value is
500ms (0.5 seconds).

TESTING
For testing purposes, a simple application with 8 possible ges-
tures was created, each gesture having an associated icon. The
icon represents the gesture the application expects from the
player. Once that gesture is detected, the icon (and expected
gesture) changes to another random gesture from the pool. The
8 possible gestures and their icon representation are shown in
table 1.

Figure 12. Icon not changing when an incorrect gesture is made
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Gesture Icon

Thumbs-up

"L"

Fist

Pinch

Swipe-up

Swipe-
down

Swipe-left

Swipe-right

Table 1. Gesture to icon mappings

All the gestures are expected to be done by either the left or
the right hand. In Figure 12, a pinch gesture is made with the
right hand, but the application expects an "L" gesture, so it
does nothing.

PERFORMANCE
Reactive Extensions operators have varying performance, de-
pending not only on the used operator, but also on the mapping
or condition given to that operator. FluentMotion uses only
the simpler operators from the RX environment, like Select,
Where, Subscribe and Sample.

Chained operators do not add too big a performance penalty
over the simpler ones. This is due to short circuiting in Re-
active Extensions operators. That is, if the first operator in
a chain fails (the gesture was not detected), all the operators
after it aren’t hit.

The short circuiting also means that chaining should be done
in a careful way. The IsMoving operator has a much higher
computational cost than the IsPinching operator. This means
that moving the latter operator higher up the chain greatly
impacts the overall performance of the application.

For better performance gains, more than one thread can be
used. The user can take advantage of the Reactive Extensions’
ObserveOn(Scheduler.ThereadPool) operator to schedule a
detection chain on a different thread from the RX Pool.

One minor drawback of the ObserveOn is that the thread
must be switched back to the main thread before doing any
operations on the scene by calling the ObserveOnMainThread
operator before the Subscribe call.

API REQUIREMENTS
In order to use FluentMotion, the following software require-
ments exist:

• Unity Game Engine 2018.3.7f1 (or newer)

• UniRX 6.2.2

• LeapMotion Orion 4.0.0

• LeapMotion Unity Core 4.4.0

• LeapMotion Interaction Engine 1.2.0

• SteamVR 2.2.0

Hardware requirements are set by SteamVR, as it is the most
demanding of the above mentioned software requirements.
Those are:

• CPU Intel Core i5Intel Core i5-4590/AMD FX 8350 equiv-
alent or better

• GPU NVIDIA GeForce GTX 970, AMD Radeon R9 290
equivalent or better

• RAM 4GB

• VRAM 4GB

• OS Windows 7 SP1, Windows 8.1 or later, Windows 10

The hardware requirements apply only to the applications
developed using FluentMotion, not to first hand API users
(developers).

CONCLUSIONS
Virtual Reality, even though relatively new, is a galloping
technology whose tendency is to become closer and closer
to the actual reality. This tendency has fueled companies
like LeapMotion to invent new and more natural means of
interacting with the Virtual Reality world.

Their basic API, though powerful on its own, lacked flexibility
and readability. This missing features drove the development
of FluentMotion, a human readable, flexible and extendable
API for gesture-based interaction in Virtual Reality using the
LeapMotion controller. Based on Microsoft’s Reactive Ex-
tensions, this API has the potential to greatly simplify the
gesture composing and detection in LeapMotion enabled VR
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applications. It provides easy integration with Unity Game
Engine, allowing the definition of new, custom gestures using
a human readable description (based on already existing ones)
and creating interaction callbacks. FluentMotion works on
HTC Vive and Oculus Rift for VR-enabled application and
can also be used in desktop mode. This work improved the
rudimentary API offered by LeapMotion and offers a more
natural, powerful and flexible way of detecting and composing
hand and finger gestures.

Future improvements include further refinement of continu-
ous gestures (like detecting letters drawn in the air) and the
detection of "negated gestures" (detect when *this* does not
occur).
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