A review of machine learning-based failure management in optical networks

D Wang, C Zhang, W Chen, H Yang, M Zhang… - Science China …, 2022 - Springer
D Wang, C Zhang, W Chen, H Yang, M Zhang, APT Lau
Science China Information Sciences, 2022Springer
Failure management plays a significant role in optical networks. It ensures secure operation,
mitigates potential risks, and executes proactive protection. Machine learning (ML) is
considered to be an extremely powerful technique for performing comprehensive data
analysis and complex network management and is widely utilized for failure management in
optical networks to revolutionize the conventional manual methods. In this study, the
background of failure management is introduced, where typical failure tasks, physical …
Abstract
Failure management plays a significant role in optical networks. It ensures secure operation, mitigates potential risks, and executes proactive protection. Machine learning (ML) is considered to be an extremely powerful technique for performing comprehensive data analysis and complex network management and is widely utilized for failure management in optical networks to revolutionize the conventional manual methods. In this study, the background of failure management is introduced, where typical failure tasks, physical objects, ML algorithms, data sources, and extracted information are illustrated in detail. An overview of the applications of ML in failure management is provided in terms of alarm analysis, failure prediction, failure detection, failure localization, and failure identification. Finally, the future directions on ML for failure management are discussed from the perspective of data, model, task, and emerging techniques.
Springer
Showing the best result for this search. See all results