DDoS attack detection method based on network abnormal behaviour in big data environment

J Chen, X Tang, J Cheng, F Wang… - International Journal of …, 2020 - inderscienceonline.com
J Chen, X Tang, J Cheng, F Wang, R Xu
International Journal of Computational Science and Engineering, 2020inderscienceonline.com
Distributed denial of service (DDoS) attack becomes a rapidly growing problem with the fast
development of the internet. The existing DDoS attack detection methods have time-delay
and low detection rate. This paper presents a DDoS attack detection method based on
network abnormal behaviour in a big data environment. Based on the characteristics of flood
attack, the method filters the network flows to leave only the'many-to-one'network flows to
reduce the interference from normal network flows and improve the detection accuracy. We …
Distributed denial of service (DDoS) attack becomes a rapidly growing problem with the fast development of the internet. The existing DDoS attack detection methods have time-delay and low detection rate. This paper presents a DDoS attack detection method based on network abnormal behaviour in a big data environment. Based on the characteristics of flood attack, the method filters the network flows to leave only the 'many-to-one' network flows to reduce the interference from normal network flows and improve the detection accuracy. We define the network abnormal feature value (NAFV) to reflect the state changes of the old and new IP addresses of 'many-to-one' network flows. Finally, the DDoS attack detection method based on NAFV real-time series is built to identify the abnormal network flow states caused by DDoS attacks. The experiments show that compared with similar methods, this method has higher detection rate, lower false alarm rate and missing rate.
Inderscience Online
Showing the best result for this search. See all results