Airplane Detection and Classification Based on Mask R-CNN and YOLO with Feature Engineering

A Attarian, M Luo, Y Luo, H Tran, X Xu, C Yi… - Proceedings of SAI …, 2022 - Springer
A Attarian, M Luo, Y Luo, H Tran, X Xu, C Yi, Y Yu, F Zhang
Proceedings of SAI Intelligent Systems Conference, 2022Springer
Deep learning algorithms achieve good performance in object detection and image
classification. In this paper, we apply two algorithms, Mask R-CNN and YOLOv3, to the
Rareplane dataset for airplane detection and classification. To achieve better performance
in the fine grain classification problem, we propose a multi-step algorithm: Mask R-CNN is
used to obtain bounding box, an edge extraction algorithm is used to get a more precise
mask, the obtained masks are standardized, and their features are extracted. Using this …
Abstract
Deep learning algorithms achieve good performance in object detection and image classification. In this paper, we apply two algorithms, Mask R-CNN and YOLOv3, to the Rareplane dataset for airplane detection and classification. To achieve better performance in the fine grain classification problem, we propose a multi-step algorithm: Mask R-CNN is used to obtain bounding box, an edge extraction algorithm is used to get a more precise mask, the obtained masks are standardized, and their features are extracted. Using this algorithm, the mask type in the mask library with the most similar features is identified as the type of aircraft. Preliminary test results demonstrate that this algorithm is effective in fine grain classification, with an overall precision rate of 89.6% for the Airbus A300 and 88.6% for the Airbus A319.
Springer
Showing the best result for this search. See all results