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1 Introduction

An n× n× n tensor over a field F is an n× n× n array Γ = [ Γi,j,ℓ ]
n
i,j,ℓ=1 whose entries Γi,j,ℓ

are in F . A tensor Γ = [ Γi,j,ℓ ]
n
i,j,ℓ=1 over F is called a rank-one tensor if there exist three

nonzero vectors a = [ a1 a2 . . . an ], b = [ b1 b2 . . . bn ], and c = [ c1 c2 . . . cn ] over F such that

Γi,j,ℓ = aibjcℓ for i, j, ℓ = 1, 2, . . . , n ,

or, in shorthand notation,
Γ = a⊗ b⊗ c .

The rank of an n × n × n tensor Γ, denoted rank(Γ), is the smallest number ρ of rank-one
tensors Γ1,Γ2, . . . ,Γρ such that Γ =

∑ρ
m=1 Γm. The rank of the all-zero tensor is zero. The

definitions of tensor and tensor rank extend easily to n × m × s tensors, where n, m, and
s are not necessarily equal. However, for the sake of simplicity, we will assume throughout
this paper that tensors are cubic, namely, n = m = s.

Tensor rank is a generalization of the well-known notion of matrix rank. Indeed, every
n×n matrix over F of rank 1 has the form [ aibj ]

n
i,j=1 = a⊗b, where a = [ a1 a2 . . . an ] and

b = [ b1 b2 . . . bn ] are nonzero vectors over F . Similarly, the rank of a matrix is the smallest
number of rank-one matrices that sum to that matrix. It also follows from this definition
that matrix rank (respectively, tensor rank) satisfies the triangle inequality: for any three
matrices (respectively, tensors) Γ1, Γ2, and Γ3 we have

rank(Γ1 − Γ2) ≤ rank(Γ1 − Γ3) + rank(Γ3 − Γ2) .

Hence, the mapping (Γ1,Γ2) 7→ rank(Γ1 − Γ2) is a metric.

Nevertheless, unlike the matrix case, deciding upon the value of the rank of a tensor
is known to be NP-hard [13]. It is also known that there are no “nonsingular” tensors for
n > 1, since the rank of any n× n× n tensor is strictly smaller than n2 for every such n [1],
[15], [19].

The definition of rank extends to

∆ times︷ ︸︸ ︷
n× n× · · · × n (in short, n×∆) tensors (or hyper-arrays)

over F , where a rank-one n×∆ tensor Γ = [ Γi1,i2,...,i∆ ]ni1,i2,...,i∆=1 is now of the form

Γ = a1 ⊗ a2 ⊗ · · · ⊗ a∆ =
∆⊗

m=1

am (1)

for some ∆ nonzero vectors am = [ am,1 am,2 . . . am,n ], m = 1, 2, . . . ,∆, over F ; namely,

Γi1,i2,...,i∆ = a1,i1a2,i2 · · · a∆,i∆ for i1, i2, . . . , im = 1, 2, . . . , n .

A µ-[n×∆, k] tensor code C over a field F is a k-dimensional linear subspace of the vector
space of all n×∆ tensors over F such that the rank of any nonzero tensor in C is at least
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equal to µ, with equality holding for at least one tensor in C. We call n∆−k the redundancy
of C and µ the minimum rank of C. We will use the term array codes for the case ∆ = 2.

A Singleton-type bound on the minimum rank states that the minimum rank and the
redundancy of any µ-[n×∆, k] tensor code over a field F satisfy the relation

n∆ − k ≥ (µ− 1)n . (2)

This bound was stated by Delsarte in [7] for the case ∆ = 2 (see also [10] and the general-
ization for larger ∆ in [26]). Furthermore, Delsarte obtained a construction of µ-[n × n, k]
array codes over GF (q) that attains this bound for every µ ≤ n (see also [10] and [26]). We
describe next this optimal construction, which we denote by C(n, µ, 2; q) (the parameter 2
stands for ∆ = 2). Let β = [ βj ]

n
j=1 and ω = [ωℓ ]

n
ℓ=1 be two vectors in GF (qn), each with

entries that are linearly independent over GF (q). The array code C(n, µ, 2; q) consists of all
n× n matrices Γ = [ Γj,ℓ ]

n
j,ℓ=1 over GF (q) such that

n∑
j,ℓ=1

Γj,ℓ β
qs

j ωℓ = 0 , s = 0, 1, . . . , µ−2 . (3)

The set {Γω : Γ ∈ C(n, µ, 2; q) } forms a linear code of length n over GF (qn). It is shown
in [10], [26] that such a code is generated by a matrix of the form [ δq

s

j ]n−µ,n
s=0,j=1, where the δj’s

are linearly independent elements of GF (qn) over GF (q). It follows that Γ is in C(n, µ, 2; q)
if and only if there exist η0, η1, . . . , ηn−µ ∈ GF (qn) such that

(Γω)j =
n∑

ℓ=1

Γj,ℓωℓ =
n−µ∑
s=0

ηsδ
qs

j , j = 1, 2, . . . , n ; (4)

namely, Γ is a matrix representation of the linear transformation η : GF (qn) → GF (qn)
over GF (q) which is given by x 7→ η(x) =

∑n−µ
s=0 ηsx

qs . Any nonzero η, being both a linear
transformation and a polynomial of degree ≤ qn−µ, has a null space of dimension ≤ n−µ.
Hence, the rank of any nonzero Γ is at least µ. This is essentially the result obtained by
Delsarte in [7, Section 6]. Using a different approach, this lower bound on the rank of any
nonzero Γ ∈ C(n, µ, 2; q) was also obtained in [10] and [26].

In [11] and [26], it was shown how a certain model of errors — so-called crisscross errors
— can be handled optimally by using such array codes. A discussion was given in [26]
also for larger ∆. In the crisscross model, an error corresponds to a corrupted line (i.e.,
a row or a column when ∆ = 2). If we let Γ be the “transmitted” tensor and Γ + E be
the “received” tensor, then it is not difficult to show that the number of crisscross errors
is bounded from below by the rank of E. Since the mapping (Γ1,Γ2) 7→ rank(Γ1 − Γ2) is
a metric, then by using the elements of a µ-[n×∆, k] tensor code for transmission, we can
recover any error tensor of rank ≤ (µ−1)/2, and, therefore, we can correct any pattern of
up to (µ−1)/2 crisscross errors. There are various applications of the crisscross error model;
see, for instance, [2], [8], [9], [18], [22], [23], [25], [26]. In particular, the three-way crisscross
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model of errors in tensors (i.e., the case ∆ = 3) can be found in practice in certain memory
chips [27].

Another important application of tensor rank is found also in the area of algebraic com-
plexity, and, in particular, in the study of the computational complexity of sets of bilinear
forms. See [16, Section 4.6.4], [28], [30]. By a set of bilinear forms we mean a set of ex-
pressions Z = {zℓ}ℓ over a field F , each expression zℓ having the form

∑
i,j xiΓi,j,ℓyj, where

Γ = [ Γi,j,ℓ ] is a tensor over F and xi and yj are indeterminates. Examples of sets of bi-
linear forms include polynomial multiplication and matrix multiplication. It is known that
the rank of Γ equals the bilinear complexity of the set Z, namely, the minimum number of
noncommutative nonscalar multiplications in any so-called normal computation of Z by a
straight-line algorithm (see [16, Section 4.6.4]). When the field F is sufficiently large, the
bilinear complexity of Z coincides with the minimum number of noncommutative nonscalar
multiplications in any straight-line algorithm that computes Z [30, Chapter III].

There is a very close relationship between the question of determining the bilinear com-
plexity of multiplying two polynomials over GF (q) and the problem of constructing good
asymptotic families of error-correcting codes. See [4], [17], and the remarkable result by
Chudnovsky and Chudnovsky [6].

The purpose of this work is to continue the work of [7], [10], and [26] and present con-
structions of linear spaces of n×∆ tensors for ∆ ≥ 3 and to obtain bounds on the dimensions
of such spaces. The apparent difficulty in handling the general tensor case (as opposed to
the special case ∆ = 2) is due, in part, to the fact that although the typical rank of n×3

tensors is quadratic in n [19], we do not know yet of any explicit construction of an infinite
sequence of n×3 tensors for increasing values of n with ranks that are at least super-linear
in n. See also [3], [12], [15].

We will mainly concentrate here on µ-[n×∆, k] tensor codes over finite fields with µ = O(n)
(throughout this paper, O(x) stands for an expression which is bounded from above by cx
for some absolute constant c). We first present in Section 2 a sphere-packing bound for
µ ≤ 2n+1. Then, in Section 3, we present a construction of µ-[n×∆, k] tensor codes with

redundancy at most
(
µ+∆−3
∆−1

)
n. When we fix µ, this redundancy becomes linear in n, which

is smaller than a redundancy proportional to n logq n that would be needed in the sim-
pler skewing crisscross coding method (Section 4). For µ ≤ 2, the construction attains
the Singleton-type bound (2) on the minimum rank and for µ = 3 the construction ap-
proaches the sphere-packing bound. We also point out an interesting connection between
our construction and the set of bilinear forms that corresponds to modular polynomial mul-
tiplication (Section 3.2). Decoding algorithms for correcting one error and two errors are
given in Section 5 and, finally, some remarks on the infinite-field case are given in Section 6.
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2 Upper bounds

As mentioned before, the Singleton-type bound (2) on the minimum rank can be attained
for every µ ≤ n over every finite field when ∆ = 2. On the other hand, this bound on the
minimum rank was sharpened in [26] for ∆ = 3 to

n3 − k ≥ (µ− 1 + σ2)n , where σ = n−
⌈√

n2 − µ+ 1
⌉
. (5)

Indeed, the value of σ is greater than zero when µ ≥ 2n, in which case the bound (5) is strictly
stronger than (2). In this section, we improve on (2) for µ ≤ 2n+1 by using sphere-packing
arguments.

Denote by R(n, ρ,∆; q) the number of n×∆ tensors of rank ≤ ρ over GF (q).

Lemma 1. The redundancy n∆−k of every (2ρ+1)-[n×∆, k] tensor code over GF (q)
must be at least logq R(n, ρ,∆; q).

Proof. Let C be a (2ρ+1)-[n×∆, k] tensor code over GF (q) and consider the space of n×∆

tensors over GF (q). Since tensor rank defines a metric, the spheres of radius ρ in that space
that are centered at the qk elements of C must be disjoint. Hence, qk · R(n, ρ,∆; q) ≤ qn

∆
.

Theorem 1. (Sphere-packing bound for µ = 3). The redundancy n∆−k of every
3-[n×∆, k] tensor code satisfies

n∆ − k ≥ ∆n − (∆− 1) logq(q − 1) − O(∆/(qn ln q)) ,

In particular, for q = 2,
n∆ − k ≥ ∆n − O(∆/2n) .

Proof. We first calculate R(n, 1,∆; q). Every tensor Γ of rank 1 can be written as in (1)
for some ∆ nonzero vectors am, m = 1, 2, . . . ,∆, over GF (q). Furthermore, if the ∆−1
vectors a1, a2, . . . , a∆−1 are normalized so that the leading nonzero component in each of
those vectors is 1, then the decomposition (1) is unique. Hence,

R(n, 1,∆; q) = 1 +
(qn − 1)∆

(q − 1)∆−1
.

Now, by Lemma 1 we have, for 3-[n×∆, k] tensor codes,

qn
∆−k − 1 ≥ (qn − 1)∆

(q − 1)∆−1
,
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which implies that the redundancy n∆−k satisfies the inequality

n∆ − k > ∆ logq(q
n − 1) − (∆− 1) logq(q − 1)

= ∆n + ∆ logq(1− (1/qn)) − (∆− 1) logq(q − 1)

= ∆n − (∆− 1) logq(q − 1) − O(∆/(qn ln q)) ,

as claimed.

We turn to stating a sphere-packing bound for µ-[n×∆, k] tensor codes where µ = 2ρ+ 1
and 1 ≤ ρ ≤ n. A bound for even values of µ will be implied by a bound for µ−1. For the
sake of clarity we deal first with the case ∆ = 3.

Lemma 2. For 1 ≤ ρ ≤ n,

R(n, ρ, 3; q) ≥ 1 +
ρ∑

s=1

(
(qn − 1)/(q − 1)

s

)
·
(s−1∏
i=0

(qn − qi)
)2

· 1

(q − 1)s
.

Proof. For s ∈ {1, 2, . . . , ρ}, let Γ = [ Γi,j,ℓ ]
n
i,j,ℓ=1 be given by

Γ =
s∑

t=1

(at ⊗ bt ⊗ ct) , (6)

where A = { at }st=1, B = {bt }st=1, and C = { ct }st=1 are three ordered sets, each consisting
of s vectors in (GF (q))n such that —

(i) the vectors in A and B are normalized to have a leading nonzero component 1;

(ii) the vectors in B are linearly independent, and so are the vectors in C; and —

(iii) assuming some fixed ordering on the elements of (GF (q))n, the vectors at are nonzero,
distinct, and at < at′ for t < t′.

Consider the s rank-one n× n matrices Xt = at ⊗ bt, t = 1, 2, . . . , s. We first claim that
these matrices are linearly independent over GF (q). Indeed, suppose that

∑s
t=1 ztXt = 0 for

some zt ∈ GF (q), that is

s∑
t=1

zt (at ⊗ bt) =
s∑

t=1

(zt at)⊗ bt = 0 .

Since the s vectors bt are linearly independent over GF (q), we must have

zt at = 0 , t = 1, 2, . . . , s .

However, the vectors at are nonzero, and, so, zt = 0 for t = 1, 2, . . . , s.
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For ℓ = 1, 2, . . . , n, define the n × n matrix Yℓ = [Γi,j,ℓ ]
n
i,j=1 (i.e., Yℓ is a “slice” of Γ).

By (6) we can write Yℓ as

Yℓ =
s∑

t=1

ct,ℓXt , (7)

where ct,ℓ is the ℓth entry of ct. Furthermore, since the s vectors ct are linearly independent,
the sets {Xt}st=1 and {Yℓ}nℓ=1 span the same subspace of dimension s of n× n matrices over
GF (q).

Next we claim that the triple (A,B,C) for a given Γ, under conditions (i)–(iii), is uniquely
defined. Indeed, suppose that there exists another triple of ordered sets, A′ = { a′

t }s
′
t=1,

B′ = {b′
t }s

′
t=1, and C ′ = { c′t }s

′
t=1, satisfying (i)–(iii), such that

Γ =
s∑

t=1

(at ⊗ bt ⊗ ct) =
s′∑
t=1

(a′
t ⊗ b′

t ⊗ c′t) .

The respective s′ matrices X ′
t = a′

t ⊗ b′
t are linearly independent over GF (q) and, following

Equation (7), we also have Yℓ =
∑s′

t=1 c
′
t,ℓX

′
t. Hence, the sets {Xt}st=1 and {X ′

t}s
′
t=1 span the

same linear subspace of n × n matrices over GF (q), implying that s′ = s and that there
exists a nonsingular s× s matrix [ ut,m ]st,m=1 such that

X ′
t =

s∑
m=1

ut,mXm , t = 1, 2, . . . , s ,

namely,

a′
t ⊗ b′

t =
s∑

m=1

(ut,mam)⊗ bm , t = 1, 2, . . . , s . (8)

Since each vector a′
t is nonzero, it follows by (8) that there exist coefficients vt,m such that

b′
t =

s∑
m=1

vt,mbm , t = 1, 2, . . . , s . (9)

Plugging (9) back into (8) we obtain,

a′
t ⊗

s∑
m=1

vt,mbm =
s∑

m=1

(ut,mam)⊗ bm , t = 1, 2, . . . , s ,

or
s∑

m=1

(vt,ma
′
t − ut,mam)⊗ bm = 0 , t = 1, 2, . . . , s .

By the linear independence of the vectors bt we thus have

vt,ma
′
t = ut,mam , t = 1, 2, . . . , s , m = 1, 2, . . . , s .

However, the vectors at are normalized, distinct, and ordered within A, and the same holds
for the vectors a′

t within A′. Hence, we must have at = a′
t and vt,t = ut,t; furthermore,
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ut,m = vt,m = 0 if t ̸= m. Returning to (9) and recalling that the vectors bt and b′
t are

normalized, we conclude that bt = b′
t and therefore Xt = X ′

t. The uniqueness of ct now
follows from (7) and from the linear independence of the matrices Xt.

For distinct values of s we obtain disjoint sets of n×3 tensors in (6). The lemma is
obtained by counting the triples (A,B,C) that satisfy (i)–(iii) for s = 1, 2, . . . , ρ.

For s ≤ n we can write
s−1∏
i=0

(qn − qi) = qns
s−1∏
i=0

(1− qi−n) ≥ λq · qns ,

where λq =
∏∞

j=1(1− q−j) and λq ≥ λ2 ≈ 0.3 (see [24, p. 755]). Therefore,

R(n, ρ, 3; q) ≥ 1 +
ρ∑

s=1

λ3
qq

3ns

s!(q − 1)2s
>

λ3
2q

3nρ

ρ!(q − 1)2ρ
.

By Lemma 1 it follows that

n3 − k ≥ 3nρ − 2ρ logq(q − 1) − logq(ρ!) − O(1/ ln q) .

Writing ρ = ⌊(µ−1)/2⌋ we thus obtain the following.

Theorem 2. Let µ ≤ 2n+1. Then, for every µ-[n×3, k] tensor code,

n3 − k ≥ ⌊(µ−1)/2⌋
(
3n − 2 logq(q − 1) − logq⌊(µ−1)/2⌋

)
− O(1/ ln q) ,

and, therefore,
n3 − k ≥ 3⌊(µ−1)/2⌋n (1− ϵ(n)) ,

where limn→∞ ϵ(n) = 0.

Theorem 2 can be generalized to any ∆ ≥ 3 as follows. The vectors at in the proof of
Lemma 2 are replaced by s ≤ ρ nonzero distinct normalized n×(∆−2) rank-one tensors, in
which case we have

R(n, ρ,∆; q) ≥ 1 +
ρ∑

s=1

(
((qn − 1)/(q − 1))∆−2

s

)
·
(s−1∏
i=0

(qn − qi)
)2

· 1

(q − 1)s
.

This, in turn, implies
n∆ − k ≥ ∆⌊(µ−1)/2⌋n (1− ϵ∆(n)) , (10)

where limn→∞ ϵ∆(n) = 0.

In contrast, by a Gilbert-Varshamov-type bound obtained in [26], the inequality

n∆ − k ≥ ∆(µ−1) (11)

is a sufficient condition for having a µ-[n×∆, k] tensor code over GF (q). Thus, we have a
factor close to 2 between the sphere-packing bound (10) and the Gilbert-Varshamov-type
bound (11) on the redundancy of tensor codes. A similar gap is known to appear also in the
respective bounds for high-rate conventional codes in the Hamming metric.
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3 Construction of tensor codes

In this section, we provide a generalization of the construction C(n, µ, 2; q) for larger ∆,
starting with the n×3 tensor case.

3.1 The n×3 tensor case

Let S(n, µ, 3; q) be the set of all pairs (r, s), where r and s range over all integers that satisfy
the following two conditions:

(a) 0 ≤ r, s < n and —

(b) there exists a (conventional) linear code over GF (q) of length µ−1, dimension r+1,
and minimum Hamming distance at least equal to s+1.

Let α = [αi ]
n
i=1, β = [ βj ]

n
j=1, and ω = [ωℓ ]

n
ℓ=1 be three vectors in GF (qn), each with

entries that are linearly independent over GF (q). The tensor code C(n, µ, 3; q) is defined as
the set of all tensors Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1 over GF (q) such that

n∑
i,j,ℓ=1

Γi,j,ℓ α
qr

i βqs

j ωℓ = 0 for every (r, s) ∈ S(n, µ, 3; q) . (12)

We will hereafter use the notation αi for [αi
1 α

i
2 . . . αi

n ]. The inner product of two vectors
x and x′ will be denoted by ⟨x,x′⟩, and we will extend this notation to tensors as follows:
for two n×3 tensors Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1 and Γ′ = [Γ′

i,j,ℓ ]
n
i,j,ℓ=1, we denote by ⟨Γ,Γ′⟩ the sum∑n

i,j,ℓ=1 Γi,j,ℓΓ
′
i,j,ℓ. Using these definitions, Equation (12) can be re-written as⟨

Γ , αqr ⊗ βqs ⊗ ω
⟩

= 0 for every (r, s) ∈ S(n, µ, 3; q) . (13)

We can represent the tensor code C(n, µ, 3; q) as a conventional linear code of length n2

over GF (qn) as follows. Let H = [H(r,s),(i,j) ](r,s),(i,j) be the |S(n, µ, 3; q)| × n2 matrix over
GF (qn) whose columns are indexed by pairs (i, j) such that 1 ≤ i, j ≤ n, whose rows are
indexed by pairs (r, s) ∈ S(n, µ, 3; q), and whose entries are given by

H(r,s),(i,j) = αqr

i βqs

j . (14)

For each tensor Γ = [ Γi,j,ℓ ]
n
i,j,ℓ=1, we associate a vector γ = [ γ(i,j) ](i,j) of length n2 over

GF (qn) whose entries are given by γ(i,j) =
∑n

ℓ=1 Γi,j,ℓωℓ, 1 ≤ i, j ≤ n. By (12) it follows that
Γ is in C(n, µ, 3; q) if and only if Hγ = 0.

Next we obtain bounds on the redundancy and minimum rank of C(n, µ, 3; q), making
use of the following two lemmas.
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Lemma 3. Let δ1, δ2, . . . , δh be elements of GF (qn) that span a linear space of dimension
ρ over GF (q). Then, the rows of the matrix

D =



δ1 δ2 . . . δh
δq1 δq2 . . . δqh
δq

2

1 δq
2

2 . . . δq
2

h
...

...
...

...

δq
ρ−1

1 δq
ρ−1

2 . . . δq
ρ−1

h


are spanned by ρ linearly independent vectors whose components belong to GF (q).

Proof. It is known that rank(D) = ρ and that the right null space of D over GF (qn)
is spanned by the columns of a full-rank h × (h−ρ) matrix U over GF (q) (see [20, p. 109]
and [26]). The left null space of U over GF (q), in turn, is spanned by the rows of a full-
rank ρ × h matrix G. It follows that the rows of D and G span the same linear space over
GF (qn).

Lemma 4. Let α = [αi ]
n
i=1 and β = [ βj ]

n
j=1 be vectors in GF (qn), each with entries

that are linearly independent over GF (q). Define the n2×n2 matrixM = [M(r,s),(i,j) ](r,s),(i,j)
over GF (qn) by

M(r,s),(i,j) = αqr

i βqs

j ,

where the row index (r, s) ranges over pairs such that 0 ≤ r, s < n and the column index
(i, j) ranges over pairs such that 1 ≤ i, j ≤ n. Then the matrix M is nonsingular.

Proof. The matrix M is a Kronecker (direct) product of the two n × n matrices
[αqr

i ]n−1,n
r=0,i=1 and [ βqs

j ]n−1,n
s=0,j=1. By Lemma 3, these two matrices are nonsingular. Hence,

so is M [14, p. 244, Corollary 4.2.11].

Theorem 3. The redundancy of C(n, µ, 3; q) equals |S(n, µ, 3; q)|n.

Proof. Lemma 4 implies that the rows of H as defined by (14) are linearly independent
over GF (qn).

Let K(ν, d; q) denote the largest dimension of any linear code over GF (q) of length ν and
minimum Hamming distance at least d. Then condition (b) in the definition of S(n, µ, 3; q)
amounts to the inequality

r < K(µ−1, s+1; q) .

Therefore, the set S(n, µ, 3; q) can be written as follows:

S(n, µ, 3; q) =
{
(r, s) : 0 ≤ s < n and 0 ≤ r < min{n,K(µ−1, s+1; q}

}
. (15)
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In particular, by the Singleton bound on the minimum Hamming distance of conventional
linear codes, we have

K(µ−1, s+1; q) ≤ µ−s−1 (16)

(and this inequality can be attained when µ ≤ q+2 by extended Reed-Solomon codes [21,
Ch. 1]). Combining (15) and (16), we have that (r, s) ∈ S(n, µ, 3; q) implies the inequalities
0 ≤ r, s < n and r + s ≤ µ−2. Hence, by Theorem 3 we obtain the following upper bound
on the redundancy of C(n, µ, 3; q):

n3 − k ≤


(
µ
2

)
n for µ = 1, 2, . . . , n

n3 −
(
2n−µ+1

2

)
n for µ = n+1, n+2, . . . , 2n−1

.

Theorem 4. The minimum rank of C(n, µ, 3; q) is at least µ.

Proof. The proof is carried out by induction on µ, where the induction base µ = 1 is
immediate. Given µ > 1, we assume that the statement holds for every µ′ < µ.

Let Γ be a tensor in C(n, µ, 3; q) and suppose that rank(Γ) < µ. Then there exist vectors
at, bt, ct for t = 1, 2, . . . , µ−1 over GF (q) such that

Γ =
µ−1∑
t=1

(at ⊗ bt ⊗ ct) .

Define

At = ⟨at,α⟩ , Bt = ⟨bt,β⟩ , and Ct = ⟨ct,ω⟩ for t = 1, 2, . . . , µ−1 .

The following chain of equalities can be easily verified for every r, s ≥ 0:

⟨
Γ , αqr ⊗ βqs ⊗ ω

⟩
=

⟨µ−1∑
t=1

(
at ⊗ bt ⊗ ct

)
, αqr ⊗ βqs ⊗ ω

⟩

=
µ−1∑
t=1

⟨
at ⊗ bt ⊗ ct , α

qr ⊗ βqs ⊗ ω
⟩

=
µ−1∑
t=1

⟨at,α
qr⟩ · ⟨bt,β

qs⟩ · ⟨ct,ω⟩

=
µ−1∑
t=1

Aqr

t Bqs

t Ct

(the third equality follows from the mixed-product property; see [14, p. 244, Lemma 4.2.10]).
Equation (13) is therefore equivalent to

µ−1∑
t=1

Aqr

t Bqs

t Ct = 0 for every (r, s) ∈ S(n, µ, 3; q) . (17)
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We will show that (17) implies Γ =
∑µ−1

t=1 (at ⊗ bt ⊗ ct) = 0.

Let ρ denote the dimension of the linear space over GF (q) which is spanned by the
elements {At}µ−1

t=1 . If ρ = 0 then At = 0 for all t and we are done. Therefore we assume that
ρ > 0. Let A be the following ρ× (µ−1) matrix over GF (qn):

A =



A1 A2 . . . Aµ−1

Aq
1 Aq

2 . . . Aq
µ−1

Aq2

1 Aq2

2 . . . Aq2

µ−1
...

...
...

...

Aqρ−1

1 Aqρ−1

2 . . . Aqρ−1

µ−1

 .

By Lemma 3, the rows of A are spanned by the rows of a ρ× (µ−1) matrix G over GF (q).
Let d be the minimum Hamming distance of the conventional linear code over GF (q) which
is spanned by the rows of G and let u = [u1 u2 . . . uµ−1 ] be a codeword in that code with
Hamming weight d. For s = 0, 1, . . . , d−1 we define the vectors

xs =
[
Bqs

1 C1 Bqs

2 C2 . . . Bqs

µ−1Cµ−1

]
.

By (17) we have Axs = 0 for s = 0, 1, . . . , d−1, and, so,

µ−1∑
t=1

utB
qs

t Ct = ⟨u,xs⟩ = 0 , s = 0, 1, . . . , d−1 . (18)

Consider the n× n matrix

Γ′ = [Γ′
j,ℓ ]

n
j,ℓ=1 =

µ−1∑
t=1

ut (bt ⊗ ct)

over GF (q). The matrix Γ′ is a sum of d rank-one matrices and, therefore, rank(Γ′) ≤ d. On
the other hand, for every s ≥ 0 we have

⟨
Γ′ , βqs ⊗ ω

⟩
=
⟨µ−1∑
t=1

ut (bt ⊗ ct) , β
qs ⊗ ω

⟩
=

µ−1∑
t=1

utB
qs

t Ct .

Hence, by (18) we obtain

n∑
j,ℓ=1

Γ′
j,ℓ β

qs

j ωℓ =
⟨
Γ′ , βqs ⊗ ω

⟩
= 0 , s = 0, 1, . . . , d−1 .

Comparing with (3), we conclude that Γ′ is in C(n, d+1, 2; q). Hence, by the result of [7] we
must have Γ′ = 0.

11



Finally, let τ be such that uτ ̸= 0. The tensor uτΓ is in C(n, µ, 3; q) and, as such, it is
also a tensor in C(n, µ−1, 3; q). Now, the matrix Γ′ =

∑µ−1
t=1 ut (bt ⊗ ct) is identically zero,

and so is the tensor Γ′′ = aτ ⊗
∑µ−1

t=1 ut (bt ⊗ ct). Hence,

uτΓ = uτΓ − Γ′′ =
µ−1∑
t=1

(uτat − utaτ )⊗ bt ⊗ ct ,

which implies that rank(Γ) = rank(uτΓ) < µ−1. Applying the induction hypothesis on
C(n, µ−1, 3; q), we must have Γ = 0.

It follows from Theorems 3 and 4 that the tensor code C(n, µ, 3; q) attains the Singleton-
type bound (2) on the minimum rank when µ = 2. For µ = 3 we get redundancy 3n, which,
in view of Theorem 1, is optimal over GF (2) for sufficiently large n. (Over larger fields we
still have an additive gap of 2 logq(q − 1).)

The tensor code C(n, µ, 3; q) becomes vacuous (namely, containing the zero vector only)
when S(n, µ, 3; q) consists of all n2 pairs (r, s) such that 0 ≤ r, s < n. By (15), this happens
whenever µ is large enough so that K(µ−1, n; q) ≥ n. For q = 2 this occurs only if µ−1 ≥
3.52n−o(n) [4]. By (16), the tensor code C(n, µ, 3; q) is nonvacuous for every q if µ ≤ 2n−1.

3.2 Dual representation and polynomial multiplication

We obtain next a dual representation of C(n, µ, 3; q) through a generator matrix over GF (qn).
We will then use such a representation to establish a connection between C(n, µ, 3; q) and
modular polynomial multiplication.

For a basis β = [ βj ]
n
j=1 of GF (qn) over GF (q), we denote by β⊥ = [ β⊥

j ]nj=1 the dual
basis of β, namely, a basis of GF (qn) over GF (q) such that

n−1∑
ℓ=0

(βiβ
⊥
j )

qℓ =

{
1 if i = j
0 if i ̸= j

. (19)

A dual basis always exists [21, p. 118]. By (19) it follows that the matrices B = [ βqℓ

i ]n ,n−1
i=1,ℓ=0

and B⊥ = [ (β⊥
j )

qℓ ]n ,n−1
j=1,ℓ=0 satisfy B⊥BT = I. Therefore, we also have BTB⊥ = I, and, so

⟨βqℓ , (β⊥)q
m⟩ =

{
1 if ℓ = m
0 if ℓ ̸= m

. (20)

Denote by S(n, µ, 3; q) the set of all pairs of integers (r, s) such that 0 ≤ r, s < n and
(r, s) ̸∈ S(n, µ, 3; q). Let G be the (n2−|S(n, µ, 3; q)|)×n2 matrix over GF (qn) whose entries
are given by

G(r,s),(i,j) = (α⊥
i )

qr(β⊥
j )

qs , (21)
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where the row index (r, s) ranges over all elements of S(n, µ, 3; q) and the column index (i, j)
ranges over all integers 1 ≤ i, j ≤ n. By Lemma 4 it follows that the matrix G has full rank;
furthermore, by (20) we have that the columns of GT span the right kernel of the matrix
H given in (14). Hence the matrix G can be regarded as a generator matrix of C(n, µ, 3; q)
in the following sense: a tensor Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1 is in C(n, µ, 3; q) if and only if there exist

elements η(r,s) ∈ GF (qn), indexed by (r, s) ∈ S(n, µ, 3; q), such that

n∑
ℓ=1

Γi,j,ℓωℓ =
∑

(r,s)∈S(n,µ,3;q)

η(r,s)G(r,s),(i,j) =
∑

(r,s)∈S(n,µ,3;q)

η(r,s)(α
⊥
i )

qr(β⊥
j )

qs , 1 ≤ i, j ≤ n .

(This equality is, in fact, a generalization of (4); it is shown in [26] that the elements δj in (4)
can be taken as (β⊥

j )
qµ .)

It follows from the previous discussion that every nonvacuous tensor code C(n, µ, 3; q)
contains the tensor Λ = [Λi,j,ℓ ]

n
i,j,ℓ=1 which is defined by

n∑
ℓ=1

Λi,j,ℓωℓ = G(0,0),(i,j) = α⊥
i β

⊥
j , 1 ≤ i, j ≤ n .

This tensor represents the set of bilinear forms that corresponds to multiplication of elements
in GF (qn) over GF (q), which is equivalent to multiplying two polynomials of degree < n
modulo an irreducible polynomial of degree n over GF (q). More specifically, let x and y be
elements of GF (qn) and let x =

∑n
i=1 xiα

⊥
i and y =

∑n
j=1 yjβ

⊥
j be their representations with

respect to the bases α⊥ and β⊥, respectively, where xi, yj ∈ GF (q). Then the representation
of their product z = xy with respect to the basis ω satisfies

n∑
ℓ=1

zℓωℓ = z = xy =
n∑

i,j=1

xiyjα
⊥
i β

⊥
j =

n∑
i,j=1

xiyj
n∑

ℓ=1

Λi,j,ℓωℓ =
n∑

ℓ=1

ωℓ

( n∑
i,j=1

xiΛi,j,ℓyj
)
,

i.e., the coefficients zℓ of z are obtained by the following bilinear forms:

zℓ =
n∑

i,j=1

xiΛi,j,ℓyj , ℓ = 1, 2, . . . , n .

Hence, if C(n, µ, 3; q) is nonvacuous, then µ is a lower bound on the rank of Λ. For q = 2,
this yields the known lower bound of 3.52n− o(n) on this rank [4]. On the other hand, it is
known that the rank of Λ is linear in n [6], so there is no hope that the true minimum rank of
C(n, µ, 3; q) be quadratic. Yet, with some generalization of the construction, we can obtain a
family of n×3 tensor codes that attains a Gilbert-Varshamov-type bound, as we show next.

Let θ = [ θ(i,j) ](i,j) be a vector of length n2 over GF (qn) such that none of its entries is
zero. Let K = n2 − |S(n, µ, 3; q)|, and define the K × n2 matrix G(θ) over GF (qn) by

(G(θ))(r,s),(i,j) = θ(i,j)(α
⊥
i )

qr(β⊥
j )

qs ,
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where the indexes range as in (21). We fix α and β, as well as K coordinates in θ that
correspond to independent columns in G, and let each of the rest of the entries in θ range
over the nonzero values of GF (qn), thus forming an ensemble of (qn − 1)n

2−K tensor codes
{C(θ)}, each code having dimension k = nK over GF (q). Now, every n×3 nonzero tensor
Γ (represented by a nonzero vector γ ∈ (GF (qn))n

2
) is contained in no more than one of

the codes C(θ). Suppose that µ′ is such that (qn − 1)n
2−K > R(n, µ′−1, 3; q) − 1, where

R(n, ρ, 3; q) is the number of tensors over GF (q) (including the zero tensor) with rank ≤ ρ.
Then there exists an [n×3, k = nK] tensor code C(θ) in the ensemble with minimum rank
≥ µ′. Observing that R(n, µ′−1, 3; q) ≤ (qn − 1)3(µ

′−1) for every µ′ ≥ 3, it suffices to have

n3 − k = (n2 −K)n ≥ 3 (µ′ − 1)n (22)

in order to guarantee that one of the tensor codes C(θ) will have minimum rank ≥ µ′. This
Gilbert-Varshamov-type bound coincides with the bound (11), except that here we take an
ensemble which is much smaller than the set of all linear tensor codes.

3.3 The general tensor case

We now extend the constructions C(n, µ, 2; q) and C(n, µ, 3; q) to any ∆ ≥ 2. Define the
sets S(n, µ,∆; q) inductively as follows. Let S(n, µ, 2; q) consist of all integers r in the range
0 ≤ r < min{n, µ−1}, and, for ∆ ≥ 3, let S(n, µ,∆; q) consist of all integer (∆−1)-tuples
(r1, r2, . . . , r∆−1) such that —

(a) 0 ≤ rm < n for all m = 1, 2, . . . ,∆−1, and —

(b) (r2, r3, . . . , r∆−1) ∈ S(n, d+1,∆−1; q), where d is such that there exists a conventional
linear code over GF (q) of length µ−1, dimension r1+1, and minimum Hamming distance at
least equal to d.

Using the Singleton bound on the minimum Hamming distance of conventional linear
codes, it can be easily shown by induction on ∆ that the sum of entries of each (∆−1)-tuple
in S(n, µ,∆; q) is bounded from above by µ−2. Hence, we have

|S(n, µ,∆; q)| ≤
(
µ+∆− 3

∆− 1

)
.

This bound is tight if µ ≤ min{n+1, q+2}.

For m = 1, 2, . . . ,∆, let αm be a vector of length n over GF (qn) whose entries form a
basis of GF (qn) over GF (q). We define the tensor code C(n, µ,∆; q) as the set of all n×∆

tensors Γ such that

⟨
Γ ,

∆⊗
m=1

αqrm
m

⟩
= 0 , where (r1, r2, . . . , r∆−1) ∈ S(n, µ,∆; q) and r∆ = 0 . (23)
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Generalizing Theorem 3, it can be easily shown that the tensor code C(n, µ,∆; q) has
redundancy

n∆ − k = |S(n, µ,∆; q)|n .

Therefore, C(n, µ,∆; q) is nonvacuous if µ ≤ (∆−1)(n−1) + 1.

Theorem 5. The minimum rank of C(n, µ,∆; q) is at least µ.

Proof. The proof is very similar to that of Theorem 4 and is carried out by double
induction on ∆ and µ. Let Γ ∈ C(n, µ,∆; q) and suppose that rank(Γ) < µ. Then we can
write

Γ =
µ−1∑
t=1

( ∆⊗
m=1

at,m

)
,

where at,m are vectors over GF (q). Following the proof of Theorem 4, we define At,m =
⟨at,m,αm⟩ and we have ⟨

Γ ,
∆⊗

m=1

αqrm
m

⟩
=

µ−1∑
t=1

∆∏
m=1

Aqrm
t,m .

Hence, Equation (23) is equivalent to

µ−1∑
t=1

∆∏
m=1

Aqrm
t,m = 0 , (24)

where (r1, r2, . . . , r∆−1) ranges over all elements in S(n, µ,∆; q). It remains to show that (24)
implies Γ =

∑µ−1
t=1 (⊗∆

m=1at,m) = 0.

Let ρ denote the dimension of the linear space over GF (q) which is spanned by the
elements {At,1}µ−1

t=1 and let u = [ u1 u2 . . . uµ−1 ] be a nonzero vector over GF (q) of minimum

Hamming weight in the linear span of the rows of A =
[
Aqr

t,1

]ρ−1,µ−1

r=0,t=1
. By (24) and the

inductive definition of S(n, µ,∆; q) we obtain

µ−1∑
t=1

ut

∆∏
m=2

Aqrm
t,m = 0 for every (r2, r3, . . . , r∆−1) ∈ S(n, d+1,∆−1; q) ,

where d is the Hamming weight of u. It thus follows that the tensor Γ′ =
∑µ−1

t=1 ut(
⊗∆

m=2 at,m)
is in C(n, d+1,∆−1; q), while its rank is bounded from above by d. Hence, by the induction
hypothesis we must have Γ′ = 0. We now continue as in the proof of Theorem 4.

As in the case ∆ = 3, the codes C(n, µ,∆; q) attain the Singleton-type bound on the
minimum rank when µ = 2. For µ = 3 we get redundancy which is close to the bound
of Theorem 1 up to an additive gap of (∆ − 1) logq(q − 1). The Gilbert-Varshamov-type
bound (22), when generalized to larger ∆, yields the sufficient condition n∆−k ≥ ∆(µ′−1)n
for the existence of a µ′-[n×∆, k] tensor code (compare with (11)).
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4 Application to crisscross error correction

The application of matrix rank to crisscross error correction is described in detail in [11]
and [26]. In this section, we point out the advantage of applying the rank metric for crisscross
error correction in tensors, even though the Singleton bound on the minimum rank cannot
usually be attained when ∆ ≥ 3. We will concentrate on the case ∆ = 3.

Let Γ = [ Γi,j,ℓ ]
n
i,j,ℓ=1 be an n×3 tensor over GF (q). A line in Γ is a set of n entries in

Γ which are indexed by triples (i, j, ℓ), in which two out of the three indexes i, j, and ℓ are
fixed, whereas the third index ranges over the integers between 1 and n. In other words, lines
in tensors are generalizations of rows and columns in matrices [5, Ch. 1]. By one crisscross
error we mean a line in Γ that got corrupted.

A (line) cover of a tensor Γ is a set of lines in Γ that contain all its nonzero entries. A
cover weight of a tensor Γ is the size of a smallest cover of Γ. The cover distance between
two tensors is the cover weight of their difference. The minimum cover distance of a tensor
code is the smallest among the cover distances between any two distinct tensors in the code.
Since we deal here with linear tensor codes, the minimum cover distance is the minimum
cover weight of any nonzero tensor in the code. An [n×∆, k] tensor code with minimum
cover distance d will be called an [n×∆, k, d] code. It is easy to check that cover distance
is a metric. Therefore, an [n×∆, k, d] tensor code can correct any pattern of up to (d−1)/2
crisscross errors. Furthermore, the cover weight of a tensor is bounded from below by its
rank. Hence, every µ-[n×∆, k] tensor code is also an [n×∆, k, µ] code.

We also mention here a generalization of the notion of term-rank for tensors. We say
that entries in a tensor Γ are colinear if they lie on the same line in Γ. The term-rank of Γ is
the largest number of nonzero entries in Γ that exist such that no two of them are colinear.
Clearly, the cover weight of Γ is at least its term-rank, and, in case of matrices, these two
numbers are actually equal [5, p. 6]. Such equality, however, does not always hold in the
tensor case, as illustrated by the 2× 2× 3 tensor Γ shown in Figure 1 (one can extend Γ by
zero entries to form a cubic 3× 3× 3 tensor). The entries ai, i = 1, 2, . . . , 7, are nonzero and
no three of them are colinear. Therefore, we must have (at least) four lines to cover all the
nonzero entries in Γ. On the other hand, consider the cycle a1 → a2 → . . . → a7 → a1 that
runs through all the nonzero entries in Γ: any two adjacent entries on the cycle are colinear,
and, so, there can be found at most three nonzero entries in Γ such that no two of them are
colinear.

Γ =

0 a1 a2
0 0 a3

a6 a7 0
a5 0 a4

Figure 1: Tensor of term-rank 3 and cover weight 4.
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The Singleton bound on the cover distance takes the form

n3 − k ≥ (d− 1)n ,

and sphere-packing arguments show that this bound cannot be attained for certain values of
q and n, e.g., q = 2 and n < 8 [26]. The latter reference also contains a Gilbert-Varshamov-
type bound that guarantees the existence of an [n×3, k, d] tensor code over GF (q) whenever

n3 − k ≥ (d− 1)n (1 + ϵ(n)) , (25)

where limn→∞ ϵ(n) = 0. Yet, the proof is nonconstructive.

Probably the simplest constructive technique to combat crisscross errors is the skewing
method, by which we assign codewords of a conventional linear [n2, K, d] code over GF (q) to
n wrapped-around hyper-diagonals in Γ, where the sth hyper-diagonal consists of all entries
Γi,j,ℓ that are indexed by {(i, j, ℓ) : i+j+ℓ ≡ s (mod n)}. It is easy to see that any line hits
each such hyper-diagonal in exactly one entry. Hence, this scheme yields an [n×3, k = nK, d]
tensor code. If n2 ≤ q+1, then by assigning codewords of extended Reed-Solomon codes to
each hyper-diagonal, we attain the Singleton bound on the cover distance. Similarly, this
bound can be attained when d = 2 or K = 1. As an example, when q = n = 2, we attain this
bound for d ∈ {1, 2, 4}, whereas an exhaustive search has shown that there is no [2×2×2, k, 3]
tensor code over GF (2) with k > 2. It is also worth noting that an exhaustive search has
shown that there are [2×2×2, 4, 3] tensor codes over GF (3) which are inequivalent to any
code obtained by the skewing method (note that by Lemma 1, we cannot have a 3-[2×2×2, 4]
tensor code over GF (3)).

Consider now an arbitrary q. If we fix d and let n grow, then by the sphere-packing
bound for conventional linear codes, the redundancy of a tensor code obtained by the skewing
method is bounded from below by an expression which is proportional to n logq n; namely,
the redundancy must be super-linear in n. By using BCH codes over GF (q), we can indeed
attain redundancy of 2 q−1

q
(d−1)n logq n+O(n).

On the other hand, using the tensor code C(n, d, 3; q), we obtain a coding scheme where

the redundancy is |S(n, d, 3; q)|n ≤
(
d
2

)
n. Therefore, even though we do not get linear

dependency in d, we do get linear dependency in n of the redundancy, as in (25). A similar
savings is obtained also for larger ∆.

5 Decoding

In [10] and [26], efficient decoding algorithms are presented for C(n, µ, 2; q) that can recover
any error array of rank up to (µ−1)/2. Those algorithms involve a computation of a so-called
error-span polynomial whose roots form a linear space which is spanned by the columns of
the error array. The degree of that polynomial is qρ, where ρ is the rank of the error array.
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Hence, once we compute the error-span polynomial, we easily obtain the rank of the error
array.

Since computing tensor rank is an intractable problem, it is unlikely that we will have
an efficient decoding algorithm which computes an analog of the error-span polynomial for
the error tensor with such a simple relationship between the degree and the rank of that
tensor: otherwise, we could use the decoder to compute the rank of any tensor. Hence, if
there is any efficient decoding algorithm for C(n, µ, 3; q), then we expect such an algorithm
to recover the error tensor without necessarily obtaining its rank. Such an algorithm that
can handle any prescribed number of errors is not yet known.

Nevertheless, efficient decoding procedures can be obtained for the special cases of one-
error and two-error correction. We describe such algorithms in Sections 5.1 and 5.2 below.

5.1 Decoding rank-one error tensors

We describe next an easy procedure for decoding a rank-one error tensor while using the
code C(n, 3,∆; q). We consider here the case ∆ = 3; the case of larger ∆ follows along the
same lines.

Let Γ be the tensor that has been “transmitted” and let Y = Γ+E be the tensor that has
been “received”, where E = a⊗b⊗ c. Since Γ satisfies (12) for (r, s) ∈ {(0, 0), (0, 1), (1, 0)},
we can compute syndrome values S(0,0), S(0,1), and S(1,0) for E as follows:

S(0,0) =
n∑

i,j,ℓ=1

Ei,j,ℓαiβjωℓ , S(0,1) =
n∑

i,j,ℓ=1

Ei,j,ℓαiβ
q
jωℓ , and S(1,0) =

n∑
i,j,ℓ=1

Ei,j,ℓα
q
iβjωℓ .

Define
A = ⟨a,α⟩ , B = ⟨b,β⟩ , and C = ⟨c,ω⟩ . (26)

Then,
S(0,0) = ABC , S(0,1) = ABqC , and S(1,0) = AqBC . (27)

The tensor E is nonzero if and only if all three syndrome values are nonzero. If E is nonzero,
we can use (27) and compute the vectors a and b (up to scaling by a nonzero element of
GF (q)) by solving the following homogeneous linear equations in the entries of a and b:

S(0,0)A
q = S(1,0)A and S(0,0)B

q = S(0,1)B .

The entries of c are then recovered by the equation S(0,0) = ABC.

5.2 Decoding two crisscross errors

We now describe how one can decode a rank-two error tensor while using the code C(n, 5, 3; q).
We then show how the decoding procedure can be simplified for the special case of double
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crisscross error correction.

Let Γ be the transmitted tensor and let Y = Γ + E be the received tensor, where

E = (a⊗ b⊗ c) + (x⊗ y ⊗ z) . (28)

We first compute the following syndrome values

S(r,s) =
n∑

i,j,ℓ=1

Ei,j,ℓαiβjωℓ , r, s ≥ 0 , r + s ≤ 3 ,

with the exception of q = 2: since K(4, 3; 2) = 1 (see (15)), the syndrome value S(1,2) will
not be available in the binary case.

Define A, B, and C as in (26), and let X, Y , and Z be given by

X = ⟨x,α⟩ , Y = ⟨y,β⟩ , and Z = ⟨z,ω⟩ .

Then,
S(r,s) = AqrBqsC +XqrY qsZ , r, s ≥ 0 , r + s ≤ 3 . (29)

In particular, we have

S(r,0) = Aqr(BC) + Xqr(Y Z) , r = 0, 1, 2, 3 ,

and
S(0,s) = Bqs(AC) + Y qs(XZ) , s = 0, 1, 2, 3 .

Applying one of the known decoding algorithms for C(n, 5, 2; q) with the syndrome values
S(r,0), r = 0, 1, 2, 3, we obtain a basis of the linear span of {A,X} over GF (q). Similarly, the
syndrome values S(0,s), s = 0, 1, 2, 3, yield a basis of the linear span of {B, Y }. If any of those
linear spans is trivial, then E = 0 and we are done. Otherwise, if any of those linear spans
has dimension 1, then the decoding problem reduces to that of decoding C(n, 5, 2; q). For
example, if A and X are linearly dependent, then we can assume that A = X and we have
S(0,s) = A(BqsC + Y qsZ) for s = 0, 1, 2, 3. Hence, we can continue solving for B, C, Y , and
Z by applying the decoding algorithm for C(n, 5, 2; q) with the syndrome values A−1S(0,s),
s = 0, 1, 2, 3.

Assume from now on that the linear span of {A,X} has dimension 2 and let {U, V } be
a basis of this linear span as found by the decoding algorithm for C(n, 5, 2; q). Without loss
of generality we can write

A = U + aV and X = V + xU , where a, x ∈ GF (q) . (30)

Plugging (30) into (29) and re-arranging terms, we obtain

S(r,s) = U qr
(
BqsC + xY qsZ

)
+ V qr

(
aBqsC + Y qsZ

)
, r, s ≥ 0 , r + s ≤ 3 . (31)
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For s = 0, 1, let Qs and Rs denote the unique solutions of the following equations

S(0,s) = UQs + V Rs and S(1,s) = U qQs + V qRs .

Indeed, by Lemma 3, Qs and Rs always exist and they are uniquely determined. From (31)
we have

Qs = BqsC + xY qsZ , s = 0, 1 , (32)

and
Rs = aBqsC + Y qsZ , s = 0, 1 . (33)

Now, suppose that the value of a (and therefore A) is known. Multiplying both sides
of (32) by a and subtracting from (33), we have

Rs − aQs = (1− ax)Y qsZ , s = 0, 1 (34)

(note that 1−ax ̸= 0 as we assume that A and X are linearly independent). If Rs−aQs = 0,
then Y Z = 0 and the problem reduces to that of rank-one error correction. Otherwise, we
can obtain from (34) the equality

Y q(R0 − aQ0) = Y (R1 − aQ1) ,

which can be solved uniquely for Y , up to scaling by a nonzero element of GF (q). Having
found Y , we obtain from (34) the value of Z ′ = (1− ax)Z.

Let W be an element of GF (qn) such that {W,Y } is a basis of the (already known) linear
span of {B, Y }. We can write B = W + bY , where b is an element of GF (q) (which is yet
to be found). Substituting B = W + bY into (32) yields

Qs = W qsC + Y qs(bC + xZ) , s = 0, 1 . (35)

Define Z ′′ = bC + xZ = bC + x′Z ′, where x′ = x/(1− ax). By Lemma 3, we can solve (35)
uniquely for the values of C and Z ′′. Now, if the linear span of {C,Z ′} has dimension less
than 2, then the decoding problem reduces again to that of the code C(n, 5, 2; q). Otherwise,
we compute the coefficients b and x′ in the decomposition of Z ′′ into a linear combination of
C and Z ′. This, in turn, allows us to find the values of B, x, X, and Z.

The decoding procedure we have just outlined assumes that the value of a is known.
Therefore, for full decoding, we need to enumerate over all a ∈ GF (q) to find a solution which
is consistent with all ten (nine if q = 2) syndrome values. The decoding complexity thus
amounts to O(qn3) arithmetic operations over GF (q), on top of the syndrome computation,
which requires O(n2) operations over GF (qn). We remark that the outlined algorithm can
be extended to handle larger ranks of error tensors (while using the appropriate codes);
however, the required number of operations will be proportional to a power of q which will
become prohibitively large as the rank of the error tensor grows.
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The linear dependency on q of the decoding complexity can be eliminated in the special
case of crisscross error correction. In this case, there must be a decomposition of E as in (28)
such that {a,b} contains at least one unit vector, and so does {x,y}. Hence, we proceed
as follows. First, we iterate the decoding algorithm for all possible assignments of the basis
element U = ⟨u,α⟩ such that u is a unit vector; there are at most two such assignments,
since the linear span of {A,X} has dimension 2 or less. In each such iteration, we set a = 0,
thus forcing the vector a (i.e., the value A) to be the unit vector u. In case we end up
with a consistent error tensor for at least one of those assignments of U , then we are done.
Otherwise, we conclude that neither of the vectors a and x is a unit vector, in which case
there must be an assignment for both b and y as unit vectors. Hence, we switch between the
roles of (A,X) and (B, Y ) and iterate the decoding algorithm a third time, now forcing both
b and y to be unit vectors that can be computed out of the known linear span of {B, Y }.
Therefore, we will need no more than three iterations of the decoding algorithm, and no
enumeration on the value of a will be required. Also, the decoding steps in the algorithm
can be simplified when a is zero; e.g., we can solve for Y and Z directly from (33). For the
special case of q = 2, we can do even better: in the binary case we have either a = 0 or
x = 0, which calls for only two simplified iterations of the original algorithm.

6 The infinite-field case

The dependency of the bounds and constructions of array codes on the structure of the
underlying field has already been pointed out in [26]. Therefore, it is not too surprising that
such dependency exists for larger ∆ as well. As this work is motivated by applications where
the underlying field is finite, we will not pursue the discussion on infinite fields here beyond
some comments and examples.

The construction C(n, µ,∆; q) makes use of the fact that the fieldGF (q) has an (algebraic)
extension field of degree n, namely, the field GF (qn). Therefore, we can try to look at other
fields that have such field extensions.

We demonstrate this for the n×3 tensor case, starting with µ = 2 (the case µ = 1 is, of
course, trivial for every field). Let F be a field and let Φ be a field extension of degree n of
F . We take three vectors, [αi ]

n
i=1, [ βj ]

n
j=1, and [ωℓ ]

n
ℓ=1, over Φ, each with entries that are

linearly independent over F . A 2-[n×3, k = n3−n] tensor code C is obtained by taking the
set of all tensors Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1 over F that satisfy the equation

n∑
i,j,ℓ=1

Γi,j,ℓαiβjωℓ = 0 .

Indeed, by a simplified version of the proof of Theorem 4 for µ = 2, it can be shown that
every nonzero tensor in C has rank 2 or more (in fact, the proof of the theorem for µ = 2 does
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not depend on the characteristic of the field). Taking F and Φ to be the real and complex
fields, respectively, we thus obtain a 2-[2×2×2, 6] tensor code over the reals.

For larger values of µ, we make use of conjugates of basis elements, the same way we
incorporated the powers αqr

i and βqs

j in the definition of C(n, µ, 3; q). More specifically, let Φ
be an extension field of F of degree n and let AutFΦ be the group of automorphisms over
Φ which are linear over F . Further, assume that AutFΦ is a cyclic group of size n with a
generator φ : Φ → Φ. We thus have AutFΦ = {φr}n−1

r=0 , where φr stands for r applications
of φ and where φ0 is the identity mapping (see [31, Chapters 1–3]). The conjugate class of
an element x ∈ Φ is given by {φr(x)}n−1

r=0 .

We now generalize the construction C(n, µ, 3; q) to F by defining a tensor code which
consists of all tensors Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1 over F such that

n∑
i,j,ℓ=1

Γi,j,ℓ φ
r(αi)φ

s(βj)ωℓ = 0 , (36)

where [αi ]
n
i=1, [ βj ]

n
j=1, and [ωℓ ]

n
ℓ=1 are bases over Φ and r and s range over all integers such

that 0 ≤ r, s < n and r+s ≤ µ−2. Making use of the known properties of the automorphism
φ, we can adapt the proof of Theorem 4 to show that every nonzero tensor that satisfies (36)
must have rank ≥ µ. The construction C(n, µ, 3; q) becomes a special case where F = GF (q),
Φ = GF (qn), and φ(x) = xq.

When F and Φ are the real and complex fields, respectively, we have n = 2 and φ(x) is
the conventional complex conjugate x∗ of x. We thus obtain a 3-[2×2×2, 2] tensor code over
the reals which consists of all 2×2×2 tensors [ Γi,j,ℓ ]i,j,ℓ that satisfy the following equations
over the complex field:

2∑
i,j,ℓ=1

Γi,j,ℓαiβjωℓ = 0 ,
2∑

i,j,ℓ=1

Γi,j,ℓαiβ
∗
jωℓ = 0 , and

2∑
i,j,ℓ=1

Γi,j,ℓα
∗
iβjωℓ = 0 .

Every nonzero tensor that satisfies those equations must have rank 3 or more. In fact, by
the upper bound on tensor rank in [15], it follows that the rank of every such nonzero tensor
is exactly 3.

As another example, we construct µ-[n×3, k] tensor codes over the rationals with n3−k ≤(
µ
2

)
n for every integer n such that n+1 is a prime p. Let Mp(ξ) denote the irreducible

rational polynomial
∑p−1

i=0 ξ
i in the indeterminate ξ and define the cyclotomic extension field

Φ of degree n = p−1 as the set of all rational polynomials a(ξ) of degree < p−1, where the
arithmetic is taken modulo Mp(ξ). Fix a primitive element g in GF (p). The automorphism
φ maps an element a(ξ) =

∑p−2
i=0 aiξ

i to the element
∑p−2

i=0 aiξ
i·g mod Mp(ξ). Setting αi =

βi = ωi = ξi, Equation (36) becomes

n∑
i,j,ℓ=1

Γi,j,ℓ ξ
i·gr+j·gs+ℓ ≡ 0 mod Mp(ξ) .

22



The tensor code thus obtained is nonvacuous if and only if µ ≤ 2n−1.

Clearly, such techniques do not apply to tensor codes over the real field when n > 2
or over algebraically closed fields. Still, for µ = 2 we can obtain [n×3, k = 3n−2] tensor
codes over such fields (or over any field) by a construction which resembles the skewing
method of Section 4, except that we do not wrap around the hyper-diagonals (see [26] for
the case ∆ = 2). More specifically, for s = 3, 4, . . . , 3n, let Qs denote the set of index triples
(i, j, ℓ) such that 1 ≤ i, j, ℓ ≤ n and i + j + ℓ = s (unlike the skewing method, the index
equality here is not modulo n). The tensor code consists of all tensors Γ = [ Γi,j,ℓ ]

n
i,j,ℓ=1

such that
∑

(i,j,ℓ)∈Qs
Γi,j,ℓ = 0 for every s. There are 3n−2 values of s for which the sets

Qs are nonempty, and each such set contributes 1 to the redundancy of the code. Hence,
the resulting overall redundancy is 3n−2. It is an easy exercise to verify that every nonzero
tensor in the resulting tensor code indeed has rank at least 2.

For a treatment of typical rank of tensors over algebraically closed fields, see [19] and [28].
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FIGURES

Γ =

0 a1 a2
0 0 a3

a6 a7 0
a5 0 a4

Figure 1: Tensor of term-rank 3 and cover weight 4.



CAPTIONS

Figure 1: Tensor of term-rank 3 and cover weight 4.
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