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Abstract—The introduction of Network Functions 

Virtualization (NFV) enables service providers to offer 
software-defined network functions with elasticity and flexibility. 
Its core technique, dynamic allocation procedure of NFV 
components onto cloud resources requires rapid response to 
changes on-demand to remain cost and QoS effective. In this 
paper, Markov Decision Process (MDP) is applied to the NP-hard 
problem to dynamically allocate cloud resources for NFV 
components. In addition, Bayesian learning method is applied to 
monitor the historical resource usage in order to predict future 
resource reliability. Experimental results show that our proposed 
strategy outperforms related approaches. 

Keywords—Network Functions Virtualization, Resource 
Allocation, Markov Decision Process, Bayesian Learning

I. INTRODUCTION 
While the advancement of cloud computing has encouraged 

vendors to deliver everything as a service (XaaS), delivering 
network functions as a service has become a new trend in the 
recent years. Network Functions Virtualization (NFV) [1] is 
the core enabling architectural concept that proposes to 
decouple network functions from proprietary hardware 
appliances and run them in software, so that they may be 
connected or chained to create communication services with 
elasticity and flexibility. Currently, virtualizable network 
functions include firewalls, WAN acceleration, message router, 
message border controller, intrusion detection, network address 
translation (NAT), and domain name service (DNS). Such 
virtualized network functions are typically run on commodity 
servers or datacenters in the cloud [2]. Existing virtualization 
technology allows a virtual machine (VM) to be relocated from 
one server to another without shutting it down, thus giving an 
opportunity of dynamically optimizing resource allocation with 
limited impact on performance [3]. 

However, how to strategically choose resources to allocate 
NFV components at run time to minimize overall resource cost 
remains a challenge [4]. Although this problem shares many 
similarities with the traditional placement problem [5, 6, 7], 
real-time NFV has posed significant new challenges due to its 
dynamic features. First, resource allocation inside a physical 
server may have to change due to dynamic workloads. NFV 
instances may be deployed or removed at any time in an 
unpredictable manner, depending on a specific service 
chaining. Thus, resource allocation needs to be adapted 
continuously. Second, the QoS demand of NFV may change 
when service request changes. For example, the real-time 
latency requirement lowers down when a content streaming is 
established. When a new coming request asks for accelerated 
delivery of streaming data, resource reallocation is desired. A 

new allocation plan must be recomputed taking into account 
the changed environment. Third, commodity cloud resources 
may imply potential reliability problem, thus requiring constant 
monitoring. In this paper, reliability represents the ability of a 
resource to ensure constant system operation without 
disruption. 

The majority of existing orchestration tools is not close to 
our optimal goal. For example, OpenStack provides two 
primary resource schedulers adopting the strategy of fill-first 
and spread-first [8]. Fill-first, same as greedy placement, packs 
VMs tightly onto Physical machines (PMs). Spread-first 
distributes VMs across PMs in a round-robin fashion [9], but 
schedules VMs first on the PMs with the highest number of 
available CPU cores and memory. Data centers typically also 
adopt these two resource allocation strategies. Greedy 
allocation deploys all VMs to a single server first. When the 
server’s resources are exhausted, another server is selected and 
the process is repeated. Round-robin placement distributes 
VMs to each server in succession, balancing the VM hosting 
load across the cluster [10]. Both methods, however, may not 
provide globally optimal solutions. Meanwhile, researchers 
have found many data centers remain to allocate resources to 
jobs in a static mode [11]. Gartner reported that resources are 
usually either under-used or misused, leading to a low 20% of 
CPU utilization [12]. In recent years, some researchers have 
strived to generate optimal resource scheduling using various 
advanced algorithms, such as Genetic Algorithms [13, 14] in 
cloud computing. Another issue is the overhead. Similar to 
cloud resource scheduling optimization, modeling the entire 
NFV resource allocation as an optimization problem will 
produce large scheduling overhead. It is an NP-hard problem, 
which lacks an efficient solution. 

In this paper, we present a novel method for NFV resource 
allocation. In contrast to the related work, our method 
leverages Markov Decision Processes (MDP) to dynamically 
allocate NFV components to cloud resources, and applies 
machine learning method on dynamically collected data to 
predict resource reliability. MDP has been used for dynamic 
resource allocation problems. It centers on a policy 
establishment that considers long-term effect, balances all cost 
factors, and guides placement towards an optimal strategy [15, 
16, 17]. One issue of MDP is its overhead. We exploit 
Bayesian learning methods to dynamically predict the 
reliability of cloud resources based on their historical usages, 
so as to further improve the MDP model performance. We 
have developed algorithms and have designed and conducted a 
collection of experiments to compare our proposed strategy 
with related approaches. Experimental results show that our 
presented strategy outperforms the related methods. 
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The remainder of the paper is organized as follows. In 
Section II, we describe a motivating example that will be used 
to discuss our work throughout the paper. In Sections III, IV, 
V, and VI, we successively present our modeling, notations, 
learning algorithms, and performance evaluation and 
discussion. In Section VII, we discuss related work. In Section 
VIII, we draw conclusions. 

II. MOTIVATING EXAMPLE 
In this section, we explain a motivating example that also 

helps to introduce NFV design considerations. The upper 
portion of Fig. 1 illustrates a simplified Content Delivery 
Network (CDN) [18] for media delivery, highlighted by 
enabling network devices. Users send media service requests 
through home equipment to aggregator. The content distributor 
and manager are in charge of gathering user inputs for decision 
making and distributing media content. It relies on content 
router and content switcher to decide the routing of forwarding 
data packet over networks to destination sites. Content edge 
delivery serves as a cache to enable seamless media delivery. 
Content gateway joins together different networks. The 
functionalities of the network devices are summarized in Table 
1. 

Content
Router

Content
Switcher

Aggregator Content
Gateway 

Home Equipment

Home Equipment

Home Equipment

NFV Service Resource

NFV 
CDN Resource 

Allocator

Content Edge Delivery

Content 
Distributor 

and Manager

 
Fig. 1 Motivating example 

 

Delivering real-time streaming data poses significant 
challenges to CDN hardware. One major requirement derives 
from dynamic massive growing amount of traffic to be 
delivered to end users. Meanwhile, media delivery bandwidth 
needs over an area may change significantly at any time, for 
example, when many people living in a village happen to 
watch online an award-winning movie on a specific Friday 
night. Thus, resource (i.e., bandwidth) elasticity becomes a 
critical demand. To address such challenges, the new trend is to 
virtualize the above network functions so that the real-time 
computation can be performed by high-performance servers in 
some cloud data centers, as shown in the lower portion of Fig. 
1. 

Table 1. NFV for CDN Components 
CDN

Components Functionality Virtualiz
ed CDN  Virtualized Functionality 

Content 
Distributor 
and Manager 

Gather user 
input, distribute 
content 

VNF1 Virtual configuration and 
orchestration 

Content 
Router 

Forward data 
packets between 
networks 

VNF2 

Virtual routing and 
forwarding, segmented 
without using multiple 
devices 

Content 
Switcher 

Forward data to 
destination 
device 

VNF3 

Forward data between 
virtual and physical layers 
of the network. Intelligently 
load-balance traffic across 
servers 

Content Edge 
Delivery 

Cache streaming 
data VNF4 

Virtualized CDN cache 
node, cross resources 
implementation 

Content 
Gateway 

Join together 
different 
networks 

VNF5 
Virtual connection between 
physical and virtualized 
networks 

In contrast to the hardware-oriented CDN, the 
software-oriented NFV approach promises flexibility and 
elasticity. However, ensuring acceptable performance (such as 
throughput and latency) remains a big challenge for NFV. 

III. PROBLEM MODELING AND STRATEGY 
To tackle the NFV performance problem, we study how to 

create a VNF allocation plan dynamically over available 
resources, with the goal of minimizing the cost while fulfilling 
predefined quality of service. 

We turn the VNF allocation planning into a workflow 
scheduling problem. As shown in Fig. 2, the identified CDN 
functions are mapped (i.e., implemented) to software 
implementation of virtualized CDN functions. Table 1 
summarizes the virtualized functions. As shown in Fig. 3, since 
dependencies exist among network functions, the virtualized 
functions inherit such dependencies and form a multi-step 
workflow. Operator network providers thus need to 
dynamically allocate virtualized CDN components to their 
cloud resources, as shown in Fig. 2. 
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Fig. 2 Virtualization of CDN Functions 

 

Consider a case of live streaming data content delivery. 
Unlike traditional workflow scheduling, an NFV workflow 
scheduling has to keep all resources. As shown in Fig. 2, the 
dependency among the NFV workflow tasks decides the order 
of resource scheduling. For example, a resource has to be 
allocated for CDN-vnf2 before being allocated for CDN-vnf3. 
After a virtualized network function is allocated to resource 
(e.g., a VM), it will start to run and remain running on the 
resource until the entire workflow is stopped. This unique 
feature poses further performance challenge on resource 
allocation. We thus propose a preemptive resource allocation 
strategy. 

As shown in Fig. 3, we propose a phased allocation 
strategy, where workflow-level resource reallocation is 
enforced at each phase. Synchronization points are used to 
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divide a NFV workflow into phases. The example workflow in 
Fig. 2 is divided into three phases. At phase 1, CDN-vnf1 is 
allocated to Resource 2. At phase 2, an optimization algorithm 
(which will be discussed in detail in later sections) may 
allocate CDN-vnf2 and CDN-vnf3 to Resource 1, and 
CDN-vnf4 to Resource 4. At phase 3, the algorithm may 
reallocate CDN-vnf1 to Resource 4 running together with 
CDN-vnf5, for an overall higher performance and lower cost 
(e.g., based on a fitness function on capacity occupancy). 
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NFV�Service�
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Resource�1

Resource�2

Resource�3

Resource�4

 
Fig.3 Phased Reallocation Strategy. 

IV.  FORMALIZATION & NOTATIONS 
To realize our strategy, we model the NFV resource 

allocation as a Markov Decision Process (MDP). 

A. MDP Brief Overview 
MDP [17] is a mathematical framework known for 

modeling multi-criteria decision making, taking into 
consideration both immediate rewards and long-term gains. A 
MDP model is a 4-tuple: a set of states, a set of actions, the 
effects of the actions and the immediate values of the actions. 

MDP = � �� �� ����� 	��� 
 

State: A state represents how the world currently exists. An 
action will be able to change the state of the world. All possible 
states represent how a world could be, which form the state 
space in an MDP: a set �� 
�� ����� � � ���� � � ��� 
 denotes a 
finite set of states. 

Action: The set of actions represent possible alternatives 
one can make over a set of states: a set 
�� 
�� ����� � � ���� � � ��� 
 denotes a finite set of actions. 

Transition: A transition specifies how each of the actions 
will change a state: ��  
indicates the probability that action a in state S at time t will 
lead to state S’ at time t+1. 

Reward: A reward is a measure of the immediate value 
after performing an action in a state.  indicates the 
immediate reward received after transition to state s’ from state 
s. 

The solution to an MDP is called a policy which specifies 
the best action to take for each of the states [17]. To find a 
policy, a value function is usually pursued that specifies a 
numerical value for each state [19]. An MDP solution often 
applies a standard dynamic programming algorithm such as 
value iteration or policy iteration [20, 21]. Value iteration 
computes a new value function for each state based on the 
current value of its next state. Value iteration proceeds in an 

iterative fashion thus can converge to the optimal solution 
quickly [22]. 

B. NFV MDP Model 
Based on NFV forwarding graph [13], we first model NFV 

components as a Directed Acyclic Graph (DAG). Let n be the 
total number of components; T be the finite set of components: 

� ���� � � ���� � � ��� 
 ��� � ��� � ��� �� � ���� � ��� 
Let m be the total number of resources available. Vi = 1 

represents that the resource is active and has been bound to a 
component; while Vi = 0 means that the resource is inactive. 

� ����� � � ���� � � ��� 
 ��� � ��� � ��� �� � ���� � ��� 
We now model NFV resource allocation as an MDP 

problem. 

Definition 1 (NFV Allocation State): A state s S 
represents the current executing NFV components and their 
assigned resources. It is a 2-dimension m×n matrix, with rows 
representing components and columns representing resources. 
��� 
 �� represents that component i is executed at resource j. 
��� 
 ��� represents that the component i is not active. 

Definition 2 (NFV Allocation Action): An action a A 
aims to allocate a time slot on a resource to an NFV 
component. A is a 2-dimension m×n matrix, with m rows 
represent the components and n columns represent the 
resources. ��� indicates that NFV component i is allocated to 
resource j with time slot a. 

Definition 3 (NFV Allocation Reward): R(s,a,s') is the 
immediate reward received from taking action a, at state s, and 
transitioning to state s'. 

Definition 4 (NFV Allocation Transition): An NFV 
allocation transition p(s|a,s') indicates the probability of 
whether a transition triggered by an action from one state to 
another can be successful. 

Based on our NFV modeling, the objective function can be 
formalized as: 
���� 
  �!"#��� �� �$� % & '��(�� �$� ) *���$�+,- .� (1) 
The expected optimal solution can be represented as: 
/��� 
 �01 �!2,34#��� �� �$� % & 5��(�� �6� )+,7

89��6�:                                         (2) 
 
where � is the discount factor and satisfies 0<�<1. (For 

example, � = 1/(1+r) when the discount rate is r.) � is typically 
close to 1. 

Without losing generality, an NFV transition probability 
can be calculated based the reliability of resources under 
investigation, which will be discussed in detail in the next 
section. 

V. MODEL LEARNING 
In the MDP model at Section VI, we define reliability of a 

cloud resource as its transition probability. It represents the 
ability of a resource to ensure constant system operation 
without disruption. The estimates of reliability are the measure 
of the resource quality related to QoS requirements. Clearly, 
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the optimal policy ;��� is dependent on such an estimation. 
In the context of a commodity cloud environment, learning and 
predicting the dynamic resource reliability is critical. Thus, we 
propose a machine learning-based method to assess the 
reliability of NFV resources based on historical data. 

Bayesian learning algorithm is a method of inference, in 
which Bayes' rule is used to update the probability estimate for 
a hypothesis as an additional evidence is acquired. Bayesian 
updating is an important technique in statistics, especially in 
mathematical statistics [23]. Although it requires conditional 
independence of the features under consideration, in practice, 
Bayesian learning yields good performance.  

In an NFV dynamic resource allocation process, we 
leverage Bayesian updating to conduct the dynamic analysis of 
the learning data. When an NFV component is created and 
allocated to cloud resources, the Bayesian learning algorithm is 
triggered. It captures resource reliability responses and updates 
the transition probability of the corresponding cloud resources. 
As time goes by, resource reliability is trained by Bayesian 
learning. Note that Bayesian learning is able to track the 
changes of resource reliability in an evolving environment. We 
will discuss the detailed technique below. 

After allocation action �  is processed, the reliability 
response of the cloud resource is obtained. Such a model 
fulfills the Markov property [24], in which each sub-function is 
conditionally independent of its non-descendants given its 
parent sub-function. Assume that each resource <�  has a 
conditional probability distribution: 

=�><��?�� =�@�!A��<�� 
 < B 
The calculation of the joint probability will generate the 

transitions probabilities. Guarded by the chain rules and the 
Markov property, the joint probability distribution can be 
written as: 

=�<��C<!� 
 �=�<��D=�<��(�<� E ��
F

�GH
����������������������������������������������I� 

The Bayesian learning algorithm maintains a learning 
counter,�J, initialized to 1, for each value of a random variable. 
During an NFV components allocation process, when resource 
allocation, �, causes state variable, K, to change its value 
from x to x , the learning associated with the new value is 
incremented by 1. The updated probability can be calculated 
from the prior probability: 
=�6�<� 
 � L$(�� <� 
 �L�


 �=�6�<� 
 � L
$(�� <� 
 �L� ��) J� % �

J6� ����������������M� 
where J6�is the incremented learning counter.  

In order to make the probability distribution over X sum to 
1, the probabilities of the rest of the values of X are updated in 
the following pattern: 

=� �<� 
 � L$(�� <� 
 �L�

 �=�6�<� 
 � L

$(�� <� 
 �L� ��) J�
J6� ����������������������N� 

In our MDP model, the learning model will continuously 
calculate and update the probability under the allocating 
process. 

Let us use our motivation example to explain. In an NFV 
component allocation process, the NFV component �OPQ is 
ready to allocate resource in state KQ. The learning method will 
record whether the previous state KQRS successfully allocated 
the parent NFV component. It will then use the conditional 
probability calculation to predict the =�6  probability 
distributions. The service provider initially assigns a 
probability distribution according to the latest resource 
reliability record. If a state K is successfully accomplished, K 
is assigned to 1; if it failed, K is assigned to 0; otherwise K is 
assigned to unknown. Assume an initialization in state 
KT�(initially assigned a uniform probability distribution, i.e., 
unknown). In state KS, the updated probability distribution can 
be calculated as follows using formula (4) and (5): 

=$�<� 
 ��(�� <� 
 U!V!	W!� 
 ��II X � % �Y 
 ��Z[��
=$�<� 
 ��(�� <� 
 U!V!	W!� 
 ��II X �Y 
 ���ZN�
=$�<� 
 U!V!	W!(�� <� 
 U!V!	W!� 
 ��II X �Y 
 ���ZN 

=$ thus becomes the new prior probability in support of the 
model learning calculation for the next stage. 

VI. NFV RESOURCE ALLOCATION 

A. Resource Allocation 
Recall that the allocation problem here is how to map NFV 

components onto cloud resources, in order to achieve the 
minimum overall cost. Leveraging the concept of 
asynchronous partition developed in workflow scheduling [25], 
we have designed the following NFV allocation methodology 
illustrated in Fig. 4: 

 
Fig. 4 NFV allocation methodology. 

 
The initialization phase identifies available cloud resources, 

and evaluates the computing cost of every NFV component. 
We will provide details of steps in the following subsections.  

Similar to scientific workflows, an NFV-oriented workflow 
graph comprises various structural patterns: sequential, parallel 
and hybrid. Since MDP is suitable for sequential pattern, we 
apply the method introduced by Yu et al. [25] to partition an 
NFV workflow graph into a collection of sequential branches 
jointed by synchronization components. 
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A synchronization component refers to a component that 
has more than one parent or child component. As shown in Fig. 
5, VNF1 and VNF5 are both synchronization components. 
Other components with only one parent component and one 
child component are considered simple components, e.g., 
VNF2, VNF3, and VNF4 in Fig. 5. A branch refers to the 
sequential set of interdependent simple components between 
two synchronization components. In Fig. 5, VNF2 and VNF3 
represents a branch, VNF4 is another branch. Once simple 
components and synchronization components are identified, 
branches can be identified automatically. 

As a result, an NFV workflow will be partitioned into a 
group of sequential branches. Therefore, we can apply MDP to 
each branch to gain local optimization, which as a whole 
leading to an optimized cost solution for the entire NFV 
workflow. 

VNF1

VNF2 VNF3

VNF4

VNF5

NFV Components Partition

VNF1 VNF5

VNF2 VNF3

VNF4

Branch�1

Branch�2

Before Partitioning

After Partitioning

BranchSimple component Synchronization component 

  
Fig. 5 NFV component partition. 

 

In order to further reduce the total NFV cost, we break the 
workflow-level deadline into finer-grained sub-deadlines, as 
illustrated in Table 2. Based on the workflow components 
partition, corresponding deadlines can be assigned to each 
partition group. The rationale is that, if each local schedule 
guarantees that their component execution can be completed 
within the sub-deadline, then the whole workflow execution 
will be completed within the overall deadline. 

Table 2. Pseudo code of deadline assignment 
Define depth as d, each NFV component as n, workflow 
components set as N, synchronization components set as \ , level 
as L, Deadline as D, sub-deadline as Di 
1. Deadline_assign() 
2.   d = f_depth(n) // d is from 1 to k, k is max depth. 
3.   Ld = f_level(n, d) // Dividing NFV components into levels 
4.   Group(Ld)  
5.   For Li from L1 to Lk 
6.     For ]� , \^ 
7.       Sum (Di) = D 
8.       Di = Divide(Di, Li) 
9.       Update (Di) 
10.     For ]�� � , \ ^   
11.       Dm = Dn 
12.       Record (Dm) and Record (Dn) 
13.     Update (i) 
14.   Until end Level Lk 

 
After deadline assignment, we try to find a local optimal 

allocation plan for each partition based on its sub-deadline. 
There are two main factors in our cost model, payment cost 

and time cost, referred as _��and _Y, respectively. Our model 
allows users to specify the balance between the two cost 
factors. For example, for service requests with real time 
requirements, the time factor is weighted higher in the cost 
function. If in an allocation plan, the total time cost exceeds the 
deadline, then such an allocation plan will not be considered. 

`	�A 
 _�_�� _Y�� a_�� bcdd�0�ec�f
_Y� f��g�ec�f  

Jc�f 
 a h� ijekfgb����g 
 lg�bd��g
`	�A 
 _�_�� _Y�� cfmg0n��g  

 

B. Pattern Cases 
In the above NFV component partition process, the 

composition patterns play an important role. Here we discuss 
three patterns: sequential pattern, parallel pattern, and hybrid 
pattern. 

Sequential pattern is a basic workflow pattern for NFV 
composition. Each NFV component has its sequential 
dependence to other components. Take an example in Fig. 5, 
VNF2 and VNF3 circled by Branch 1 is a sequential pattern; 
VNF1 is the parent of VNF3; and VNF1 has two children VNF 
2 and VNF 3. Since there are multiple tasks, the allocator needs 
to make a decision on which resource to execute each NFV 
component after the completion of its parent component. The 
optimal decision is to minimize the total cost and complete the 
NFV component within the assigned sub-deadline. Sequential 
pattern can be solved by modeling the problem as a Markov 
Decision Process, which has been shown in pervious section. 
The algorithm is described in Table 3. 

Table 3. Algorithm 1 
Algorithm 1. MDP NFV components allocation algorithm for cost 
optimization  
Input: An NFV components graph G 
Output: A component allocation for the NFV components 

1. Initialize s=�T, U(�T)=R(�T) 
2. Repeat 
3.      Request(processing time, price and update availability) 
4.      Update (� ����b�Update (�) 
5.       For ]� , � �ec�'kfg: 
6. ����������������� 


 �! o# p�� �� � q % & �� E 5 p�r�� � q�9 p� q+,7 s 
7.       Record (policy): 
8. �������������/��� 
 �01 �!2,3 o# p�� �� � q % & �� E+,7

5 p�r�� � q�9 p� qs 
9.       Record (s) and Record (� ) 
10. 95t�A� ��� 
11. Until goal state 

Parallel pattern is a workflow contains two or more tasks in 
parallel, for instance, in Fig. 5, VNF2 and VNF4 represent a 
parallel pattern. We define hybrid pattern as the workflow 
which contains both sequential and parallel patterns, in Fig. 5, 
the five components diagram illustrates a hybrid pattern.  

For hybrid pattern NFV components, we can partition the 
hybrid pattern into sequential branches and apply MDP to each 
branch. The result of the cost minimization solution for each 
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sequential partition leads to an optimized cost solution for the 
entire NFV workflow. Therefore, an optimized NFV allocation 
can be constructed by all local optimal allocations.  

If an NFV component graph is hybrid, the partitions are 
generated and the overall deadline is distributed on every 
partition. Local optimal will be calculated in each partition. 
Synchronization components cost should also be added to the 
local optimization of each branch, in order to generate a global 
optimal allocation. The pseudo code of the allocation method 
for hybrid pattern is listed in Table 4. 

Table 4. Algorithm 2 
Algorithm 2. MDP NFV components allocation algorithm for cost 
optimization  
Input: A NFV components graph G 
Output: A component allocation for the NFV components 
1. Convert NFV component graph into partition NFV 

component graph G’ 
2. Initialize s=�T, U(�T)=R(�T) 
3. Repeat 
4.   Partition(S) 
5.   Request(processing time, price and update availability) 
6.   Update (� ����b�Update (�)  
7.   For ]� , � �ec�'kfg: 
8. ������������� 


 �! o# p�� �� � q % & �� E 5 p�r�� � q�9 p� q+,7 s 
9.     Record (policy): 
10. ���������/��� 
 �01 �!2,3 o# p�� �� � q % & �� E+,7

5 p�r�� � q�9 p� qs 
11.     Record (s) and Record (� ) 
12. ��������95t�A����� 
13. Until goal state 

 

VII. PERFORMANCE EVALUATION 
We have designed a collection of experiments to evaluate 

the performance of our approach. All experiments were 
conducted on Dell PowerEdge Servers R720 and R810  with 
RHEL 6.5 operating system. The network bandwidth service is 
100Mbps. We used WorkflowSim [26] as the NFV 
components generator for testing. WorkflowSim is a workflow 
simulator to assist researchers in evaluating workflow 
optimization techniques. We used WorkflowSim to simulate 
different scales of VM and NFV components.  

In our evaluation, for MDP, we consider maximizing the 
expected total reward over a finite horizon. Given an MDP and 
a horizon H, we compute the optimal finite-horizon policy. In 
our experiment, we compared two situations: horizon H= K, 
and H=1. H=K means that we consider k-1 states all the way to 
the end; and H=1 only considers one state. Here we denote 
K-horizon MDP as MDPk and 1-horizon MDP as MDP1. We 
have compared our proposed algorithm MDPk and MDP1 with 
a common scheduling approach: Genetic Algorithm (GA).  

In our experiment, the setting of GA is as follows: Parent 
selection (rouletteWheelSelection), Population size (20), 
Generations total (100), Mutation Rate (1/3), Recombination 
(One point cross over), Mutation Method (Uniform), Random 
Seed (1,234). 

 (a) (a) All time included 

    
(b) Time spent in solution stage only 

Fig. 6 Running time with different number of NFV Component 
 

The two metrics used to evaluate the allocation approaches 
are time constraint and execution cost. The former indicates the 
time cost by the allocation, while the latter indicates how much 
it costs to accomplish the NFV components.  

We designed experiments to explore the performance of 
our proposed MDP, by varying the conditions, i.e., the number 
of components, the number of VMs, and different deadlines. In 
order to analyze the time cost, we separated the total time cost 
into two stages. One stage is donated as an initialization stage, 
which records the time cost of initializing all possible states of 
MDP. The other stage is donated as a solution stage, which 
records the time cost of finding optimal allocation plan. 

Fig. 6 shows our experimental results with fixed number of 
VMs and varying number of NFV component tasks. We 
recorded method total running time and solution stage running 
time in Fig. 6(a) and Fig. 6(b), respectively. While considering 
the execution time for different methods, the results show that 
our MDPk method has higher performance when comparing 
their solution stage running time cost. However, in the 
initialization stage, the method traverses all the possible states, 
before calculating all possible allocation solutions. Comparing 
Fig. 6(a) with Fig. 6(b), it is clear that the time cost for the 
initialization significantly exceeds that of the solution stage. 
The time cost for solution serves as a significant factor 
regarding the dynamic resource allocation process. Considering 
the evaluation for one node takes constant time, u���, the 
running time for MDPk is u�A�vwS��, and for MDP1 being 
u�A ) x�, where t stands for the number of NFV component 
tasks and v denotes the number of VMs. 

 
Fig. 7 Running time with different number of VMs(time spent in solution 

stage only) 
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Fig. 7 shows the experimental results when setting the fixed 
number of NFV component tasks and varying VMs numbers to 
record method running time. Even though GA costs more 
running time than other methods, the running time for GA 
remains uncertain, because the GA program keeps running 
until a stop or interrupting at a specific time spot. At the same 
time, GA cannot guarantee the global optimal result. If the 
random seed is not constant, different results are obtained from 
time to time. If the number of individuals is constant as well as 
all the parameters (e.g., max generations, crossover rate and 
mutation rate), GA is able to generate better allocation plan 
with less time cost, especially for complicated NFV workflows 
and VM conditions. 

If we consider the total running time trend line, MDPk and 
MDP1 are larger than GA when the components number 
increases greatly, and most of time is spent in the initialization 
stage. However, the solution stage of MDPk and MDP1 takes 
significantly less time than GA. The reason is that MDP tends 
to do more floating point operations than GA. MDP has 
expected value calculation whereas GA does not. 

 
(a) Cost with different number of NFV Component 

 
(b) Cost with different number of VMS 

Fig. 8 Graph of costs 
 

Fig. 8(a) shows our experimental results with fixed number 
of VMs and varying number of NFV component tasks. Fig. 
8(b) shows our experimental results with fixed number of NFV 
component tasks and varying number of VMs. As shown in 
Fig. 8, MDPk could reach the global optimal when varying 
VMs or NFV component tasks. The result of GA is close to 
that of MDPk. Theoretically, the K-horizon MDP can always 
find the best solution because it traverses all the possible states. 
However, if considering the deadline factor, some of the 
allocation plans will be filtered out, as the deadline partition is 
designed to be backward while the method to calculate the 
overall cost is forward. 

We also designed an experiment that set different deadlines 
to record the total cost, to explore how deadline may influence 
the result. The results are shown in Fig. 9. While considering 
the deadline factor, the GA method sometimes generates better 
allocation plan. MDP1 has the worst performance, as it only 
traverses the next stage and finds the best node in that stage. In 
other words, it represents only short-term local optimization. 

Therefore, whenever there is strict time constraint, MDP1 
should not be selected at the beginning. The reason why it 
cannot balance short term and long term is that at some stages, 
the cost seems to be lower for some choices and MDP1 cannot 
foresee the overall cost. When later the deadline is 
approaching, MDP1 has to choose to spend more money 
saving time and avoid failure.  

 
Fig. 9 Cost with different deadlines 

 

In conclusion of our experiment results and analysis, our 
MDPk could reach the global optimal with relative high time 
cost. In terms of time cost, the best method for solution is GA. 
However, GA cannot guarantee to find the best solution. GA is 
able to find comparatively better solution under strict deadline 
constraints. MDP1 is able to save time only if there are 
comparatively special problems to handle. 

VIII. RELATED WORK 
The related research work can be categorized as four 

categories: VM placememtn, dynamic scaling, cost modeling, 
and MDP. 

VM placement: The dynamic VM placement has been 
called with other names as dynamic resource allocation, or 
dynamic VM management. However, the VM selection has 
always been part of the decision making [27]. Nelson et al. [28] 
presented a fast and transparent application migration system to 
improve the system utilization through load balancing across 
physical machines. They do not consider migration of 
networking, storage devices and physical memory usage while 
migrating virtual machines. Ye et al. [29] compared the live 
migration efficiency with different resource reservation 
approaches and proposed corresponding optimization methods. 
Meng et al. [1] proposed using traffic-aware virtual machine 
placement to improve network scalability based on traffic 
analysis. 

Compared with those works, our MDP model considers the 
overall optimization in an NFV dynamic context, which shares 
some similarity with general dynamic VM placement.  

Dynamic Scaling: Previous research on dynamic scaling in 
the cloud has mainly focused on how to scale including work 
on autonomic control approaches [30, 31]. Other efforts focus 
on how to scale in terms of vertical and horizontal scaling [10]. 
Investigations on supporting VM live migration for load 
balancing [32] or energy savings via VM consolidation across 
physical hosts [32, 33]. 

Compared with those works, our uniqueness is that our 
allocation focuses on optimization of the real-time dynamic 
and variation of QoS on network functions virtualization. We 
mainly consider the effects of execution cost, real-time latency 
and transition cost.  
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Cost Modeling: While considering cost modeling in 
dynamic resource allocation, besides deadline and cost 
optimization, some research pay attentions to other cost 
modeling factors, like robustness, budget etc. For example, 
Poola et al. [34] place robustness as the first priority factor in 
their cost model of the dynamic resource allocation. Their 
method aims to provide robust and fault-tolerant scheduling.  

Compared with their works, we consider the dollar mount 
and time cost as main factors in our cost model. For the 
commercial cloud computing environment, the resource 
reliability is relatively high. Pursuing robustness seems not the 
priority for service users. For example, Poola’s work is more 
suitable for certain type of cloud environment. 

MDP: Adapting MDP into different problems is a main 
research focus of MDP. Similarly to our work that adapts MDP 
for NFV resource management, there are some other related 
works using MDP. For example, some researchers apply MDP 
to model web service composition. For example, Doshi et al. 
[35] use MDP to model workflow composition, focusing on the 
dynamic aspect of workflows. Gao et al. [36] present a method 
for dynamic web service composition based on MDP. It is 
defined on the base of QoS description and addresses the issue 
of selecting web services for the purpose of their composition. 

As we explained in earlier sections, applying MDP to NFV 
resource management poses unique challenges. In addition to 
MDP, we apply machine learning algorithms to predict future 
resource reliability. 

IX. CONCLUSIONS 
The dynamic optimal resource allocation of NFV 

components is a critical research topic. In this paper, we have 
presented a novel method that combines the Markov Decision 
Process and Bayesian learning approach to dynamically 
allocate cloud computing resource for NFV components. While 
MDP helps to dynamically allocate NFV components to cloud 
resources, applying machine learning method on historical data 
to predict future resource reliability helps to enhance the 
performance of NFV-oriented cloud resource management. 
The experimental results show that our proposed method 
outperforms other greedy methods in overall cost.  

We plan to further our research work in three directions. 
First, we plan to study the impact of cost models on different 
resources and to analyze the method performance among 
multiple competitive service providers. Second, we plan to 
consider NFV component dependencies between multi tenants 
to build a more comprehensive model. Third, we plan to study 
other optimization algorithms such as the Ant colony 
optimization algorithm in combination of machine learning 
techniques to further optimize the NFV-oriented resource 
allocation problems. 
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