MACO: Exploring GEMM Acceleration on a Loosely-Coupled Multi-Core Processor

B Sui, J Shen, C Sun, J Wang… - … Design, Automation & …, 2024 - ieeexplore.ieee.org
B Sui, J Shen, C Sun, J Wang, Z Zheng, W Guo
2024 Design, Automation & Test in Europe Conference & Exhibition …, 2024ieeexplore.ieee.org
General-purpose processor vendors have integrated customized accelerator in their
products due to the widespread use of General Matrix-Matrix Multiplication (GEMM) kernels.
However, it remains a challenge to further improve the flexibility and scalability of these
GEMM-enhanced processors to cater to the emerging large-scale GEMM workloads. In this
paper we propose MACO, a novel loosely-coupled multi-core general-purpose archi-tecture
optimized for GEMM-related applications. To enhance the programmability and flexibility of …
General-purpose processor vendors have integrated customized accelerator in their products due to the widespread use of General Matrix-Matrix Multiplication (GEMM) kernels. However, it remains a challenge to further improve the flexibility and scalability of these GEMM-enhanced processors to cater to the emerging large-scale GEMM workloads. In this paper we propose MACO, a novel loosely-coupled multi-core general-purpose archi-tecture optimized for GEMM-related applications. To enhance the programmability and flexibility of MACO, the paper introduces a tile-based instruction set architecture. Additionally, the paper presents techniques such as hardware-assisted data prefetching and locking, and predictive address translation to further enhance the computational efficiency of MACO for GEMM workloads. The experimental results demonstrate that MACO exhibits good scalability, achieving an average computational efficiency of 90 % across multiple cores. Furthermore, evaluations on state-of-the-art deep neural networks show that MACO can achieve up to 1.1 TFLOPS with 88 % computational efficiency, indicating its adaptivity to deep learning workloads.
ieeexplore.ieee.org
Showing the best result for this search. See all results