Inference and mutual information on random factor graphs

A Coja-Oghlan, M Hahn-Klimroth, P Loick… - arXiv preprint arXiv …, 2020 - arxiv.org
arXiv preprint arXiv:2007.07494, 2020arxiv.org
Random factor graphs provide a powerful framework for the study of inference problems
such as decoding problems or the stochastic block model. Information-theoretically the key
quantity of interest is the mutual information between the observed factor graph and the
underlying ground truth around which the factor graph was created; in the stochastic block
model, this would be the planted partition. The mutual information gauges whether and how
well the ground truth can be inferred from the observable data. For a very general model of …
Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed factor graph and the underlying ground truth around which the factor graph was created; in the stochastic block model, this would be the planted partition. The mutual information gauges whether and how well the ground truth can be inferred from the observable data. For a very general model of random factor graphs we verify a formula for the mutual information predicted by physics techniques. As an application we prove a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on Information Theory 2005]. Further applications include phase transitions of the stochastic block model and the mixed -spin model from physics.
arxiv.org
Showing the best result for this search. See all results