
MDP and Machine Learning-Based Cost-Optimization of Dynamic Resource
Allocation for Network Function Virtualization

Runyu Shi1, Jia Zhang2, Wenjing Chu1, Qihao Bao2, Xiatao Jin2, Chenran Gong2, Qihao Zhu2, Chang Yu2, Steven Rosenberg2
1Dell Research, USA

2Carnegie Mellon University-Silicon Valley, USA
runyu_shi@dell.com, jia.zhang@sv.cmu.edu, wenjing_chu@dell.com

Abstract—The introduction of Network Functions

Virtualization (NFV) enables service providers to offer
software-defined network functions with elasticity and flexibility.
Its core technique, dynamic allocation procedure of NFV
components onto cloud resources requires rapid response to
changes on-demand to remain cost and QoS effective. In this
paper, Markov Decision Process (MDP) is applied to the NP-hard
problem to dynamically allocate cloud resources for NFV
components. In addition, Bayesian learning method is applied to
monitor the historical resource usage in order to predict future
resource reliability. Experimental results show that our proposed
strategy outperforms related approaches.

Keywords—Network Functions Virtualization, Resource
Allocation, Markov Decision Process, Bayesian Learning

I. INTRODUCTION
While the advancement of cloud computing has encouraged

vendors to deliver everything as a service (XaaS), delivering
network functions as a service has become a new trend in the
recent years. Network Functions Virtualization (NFV) [1] is
the core enabling architectural concept that proposes to
decouple network functions from proprietary hardware
appliances and run them in software, so that they may be
connected or chained to create communication services with
elasticity and flexibility. Currently, virtualizable network
functions include firewalls, WAN acceleration, message router,
message border controller, intrusion detection, network address
translation (NAT), and domain name service (DNS). Such
virtualized network functions are typically run on commodity
servers or datacenters in the cloud [2]. Existing virtualization
technology allows a virtual machine (VM) to be relocated from
one server to another without shutting it down, thus giving an
opportunity of dynamically optimizing resource allocation with
limited impact on performance [3].

However, how to strategically choose resources to allocate
NFV components at run time to minimize overall resource cost
remains a challenge [4]. Although this problem shares many
similarities with the traditional placement problem [5, 6, 7],
real-time NFV has posed significant new challenges due to its
dynamic features. First, resource allocation inside a physical
server may have to change due to dynamic workloads. NFV
instances may be deployed or removed at any time in an
unpredictable manner, depending on a specific service
chaining. Thus, resource allocation needs to be adapted
continuously. Second, the QoS demand of NFV may change
when service request changes. For example, the real-time
latency requirement lowers down when a content streaming is
established. When a new coming request asks for accelerated
delivery of streaming data, resource reallocation is desired. A

new allocation plan must be recomputed taking into account
the changed environment. Third, commodity cloud resources
may imply potential reliability problem, thus requiring constant
monitoring. In this paper, reliability represents the ability of a
resource to ensure constant system operation without
disruption.

The majority of existing orchestration tools is not close to
our optimal goal. For example, OpenStack provides two
primary resource schedulers adopting the strategy of fill-first
and spread-first [8]. Fill-first, same as greedy placement, packs
VMs tightly onto Physical machines (PMs). Spread-first
distributes VMs across PMs in a round-robin fashion [9], but
schedules VMs first on the PMs with the highest number of
available CPU cores and memory. Data centers typically also
adopt these two resource allocation strategies. Greedy
allocation deploys all VMs to a single server first. When the
server’s resources are exhausted, another server is selected and
the process is repeated. Round-robin placement distributes
VMs to each server in succession, balancing the VM hosting
load across the cluster [10]. Both methods, however, may not
provide globally optimal solutions. Meanwhile, researchers
have found many data centers remain to allocate resources to
jobs in a static mode [11]. Gartner reported that resources are
usually either under-used or misused, leading to a low 20% of
CPU utilization [12]. In recent years, some researchers have
strived to generate optimal resource scheduling using various
advanced algorithms, such as Genetic Algorithms [13, 14] in
cloud computing. Another issue is the overhead. Similar to
cloud resource scheduling optimization, modeling the entire
NFV resource allocation as an optimization problem will
produce large scheduling overhead. It is an NP-hard problem,
which lacks an efficient solution.

In this paper, we present a novel method for NFV resource
allocation. In contrast to the related work, our method
leverages Markov Decision Processes (MDP) to dynamically
allocate NFV components to cloud resources, and applies
machine learning method on dynamically collected data to
predict resource reliability. MDP has been used for dynamic
resource allocation problems. It centers on a policy
establishment that considers long-term effect, balances all cost
factors, and guides placement towards an optimal strategy [15,
16, 17]. One issue of MDP is its overhead. We exploit
Bayesian learning methods to dynamically predict the
reliability of cloud resources based on their historical usages,
so as to further improve the MDP model performance. We
have developed algorithms and have designed and conducted a
collection of experiments to compare our proposed strategy
with related approaches. Experimental results show that our
presented strategy outperforms the related methods.

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.19

65

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.19

65

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.19

65

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.19

65

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

The remainder of the paper is organized as follows. In
Section II, we describe a motivating example that will be used
to discuss our work throughout the paper. In Sections III, IV,
V, and VI, we successively present our modeling, notations,
learning algorithms, and performance evaluation and
discussion. In Section VII, we discuss related work. In Section
VIII, we draw conclusions.

II. MOTIVATING EXAMPLE
In this section, we explain a motivating example that also

helps to introduce NFV design considerations. The upper
portion of Fig. 1 illustrates a simplified Content Delivery
Network (CDN) [18] for media delivery, highlighted by
enabling network devices. Users send media service requests
through home equipment to aggregator. The content distributor
and manager are in charge of gathering user inputs for decision
making and distributing media content. It relies on content
router and content switcher to decide the routing of forwarding
data packet over networks to destination sites. Content edge
delivery serves as a cache to enable seamless media delivery.
Content gateway joins together different networks. The
functionalities of the network devices are summarized in Table
1.

Content
Router

Content
Switcher

Aggregator Content
Gateway

Home Equipment

Home Equipment

Home Equipment

NFV Service Resource

NFV
CDN Resource

Allocator

Content Edge Delivery

Content
Distributor

and Manager

Fig. 1 Motivating example

Delivering real-time streaming data poses significant
challenges to CDN hardware. One major requirement derives
from dynamic massive growing amount of traffic to be
delivered to end users. Meanwhile, media delivery bandwidth
needs over an area may change significantly at any time, for
example, when many people living in a village happen to
watch online an award-winning movie on a specific Friday
night. Thus, resource (i.e., bandwidth) elasticity becomes a
critical demand. To address such challenges, the new trend is to
virtualize the above network functions so that the real-time
computation can be performed by high-performance servers in
some cloud data centers, as shown in the lower portion of Fig.
1.

Table 1. NFV for CDN Components
CDN

Components Functionality Virtualiz
ed CDN Virtualized Functionality

Content
Distributor
and Manager

Gather user
input, distribute
content

VNF1 Virtual configuration and
orchestration

Content
Router

Forward data
packets between
networks

VNF2

Virtual routing and
forwarding, segmented
without using multiple
devices

Content
Switcher

Forward data to
destination
device

VNF3

Forward data between
virtual and physical layers
of the network. Intelligently
load-balance traffic across
servers

Content Edge
Delivery

Cache streaming
data VNF4

Virtualized CDN cache
node, cross resources
implementation

Content
Gateway

Join together
different
networks

VNF5
Virtual connection between
physical and virtualized
networks

In contrast to the hardware-oriented CDN, the
software-oriented NFV approach promises flexibility and
elasticity. However, ensuring acceptable performance (such as
throughput and latency) remains a big challenge for NFV.

III. PROBLEM MODELING AND STRATEGY
To tackle the NFV performance problem, we study how to

create a VNF allocation plan dynamically over available
resources, with the goal of minimizing the cost while fulfilling
predefined quality of service.

We turn the VNF allocation planning into a workflow
scheduling problem. As shown in Fig. 2, the identified CDN
functions are mapped (i.e., implemented) to software
implementation of virtualized CDN functions. Table 1
summarizes the virtualized functions. As shown in Fig. 3, since
dependencies exist among network functions, the virtualized
functions inherit such dependencies and form a multi-step
workflow. Operator network providers thus need to
dynamically allocate virtualized CDN components to their
cloud resources, as shown in Fig. 2.

Network Function Virtualization Layer

CDN
VNF1

CDN
VNF2

CDN
VNF3

CDN
VNF4

CDN
VNF5

Content
Router

Content
Switcher

Content
Gateway

Content Edge Delivery

Content
Distributor

and Manager

Fig. 2 Virtualization of CDN Functions

Consider a case of live streaming data content delivery.
Unlike traditional workflow scheduling, an NFV workflow
scheduling has to keep all resources. As shown in Fig. 2, the
dependency among the NFV workflow tasks decides the order
of resource scheduling. For example, a resource has to be
allocated for CDN-vnf2 before being allocated for CDN-vnf3.
After a virtualized network function is allocated to resource
(e.g., a VM), it will start to run and remain running on the
resource until the entire workflow is stopped. This unique
feature poses further performance challenge on resource
allocation. We thus propose a preemptive resource allocation
strategy.

As shown in Fig. 3, we propose a phased allocation
strategy, where workflow-level resource reallocation is
enforced at each phase. Synchronization points are used to

66666666

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

divide a NFV workflow into phases. The example workflow in
Fig. 2 is divided into three phases. At phase 1, CDN-vnf1 is
allocated to Resource 2. At phase 2, an optimization algorithm
(which will be discussed in detail in later sections) may
allocate CDN-vnf2 and CDN-vnf3 to Resource 1, and
CDN-vnf4 to Resource 4. At phase 3, the algorithm may
reallocate CDN-vnf1 to Resource 4 running together with
CDN-vnf5, for an overall higher performance and lower cost
(e.g., based on a fitness function on capacity occupancy).

VNF1

VNF2

VNF1

VNF3

VNF4

VNF2

VNF3

VNF4

VNF1

VNF5

NFV
CDN

Resource
Allocator

NFV
CDN

Resource
Allocator

Phase�1 Phase�2 Phase�3

NFV�Service�
Resource

Resource�1

Resource�2

Resource�3

Resource�4

NFV�Service�
Resource

Resource�1

Resource�2

Resource�3

Resource�4

NFV�Service�
Resource

Resource�1

Resource�2

Resource�3

Resource�4

Fig.3 Phased Reallocation Strategy.

IV. FORMALIZATION & NOTATIONS
To realize our strategy, we model the NFV resource

allocation as a Markov Decision Process (MDP).

A. MDP Brief Overview
MDP [17] is a mathematical framework known for

modeling multi-criteria decision making, taking into
consideration both immediate rewards and long-term gains. A
MDP model is a 4-tuple: a set of states, a set of actions, the
effects of the actions and the immediate values of the actions.

MDP = � �� �� ����� 	���

State: A state represents how the world currently exists. An
action will be able to change the state of the world. All possible
states represent how a world could be, which form the state
space in an MDP: a set ��
�� ����� � � ���� � � ���
 denotes a
finite set of states.

Action: The set of actions represent possible alternatives
one can make over a set of states: a set
��
�� ����� � � ���� � � ���
 denotes a finite set of actions.

Transition: A transition specifies how each of the actions
will change a state: ��
indicates the probability that action a in state S at time t will
lead to state S’ at time t+1.

Reward: A reward is a measure of the immediate value
after performing an action in a state. indicates the
immediate reward received after transition to state s’ from state
s.

The solution to an MDP is called a policy which specifies
the best action to take for each of the states [17]. To find a
policy, a value function is usually pursued that specifies a
numerical value for each state [19]. An MDP solution often
applies a standard dynamic programming algorithm such as
value iteration or policy iteration [20, 21]. Value iteration
computes a new value function for each state based on the
current value of its next state. Value iteration proceeds in an

iterative fashion thus can converge to the optimal solution
quickly [22].

B. NFV MDP Model
Based on NFV forwarding graph [13], we first model NFV

components as a Directed Acyclic Graph (DAG). Let n be the
total number of components; T be the finite set of components:

� ���� � � ���� � � ���
 ��� � ��� � ��� �� � ���� � ���
Let m be the total number of resources available. Vi = 1

represents that the resource is active and has been bound to a
component; while Vi = 0 means that the resource is inactive.

� ����� � � ���� � � ���
 ��� � ��� � ��� �� � ���� � ���
We now model NFV resource allocation as an MDP

problem.

Definition 1 (NFV Allocation State): A state s S
represents the current executing NFV components and their
assigned resources. It is a 2-dimension m×n matrix, with rows
representing components and columns representing resources.
���
 �� represents that component i is executed at resource j.
���
 ��� represents that the component i is not active.

Definition 2 (NFV Allocation Action): An action a A
aims to allocate a time slot on a resource to an NFV
component. A is a 2-dimension m×n matrix, with m rows
represent the components and n columns represent the
resources. ��� indicates that NFV component i is allocated to
resource j with time slot a.

Definition 3 (NFV Allocation Reward): R(s,a,s') is the
immediate reward received from taking action a, at state s, and
transitioning to state s'.

Definition 4 (NFV Allocation Transition): An NFV
allocation transition p(s|a,s') indicates the probability of
whether a transition triggered by an action from one state to
another can be successful.

Based on our NFV modeling, the objective function can be
formalized as:
����
 �!"#��� �� �$� % & '��(�� �$�) *���$�+,- .� (1)
The expected optimal solution can be represented as:
/���
 �01 �!2,34#��� �� �$� % & 5��(�� �6�)+,7

89��6�: (2)

where � is the discount factor and satisfies 0<�<1. (For

example, � = 1/(1+r) when the discount rate is r.) � is typically
close to 1.

Without losing generality, an NFV transition probability
can be calculated based the reliability of resources under
investigation, which will be discussed in detail in the next
section.

V. MODEL LEARNING
In the MDP model at Section VI, we define reliability of a

cloud resource as its transition probability. It represents the
ability of a resource to ensure constant system operation
without disruption. The estimates of reliability are the measure
of the resource quality related to QoS requirements. Clearly,

67676767

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

the optimal policy ;��� is dependent on such an estimation.
In the context of a commodity cloud environment, learning and
predicting the dynamic resource reliability is critical. Thus, we
propose a machine learning-based method to assess the
reliability of NFV resources based on historical data.

Bayesian learning algorithm is a method of inference, in
which Bayes' rule is used to update the probability estimate for
a hypothesis as an additional evidence is acquired. Bayesian
updating is an important technique in statistics, especially in
mathematical statistics [23]. Although it requires conditional
independence of the features under consideration, in practice,
Bayesian learning yields good performance.

In an NFV dynamic resource allocation process, we
leverage Bayesian updating to conduct the dynamic analysis of
the learning data. When an NFV component is created and
allocated to cloud resources, the Bayesian learning algorithm is
triggered. It captures resource reliability responses and updates
the transition probability of the corresponding cloud resources.
As time goes by, resource reliability is trained by Bayesian
learning. Note that Bayesian learning is able to track the
changes of resource reliability in an evolving environment. We
will discuss the detailed technique below.

After allocation action � is processed, the reliability
response of the cloud resource is obtained. Such a model
fulfills the Markov property [24], in which each sub-function is
conditionally independent of its non-descendants given its
parent sub-function. Assume that each resource <� has a
conditional probability distribution:

=�><��?�� =�@�!A��<��
 < B
The calculation of the joint probability will generate the

transitions probabilities. Guarded by the chain rules and the
Markov property, the joint probability distribution can be
written as:

=�<��C<!�
 �=�<��D=�<��(�<� E ��
F

�GH
��I�

The Bayesian learning algorithm maintains a learning
counter,�J, initialized to 1, for each value of a random variable.
During an NFV components allocation process, when resource
allocation, �, causes state variable, K, to change its value
from x to x , the learning associated with the new value is
incremented by 1. The updated probability can be calculated
from the prior probability:
=�6�<�
 � L$(�� <�
 �L�

 �=�6�<�
 � L
$(�� <�
 �L� ��) J� % �

J6� ����������������M�
where J6�is the incremented learning counter.

In order to make the probability distribution over X sum to
1, the probabilities of the rest of the values of X are updated in
the following pattern:

=� �<�
 � L$(�� <�
 �L�

 �=�6�<�
 � L

$(�� <�
 �L� ��) J�
J6� ����������������������N�

In our MDP model, the learning model will continuously
calculate and update the probability under the allocating
process.

Let us use our motivation example to explain. In an NFV
component allocation process, the NFV component �OPQ is
ready to allocate resource in state KQ. The learning method will
record whether the previous state KQRS successfully allocated
the parent NFV component. It will then use the conditional
probability calculation to predict the =�6 probability
distributions. The service provider initially assigns a
probability distribution according to the latest resource
reliability record. If a state K is successfully accomplished, K
is assigned to 1; if it failed, K is assigned to 0; otherwise K is
assigned to unknown. Assume an initialization in state
KT�(initially assigned a uniform probability distribution, i.e.,
unknown). In state KS, the updated probability distribution can
be calculated as follows using formula (4) and (5):

=$�<�
 ��(�� <�
 U!V!	W!�
 ��II X � % �Y
 ��Z[��
=$�<�
 ��(�� <�
 U!V!	W!�
 ��II X �Y
 ���ZN�
=$�<�
 U!V!	W!(�� <�
 U!V!	W!�
 ��II X �Y
 ���ZN

=$ thus becomes the new prior probability in support of the
model learning calculation for the next stage.

VI. NFV RESOURCE ALLOCATION

A. Resource Allocation
Recall that the allocation problem here is how to map NFV

components onto cloud resources, in order to achieve the
minimum overall cost. Leveraging the concept of
asynchronous partition developed in workflow scheduling [25],
we have designed the following NFV allocation methodology
illustrated in Fig. 4:

Fig. 4 NFV allocation methodology.

The initialization phase identifies available cloud resources,

and evaluates the computing cost of every NFV component.
We will provide details of steps in the following subsections.

Similar to scientific workflows, an NFV-oriented workflow
graph comprises various structural patterns: sequential, parallel
and hybrid. Since MDP is suitable for sequential pattern, we
apply the method introduced by Yu et al. [25] to partition an
NFV workflow graph into a collection of sequential branches
jointed by synchronization components.

68686868

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

A synchronization component refers to a component that
has more than one parent or child component. As shown in Fig.
5, VNF1 and VNF5 are both synchronization components.
Other components with only one parent component and one
child component are considered simple components, e.g.,
VNF2, VNF3, and VNF4 in Fig. 5. A branch refers to the
sequential set of interdependent simple components between
two synchronization components. In Fig. 5, VNF2 and VNF3
represents a branch, VNF4 is another branch. Once simple
components and synchronization components are identified,
branches can be identified automatically.

As a result, an NFV workflow will be partitioned into a
group of sequential branches. Therefore, we can apply MDP to
each branch to gain local optimization, which as a whole
leading to an optimized cost solution for the entire NFV
workflow.

VNF1

VNF2 VNF3

VNF4

VNF5

NFV Components Partition

VNF1 VNF5

VNF2 VNF3

VNF4

Branch�1

Branch�2

Before Partitioning

After Partitioning

BranchSimple component Synchronization component

Fig. 5 NFV component partition.

In order to further reduce the total NFV cost, we break the
workflow-level deadline into finer-grained sub-deadlines, as
illustrated in Table 2. Based on the workflow components
partition, corresponding deadlines can be assigned to each
partition group. The rationale is that, if each local schedule
guarantees that their component execution can be completed
within the sub-deadline, then the whole workflow execution
will be completed within the overall deadline.

Table 2. Pseudo code of deadline assignment
Define depth as d, each NFV component as n, workflow
components set as N, synchronization components set as \ , level
as L, Deadline as D, sub-deadline as Di
1. Deadline_assign()
2. d = f_depth(n) // d is from 1 to k, k is max depth.
3. Ld = f_level(n, d) // Dividing NFV components into levels
4. Group(Ld)
5. For Li from L1 to Lk
6. For]� , \^
7. Sum (Di) = D
8. Di = Divide(Di, Li)
9. Update (Di)
10. For]�� � , \ ^
11. Dm = Dn
12. Record (Dm) and Record (Dn)
13. Update (i)
14. Until end Level Lk

After deadline assignment, we try to find a local optimal

allocation plan for each partition based on its sub-deadline.
There are two main factors in our cost model, payment cost

and time cost, referred as _��and _Y, respectively. Our model
allows users to specify the balance between the two cost
factors. For example, for service requests with real time
requirements, the time factor is weighted higher in the cost
function. If in an allocation plan, the total time cost exceeds the
deadline, then such an allocation plan will not be considered.

`	�A
 ��� _Y�� a_�� bcdd�0�ec�f
_Y� f��g�ec�f

Jc�f
 a h� ijekfgb����g
 lg�bd��g
`	�A
 ��� _Y�� cfmg0n��g

B. Pattern Cases
In the above NFV component partition process, the

composition patterns play an important role. Here we discuss
three patterns: sequential pattern, parallel pattern, and hybrid
pattern.

Sequential pattern is a basic workflow pattern for NFV
composition. Each NFV component has its sequential
dependence to other components. Take an example in Fig. 5,
VNF2 and VNF3 circled by Branch 1 is a sequential pattern;
VNF1 is the parent of VNF3; and VNF1 has two children VNF
2 and VNF 3. Since there are multiple tasks, the allocator needs
to make a decision on which resource to execute each NFV
component after the completion of its parent component. The
optimal decision is to minimize the total cost and complete the
NFV component within the assigned sub-deadline. Sequential
pattern can be solved by modeling the problem as a Markov
Decision Process, which has been shown in pervious section.
The algorithm is described in Table 3.

Table 3. Algorithm 1
Algorithm 1. MDP NFV components allocation algorithm for cost
optimization
Input: An NFV components graph G
Output: A component allocation for the NFV components

1. Initialize s=�T, U(�T)=R(�T)
2. Repeat
3. Request(processing time, price and update availability)
4. Update (� ����b�Update (�)
5. For]� , � �ec�'kfg:
6. �����������������

 �! o# p�� �� � q % & �� E 5 p�r�� � q�9 p� q+,7 s
7. Record (policy):
8. �������������/���
 �01 �!2,3 o# p�� �� � q % & �� E+,7

5 p�r�� � q�9 p� qs
9. Record (s) and Record (�)
10. 95t�A� ���
11. Until goal state

Parallel pattern is a workflow contains two or more tasks in
parallel, for instance, in Fig. 5, VNF2 and VNF4 represent a
parallel pattern. We define hybrid pattern as the workflow
which contains both sequential and parallel patterns, in Fig. 5,
the five components diagram illustrates a hybrid pattern.

For hybrid pattern NFV components, we can partition the
hybrid pattern into sequential branches and apply MDP to each
branch. The result of the cost minimization solution for each

69696969

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

sequential partition leads to an optimized cost solution for the
entire NFV workflow. Therefore, an optimized NFV allocation
can be constructed by all local optimal allocations.

If an NFV component graph is hybrid, the partitions are
generated and the overall deadline is distributed on every
partition. Local optimal will be calculated in each partition.
Synchronization components cost should also be added to the
local optimization of each branch, in order to generate a global
optimal allocation. The pseudo code of the allocation method
for hybrid pattern is listed in Table 4.

Table 4. Algorithm 2
Algorithm 2. MDP NFV components allocation algorithm for cost
optimization
Input: A NFV components graph G
Output: A component allocation for the NFV components
1. Convert NFV component graph into partition NFV

component graph G’
2. Initialize s=�T, U(�T)=R(�T)
3. Repeat
4. Partition(S)
5. Request(processing time, price and update availability)
6. Update (� ����b�Update (�)
7. For]� , � �ec�'kfg:
8. �������������

 �! o# p�� �� � q % & �� E 5 p�r�� � q�9 p� q+,7 s
9. Record (policy):
10. ���������/���
 �01 �!2,3 o# p�� �� � q % & �� E+,7

5 p�r�� � q�9 p� qs
11. Record (s) and Record (�)
12. ��������95t�A�����
13. Until goal state

VII. PERFORMANCE EVALUATION
We have designed a collection of experiments to evaluate

the performance of our approach. All experiments were
conducted on Dell PowerEdge Servers R720 and R810 with
RHEL 6.5 operating system. The network bandwidth service is
100Mbps. We used WorkflowSim [26] as the NFV
components generator for testing. WorkflowSim is a workflow
simulator to assist researchers in evaluating workflow
optimization techniques. We used WorkflowSim to simulate
different scales of VM and NFV components.

In our evaluation, for MDP, we consider maximizing the
expected total reward over a finite horizon. Given an MDP and
a horizon H, we compute the optimal finite-horizon policy. In
our experiment, we compared two situations: horizon H= K,
and H=1. H=K means that we consider k-1 states all the way to
the end; and H=1 only considers one state. Here we denote
K-horizon MDP as MDPk and 1-horizon MDP as MDP1. We
have compared our proposed algorithm MDPk and MDP1 with
a common scheduling approach: Genetic Algorithm (GA).

In our experiment, the setting of GA is as follows: Parent
selection (rouletteWheelSelection), Population size (20),
Generations total (100), Mutation Rate (1/3), Recombination
(One point cross over), Mutation Method (Uniform), Random
Seed (1,234).

 (a) (a) All time included

(b) Time spent in solution stage only

Fig. 6 Running time with different number of NFV Component

The two metrics used to evaluate the allocation approaches
are time constraint and execution cost. The former indicates the
time cost by the allocation, while the latter indicates how much
it costs to accomplish the NFV components.

We designed experiments to explore the performance of
our proposed MDP, by varying the conditions, i.e., the number
of components, the number of VMs, and different deadlines. In
order to analyze the time cost, we separated the total time cost
into two stages. One stage is donated as an initialization stage,
which records the time cost of initializing all possible states of
MDP. The other stage is donated as a solution stage, which
records the time cost of finding optimal allocation plan.

Fig. 6 shows our experimental results with fixed number of
VMs and varying number of NFV component tasks. We
recorded method total running time and solution stage running
time in Fig. 6(a) and Fig. 6(b), respectively. While considering
the execution time for different methods, the results show that
our MDPk method has higher performance when comparing
their solution stage running time cost. However, in the
initialization stage, the method traverses all the possible states,
before calculating all possible allocation solutions. Comparing
Fig. 6(a) with Fig. 6(b), it is clear that the time cost for the
initialization significantly exceeds that of the solution stage.
The time cost for solution serves as a significant factor
regarding the dynamic resource allocation process. Considering
the evaluation for one node takes constant time, u���, the
running time for MDPk is u�A�vwS��, and for MDP1 being
u�A) x�, where t stands for the number of NFV component
tasks and v denotes the number of VMs.

Fig. 7 Running time with different number of VMs(time spent in solution

stage only)

70707070

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 7 shows the experimental results when setting the fixed
number of NFV component tasks and varying VMs numbers to
record method running time. Even though GA costs more
running time than other methods, the running time for GA
remains uncertain, because the GA program keeps running
until a stop or interrupting at a specific time spot. At the same
time, GA cannot guarantee the global optimal result. If the
random seed is not constant, different results are obtained from
time to time. If the number of individuals is constant as well as
all the parameters (e.g., max generations, crossover rate and
mutation rate), GA is able to generate better allocation plan
with less time cost, especially for complicated NFV workflows
and VM conditions.

If we consider the total running time trend line, MDPk and
MDP1 are larger than GA when the components number
increases greatly, and most of time is spent in the initialization
stage. However, the solution stage of MDPk and MDP1 takes
significantly less time than GA. The reason is that MDP tends
to do more floating point operations than GA. MDP has
expected value calculation whereas GA does not.

(a) Cost with different number of NFV Component

(b) Cost with different number of VMS

Fig. 8 Graph of costs

Fig. 8(a) shows our experimental results with fixed number
of VMs and varying number of NFV component tasks. Fig.
8(b) shows our experimental results with fixed number of NFV
component tasks and varying number of VMs. As shown in
Fig. 8, MDPk could reach the global optimal when varying
VMs or NFV component tasks. The result of GA is close to
that of MDPk. Theoretically, the K-horizon MDP can always
find the best solution because it traverses all the possible states.
However, if considering the deadline factor, some of the
allocation plans will be filtered out, as the deadline partition is
designed to be backward while the method to calculate the
overall cost is forward.

We also designed an experiment that set different deadlines
to record the total cost, to explore how deadline may influence
the result. The results are shown in Fig. 9. While considering
the deadline factor, the GA method sometimes generates better
allocation plan. MDP1 has the worst performance, as it only
traverses the next stage and finds the best node in that stage. In
other words, it represents only short-term local optimization.

Therefore, whenever there is strict time constraint, MDP1
should not be selected at the beginning. The reason why it
cannot balance short term and long term is that at some stages,
the cost seems to be lower for some choices and MDP1 cannot
foresee the overall cost. When later the deadline is
approaching, MDP1 has to choose to spend more money
saving time and avoid failure.

Fig. 9 Cost with different deadlines

In conclusion of our experiment results and analysis, our
MDPk could reach the global optimal with relative high time
cost. In terms of time cost, the best method for solution is GA.
However, GA cannot guarantee to find the best solution. GA is
able to find comparatively better solution under strict deadline
constraints. MDP1 is able to save time only if there are
comparatively special problems to handle.

VIII. RELATED WORK
The related research work can be categorized as four

categories: VM placememtn, dynamic scaling, cost modeling,
and MDP.

VM placement: The dynamic VM placement has been
called with other names as dynamic resource allocation, or
dynamic VM management. However, the VM selection has
always been part of the decision making [27]. Nelson et al. [28]
presented a fast and transparent application migration system to
improve the system utilization through load balancing across
physical machines. They do not consider migration of
networking, storage devices and physical memory usage while
migrating virtual machines. Ye et al. [29] compared the live
migration efficiency with different resource reservation
approaches and proposed corresponding optimization methods.
Meng et al. [1] proposed using traffic-aware virtual machine
placement to improve network scalability based on traffic
analysis.

Compared with those works, our MDP model considers the
overall optimization in an NFV dynamic context, which shares
some similarity with general dynamic VM placement.

Dynamic Scaling: Previous research on dynamic scaling in
the cloud has mainly focused on how to scale including work
on autonomic control approaches [30, 31]. Other efforts focus
on how to scale in terms of vertical and horizontal scaling [10].
Investigations on supporting VM live migration for load
balancing [32] or energy savings via VM consolidation across
physical hosts [32, 33].

Compared with those works, our uniqueness is that our
allocation focuses on optimization of the real-time dynamic
and variation of QoS on network functions virtualization. We
mainly consider the effects of execution cost, real-time latency
and transition cost.

71717171

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

Cost Modeling: While considering cost modeling in
dynamic resource allocation, besides deadline and cost
optimization, some research pay attentions to other cost
modeling factors, like robustness, budget etc. For example,
Poola et al. [34] place robustness as the first priority factor in
their cost model of the dynamic resource allocation. Their
method aims to provide robust and fault-tolerant scheduling.

Compared with their works, we consider the dollar mount
and time cost as main factors in our cost model. For the
commercial cloud computing environment, the resource
reliability is relatively high. Pursuing robustness seems not the
priority for service users. For example, Poola’s work is more
suitable for certain type of cloud environment.

MDP: Adapting MDP into different problems is a main
research focus of MDP. Similarly to our work that adapts MDP
for NFV resource management, there are some other related
works using MDP. For example, some researchers apply MDP
to model web service composition. For example, Doshi et al.
[35] use MDP to model workflow composition, focusing on the
dynamic aspect of workflows. Gao et al. [36] present a method
for dynamic web service composition based on MDP. It is
defined on the base of QoS description and addresses the issue
of selecting web services for the purpose of their composition.

As we explained in earlier sections, applying MDP to NFV
resource management poses unique challenges. In addition to
MDP, we apply machine learning algorithms to predict future
resource reliability.

IX. CONCLUSIONS
The dynamic optimal resource allocation of NFV

components is a critical research topic. In this paper, we have
presented a novel method that combines the Markov Decision
Process and Bayesian learning approach to dynamically
allocate cloud computing resource for NFV components. While
MDP helps to dynamically allocate NFV components to cloud
resources, applying machine learning method on historical data
to predict future resource reliability helps to enhance the
performance of NFV-oriented cloud resource management.
The experimental results show that our proposed method
outperforms other greedy methods in overall cost.

We plan to further our research work in three directions.
First, we plan to study the impact of cost models on different
resources and to analyze the method performance among
multiple competitive service providers. Second, we plan to
consider NFV component dependencies between multi tenants
to build a more comprehensive model. Third, we plan to study
other optimization algorithms such as the Ant colony
optimization algorithm in combination of machine learning
techniques to further optimize the NFV-oriented resource
allocation problems.

X. REFERENCE
[1] N.M. Chowdhury and R. Boutaba, “A survey of network virtualization,”

Computer Networks, 54(5), pp. 862-876, 2010.
[2] A. Basta, W. Kellerer, M. Hoffmann, H.J. Morper, and K. Hoffmann,

“Applying NFV and SDN to LTE mobile core gateways, the functions
placement problem,” in Proceedings of the 4th ACM Workshop on All

Things Cellular: Operations, Applications, & Challenges, pp. 33-38,
2014.

[3] M. Ciosi, “Network functions virtualization,” Technical report, ETSI,
Darmstadt, Germany, 2012.

[4] W. Wang, B. Li, and B. Liang, “Towards optimal capacity segmentation
with hybrid cloud pricing,” in Proceedings of IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 425-434,
2012.

[5] L. Jiao, J. Li, T. Xu and X. Fu, "Cost optimization for online social
networks on geo-distributed clouds," in Proceedings of the 20th IEEE
International Conference on Network Protocols (ICNP), pp. 1-10, 2012.

[6] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan.
Volley, "Volley: automated data placement for geo-distributed cloud
services," Networked Systems Design & Implementation (NSDI), pp.
17-32. 2010.

[7] P.T. Endo, A.V. de Almeida Palhares, N.N. Pereira, G. E. Goncalves, D.
Sadok, J. Kelner, and J.E. Mangs, "Resource allocation for distributed
cloud: concepts and research challenges," IEEE Network, 25(4), pp.
42-46, 2011.

[8] W. Lloyd, S. Pallickara, O. David, M. Arabi and K. Rojas, "Dynamic
scaling for service oriented applications: implications of virtual machine
placement on IaaS clouds," in Proceedings of 2014 IEEE International
Conference on Cloud Engineering (IC2E), pp. 271-276, 2014.

[9] A. Beloglazov, J. Abawajy and R. Buyya, "Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing," Future Generation Computer Systems, 28(5), pp. 755-768,
2012.

[10] A. Beloglazov and R. Buyya, "Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers," Concurrency
and Computation: Practice and Experience, 24(13), pp.1397-1420, 2012.

[11] Q. Zhang, M. F. Zhani, Q. Zhu, S. Zhang, R. Boutaba, and J. Hellerstein,
"Dynamic energy-aware capacity provisioning for cloud computing
environments," in Proceedings of the ACM 9th International Conference
on Autonomic Computing, pp. 145-154, 2012.

[12] R. Buyya, A. Beloglazov and J. Abawajy, "Energy-efficient
management of data center resources for cloud computing: A vision,
architectural elements, and open challenges," in Proceedings of
International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 6-17, 2010.

[13] Q. Li and Y. Guo, "Optimization of Resource Scheduling in Cloud
Computing," in Proceedings of International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pp.
315-320, 2010.

[14] Z. Zheng, R. Wang, H. Zhong and X. Zhang, "An approach for cloud
resource scheduling based on parallel genetic algorithm," in Proceedings
of IEEE 3rd International Conference on Computer Research and
Development (ICCRD), vol. 2, pp. 444-447, 2011.

[15] M. Hauskrecht and H. Fraser, "Planning treatment of ischemic heart
disease with partially observable markov decision processes," Artificial
Intelligence in Medicine, 18(3), pp. 221-244, 2000.

[16] M. L. Puterman, Markov decision processes: discrete stochastic
dynamic programming, John Wiley & Sons, 2014.

[17] C. White III and D. J. White, "Markov decision processes," European
Journal of Operational Research, 39(1), pp. 1-16, 1989.

[18] G. Pallis and A. Vakali, "Insight and perspectives for content delivery
networks," Communications of the ACM, 49(1), pp. 101-106, 2006.

[19] Alagoz, H. Hsu, A. J. Schaefer and M. S. Roberts, "Markov decision
processes: a tool for sequential decision making under uncertainty,"
Medical Decision Making, 30(4), pp. 474-483. 2009.

[20] S. Martelloand P. Toth, Knapsack problems: algorithms and computer
implementations, New York: Wiley, 1990.

[21] N. Vlassis and A. Likas, "A greedy EM algorithm for Gaussian mixture
learning," Neural processing letters, 15(1), pp. 77-87, 2002.

[22] T. Ayer, O. Alagoz and N. K. Stout, "OR Forum-A pomdp approach to
personalize mammography screening decisions," Operations Research,
60(5), pp. 1019-1034, 2012.

72727272

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

[23] J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen and R. G. Cowell,
"Bayesian analysis in expert systems," Statistical Science, pp. 219-247,
1993.

[24] Olajubu, and G. A. Aderounmu, "A Trustworhty Model for Reliable
Cloud Service Discovery," International Journal of Computer
Applications, 87(16), pp. 23-30, 2014.

[25] J. Yu, R. Buyya, C. K. Tham, "Cost-based scheduling of scientific
workflow applications on utility grids," in Proceedings of the IEEE 1st
International Conference on e-Science and Grid Computing, pp.
140-147, 2005.

[26] P.W. Chen, E Deelman, "Workflowsim: a toolkit for simulating
scientific workflows in distributed environments," in Proceedings of the
8th IEEE International Conference on e-Science, pp. 1-8, 2012.

[27] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba and J. L. Hellerstein,
"Dynamic service placement in geographically distributed clouds," IEEE
Journal on Selected Areas in Communications, 31(12), pp. 762-772,
2013.

[28] M. Nelson, B. H. Lim and G. Hutchins, "Fast transparent migration for
virtual machines," in Proceedings of USENIX Annual Technical
Conference, General Track, pp. 391-394, 2005.

[29] K. Ye, X. Jiang, D. Huang, J. Chen and B. Wang, "Live migration of
multiple virtual machines with resource reservation in cloud computing
environments," in Proceedings of the 4th IEEE International Conference
on Cloud Computing (CLOUD), pp. 267-274, 2011.

[30] A. Gandhi, M. Harchol-Balter R. Das and C. Lefurgy, "Optimal power
allocation in server farms," ACM SIGMETRICS Performance
Evaluation Review, 37(1), pp. 157-168, 2009.

[31] M. Andreolini, S. Casolari, M. Colajanni and M. Messori, "Dynamic
load management of virtual machines in cloud architectures," Cloud
Computing, 34, pp. 201-214, 2010.

[32] Z. Xiao, W. Song and Q. Chen, "Dynamic resource allocation using
virtual machines for cloud computing environment," IEEE Transactions
on Parallel and Distributed Systems, 24(6), pp. 1107-1117 2013.

[33] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, "Sandpiper:
Black-box and gray-box resource management for virtual machines,"
Computer Networks, 53(17), pp. 2923-2938, 2009.

[34] P. Doshi, R. Akkiraju, R. and K. Verma, "Dynamic workflow
composition using markov decision processes," in Proceedings of IEEE
International Conference on Web Services (ICWS), pp. 576-582, 2004.

[35] D. Poola, S. K. Garg, R. Buyya, Y. Yang and K. Ramamohanarao,
"Robust scheduling of scientific workflows with deadline and budget
constraints in clouds," in Proceedings of IEEE 28th International
Conference on Advanced Information Networking and Applications
(AINA), pp. 858-865, 2014.

[36] A. Gao, D. Yang, S. Tang and M. Zhang, "Web service composition
using markov decision processes," Advances in Web-age Information
Management, pp. 308-319, 2005.

73737373

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:31:32 UTC from IEEE Xplore. Restrictions apply.

