Фундированное множество

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Фундированное множество — частично упорядоченное множество , у которого любое непустое подмножество имеет минимальный элемент. Под минимальным элементом в здесь понимается , такой, что для любого из следует [1]. В математике фундированное множество также известно как полная полурешётка.

(Некоторые авторы[какие?] дополнительно требуют, чтобы отношение R было связным.)

Эквивалентное определение при условии использования аксиомы выбора состоит в том, что множество M с отношением R является фундированным тогда и только тогда, когда оно удовлетворяет условию обрыва убывающих цепей, то есть не существует бесконечной последовательности x0, x1, x2, … элементов из M такой, что xn+1 R xn для любого индекса n.

Примеры фундированных множеств без полного порядка.

  • Множество целых чисел с частичным порядком a < b тогда и только тогда, когда a делит b и ab
  • Множество всех конечных строк на конечном алфавите с частичным порядком s < t тогда и только тогда, когда s строго включается как подстрока в t

Принцип трансфинитной индукции

[править | править код]

Пусть  — фундированное множество и . Тогда если для любого из включения следует , то совпадает с [2].

Нётерова индукция

[править | править код]

Нётерова индукция — это обобщение трансфинитной индукции, которое заключается в следующем.

Пусть  — фундированное множество,  — некоторое утверждение об элементах множества , и пусть мы хотим показать, что верно для всех . Для этого достаточно показать, что если , и верно для всех таких , что , то также верно. Другими словами

Примечания

[править | править код]

Литература

[править | править код]
  • Ершов Ю.Л., Палютин Е.А. Математическая логика. — М.: Наука, 1987. — 336 с.