
PATTERN FORMATION IN SWARM

ROBOTIC SYSTEMS

Onur Soysal

Department of Computer Engineering
Middle East Technical University

06531 Ankara, Turkey
soysal@ceng.metu.edu.tr

http://www.kovan.ceng.metu.edu.tr

1 Introduction

This document summarizes my thesis studies on pattern formation in swarm
robotic systems.

My current studies incline towards adaptation for obtaining pattern forma-
tion. Main problem considered is aggregation, getting a swarm of robots as close
as possible. This problem is trivial for complicated robots with global commu-
nication. My environment on the other hand permits only local communication
and limited computational capability. With these restriction the problem is much
harder. Localization, map generation and high level agent communication is not
possible. Robots are reactive with small degree of adaptative capability.

I have compiled literature for adaptation mechanisms for multiple robots.
This survey is given in Section2. Adaptation is important since it might be the
key point to build such limited robots with global behavior. Limitations in robot
capability allows such robots to operate in many environments where other more
complicated robots can’t. Limited capabilities also allow cheaper robots, which
is always desirable.

Designing controllers by hand is esspecially difficult with such tight con-
straints. So evolutionary robotics methodology is used. In this model controllers
are optimized using evolutionary methods. This requires large amounts of com-
putation. This problem is addressed by the platform described in Section3. This
platform is presented in ISCIS’03 conferance and this section summarizes that
work.

Last section discusses the preliminary results obtained from PES system and
gives details of the plans on next stage of thesis.

2 Literature Survey

Robots in real world can’t be equipped with complete world models because of
limitations in capabilities of robots. Real world is also dynamic so robots should
be able to modify models as needed. Adaptation can solve both these problems
by automatically generating world models. These models can be modified as



2 Onur Soysal

environment changes since they are built using inference and experience rather
than supervision.

Dudek et al. reports a taxonomy of collective robotics[18, 19]. This classi-
fication is important for understanding posibilities in multiple robotics. Their
taxonomy consists of following axes:

– Collective Size
– Communication Range
– Communication Topology
– Communication Bandwidth
– Collective reconfigurability
– Processing Ability
– Collective Composition

One possible addition to this taxonomy could be adaptive capabilities, since
adaptiveness differentiates the approach to the problem in many cases.

Cao et al. proposed another taxonomy[20] which includes adaptation as well.
They differentiate studies according to following axes:

– Group Architecture
– Resource Conflict
– The Origin of Cooperation
– Learning
– Geometric Problems

This study surveys state of the art on multi-robot adaptation. The follow-
ing section summarizes problems being solved using multi-robot learning ap-
proaches.

2.1 Problems

Multiple robots are not suitable for all problems. There are certain problems
that require a single robot. In contrast, there are also tasks that require multiple
robots, but these are relatively few in number. Between these two extremes there
are tasks that can benefit from multiple robotics.

Current studies in multi robot learning concentrate on four such problems:
Foraging, Robo-soccer, box pushing and pattern formation.

Pattern formation is the ability of robots to arrange themselves to desired
relative positions. This problem is easy if global communication or centralized
control is used, but for distributed decision making it is a considerable challenge.

In box pushing problem, robot teams are required to push a box to a goal
position in minimal time. This operation requires coordination between robots.
Increasing number of robots create increased amount of interference and lead to
stagnation. This problem is first step for further complicated cooperation.

Foraging consists of exploring environment to find collectible items and bring
them to a specified place. Foraging is a behavior common in insects which are
biological proofs of feasibility of distributed decision maker systems. Foraging



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 3

may require cooperation among robots to carry items that can’t be carried by a
single robot. Cooperation can also be used to improve exploration efficiency.

Robo-soccer is perhaps the most complicated problem in collective robotics.
Robot teams compete in a soccer game. This task requires high level strategies,
collaboration and coordination. Environment of robo-soccer is highly dynamic,
since opposing team is unpredictable. Adaptation can improve the performance
of a team in this environment. There is domain knowledge in the field which
should be included in the architecture, like tactics and game rules.

Adaptation can be achieved in two levels: group level and individual level.
Group level adaptation models are inspired by genetics whereas individual adap-
tation models are inspired by psychology.

Behavioral psychology provides the concept of reinforcement. Reinforcement
is defined as stimuli which increases or decreases tendency to act. Reinforcement
learning paradigm uses this concept to generate policies. Next section details
studies on this paradigm.

2.2 Individual Adaptation

Reinforcement Models It is usually impractical to have supervision in tasks
that robots are required to perform. Learning models that work with positive
and negative feedback signals are used to overcome this problem. Reinforcement
learning and its variants are popular in this context since they only need a signal
of appropriateness.

Reinforcement Learning models become useless when the state space is too
large. Using multiple learning modules for different states instead of a single
complicated learning module is one approach to solve this problem. Takayashi’s
work[9] is one such study. The problem studied in his work is a reduced version
of robo-soccer challenge. Opponents are assumed to have different modes of op-
eration each with a different policy. Modules consist of predictors and planners.
Predictor predicts the next action of opponent based on its previous behavior.
Planner on the other hand generates optimal move based on this prediction.
Predictors compete for better accuracy and only best predicting module is rein-
forced. This creates specialized modules for different modes of operation of the
opponent.

The sample problem used in this work is ball chasing in presence of a random
moving opponent. The results show improvement over single module learning.
Reinforcement learning converges to optimal policy given sufficient trials but it
is often the case that these sufficient trials are too large to be feasible. Piao[10]
proposes an improved reinforcement learning method to improve learning speed
of learning. This method is combination of rule learning, reinforcement learning
and action level selection which is basically behavior rules for specific states.

The rule base consists of instances that are states passed through a fixed
interval. These instances are labeled after each epoch using information gathered
through the epoch. These instances are then combined to create rules. These
rules are used as a prohibitive guide to inhibit useless or harmful actions.



4 Onur Soysal

Action level selection is composed of hard coded rules to govern general
strategy of robots. Action level is also fed into reinforcement level together with
sensor data to generate the state information.

Finally reinforcement learning module uses sensory information and action

level to generate state and learns to generate actions. Piao applies this method
to the robo-soccer problem. He assumes only one agent is learning at a given
time and reports improved performance on learning with multiple robots over
standard Q learning.

Reinforcement learning is intended for single entities, so doesn’t have any
mechanisms to support cooperative behaviors. Tangamchit’s work[16] investi-
gates this problem. This work addresses distinction between action level and
task level systems. To solve problems, action level systems generate reactive
behaviors. On the other hand task level systems generate tasks composed of
subtasks possibly distributed over multiple agents. Paper defines cooperation as
a task level activity, where robots can share resources and duties.

Two different types of reward are considered in this work: global and local.
In global reward scheme, reinforcement received by a unit is distributed to whole
group. In contrast local reward scheme does not distribute reward among units.
Two learning algorithms are considered: Q-Learning and Monte Carlo Learning.
Q learning uses cumulative discounted rewards and Monte Carlo Learning uses
averaging process to assess the value of each action in each state. Reward is same
for each state action pair in the episode. This scheme is slower since it disregards
the importance of latter actions in episode which are usually more effective in
obtaining reward.

The case examined for this study is puck collecting behavior which a subclass
of foraging problem. Robots are required to collect pucks and to deposit them
into the bin. Each action has a negative reward except the action of depositing
a puck. The field consists of a home region, which doesn’t contain any pucks, a
deposit bin, and pucks distributed around the region. Two heterogeneous robots
are used for this task. The first robot moves and collects better in the region
outside the home region. The second robot is limited in movement to home
region but can accomplish bin deposit action more efficiently. Optimal strategy
requires robots to cooperate and first to bring pucks into home region and second
to deposit them. This requires task level learning.

Results indicate that task-level cooperation can’t be learned well using local
rewards or discounted cumulative rewards as in Q learning. In opposition global
rewards coupled with average rewards result in cooperative policies for this task.

Reinforcement learning only requires feedback for applied sequence of ac-
tions to incorporate domain knowledge. This is usually incorporated by choice
of reward functions. Mataric[14] discusses reward functions in a foraging task.
Although single goals are mathematically simple to analyze, they cause problems
through acquisition of behavior. Especially contingent and sequential behaviors
are hard to convert into monolithic goal functions. Instead of this, separate goal
functions are used, each describing a subgoal of agent. A second improvement is
progress estimators. These estimators give a rough idea of how well a specific goal



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 5

is going on. These two improvements greatly increase the usage of domain knowl-
edge in the topic (by designing appropriate subgoals and estimating progress of
the subgoals). They also give much more reinforcement than standard methods,
since not only the final goal but also intermediate steps are reinforced.

This improved method is tested on real robots working on a foraging task.
Robots are to collect pucks and to deliver them to home. Robots are also respon-
sible to be present at home at certain intervals. Robots are given some simple
reactive behaviors to reduce state space of learning problem to a manageable
size. These behaviors are collecting pucks when it is immediately before agent,
avoiding obstacles and dropping pucks when at home. Experiments are com-
pared with optimal policy generated by hand. Results indicate the benefit of
both improvements purposed.

An interesting note in this paper is the interference caused by agents. In-
creasing number of learning agents has detrimental effect on general learning
speed and convergence.

Alternative Models Parker’s[22] L-ALLIANCE model uses multiple behavior
sets and global communications to achieve cooperation. Each behavior set has
a monitor. These monitors check required conditions for activation of behavior
sets, also assess the capability of agent and other agents. Parker introduces two
motivations: impatience and acquiescence. Impatience correspond to tendency
to take a task being done by other robots and acquiescence describes tendency
to give up a task to be performed by another robot. L-ALLIANCE architecture
changes these motivational parameters during learning.

L-ALLIANCE architecture requires robots to broadcast current actions to
other robots. This architecture assumes that when a robot declares an action,
the changes in environment that can be caused by result of that action are
attributed to that robot. This handles credit assignment problem.

L-ALLIANCE architecture is can handle heterogenous groups and can adapt
to failures or changes in robot abilities which are desired properties. On the
other hand, L-ALLIANCE requires global communication and makes a strong
assumption to solve credit assignment problem.

Goldberg et al. [15] propose Augmented Marcow Models (AMM). AMM is a
markov model improved by additional statistics about transitions. It is designed
to learn the statistics of the environment rather than to generate a policy. AMM’s
assume action being performed can be known perfectly, so it is differentiated from
Hidden Markov Models.

AMM’s are first order Markov Models but they are built incrementally. This
incremental building gives them ability to better approximate such higher or-
der trasitions in the system. Their work combines AMM’s with behavior based
robotics [23]. Each behavior is monitored using AMM’s with different time scales.
This allows system to respond both slow and fast changes in the environment.



6 Onur Soysal

2.3 Group Adaptation

Reinforcement learning is by definition centralized which is inefficient to imple-
ment in multi-robot systems. Yanli’s study[11] on opportunistically cooperative
neural learning proposes a trade-off for centralized versus decentralized learning
debate. In pure decentralized learning models each agent keeps its learning expe-
rience hidden from other agents. This seriously affects performance of the group
since the experience can not be shared. Yanli solves this problem by adding
’opportunistic’ search. This strategy is similar to survival of fittest concept in
genetic algorithms. Less fit networks copy highly fit networks to improve their
performance.

Yanli reports the comparison of three cases, central, distributed and oppor-
tunistically distributed. These cases are tested on searching task where agents
are required to cover as much of a given space as possible avoiding multiple passes
as much as possible. The best strategy clearly is one that utilizes cooperation.
All agents act simultaneously and plan their movements ahead of action. Agents
also share their plans with other agents. These plans are used to predict the next
action of all other agents by each agent. Learning takes place in these predictors.
When the next action of other agents can be predicted precisely reward can be
calculated.

Results show that central learning is superior to all this methods in per-
formance. However central learning has many problems in fault-tolerance and
communication. OCL (opportunistically cooperative learning) performs almost
as well as central learning and both perform remarkably better than distributed
only case.

Nolfi and Floreano’s[21] work show combination of learning and evolution
can generate a better adaptation mechnasim then either alone. Learning im-
proves performance of evolution by allowing adaptation to changes in life span
of individuals. Learning also allows experience gained from environment to be
better utilized. Perhaps most interesting effect of learning on evolution is guiding
evolution as described by Baldwin(1892). Learning gives chance to suboptimal
individuals to survive. But learning has a cost, so ultimately genetical knowledge
replaces learned information.

Nolfi et al. reports two kinds of interaction between learning and evolution.
In first kind both learning and evolution modify same data, like weights in neu-
ral network. This model although showing improvement in performance is not
biologically plausible. In second kind of interaction genetic information controls
only the rules and parameters of learning in the network. This is more similar to
biological model and has generated interesting results. Some of the experiments
have generated networks that continously change the weights. These changes
don’t reflect the change in behavior. This shows this system can find a dynamic

equilibrium, rather than a static equilibrium.
Agah[12] combines both individual and group adaptation in his work. Agah

uses so called Tropism Architecture to approach multi robot learning problem.
Tropism architecture serves as a learning module between senses and actions.
Each tropism is defined as a tendency to elicit a response for a given stimuli.



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 7

Tropism architecture keeps a list of learned tropisms (i.e. state, action, tendency
pairs). Agents make decisions based on matching tropisms to current state. A
stochastic process is used to determine which actions to apply biased on the
tropism values.

Both kinds of learning are applied using this architecture. In individual learn-
ing scheme,the list of tropisms are updated based on feedback obtained from
environment. These updates include adding a new valid action for current state,
increasing tropism value for a pair which has been positively reinforced and
changing action when an invalid or negatively reinforced action is encountered.

In population learning, the tropism lists for each agent is converted into
variable length bit strings. Using these bit strings, a genetic algorithm is run.
The fitness of each individual is calculated based on the rewards it received
during individual learning. Results indicate success of this twofold method even
in absence of reinforcement propagation as in Q-learning.

It is not always possible to have behaviors beforehand and even behaviors
should be learned in certain cases. Hexapod locomotion is such a case. Parker[13]
studies on learning a cooperative box pushing task in hexapod robots. The main
problem he is facing is the locomotion problem, since moving hexapod robot
requires more complicated operations than wheeled robots. For this task Parker
purposed Cyclic Genetic Algorithms (CGA), which handles requirements of such
complicated control. The motivation behind CGA’s is evolving a sequence of
operations instead of simple stimulus-response pairs. CGA encodes a series of
activations which are to be repeated by the agent.

Fitness of each chromosome for a given task is calculated by using a computer
simulation where the chromosome to be evaluated is paired with the best known
solution to the problem. The success of the group is used as the fitness measure
for the chromosome. Results indicate the effectiveness of purposed method.

Cooperation requires coordination among robots, which requires communica-
tion. Early approaches to cooperation used peer-to-peer communication models.
This, although possibly required for optimal solution, requires increasing compu-
tational power and bandwidth for increasing number of robots in the system. Lo-
cal communication reduces bottlenecks in communication but not totally solves
this problem. Stigmergy, i.e., communication through environment changes, is
a possible solution to communication bottleneck. This implicit communication
scheme allows scalability and is observed in social insects.

Yamada’s[17] work provides a working implementation of an implicit com-
munication system for cooperation in robot groups. This scheme is applied to
the box pushing problem. Goal is identified with a light source and robots are
assumed to be capable of the following: detecting whether box being pushed is
moving or not, presence of other robots and presence of walls. Here walls are
modeled as unmovable boxes so they are ignored in the end. The authors gen-
erate situations to solve implicit communication problem. Situations abstract
models of state of the world, which are computed using the sensor data and
some very crude memory (such as counters for some sensor readings). Robots



8 Onur Soysal

have sets of rules for each situation. These rules are applied according to sensor
readings.

3 Parallelized Evolution System

I have deveoloped Parallelized Evolution System together with Erkin Bahceci in
Kovan Research Lab. This section describes this platform.

Evolutionary Robotics[6] is a new approach for creating autonomous robots.
An active research track in Evolutionary Robotics is the development of behav-
iors for simulated robot systems. In these studies, the goal is to evolve controllers
that uses the sensory information of the robot to control robot’s actuators such
that the robot accomplishes a desired task. Initially a population of genotypes
that encode the controllers is given. Then the robot is simulated under the con-
trol of the controller specified by the genotype and its fitness is evaluated. The
fittest controllers are then allowed to reproduce as define by a set of genetic oper-
ators, and the process is repeated. Evolving behaviors in simulated robot systems
require a large amount of computational power, mainly due to the evaluation of
different individuals. Therefore the computational requirements of using evolu-
tionary methods tend to be proportional to the computational requirements of
evaluating a single individual. This creates a major bottleneck for evolutionary
methods.

Recently there have been projects[3, 5] that aim to create platforms that can
use the idle processing power of computer systems that are connected over a
network. SETI@home[3] is a scientific experiment that uses Internet-connected
computers in the Search for Extraterrestrial Intelligence (SETI). The down-
loaded program runs as a background task or a screensaver getting chunks of
radio telescope data from a server and performing a computation intensive pro-
cessing of the data to seek signs of artificial signals and reporting the results
back to the server. This platform made it possible for the SETI project to utilize
a total computing power that equals or surpasses supercomputers.

This section reports the development of a platform, named PES (Parallel-
lized Evolution System), that parallelizes an evolutionary method on a group of
computers connected via a network. In the next subsection, we describe PES and
its specifications. Section 3.1 describes the implementation of PES, explaining
server and client components of the system. Section 3.2 describes the speed-
ups obtained using PES for the problem of evolving behaviors for a swarm of
simulated mobile robots. Section 4 summarizes the results and discusses the
shortcomings and future development directions of the system.

3.1 PES

PES is a platform to parallelize evolutionary methods on a group of computers
connected via a network. It separates the fitness evaluation of genotypes from
other tasks (such as selection and reproduction) and distributes these evalua-
tions onto a group of computers to be processed in parallel. PES consists of



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 9

two components; (1) a server component, named PES-Server, that executes the
evolutionary method, the management of the communication with the client
computers, and (2) a client component, named PES-Client, that executes pro-
grams to evaluate a single individual and return the fitness back to the server.
Figure 1 shows the structure of a PES system.

Evaluate individual
Send the fitness back

Evaluate individual
Send the fitness back

Evaluate individual
Send the fitness back

Evolutionary Algorithm
Create individuals
Dispatch individuals
Collect fitness values

PES−C (Linux) PES−C (Win) PES−C (Win)

PES−S (Linux)

Fig. 1. Sketch of PES system is shown. The PES-Server runs on a Linux machine and
handles the management of the evolutionary method. It executes the selection and
reproduction of the individuals (genotypes) which are then dispatched to a group of
PES-Clients (running both Windows and Linux systems). The individuals are then
evaluated by the clients and their fitnesses are sent back to the server.

PES provides the user with an easy interface that relieves him from dealing
with the communication between server and client processes. PES-Client is de-
veloped for both Windows and Linux, enabling the PES system to harvest com-
putation power from computers running either of these operating systems. An
easy-to-use framework for implementing evolutionary methods, and the inter-
operability of the system distinguishes PES from other systems available and
makes it a valuable tool for evolutionary methods with large computational re-
quirements.

PES uses PVM (Parallel Virtual Machine)[4]1, a widely utilized message
passing library in distributed and parallel programming studies, for communi-
cation between the server and the clients. We have also considered MPI[2] as an
alternative to PVM. MPI is a newer standart that is being developed by multi-
processor machine manufacturers and is more efficient. However PVM is more
suitable for our purposes since (1) it is available in source code as free software

1 Available at http://www.csm.ornl.gov/pvm/pvm home.html.



10 Onur Soysal

and is ported on many computer systems ranging from laptops to CRAY super-
computers, (2) it is inter-operable, i.e. different architectures running PVM can
be mixed in a single application, (3) it does not assume a static architecture of
processors and is robust against failures of individual processors.

PES wraps and improves PVM functionality. It implements a time-out mech-
anism is implemented to detect processes that have crashed or have entered an
infinite loop. It provides ping, data and result message facilities. Ping messages
are used to check the state of client processes. Data messages are used to send
task information to client processes and result packages are used to carry fitness
information from clients.

Now we will describe the PES-Sever and PES-Clients.

PES-Server PES-Server provides a generic structure to implement evolution-
ary methods. This structure is based on Goldberg’s basic Genetic Algorithm[1]
and is designed to be easily modified and used by programmers. The structure
assumes that fitness values are calculated externally. In its minimal form, it
supports tournament selection, multi-point cross-over and multi-point mutation
operators.

PES-Server maintains a list of potential clients (computers with PES-Client
installed), as specified by their IP numbers. Using this list, the server executes
an evolutionary method and dispatches the fitness evaluations of the individuals
to the available clients. The assignment passes the location of the executable
to be run on the client as well as the parameters that represent that particular
individual and the initial conditions for the evaluation. Then it waits for the
clients to complete the fitness evaluation and get the computed fitness values
back.

PES-Server contains fault detection and recovery facilities. Using the ping fa-
cility the server can detect clients that have crashed and assign the uncompleted
tasks to other clients. In its current implementation, the server waits for the
evaluation of fitness evaluations from all the individuals in a generation before
dispatching the individuals from the next generation.

PES-Client PES-Client acts as a wrapper to handle the communication of the
clients with the server. It fetches and runs a given executable (to evaluate a given
individual) with a given set of parameters. It returns the fitness evaluations, and
other data back to the server.

Client processes contain a loop that accepts, executes and sends result of
tasks. Client processes reply to ping signals sent by the PES-Server to check
their status. Crashed processes are detected through this mechanism.

PES-Clients are developed for single processor PC platforms running Win-
dows and Linux operating systems. Note that to use clients with both operating
systems the fitness evaluating program should be compilable on both systems. In
its current implementation, these clients have the fitness evaluation component
embedded within them to simplify the communication. Yet, once the clients are



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 11

installed, the fitness evaluation component of the system can be updated using
scp (secure copy) utility from the server.

3.2 Experimental Results

The PES platform is developed as part of our work within the Swarm-bots
project2[7], for evolving behaviors for a simulated swarm of mobile robots. We
have conducted experiments to evolve behaviors for clustering a swarm of robots
and analyzed the speed-up and efficiency of the PES system in this task.

The swarm of robots and their environment are modeled using ODE (Open
Dynamics Engine), a physics-based simulation library, Figure 2(a). The param-
eters of this simulation and parameters of the controller (network weights) are
passed to the PES-Client from the PES-Server. The simulator constructs the
world and runs it, by solving their physical dynamic equations. Movements of
the robots are determined by their controller as specified by the genotype. This
controller uses the sensors of the robots and moves the robots for 2000 time steps.
Then a fitness value is computed based on a measure of clustering achieved. This
fitness value is then returned to PES-Server, Figure 2(b).

Controller Simulation Loop

Sensory input

PES-S

Simulator Kernel
Descriptions

Network
Initialize Fitness

FitnessNetwork
value

value

Sound emission
Motor speed

weights

weights

Robot file
World file

PES-C
(a) (b)

Fig. 2. (a) A snapshot of the environment being simulated: Three mobile robots dis-
tributed in an arena are enclosed by walls can be seen. The rods emanating out of the
robot bodies visualize the proximity sensing capabilities of the robots. (b) Architecture
of PES-Client being used.

The experimental set-up We have installed PES-Clients to 12 PC’s of a
student laboratory at the Computer Engineering Department of Middle East
Technical University, Ankara, Turkey. During the experiment, these computers

2 More information can be found at http://www.swarm-bots.org.



12 Onur Soysal

are being used by other users and each of them had different workloads that var-
ied in time. The population size is set as 48, requiring that 48 fitness evaluations
take place during each generation. 30 generations were evolved.

Figure 3 plots the load of the 12 processors in time, during the evaluation of
five generations. PES-Server waits for fitness evaluations of all the individuals
in a generation before the selection and reproduction of the individuals of the
next generation. In the plot, the vertical lines separate the generations. Within
each generation, 48 fitness evaluations are calculated, which are visible as dark
diamonds or dark horizontally stretched hexagons. It can be seen that the fitness
evaluation time varies between different cases. There are two major causes of
this. First, each processor has a different and varying workload depending on
the other users of that computer. Second, the physics-based simulation of the
swarm of robots slows down dramatically as robots collide with each other and
the walls in the environment.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

time(seconds)

P
ro

ce
ss

or
s

Processor Load Graph

Fig. 3. The load of the 12 processors during 5 generations of evolution. See text for
discussion.

In order to analyze the speed-ups achieved through the use of the PES system
and its efficiency, we have repeated the evolution experiment using 1, 2, 3, 6 and
12 processors. The data obtained is used to compute the following two measures:

Sp =
Time required for single machine

Time required for p machines



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 13

Ep =
Speed-up with p processors

p

The results are plotted in Figure 4(a,b). Ideally Sp should be linear to num-
ber of processors and Ep should be 1. The deviance is a result of the requirement
that all individuals need to be evaluated before moving on to the next gener-
ation. As a consequence of this, after the dispatching of the last individual in
a generation, all-but-one of the processors has to wait for the last processor to
finish its evaluation. This causes a decrease in the speed-up and efficieny plots.
Note that, apart from the number of processors, these measures also depend on
two other factors: (1) the ratio of total number of fitness evaluations in a gener-
ation to the number of processors, (2) the average duration of fitness evaluations
and their variance.

(a) (b)

Fig. 4. (a) Speed-up is plotted against number of processors. (b) Efficiency is plotted
against number of processors.

In Section 3.1, we had described a ping mechanism that was implemented to
check whether a processor has crashed or not. This mechanism was crucial since
we envision PES to harvest idle processing powers of existing computer systems
and cannot make assumptions about the reliability of the clients. Figure 5 shows
the ping mechanism at work during an evolution where we had 20 fitness eval-
uations in each generation run on 4 processors. Similar to the plot in Figure 3,
this plot shows the loads of the processors. The numbers in the hexagons are
labels that shows the number of the individual being evaluated. The continuous
vertical bars separate the generations. the dotted vertical lines that are drawn
at 15, 30, 45, and 60 seconds mark the pings that check the status of the proces-
sors. In this experiment, processor 2 crashed on while it is evaluating individual
5 after the first ping. PES-Server detected this at the second ping (at time 30),
assigned the evaluation of individual 5 to processor 1, and removed processor 2
from its list.



14 Onur Soysal

0 10 20 30 40 50 60 70
0

1

2

3

4

5

time(seconds)

P
ro

ce
ss

or
s

Processor Load Graph

0 7 9 12 15 18 5 0 3 6 9 12 15 18 0 4 7 9 11 14 17

1 500000000000000000000000000000000

2 4 8 11 14 17 1 4 7 10 13 17 19 1 3 6 10 13 16 18

3 6 10 13 16 19 2 5 8 11 14 16 2 5 8 12 15 19000

Timeout 

Task restart 

Fig. 5. Load of each processor during a run in which a processor fails. See text for
discusssion.

4 Conclusion

In Section2 I have summarized current state of art in multi-robot adaptation.
This study provides a starting point for my thesis which will focus on multi
robot adaptation. Individual and group adaptation schemes are considered in
this section, since swarm robotics may benefit from both.

Evolutionary robotics is a promising direction. Most notably works of Nolfi
et al.[21] and Agah et al.[12] use evolutionary methods in adaptation.

In previous section I have reported a new parallel processing platform for run-
ning evolutionary methods. Unlike existing parallel processing platforms, PES
provides a generic framework within which evolutionary methods can be easily
implemented. PES provides an interface which relieves its user from the details
of communication and the status of the clients. PES adds better fault toler-
ance mechanisms to PVM allowing crashed processes be detected. The user only
needs to program a separate client program with a few constraints and should
customize the server program to meet its requirements while leaving the rest to
PES.

The analysis showed that although evolutionary methods lend themselves
easily to parallelization, non-incremental selection and reproduction (that is the
selection and reproduction occuring only after all the individuals are evaluated)
is a major source of wasting processing time. The use of incremental selection
and reproduction methods would eliminate this problem.

I plan to implement aggregation task with learning. This task can be solved
partially with introduction of random inputs. My aim is to replicate and sur-
pass these results with learning mechanisms. The problem of designing learning



PATTERN FORMATION IN SWARM ROBOTIC SYSTEMS 15

controllers will be adressed using evolutionary methods. Evolutionary methods
will run on parallel using PES library.

As of learning models I plan to use reinforcement models as baseline. These
models are widely used in community and are well studied.

Neural networks models are common in evolutionary robotic literature and
they will be included in my study. They are suitable for both evolution and
learning. So they will be very convinient for my task.

Threshold models on the other hand are common in swarm robotics practice.
These models are simple yet can yield complex results. These models have the
benefit of biological plausibility. There’s not much work on adaptive threshold
models. One of the aims of this thesis will be inclusion of adaptive threshold
models.

These three main catagories of models will be compared in performance.
Also a parallel research by Erkin Bahceci, which studies on effect of probablistic
inputs in pattern formation will be considered in this comparison.

Acknowledgments

This work was partially funded by the SWARM-BOTS project, a Future and
Emerging Technologies project (IST-FET) of the European Community, under
grant IST-2000-31010. The information provided is the sole responsibility of the
authors and does not reflect the Community’s opinion. The Community is not
responsible for any use that might be made of data appearing in this publication.

References

1. Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley, 1989.

2. Hempel, R., The MPI Standard for Message Passing. High–Performance Computing
and Networking, International Conference and Exhibition, Proceedings, Volume II:
Networking and Tools. Ed. Gentzsch, Wolfgang and Harms, Uwe. 247–252,1994.SV,
LNCS vol797, 1994.

3. Korpela E., Werthimer D., Anderson D., Cobb J., Lebofsky M., SETI@home: An

Experiment in Public-Resource Computing Communications of the ACM, Vol. 45
No. 11, pp. 56-61, November, 2002.

4. Kowalik J. (ed), PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for

Networked Parallel Computing. MIT Press Scientific and Engineering Computation,
1994.

5. Mukherjee S., Mustafi J., Chaudhuri A., Grid Computing: The Future of Dis-

tributed Computing for High Performance Scientific and Business Applications Lec-
ture Notes in Computer Science, Vol. 2571, pp 339-342, 2002.

6. Nolfi S., Floreano D., Evolutionary Robotics: The Biology, Intelligence, and Tech-

nology of Self-Organizing Machines, MIT Press/Bradford Books, 2000.
7. Şahin E., Labella T.H., Trianni V., Deneubourg J.-L., Rasse P., Floreano D., Gam-

bardella L.M., Mondada F., Nolfi S., Dorigo M., SWARM-BOT: Pattern Formation

in a Swarm of Self-Assembling Mobile Robots. In A. El Kamel, K. Mellouli, and P.



16 Onur Soysal

Borne, editors, Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, Hammamet, Tunisia, October 6-9, 2002. Piscataway, NJ: IEEE
Press.

8. Vinschen C., Faylor C., Delorie D. J., Humblet P., Noer G., Cygwin User’s Guide.

9. Takahashi, Y. Edazawa, K. Asada, M. Multi-module learning system for behav-

ior acquisition in multi-agent environment, Intelligent Robots and System, 2002.
IEEE/RSJ International Conference on ,927- 931 vol.1.

10. Piao S, Hong B., Fast reinforcement learning approach to cooperative behavior ac-

quisition in multi-agent system. Intelligent Robots and System, 2002. IEEE/RSJ
International Conference on,871- 875 vol.1.

11. Yanli Y., Polycarpou M.M., Minai A.A., Opportunistically cooperative neural learn-

ing in mobile agents, Neural Networks, 2002. IJCNN ’02. Proceedings of the 2002
International Joint Conference on ,2638-2643.

12. Agah A., Phylogenetic and Ontogenetic Learning in a Colony of Interacting Robots,
Autonomous Robots 4(1):85 - 100.

13. Parker, G.B. Blumenthal, H.J., Punctuated anytime learning for evolving a team,
World Automation Congress, 2002. Proceedings of the 5th Biannual,559- 566.

14. Mataric’ M.J., Reward Functions for Accelerated Learning,Machine Learning: Pro-
ceedings of the Eleventh International Conference, 1994, 181-189.

15. Goldberg D., Mataric M.J., Maximizing Reward in a Non-Stationary Mobile Robot

Environment, invited submission to the Best of Agents-2000, special issue of Au-
tonomous Agents and Multi-Agent Systems, 6(3), 2003, pp. 281-316.

16. Tangamchit P., Dolan J.M., Kosla P.K., The necessity of average rewards in coop-

erative multirobot learning,Robotics and Automation, 2002. Proceedings. ICRA ’02.
IEEE International Conference on,1296- 1301 vol.2.

17. Yamada, S., Saito J., Adaptive action selection without explicit communication for

multirobot box-pushing,Systems, Man and Cybernetics, Part C, IEEE Transactions
on,Volume: 31, Issue: 3, 398-404.

18. Dudek, G., Jenkin, M., Milios, E., Wilkes, D., emphA Taxonomy for swarm
robotics, Proceedings IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Yokohama, Japan, July 1993, pp. 441-447.

19. Dudek G., Jenkin M., Milios E., A Taxonomy of Multirobot Systems, Robot Teams:
From Diversity to Polymorphism, Balch T., Parker L. E. (Eds), 2002, A.K. Peters.

20. Cao Y. U., Fukunaga S. A., Kahng B. A., Cooperative Mobile Robotics: Antecedents

and Directions, IEEE/TSJ International Conference on Intelligent Robots and Sys-
tems, Yokohama, Japan, 1995.

21. Nolfi S., Floreano D., Learning and Evolution, Autonomous Robots, 7(1): 89-113,
1999.

22. Parker L. E. Lifelong Adaptation in Heterogeneous Multi-Robot Teams: Response

to Continual Variation in Individual Robot Performance, Autonomous Robots,
8(3):239 - 267 , 2000.

23. Brooks R. A. Intelligence without representation, Artificial Intelligence, 47, 139-
159, 1991.


