Assessing the scalability of multiphysics tools for modeling solidification and melting processes on parallel clusters
K McManus, A Williams, M Cross… - … Journal of High …, 2005 - journals.sagepub.com
The International Journal of High Performance Computing …, 2005•journals.sagepub.com
A comprehensive solution of solidification/melting processes requires the simultaneous
representation of free surface fluid flow, heat transfer, phase change, nonlinear solid
mechanics and, possibly, electromagnetics together with their interactions, in what is now
known as multiphysics simulation. Such simulations are computationally intensive and the
implementation of solution strategies for multiphysics calculations must embed their effective
parallelization. For some years, together with our collaborators, we have been involved in …
representation of free surface fluid flow, heat transfer, phase change, nonlinear solid
mechanics and, possibly, electromagnetics together with their interactions, in what is now
known as multiphysics simulation. Such simulations are computationally intensive and the
implementation of solution strategies for multiphysics calculations must embed their effective
parallelization. For some years, together with our collaborators, we have been involved in …
A comprehensive solution of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, nonlinear solid mechanics and, possibly, electromagnetics together with their interactions, in what is now known as multiphysics simulation. Such simulations are computationally intensive and the implementation of solution strategies for multiphysics calculations must embed their effective parallelization. For some years, together with our collaborators, we have been involved in the development of numerical software tools for multiphysics modeling on parallel cluster systems. This research has involved a combination of algorithmic procedures, parallel strategies and tools, plus the design of a computational modeling software environment and its deployment in a range of real world applications. One output from this research is the three-dimensional parallel multiphysics code, PHYSICA. In this paper we report on an assessment of its parallel scalability on a range of increasingly complex models drawn from actual industrial problems, on three contemporary parallel cluster systems.
Sage Journals
Showing the best result for this search. See all results