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Network Coding Theory: A Survey
Riccardo Bassoli, Hugo Marques, Jonathan Rodriguez, Kenneth W. Shum and Rahim Tafazolli

Abstract—This article surveys all known fields of network
coding theory and leads the reader through the antecedents of the
network coding theory to the most recent results, considering also
information theory and matroid theory. By focusing on providing
ideas and not formulas, this survey is both fitted for the taste of
readers who are mathematically oriented and newcomers to the
area. Additionally, this survey also includes an innovative and
clear graph representation of the most prominent literature on
network coding theory, its relevance and evolution from the very
beginning till today.

Index Terms—Network coding theory, information theory,
random linear network coding, network error correcting (NEC)
codes, capacity region, complexity.

I. INTRODUCTION

S INCE the publication of Claude E. Shannon’s paper
entitled ”A Mathematical Theory of Communication” [1],

information theory science has born and digital communica-
tions have started. The transmission of information through
a network would then be interpreted as an exchange of
commodities, without the capability of combining or mixing
what was sent (commodity flow). In 2000, the seminal article
[2] changed this perspective by introducing the concept of
information flow to demonstrate that the combination of infor-
mation could increase the capacity of a network over the limit
achieved by routing. This extension represented the birth of a
new promising area of research, regarded as network coding.
Prior to that, the family of coding operations was constituted
only by: source coding, the way to compress the information
at the source to increase the efficiency in the transmission, and
channel coding, the operation of introducing redundant bits in
the information sequence to make it reliable by converting the
noisy channel into a noiseless one. Network coding opened the
way to another coding operation, realised at the packet level:
the principal idea is to allow nodes in the network to perform
some coding operations. Hence, a node can transmit functions
of the messages received earlier on the ingoing edges, onto the
outgoing ones.

During the last decade, interest towards network coding the-
ory and its application became increasingly widespread. This
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spurred the use of new mathematical tools (mainly algebra,
matroid theory, geometry, graph theory, combinatorics and
optimization theory among others) resulting in the incarnation
that network coding is today: a broad and complex field rich
in mathematical idiom. Moreover, the strong connection with
information theory and its important recent results played a
main role in leading network coding to its current level.

This survey embraces more than 300 references considered
by the authors to be the most relevant literature in the different
areas of network coding theory including recent results in
information theory. At the best of the authors’ knowledge,
this is the first work to make such a comprehensive description
of network coding theoretic developments including both the
pioneering works and the very latest results achieved in this
field. The motivation to write such survey is to provide a guide
that could serve both the purpose of synchronizing advanced
researchers in this area as well as to help initial researchers
in approaching the study of the theory. Other relevant surveys
on the theoretic areas of network coding are [3]–[6]. If the
reader searches surveys more focused on applications then
the following are recommended [7], [8]. As for books and
tutorials on network coding the following are advised [9]–[15],
and the most recent [16]. Finally, network coding website [17]
contains an updated list with most of the literature on the field.

A. Network Coding Theory

Figure 1 depicts a visual description of the evolution of
network coding theory from the very beginning till today, in
which labels are used to identify the articles and to underline
the ’major players’ in the different areas.

The publication of [2] is the commencement of network
coding theory: in fact, this article is the first to refer to this
novel research field as ’network coding’. Ahlswede et al.
revealed a new research topic by studying the problem of
characterizing the coding rate region of a multicast scenario.
The main result of the authors consisted in a max-flow min-
cut theorem, which interpreted the flow of information as
something not to be merely routed and replicated anymore.
However, that was not only a starting point but also a point of
arrival: [2] took advantage of many concepts in information
theory, distributed coding and distributed data storage systems,
developed during the previous years. First, the geometric
framework and the set theoretic one, which were developed
to simplify the solution of information theoretic problems,
improved the methods to prove converse coding theorems
and to calculate coding rate regions. Next, the models used
for distributed coding and distributed data storage systems
provided special instances to develop the general one deployed
by [2].

Subsequently, [18] described an optimal solution achieving
the max-flow min-cut bound for directed acyclic graphs: the
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Fig. 1. The graph depicts the evolution of network coding theory from the first related results in information theory to the most recent articles. A selection
of the literature is sorted by topic studied and the circles in blue are put in evidence because of the amount of research interested. The labels are chosen in
a subjective way, to put in underline the ’major players’ and because of clarity (it would have been impossible to put all the name in the references).

optimum was obtained by applying a linear code multicast,
a network code obtained by linearly combine information by
using coefficients chosen from a finite field. That definition of
linear network code mainly deployed tools from graph theory
and algebra of vectors. [18] started the formulation of the
concepts of the theoretic framework used by deterministic
network coding. Among the works involved to build the
general theory of deterministic linear network coding, the new
approach of [19] opened another way for network coding
theory: instead of using some elements from algebra as [18],
[19] developed a completely algebraic framework by making
connections with algebraic geometry and matrix theory. The
fundamental results in [19] prepared the fertile ground for
the formulation of random linear network coding. This family
of network codes has the main characteristic of randomly
choosing the coefficients of linear combinations to get the
important benefit of being suitable in dynamic environments.
On the other side, a drawback comes: in fact, an error decoding
probability was introduced, which depends on the size of the
finite field chosen for the code.

The investigation into network flows and linear network
coding stated the general theoretic background to apply
network coding on directed acyclic scenarios: combination
networks raised particular interest because of the various

areas of application. Nevertheless, [20] started the analysis
of behaviours and benefits of network coding in undirected
networks. Side by side, convolutional network codes were
proposed as a better solution than classical block network
codes, in directed cyclic graphs: by taking into account cycles,
the information in the network experiences delays, that are
different from zero. So, the time dependance of the model
introduces a trellis structure, which becomes similar to a trellis
diagram of a convolutional code. Lately, [21] demonstrated
that acyclic linear network coding theory can be extended to
cyclic scenarios: precisely, convolutional network codes come
to be an instance of network codes defined via commutative
algebra.

Network coding theory enlarged its area of interest when
[22], [23] showed that network codes represent a general-
isation of classical error correcting codes. The attention in
network error correction coding was due to its potentials
in correcting random errors, erasures and errors introduced
by malicious nodes. The main characteristic of the network
extension of error correction is that redundancy is in space
domain instead of in time domain.

After its foundation, the study of network coding focused
on other fundamental theoretic topics to better understand its
potentials and limits such as the coding capacity achievable
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in different scenarios compared with the one achievable with
classical store-and-forward routing, and the conditions under
which a network is solvable. The link with matroid theory and
the results obtained in information theory about information
inequalities provided researchers a strong background to face
the capacity and solvability issues of network coding.

Next to the pure theory of network coding, a branch of
investigation was focusing on algorithmic implementation of
network codes. The complexity of the algorithms is influenced
by the size of the finite field required by the network code and
depends on the number of sinks in the communication. Other
elements affecting the complexity are also the number of edges
and the transmission rate of the source. The deployment of
many tools from combinatorics and graph theory helped the
design of algorithms with reduced complexity.

Recently, vector network coding and variable-rate network
coding appeared on the scene. The former is the transmission
of vectors, whose elements are on a fixed finite field, combined
together at intermediate nodes by using matrices instead
of scalar coefficients. This new approach showed particular
benefits. First, the complexity of network codes could be
reduced because fixed finite fields of small size can be used.
Next, in some scenarios, scalar linear network coding is not
enough to solve the network and non-linear network coding is
necessary; actually, vector network coding represents a way to
achieve solvability in those networks by avoiding non-linear
network coding. On the other side, the research in variable-
rate network coding consisted in the study of the properties
of codes with different rates for different sessions in order to
enhance fixed rate linear network codes.

B. Structure of the Survey

Even though network coding is considered to be a new
research field, the amount of literature on the topic has already
achieved significant numbers. This survey will only focus on
the theoretic part: applications are deliberately not mentioned.
Network coding theory is a complex subject, consisting of sev-
eral different areas based on different mathematical theories.
By this same reason, some characteristics of this work may
seem different from the ones owned by a ’classical’ survey. At
this point, it is important to emphasize that the way chosen to
present the theory of network coding is subjective and from
own authors perspective: next to the historical approach in
showing the developments and the milestones in the research,
the presentation is split into main thematic areas to maintain
the description coherent, clear and comprehensible.

Section II proceeds with the description of the antecedents
that led to the seminal work [2] in order to actively involve
the reader in the history of network coding theory. Section
III begins with the mathematical preliminaries necessary to
understand the fundamentals and recent ramifications of the
topic. In this particular field of research, the concepts needed
are from multiple subjects: the section is divided into parts,
providing the theoretic fundamentals by keeping the number of
formulas and the complexity to a minimum. In fact, the aim is
to explain the most important basic ideas and to suggest good
references to readers interested in delving into. Section IV
describes the milestones in information theory that provided

results and tools that were important for network coding. Next,
Section V shows the developments of network coding theory.
The principal branches of network coding theory that were
considered are: the investigation of the algorithmic complexity
and of the complexity of the codes designed (translated into
reducing the size of the alphabet of the code), the research
on the behaviours of network coding in undirected graphs
and on random linear network coding and network error
correcting codes an important generalisation of ’classical’
forward error correction; moreover, the analysis of network
coding in cyclic networks, the solvability of network coding
problems for different scenarios and the definition of the
capacity region of the codes are equally important. Finally,
Section VI presents the latest results in network coding theory
and outlines possible future directions in this research field.

II. NETWORK CODING: THE ANTECEDENTS

After the year 2000, with the publication of [2], con-
siderable research efforts in network coding theory started.
However, that was not an isolated work because it represented
the meeting point of years of research in other related fields. In
fact, some previous works in distributed and diversity coding
played a main role to arrive at that seminal result.

A diversity coding system (DCS) is a system in which the
data streams of the source are independent and identically
distributed, there are different encoders, which encode the in-
formation source, and multiple decoders, which should be able
to reconstruct perfectly what the source sent; each decoder can
only access to a particular subset of the encoders. Moreover,
if there is more than a single level of decoders, the system is
called multilevel diversity coding (MDC). On the other hand,
it is possible to consider a distributed coding system with
correlated discrete-alphabet information data sequences with
a common decoder: in this case, the behaviours of the system
are described by using the Slepian-Wolf results in [24], [25].
The results obtained in these subjects are usually presented in
terms of coding rate regions: given a number of sources n, the
admissible coding rate region is the region represented by the
points of the space (i.e. n-dimensional vectors that have the
rates as coordinates), in which it is achievable an arbitrarily
small decoding error probability with block codes. In Figure
2, examples are depicted to clarify the previous concepts.

After the first fundamental work [26], in 1964, diversity
coding theory started to be investigated and applied in different
areas, such as distributed information storage, reliability of
computer networks, secret sharing. Before [27], in 1992, and
later [28], in 1995, introduced the concept of MDC for the
first time, respectively, in the case of reliability of storing in
distributed disks and in case of satellite networks. In particular,
[28] was the first application of MDC considering distortion
and elaborating a principle of superposition to calculate the
rate region by taking into account independent source streams:
the author gave a direct proof of the coding rate region
by using the information diagram1 (I-Diagram) and, in the

1Given two random variables X and Y, their I-Diagram (see Figure 12) can
be obtained by applying a formal substitution of symbols to the Shannon’s
inequalities and a substitution of the information functions with a function
μ. This real function is a signed measure on a field of sets. A field of sets
is a collection of subsets F of a set A, which is closed under binary unions,
intersections and complements.
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(a) (b)

(c) (d)

Fig. 2. (a) Single level DCS (b) MDCS, in which there are two levels of decoders: the decoder ’Level 1’ can access only to the information of the encoders
of ’Type 1’, instead of the decoder ’Level 2’, which has to access at least to one encoder ’Type 2’. Decoders of the same level recover the source information
in the same way (c) A block scheme of a correlated source coding system (d) Bidimensional graphical representation of the admissible coding rate region of
the system in (c).

appendix, by using the Slepian-Wolf result. The superposition
approach consists of coding individual information sources
separately, so that the rate contributing to code one stream
does not contribute to code the other ones. This article was the
one that inspired the first ideas for the elaboration of network
coding.

In 1997, [29] studied the optimality of the principle of
superposition by considering two- and three-level diversity
coding with three encoders, to find that this method is optimal
in the 86 percent of the configurations. The same year, [30]
characterized the admissible rate region in a three-level DCS,
with symmetrical connections between encoders and decoders;
the authors also demonstrated the optimality of superposition
coding for this scheme and, with [30, Theorem 2], they tried
to generalise the result for a k-level problem, with k ≥ 2;
therefore, they defined a lower bound for the admissible rate
region because of the difficulty and the amount of computation
needed to reach a complete characterization. Few years later,
[31] demonstrated that coding by superposition is optimal in
a general symmetrical MDC scenario. Moreover, the authors
solved the issue that [30] met before, by specifying the
coding rate region by extreme points2; they changed the
approach and successfully characterize the region for k ≥ 2,
as an intersection of infinite halfspaces. In the hypotheses,
the source data streams were mutually independent and the
decoders were almost perfectly reconstructing them, rather
than in [26], where the condition was to perfectly recon-
struct the source data streams. During the same year, [32]
investigated the characterization of the admissible rate region
in case of a distributed source code in a satellite scenario;
the authors calculated an inner [32, Theorem 1] and an outer
[32, Theorem 2] bound of that region in terms of the entropy
regions Γ∗

n and Γ̄∗
n (an explicit evaluation was provided for

the special case of linear programming bound). Finally, they
proposed a geometrical interpretation of these bounds by using
intersections of hyperplanes.

2A point x in a convex set X ⊂ Rn is an extreme point if it cannot be
represented by the convex combination of two distinct points in the set.

Fig. 3. Representation of network coding, applied to a butterfly network.
The edges can only transmit one bit per time unit, so the optimality can be
achieved only by linearly combining the information at node 3.

Next, in 2000, [2] faced the issue of defining the admissible
coding rate region for MDC without taking into account rate
distortion: its scenario was different from a generalisation of
the Slepian-Wolf problem because it did not use correlated
sources and, the network configuration and the reconstruction
requirements on the decoder side were arbitrary. The authors’
main result was the elaboration of a new version of max-
flow min-cut theorem (Theorem 1) by considering informa-
tion something that can be coded and combined and not a
commodity anymore [2, Conjecture 1]. They demonstrated the
capability of the novel ’network coding’ to increase throughput
provided by classical store-and-forward routing in a ’butterfly
network’ (Figure 3). In graph theory, a commodity is a triple
(si, ti, di), where s is a source, t is a sink and d is the amount
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of flow to be routed, called the demand. A multicommodity
flow network G = (V, E ,K, c) is a directed graph3 with vertex
set V, edge set E , commodity set K and a capacity function
c. Then, a multicommodity flow in a multicommodity flow
network G = (V, E ,K, c) is a set of k = |K| functions
fi : E → R

+, where i = 1, . . . , k, satisfying the following
constraints:

• (joint capacity constraints) the sum of the values of the
flows of the k commodities cannot exceed the value of
the capacity of the edge, for each edge (u, v) ∈ E ;

• (conservation constraints) the sum of the values of the
outgoing flows of the different commodities of a vertex
v cannot exceed the sum of the values of the ingoing
flows of the different commodities, for each vertex v ∈
V − {si, ti}.

In 2002, [33] found an information theoretic upper bound on
the information flow for discrete memoryless networks, with
multiple sources and multiple sinks: its achievable rate region
can reproduce the one shown by [2] if only one source is
multicasting the information. Moreover, the author expressed
that in a network with noisy links, the bound can be achieved
also with the use, before, of channel coding. In 2000, the same
result for point-to-point networks was achieved by [34].

Readers can find a good tutorial on the origins of network
coding in [35].

III. PRELIMINARIES

The aim of the following subsections will be to provide
the initial mathematical principles necessary to understand the
results and developments of network coding, shown in the next
sections. In particular, the following fields will be addressed:

• Algebra
• Algebraic geometry
• Graph theory
• Combinatorics
• Polytopes
• Projective geometry
• Matroid theory
• Coding theory

The current section will also give interested readers several
important references to find full mathematical explanation of
the concepts.

A. Algebra and Algebraic Geometry
The following definitions from abstract algebra are chosen

from [36]–[40], the ones from algebraic geometry can be
found in [41]. The initial focus of this subsection is to expose
different algebraic structures with their respective characteris-
tics.

Rings4, ideals, integral domains, principal ideal domains
(PID) and fields are the main structures in algebra and
are of vital importance in network coding theory. Figure 4
summarises their hierarchy and their characteristics.

3A graph G(V, E) is a mathematical object consisting of two sets: the one
called V, whose elements are the vertices or nodes, and the other one called
E , whose elements are the edges. If directions are assigned to the edges, the
graph is called a directed graph.

4In the rest of the Survey, all the rings mentioned are commutative rings
with unity.

Fig. 4. Representation of the hierarchy of some algebraic structures with
their characteristics.

Another main object in algebraic geometry, also important
for the study of algebraic sets, is the Grassmannian. The
set G(m,n) is defined as the set of m-dimensional linear
subspaces of the vector space V of dimension n over a field
K, and it is called the Grassmannian of V . The Grassmannian
space allows us to treat subspaces of a vector space without
defining any basis for V .

B. Graph Theory and Combinatorics
The study of graphs, networks, with their related combina-

torial concepts, is a main issue in theoretic network coding.
Consequently, two important theorems taken from [42]–[45]
are provided below.

The problem of how to maximize the flow in a network was
solved independently by [46] in 1955 and by [47] in 1956. The
following theorem shows their result.

Theorem 1 (Max-Flow Min-Cut Theorem). In a network, the
value of the maximum flow is equal to the capacity of the
minimum cut.

A simple example of the application of Theorem 1 and the
explanation of some related concepts, are shown in Figure 5.

Next, the following theorem, which connects determinants
of matrices and matchings in a graph, is presented to clarify
some results of network coding, written in the rest of the
article. Before, it is important to state that a matching in a
graph G is a subset M of E such that no two edges in M
have an endpoint in common. A matching in a graph is perfect
if every vertex is an endpoint of one of the edges.

Theorem 2 (Edmonds’ Theorem [43]). Consider a bipartite
graph G(U, V, E), with U and V the two independent sets of
vertices with the same cardinality. Let A be the n×n matrix
obtained from G(U, V, E) as follows:

Aij =

{
xij , (ui, vj) ∈ E
0, (ui, vj) /∈ E (1)

Define the multivariate polynomial Q = {x11, x12, . . . , xnn}
as being equal to det(A). Then G has a perfect matching if
and only if Q �= 0.

C. Polytopes and Projective Geometry

Polytopes theory studies the properties of convex polytopes,
which are important objects in geometry; nevertheless, their
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Fig. 5. A directed network with a source s and a destination t. The values
assigned to the edges represent respectively the flow function and the capacity
of the edge. A cut-set in the network is a collection of edges, which once
deleted divides the network into different parts containing s and t separated.
The capacity of a cut is the sum of the capacities of the edges in the cut.
Some cut-sets are listed below the graph: in the figure, the minimum cut-set
is {(b, t) , (c, d)}, whose edges are saturated and their minimum value of the
flow is equal to 11. So, the maximum possible flow is the value 11 of the
minimum cut-set.

characteristics are very interesting not only in pure geometry
but also because of their several applications: information
theory and capacity regions analysis of codes are taking
advantage of the tools used to study those geometric objects.
Projective geometry investigates the behaviours of geometric
figures, when geometric transformations are applied. The
definitions reported in this subsection can be found in [48]
and [49].

A V-polytope is the convex hull5 of a finite set of points
in some R

n. An H-polyhedron is an intersection of finitely
many closed halfspaces in some R

n. An H-polytope is an
H-polyhedron that is bounded, i.e. it does not contain a ray
{x + ty : t ≥ 0} for any y �= 0. Thus, a polytope is a point set
P ⊂ R

n, which can be seen either as a V-polytope or as an
H-polytope. In Figure 6, it is shown the difference between
the two ways to construct a polytope.

Then, a cone is a nonempty set of vectors in R
n, which

with any finite set of vectors also contains all their linear com-
binations with nonnegative coefficients. Every cone contains
also the null vector. The forthcoming description of projective
geometry is limited to the bidimensional case in order to
provide a simpler explanation.

For a given field K , the projective plane PG(2,K) is the
same as the Grassmannian G(1, 3). A point in the projective
plane can be represented in homogeneous coordinates (x :
y : z), with xyz �= 0. Two homogeneous coordinates (x1 :
y1 : z1) and (x2 : y2 : z2) are equivalent if there is a nonzero
element α in K such that x1 = αx2, y1 = αy2, and z1 = αz2.
The projective plane can be regarded as the union of the affine
plane and a line at infinity. The affine plane {(x, y) : x, y ∈
K} can be embedded in PG(2,K) by mapping (x, y) �→ (x :
y : 1). The line at infinity consists of points with homogeneous
coordinates (x : y : 0), with x and y not both zero. A line

5The smallest convex set containing a point set A ⊂ Rn is called the
convex hull of A.

Fig. 6. The representation tries to clarify the difference between the two
definitions of polytopes. On the left, the quadrilateral is built by following
the definition of V-polytope. On the right, the polytope is constructed as
the intersection of four halfspaces, bounded by the four lines, by using the
definition of H-polytope.

Fig. 7. Geometric representation of the vector matroid M(A).

in the projective plane is a set of points (x : y : z) satisfying
ax+by+cz = 0 for some constants a, b and c, with abc �= 0.
The basic property of a projective plane is that any pair of two
distinct points are contained in a unique line, and any two pair
of two distinct lines intersect at a unique point.

D. Matroid Theory

Matroid theory is a discipline which generalises the ideas
of linear dependance and linear independence, by linking
different fields in mathematics such as linear algebra, graph
theory and combinatorial geometry. Because of the scope of
this work, the discussion is limited to finite matroids; a reader
interested in infinite matroids could start reading , [50, Chapter
3]. Most of the definitions and theorems, which are going to
be presented, are taken from [51] and [52].

Before formally describing matroids, we consider two par-
ticular examples. The first one is algebraic and the second one
is graphic. Consider the columns in the following matrix

A =

⎡
⎢⎣

1 2 0 0 1

0 0 1 2 1

0 0 2 1 2

⎤
⎥⎦ (2)

with entries in the finite field of size 3, F3. Note that the
first two columns represent the same point in the projective
plane over F3. The third and fourth columns also represent the
same point. Column 5 is the sum of columns 1 and 3. These
points are collinear in the projective plane. We define a vector
matroid by defining a ground set E, which consists of the
columns of the above matrix, and a collection of subsets in E,
called the set of independent sets I, which consists of linearly
independent subsets of E. A subset of E is called dependent
if it is not in I. A minimal dependent set (with respect to
set inclusion) is called a circuit and a maximal independent
set is called a basis. In the above example, if we label the
columns by 1, 2, ..., 5 the ground set is E = {1, 2, 3, 4, 5},
the circuits are {1, 2}, {3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}
and {2, 4, 5}, and the bases are {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 5}, {4, 5}. Then, the representation of the
vector matroid of the matrix A is depicted in Figure 7. Another
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Fig. 8. An undirected graph G(V, E).

Fig. 9. An example of deletion operation in a matroid. The element 1 is
deleted and the result is a matroid with E −X = {2, 3, 4}.

way to define a matroid is to obtain it from a graph. The
second example is called a cycle matroid, constructed from a
graph G(V, E) depicted in Figure 8. In this case, the ground
set is identified with the edge set, and the set of circuits in
the matroid is the same as the set of cycle in the graph,
i.e., C = {{1, 2, 3} , {1, 4, 5}}. The set of bases is B =
{{1, 3, 5} , {2, 3, 4} , {2, 3, 5} , {3, 4, 5} , {4, 1, 2} , {4, 5, 2}}.

After the previous introductory examples, some formal
concepts need to be exposed. A matroid M is an ordered pair
(E, I), where E is a finite set and I is a collection of subsets
of E, satisfying the following conditions:

• ∅ ∈ I;
• if I ∈ I and I ′ ⊆ I , then I ′ ∈ I;
• (Independence augmentation axiom) if I1 and I2 are in

I and |I1| < |I2|, then there is an element e of I2 − I1
such that I1 ∪ e ∈ I.

It follows immediately from the independence augmentation
axiom that if B1 and B2 are two bases in a matroid, then B1

and B2 have the same cardinality.
If M is representable over a field F, M is said to be F-

representable. Next, two matroids (E, I) and (E′, I ′) are said
to be isomorphic if there exists a bijection f : E → E′

such that I ∈ I if and only if f(I) ∈ I ′. A matroid that is
isomorphic to the cycle matroid of a graph is called graphic.
An important characteristic of graphic matroids is that it is
possible to determine many properties of such matroids from
the pictures of the graph.

An efficient way to specify a matroid is to use its maximal
independent sets (bases). Let M|X6 be a matroid and let the
function r(X) be the rank of X, that is, the size of a basis B
of M|X . In particular, r : 2E → Z+∪{0} is the rank function
of a matroid on E if and only if satisfies:

• if X ⊆ E, then 0 ≤ r(X) ≤ |X |;
• if X ⊆ Y ⊆ E, then r(X) ≤ r(Y );

6The operator ’|’ represents the restriction of M to X or deletion of E−X
from M, given a subset X of E. An example is shown in Figure 9.

Fig. 10. Geometric representations of some important matroids.

• if X and Y are subsets of E, then r(X∪Y )+r(X ∩Y ) ≤
r(X) + r(Y ).

In case of representable matroids, the matroid rank function,
just shown, coincides with the notion of linear rank of the
corresponding subset of vectors, that is, the maximal number
of linearly independent vectors contained in the set.

The subsequent theorem is an important relation between
rank functions, that needs to be mentioned to make under-
standable some results that are shown in the next sections
in network coding theory. The same inequality can also be
rewritten in terms of dimension of subspaces.

Theorem 3 (Ingleton’s Inequality). Let (E, r) be a repre-
sentable matroid, then, given the subsets X1, X2, X3, X4 ⊆ E,
the following inequality is verified:

r(X1) + r(X2) + r(X3 ∪X4) + r(X1 ∪X2 ∪X3)+

+ r(X1 ∪X2 ∪X4) ≤ r(X1 ∪X2)+

+ r(X1 ∪X3) + r(X1 ∪X4) + r(X2 ∪X3)+

+ r(X2 ∪X4).

(3)

In Figure 10 there are some examples of important matroids:
the Vamos matroid (or Vamos cube) is one of the smallest non-
representable matroid, the Fano matroid corresponds to the 7-
point projective plane (Fano plane) and the Pappus matroid is
called in this way because of its relationship with the Pappus
configuration in projective geometry.

Furthermore, another important concept to report is the one
of polymatroid. Given a partially ordered set S, a real-valued
function ρ is called a β-function, if it satisfies the following
conditions:

• ρ(a) ≥ 0 for every a ∈ A = S − ∅;
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• it is non-decreasing, that is, a ≤ b ⇒ ρ(a) ≤ ρ(b);
• it is submodular, that is, it verifies the inequality ρ(a ∨

b) + ρ(a ∧ b) ≤ ρ(a) + ρ(b) for every a, b ∈ S;
• ρ(∅) = 0.

Let E be a nonempty finite set and let ρ : 2E → R+ be a
submodular function such that ρ(A) + ρ(B) − ρ(A ∪ B) −
ρ(A ∩ B) ≥ 0, with A,B ⊆ E. Hence, ρ is a β-function,
and the pair (E, ρ) is called polymatroid, where E is the
ground set and ρ is the ground set rank function or simply the
rank function. Especially, a polymatroid becomes a matroid if
ρ(A) ≤ |A| and ρ(A) ∈ Z (constraints due to the definition of
rank function for matroids, written above in this subsection).
Next, a polymatroid (E, ρ) is said to be ingletonian if it
satisfies the Ingleton’s inequality (Theorem 3), given all the
subsets A,B,C,D ⊆ E.

E. Coding Theory

The forthcoming theoretic fundamentals in coding theory
can be found reading [53]–[55].

A q-ary linear code C is a linear subspace of the n-
dimensional vector space F

n
q ; if its dimension is k, it is

called C(n, k). After that, the minimum distance of a code is
min {d(x, y) : x, y ∈ C, x �= y}, where d(x, y) is the Hamming
distance between vector x and y. A generator matrix G for a
linear code is a k by n matrix for which the rows are a basis
of the code.

After having introduced the previous general definitions, it
is necessary to discuss some other properties of codes, such
as the bounds on the size of a code. Firstly, let (n,M, d)
code be a code of length n consisting of M codewords with
minimum distance d. Aq(n, d) is defined as Aq(n, d) :=
max {M : an (n,M, d) code exists}. Next, a lower bound
for these codes is given by the Gilbert-Varshamov bound

Aq(n, d) ≥ qn

Vq(n, d− 1)
(4)

where Vq(n, d − 1) is the cardinality of the set Sd−1(x)7.
Moreover, there are upper bounds for the numbers Aq(n, d),
which are interesting to be mentioned in this discourse. Firstly,
the one called Singleton bound: by applying the puncturing
operation d − 1 times on an (n,M, d) code, the output is an
(n − d + 1,M,≥ 1) code. Because of that, the number of
punctured words becomes M ≤ qn−d+1, hence, the Singleton
bound is

Aq(n, d) ≤ qn−d+1. (5)

By considering a linear code C(n, k), this bound becomes
k ≤ n− d+ 1.

A linear code, which has d = n−k+1, is called maximum
distance separable (MDS) code. The main property of this
family of linear codes is that it maximizes the possible distance
between the codewords. Given q, n, e ∈ N, with q ≥ 2 and
d = 2e + 1, the well-known Hamming (or sphere-packing)
bound is

Aq(n, d) ≤ qn

Vq(n, e)
. (6)

7The sphere Sr(x) is the set of words y ∈ F
n
q , with centre x and radius r.

A linear code has to satisfy the condition d ≤ n − k + 1
because of the Singleton bound.

At this point let discuss a famous subset of the trellis
codes family, called convolutional codes. The fundamental
characteristic of this kind of codes is that the length of the
codewords is not fixed but it grows linearly with the length
of the messages. Specially, the encoding process is realised
by a sequential circuit, described by a state diagram, instead
of the temporal evolution of the convolutional code, which is
represented by a trellis diagram. In Figure 11, an example of
convolutional code is shown for clarification.

Finally, some definitions about rank-metric codes are pre-
sented. As in the previous description about classical linear
codes, even for array codes it is important to start the dis-
cussion by defining a metric. Hence, let V,Z be matrices in
Fn×m
q , then the rank distance between them is defined as

dR(V,Z) := rank(Z−V). (7)

A linear array code (or matrix code) C(n × m, k, d) is
defined as a k-dimensional linear subspace of Fn×m

q , with
the minimum weight d of any nonzero matrix in C, called
the minimum distance of the code [56]. Because of the use
of metric (7), an array code can also be called a rank-metric
code and obtaining the minimum rank distance for a rank-
metric code will be straightforward. Analogously to classical
coding theory, even for rank-metric codes were obtained upper
and lower bounds such as Hamming, Singleton and Gilbert-
Varshamov bounds. A description of these bounds in the
case of rank-metric codes can be read in [57], [58]. A rank-
metric code achieving the Singleton bound is called maximum
rank distance (MRD) code. A subclass of MRD codes were
constructed by [59] and [56] respectively in 1985 and 1991,
later called Gabidulin codes. A rank-metric code, which have
all elements of the same rank, is called constant-rank code
(CRC).

IV. ENTROPY AND INFORMATION INEQUALITIES

The information theoretic achievements, which delved into
the properties of Shannon’s information measures, represent
fundamental contributions in the progress of network coding
theory. The characterization of the coding rate regions, the
capacity achievable in different scenarios and, more generally,
the solvability of a network coding problem reached the actual
solutions mostly due to the theoretic results presented in this
section.

In 1948, C. E. Shannon [1] provided the mathematical
definition of entropy — a fundamental concept to measure the
quantity of information we have when a message is received
— given a set of n discrete random variables. In the same
article, another main concept was explained, called capacity,
the maximum quantity of information it can be transmitted
reliably onto a communication channel. [1] represents the birth
of information theory.

Then, in 1978, [60] demonstrated that the entropy function
h is a β-function and, hence, the pair (E, h) is a polymatroid,
where E is a finite set of random variables; studying entropy
functions as rank functions of polymatroids, it became a useful
way to analyse information theoretic problems. The main
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Fig. 11. Example of convolutional code (2, 1, 2). On the right there is the scheme of the encoder, in which the elements of the information sequence u
enter sequentially. Then, they pass through the shift registers R, which introduce the delay, and finally, they are encoded into the elements of two codewords
v0 and v1. As expressed by the figure, v0, v1 are calculated as a convolution between the impulse responses (or generator sequences) of the code and the
information sequence. This is the reason why this family of codes is called convolutional. In the center it is printed the state diagram of the code, and on the
left it is printed its trellis diagram to show the time dependance of the code. In the labels of the arrows, the first value is the input and the other two values
are the consequent outputs.

contribution of this work was to bridge matroid theory and
information theory.

The quantities entropy, conditional entropy, mutual infor-
mation and conditional mutual information, are called Shan-
non’s information measures. The identities and inequalities,
involving only Shannon’s information measures, are called re-
spectively information identities and information inequalities.
All the inequalities obtained by combining in some way the
basic inequalities, are called Shannon-type inequalities. The
main role of these inequalities is: they are necessary in the
proofs of the converse coding theorems to solve problems in
information theory. This is the reason why they were called
”laws of information theory” by [61], because they provide
the constraints to be fulfilled in information theory. The issue
posted by the author was: the entropy functions satisfies the
three polymatroids axioms, but are they the only inequalities
or there are other conditions?

At the beginning of the 1990s [62], [63] established a direct
relation between Shannon’s information measures and the
general set theory: in this way, the manipulation of Shannon’s
information measures could be translated into set operations.
An example to clarify this result is in Figure 12. In 1994,
[64] explained connections between conditional independence
structures and matroid theory. Then, few years later, [65]
provided for the first time a geometrical framework to inves-
tigate information inequalities. According to this framework,
the region Γn is the set of all basic linear inequalities in the
entropy space Hn. This geometrical approach implied a unique
description of all the, unconstrained and constrained8, basic
information inequalities. Thanks to that, an unconstrained
identity can be seen as a hyperplane in the entropy space
and an unconstrained inequality is a halfspace containing the
origin; on the other side, a constrained identity is an inter-
section contained in the hyperplane defined by the equality
and the constrained inequality is a linear subspace in Hn. The

8The geometric region Γn can be under a constraint Φ, otherwise, if Φ =
Hn, there are no constraints on the entropies.

new geometrical approach opened also the way to a linear
programming approach and, consequently, the possibility of
proving all the Shannon-type inequalities through a software
package; in fact, a software for MATLAB, called ITIP [66],
[67] (Information Theoretic Inequality Prover), and a C-based
linear programming solver, called Xitip [68], were developed
to prove information theoretic inequalities.

The issue of the full characterization of the region Γ̄∗
n

9 is an
important task and, at that time, the main information theoretic
problem to solve, became whether or not Γ̄∗

n = Γn. Therefore,
in 1997, the two main results [69, Theorem 1-2] demonstrated,
respectively, that Γ̄∗

n is a convex cone, and, in case of 3-
dimensional space, Γ∗

3 �= Γ3 but with Γ̄∗
3 = Γ3; in particular,

[69, Theorem 2] was a consequence of the main result in [64,
Section 5]. Moreover, the results in [64] contributed for finding
an inner bound on the entropic region via Ingleton inequalities
[70]. By investigating further the previous characterization,
the authors of [69] conjectured that Γ̄∗

n is not sufficient for
characterizing all the information inequalities but only to
characterize all unconstrained information inequalities, that
is, Γ̄∗

n �= Γn for n > 3. Because of this, they discovered
a new conditional inequality, not implied by the basic in-
formation inequalities, so finding an answer to the problem
risen before in [61]. The information inequalities, which are
not implied by the basic inequalities, are called non-Shannon-
type inequalities; these authors presented, for the first time,
a constrained non-Shannon-type inequality of four random
variables [69, Theorem 3]. Later, [71] showed a new inequality
in a 4-dimensional space, answering that Γ̄∗

n ⊂ Γn; the article
shows the first unconstrained non-Shannon-type inequality. In
the literature, this unconstrained non-Shannon-type inequality
is normally named Zhang-Yeung inequality. The same authors
in [72] showed that this unconditional inequality implied a
class of 214 non-Shannon-type inequalities. Meanwhile, [73]
derived new properties for polymatroids from the inequalities
in [69], [71]; moreover, this work presented a constrained

9Γ̄∗
n is the closure of the set Γ∗

n.
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Fig. 12. On the left side of the image, it is represented the correspondence
of the information theoretic functions and operators with the set function and
operators. On the right side, the I-Diagram for two random variables X and
Y is depicted.

non-Shannon-type inequality, which is a variation of the con-
strained inequality in [69, Theorem 3]. In order to understand
the notation of [73] it is useful to read [74].

Next, the work in [75] gave a combinatorial interpreta-
tion for a type of linear inequalities, which described the
behaviours of both Shannon entropy and Kolmogorov com-
plexity [76], [77]. Afterwards, [78] explained a combinatorial
characterization of the class of combinatorially characterizable
entropy functions. This work gave a further contribution in the
analysis of Γ∗

n.
In 2002, [79] exhibits a new family of unconstrained in-

equalities for Shannon entropy involving five random variables
[79, Theorem 1] and, for the proof, it used an inference rule,
which was a refinement and a generalisation of the Zhang-
Yeung inequality. Another proof of the Zhang-Yeung inequal-
ity was also given later in [80]. Moreover, [81] extended the
Zhang-Yeung unconstrained inequality to gaussian variables.

In 2003, [82] gave a further generalisation of the non-
Shannon-type inequality of five variables, found before by
[79].

Contemporarily, before in 2000 and then in 2002, [83], [84]
described an original correspondence between information
inequalities and group inequalities.

In 2005, [85] explained some results obtained about in-
formation inequalities in the context of polymatroids. In the
same context of polymatroids, one year later, [86] showed a
constrained non-Shannon-type information inequality in three
random variables.

Next, in 2007, [87] considered a ground set of polymatroids
|E| = 4, to say that if the Zhang-Yeung inequality is violated
by a polymatroid, then it is not Shannon-type, and cl(Hent

n ) ⊆
Hn

10. [88] obtained inner bounds for the region cl(Hent
n )11 in

the context of asymptotically entropic polymatroids. The same
author, in [89], showed an infinite class of unconstrained non-
Shannon-type inequalities.

During the same year, [90] extended the definition of
group characterization in [83], [84] to abelian groups and it
analysed the behaviours of this algebraic approach in case
of vector spaces; finally, the author introduced an ’extension
method’ (generally speaking with the use of extension and
projection processes), through which he was able to obtain
the Ingleton’s inequality, the Zhang-Yeung inequality and the
inequalities in [91]. In fact, the year before, [91] discovered

10The set Hn is a polyhedral cone in the Euclidean space R2n .
11cl(Hent

n ) is the closure of the set Hent
n , which is the set of all the entropy

functions of random vectors indexed by finite set and taking finite number of
values.

six new four-variables unconstrained non-Shannon-type infor-
mation inequalities; the authors used the software ITIP and
the Markov chain construction of [71]. Then, in 2008, an
extension of the work in [91] appeared in [92]. The authors
proposed a new method to derive non-Shannon-type infor-
mation inequalities and they obtained also new four-variable
non-Shannon-type inequalities by applying the Convex Hull
Method (CHM). The application of projection was not limited
to [92], because also in [79] the authors applied an inference
rule with some requirements, which can be seen as a specific
range of a projection.

For a reader interested to get a strong background to face
the topics of this subsection, it is very useful to read [93,
Chapter 2-3-13-14-15-16] and [94].

V. DEVELOPMENTS IN NETWORK CODING THEORY

The following sections explain the different theoretic devel-
opments that came out after the seminal article [2]. In order to
provide a clearer and not fragmented presentation, the results
are described with a chronological approach, side by side with
a separation into thematic areas.

A. The Beginning of the Story

Contemporaneously to the work of [2], in 1998, [95]
defined, for the first time, a linear network code for multi-
casting information in a network and it introduced the law
of information conservation at a node, which claims that the
information going out from a set of nodes of the network
has to be the information accumulated at the input of the
same set of nodes; so, in the special case of linear codes,
the vectors assigned to the outgoing channels of a node of the
network are the linear combination of the vectors assigned to
the ingoing channels of the same node. Moreover, the authors
demonstrated that the max-flow is an upper bound on the
information rate received by each nonsource node; next, they
showed how to achieve this bound and an optimal solution
to multicast by using a generic linear code multicast (LCM).
By facing the issue of transmitting information in a cyclic
network, the authors proposed a solution, consisting in time-
slotted code operations at the nodes and in using time-slotted
transmission channels. Another approach to solve the ’cyclic
problem’ was the implementation of time-invariant LCM, that
is, instead of being an assignment of a vector space to the
nodes and vectors to the channels, the code is constructed as
an assignment, to the nodes, of a module over a PID, with all
of its ideals generated by the power zn, and, to the channels,
of vectors. In the acyclic scenario, the authors linked generic
LCM and matroid theory: in fact, they took advantage of this
relation, obtained by applying a greedy algorithm [52, Chapter
1], to prove the following fundamental result [95, Theorem
5.1]: a generic LCM exists on every acyclic communication
network, provided that the base field of the vector space
is an infinite or a large enough field. Finally, they showed
an application to a combination network to exemplify this
result. Later, in 2003, [18] improved the results, stated before
in [95]. Then, the theoretic framework, described firstly in
[18], was enhanced few years later in [96]: this work defined
the concepts of linear multicast, linear broadcast and linear
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dispersion for a generic linear network code. An year later,
[97] contributed to clarify the previous theoretic concepts of
network coding: in fact, the authors explained the relation
between a linear dispersion and a generic network coding,
finding also a relation on the sizes of the base fields of the
code. The complete definition of these theoretic fundamentals
can be found in [93, Chapter 19].

By coming back to 2001, [98] proposed an extension of [32]
by calculating inner and outer bounds on the admissible rate
region in terms of Γ∗

n [98, Theorem 2]. The authors also faced,
for the first time, the characterization of the admissibility of
a multi-source multi-sink network code. Hence, in 2004, [99]
studied the characterization of the achievable rate region for
the multi-source multi-sink scenarios, with two sinks.

Later, in 2002, [100] introduced the novel idea of network
error correcting (NEC) codes, as a generalisation of classical
error coding theory. After the definition of a t-error-correcting
network code, they generalised the Hamming bound [100,
Theorem 2] and the Gilbert-Varshamov bound [100, Theorem
5] to the context of LCM.

On another context, a year before, [101] presented a dif-
ferent approach to network coding, deriving an algebraic
framework to verify the feasibility of the multicast problem:
although [2], [95], [18] employed some algebraic concepts
(based on vector spaces), the new framework resulted to be
completely algebraic (matrices and algebraic sets12), with the
consequent possibility to apply the mathematical theorems
of algebra on network coding. The algebraic framework was
developed, firstly, in 2002 by [102], and next, in 2003 by
[19]. Their aim was to solve the most general network coding
problem, that is, having only a graph of the network G
with arbitrary connections (before them, only [32] studied
the characterization of the achievable set of connections in
an arbitrary case). The main object of this framework is the
transfer matrix M [19, Theorem 3] of the network, which
includes all the characteristics of the network itself in its
structure. Then, [19, Theorem 2] demonstrates the connection
between this pure algebraic concept and the previous approach
through Theorem 1. So, the translation of the max-flow min-
cut theorem into the new framework modified the network
coding problem into the problem of finding a point on an
algebraic set. In particular, after having defined the ideal of
the linear network coding problem, which have an algebraic
set associated to itself, in [19, Theorem 7], the solvability was
reduced to find if the algebraic set is empty or not; in order to
solve this issue, the authors suggested the application of the
Buchberger’s algorithm to compute the Groebner basis of the
ideal; but, unfortunately, the complexity of the algorithm is
not polynomially bounded. Specially, a set {g1, . . . , gt} ⊂ I
is a Groebner basis of I if and only if for every nonzero f

12Algebraic sets are geometric objects described by polynomial equa-
tions. So, consider K a field and f1, . . . , fs polynomials over K in
the variables x1, . . . , xn: hence, the object defined as V(f1, . . . , fs) =
{(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0} with 1 ≤ i ≤ s, is an algebraic
set defined by the polynomials f1, . . . , fs. An example is V(x2 + y2 − 9),
which is the circle of radius 3, centered in the origin.

in I, the leading term13 of f is divisible by the leading term
of gi for some i. Furthermore, given the set of polynomials
{f1, . . . , fs}, I = 〈f1, . . . , fs〉 �= {0} is a polynomial ideal.
Finally, a Groebner basis for I can be constructed in a finite
number of steps by the Buchberger’s algorithm (see [38,
Chapter 2]). Figure 13 compares the two main frameworks (the
one using vectors and graph theory and the one completely
algebraic) to define a network code multicast. Their main
characteristics and the differences between them are shown
by applying them to a butterfly scenario.

Subsequently, [103] improved the algebraic framework of
[19] by providing two results, representing different ways to
answer the multicast problem in a linear network coding sce-
nario. The formulation of feasibility of the multicast connec-
tion problem in terms of network flows opened the way to the
definition of another technique to calculate the determinant of
the network transfer matrix M, by using Edmonds’ matrices.
The simplifications obtained with this formulation allowed to
get some characteristics of the transfer matrix determinant
polynomials, without using matrix products and inversions.
Hence, these deductions [103, Theorem 2] led to the work
in [104] about a randomized approach to network coding.
Next, with [103, Theorem 3] the authors proposed a new upper
bound for the coding field size better than the previous one
defined in [102].

In the same year, [105] presented a lower bound required
for the alphabet size of the network codes, demonstrating, by
using graph colouring theory, that it is computationally hard
to determine exactly the alphabet size required; moreover, it
described how a smaller alphabet can be achieved through
nonlinear network codes instead of linear ones. The authors
of this work provided also a taxonomy to classify network
information problems, dividing them into: problems with triv-
ial network coding solutions, polynomial time solvable linear
coding problems and hard linear network coding problems.
Finally, they found [105, Theorem 4.5] that some information
flow problems are unsolvable with linear network codes. After
that, [106] answered to the issues, raised in [105], with an
example, which showed that the failure of linearity in non-
multicast networks was only caused by the restrictive prior
definition of linearity. In fact, until that time, the coding oper-
ations were actuated symbol by symbol, but, by grouping the
symbols into vectors before coding, it discovered how to over-
come the problem. So, the authors found that linear network
coding suffices for network coding on arbitrary networks using
linear coding solutions on vector spaces [106, Conjecture].
Finally, they provided a coding theorem to investigate the
sufficiency of linear coding in non-multicast networks.

[107] faced the problem of the separation among source
coding, channel coding and network coding by demonstrat-
ing theorems to allow joint source-channel code, built in
a common framework with linear network coding. Next,
they showed some scenarios, in which, in order to achieve
optimality, it is necessary to employ a joint system between
network coding and source coding or between network coding

13The leading term of a polynomial – with respect of lexicographical order
– is the monomial with maximum degree in the considered variable. For
example, the leading term of the polynomial f = 8x4 +6x3y+2xz3−y2z
with respect to the lexicographical order x � y � z is 8x4.
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Fig. 13. An example to clarify the differences between the two main frameworks for network coding. On the left, a linear code multicast defined as a local
and global encoding mapping: K represents the local encoding kernel at a node and f is the global encoding kernel at an edge. Local and global encoding
kernels describe the 2-dimensional linear network code for this multicast scenario with a source and two sinks. The ingoing channels of the source are called
imaginary channels because they have no originating nodes. On the right, a description of the linear network code through the algebraic framework. X is
the source random process, Y is random process at an edge and Z is the random process collected by a sink. Next, α, β and ε are constant coefficients
in F2. These coefficients represent the elements of matrices A, B and F. In particular, matrix F is the adjacency matrix of the directed labeled line graph,
obtained from the graph of the network (see the graph on the extreme right.). Finally, it is possible to see how the transfer matrix M is calculated by using
the coefficients α, β and ε of the linear combinations.

and channel coding. A summary of that work can be found in
[108].

Contemporary but independently to [105], while it was
investigating the matrix transposition problem, [109] found
that there are network flow problems without scalar solutions
but, as it was described in the example in [106], these networks
have vectorial solutions only for blocks of dimension greater
than 1. Moreover, the author, together with Ahlswede, pub-
lished the first example of a multicast network with solution
over the binary field but which can be solvable only using
non-linear Boolean functions; this network was obtained by
the use of MDS codes, in particular the non-linear Nordstrom-
Robinson code (12, 32, 5).

By studying the results of [32], [110] improved the char-
acterization of the inner and outer bounds in terms of Γ∗

n

and Γ̄∗
n. The authors used the same satellite environments

of [32] to define, in this case, the zero-error network coding

problem for acyclic networks; furthermore, they enhanced the
previous results in multisource network coding, by extending
this scenario to arbitrary acyclic networks.

On the implementation side, [111], [112] independently
modified and developed the algorithm firstly proposed to
construct a generic LCM in [18, Section 5], by making a
new one computationally more efficient. Moreover, the new
algorithms, initially proposed to build a linear multicast but
also adaptable for a linear broadcast, used a lower threshold
on the size of the base field than the previous one. Next,
the authors of the two works, realised [113] (published in
2005), providing deterministic polynomial time algorithms and
randomized algorithms for linear network coding in directed
acyclic graphs.

In 2004, [114] found a connection between linear network
coding and linear system theory, especially with the theory of
codes on graphs.
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B. Algorithms, Alphabet Size, Undirected Graphs and Com-
bination Networks

In 2003, [115] extended the work in [112]. It showed that
the alphabet size q is dependent on the graph construction and
on the number of the flows from source to different terminals
that end into a single edge. By finding that the information
transported by edges can be seen as a MDS code, the authors
calculated bounds on q through the existing ones on MDS
codes: they provided a lower bound on q for some classes
of acyclic graphs, lower than the previous bound presented in
[112]. Next, they showed a technique to increase the alphabet
size available for coding if the amount of memory at a node
is smaller than the one needed.

In 2004, [20] studied, for the first time, network coding in
undirected networks (bidirectional links) by considering the
unicast, broadcast and multicast scenarios. The authors derived
upper bounds on the coding advantage14, discovering that it is
always bounded by a constant factor of 2, in opposition with
the previous result in [112] for directed scenarios, in which it
was not finitely bounded. So, they proved the independency of
the achievable throughput by the location of the information
source in the network, true only in undirected networks, and
they showed how the optimal throughput is simpler to compute
in presence of network coding instead of routing. Then, [116]
and [117] (respectively in 2004 and 2005) clarified the results
in [20]. They proved that Steiner tree packing can be a
lower bound on the achievable optimal throughput for network
coding and that Steiner strength can be considered an upper
bound on it; but these bounds are NP-hard to compute. The
authors of these works demonstrated that network coding is
mainly useful not to reach the highest optimal throughput
but to make it possible in polynomial time: therefore, coding
is a way to simplify the design of efficient solutions. Next,
[118] calculated a cut-set bound in undirected networks by
considering the application of network coding.

In 2004, [119], [120] investigated how to solve the multi-
cast problem: they compared the performance of the optimal
routing solution (Packing Steiner tree [121]) with the one
obtained through network coding not only theoretically but
also through an algorithmic implementation; nevertheless, the
Packing Steiner tree is a NP-hard problem so, they imple-
mented this routing method with the help of a greedy tree
packing algorithm. The result they discovered was that rout-
ing and coding, in terms of throughput, achieve comparably
performances; anyway, the implementation of network coding
introduced additional enhancements in terms of efficiency,
ease management and robustness. In [122], [123], the same
authors proved a statement to link the Edmonds’ theorem
and the Ahlswede et al.’s theorem. Hence, in 2005, [124]
described that this unification provided a complexity reduc-
tion for network coding systems. Moreover, in [125], the
authors enhanced their previous results, by considering both
acyclic and cyclic scenarios. In fall 2004, [126] investigated
the k source-sink pair problem for directed and undirected
graphs. They compared multicommodity flow performance
with the one of information flow, in particular, the latter

14The coding advantage is the ratio of achievable optimal throughput with
network coding and without it.

allowed multiple source-sink pairs to share the bandwidth. In
case of directed graphs the authors calculated that network
coding provides a higher rate than the best multicommodity
flow solution, otherwise, in the undirected scenario, they
conjectured that the maximum rate achievable with network
coding is equal to the maximum rate reached by fractional
multicommodity flow. The same year, [127] showed a link
between network coding and linear programming formulations
for minimum weight Steiner tree. In particular, it explained
the parallel between coding advantage and integrality gap in
computer science optimization. By improving the bounds on
maximum coding advantage both for directed and undirected
networks, The authors enhanced the bound presented before
in [116]. In the way of investigating the general information
network flow problem introduced firstly by [2], [128] showed
a property which affects the alphabet size of network coding:
[18, Theorem 5.1] demonstrated that a generic LCM needs an
alphabet large enough to exist, but [128] calculated that, given
an integer k, the alphabet size needs only to be a perfect kth
power to make the network coding problem solvable. So q
needs not only to be very large, according to the number of
sinks, but it has to match particular values.

[129] applied the method of subtree decomposition15 to a
multicast network to study the average throughput obtained
by applying network coding instead of routing. The authors
found that network coding was able to reach at most twice
the throughput of the respective routing solution. Then, in
[130], by using the same method of [129], they proposed four
deterministic algorithms to implement network coding in a
decentralized manner. Firstly, they studied the case of two
sources and n receivers, secondly, the one of h sources and
two receivers and, finally, they generalised to h sources and n
receivers. In particular, in the last scenario, the algorithms used
tools from arcs in projective spaces to handle coding vectors.
Moreover, in the same context, [131] provided an alphabet-
size bound, in a scenario with two sources and two receivers,
together with a decentralized algorithm. Next, [132] connected
the theoretic graph colouring problem and network coding:
by considering the multicast problem with two sources and
by using subtree decomposition, the authors provided a code
design algorithm and alphabet size bounds. Concurrently and
independently, also [133] used similar concepts to classify the
complexity of network coding problems. A graph colouring
problem is related with the idea of partitioning a set into
parts. A vertex colouring of a graph G = (V, E) is a function
γ : V → C, where C is the set of colours. Then, a k-colouring
is a proper16 vertex colouring with at most k colours; this can
be seen as partitioning the vertex into k classes, such that the
vertices within the same class are not adjacent. A vertex list
assignment L on a graph G associates a set Lv colours with
each vertex v of G. In parallel, the problem of colouring can
be also applied to the set of edges.

[134] studied the application of network coding to com-
bination networks, an important kind of network in diversity
coding research. The authors calculated the network coding

15Subtree decomposition is a partition of a line graph into a disjoint union
of connected subsets through which the same information is sent.

16A colouring function is called proper if no two adjacent vertices are
assigned the same colour.
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gain in case of
(

n
n−1

)
networks and, next, they generalised

this result to the
(
n
m

)
networks, showing that choosing n and m

appropriately it increases the network coding gain by making
it unbounded.

In 2005, by studying the results obtained before by [19],
[103], the authors of [135], [136] provided a deterministic
algorithm to solve the multicast network coding problem. The
previous works found that network coding problem could be
reduced to choose the appropriate entries of the transfer matrix
of the network and each sink can decode the information
received only if it can invert its own transfer matrix. Hence, the
transfer matrix needs to be full rank and this request suggested
the authors to make a connection with mixed matrices. So,
the algorithm they proposed is an algorithm for max-rank
completions of mixed matrices. In respect of the algorithm
realised before in [113], this new one is slower but, on
the other hand, it made a more general approach, opening
ways to possible enhancements. [137], [138] continued the
investigation of network coding behaviours in undirected
networks with multiple source-sink pairs communications. The
authors calculated the maximum theoretic information rate for
this scenario, confirming the previous results found by [20].
[139], [140] (published in 2006) studied the performances
of deterministic network coding in a multicast network with
h sources and N receivers: the authors found that the use
of network coding increased the throughput proportionally
to a factor

√
N in comparison with directed Steiner tree;

moreover, they calculated that the alphabet size required for
randomized coding is exponentially larger than the minimum
one needed in case of deterministic network coding. In [141],
[142] (published in 2006) the authors calculated two upper
bounds on network coding rates for directed and undirected
graphs, by using the concept of d-separation in Bayesian
networks.

[143] proposed new coding schemes for line networks
scenarios, by using fountain codes; this work improved and
extended the previous work in [144].

[145], [146] (published in 2006) studied the problem
related with the amount of encoding nodes needed in the
network for a multicast transmission, i.e. finding the minimum
number of encoding nodes for a solvable network coding
problem. In fact, encoding nodes can be an expense, instead
of forwarding nodes, for several reason, such as: the cost
is higher, they introduce delay and they increase the overall
complexity of the network. The authors demonstrated that the
number of encoding nodes only depends on the transmission
rate of the source and on the number of receivers. Moreover,
they analysed the more general cyclic case: in this scenario
the dependence is on the size of the feedback link set of the
network17; they also calculated a lower bound on the number
of encoding nodes for cyclic networks. Next, they established
that this issue is practically an NP-hard problem.

In 2006, the same authors presented in [147] (but published
in 2009) the first efficient algorithm to realise a network
coding multicast, by taking into account the number of encod-
ing nodes. This algorithm also enhanced the time complexity

17The minimum number of links that must be removed from the network
in order to eliminate cycles.

TABLE I
COMPARISON OF THE COMPLEXITY OF THE ALGORITHMS FOR

DETERMINISTIC NETWORK CODING. M(ω) = O(ω2.3727) IS THE TIME
REQUIRED TO PERFORM ω × ω MATRIX MULTIPLICATIONS.

Complexity of deterministic algorithms

O(|E|) [9, Algorithm 2.19]

O(|E||T |ω(ω + |T |)) [113, Theorem 3]

O(|E||T |ω2) [113, Theorem 3]

O(|E||T |ω+ |T |M(ω)) [113, Theorem 9]

O(|T |ω3 logω) [135]

O(|E||T |2ω + ω4|T |3(|T |+ ω)) [147]

of the previous one showed in [113] (in particular they use
this last algorithm as a subroutine). Then, they studied the
problem of finding integral and fractional network codes with
a bounded number of encoding nodes but they found that this
issue was NP-hard.

[148] (published in 2009) studied dynamic multisession
multicast with the application of intra-session network coding.
In particular the authors calculated the capacity region for the
intra-session network coding and described some algorithms.
Next, [149] analysed the run-time complexity at the single
nodes of the network. It provided an algorithm for random
linear network coding scenarios called ’permute-add-add net-
work codes’, requesting a lower complexity at the intermediate
nodes than the one necessary in the previous work in [104].
In particular, the authors proved that their algorithm could
achieve the multicast capacity with probability tending to
1. [150] proposed an algorithm to obtain the advantages of
network coding and to reduce the number of intermediate
coding nodes. They used a ’genetic approach’ to decrease the
complexity from NP-hard. Then, in 2007, [151] enhanced the
algorithm, by adapting it for cyclic scenarios: it increased its
performances and it combined the algorithm with the random
codes for a decentralized implementation.

The same year, [152] presented a deterministic approach
for combination networks using binary coding and achieving
the multicast capacity; the authors experimented a quadratic
decoding complexity. [153] studied the possibility to approx-
imate the problem of multicasting information successfully
with network coding and it demonstrated that it is NP-hard.

Tables I and II respectively summarize the complexity of
the algorithms described above and the bounds on the alphabet
size of the network codes. Moreover, Figure 14 plots the
complexities listed in Table I according to the source rate
chosen for transmission and to the number of sinks.

C. Random Linear Network Coding and Network Error Cor-
rection

In 2003, [104], together with [154], defined a random
network coding approach to multicast, in which the nodes
transmit the linear combinations of the incoming information
on the outgoing channels, using independently and randomly
chosen code coefficients from some finite fields. Nevertheless,
on the receiver side, the decoder needs the overall linear com-
binations of source processes. Thanks to this new approach the
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TABLE II
COMPARISON OF THE BOUNDS ON THE FIELD SIZES q FOUND FOR DETERMINISTIC NETWORK CODING. E IS THE SET OF EDGES, T IS THE SET OF SINKS

AND ω IS THE INFORMATION SENT BY THE SOURCE. THE LOWER BOUNDS ARE THE MINIMAL ONES UNDER WHICH A NETWORK CODING DOESN’T EXIST.
THE BOUNDS ON EXISTENCE ARE THE ONES UNDER WHICH A NETWORK CODING SOLUTION EXISTS FOR THE SCENARIOS ANALYSED BY THE ARTICLES.

Alphabet size bounds of deterministic network coding

Lower bounds

q >

( |E|+ ω − 1

ω − 1

)
[9, Algorithm 2.19]

q ≥ |T | [113, Theorem 3], [147]

q ≥ 2|T | [113, Theorem 3]

q ≥ 2|E||T | [113, Theorem 9]

q ≥ √
2|T | [115, Theorem 1]

q ≥ 2exp(Ω(ω1/3)) [128, Corollary 4.1]

q > |T | [135]

Existence bounds
q ≤ �log2 |T |ω + 1	 [19, Corollary 1]

q ≤ 
√2|T | − 7/4 + 1/2� [131, Theorem 2]

q ≤ √|T | [132]

authors allowed network coding to be suitable for networks
with unknown or changing topologies. Moreover, by using a
randomized approach, a failure probability comes out, which
can be arbitrarily reduced by increasing the dimension of
the finite field (i.e. the probability decreases exponentially
with the increase of the number of bits in the codewords).
The authors of these works calculated a lower bound on
coding success probability: by considering linearly correlated
sources, the randomized codes can be viewed as a distributed
compression within the network, hence, the source information
is compressed to the capacity of any cut through which it
passes. In 2004, [155] demonstrated with [155, Theorem 1]
that the error probability for distributed random network codes
depends on some error exponents, which are a generalisation
of the Slepian-Wolf error exponents for linear coding18. The
authors considered arbitrarily correlated sources over an ar-
bitrary multicast network, in which the randomized network
coding approach was used to perform compression, when
necessary. Next, in 2004 with [157] (published in 2006 in
[158]), a full description of the theory of random network
coding was provided. These articles described a connection
with bipartite matching and random network coding (making a
link with [103]); then, they generalised the Slepian-Wolf error
exponents in case of arbitrary correlated sources, and they
showed the benefits of the random network coding application.

In 2002, the first paper about network error correction
(NEC) codes [100] was published, but only in 2006 [22],
[23] established a full connection between network coding
and classical algebraic coding theory. In fact, the authors gave
the general definitions of network error-correcting codes and
demonstrated that network error correction is a natural gener-
alisation of classical coding theory: especially, they extended
the Hamming [22, Theorem 2], Singleton [22, Theorem 4] and
Gilbert-Varshamov [23, Theorem 2] bounds to the new t-error-
correcting network codes. Classical algebraic error-correcting
codes employ correction of errors in point-to-point commu-
nications and they introduce redundancy in time dimension.

18The error exponents for Slepian-Wolf coding were obtained in [156]

On the other hand, the other approach to get reliability and
efficient communication is using channel coding together with
an optimal network code: instead of an error correction link-
by-link based, NEC codes realise a distributed error correction
in the network and introduce redundancy in space domain.

The relationship between network coding and channel
coding was studied firstly, in 2002, by [33] and, in 2003
(published in 2006), by [159]. The former faced the issue, by
considering synchronous and independent channels with a unit
delay; the latter worked on a point-to-point communication
network, with independent and discrete memoryless channels
and asynchronous transmissions. In particular, this last paper
defined a separation principle for network coding and chan-
nel coding, generalising and extending the results obtained
before by [160] (about feedback networks) and [33] (about
synchronous transmissions).

Next, in 2006, [161] showed some basic definitions about
network error correction, it defined some main properties
in case of single-source multicast and it proposed some
algorithmic implementations. This work gave the important
definition of the concept of minimum rank of a network
error correction code, which is the NEC respective of the
minimum distance in classical coding theory. In the same
work, the author defined encoding and decoding processes and
he proposed one ’brute force’ and one ’fast’ decoding algo-
rithm. So, he gave the characterization of the error-correction
capability in the cases of global kernel errors and erasure
errors. [162] defined Hamming weights for NEC. In general,
for a code, Hamming weight and distance are instruments to
quantify the ability in detecting and correcting errors. They
are not directly applicable in case of NEC because the linear
transformations of error vectors affect the reception at the sink:
the measurement criteria are kinds of linear transformation
of the error vector, the one which can confuse the reception
of a message. Hence, the authors presented some theorems
about detection and correction capabilities in both unicast and
multicast case. Finally, they showed the connection between
the concept of minimum rank, defined by [161], and minimum
distance: in fact, they demonstrated that the two concepts



BASSOLI et al.: NETWORK CODING THEORY: A SURVEY 1965

(a)

(b)

Fig. 14. Representation of the complexity of the algorithms presented in
Table I (a) Complexity as a function of source rate for the multicast scenario
of the butterfly network (b) Complexity in terms of number of sinks for a
network of 20 edges with a source rate of 20 b/s.

are the same thing [162, Theorem 6]. The previous results
were clearly described and improved in [163] (published in
2008): moreover, the author presented another brute force
algorithm in case of erasures and global kernel errors [163,
Section 5], and defined the condition of existence (involving
the cardinality of the alphabet) for a NEC code [163, Section
3] to be a MDS code.

In 2007, [164] gave a refinement of the Singleton bound
obtained firstly in [22], through the use of different constraints
on the individual sink nodes, when the maximum flows
between them and the source are not the same. Then, the
authors proposed an algorithm, which constructed a linear
network code achieving such a refined Singleton bound from a
classical linear block code. After that, [165] obtained a refined
version of the Hamming, Singleton and Gilbert-Varshamov

bounds calculated in [22], [23]. These results were proved
through simpler proofs than the previous ones, by using a new
concepts of Hamming weights. In [166] (published in 2011),
all these concepts were deeply explained and enhanced, and
two algorithms were shown.

[167] realised a deterministic and centralized algorithm
for NEC, attaining the Singleton bound defined in [22]: this
algorithm is based on the previous work in [113] and a char-
acteristic is that it did not introduce delay in the transmission.
The author gave also a randomized construction, that is, by
randomly choosing local encoding vectors: in this way, he
tried to remove the time complexity due to a centralized im-
plementation. A year later, [168] found a condition on the size
of the alphabet of the code in presence of degradation [168,
Corollary 1]: this result showed that the size has to be smaller
than the one showed before in [163, Section 3]. In order to
achieve it, the authors calculated the probability mass function
for a random network code, taking into account degradation,
and an improved upper bound for the failure probability. In
[169] (published later, in 2009), the same authors improved
and organized the results, which they have already obtained
before in [168]. Then, [170], [171] summarized the results
obtained in the previous works, and, moreover, they described
a hybrid NEC code, a code consisting of three different levels
of protection to face the issue of deletion of erroneous packets
[170, Section 5], [171, Section 7]: a parity check is introduced
by the source, an error-correction code is used to protect each
packet and, a NEC code is deployed to protect the whole
multicast; they said that this method reduced the size of the
global kernel. Most of the concepts discussed above can be
also found in [172].

A new development arrived with the publication of [173],
[174] (this last one was published later in 2008). The au-
thors had the intuition to apply the approach, used before
in [175] (Grassmann manifold for calculating the capacity of
multiple-antenna fading channels), to implement NEC using
random linear network codes to treat errors and erasures:
they provided a noncoherent subspace-based formulation of
the NEC problem. Firstly, they defined an operator channel
to describe the relation between its input subspaces and its
output subspaces (the information is interpreted as subspaces
of a vector space); secondly, they defined a suitable metric
to reformulate the concepts of minimum distance of a code
and of maximum dimension of the codewords of a code, in
this new geometric context; thirdly, they focused on constant-
dimension codes (CDC) and considered the Grassmann graph
a suitable way to characterize them; furthermore, the authors
gave an interpretation of the metric function as the double of
the distance in the Grassmann graph. Grassmann graph is a
class of undirected graphs defined as follows. A connected
graph G is distance-regular if there exist integers bi, ci for
i = 0, 1, ..., d, such that for any two vertices α and β at
distance i = d(α, β), there are precisely ci neighbours of β in
Gi−1(α) and bi neighbours of β in Gi+1(α), where Gi(α) is
the set of vertices z with d(x, z) = i. The value i = d(α, β)
represents the length of the shortest path from α to β. Let K be
a field and let V be an n-dimensional vector space over K. The
Grassmann graph of the m-subspaces of V has vertex set [ Vm ],
the collection of linear subspaces of V of dimension m. Next,
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TABLE III
CONSTRUCTIONS OF NETWORK CODES.

Linear network coding Coherent/noncoherent

Random linear network coding Coherent/noncoherent

• Compressed coding vectors

Subspace coding Noncoherent

• Lifted rank metric codes

• Padded codes:

- Gabidulin codes

- Spread codes

• Lifted FD codes

• Codes obtained by integer linear programming

the authors provided a reformulation of the classical coding
theory bounds for this noncoherent approach and they proved
how to construct a Reed-Solomon-like NEC code, providing
also a possible efficient decoding algorithm. This kind of
noncoherent NEC codes were named KK codes from the
authors (Koetter and Kschischang) that firstly proposed them.
Concurrently, [176], [177], [178] (the latter published in 2008)
investigated the NEC problem through a different approach:
the authors chose to develop a kind of rank-metric codes
for NEC because of the possibility to take advantage of the
powerful tools of classical coding theory. They built optimal
rank-metric codes obtained by the nearly optimal subspace
codes after a ’lifting’19 operation: therefore, this family of
subspace codes is called lifted rank-metric codes. Then, in
[179], the authors proposed a rank-metric approach, by using
Gabidulin codes, to priority encoding transmission. [180]
studied constant-dimension codes: the authors demonstrated
that the combinatorial objectives called Steiner structures are
optimal CDC and, hence, they derived Johnson type upper
bound, and improved the Wang-Xing-Safavi-Naini bound.

In fall 2007, [181] in line with the work in [178], proposed
a code with the structure of a sparse graph code (low-density
parity-check code) to be applied in case of a probabilistic
channel model, in which the noise is chosen uniformly and
randomly from a matrix space. The authors, firstly, calcu-
lated the capacity of this channel, next, they showed some
characteristics to be satisfied by the code in order to achieve
the channel capacity and finally, they provided an algorithm
for the encoding and decoding process. A presentation/tutorial
about this work can be [182].

By starting from [181], in 2008, [183], [184] (published in
2010) defined both multiplicative and additive matrix channels
and calculated their capacities. In particular, on the latter side,
the authors found the same results of the previous work [181],
also extending its proof [184, Corollary 2]. Then, they defined
efficient coding schemes to achieve these capacities. Moreover,
they characterized the additive-multiplicative matrix channel
and its capacity (they obtained upper and lower bounds for the

19Given a matrix X ∈ F
n×m
q , the subspace Π (X) =

〈
In×n X

〉
∈

G(n+m,n) is called the lifting of X. Then, given a matrix code C ⊆ F
n×m
q ,

the lifting of C is a subspace code, whose all the codewords are lifted.

general case), presenting a suitable efficient coding scheme.
The same year, [185] developed [173] by generalising its

approach with the study of codes of minimum distance 2,
N − 1 and N, and by calculating a Gilbert upper bound on
the code rate. Moreover, it presented together with [186] a
kind of padded codes20 with constant-rank distance, called
spread codes. Another family of padded codes was developed
by [187]: it modified KK codes by introducing a recursive
construction and by increasing their information rate. [188]
continued the work started by [174]: it extended the framework
of the codes, by considering them in projective spaces. The
authors generalised the Singleton, Gilbert-Varshamov and LP
bounds and also the two Johnson bounds, but independently
from [180]; next, they extended the concepts of linearity
and complements to projective spaces and they provided
constructions of optimal codes, by using Steiner structures.
Concurrently, in [189] (published in 2009), by taking advan-
tage of the concept of ’lifting’, expressed before in [178], the
authors defined a new way to construct rank-metric codes in
projective spaces through Ferrers diagrams. So, they studied
constant-dimension codes and their multilevel implementation,
providing also decoding algorithms; finally, they described
a puncturing process for codes in projective spaces. Due to
the growing importance gained by CDC, even other works
started studying their properties: hence, [190], [191], [192]
worked on the possibility to construct optimal CDCs, by
using optimal CRCs. They investigated some properties of
CRCs such as upper and lower bounds on the maximum
cardinality and asymptotic behaviours of the maximum rate.
Next, [193] proposed another approach to design constant-
dimension subspace codes by considering this issue as an
optimization problem. This novel approach was useful to find
several CDCs with more number of codewords than the CDCs
already known.

[194], [195] proposed an approach to NEC through block
codes in case of directed acyclic networks. They proposed
some syndrome-based and maximum likelihood decoding al-
gorithms, and they studied the coding design and complexity.
[196] developed the multisource case for the noncoherent

20Padded codes are asymptotically good subspace codes designed as a union
of lifted product rank-metric codes.
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NEC codes, enhancing the framework presented in [174];
moreover, the authors gave two constructions for subspace
combinatorial codes of fixed alphabet size. [197], [198] stud-
ied and characterized a general transmission system: in this
very general context, the authors started giving the definitions
of weight measure, minimum weight decoder (MWD) and t-
error correcting code. Hence, they presented two definitions
of minimum distance for a code, in case of error correction
and of error detection: these minimum distances are different
in the most general case and they only become the same in
the most particular case (classical coding theory). By studying
the case of non-linear network coding, the authors discovered
that the distances are different in a way that implies that the
number of correctable errors can be greater than the number
of detectable errors [197, Example 3.2]. So, by considering
the new definitions of weight, they also described the case of
network erasure correction. In order to have a presentation of
the results in [162], [164], [165], [197], [198] it can be useful
to read [199].

[200] studied a scenario with multiple sources (in this
case limited to two) and one receiver, communicating with
time-slotted transmissions. The authors found that the channel
is similar to the one studied before in [173]. Their main
result was to characterize the capacity region in case of
subspace coding, moreover showing that this region is a
polytope with finite corner points [200, Theorem 1]. In [201],
the same authors investigated a time-slotted scenario with a
block time-varying channel (it can be considered DMC), in
which a source communicates with multiple receivers. They
calculated the capacity of this channel [201, Theorem 1],
extending the results in the case of erasures [201, Corollary
1]. Next, by giving an expression of the input distribution of
the channel, they characterized the capacity to achieve both
optimal and approximate solutions (using a large finite field).
[202] (published in 2011) explained better and extends the
concepts previously presented in [200], [201]. By generalising
and enhancing the results published before in [58], [203]
investigated the decoder error probability (DEP) of bounded
rank-distance decoders for MRD codes. In particular, the
authors obtained a conditional DEP to evaluate when a decoder
can make a mistake in correcting t errors. The results about
bounds, they calculated, were special cases of the general
ones obtained in [178]. They derived upper and lower bounds
on the minimum cardinality of CDCs, given the covering
radius. They also proposed a decoding algorithm for these
codes, to correct more errors than a bounded subspace distance
decoder. Then, in [191] (published in 2010), they studied
the properties of ’packing’ and ’covering’ of subspace codes.
They investigated both cases, by considering the subspace
metric or the injection metric, to calculate asymptotic rates and
comparing the performances of CDCs to those of the general
subspace codes.

[204] calculated an enhanced upper bound on the failure
probability in a random linear network coding scenario, shown
before in [168, Theorem 1], to obtain a tight bound in case
of the field size going to infinity. [205] firstly derived the
bounds on the code size, presented previously in [174], from
the concepts in [206]; secondly, the authors calculated a new
linear programming bound on the code size, by defining

a different minimum distance; next, they proposed a code
construction for codes correcting single insertion or dele-
tion for the operator channel. [207] studied the noncoherent
random linear network coding scenario (single and multiple
path subgraphs) and its performances to correct errors and
erasures; in particular, it compared these results with the
ones obtained in case of random forwarding employed in the
nonsource nodes. The results showed that RLNC is better than
random forwarding only at high information rates. In [208],
the authors characterized the capacity regions in the multiple-
sources multicast scenario for coherent [208, Theorem 1] and
noncoherent [208, Theorem 2] NEC. In case of multi-source
non-multicast network they derived a linear network code
from a given error-free network code; in this environment,
they also mentioned the application of vector linear network
codes. In order to demonstrate this last result they generalised
the concept of distance previously obtained in [162]. The
concurrent work in [209] introduced a new approach to the
problem of random linear network coding: instead of using,
as the previous approaches, appended coding vectors [210] or
subspace codes [173], [174], it introduced a framework based
on compressed coding vectors for the transmission of coding
coefficients. By taking some concepts from classical coding
theory, the authors designed the encoding process and, on the
receiver side, the decoding one, in order to recover the packets
received by looking for the non-zero positions of the original
coding vectors. The benefit of their novel approach was to
reduce the length of coding vectors from n to r = n − k
(k is the number of information bits). The performances of
compression achieved by this work were improved by [211].

The same year, [212] studied the design of random linear
NEC codes and, in particular, how they are affected by chang-
ing network topology. By considering the network topology as
a probabilistic channel the authors studied the performances
in case of a class of unicast networks, the S-networks (and
their concatenation): they found that these networks are the
lowest bound, in terms of capacity, of the unicast networks.

In 2010, [213] defined generalised erasure matrices for
rank-metric codes and applied them in a random linear NEC
environment. The authors also provided an algorithm and
an example of construction. Later, [214] firstly introduced
a vector formulation of the linear operator channel (LOC),
a general channel model whose linear network coding is a
particular case; it described noncoherent and coherent trans-
missions of LOCs and a simple method to evaluate the
transmission channel to obtain channel information; next, the
authors described the subspace coding and rank-metric coding
context; so, they analysed linear matrix codes using LOCs and
their performances and complexity. The results about subspace
coding and LOCs were also presented in [215] and on the other
hand, few months later, [216] showed the results about channel
training and linear matrix codes. By investigating RLNC
networks as symmetric DMCs, [217] obtained a capacity for
noncoherent RLNCs in arbitrary networks, which was the
same of the one found before by [212], in the particular
case of unicast networks. In [217], the same authors started
to investigate the multishot code implementation of subspace
coding, by generalising the results obtained before in [174] for
the special case of one-shot subspace codes. Their construction
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method of multi-shot codes was enhanced and better explained
for rank-metric codes in [218]. At the end of 2010, [219]
studied the upper bounds on the failure probability of random
linear network coding, obtained before by [169], by taking
advantage of topology information.

Table III summarizes the different ways to construct net-
work codes and it shows if they can be coherent or noncoher-
ent solutions. An interested reader could find a clear tutorial
about NEC codes in [220]. Another clear tutorial, which is
focused on the issue of the coding vectors transmission and the
compressed coding vectors approach, can be found in [221].
A useful survey on subspace and rank-metric codes is [222].

D. Convolutional Network Codes and Cyclic Networks
The theories developed in [130]–[132], were fundamen-

tal to obtain [223]; these articles served as base to find a
connection between network coding and convolutional codes.
So, in 2004, by applying a technique called information
flow decomposition, the authors of [223] found a way to
reduce the dimensionality of the network coding problem. In
particular, this technique consists in replacing the actual code
with another code at every node, independently of the global
network structure, that has identical rate regions. Moreover,
they enhanced the explanation of what they showed in their
previous works about the decentralization of the codes and
the bounds on the code alphabets. Next, they proposed some
algorithms to implement the subtree graph design according to
the number of sources and receivers. The final result in [223]
was the analysis of the connection between network coding
and convolutional codes, discovered thanks to the investigation
on how to reduce the decoding complexity. Furthermore, [224]
studied deeper the relation between network coding and con-
volutional codes and it proposed a simplified method to deal
with cyclic networks. Nevertheless, it was [225] that started
to fully deal with convolutional network codes. It proposed an
algorithm for convolutional codes similar to the one presented
in [112] for block network codes, and it also provided an
analysis of the overhead and of the decoding complexity.
This algorithm represented a generalisation of network coding
to cyclic networks. Then, [226] analysed the definition of
linearity for network coding and it modified this concept into a
new one through local reduction, a special method to partition
a graph of a network into subgraphs through which the same
information flows. In this way, the authors provided a simple
construction for convolutional multicast network codes and a
new class called filter-bank network codes.

In 2005, [227] provided an algorithm to implement an
optimal network code multicast over cyclic networks, in poly-
nomial time. Its result was focused on convolutional codes but
with a possible application to block codes. The same authors
gave a full description of this algorithm in [228]. Moreover,
they enhanced and fully explained it and its performances in
[229] (published in 2010).

In 2006, [230] defined convolutional network codes, by
using rational power series over finite fields and vector ratio-
nal power series respectively associated with local encoding
kernels and global encoding kernels. Moreover, the authors
defined the problem of convolutional multicast and they sug-
gested encoding and decoding algorithms.

In 2008, [231] proposed an algorithm for network coding
in cyclic networks in case of multicast, with multiple sources.
Indeed this algorithm was developed to work on any kind of
network, such as acyclic and cyclic and the authors demon-
strated that it ran in polynomial time. In order to delve into
this topic it is useful to read [232].

E. Solvability Issues and the Quest for the Capacity Region

In 2004, [233] analysed the important connection between
the alphabet size and the solvability of the multicast problem
and it found that the solvability becomes easier when the
cardinality of the alphabet is large; so, it showed that there
is not solution for any large alphabet size but only for a part
of them. Moreover, the authors confirmed that a multicast sce-
nario, transmitting at most two messages, has a binary linear
solution. However, they also proved that this is not always true
by transmitting more than two messages: especially, these last
scenarios become solvable over binary fields only considering
a non-linear solution.

Then, in 2005, the same authors demonstrated in [234] that
the idea that every solvable network has a linear solution over
some finite field alphabet or vector dimension was not exact: in
fact they showed that some networks have no linear solution.
Therefore, linear network codes are not sufficient over finite
field alphabets, over commutative ring alphabets, over the
most general class of R-modules, and even asymptotically
over finite field alphabets. Moreover, they proved the same
results in the case of vector linear coding. At this point,
they deduced that their conclusions are also valid for the
more general convolutional and filter-bank linear codes. [235]
defined the concept of routing capacity of a network as the
highest possible capacity obtainable from a fractional routing
solution and calculated it in case of fractional coding, that
is, the dimension of the messages need not to be equal to
the capacity of the edges). In this general case, the authors
proved that the coding capacity is independent of the alphabet
used: hence, they established the computability of this routing
capacity. Next, [236] showed that the network coding capacity,
in contrast to the routing capacity, in some cases is not
achievable. On another way, [237] demonstrated that not all
solvable multiple-unicast networks are reversible and later,
[238] investigated the reversibility and irreversibility in case
of network coding scenarios.

[239] calculated the capacity of an infinite cascade of
DMCs and stated upper and lower bounds. [240] showed some
results in order to calculate the capacity of network coding in
case of fixed and changing topologies. [241] calculated an
outer bound on the rate region for network coding problems,
by considering general scenarios (even undirected graphs);
then, the authors defined the concept of informational domi-
nance, important to derive information theoretic inequalities.
The authors also made a comparative study of network coding
rates and multicommodity flow rates for directed cycles.

The same year, [242] demonstrated that in single-source
multiple-session multicast scenarios, in order to achieve the
maximal throughput, it is useful to use group network codes21,
which include linear network codes as a particular subset.

21Network codes over finite algebraic groups.
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[243] defined an improved outer bound on the admissible
rate region for three-layer networks in a multi-source multi-
sink scenario; this bound improved the previous max-flow
min-cut bound. Then, in [244], the same authors enhanced
the explanation by improving their results.

In 2006, [245] described a method to construct networks
from matroid: specifically, it showed, as an example, how to
construct a Vamos network from the well known Vamos ma-
troid. Then, the authors proved that Shannon-type inequalities
are not in general sufficient to calculate the network coding
capacity, hence, they found an upper bound by using the
Zhang-Yeung non-Shannon-type inequality. They also proved
that Shannon-type inequalities are not sufficient to compute
the network coding capacity in the multiple-unicast scenario.
In the meantime, [246] investigated the relation between the
capability to achieve network coding capacity and the number
of coding nodes in the network.

In 2007, [247] improved the previous results about inner
and outer bounds of the capacity region shown in [110]: in
particular, the authors determined the exact capacity region
for general acyclic multi-source multi-sink networks, in terms
of constrained regions in the entropy space. [248] proved
that the admissible coding rate region can be obtained as
the intersection between the convex cone, containing the
set of all representable entropy functions, and a collection
of hyperplanes, depending on the network topology and on
the multicast requirements. This region resulted to be quite
different from the inner bound previously calculated in [110].
[249] constructed a network coding multicast problem which
relates solvability with polymatroids in case of four random
variables. The objective was to create a link between entropy
vectors and the capacity region of network codes.

In 2008, [250], [251] showed the presence of a duality
between the entropy functions of the entropy space and
network codes and the authors enunciated three theorems to
describe their results. In these theorems the entropy function h
is related with the admissible rate capacity tuple T (h): firstly,
the tuple is admissible if h is the entropy function of a set
of quasi-uniform random variables; secondly, it is admissible
if h is linear group characterizable; thirdly, T (h) satisfies
the LP bound if and only if h is a polymatroid. Then, the
authors described several implications of these conclusions.
In [252], the same authors found that even in case of single-
source multicast networks, as in the multi-source scenario, the
computation of the region Γ∗

n is complex because Γ∗
n is a non-

polyhedral region. Hence, they showed this property for the
two cases of single-source networks, with hierarchical sink
constraints and with security constraints.

[253] studied the complexity of the approximation of the
network coding capacity, by considering a general instance of
the problem. The authors found that the problem is NP-hard.
In their work they also made a connection between network
coding and the index coding problem; this link between the
two areas was studied deeply by [254]. Next, they better
explained their results in [255] (published in 2011). [256]
demonstrated that the problem of determining if a network is
scalar-linearly solvable is the same of the one of determining
where polynomials have the same roots, given a collection of
them. Moreover, the authors showed that for every network

there is a multiple-unicast network which is matroidal, such
that the two networks are scalar-linearly solvable over the
same fields. [257] described how the linear independence
among coding vectors assigned to the edges can be interpreted
as a matroid. An edge-disjoint paths network is associated with
a network matroid; if the two independent sets of the network
matroid and the ones induced by the previous method coincide,
the linear network code is generic. Finally, they showed an
algorithm for network matroid representation. [258] studied
the capacity region of network coding in the special case of
undirected ring networks.

In 2009 (published in 2012), [259] analysed the behaviours
of network coding in case of sum-networks and, in particular,
demonstrated the insufficiency of network coding for this kind
of networks and the non-achieving of the network coding
capacity. [260] derived a computable outer bound for the
multi-source network coding capacity, because the previous
linear programming approach had exponential computational
complexity, dependant on the network size.

A good tutorial that establishes the link between network
coding theory and matroid theory, the capacity region problem
and the solvability issue, is [261].

VI. LATEST RESULTS AND POSSIBLE FUTURE
DIRECTIONS

This survey presented relevant developments both in infor-
mation theory — important for understanding network coding
— and in network coding theory. The latter is a new field
of research, therefore there is still a considerable number of
issues that needs further investigation. The next subsections
will present the most recent works in network coding theory
identifying potential research directions in this area.

A. Variable-Rate Linear Network Coding

In 2006, [262] proposed the application of variable-rate lin-
ear network coding in a single-source broadcast scenario. This
new technique resulted to have a simpler scheme, requiring
less storage space in the non-source nodes of the network.
Then, [263] enhanced these concepts by also considering the
possibility of link failures. [264] proposed a unified framework
for variable-rate linear network codes and variable-rate static
linear network codes: in particular, the main idea, used by
the authors, was the type-preserving conversion matrix: so,
the non-source nodes only need to store one local encoding
kernel to save storage space.

B. Theoretic Framework and Algorithmic Developments

Recently, after 2008, a more general theory of network
coding was proposed. The first work in this direction was
[265], which was enhanced by [21], taking advantage of
several results concurrently presented in [266]. They demon-
strated that classical field-based network coding theory, and
so convolutional network coding, are instances of a new
framework based on commutative algebra. Especially, this
theoretic extension was possible by seeing the information
as belonging to a discrete valuation ring (DVR) and not to
a field. A ring is called a DVR if there is a field K and a
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discrete valuation ν22 on K such that R is the valuation ring
of ν. An example of DVR is localization. Then, let define an
equivalence relation on the set of pairs (d, r) with d ∈ D23 and
r ∈ R, by (d1, r1) ∼ (d2, r2) if and only if d1r2 − d2r1 = 0.
The equivalence classes form a ring – denoted by D−1R –
which is called the ring of fractions of R or the localization
of R at D. We write r/d for the equivalence class containing
(d, r). Addition and multiplication are defined naturally by
r1/d1+r2/d2 = (r1d2+r2d1)/(d1d2) and (r1/d1)(r2/d2) =
(r1r2)/(d1d2), for r1, r2 ∈ R and d1, d2 ∈ D. If R = K[x]
is the polynomial ring over a field K and D is the subset of R
consisting of polynomials which are not divisible by x, then
D−1R is the set of all rational functions in x which can be
written in the form f(x)/(1 + g(x)), for some polynomials f
and g. A good tutorial which explains these new ideas, can be
[267].

Another enhancement of the theoretic fundamentals of
network coding, in case of directed acyclic networks with one
source, was also presented in [268]. The classic definitions
of linear dispersion, linear broadcast and linear multicast,
given before in [9], used the dimension of the span of the
global encoding kernels, associated with the incoming edges,
to characterize the different kind of linear network codes.
Otherwise the new unified approach took advantage from the
concept of regular independent set to describe with coherence
the linear independence among set of edges. Next, [269]
improved the previous work by applying the new concepts to
demonstrate some conditions and relations: thanks to this new
theoretic framework, the authors demonstrated the theorems
through simplified proofs.

[270] provided a polynomial time algorithm to design
binary matrices for deterministic multicast network coding
and it enhanced the theoretic algebraic framework defined in
[19], [101], [102] by considering operations over matrices.
Then, [271], [272] extended [270] and they opened the way
to an implementation of a polynomial time algorithm to
design vector network coding in a multicast scenario; the
new algorithm changed the problem of finding the smallest
L (L× L is the dimension of the coding matrices24) into the
one of finding the small degree co-prime factor of an algebraic
polynomial. This new result suggested an algorithm in case of
scalar network coding, operating in polynomial time.

In 2009, [273] developed a binary linear multicast network
coding for any acyclic scenario. By fixing the size of the finite
field and by extending the multicast dimension, the authors
decreased the computation complexity of network coding at
the intermediate nodes and achieved a lower implementation
cost of the nodes of the network. In particular, this result is
useful for the design of wireless scenarios. A year after, [274]
presented two ways to construct cooperative systems by using
rateless network coding: the two strategies were proposed in
case of uplink and downlink communications and considered

22A discrete valuation on K is a surjective function ν : K× → Z,
satisfying v(xy) = v(x) + v(y) and ν(x + y) ≥ min{ν(x), ν(y)} for
all x, y in K×, with x+ y �= 0. The subring

{
x ∈ K× : ν(x) ≥ 0

} ∪ {0}
is called the valuation ring of ν.

23D is a subset of the integral domain R.
24In vector network coding the coefficients at the non-source nodes are

substituted by matrices of coefficients to make operations among vectors.

single-source partial cooperation and multi-user cooperation.
In 2011, [275] showed a technique based on the concept

of uncertainty region of vectors of random variables, in order
to calculate the converses for the problem of transmission of
correlated sources information. The same year, [276], [277]
defined a kind of codes – called BATched Sparse (BATS) –
which represents an extension of LT codes. The main idea is to
use batches, sets of packets combining only the packets from
the same subset; moreover, it was demonstrated that the linear
transformations performed by the batches can be analysed
through the linear operator channel defined in [214]. LT codes
are a family of fountain codes, firstly introduced by [278] in
2002. Then, in 2010, [279] firstly used LT codes to reduce
the decoding complexity of network coding in a large-scale
content dissemination system. The aim of BATS codes is to
reduce the complexity of network coding at intermediate nodes
for large files transmission through an end-to-end coding
scheme.

[280] developed a unified approach for combinatorial
coding subgraph selection problems and [281] studied network
coding in line and star networks under the condition of
node-constraint. In this last article, the authors found a link
between network coding and index coding. The performances
of network coding in undirected combination networks were
studied by [282]. The authors demonstrated that, in this
scenario, network coding increases the throughput and reduces
the complexity of designing the system.

C. Convolutional Network Codes

An algorithm for basic convolutional network codes with
polynomial time complexity, was proposed in 2009 by [283].
This work was based on the new theoretic results made
available by [268], [257]. In [284], the authors enhanced that
algorithm by extending [283] and they refined and completed a
new version of it, later in [285]. [286] reviewed the concepts of
global and local encoding kernels in case of cyclic networks:
it analysed the conditions to determine the global encoding
kernel matrix of a convolutional network code in a cyclic
scenario. Next, [287] designed an adaptive random convolu-
tional network code which operates in a small field and adapts
to the network topology; the authors showed an example of
their method in combination networks. [288] described a new
class of convolutional network codes for multicast networks,
called delay invariant: this name is due to the fact that the
code is not dependent from the delays of the network. [289]
proposed a probabilistic polynomial algorithm for directed
cyclic networks by calculating the global encoding kernels
by using the Mason formula. Hence, the aim of this work
was to improve the previous [228], [227], [231]. Next, [290]
studied the behaviour of network coding in networks with
delay different from one.

D. Network Error Correcting Codes

In 2011 both [291], [292] made a singularity probability
analysis of the random transfer matrix (defined in [158]), in
noncoherent network coding context (KK codes), by using
constant-dimension codes. They found a correspondence be-
tween the rank deficiency of the subspace received and the
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zero pattern of the transfer matrix. They also derived upper
and lower bounds on the decoding failure probability. Then,
[293] extended classical error-correcting codes to the context
of subspace coding. In particular, the author demonstrated the
direct and the converse part of the coding theorem to provide
an upper bound on the random network coding capacity.
By considering the theoretic concepts about global encoding
kernels demonstrated in [163], [294] showed that network
MDS codes (coherent scenario) can achieve the refined Sin-
gleton bound and require a smaller field size than the known
result. The authors described a polynomial time algorithm to
implement MDS codes in directed acyclic networks. So, [295]
tried to enhance the results in [166] and [294] in order to
reduce the complexity of the system and the amount of storage
space required in the non-source nodes of the network.

[296] calculated a LP bound for constant-dimension codes
which is as strong as the compact Johnson bound. [297]
proposed the use of convolutional codes for NEC by showing
some advantages in terms of field size and decoding com-
plexity. The same authors investigated convolutional NEC
codes also in [298] by showing an upper bound, a bound
on the bit error probability and decoding performances in
terms of BER. [299] extended the previous work in [272],
by applying it in a NEC scenario; moreover, the authors
proposed another algorithm to compute the polynomial co-
prime, achieving less complexity than the original one. By
investigating noncoherent network error correction, [300] pro-
posed a matroidal interpretation of KK codes: the authors
interpreted RLNC as the communication of flat matroids,
because they demonstrated that flat matroids can be seen as
generalisations of linear subspaces. Instead of considering the
packets as elements of a vector space, they considered the
packets as points of affine spaces25, and provided a new model
to investigate noncoherent NEC, called random affine network
coding (RANC). [301] extended the generalised Hamming
weight for linear block codes to linear network codes, in
order to completely characterize the performance of linear
network codes on fixed networks. [302]–[304] studied network
error correction in case of unequal link capacities for single-
source single-sink networks: they analysed the behaviour of
network coding to achieve the capacity and they provided
upper bounds on the cut-set. [305], based on the previous
work in [162], showed unequal error protection applied to
static linear network coding. Hence, the authors proposed a
new class of network codes called generalised static broadcast
codes (GSBC).

E. Capacity Region and Solvability

[306] related the problem of determining the solvability
of a network coding problem to the independence number
of a guessing graph26. [307] continued to research in line
with the previous article [235]. It proved that the network
routing capacity region is a computable rational polytope, and

25An n-dimensional affine space over the field K is the set Kn =
{(a1, . . . , an) : a1, . . . , an ∈ K}. Considering the field K = R, the cor-
responding affine space is Rn. Then, points, lines, planes, vector subspaces,
etc. are called affine subspaces.

26Given a graph G with n vertices and an integer s ≥ 2, the s-guessing
graph of G has [s]n as vertex set.

provided non-polynomial time algorithms to obtain the region:
in case of linear network coding the authors gave an inner
bound of the region (a computable rational polytope). The
main idea was to reduce the calculation of the capacity region
to the problem of a polytope reconstruction. [308] proved that
the set of achievable and admissible rate-capacity tuples are
the same and that the outer bound in [93] is tight. This results
were achieved for network coding in non-multicast scenarios
with co-located sources and sinks demanding different subsets
of the sources.

F. Possible Future Directions

Despite being a new field of research, the fact that network
coding touches many different areas has led to its widespread
interest in the research community. In fact there are so many
potentials and so many different research areas involved, that
its future is difficult to predict. The following is the best
tentative the authors could come to forecast possible future
research directions in this field; these were based on the most
recent results achieved till now:

• The analysis of the complexity of network coding al-
gorithms, the size of the alphabet and the complexity
of encoding and decoding processes are areas that need
further investigation. It will be important to take advan-
tage of the possibilities of optimizing network coding
implementations through the application of new combi-
natorial and graph theoretic tools; there are still a lot
of challenges to solve in combinatorial network coding
problems because they are still NP-hard. The investiga-
tion of the performances and behaviours of BATS codes
is a novel topic that can be interesting to design a real
network coding scheme with low complexity, also robust
in dynamical network topology with packet loss. It may
also be interesting to further study the performance gain
of algorithms based on the novel commutative algebraic
framework.

• The theoretic framework, despite being well-researched,
is still an important topic as shown by the recent re-
sults in Subsection VI-B. The application of the new
theoretic results to describe static network codes and
network error-correcting codes and the evaluation of the
potentials of vector network coding have just started. On
the commutative algebraic framework side, the research
of the consequences of substituting the DVRs with more
general ring structures, in which the hierarchy of ideals
is not necessarily a chain in order to solve the issues
of cyclic networks, may also be important to delve into.
Next, another main way of research is the gain of network
coding in undirected networks: Li and Li conjectured
that the capacity of single-source multicast with network
coding is the same as the capacity with routing only.
Hence, network coding seems to have no advantage over
classical routing schemes for single-source multicast in
any undirected network. At the moment, no counter-
example to this conjecture have been provided yet.

• As shown in Subsection VI-A, variable-rate network
coding have many potentials: the analysis of the per-
formances of its application to random linear network
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codes, the efficient construction schemes for the type-
preserving conversion matrix and static type-preserving
conversion matrix and the complexity of the algorithms,
are all interesting topics that also need further research.

• Convolutional network coding for cyclic networks is a
well-known subject but some issues still require attention
such as the decoding problem in case of rational power
series, the applications in multi-source networks, the
developments of algorithms over cyclic networks and
the analysis of the behaviours in case of random linear
network coding.

• A lot of interest has recently been put on network error
correction theory. Every year new fundamental trends
appear and the relevance of this topic increases. Some
developments in the near future may be related with: the
definition of product network error-correcting codes, the
use of convolutional codes for NEC, the extension of the
rank distribution analysis for non-square network transfer
matrices by investigating the decoding failure probability
and, hence, the discovery of coding and decoding meth-
ods to reduce the complexity of these processes. Another
main area is the one that is analysing the performances of
systems which use network coding and channel coding
together.

• The complete definition of the capacity region and the
limits of network coding were studied mainly with the
help of the information theoretic geometric framework
and matroid theory. Several concepts were discovered
by researchers but there are still open problems: the
problem of determining the network coding capacity
region in the multiple sources non-multicast case and the
explicit evaluation of the capacity region in multi-source
multicast scenarios are some of them. [309] described a
novel approach to network coding theory through sheaf
cohomology and homological algebra. In the main result
of the paper, the authors proved the max-flow bound for
single-source multicast by using tools from homological
algebra. Their promising work may give some insights to
the hard capacity problem, with the possibility to overtake
the Γn

∗ geometric framework.
As [310] has recently shown, the network coding problem
seems to be undecidable. The demonstration provided in this
work has two ’holes’ so, it will represent a main issue to
determine whether the network coding problem is decidable.

VII. CONCLUSIONS

This survey is, at the authors’ best knowledge, the first
survey to embrace the most relevant literature in the different
research areas related with network coding theory. The initial
goal was to directly involve the reader in network coding
theory by explaining its antecedents. Next, a discussion on
the main fundamental mathematical preliminaries to provide
the mathematics necessary to understand the theoretic develop-
ments and results of network coding: in fact, the description
of Section III passed from the basic definitions of algebra
and abstract algebra, through matroid and graph theory, to
reach the description of the basics of coding theory. Following
the preliminaries, a historical overview of the results in infor-
mation theory, that were fundamentals to understand network

coding theory. More specifically, the description started with
the seminal work of C. E. Shannon, passing by the novel
geometric framework for entropies and ending with the poly-
matroidal approach to information theoretic problems. Section
V presented the path of network coding theory from its very
beginning to the actual results — the chronological approach
was in parallel with thematic subsections in order to avoid
a description fragmented and confused. Finally, Section VI
outlined the most recent theoretic results and offered a list of
possible future research directions in network coding theory.

ACKNOWLEDGMENT

The work presented in this paper was undertaken in the
context of the project FP7-PEOPLE GREENET (An early
stage training network in enabling technologies for GREEN
radio), which has received research funding from the European
Seventh Framework Programme and the FCT SMARTVISION
project (PTDC/EEA-TEL/119228/2010). The authors would
like to thank Prof. E. M. Gabidulin, Prof. F. Matúš and Prof. R.
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