Фундированное множество
Фундированное множество — частично упорядоченное множество , у которого любое непустое подмножество имеет минимальный элемент. Под минимальным элементом в здесь понимается , такой, что для любого из следует [1]. В математике фундированное множество также известно как полная полурешётка.
(Некоторые авторы[какие?] дополнительно требуют, чтобы отношение R было связным.)
Эквивалентное определение при условии использования аксиомы выбора состоит в том, что множество M с отношением R является фундированным тогда и только тогда, когда оно удовлетворяет условию обрыва убывающих цепей, то есть не существует бесконечной последовательности x0, x1, x2, … элементов из M такой, что xn+1 R xn для любого индекса n.
Примеры
[править | править код]Примеры фундированных множеств без полного порядка.
- Множество целых чисел с частичным порядком a < b тогда и только тогда, когда a делит b и a ≠ b
- Множество всех конечных строк на конечном алфавите с частичным порядком s < t тогда и только тогда, когда s строго включается как подстрока в t
Принцип трансфинитной индукции
[править | править код]Пусть — фундированное множество и . Тогда если для любого из включения следует , то совпадает с [2].
Нётерова индукция
[править | править код]Нётерова индукция — это обобщение трансфинитной индукции, которое заключается в следующем.
Пусть — фундированное множество, — некоторое утверждение об элементах множества , и пусть мы хотим показать, что верно для всех . Для этого достаточно показать, что если , и верно для всех таких , что , то также верно. Другими словами
Примечания
[править | править код]- ↑ Ершов, Палютин, 1987, с. 70.
- ↑ Ершов, Палютин, 1987, с. 74.
Литература
[править | править код]- Ершов Ю.Л., Палютин Е.А. Математическая логика. — М.: Наука, 1987. — 336 с.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |
В статье не хватает ссылок на источники (см. рекомендации по поиску). |